
 MINISTRY OF EDUCATION

لكل المـهتمين و المـهتمـات بدروس و مراجع الجامعيـة eduschool40.blog مدونةّ المناهـج اللسعودية

Test bank chapter (1)

Choose the correct answer

1. The SI unit of time is the
a) hour
b) second
c) minute

$$
\begin{aligned}
& \text { "Cüll"time leos. } \\
& \text { "ail lisecondll }
\end{aligned}
$$

d) ampere
2. The diameter of an atom is approximately $1 \times 10^{-7} \mathrm{~mm}$. What is this diameter when expressed in nanometers?
a) $1 \times 10^{-18} \mathrm{~nm}$
from $m m^{10^{-3}}$ to $n m$
b) $1 \times 10^{-15} \mathrm{~nm}$
c) $1 \times 10^{-9} \mathrm{~nm}$
d) $1 \times 10^{-1} \mathrm{~nm}$
3.
6.0 km is how many micrometers?

a) $6.0 \times 10^{6} \mu \mathrm{~m}$
b) $1.7 \times 10^{-7} \mu \mathrm{~m}$
$6 \mathrm{Kim} \rightarrow \mu$ micrometer
c) $6.0 \times 10^{9} \mu \mathrm{~m}$
$\xrightarrow[H]{\mu} \xrightarrow{x}$ yes

d) $1.7 \times 10^{-4} \mu \mathrm{~m}$

$$
6 \times 10^{9}=6 \times 10^{9} \mu \mathrm{~m}
$$

4. The SI prefixes giza and micro represent, respectively:
a) 10^{-9} and 10^{-6}. gig, micro
b) 10^{6} and 10^{-3}. riga, micro
a) $2 \times 10^{2} \mathrm{mg} \stackrel{\div 10^{3}}{\rightarrow} 9 \div$,litres as $: 5 \mathrm{c}$
c) 10^{3} and 10^{-3}. (G), (μ)
$10^{9}, 10^{-6}$
5. Which of these quantities represents the largest mass?

$$
2 \times 10^{2} \div 10^{3}=0.29=2 \times 10^{-1} \mathrm{~g}
$$

d) 10^{9} and 10^{-6} - $>$
a) $2.0 \times 10^{2} \mathrm{mg}$
a) $2.0 \times 10^{2} \mathrm{mg}$
c) $1.0 \times 10^{5} \mu \mathrm{~g}$
d) $2.0 \times 10^{2} \mathrm{cg}$

$$
=\omega \cos _{i}
$$

b) $0.00 \mathrm{loKg} \xrightarrow{x 10^{3}} 9$

мер
$0.0010 \times 10^{3}=19$
c) $1 \times 10^{5} \mathrm{Mg} \xrightarrow{\div 10^{6}} 9$ 年

$$
\begin{aligned}
& 1 \times 10^{5} \div 10^{6} \\
& \text { d) } 2 \times 10^{2} \mathrm{cg} \div 10^{2} \\
& 2 \times 10^{2} \\
& \hline 9
\end{aligned}
$$

6 . How many cubic centimeters are there in exactly one cubic meter?

$$
\begin{aligned}
& 2 \times 10^{2} \div 10^{2}=\{2\} \\
& \mathrm{er} ?
\end{aligned}
$$

a) $1 \times 10^{-6} \mathrm{~cm}^{3}$
b) $1 \times 10^{-3} \mathrm{~cm}^{3}$
c) $1 \times 10^{-2} \mathrm{~cm}^{3}$
d) $1 \times 10^{6} \mathrm{~cm}^{3}$

$$
\text { from } 1 \mathrm{~m}^{3} \text { to } \mathrm{cm}^{3}
$$

ك ك ك

$$
(1 \mathrm{~m})^{3}=\left(1 \times 10^{2} \mathrm{~cm}\right)^{3}
$$

$$
m^{3}=1 \times 10^{6} \mathrm{~cm}^{3}
$$

CHEM 110

$$
{ }^{\circ} \quad F=\left(\left(\frac{9}{5}\right) \cdot{ }^{\circ} \mathrm{C}\right)+32 \quad \therefore<j 041
$$

7. Ammonia boils at $-33.4^{\circ} \mathrm{C}$. What temperature is this in ${ }^{\circ} \mathrm{F}$?
a) $-60.1^{\circ} \mathrm{F}$
b) $-92.1^{\circ} \mathrm{F}$
c) $-28.1^{\circ} \mathrm{F}$
d) $+13.5^{\circ} \mathrm{F}$

$$
\begin{aligned}
& { }^{\circ} F=\left(\left(\frac{9}{5}\right)(-33.4)\right)+32 \\
& =-28.12 \approx \underbrace{-28.1^{\circ} F}
\end{aligned}
$$

8. Which of the following is not an SI base unit?
a) Kilometer $X \rightarrow$ Prefix aisino
b) Kilogram $\sqrt{4}$

d) Kelvin V_{0}
9. Which of the following SI base units is not commonly used in chemistry?
a) kilogram
b) kelvin
c) candela
d) mole
10. Which of the following prefixes means $1 / 1000$?
a) kilo
b) deci
$1 / 1000=1 \times 10^{-3}$
c) centi
d) milli
milliرloj, 0 の
11. Which of the following prefixes means 1000 ?
a) kilo
b) deci
c) centi
d) milli

$$
\begin{aligned}
& 1000=1 \times 10^{3} \\
& \text { Kilo J' } 5 j 1000
\end{aligned}
$$

12. Convert $-77^{\circ} \mathrm{F}$ to kalvin?
a) 212.6 K
b) -212.6 K
c) -28.1 K
d) +13.5 K

$$
\begin{aligned}
& { }^{\circ} C=\left(\frac{5}{9}\right)(F-32) \\
& =\left(\frac{5}{9}\right)(-77-32)=-60.55^{\circ} \mathrm{C} \\
& K={ }^{\circ} \mathrm{C}+273.15 \\
& =-60.55+273.15 \\
& =212.6 \mathrm{~K}
\end{aligned}
$$

13. The number 0.0005678 expressed in scientific notation is:
a) 5.678×10^{4}
b) 5.67×10^{-7}
c) 5.678×10^{-4}
d) 5.67810^{-3}

Explanation: Since this number is less than one star moving the decimal point to the right until there is ONE non-zero number to the left of the decimal point. Write the rest of the number as is. Write the exponent as the number of places the decimal point was moved.
14. Which of the following is the smallest distance?

a) 21 m
b) $2.1 \times 10^{2} \mathrm{~cm}$
c) 21 mm
(a) 21 m
(b) $2.1 \times 10^{2} \div 10^{2}$
Sep is
(c) $21 \mathrm{~mm} \stackrel{10^{3}}{\longrightarrow} \mathrm{~m}$
d) $2.1 \times 10^{4} \mathrm{pm}$
$=0.021 \mathrm{~m}$
(2) $2.1 \times 10^{4} \mathrm{pm} \div 10^{12}$$\quad$ grep os
ai Luojeol'g seep $1 \quad=2.1 \times 16^{-8} \mathrm{~m}$
Explanation: Even though 2.1×10^{4} is the largest number in this question, the units of pm (picometers) are the smallest units here, making it the smallest distance.
15. What temperature is $95^{\circ} \mathrm{F}$ when converted to degrees Celsius? ${ }^{\circ} \mathrm{C}=\left(\frac{5}{9}\right)\left({ }^{\circ} \mathrm{F}-32\right): 0$: 10$) 1$
a) $63{ }^{\circ} \mathrm{C}$
b) $35^{\circ} \mathrm{C}$
c) $127^{\circ} \mathrm{C}$
d) $15^{\circ} \mathrm{C}$
$=\left(\frac{5}{9}\right)(95-32)$
6. What temperature is $37^{\circ} \mathrm{C}$ when converted to kelvin?
$=35^{\circ} \mathrm{C}$
. What temperature is $37^{\circ} \mathrm{C}$ when converted to kelvin? $K={ }^{\circ} \mathrm{C}+273.15$ ogtol
a) 310.15
b) 236
c) 236 k
d) 67.15

$$
K=37+273.15
$$

17. What temperature is 77 K when converted to degrees Celsius?
a) $-296^{\circ} \mathrm{C}$
$K={ }^{\circ} \mathrm{C}+273.15$
: OO LOS
b) $105^{\circ} \mathrm{C}$
c) $-196^{\circ} \mathrm{C}$
d) $25^{\circ} \mathrm{C}$
18. Express 75 Tg as pg
a) 0.75 pg
b) $75 \times 10^{24} \mathrm{pg}$
c) 0.75 pg
d) $75 \times 10^{-24} \mathrm{pg}$

$75 \mathrm{Tg} \rightarrow \mathrm{Pg}$
 $75 \times 10^{24} \mathrm{pg}$

4

$$
\begin{aligned}
& \text { (a) } 2 \times 10^{2} m g \stackrel{\div 10^{3}}{\rightarrow} g \text { nervies as } \\
& =0.2=2 \times 10^{-1} \mathrm{~g}
\end{aligned}
$$

19. The SI prefixes Tara and nano represent, respectively:
a) 10^{-9} and 10^{-6}.
Tera Nano
c) 10^{3} and 10^{-3}
(b) $0.0010 \mathrm{Kg} \underset{\times 10^{3}}{ } \mathrm{~g}$ sint $\mathrm{sen}^{\mathrm{sin}}$
$=19$
20. Which of these quantities represents the smallest mass? (g) aL las gs,p onopg
a) $2.0 \times 10^{2} \mathrm{mg}$
b) 0.0010 kg
c) $1 \times 10^{5} \mu \mathrm{~g}$
d) $2.0 \times 10^{2} \mathrm{cg}$
(c)
(c) ats japl \leadsto
(c) $1 \times 10^{5} \mu g \xrightarrow{\div 10^{6}} g$ जisan

$$
=0.1 g \approx 1 \times 10^{-1} g
$$

$$
\begin{aligned}
\text { (d) } & 2 \times 10^{2} \lg \stackrel{10^{2}}{\longrightarrow} g \text { orjap as } \\
= & 29
\end{aligned}
$$

21. Express 7.5 ng as Tg
a) $7.5 \times 10^{-21} \mathrm{Tg}$
b) $75 \times 10^{24} \mathrm{Tg}$
c) 0.75 Tg
d) $7.5 \times 10^{21} \mathrm{Tg}$

22. At what temperature does the numerical reading on a Fahrenheit thermometer equal that on a Celsius thermometer?
a) $0{ }^{\circ} \mathrm{F}$
b) $-40^{\circ} \mathrm{F}$
c) $100^{\circ} \mathrm{F}$
d) $-32{ }^{\circ} \mathrm{F}$

Explanation: since the temperature reading is the same so that mean ${ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C}$
; ملر of
${ }^{\circ} \mathrm{F}=\left(\left(\frac{9}{5}\right)^{\circ} \mathrm{C}\right)+32$

$t=\left(t\left(\frac{9}{5}\right)\right)+32^{\circ}$
2ist aleil
$t-\left(\frac{9}{5}\right) t=32$
plokl at
$-\frac{9}{5}=\frac{4}{5}$
el
$\left(-\frac{5}{4}\right)-\frac{4}{5} t=32\left(\frac{-5}{4}\right), ~$
$1 t=-40$

Let temperature $=\mathrm{t}$
$\mathrm{t}=[\mathrm{t} \times 9 / 5]+32^{\circ} \mathrm{F}$
$\mathrm{t}-9 / 5 \mathrm{t}=32^{\circ} \mathrm{F}$
$-4 / 5 \mathrm{t}=32^{\circ} \mathrm{F}$
$\mathrm{t}=-40^{\circ} \mathrm{F}=-40^{\circ} \mathrm{C}$

CHEM $110 \quad t=-40^{\circ} \mathrm{C}$

Test bank chapter (2)

Choose the correct answer

NOTE: A periodic table is required to work many of the problems in this chapter.

1. Which of these elements is most likely to be a good conductor of electricity?
a) N nonmetal
b) S nonmetal
c) He nonmetal
d) Fe metal.
2. An atom of the isotope sulfur- 31 consists of how many protons, neutrons, and electrons?
($\mathrm{p}=$ proton, $\mathrm{n}=$ neutron, $\mathrm{e}=$ electron $) \quad \mathrm{A} \rightarrow 32 C$
a) $15 \mathrm{p}, 16 \mathrm{n}, 15 \mathrm{e}$
b) $16 \mathrm{p}, 15 \mathrm{n}, 16 \mathrm{e}$
c) $16 \mathrm{p}, 31 \mathrm{n}, 16 \mathrm{e}$
d) $32 \mathrm{p}, 31 \mathrm{n}, 32 \mathrm{e}$

$$
\begin{aligned}
& p=16, \quad e=16 \\
& n=32-16=15
\end{aligned}
$$

3. A magnesium ion, Mg^{2+}, has
a) 12 protons and 13 electrons.

24 protons and 26 electrons.
c) 12 protons and 10 electrons.
d) 24 protons and 22 electrons.

$$
\begin{aligned}
& p=12 \\
& e=12-2=10^{\prime} e
\end{aligned}
$$

4. Which of these pairs of elements would be most likely to form an ionic compound?
a) P and Br non, non X
nonmetal \& metal
b) Cu and K metal, metal X
c) C and O noh, non x
d) O and Zn metal, nonmetal
5. The elements in a column of the periodic table are known as
a) metalloids.,$\%$ 五
b) a period.
c) noble gases.
d) a group.
6. Which is the correct formula for copper (II) phosphate?
a) $\mathrm{Cu}_{2} \mathrm{PO}_{4}$

b) $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
c) $\mathrm{Cu}_{2} \mathrm{PO}_{3}$
d) $\mathrm{Cu}\left(\mathrm{PO}_{4}\right)_{2}$

7. The correct name for $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is
a) ammonium nitrate.
b) ammonium nitrogen trioxide.

$$
\mathrm{NH}_{4} \mathrm{NO}_{3}
$$

b) ammonn nioge
ammonium nitrate
c) ammonia nitrogen oxide.
d) hydrogen nitrogen oxide.
8. What is the formula for the ionic compound formed by calcium ions and nitrate ions?
a) $\mathrm{Ca}_{3} \mathrm{~N}_{2}$
b) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
c) $\mathrm{Ca}_{2} \mathrm{NO}_{3}$
d) $\mathrm{Ca}_{2} \mathrm{NO}_{2}$

9. The Stock system name for $\mathrm{Mn}_{2} \mathrm{O}_{7}$ is
a) dimanganese heptaoxide.
b) magnesium oxide.
c) manganese(VII) oxide.
d) manganese(II) oxide.

10. Which of these elements is chemically similar to oxygen?
a) sulfur

- 6
b) calcium
c) iron
d) nickel

11. The formula of stannic oxide is SnO_{2}. The valence of Sn is:
a) +1
b) +2
c) +3
d) +4
$x+((-2)(2))=0$
$x-4=0$
$x=+4$

Explanation: to know the charge on Sn atom, make this simple calculation remember that the charge on oxygen atom is -2 , let X is the charge on Sn atom
$\mathrm{X}+(-2$ (charge on O$) \times 2$ (number of O atoms) $=0$ (equal zero because the compound is neutral)
$\mathrm{X}-4=0 \ggg \ggg \mathrm{x}=+4$
12. Which pair of atoms constitutes a pair of isotopes of the same element?
(a). ${ }_{6}^{14} \mathrm{X}$
${ }_{7}^{14} \mathrm{X}$
رpiall (avos
(b). ${ }_{6}^{14} \mathrm{X}$
(c). ${ }_{9}^{17} \mathrm{X}$
(d). ${ }_{10}^{19} \mathrm{X}$
${ }_{6}^{12} \mathrm{X}$
${ }_{8}^{17} \mathrm{X}$
${ }_{9}^{19} \mathrm{X}$
${ }_{2}^{A} X$

Explanation: Isotopes of an element are atoms of the same element with same number of protons but different number of neutrons. Only choice (b) has 2 atoms of X with 6 protons and 8 and 6 neutrons respectively.
13. Elements in Group 8A are known as the \qquad -.
a) chalcogens
b) alkali metals

c) noble gases
d) alkaline earth metals
14. \qquad typically forms ions with a $2+$ charge.
a) Transition metals
b) Halogens
c) Alkaline earth metals
d) Alkali metals

A2 $\Rightarrow+2$ aizâ
Al Kalineearthmetal) ${ }^{\rho}$,
वेंp, y

Explanation: The alkaline earth metals are in group 2A of the periodic table and lose 2 electrons to form cations with 2 positive charges.

WL.
15. An anion is defined as
a) a charged atom or group of atoms with a net negative charge.
b) a stable atom.
c) a group of stable atoms.
d) an atom or group of atoms with a net positive charge. apro
16. A cation is defined as
a) a charged atom or group of atoms with a net negative charge.
b) a stable atom.
c) a group of stable atoms.
d) an atom or group of atoms with a net positive charge.

A
17. Atoms of the same element with different mass numbers (or number of neutrones) are called
a) ions.
b) neutrons.
c) chemical families.
d) isotopes.
18. How many neutrons are there in an atom of lead ${ }_{82} \mathrm{~Pb}$ whose mass number is 208 ?
a) 82
b) $126 \quad n=A-Z=$
$208-82=126$
c) 208
d) 290
19. Molecules consist of the same element with different numbers of atoms and chemical structure are called ...
a) Ions
b) Neutrons
c) Allotropes
d) Isotopes
$15<20$. An atom of the isotope ${ }^{16} \mathrm{~S}-31$ consists of how many protons, neutrons, and electrons?
a) $15 \mathrm{p}, 16 \mathrm{n}, 15 \mathrm{e}$
b) $16 \mathrm{p}, 15 \mathrm{n}, 16 \mathrm{e}$
c) $16 \mathrm{p}, 31 \mathrm{n}, 16 \mathrm{e}$
d) $32 \mathrm{p}, 31 \mathrm{n}, 32 \mathrm{e}$
21. A magnesium ion, ${ }_{20} \mathrm{Ca}^{2+}$, has
a) 20 protons and 22 electrons.
b) 20 protons and 20 electrons.
c) 20 protons and 18 electrons.

$$
P=20,{ }^{\prime} e=20-2=18 e
$$

d) 22 protons and 20 electrons.
22. A sulfide ion, ${ }_{16} \mathrm{~S}^{2-}$, has:
a) 16 protons and 16 electrons
b) 32 protons and 16 electrons
c) 16 protons and 14 electrons
d) $\mathbf{1 6}$ protons and 18 electrons
15^{-2}
23. Which of these pairs of elements would be most likely to form a molecular compound?

b) Ca and $\mathrm{O} \quad \mathrm{H}_{\mathrm{y}} y_{0} \mathrm{j}(x)$
c) C and O joy, $\%$ x x
d) Zn and $\mathrm{O} \quad \mathrm{j}^{2} y_{2} \circ \mu(x)$
-
jol y, jor

the ionic com
a) $\mathrm{Ca}_{3} \mathrm{~N}_{2}$
b) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
c) $\mathrm{Ca}_{2} \mathrm{NO}_{3}$
d) $\mathrm{Ca}_{2} \mathrm{NO}_{2}$

ग) $6 \ll 25$. Which is the correct formula for copper(II) phosphate?
a) $\mathrm{Cu}_{2} \mathrm{PO}_{4}$
b) $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
c) $\mathrm{Cu}_{2} \mathrm{PO}_{3}$
d) $\mathrm{Cu}\left(\mathrm{PO}_{4}\right)_{2}$
) $0 \leftarrow$ 26. The correct name for $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is
a) ammonium nitrate.
b) ammonium nitrogen trioxide.
c) ammonia nitrogen oxide.
d) hydrogen nitrogen oxide.
27. The correct name for PCl_{5} is
a) monophosphate pentachloride
b) phosphorus chloride

$$
P C 15
$$

c) monophosphate tetrachloride
d) phosphorus pentachloride
28. Which of the following expressions represents two molecules of water?
a) $\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{H}_{2} \mathrm{O}_{2}$
c) $2 \mathrm{H}_{2} \mathrm{O}$
d) $2 \mathrm{HO}_{2}$
29. The empirical formula of a compound with molecules containing 12 carbon atoms, 14 hydrogen atoms, and 6 oxygen atoms is \qquad .
a) $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6}$
b) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$

c) $\mathrm{CH}_{2} \mathrm{O}$
d) $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{3}$

$$
2 \mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{3}
$$

Explanation: The empirical formula is always the simplest possible whole number ratio between the atoms of the molecules.
30. The charge on the manganese in the salt MnF_{3} is \qquad -.
a) +1
b) -1
c) +3
d) -2

$$
\begin{aligned}
& x+(3(-1))=0 \\
& x-3=0 \\
& x=+3
\end{aligned}
$$

Explanation: Since every F has one negative charge, the Mn can have only 3 positive charges.
30. Magnesium reacts with a certain element to form a compound with the general formula MgX . What would the most likely formula be for the compound formed between potassium and element X ?
a) KX
b) $\mathrm{K}_{2} \mathrm{X}_{2}$
c) $\mathrm{K}_{2} \mathrm{X}_{3}$
d) None of the above

$\left\{\begin{array}{l}k^{+} x^{-2} \\ K_{2} x\end{array}\right.$
Mf.egis

Explanation: In the compound MgX, X must have 2 negative charges since Mg will always have 2 positive charges. The element K will always form an ion with 1 positive charge and hence the only combination of K and X could be $\mathrm{K}_{2} \mathrm{X}$, which is not one of the options.
31. Barium forms an ion with a charge of \qquad .
a) +1
b) -2
c) +3
d) None of the above.

Explanation: Barium is in group 2A of the periodic table and forms ions with only 2 positive charges.
31. Aluminum forms an ion with a charge of \qquad .
a) +2
b) -3

c) +3
d) +1
32. Iodine forms an ion with a charge of \qquad .
a) -7

b) +1
c) -1
d) +2
33. The chemical symbol for the ion with 11 protons and 10 electrons.
a) Na
b) F^{-}
c) Ne
d) Na^{+}
11
, 1 Ja
(t) 100 100

11 Proton
$11-1=10^{\prime} \mathrm{e}$
34. Which of these compounds is a binary compound?
a) $\mathrm{NaCl} \rightarrow$ Gupis
b) $\left.\mathrm{MgSO}_{4}\right\} \quad 0 \mathrm{y}$
c) NaOH ren $\quad \mathrm{HCN}$
d) HCN
\times
35. Atoms with the same number of electrons and number of protons are called...
a) ions
b) isotopes
c) neutral atoms
d) different atoms
36. Atoms which have different number of electrons are called...
a) ions
b) isotopes
c) neutral atoms
d) different atoms
37. Use the following table and choose which of the species are positively charged? é

| Atom or ion element | I | II | III | IV | V | VI |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Atom or ion electrons (e) | 6 | 10 | 18 | 10 | 28 | 7 |
| Atom or ion protons (p) | 6 | 8 | 17 | 11 | 30 | 7 |
| Atom or ion neutrons (n) | 6 | 8 | 18 | 11 | 36 | 6 |

A. III and V
C. II and III
B. IV and V
D. I and VI
38. Which isotope has 45 neutrons?
(a). ${ }_{36}^{80} \mathrm{Kr} \quad 80-36=44 x$
(b). ${ }_{34}^{78} \mathrm{Se} 78-34=44 x$
(c). ${ }_{35}^{80} \mathrm{Br}$ (c) $80-35=45$
(d). ${ }_{17}^{34} \mathrm{Cl} \quad 34-17=17 x$
39. In the periodic table, the elements are arranged in \qquad .
a) alphabetical order
b) order of increasing atomic number
c) order of increasing metallic properties
d) order of increasing neutron content
Ga-
40. An element in the upper right corner of the periodic table is \qquad .
a) either a metal or metalloid
b) definitely a metal
c) definitely a non-metal
d) either a metalloid or a non-metal

41. An element that appears in the lower left corner of a periodic table is \qquad .
a) either a metal or metalloid
b) definitely a metal
c) either a metalloid or a non-metal
d) definitely a non-metal
42. A molecular formula always indicates \qquad .
a) how many of each atom are in a molecule
b) the simplest whole-number ratio of different atoms in a compound
c) which atoms are attached to which in a molecule
d) the isotope of each element in a compound
e)
43. An empirical formula always indicates \qquad
a) which atoms are attached to which in a molecule
b) how many of each atom are in a molecule
c) thesimplest whole-number ratio of different atoms in a compound
d) the geometry of a molecule
44. There are \qquad protons, \qquad neutrons, and \qquad electrons in ${ }^{131} \mathrm{I}^{-}$.
a) 131,53 , and 54
b) 131,53 and 52
c) 53,78 , and 54
d) 53,131 , and 52

$$
\begin{aligned}
& p=53, E=53+1=54, n=78<6 \\
& 131-53
\end{aligned}
$$

45. Which species has 48 electrons?
(a). ${ }_{50}^{118} \mathrm{Sn}^{+2} \longrightarrow 2$ е竞
(b). ${ }_{50}^{116} \mathrm{Sn}^{+4}$ $50-2=48 e^{\prime}$
(b). ${ }_{50}^{116} \mathrm{Sn}^{+4}$
(c). ${ }_{48}^{112} \mathrm{Cd}^{+2}$
(d). ${ }^{688} \mathrm{Ga}$

Test bank chapter (3)

Choose the correct answer

1. What is the mass, in grams, of one copper atom?
a) $1.055 \mathrm{~b}^{-22} \mathrm{~g} \quad \frac{m}{63.55 \mathrm{~g}}=\frac{1}{6.022 \times 10^{23}}$
d) $1.66 \quad 10^{-24} \mathrm{~g} \quad \mathrm{n}=\frac{63.55}{6.022 \times 10^{23}}=1.055 \times 10^{-22} \mathrm{~g}$
2. Determine the number of moles of aluminum in 96.7 g of Al .
a) 0.279 mol
b) 3.58 mol
c) 7.43 mol
d) 4.21 mol

$$
n=\frac{m}{M}=\frac{96.7}{26.98}=3.58 \mathrm{~mol}
$$

N
3. Which of the following samples contains the greatest number of atoms?
a) 100 g of Pb $\left|\begin{array}{l|l}a) \frac{m}{M}=\frac{N}{N h} & (b) n=\frac{N}{N A} \\ \frac{100}{207.2}=\frac{N}{6.022 \times 10^{23}} & 2=\frac{N}{6.022 \times 10^{23}} \\ N=\frac{6.022 \times 10^{2} \times 100}{207.2}=2.906 \times 10^{123} 10 \mathrm{~m}\end{array}\right|$ \qquad
1d) $\frac{m}{M}=\frac{N}{N A}, ~ \frac{5}{4.003}=\frac{N}{6.022 \times 10^{23}}$

$$
N=\frac{5 \times 6.02 \times 10}{4.003}
$$

$$
\begin{aligned}
& N=4.003 \\
& N=7.522 \times 10^{23} \mathrm{atam}
\end{aligned}
$$

b) 2.0 mole of A
c) mole of Fe
d) 5 g of He
$n=\frac{m}{m}, n$

Formaldehyde has the formula $\mathrm{CH}_{2} \mathrm{O}$. How many molecules are there in 0.11 g of formaldehyde?
a) $6.1 \times 10^{-27} \quad \frac{m}{M}=\frac{N}{N_{A}} \Rightarrow \frac{0.11}{30.627}=\frac{\mathrm{N}}{6.022 \times 10^{-3}}$ b) 30^{23}

$$
N=\frac{0.11 \times 6.022 \times 10^{23}}{30.027}=2.2 \times 10^{21}
$$

5. How many sulfur atoms are present in 25.6 g of $\mathrm{Al}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{3}$?
a) 0.393
1 molecules $\rightarrow 6$ atom
3.949×10^{22}
molecales $\rightarrow \underset{\text { 9kion }}{\times 7}$
b) 6
d) 2.37×10^{23}

$$
X=2.369 \times 10^{23} \mathrm{atom} \mathrm{~m}^{5}
$$

$$
\left\{\begin{aligned}
\frac{m}{M} & =\frac{N}{N_{A}} \rightarrow \frac{25.6}{390.399}=\frac{N}{6.022 \times 10^{23}} \\
N & =3.949 \times 10^{22} \text { molearles } \\
& 5 S \text { SUO SOS }
\end{aligned}\right.
$$

$$
S \approx 2.37 \times 10^{23} \text { atoms }
$$

6. The percent composition by mass of a compound is $76.0 \% \mathrm{C}, 12.8 \% \mathrm{H}$, and $11.2 \% \mathrm{O}$. The molar mass of this compound is $284.5 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of the compound?
a) $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}$
b) $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$
c) $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4}$
d) $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}$

Chem. 110

$$
\begin{gathered}
C \quad H \\
\begin{array}{c}
769 \\
n=\frac{76}{12.01}
\end{array}=\frac{12.89}{1.008}=\frac{11.2}{16} \\
=\frac{6.327}{0.7} \\
\approx \frac{12.70}{0.7}=\frac{0.7}{0.7} \\
\approx 9 \\
\\
\\
\\
\approx 18.14=1
\end{gathered}
$$

c) 4
d) 2.2×10^{21}

$$
\begin{aligned}
& g \text { d } 0 \% \text { (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { dojel ots } \rightarrow 1 \text { (3 }
\end{aligned}
$$

Dr. Laila Al-Harbi
Ratiog $\frac{284.5}{142.243} \simeq 2$

$$
\begin{aligned}
& \text { empincal } \circ \\
& \text { forrnula }
\end{aligned} \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O} \Rightarrow 182012 \mathrm{Molar} \text { Hass }=142.243
$$

$$
\left\{\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}\right)_{2} \Rightarrow \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}\right. \text { \& Molecular formula }
$$

7. What is the coefficient of $\mathrm{H}_{2} \mathrm{O}$ when the following equation is properly balanced with the smallest set of whole numbers?$\mathrm{Al}_{4} \mathrm{C}_{3}+\underline{12} \mathrm{H}_{2} \mathrm{O}$

$$
4 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{CH}_{4}
$$

a) 3
b) 4
c) 6
d) 12

-	,
Ald	4 Al
$\begin{aligned} & c u \\ & 200 \end{aligned}$	$\begin{aligned} & 3 \mathrm{CV} \\ & 12 \mathrm{O} \end{aligned}$
24 HC	24 H

8. When 22.0 g NaCl and $21.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ are mixed and react according to the equation below, which is the limiting reagent? $\quad 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \quad \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$

b) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
c) HCl
$=0.19<=0.21$
d) NaCl (imating) , $\overline{, 0}, \mathrm{e}, \mathrm{y})$)
9. When the following equation is balanced, the coefficients are \qquad .
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{NO} 2(\mathrm{~g})+\mathrm{H} 2 \mathrm{O}(\mathrm{g})$
(a). $1,1,1,1$
(b). 2, 3, 2, 3
(c). 4, 7, 4, 6

(d). 1, 3, 1, 2
10. How many moles of carbon atoms are in 4 mol of dimethylsulfoxide $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}\right)$?
a) 2
1 mol of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO} \rightarrow 2$
2 mol of C
b) 6
c) 8 $4 \mathrm{~mol} \circ \mathrm{f} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO} \rightarrow$? mol $\circ \mathrm{C}$
d) 4

$$
C=8 \text { moles }
$$

Explanation: This is based on reading the formula and correctly extracting information from it. The formula $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}$ indicates that every mole of this compound has 2 moles of carbon atoms in it. Thus 4 moles of the compound would have $4 \times 2=8$ moles of C atoms.
11. There are \qquad sulfur atoms in 25 molecules of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$.
a) 1.5×10^{25}

$$
\begin{aligned}
& \text { imolecules of } \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2} \rightarrow{ }_{x} \text { 2 atoms of } \mathrm{S} \\
& 25 \text { molecule of } \mathrm{CHH}_{4} \mathrm{~S}_{2} \rightarrow \text { ? atom } \text { of } S \\
& X=2 \times 25=50 \text { atoms of } \mathrm{S}
\end{aligned}
$$

Explanation: The molecular formula indicates that every molecule of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$ has 2 sulfur atoms per molecule and hence 25 molecules of this compound will have $25 \times 2=50$ atoms of sulfur.
12. There are \qquad hydrogen atoms in 25 molecules of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$.
a) 25

$$
\begin{aligned}
& 25 \text { molecules of } \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2} . \\
& \text { I molecules } f \mathrm{C} \text { CHUS } \rightarrow \text { uatoms of } \mathrm{H} \\
& 25 \text { andecules of } \mathrm{CuH} \mathrm{HS} \rightarrow \text { X 2atom of } \mathrm{H}
\end{aligned}
$$

b) 3.8×10^{24}
c) 6.0×10^{25}
d) $\mathbf{1 0 0}$
$H=4 \times 25=100$ atoms

Explanation: The formula of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$ indicates that there are 4 hydrogen atoms per molecule and hence 100 hydrogen atoms in 25 molecules of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$.
13. How many grams of oxygen are in 65.0 g of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$?
a) 18
b) 29
c) 9.5

$$
\begin{aligned}
& \mathrm{H}_{0} \mathrm{~S}\left\{6 \mathrm{Sg} \mathrm{\circ f} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2} \Rightarrow X ? \mathrm{~g}_{2} \circ \mathrm{fO}_{2}\right. \\
& \text { éost }\left\{\begin{array}{c}
58 \mathrm{gof} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2} \Rightarrow 32 \mathrm{~g} \circ \mathrm{fO}_{2}, ~ \\
3.2065
\end{array}\right. \\
& x=\frac{32 \times 65}{58}=35.862 \mathrm{~g}
\end{aligned}
$$

Explanation: This question uses the mole to mole ratio between oxygen and $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$ and needs the following $65.0 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2} \times \frac{2 \text { moles O }}{58.0 \mathrm{~g}_{2}} \times 15.99 \mathrm{~g} \mathrm{O}$
$58.0 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \times \frac{2}{1 \mathrm{~mole} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}} \times \frac{1 \text { mole of } \mathrm{O}}{1}=35.8 \mathrm{~g}$ of O
17. How many moles of carbon dioxide are there in 52.06 g of carbon dioxide?
a) 0.8452

$$
n=\frac{m}{M M}
$$

b) $\mathbf{1 . 1 8 3}$
c) 1.183×10^{23}
$n=\frac{52.06}{44.011}=1.183 \mathrm{mal}$
d) 8.648×10^{2}

Explanation: This is a straight-forward conversion from grams to moles of CO_{2} which is done as follows:
$52.06 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mole} \mathrm{CO}_{2}}{43.99 \mathrm{~g} \mathrm{CO}_{2}}=1.183$ moles of CO_{2}
18. How many moles of the compound magnesium nitrate, $\mathrm{Mg}(\mathrm{NO} 3) 2$, are in a 2.35 g sample of this compound?
a) 38.4
b) 65.8
(c) 0.0158
d) 0.0261

Explanation: This is a straight-forward conversion from grams to moles of $\mathrm{Mg}(\mathrm{NO} 3) 2$ which is done as
follows:

$$
2.35 \mathrm{~g} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{1 \mathrm{~mole} \mathrm{Mg}^{2}\left(\mathrm{NO}_{3}\right)_{2}}{148.3148 \mathrm{~g}}=0.0158 \mathrm{moles} \mathrm{C}=\mathrm{g}
$$

19. A $25.5-\mathrm{g}$ sample of ammonium carbonate contains \qquad mol of ammonium ions.

Explanation: Realize that the formula for ammonium carbonate is (NH 4) 2 CO 3 and calculate the molar mass ($96.0856 \mathrm{~g} / \mathrm{mol}$). Convert grams to moles and then using the stoichiometric ratio find the \# of moles of ammonium ions.

$$
25.5 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol}^{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}}{96.0856 \mathrm{~g}} \times \frac{2 \text { moles } \mathrm{NH}_{4}^{+}}{1{\mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}_{(\mathrm{C}) \mathrm{S}}^{0} \mathrm{e}}=0.531 \mathrm{moles}
$$

20. Magnesium and nitrogen react in a combination reaction to produce magnesium nitride:

$$
3 \mathrm{Mg}+\mathrm{N}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}
$$

In a particular experiment, a $5.47-\mathrm{g}$ sample of N_{2} reacts completely. How many grams of Mg are needed for $3 \mathrm{Mg}+\mathrm{Nr}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$ this reaction?
a) 14.2 g
b) 24.1 g
c) $\quad 16.1 \mathrm{~g}$
d) 0.92 g

Explanation: Ensure that the equation is balanced. The grams of N_{2} must be converted to moles of N_{2} and then using the stoichiometric ratio between the Mg and N_{2}, the grams of Mg can be calculated.

$$
5.47 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mole} \mathrm{~N}_{2}}{28.0134 \mathrm{~g}} \times \frac{3 \text { mole } \mathrm{Mg}}{1 \mathrm{~mole} \mathrm{~N}_{2}} \times \frac{24.3050 \mathrm{~g} \mathrm{Mg}}{1 \mathrm{~mole} \mathrm{Mg}}=14.2 \mathrm{~g} \mathrm{Mg}
$$

21. What information would you need to calculate the average atomic mass of an element?
a) The number of neutrons in the element.
b) The atomic number of the element.
c) The mass and abundance of each isotope of the element.
d) The position in the periodic table of the element.
22. The atomic masses of $\mathrm{Cl}(75.53 \%)$ and $\mathrm{Cl}(24.47 \%)$ are 34.968 amu and 36.956 amu , respectively. Calculate the average atomic mass of chlorine
a) 35.96 amu $=\left(\frac{75.53}{100}\right)(34.968)+\left(\frac{24.47}{100}\right)(36.956)$
b) 35.45 amu $=35.45 \mathrm{amu}$
c) 36.47 amu
d) 71.92 amu
23. How many atoms are there in 5.10 moles of sulfur $(16 \mathrm{~S}=32 \mathrm{amu})$?
a) 3.07×10^{24}
b) 9.59×10^{22}

$$
n=\frac{N}{N_{A}}
$$

c) 6.02×10^{23}
d) 9.82×10^{25}
$5.10 \times \frac{N}{6.022 \times 10^{23}} \Rightarrow N_{0}=3.07 \times 10^{24}$
24. Iodine has two isotopes 126 I and 127I, with the equal abundance.Calculate the average atomic mass of Iodine (531).
a) 126.5 amu

$$
=\frac{50}{100}(126)+\frac{50}{100}(127)
$$

b) $35.45 \mathrm{amu} \quad=126.59 \mathrm{mu}$
c) 1.265 amu
d) 71.92 amu
25. The atomic masses of 6 Li and 7 Li are 6.0151 amu and 7.0160 amu , respectively. Calculate the natural abundance of these two isotopes. The average atomic mass of Lithium $(\mathrm{Li}=6.941 \mathrm{amu})$.
a) ${ }^{6} \mathrm{Li}=7.49 \%,{ }^{7} \mathrm{Li}=92.51 \%$ Average Atomic Mass $=\frac{\text { abudance }}{100}$ (Mass) $+\frac{\text { abudance }}{100}$ (Mass) $+\ldots$
b) ${ }^{7} \mathrm{Li}=7.49 \%,{ }^{6} \mathrm{Li}=92.51 \%$
c) ${ }^{6} \mathrm{Li}=8.49 \%,{ }^{7} \mathrm{Li}=95.51 \%$
d) ${ }^{7} \mathrm{Li}=7.22 \%,{ }^{6} \mathrm{Li}=82.51 \%$

$$
6.941 \Rightarrow \frac{6.0151 \times X_{1}+\left(100-X_{2}\right)(7.0160)}{100}
$$

$$
694.1=6.0151 x_{1}+701.6-7.0160 x
$$

$$
\frac{-7.5}{-1.000^{9}}=\frac{-1.0009 x}{-1.0051} \Rightarrow x=7.49 \% \text { j,ilypjpilaui }
$$

26. How many atoms are present in 3.14 g of copper (Cu) ?

$$
(100-x)=(100-7.49)
$$

a) 2.98×10^{22}
$n=\frac{m}{M}=\frac{N}{N A}$
b) 1.92×10^{23}

$$
\frac{3.14}{63.546} \neq \frac{\mathrm{N}}{6.022 \times 10^{23}}
$$

Chem. 110

$$
\begin{aligned}
& N=\frac{3.14 \times 6.022 \times 10^{23}}{63.546} 2012 \\
& \approx 2.98 \times 10^{22} \text { atoms }
\end{aligned}
$$

27. Nitric oxide (NO) reacts with oxygen gas to form nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$, a dark-brown gas:

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \quad \rightarrow \quad 2 \mathrm{NO}_{2}(g)
$$

In one experiment 0.886 mole of NO is mixed with 0.503 mole of O_{2}. Calculate the number of moles of NO_{2} produced (note: first determine which is the limiting reagent).
a) 0.886 mo
b) 0.503 mol
c) 1.01 mol
d) $1.77 \mathrm{~mol}=0.443 \mathrm{mll}<0.503 \mathrm{~mol}\}$
$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$
0.886 abl \times mol? ? Ifwli in

$X=\frac{0.886 \times 2}{7}=0.886$ moles
28. The fertilizer ammonium sulfate $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]$ is prepared by the reaction between ammonia $\left(\mathrm{NH}_{3}\right)$ and sulfuric acid: $2 \mathrm{NH}_{3}(g)+\mathbf{H}_{2} \mathrm{SO}_{4}(a q) \quad \rightarrow \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(a q)$
How many kilograms of NH_{3} are needed to produce $1.00 \cdot 10^{5} \mathrm{~kg}$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$?

$$
\mu_{9} \mu_{i}
$$

a) $1.70 \square 10^{4} \mathrm{~kg}$
$2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

$$
x=\frac{34.06 \times 10^{8}}{132.08}=25787401.579
$$

b) $3.22 \square 10^{3} \mathrm{k}$
c) $2.58 \square 10^{4} \mathrm{~kg}$
d) $7.42 \square 10^{4} \mathrm{~kg}$

29. Consider the combustion of carbon monoxide (CO) in oxygen gas:

$$
2 \mathrm{CO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad 2 \mathrm{CO}_{2}(g)
$$

Starting with 3.60 moles of CO , calculate the number of moles of CO_{2} produced if there is enough oxygen gas to react with all of the CO . $\quad 2 \mathrm{~mol}$ of $\mathrm{CO} \rightarrow 2 \mathrm{~mol}$ of CO_{2} a) 7.20 mol
a) 7.20 mo
b) 44.0 mol

$$
3.60 \mathrm{~mol} \circ \mathrm{CO} \longrightarrow x \mathrm{~mol} \text { of } \mathrm{CO}_{2}
$$

c) 3.60 mol
d) 1.80 mol
$\frac{2 \cdot x \text { mole of } \mathrm{CO}_{2}}{2}=\frac{2 \times 3.60}{2}$
$\Rightarrow \mathrm{mol} \circ \mathrm{f} \mathrm{CO}_{2}=3.6 \mathrm{~mol} \cdot \mathrm{f} \mathrm{CO}_{2}$
30. Nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ is also called "laughing gas." It can be prepared by the thermal decomposition of ammonium Nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$. The other product is $\mathrm{H}_{2} \mathrm{O}$. The balanced equation for this reaction is:

$$
\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}
$$

How many grams of $\mathrm{N}_{2} \mathrm{O}$ are formed if 0.46 mole of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is used in the reaction?
a) 2.0 g
b) $3.7 \square 10 \mathrm{~g}$
c) $2.0 \square 10 \mathrm{~g}$
d) $4.6 \square 10^{-1} \mathrm{~g}$

31. What is the theoretical yield of chromium that can be produced by the reaction of 40.0 g of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ with 8.00 g of aluminum according to the chemical equation below?

32. Hydrogen fluoride is used in the manufacture of Freons (which destroy ozone in the stratosphere) and in the production of aluminum metal. It is prepared by the reaction

$$
\mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \quad \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{HF}
$$

In one process 6.00 kg of CaF_{2} are treated with an excess of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and yield 2.86 kg of HF .
Calculate the percent yield of $\mathrm{HF} . \mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}+2 \mathrm{HF} \%$ yield $=\frac{2.86 \times 10^{3}}{3076.92} \times 100$
a) 93.0%
b) 95.3%
c) 47.6%
d) 62.5%
$6 \times 10^{3} \mathrm{~g}$
$X=\frac{6 \times 10^{3} \times 40}{78}=3076.92 \mathrm{~g}(\Delta, \mathrm{siol})$
$=92.95 \%$
409 ?
$\simeq 93 \%$
33. When 22.0 g NaCl and $21.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ are mixed and react according to the equation below, which is the limiting reagent?

$$
2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \quad \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}
$$

a) $\mathrm{NaCl} 229 \quad 2219$
b) $\mathrm{H}_{2} \mathrm{SO}_{4} \overline{116.88 \mathrm{~g}} \quad 989$
Nael
c) $\mathrm{Na}_{2} \mathrm{SO}_{4}=0.188 \mathrm{~g}<=0.214 \mathrm{~g}$ Cinlurnald
d) No reagent is limiting.
34. Hydrochloric acid can be prepared by the following reaction:
$2 \mathrm{NaCl}(\mathrm{s})+\mathbf{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \quad \mathbf{2 H C l}(\mathrm{g})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$
How many grams of HCl can be prepared from $2.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 150 g NaCl ?

Chem. 110
reagent $2 \mathrm{NaCl}+\underset{40}{\mathrm{H}_{2} \mathrm{SO}_{4}} \rightarrow \underset{40}{2 \mathrm{HCl}} \rightarrow+\mathrm{Nal}_{2} \mathrm{SO}_{4}$ 116.889

$$
x=\frac{150 \times 72.9}{116.88} \simeq 93.5 \mathrm{~g}
$$

35. Calculate the molar mass of $\mathrm{Li}_{2} \mathrm{CO}_{3}$.
a) 73.89 g
b) 66.95 g
c) 41.89 g
d) 96.02 g
$2(6.941)+12.011+3(16)$

$$
M=73.893 \mathrm{~g} / \mathrm{mol}
$$

N
36. How many molecules of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ are present in 0.334 g of $\mathrm{C}_{2} \mathrm{H}_{6}$?
a) $2.01 \times 10^{23} \quad n=\frac{m}{M}=\frac{N}{N A}$
b) 6.69×10^{21}
b) $6.69 \times 10 \quad \frac{0.334}{30.07}=\frac{N}{6.022 \times 10^{22}}$
d) 8.89×10^{20}

$$
N=\frac{0.334 \times 6.022 \times 10^{23}}{30.07}=6.689 \times 10^{21} \simeq 6.69 \times 10^{21} \text { molecules }
$$

37. All of the substances listed below are fertilizers that contribute nitrogen to the soil. Which of these is the richest Source of nitrogen on a mass percentage basis?
a) Urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$

$$
\begin{aligned}
& \text { (a) } N \%=\frac{(2 \times 14)}{40} \times 100=70 \% \\
& \text { (b) } N \%=\frac{(2 \times 14)}{80} \times 100=35 \% \\
& \text { (c) } N \%=\frac{(3 \times 14)}{59} \times 100=71 \% \\
& \text { (d) } N \%=\frac{14}{17} \times 100=82 \%
\end{aligned}
$$

b) Ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$
c) Guanidine, $\mathrm{HNC}\left(\mathrm{NH}_{2}\right)_{2}$
38. Allicin is the compound responsible for the characteristic smell of garlic. An analysis of the compound gives the following percent composition by mass: C: 44.4 percent; H: 6.21 percent; $\mathrm{S}: 39.5$ percent; $\mathrm{O}: 9.86$ percent.

39. The formula for rust can be represented by $\mathrm{Fe}_{2} \mathrm{O}_{3}$. How many moles of Fe are present in 24.6 g of the compound?
a) $2.13 \mathrm{~mol} \quad h=\frac{m}{M} \quad\left(1 \mathrm{~mol}\right.$ of $\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow 2 \mathrm{~mol} \longrightarrow \mathrm{fF}$
$\begin{aligned} & \text { b) } 0.456 \mathrm{~mol} \\ & \text { c) } 0.154 \mathrm{~mol}\end{aligned} \quad n=\frac{24.6}{159.69} \quad 0.154 \mathrm{FerO}_{3} \longrightarrow$?
$\begin{array}{ll}\text { c) } 0.154 \mathrm{~mol} \\ \text { d) } 0.308 \mathrm{~mol}=0.159 \mathrm{~mol}\end{array}, \quad F=2 \times 0.154=0.308 \mathrm{~mol}$

Chem. 110

$$
24,6 \mathrm{~g} \text { of } \mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \text { x? mole of } \mathrm{fener}_{2012}
$$

Dr. Laila Al-Harbi
$159.7 \mathrm{~g} \circ f \mathrm{Fe}_{2} \mathrm{O}_{2} \rightarrow 2$ molof Fe_{2}
$x=0.308 \mathrm{~mol}$

$$
n=\frac{m}{N}=\frac{N}{N_{A}}
$$

a) $1.055 \quad 10^{-22} \mathrm{~g}$
b) $63.55 \mathrm{~g} \quad \frac{m}{63.546} \neq \frac{1}{6.022 \times 10^{23}}$
d) $1.66 \quad 10^{-24} \mathrm{~g}$

$$
m=\frac{63.546}{6.022 \times 10^{23}}=1.055 \times 10^{-22} \mathrm{~g}
$$

41. How many grams of sulfur (S) are needed to react completely with 246 g of mercury (Hg) to form HgS ?
a) 39.3 g
$\mathrm{S}+\mathrm{Hg} \rightarrow \mathrm{HgS}$
b) 24.6 g

$$
x=\frac{246 \times 32.066}{200.59}=39.39
$$

c) $9.66 \times 10^{3} \mathrm{~g}$
d) 201 g

42. Tin(II) fluoride $\left(\mathrm{SnF}_{2}\right)$ is often added to toothpaste as an ingredient to prevent tooth decay. What is the mass of F in grams in 24.6 g of the compound?
a) 18.6 g
b) 24.3 g
c) 5.97 g
d) 75.7 g

$$
\begin{aligned}
\text { und? } & 24.6 \mathrm{~g} \circ f \mathrm{snF}_{2} \rightarrow ? g \text { of } \mathrm{F}_{2} \\
& 156.706 \mathrm{~g} \circ \mathrm{f} \mathrm{SnF}_{2} \longrightarrow 37.996 \circ f \mathrm{~F}_{2} \\
X= & \frac{24.6 \times 37.996}{156.706}=5.965 \approx 5.97 \mathrm{~g}
\end{aligned}
$$

43. What is the empirical formula of the compound with the following composition? 2.1 percent $\mathrm{H}, 65.3$ percent O , 32.6 percent S .
a) $\mathrm{H}_{2} \mathrm{SO}_{4}$
b) $\mathrm{H}_{2} \mathrm{SO}_{3}$
c) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
d) HSO_{3}

$$
\approx
$$

$$
\begin{aligned}
& n \frac{H}{1.008} \\
&=\frac{2.083}{1.017} \\
& \approx 2=\frac{65.3}{1.6} \\
&=\frac{4.081}{1.017} \\
& \approx \frac{32.6}{32.066} \\
&=1.017 \\
& \approx 4
\end{aligned}
$$

$$
\mathrm{H}_{2} \mathrm{SO}_{4}
$$

4. Which of the following samples contains the greatest number of atoms?
a) 100 g of Pb
b) 2.0 mole of Ar
c) mole of Fe
d) 5 g of He
5. Formaldehyde has the formula $\mathrm{CH}_{2} \mathrm{O}$. How many molecules are there in 0.11 g of formaldehyde?
a) 6.1×10^{-27} molecule

$$
0
$$

$n=\frac{m}{m}=\frac{0.11}{30.027}$
(2) $n=\frac{N}{N_{A}}$
b) 3.7×10^{-3} molecule
c) 4×10^{21} molecule
d) 2.2×10^{21} molecule

Chem. 110
$=3.66 \times 10^{-3} \mathrm{~mol}$

$$
3.66 \times 10^{-3}=\frac{N}{6.022 \times 10^{23}}
$$

$$
N=2.2 \times 10^{21} \text { molecules }
$$ Dr. Leila Al-Harbi

j) 46. Determine the number of moles of aluminum in 96.7 g of Al .
a) 0.279 mol
b) 3.58 mol
c) 7.43 mol
d) 4.21 mol

5 47. How many sulfur atoms are present in 25.6 g of $\mathrm{Al}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{3}$?
) a) 0.393
b) $3.95 \quad 10^{22}$
c) $7.90 \quad 10^{22}$
d) $2.37 \quad 10^{23}$
48. What is the coefficient of $\mathrm{H}_{2} \mathrm{O}$ when the following equation is properly balanced with the smallest set of)) whole numbers?

$$
\text { — } \mathrm{Al}_{4} \mathrm{C}_{3}+\ldots \mathrm{H}_{2} \mathrm{O} \quad \text { - } \mathrm{Al}(\mathrm{OH})_{3}+\text { CH }_{4}
$$

a) 3
b) 4
c) 6
d) 12
50. Which of the following equations is balanced?
A) $\quad 2 \mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}$
a) $2 C, 20 \rightarrow 1 c, 10 x$
B) $\quad 2 \mathrm{CO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}$
b) $2 C, 40 \rightarrow 2 C, 40$
C) $\mathrm{H}_{2}+\mathrm{Br}_{2} \longrightarrow \mathrm{HBr}$
c) $2 \mathrm{H}, 2 \mathrm{Br} \rightarrow 1 \mathrm{H}, 1 \mathrm{Br} x$
D) $\quad 2 \mathrm{~K}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$
d) $2 \mathrm{~K}, 2 \mathrm{H}, 1 \mathrm{O} \rightarrow 2 \mathrm{~K}, 10,3 \mathrm{H} X$

Determine the number of moles of aluminum in 96.7 g of A
a) 0.279 mol
b) 3.58 mol
c) 7.43 mol
d) 4.21 mol

Test bank chapter (4)

Choose the correct answer

1. A 50.0 mL sample of $0.436 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$ is diluted with water to a total volume of 250.0 mL . What is the ammonium nitrate concentration in the resulting solution? $\quad M_{i} V_{i}=M_{f} V_{f} \quad$;el
a) 21.8 M
b) 0.459 M
c) $2.18 \times 10^{-2} \mathrm{M}$
d) $8.72 \times 10^{-2} \mathrm{M}$
$M_{f}=\frac{50 \times x_{0} .436}{250}$
2. How many milliliters would you need to prepare 60.0 f mL of $0.200 \mathrm{Mf} \mathrm{HNO}_{3}$ from a stock solution of 4.00 MHNO ?
a) 3 mL
b) 240 mL
c) 24 mL
d) 1000 mL

$$
\begin{gathered}
M_{i} V_{i}=M_{f} V_{f} \\
V_{i}=\frac{0.200 \times 60}{4} \\
V_{i}=3 \mathrm{~mL}
\end{gathered}
$$

3. What is the concentration (M) of $\mathrm{KC1}$ in a solution made by mixing 25.0 mL of $0.100 \mathrm{M} \mathrm{KC1}$ with 50.0 mL of 0.100 M KCl ?
a) 0.0500
b) 0.100
c) 0.0333
d) 0.0250
4. What is the concentration (M) of $\mathrm{CH}_{3} \mathrm{OH}$ in a solution prepared by dissolving 11.7 g of $\mathrm{CH}_{3} \mathrm{OH}$ in sufficient water to give exactly 230 mL of solution?
L Jioy liver 11.7
को at a coisio b) $2.30 \times 10-2$
$=0.23 \quad 0.084$
d) 1.59
$n=\frac{m}{M M}$
$=\frac{11.7}{32.042}=0.365 \mathrm{~mol}$
$\left\{\begin{aligned} M & =\frac{n}{v} \\ & =\frac{0.365}{0.23}\end{aligned}\right.$

Explanation: Need to convert the grams of CH 3 OH to moles and then find the molarity of the solution by using the molarity formula. Do not forget to convert the ml to L .

$$
11.7 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH} \times \frac{1 \mathrm{~mole} \mathrm{CH}_{3} \mathrm{OH}}{32.042 \mathrm{~g}} \times \frac{1}{0.230 \mathrm{~L}}=1.59 \mathrm{M}
$$

$$
M_{1} V_{1}+M_{2} V_{2}=M_{f} V_{f}
$$

(3nj Jojiods

$$
\frac{(0.1 \times 25)+(0.1 \times 50)}{75}=\frac{18(75)}{75}
$$

$$
M_{f}=\frac{7,5}{75}=0.1 M
$$

$$
\begin{aligned}
& h_{1}=M \times V=0.100 \times 0.025=2.5 \times 10^{-3} \mathrm{~mol} \\
& n_{2}=M \times V=0.100 \times 0.05=5 \times 10^{-3} \mathrm{~mol} \\
& \text { Dtotal of } n=2.5 \times 10^{-3}+5 \times 10^{-3} \mathrm{~mol}=7,5 \times 10^{-3} \mathrm{~mol} \\
& \text { ttotal of } V=V_{1}+V_{2}=0.025+6.05=0.075 \mathrm{~L} \\
& M=\frac{n}{V}=\frac{7.5 \times 10^{-3}}{0.075} \\
& =0.1 \mathrm{M}
\end{aligned}
$$

$$
0.0351=(L) J{\underset{\sigma}{6}}^{\alpha}
$$

5. How many grams of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are in 35.1 mL of a 2.75 M solution of $\mathrm{H}_{3} \mathrm{PO}_{4}$?
a) 0.61
b) 9.46
c) 20
d) 4.9
$M=\eta \quad \quad n=\frac{m}{m \mu}$
$2.75=\frac{n}{0.0351} \Rightarrow n=0.0965 \mathrm{~mol} .0 .0965=\frac{m}{97.998} \Rightarrow m \approx 9.469$

Explanation: Need to convert the ml of $\mathrm{H}_{3} \mathrm{PO}_{4}$ to liters and then find the \# of moles of phosphoric acid. The moles of phosphoric acid can then be converted to grams of phosphoric acid.

$$
35.1 \mathrm{ml} \times \frac{1 \mathrm{~L}}{1000 \mathrm{ml}} \times 2.75 \mathrm{M} \times \frac{97.99 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}}{1 \mathrm{~mole}^{2}}=9.46 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}
$$

7. What is the concentration (M) of a $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution prepared by dissolving 5.35 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in sufficient water to give 330 mL of solution?
a) 1.14×102
b) 0.016
c) 61.7
$M=\frac{n}{V}$
c) $61.7 \quad M=\frac{0.0377}{0.33}$
$=0.114$
Explanation: Convert grams of $\mathrm{Na}_{2} \mathrm{SO} 4$ to moles of $\mathrm{Na} 2 \mathrm{SO} 4, \mathrm{ml}$ of water to liters of water and then find the molarity of the solution by using the molarity formula.

$$
\begin{aligned}
& 5.35 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4} \times \frac{1 \mathrm{~mole} \mathrm{Na}_{2} \mathrm{SO}_{4}}{142.035 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}} \times \frac{1}{0.330 \mathrm{~L}}=0.114 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4} \\
& 0.75 \mathrm{~L}^{2}
\end{aligned}
$$

8. How many grams of LiOH are there in 750.0 mL of a 0.0158 M LiOH solution?
a) $2.11 \times 10-5$
b) 11.3
c) 0.284
$M=\frac{n}{V}$
$n=0.75 \times 0.0158$

$$
\begin{aligned}
n & =\frac{m}{m M} \\
m & =23.949 \times 0.01185 \\
& =0.2838 \approx 0.2849
\end{aligned}
$$

d) 3.50
$n=0.75 \times 0.0150$,

Explanation: Calculate the number of moles of LiOH present in this solution using the molarity formula and the convert the number of moles to grams of LiOH .

$$
7.50 \times 10^{-1} \mathrm{~L} \times 0.0158 \mathrm{M} \times \frac{23.948 \mathrm{~g}}{1 \text { mole } \mathrm{LiOH}}=0.284 \mathrm{~g} \mathrm{LiOH}
$$

V_{i}

10. A 50.0 mL sample of $0.436 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$ is diluted with water to a total volume of 250.0 mL . What is the ammonium nitrate concentration in the resulting solution?
a) 21.8 M
b) 0.459 M
c) $2.18 \times 10^{-2} \mathrm{M}$
d) $8.72 \times 10^{-2} \mathrm{M}$
12. A 3.682 g sample of potassium chlorate KClO_{3} is dissolved in enough water to give 375 mL of solution. What is the
chlorate ion concentration in this solution?
a) $3.00 \times 10^{-2} \mathrm{M}$
b) $4.41 \times 10^{-2} \mathrm{M}$
c) 0.118 M
d) $8.01 \times 10^{-2} \mathrm{M}$

Test bank chapter (5)

Choose the most correct answer

V_{1}

1. A sample of oxygen occupies 47.2 liters under a pressure of 1240 tory at $25^{\circ} \mathrm{C}$. What volume would it occupy at $25^{\circ} \mathrm{C}$ if the pressure were decreased to 730 torr?

$$
\begin{array}{llll}
\text { a) } 27.8 \mathrm{~L} & \frac{P_{1} V_{1}}{}=P_{2} V_{2} & \\
\text { b) } 29.3 \mathrm{~L} \\
\text { c) } 32.3 \mathrm{~L} & \frac{1240 \times 47.2}{730}=\frac{730 \mathrm{~V}_{2}}{730} & V_{2}=80.2 \mathrm{~L} \\
\text { d) } 80.2 \mathrm{~L} & & \frac{1}{730}
\end{array}
$$

2. Under conditions of fixed temperature and amount of gas, Boyle's law requires that
I. $P_{1} V_{1}=P_{2} V_{2}$
II. $\mathrm{PV}=$ constant
III. $\mathrm{P}_{1} / \mathrm{P}_{2}=\mathrm{V}_{2} / \mathrm{V}_{1}$
a) I only
b) II only
c) III only
d) I, II, and III

$$
\begin{gathered}
P_{1} V_{1}=\text { constant, } \quad P_{2} V_{2}=\text { constant } \\
P_{1} V_{1}=P_{2} V_{2} \& \frac{P_{1}}{P_{2}} \notin \frac{V_{1}}{V_{2}} \\
V_{1}
\end{gathered}
$$

3. The volume of a sample of nitrogen is 6.00 liters at $35^{\circ} \mathrm{C}$ and 740 torr. What volume will it occupy at STP?
a) $6.59 \mathrm{~L} \quad 35+273 . \overline{15}=308.15 \mathrm{~K} \quad \square \frac{740}{760}=0.97 \mathrm{~atm} \quad \longrightarrow P_{2}=1 \mathrm{~atm}$
b) 5.46 L
c) 6.95 L
d) 5.18 L
$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \int \frac{0.97 \times 6}{308.15}=\frac{1 \times V_{2}}{273.15}$
$\Rightarrow \frac{308.15 \mathrm{~V}}{308.15}=\frac{1589.73}{308.15}=5.16 \mathrm{~L}$
4. The density of chlorine gas at STP, in grams per liter, is approximately:
a) 6.2
b) 3.2
c) 3.9
d) 4.5

$$
\alpha=\frac{P M M}{R T}=\frac{1 \times 70.91}{0.0821 \times 273.15}=3.2
$$

Explanation: $\mathrm{d}=$ molar mass $\times \mathrm{p} / \mathrm{RT}=70 \times 1 / 0.082 \times 273=3.17 \mathrm{~g} / \mathrm{L}$

$\begin{aligned} & \text { 5. What pressure (in atm) would be exerted } \\ & \text { a) } 26 \mathrm{~atm} \\ & \text { b) } 4.1 \mathrm{~atm}\end{aligned} \quad \mathrm{PV}=\frac{n}{\mathrm{sm}} R T$
c) $19,600 \mathrm{~atm} \quad 1.5 P=\frac{76}{(2 \times 16} \times 0.0821 \times 2361 \mathrm{~atm} \Rightarrow 1.5 P=38.78 \Rightarrow P=25.85 \approx 26 \mathrm{~atm}$
6. What is the density of ammonia gas at 2.00 atm pressure and a temperature of $25.0^{\circ} \mathrm{C} ? 298.15 \mathrm{~K}$
a) $0.720 \mathrm{~g} / \mathrm{L}$
b) $0.980 \mathrm{~g} / \mathrm{L}$
c) $1.39 \mathrm{~g} / \mathrm{L}$
d) $16.6 \mathrm{~g} / \mathrm{L}$

$$
\begin{aligned}
& d=\frac{P M M}{R T} \Rightarrow d=\frac{2 \times 17.031}{0.0821 \times 298.15} \\
& d=1.39 \mathrm{~g} / \mathrm{L}
\end{aligned}
$$

7. Convert 2.0 atm to mmHg
a) 150 mmHg
b) 0.27 mmHg
c) 150 mmHg
d) 1520 mmHg

$$
\begin{aligned}
& 1 \mathrm{~atm} \rightarrow 760 \mathrm{mmHg} \\
& 2 \mathrm{~atm} \rightarrow x
\end{aligned}
$$

$$
x=1520 \mathrm{mmHg}
$$

8. A container with volume 71.9 mL contains water vapor at a pressure of 10.4 atm and a temperature of $465^{\circ} \mathrm{C}$. How many grams of the gas are in the container?
a) $0.421 \mathrm{~g} \quad P V=\frac{m}{M i} R T$
b) $0.222 \mathrm{~g} \quad \mathrm{Mu}$
c) $0.183 \mathrm{~g} \quad 10.4 \times 0.0719=\frac{m}{18.016} \times 0.082 \times 738.15 \Rightarrow$

$$
\begin{aligned}
& 0.74776=\frac{60.53 \mathrm{~m}}{18.016} \\
& 0.74776=3.36 \mathrm{~m} \\
& m=0.222 \mathrm{~g}
\end{aligned}
$$

Explanation: $\mathrm{n}=\mathrm{PV} / \mathrm{RT}=0.0719 \times 10.4=0.0821 \times(465+273)=0.012 \mathrm{~mole}$

$$
\text { Mass }=\mathbf{n} \times \text { molar mass }=0.012 \times 18=0.222 \mathrm{~g}
$$

$$
1 \quad 238.15 K
$$

9. What is the molar mass of a pure gaseous compound having a density of $4.95 \mathrm{~g} / \mathrm{L}$ at $-35^{\circ} \mathrm{C}$ and 1020 torr?
a) $24 \mathrm{~g} / \mathrm{mole}$
b) $11 \mathrm{~g} / \mathrm{mole}$
c) $72 \mathrm{~g} / \mathrm{mole}$
d) $120 \mathrm{~g} / \mathrm{mole}$
$d=\frac{P M}{R T} \Rightarrow M=\frac{d R T}{P}$
, 120 g mole $=\frac{4.95 \times 0.082 \times 2}{1.34}$
10. A 0.580 g sample of a compound containing only carbon and hydrogen contains 0.480 g of carbon and 0.100 g of hydrogen. At STP, 33.6 mL of the gas has a mass of 0.087 g . What is the molecular (true) formula for the compound?

11. Gas occupy 6 L at $37^{\circ} \mathrm{C}$ what will be its volume when its temperature is doubled?

(u) ${ }^{3 P}$ b) 6 L

$$
\frac{6}{310.15}=\frac{V_{2}}{620.3} \Rightarrow V_{2}=\frac{6 \times 620.3}{310.15}=12 \mathrm{~L}
$$

12. A mixture of 90.0 grams of CH_{4} and 10.0 grams of argon has a pressure of 250 torr under conditions of constant temperature and volume. The partial pressure of CH_{4} in torr is:
$n=\frac{m}{M}$
$\left.\left.\begin{array}{ll}\begin{array}{l}\text { (a) } 143 \\ \text { (b) } 100\end{array} & n_{\mathrm{CH}_{4}}=\frac{96}{16.04}=5.61 \mathrm{~mol} \\ \text { (c) } 10.7 \\ \text { (d) } 239 & n_{A r}=\frac{10}{40}=0.25 \mathrm{~mol}\end{array}\right\} \begin{array}{l}X_{C H U}=\frac{5.61}{5.61+0.25} \\ =0.96\end{array}\right\} P_{\text {CH4 }}=0.957 \times 250=239$ torr

$$
\text { (d) } \begin{aligned}
\text { nAr }=\frac{10}{40}=0.259 \mathrm{~mol}! & =0.96 \\
& =0.957,1
\end{aligned}
$$

Explanation: from Dalton law $\ggg \mathrm{P}_{\mathrm{CH} 4}=\mathrm{X}_{\mathrm{CH} 4} \mathrm{P}_{\text {total }}, \mathrm{n}_{\mathrm{CH} 4}=90 / 16=5.625 \mathrm{~mole}^{2}, \mathrm{n}_{\mathrm{Ar}}=10 / 39.95=0.250$ mole

13. What pressure (in atm) would be exerted by a mixture of 1.4 g of nitrogen gas and 4.8 g of oxygen gas in a 200 mL
container at $57^{\circ} \mathrm{C}$? $\quad P V=n_{\text {total }} R T$
a) 4.7
330.15 K b) 34
c) 47
d) 27

$$
P=\frac{(0.05+0.15) \times 0.082 \times 330.15}{0.2} \Rightarrow P=27.07 \approx 27 \mathrm{~atm}
$$

Explanation: $\mathrm{P}=\mathrm{n}_{\text {total }} \mathrm{RT} / \mathrm{V}, \mathrm{n}_{\mathrm{N} 2}=1.4 / 2 \times 14=0.05$ mole, $\mathrm{n}_{\mathrm{O} 2}=4.8 / 2 \times 16=0.15$ mole

$$
\mathrm{P}=(0.05+0.15) 0.0821 \times(57+273) / 0.2=27 \mathrm{~atm}
$$

$$
n_{N_{2}}=\frac{1.4}{14.007 \times 2}=0.0 \sin d \quad \quad \cos a \operatorname{cis}^{n} c
$$

$$
n O_{2}=\frac{4.8}{16 \times 2}=0.15 \mathrm{~mol}
$$

16. The pressure of 6.0 L of an ideal gas in a flexible container is decreased to one-third of its original value, and its absolute temperature is decreased by one-half. What is the final volume of the gas?
$\begin{array}{ll}\text { a) } 9.0 \mathrm{~L} \\ \text { b) } & 6.0 \mathrm{~L} \\ \text { c) } & 4.0 \mathrm{~L} \\ \text { d) } 1 \mathrm{~L} & \frac{P_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\ 6 P_{1} & =\frac{1}{3} P_{2} V_{2}\end{array} \quad\left(\frac{6 P_{1}}{T_{1}}=\times \frac{\frac{2}{3} P_{2} V_{2}}{T_{2}} \quad 6 \quad V_{2}=\frac{6 \times 3}{2}=\frac{18}{2}=9 \mathrm{~L}\right.$

Explanation: let $V_{1}=6 \& V_{2}=$? $, T_{1}=T^{3} \& T_{2}=1 / 2 \frac{3}{4}, P_{1}=P \& P_{2}=1 / 3 P$
From combined gas law $P_{1} V_{1} / T_{1}=P_{2} V_{2} / T_{2} \ggg \ggg \frac{P \times 6}{T}=\frac{\left(\frac{1}{3}\right) P \times V 2}{\left(\frac{1}{2}\right) T} \gg V 2=\frac{P \times 6 \times T \times 3}{T \times 2 \times P}=9 L$
17. Gas A is at $30^{\circ} \mathrm{C}$ and gas B is at $20^{\circ} \mathrm{C}$. Both gases are at latmosphere. What is the ratio of the volume of 1 mole gas A to 1 mole of gas B
a) $606: 303$
b) $3: 2$
c) $2: 3$
d) $303: 293$
$V_{A}=\frac{1}{303.15}, V_{B}=\frac{1}{293.15}$

$$
\& \quad \frac{V_{1}}{303.15}=\frac{V_{2}}{293.15}
$$

Explanation: $\frac{V_{A}}{T_{A}}=\frac{V_{B}}{T_{B}} \ggg \gg \frac{V_{A}}{30+273}=\frac{V_{B}}{20+273} \ggg \ggg \frac{V_{A}}{303}=\frac{V_{B}}{293}$

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \leqslant \frac{\beta V_{1}}{M T_{1}}=\frac{P V_{2}}{M T_{2}} \quad \text { UN, } n
$$

R. 50 L
18. The sample of argon occupies 50L at standard temperature. Assuming constant pressure, what volume with the gas occupy if the temperature is doubled.
a) 25 L

b) 50 L

T, V
c) 100 L
d) 100 mL

$$
\begin{aligned}
& 50 \times 2=100 \mathrm{~L}
\end{aligned}
$$

$$
\frac{50}{273.15}=\frac{V_{2}}{273.15 \times 2} \Rightarrow V_{2}=\frac{50 \times 546.3}{273.15}=100 \mathrm{~L}
$$

19. What total gas volume (in liters) at $520^{\circ} \mathrm{C}$ and 880 torr would result from the decomposition of 33 g of potassium bicarbonate according to the equation:

> (a) 56 L
> $\begin{aligned} & \text { (b) } 37 \mathrm{~L} \\ & \text { (c) } 10 \mathrm{~L} \\ & \text { (d) } 19 \mathrm{~L}\end{aligned} \quad 1.16 \times \mathrm{V}=\frac{33}{100.117} \times 0.082 \times 793.15 \Rightarrow V=\frac{21.44}{1.16} \approx 18.5 \approx 19 \mathrm{~L}$
20. Calculate the weight of KClO_{3} that would be required to produce 29.5 L of oxygen measured at $127^{\circ} \mathrm{C}$ and 760 torr. $2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{MM}$ of $15 \mathrm{ClO}{ }_{3} \Rightarrow 122.548$
$\begin{array}{ll}\text { (a) } 73.5 \mathrm{~g} \\ \text { (b) } 12.2 \mathrm{~g} \\ \text { (c) } 14.6 \mathrm{~g} & \frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}} \\ 15 C 1 O_{3} J 1 & V_{\text {Sl }} 10\end{array} \quad\left(P V=\frac{m}{M} R T\right]$

(d) $24.4 \mathrm{~g} \quad \frac{V_{1}}{2}=\frac{29.5}{3} \Rightarrow V_{1}=\frac{59}{3} \approx 19.67 \mathrm{~L}$.
21. The ideal gas law predicts that the molar volume (volume of one mole) of gas equals:

$$
\begin{aligned}
& 2410.519=m 32.81 \\
& m=\frac{2410.519}{32.81} \\
& m=73.479 \\
& \approx 73.59
\end{aligned}
$$

(a) $m R T / P V$
(b) (MM)P/RT
molar vilume $\left(\frac{\mathrm{V}}{\mathrm{V}}\right)$
(c) $1 / 2 \mathrm{~ms}^{-2}$

$$
P V=n R T \Rightarrow \frac{V}{n}=\frac{R T}{P}
$$

22. For a gas, which pair of variables are inversely proportional to each other (if all other conditions remain constant)?
a) $\mathbf{P}, \mathbf{V} \rightarrow$ wh
b) $\mathrm{V}, \mathrm{T}<0,3$
c) $n, V=s, b$
d) n, P
23. Convert 562 mmHg to atm
a) 0.739 atm
b) $4.27 \times 10^{5} \mathrm{~atm} \quad X=\frac{562}{760}=0.739 \mathrm{~atm}, ~$
c) 0.05 atm
d) 0.562 atm $\quad \mathrm{a}$
24. What is the volume of one mole of an ideal gas at STP?
a) 24.5 L
b) 22.4 L ©
c) 1.0 L
d) 10.0 L
25. What are standard temperature and pressure (STP)?
a) $0 \mathrm{C}, 1$ torr \downarrow
b) $25 \mathrm{C}, 1$ torr patin
c) $0 \mathrm{C}, 1 \mathrm{~atm}$
d) $25^{\circ} \mathrm{C}, 1 \mathrm{~atm}$
26. What is the unit of mole fraction
a) mol
b) mol^{-1}
c) unitless
27. Refer to Dalton's law of partial pressures and explain what mole fraction is
a) The number of moles of one component
b) The ratio of the number of moles of one component to the number of moles of all components present.
c) The number of moles of one component divided by 100
d) The ratio of the number of moles of all components present to the number of moles of one component.
28. Write the ideal gas equation. Give the units for each term in the equation
a) $P V=n R T ; P$ in torr, V in L, n in mol, R in Latm $/ \mathrm{Kmol}, T$ in ${ }^{\circ} \mathrm{C}$.
b) $P V=n R T ; P$ in torr, V in L, n in mol, R in Latm $/ \mathrm{Kmol}, T$ in K .
c) (c) $P V=n R T$; P in atm, V in L, n in mol, R in Latm $/ \mathrm{Kmol}, T$ in K .
d) $P V=n R T$; P in atm, V in L, n in mol, R in Latm/Kmol, T in ${ }^{\circ} \mathrm{C}$.
29. What is the difference between a gas and a vapor?
a) A gas is a substance normally in the gaseous state at normal atmospheric conditions (25C, 1 atm); a vapor is the gaseous form of any substance that is a liquid or a solid at normal temperatures and pressures.
b) A gas is the gaseous form of any substance; a vapor refers to a gas over a water surface.
c) A gas is a substance normally in the gaseous state at normal atmospheric conditions ($25 \mathrm{C}, 1 \mathrm{~atm}$); a vapor is a gas over a water surface.
d) A gas and a vapor are two interchangeable nomenclatures; they are identical.
30. What volume is occupied by 19.6 g of methane $\left(\mathrm{CH}_{4}\right)$ at $27^{\circ} \mathrm{C}$ and 1.59 atm ?
a) 1.71 L
b) 18.9 L
c) 27.7 L
d) 302 L
31. A 4.37 gram sample of a certain diatomic gas occupies a volume of 3.00 L at 1.00 atm and a temperature of $45^{\circ} \mathrm{C}$. Identify this gas.
$38 y \operatorname{ma)} \quad \mathrm{~F}_{2}$
$28 \mathrm{~g} / \mathrm{md}<b) \mathrm{N}_{2}$
$2 \mathrm{~g} / \mathrm{md}$-c) H_{2}
$32 \mathrm{~g} / \mathrm{mol}<d) \mathrm{O}_{2}$
$d=\frac{m}{v}=\frac{4.37}{3}=1.46$
$d=\frac{P M M}{R T} \Rightarrow M M=\frac{d R T}{P}=38.1$

$$
\left\{\begin{aligned}
P & =\frac{m}{M} R T \\
M & =\frac{m R T}{P V}
\end{aligned}\right.
$$

Explanation: $\mathrm{MM}=\mathrm{mRT} / \mathrm{PV} \ggg>\mathrm{MM}=4.37 \times 0.0821 \times(45+273) / 1 \times 3=37.77 / 2=18.88 \mathrm{~g} / \mathrm{mole} \sim \mathrm{F}_{2}$
294.15 K स \quad T
P_{T}
V
32. A sample of hydrogen gas was collected over water at $21^{\circ} \mathrm{C}$ and 685 mmHg . The volume of the container was 7.80 L .

Calculate the mass of $\mathrm{H}_{2}(\mathrm{~g})$ collected. (Vapor pressure of water $=18.6 \mathrm{mmHg}$ at $21^{\circ} \mathrm{C}$.) $\quad \mathrm{H}_{2}$. ${ }^{\circ}$ bu

33. Which of the following is/are characteristic(s) of gases?
a) High compressibility
b) Relatively large distances between molecules
c) Formation of homogeneous mixtures regardless of the nature of gases
d) High compressibility, relatively large distances between molecules AND formation of homogeneous mixtures regardless of the nature of gases

$$
T_{1} \hat{\vartheta} \quad P_{1}
$$

277.15 K
34. A small bubble rises from the bottom of a lake, where the temperature and pressure are $4^{\circ} \mathrm{C}$ and 3.0 atm , to the water's surface, where the temperature is $25^{\circ} \mathrm{C}$ and the pressure is $\frac{0.95}{\mathrm{Patm}}$. Calculate the final volume of the bubble if its initial volume was 2.1 mL . T_{2} hes $298.15 \mathrm{~K} \quad \frac{P_{2}}{\mathrm{P}_{2}} \mathrm{Vf}$
a) 0.72 mL
b) 6.2 mL
c) 41.4 mL
d) 7.1 mL

$$
\left.\begin{array}{l}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
\frac{3 \times 2.1}{277.15}=\frac{0.95 \times V_{2}}{298.15}
\end{array}\right\} \begin{gathered}
0.027=3.17 \times 10^{-3} V_{2} \\
V_{2}=7.1 \mathrm{~mL}
\end{gathered}
$$

35. Calculate the mass, in grams, of 2.74 L of CO gas measured at $33^{\circ} \mathrm{C}$ and 945 mmHg . $\mathrm{P}=1.24 \mathrm{a}+\mathrm{m}$
e $\rightarrow T=306.15 \mathrm{~K}$
$\begin{array}{ll}\text { a) } & 0.263 \mathrm{~g} \\ \text { b) } 2.46 \mathrm{~g} & P V=n R T \\ \text { c) } 3.80 \mathrm{~g} & P V=\frac{m}{m m} R T\end{array} \quad\left(m=\frac{1.24 \times 2.74 \times 28.01}{0.082 \times 306.15}\right.$
$\begin{array}{ll}\text { c) } 3.80 \mathrm{~g} & P V=\frac{m}{\mu} \text { RT } \\ \text { d } & 25.2 \mathrm{~g} \quad m=\frac{P V M M}{R T}\end{array} \quad m=3.79 \mathrm{~g} \approx 3.8 \mathrm{~g}$
36. Which of the following gases will have the greatest density at the specified temperature and pressure? \qquad
a) $\mathrm{H}_{2} \quad D=\frac{P M}{R T} \Rightarrow P_{1} T$ Un $\rightarrow d=\frac{M}{R}$
a) H_{2}
a) $D_{H_{2}}=\frac{1.008 \times 2}{0.082}=24.59 \mathrm{~g} / \mathrm{L}$
b) $D_{C C L F_{3}}=\frac{104.46}{0.082}=1273.90 \mathrm{~g} / \mathrm{L}$ (c) $D_{C_{2}}=\frac{44.011}{0.082}=536.72$

c) CO_{2} | ${ }^{\circ} \mathrm{C}$. The pressure of the chloroform is 728 mmHg . |
| :--- |
| 0. |

0.389 g is collected in a flask with a volume of

$$
P V=\frac{m}{M M} R T
$$

$$
M M=120.58 \approx 121 \mathrm{~g} / \mathrm{mol}
$$

38. What is the molar mass of Freon-11 gas if its density is $6.13 \mathrm{~g} / \mathrm{L}$ at STP?
a) $0.274 \mathrm{~g} / \mathrm{mol}$
b) $3.64 \mathrm{~g} / \mathrm{mol}$

$$
D=\frac{P M M}{R T}
$$

c) $78.2 \mathrm{~g} / \mathrm{mol}$
d) $137 \mathrm{~g} / \mathrm{mol}$

$$
M M=\frac{P R T}{P} \leadsto M=\frac{6.13 \times 0.082 \times 275.15}{1}=137.3 \approx 137 \mathrm{~g} / \mathrm{mol}
$$

40. A mixture of three gases has a total pressure of $1,380 \mathrm{mmHg}$ at 298 K . The mixture is analyzed and is found to contain $1.27 \mathrm{~mol} \mathrm{CO}_{2}, 3.04 \mathrm{~mol} \mathrm{CO}$, and 1.50 mol Ar . What is the partial pressure of $\AA \mathrm{Ar}$?
a) 0.258 atm
b) 301 mmHg
c) 356 mmHg
d) $5,345 \mathrm{mmHg}$

$$
\begin{aligned}
& P_{A r}=X_{A S} \cdot P_{T} \\
& X_{A r}=\frac{1.50}{1.50+1.27+3.04}=0.298 \\
& P_{A r}=0.258 \times 1380=356.04 \approx 356 \mathrm{~mm} \mathrm{Hg}
\end{aligned}
$$

Test bank chapter (7)

Choose the most correct answer

1. The lowest energy state of an atom is referred to as its
a) bottom state.
b) ground state
c) fundamental state.
d) original state.
2. All(s)orbitals are
a) shaped like four-leaf clovers.
b) dumbbell-shaped.
c) spherical.
d) triangular.
3. $[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$ is the electron configuration of which element?
a) Beryllium Be
b) Boron B
$2 \frac{s^{2}+p^{2}}{2 p^{2}}=4$ as, z. 11
c) carbon C
d) nitrogen N

वंजिए, 包
4. What are the valence electrons of vanadium (V)?
a) $4 \mathrm{~s}^{2}$
a) $4 \mathrm{~s}^{3}$
c) $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{3}$
$V^{23}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$
d) $3 d^{5}$
5. What are the valence electrons of gallium Ga ?
a) $4 \mathrm{~s}^{2}$
b) $3 d^{3}$
c) $4 s^{2} 4 p^{1}$
d) $3 \mathrm{~d}^{5}$

6. The electron configuration of a neutral atom is $\left.[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}\right]$. The four quantum numbers of the last electron are:
a) $(2,1,-1,+1 / 2)$
b) $(3,3,-1,+1 / 2)$
c) $(3,0,-1,+1 / 2)$
d) $(3,1,-1,+1 / 2)$

last
e $\quad\left(3,1,-1,+\frac{1}{2}\right)$
7. How many unpaired electrons does chromium (Cr) have?
a) 0
a) $\begin{array}{l}0 \\ \text { b) } 2\end{array} \operatorname{r}^{24}:$ Ar $] 45^{2} 3 d^{4}$ cess stable
c) 4
d) 6
$\therefore[A r] 4 s^{1} \overline{3} d^{5}$ morestable

8. How many unpaired electrons does selenium (Se) have?
a) 0
b) 2
c) 4
$S e:[A r] 4 s^{2} 4 p^{4}$

$$
1 \mathrm{~N} \frac{11111}{2 \text { unpaired }}
$$

9. What is the maximum number of orbitals described by the quantum numbers: $n=3 \quad l=2 \quad$ en
a) 1
b) 3
$m l=2 l+1$
c) 5
d) 9

$$
m l=2(2)+1=5
$$

10. What is the maximum number of orbitals described by the quantum numbers: $n=4$ UDS
a) 7
b) 14

$$
n^{2}=4^{2}=16
$$

c) 16
d) 48
11.The maximum number of electrons that can occupy an energy level described by the principal quantum number, n, is a) $n+1$
b) $2 n$
c) $2 n^{2}$
d) n^{2}

$$
2 n^{2}
$$

12. A possible set of quantum numbers for the last electron added to complete an atom of sodium Na in its ground state is
a) $n=3, l=1, m_{l}=0, m_{s}=1 / 2$

Na': $1 s^{2} 2 s^{2} 2 p^{6}\left(35^{1}\right.$ lasté
$\left(3,0,0, \frac{11}{2}\right)$
b) $n=3, l=0, m_{l}=0, m_{s}=1 / 2$
c) $n=2, l=1, m_{l}=-1, m_{s}=1 / 2$
d) $n=2, l=0, m_{l}=-1, m_{s}=1 / 2$
3. The ground-state electron configuration of a calcium atom is

$$
\begin{aligned}
n & =3 \\
l & =0 \\
m l & =0 \\
m s & =+\frac{1}{2}
\end{aligned}
$$

a) $[\mathrm{Ne}] 3 \mathrm{~s}^{2}$
$C a^{20}:[A r] 4 s^{2}$
b) $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$
c) $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{1}$
d) $[\mathrm{Ar}] 4 \mathrm{~s}^{2}$
14. Which one of the following sets of quantum numbers is not possible?

	n	l	$\mathrm{~m}_{l}$	$\mathrm{~m}_{\mathrm{s}}$	
Row 1	4	3	-2	$+1 / 2$	$-2-1 \mathrm{o}+1+2$
Row 2	3	$d^{4}(2)$	-3	$-1 / 2$	
Row 3	3	0	0	$+1 / 2$	$11 \mid$
Row 4	4	1	1	$-1 / 2$	
Row 5	2	0	0	$+1 / 2$	

a) Row 1
b) Row 2
c) Row 3
d) Row 4
15. The number of orbitals in a d subshell is
a) 1
b) 3
c) 5
d) 7
$l=2$; $b l \rightarrow m l=2 l+1$

16. Which ground-state atom has an electron configuration described by the following orbital diagram?
$\left[\mathrm{Ar} \frac{\uparrow \downarrow}{4 \mathrm{~s}}\right.$
$\stackrel{\uparrow \downarrow}{\uparrow \downarrow} \frac{\uparrow \downarrow}{3 \mathrm{~d}} \stackrel{\uparrow \downarrow}{ } \uparrow \downarrow$
$\uparrow \downarrow \frac{\uparrow}{4 \mathrm{p}} \uparrow$
=
a) phosphorus
b) germanium
c) selenium
d) tellurium
©
Cmolu 6) às, 24 ,
$4 s^{2} 4^{+} p^{4}=6$
17. A ground-state atom of nickel has \qquad unpaired electrons and is \qquad -
a) 0 , diamagnetic
b) 6 , diamagnetic
c) 3, paramagnetic
d) 2, paramagnetic
$N_{i}{ }^{28}:[\mathrm{Ar}] 4 s^{2} 3 d^{8}$
1V/IM/M(111) z umpaired é
18. What is the frequency $\left(\mathrm{s}^{-1}\right)$ of electromagnetic radiation that has a wavelength of 0.53 m ?
a) $5.7 \times 10^{8} \quad C=\lambda \sim$
$\begin{aligned} & \text { b) } 1.8 \times 10^{-9} \\ & \text { c) } 1.6 \times 10^{8} \\ & \text { b) } \\ & 1.3 \times 10^{-33}\end{aligned} \quad \frac{c}{\lambda} \Rightarrow V=\frac{3 \times 10^{8}}{0.53}=566037735.8$, 5.7×10^{8}
c) 1.6×10^{8}

Explanation: The frequency and wavelength of electromagnetic radiation are related by the equation $\mathrm{c}=\lambda \nu$, where c is the speed of light $(=3.00 \times 108 \mathrm{~m} / \mathrm{s}), \lambda$ is the wavelength in m and v is the frequency is s^{-1} or Hz . The frequency can be calculated by rearranging the above formula to get $v=\mathrm{c} / \lambda=3 \times 10^{8} / 0.53=5.7 \times 10^{8} \mathrm{~s}^{-1}$

E
19. The energy of a photon of light is proportional to its frequency and \qquad proportional to its wavelength.

20. The wavelength of a photon of energy $5.25 \times 10^{-19} \mathrm{~J}$ is \qquad m.
a) 2.64×10^{6}
b) 3.79×10^{-7}
c) 2.38×10^{23}
$E=h \frac{c}{\lambda}$
$5.25 \times 10^{-19}=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{\lambda}$
$\lambda=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{5.25 \times 10^{-19}}$
$\lambda=3.79 \times 10^{-7} \mathrm{~m}$

Explanation: The wavelength and energy are related by the formula $\mathrm{E}=\mathrm{hc} / \lambda$, where $\mathrm{h}\left(6.626 \times 10^{-34} \mathrm{Js}\right)$ is Planck's constant, c is the speed of light $\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$ and λ is the wavelength in meters. The wavelength can then be calculated by rearranging the above formula as follows: $\lambda=\mathrm{hc} / \mathrm{E}=6.63 \times 10^{-34} \times 3 \times 10^{8} / 5.25 \times 10^{-19}=3.79 \times 10^{-7} \mathrm{~m}$

$$
V
$$

E
21. What is the frequency $\left(\mathrm{s}^{-1}\right)$ of a photon of energy $4.38 \times 10^{-18} \mathrm{~J}$?
a) 438

$$
E=h r
$$

b) 1.45×10^{-16}
c) 6.61×10^{15}
d) 2.30×10^{7}

$$
F=\frac{E}{h} \Rightarrow V=\frac{4.38 \times 10^{-18}}{6.63 \times 10^{-34}}=6.61 \times 10^{15} \mathrm{H} 2 \frac{1}{\mathrm{~s}}, 15^{-1}
$$

Explanation: The frequency v of this photon can be calculated by rearranging the equation $\mathrm{E}=\mathrm{h} v$ where E is the energy, $\mathrm{h}=$ Planck's constant and $v=$ frequency in $\mathrm{s}^{-1} . v=\mathrm{E} / \mathrm{h}=4.38 \times 10^{-18} / 6.63 \times 10^{-34}=6.61 \times 10^{15}$
22. An electron is a Bohr hydrogen atom has energy of $-1.362 \times 10^{-19} \mathrm{~J}$. The value of n for this electron is \qquad _.

Explanation: The energy of an electron in a particular energy state in the hydrogen atom can be calculated by using the formula $\mathrm{E}=\left(-2.18 \times 10^{-18} \mathrm{~J}\right) / \mathrm{n}^{2}$, where n is the principal quantum number for the energy state. The value of n can be found by rearranging the above formula as follows:

> oplepid opp
> $n_{i}<n_{f}$
$n=\sqrt{\frac{-2.18 \times 10^{-18} \mathrm{~J}}{-1.362 \times 10^{-19} \mathrm{~J}}}=4$
19. The $n=2$ to $n=6$ transition in the Bohr hydrogen atom corresponds to the __ of a photon with a wavelength of __ nm.
a) emission, 411
$\Delta E=R_{H}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right)$
b) absorption, $411 \Delta E=2.18 \times 10^{-18}\left(\frac{1}{4}-\frac{1}{36}\right)$

$$
=2.18 \times 10^{-18}(0.22)=4.84 \times 10^{-19} \mathrm{~J}
$$

$$
\begin{aligned}
& E=h \frac{c}{\lambda} \\
& 4.84 \times 10^{-19}=6.63 \times 10^{-34} \times \frac{3 \times 10^{8}}{\lambda} \\
& \lambda=4.109 \times 10^{-7} \mathrm{~m} \\
& \left.=4.11 \times 10^{-7} \times 10^{9}=411 \mathrm{~nm} \quad \mathrm{~nm}\right) \mathrm{d}_{\mathrm{s}} \mathrm{j}
\end{aligned}
$$

d) emission, 389

Explanation: There are 2 parts to this question. Since the electron is moving from a smaller value of n (ni) to a larger value of $n\left(n_{f}\right)$, it must be absorbing energy. The wavelength responsible for this transition can be calculated by using the formula: $E=R_{H}\left(1 / n_{i}^{2}-1 / n_{f}^{2}\right) \& E=h c / \lambda$
20. How many quantum numbers are necessary to designate a particular electron in an atom \qquad ?
a) 3
$\begin{array}{lll}\text { c) } & 2 \\ \text { d) } & 1 & n, l, m l, m s\end{array}$
21. The \qquad quantum number defines the shape of an orbital.
a) spin
b) magnetic
c) principal
d) angular $\rightarrow \ell \rho$

$3 n$

22. There are \qquad orbitals in the third shell $n=3$
a) 25

$$
n^{2}=3^{2}=9
$$

b) 4
c) 9
d) 16

Explanation: The number of orbitals in a shell is easily calculated by the formula $\#$ of orbitals $=n^{2}$ where $n=$ principal quantum number, which is 3 in this case.
23. The angular quantum number is 3 in $\frac{f}{f}$ orbitals.
a) s $l=3 \Rightarrow f$
b) p
c) 1
d) f
24. The $n=1$ shell contains \qquad p orbitals. All the other shells contain \qquad p orbitals.
a) $3,6 \quad n=1 \because O 8,0$, osp oi
b) 0,3
c) 6,2
d) 3,3

Explanation: If $\mathrm{n}=1$, then the only possible value of ℓ is 0 which means that $\mathrm{n}=1$ can contain only s orbitals. When $\mathrm{n}>$ 1 , the value of $\ell=1$ is possible making the existence of 3 p orbitals possible. n
25. The principal quantum number of the first d subshell is \qquad -.
a) 1
b) 2
c) 3
d) 4
26. The total number of orbitals in a shell is given by \qquad -.
a) L^{2}
b) L^{2}
c) 2 n
d) $2 \mathrm{n}+1$
28. Eachp-subshell can accommodate a maximum of \qquad electrons.
a) 6
b) 2
c) 10

161115
d) 3

Explanation: There are 3 different p orbitals: px, py and pz. Each of these can contain 2 electrons leading to the maximum number of electrons as 6 .

29. Each p-subshell can accommodate a maximum of \qquad electrons.
a) 6
b) 2
c) 10
d) 3

Explanation: There are 3 different p orbitals: p_{x}, p_{y} and p_{z}. Each of these can contain 2 electrons leading to the maximum number of electrons as 6 .
30. The 3p subshell in the ground state of atomioxenon contains \qquad electrons.
a) 2 tio do Hio di jlic
b) 6
c) 36
${ }^{54} \mathrm{Xe}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}\left(3 p^{6} 6 / s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{16} 5 p^{6}\right.$
Explanation: Since Xe is a noble gas, its subshells will be completely filled regardless of their principal quantum number. Thus the 3 p subshell will contain 6 electrons.
31. $[\operatorname{Ar}] 4 s^{2} 3 d^{10} 4 p^{3}$ is the electron configuration of $a(n)$ \qquad atom.
a) As
क्या
b) V
$5=2+3:$ as, ell
c) P

Explanation: The easiest way to answer this question is to count the total number of electrons and find which element that number corresponds to. The total number of electrons is $=18$ (for the Ar) $+2+10+3=33$ which corresponds to As.
32. The principal quantum number for the outermost electrons in Br atom in the ground state is \qquad $-$
a) 2
b) 3
c) 4
d) 5
Rr': $[A r]{ }_{n}^{35} s^{2}\left(4 p^{5}\right.$

Explanation: The electronic configuration of bromine is $[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{5}$ shows that the outermost electrons are in the s and p orbitals in the 4th energy level making the principal quantum number $=4$.
33. All of the \qquad have a valence shell electron configuration ns^{1}.
a) noble gases
b) halogens
c) chalcogens
d) alkali metals

34. Which one of the following is correct?

$\begin{array}{ll}\text { a) } & v+\lambda=c \\ \text { b) } \\ v / \lambda=c\end{array} \quad C=\lambda \times v$
b) $\quad v / \lambda=c$
d) $v \lambda=c$
35. In the Bohr model of the atom, \qquad -.
a) electrons travel in circular paths called orbitals
b) electrons can have any energy
c) electron energies are quantized
d) electron paths are controlled by probability

36. Which one of the following is not a valid value for the magnetic quantum number of an electron in a 5 d subshell?

a)	2
b)	3
c)	0
d)	1

d) 1

Explanation: For an electron in the 5 d subshell the value of $\ell=2$ and the magnetic quantum number $m \ell$ can have values from $-1, \ldots 0, \ldots+1$, meaning $m \ell$ could not have a value -3 .
37. Which of the subshells below do not exist due to the constraints upon the angular quantum number?
$\begin{array}{lll}\text { a) } 2 \mathrm{~s} & n=2 & l \\ \text { b) } 2 \mathrm{~d} & j o p \sim \infty & 0 \Rightarrow S \\ \text { c) } 2 \mathrm{p} & n-1, & \Longrightarrow P\end{array}$
Explanation: The values of the azimuthal quantum number " 1 " are decided by the values of the principal quantum number " n ". The values of 1 will only be from $0 \ldots n-1$. Thus for $n=2$, only the values of 0 and 1 will be possible for ℓ, which means that only the 2 s and 2 p orbitals will be possible.
38. An electron cannot have the quantum numbers $\mathrm{n}=$ \qquad , $1=$ \qquad $\mathrm{m} \ell=$ \qquad .
a) $2,0,0$

$$
n-1<l
$$

b) $2,1,-1$
c) $3,1,-1$
(d) $1,1,1$

$$
\begin{aligned}
& n-1 \\
& j थ \rho 0,
\end{aligned}
$$

川 $n=1$,
jer \square
Explanation: The values of $1,1,1$ would be impossible since if $n=1$, the only value of ℓ would be $=0$.
39. Which quantum number determines the energy of an electron in a hydrogen atom?
(a) n
b) n and ℓ
c) ml
d) ℓ
39. Which electron configuration represents a violation of the Pauliexclusion principle?

Explanation: According to the Pauli Exclusion Principle no two electrons in an atom cannot have the same 4 quantum numbers. The 2 electrons in the 2 s orbital have the same value for their ms which is not allowed (d)
40. Which of the following is a valid set of four quantum numbers? $(\mathrm{n}, \ell, \mathrm{m} \ell, \mathrm{ms})$
a) $2,0,0,+1 / 2$
b) $2,(2,1,-1 / 2 x$
c) $1,0,1,+1 / 2 x$
d) $2,1, \pm 2,+1 / 2 x$

Explanation: Here is why only option (a) is the correct answer: In option (b), $\ell=2$ which is not allowed, in (c) $\mathrm{m} \ell \neq 1$ since $\mathrm{I}=0$ and in (d) $\mathrm{m} \ell>1$ which are all not allowed.
41. Which of the following is not a valid set of four quantum numbers? ($\mathrm{n}, \ell, \mathrm{m} \ell, \mathrm{ms}$)
a) $2,0,0,+1 / 2$
b) $2,1,0,-1 / 2$
(c) $1,1,0,+1 / 2 \times \quad n-1$) jepos $=l \quad u L^{n} c$
d) $1,0,0,+1 / 22$

Explanation: Sincencan never be equal to © option c is the only set that is not valid.

 Test bank chapter (8)

Choose the most correct answer

1. Elements in the modern version of the periodic table are arranged in order of increasing \qquad .
a) oxidation number
b) atomic mass
c) average atomic mass
d) atomic number

Explanation: The older version of the periodic table had the elements arranged in order of increasing atomic mass, but the modern version of the periodic table is based on the increasing order of atomic number.
2. The first ionization energies of the elements \qquad as you go from left to right across a period of the periodic table, and \qquad as you go from the bottom to the top of a group in the table. Shaped like four-leaf clovers.
a) increase, increase
b) increase, decrease
c) decrease, increase
d) decrease, decrease

Explanation: The ionization energies (IE s) of elements increase to the right in a row since larger amounts of energy need to be supplied to remove an electron. The elements become more non-metallic making it harder to remove an electron.
3. The \qquad have the most negative electron affinities
a) alkaline earth metals
b) alkali metals
c) halogens
d) transition metals

Explanation: The electron affinity of an element is defined as the energy change that occurs when an electron is added to a gaseous atom. The halogens have the most negative electron affinities indicating that they are most comfortable accepting an electron. The formation of an anion essentially gives the halogen atom the electron configuration of the nearest noble gas. The negative sign here indicates that the addition of an electron to the halogens results in energy being released by the halogen atom.
4. Na reacts with element X to form an ionic compound with the formula $\mathrm{Na}_{3} \mathrm{X}$. Ca will react with X to form \qquad .
a) CaX_{2}
b) CaX
c) $\mathrm{Ca}_{2} \mathrm{X}_{3}$
d) $\mathrm{Ca}_{3} \mathrm{X}_{2}$

Explanation: The element X must have 3 negative charges for it to form the compound $\mathrm{Na}_{3} \mathrm{X}$, since each Ca has 2 positive charges, the formula of the compound formed by the reaction of Ca and X would have to be $\mathrm{Ca}_{3} \mathrm{X}_{2}$.
5. 16. Atomic radius generally increases as we move \qquad -.
a) down a group and from right to left across a period
b) up a group and from left to right across a period
c) down a group and from left to right across a period
d) there is no trend

6. 18. The atomic radius of main-group elements generally increases down a group because \qquad .
a) effective nuclear charge increases down a group
b) effective nuclear charge decreases down a group
c) both effective nuclear charge increases down a group and the principal quantum number of the valence orbitals increases
d) the principal quantum number of the valence orbitals increases
7. Which of the following correctly lists the five atoms in order of increasing size (smallest to largest)?
a) O $<$ F $<$ S $<$ Mg $<\mathrm{Ba}$
b) F $<$ O $<$ S $<\mathrm{Mg}<\mathrm{Ba}$
c) F $<$ O $<$ S $<\mathrm{Ba}<\mathrm{Mg}$

$$
F<0<s<M g<B a
$$

d) O $<$ F $<$ S $<$ Ba $<\mathrm{Mg}$

Explanation: Fluorine and oxygen are in the same period (\#2) and next to each other with F being the smallest of these 5 atoms. Ba is in group 2A and in row 6 (farthest "down" a group) and is the largest of the atoms. Mg is in group 2 A and in the third period and hence will be bigger than F, O and S . Even though S is in the same period as Mg it is in group 6A making it smaller than Mg .
8. Which of the following correctly lists the five atoms in order of increasing size (smallest to largest)? 0
a) F $<\mathrm{K}<\mathrm{Ge}<\mathrm{Br}<\mathrm{Rb}$
b) $\mathrm{F}<\mathrm{Ge}<\mathrm{Br}<\mathrm{K}<\mathrm{Rb}$
c) $\mathrm{F}<\mathrm{K}<\mathrm{Br}<\mathrm{Ge}<\mathrm{Rb}$

d) F $<\mathbf{B r}<\mathbf{G e}<\mathbf{K}<\mathbf{R b}$

Explanation: Fluorine is in group 7A and period 2 making it the smallest of the 5 atoms here. Br is also in group 7A but is in period 4 making it larger than F, Ge is in group 4 A and also in period 4 but is to the left of Br making it larger than Br . K and Rb are both in group 1 A but K is in period 4 and Rb is in period 5, making the Rb atom the largest of all the 5 atoms.
9. Of the following atoms, which has the largest first ionization energy?

Explanation: The ionization energy (IE) typically increases from left to right in a period and decreases from top to bottom in a group. Thus for C and O which are in the same period, O will have the larger $\mathrm{IE} . \mathrm{Br}$ is in period $\# 4$ and will have the lowest IE out of these 4 elements.
10. Of the following elements, which has the largest first ionization energy?
a) Na
b) A 1
c) Se
$d e$
Explanation: The ionization energy (IE) typically increases from left to right in a period and decreases from top to bottom in a group. Na, Al and Cl are all in period 3 with the chlorine atom to the farthest right and will have the highest IE.

11. Which ion below has the largest radius?

a) Cl^{-}
b) K^{+}
c) Br^{-}

Explanation: Typically cations are smaller than their parent atoms while anions are larger than the parent atoms. Of the atoms here, the Br atom would be the largest as it is farthest down the group and hence its anion also will be the largest ion.
12. The ion with the smallest radius is \qquad .
a) Br^{-}
b) Cl^{-}
c) $\quad \mathrm{O}^{2-}$
d)
F^{-}

Explanation: Typically anions are larger than the parent atoms. Of the atoms here, the F atom would be the smallest as it is farthest down the group and hence its anion also will be the smallest ion
13. Which of the following is an isoelectronic series?
a) $\mathrm{B}^{5-}, \mathrm{Si}^{4}, \mathrm{As}^{3-}, \mathrm{Te}^{2-}$
b) $\mathrm{O}^{2}, \mathrm{~F}, \mathrm{Ne}, \mathrm{Na}^{+}$
c) $\mathrm{S}, \mathrm{Cl}, \mathrm{Ar}, \mathrm{K}$
d) None of the above

Explanation: Isoelectronic series contain a combination of atoms and ions or only ions with the same number of electrons. Here the series containing the $\mathrm{O}^{2-}, \mathrm{F}, \mathrm{Ne}$ and Na^{+}is the only one where all atoms/ions contain 10 electrons.
14. \qquad is isoelectronic with argon and \qquad is isoelectronic with neon.
a) $\mathrm{Cl}^{-}, \mathrm{F}^{-}$
b) $\mathrm{Cl}^{-}, \mathrm{Cl}^{+}$
c) $\mathrm{F}^{+}, \mathrm{F}^{-}$
d) $\mathrm{Ne}, \mathrm{Kr}^{+}$

Explanation: The Cl^{-}ion has 18 electrons and is isoelectronic with argon while the F^{-}ion has 10 electrons making it isoelectronic with neon.
15. Chlorine is much more apt to exist as an anion than is sodium. This is because \qquad .
a) chlorine is bigger than sodium
$\mathrm{Cl}^{-} \Rightarrow$ بas
b) chlorine has a greater ionization energy than sodium does
c) chlorine has a greater electron affinity than sodium does
d) chlorine is a gas and sodium is a solid
16. The alkaline earth metals are found in \qquad of the periodic table.
a) Group 1 A
b) Group 2 A
c) Group 7 A
d) Group 8 A

17.How many valence electrons does a boron atom (B) have?

a) 1
b) 3
c) 5
$B^{5}: 1 s^{2}, 2 s^{2} 2 p$ $2+1=3$
18. Which ion is isoelectronic with Ar ?
a) $\mathrm{Ni}^{2+} \rightarrow[\mathrm{Ar}]_{18} 45^{\circ} 3 d^{8}$
b) $\mathrm{F}^{-} \rightarrow[\mathrm{Ne}]$
c) $\mathrm{Br}^{-} \rightarrow[\mathrm{kr}]$
d) $\mathrm{K}^{+} \rightarrow[\mathrm{Ar}]$
19. Which of these choices is the electron configuration of the iron (III) ion $\left(\mathrm{Fe}^{3+}\right)$?
a) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{3}$
b) $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5}$
c) $[\mathrm{Ar}] 3 \mathrm{~d}^{3}$
d) $[\operatorname{Ar}] 3 \mathrm{~d}^{6}$

$$
\mathrm{Fe}^{26}:[\mathrm{Ar}] 4 s^{2} 3 d^{6}
$$

20. In what group of the periodic table is the element with the electron configuration $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{1}$?
a) 1 A
b) 2 A
c) 3 A
d) 4 A
21. How many valence electrons does a tin (Sn) atom have?
a) 2
b) 4
c) 14
$\sum_{S n^{5}}^{50}:[\mathrm{kr}]_{36} 5 s^{2} 5 p^{2}$
d) 36
22. Which of these ground-state ions has unpaired electrons?
a) $\mathrm{P}^{3-} \rightarrow[\mathrm{Ar}]$
b) $\mathrm{V}^{5+} \rightarrow[\mathrm{Ar}]$
b) $\mathrm{V}^{5+} \rightarrow[\mathrm{Ar}]$
c) $\left.\mathrm{S}^{2-} \mathrm{HAr}\right]$
d) $\mathrm{Sc}^{2+} \longrightarrow 8[\mathrm{Ar}]_{18} 45^{\circ} 3 \mathrm{~d}$
23. Consider the element with the electron configuration $[\mathrm{Xe}] 6 \mathrm{~s}^{2} 4 \mathrm{f}^{7}$. This element is
a) a representative element.
b) a lanthanide element.
c) a nonmetal.
d) an actinide element

$$
\begin{aligned}
& \text { Period: } 4 \\
& \text { black:f }
\end{aligned}
$$

24. If the radius of atom X is greater than the radius of atom Y , then it is also likely that
a) X has a larger electron affinity than Y does.
b) X has a larger first ionization energy than Y does.
c) X has greater metallic character than Y does.
25. Arrange these ions in order of increasing ionic radius: $\mathrm{K}^{+}, \mathrm{P}^{3-}, \mathrm{S}^{2-}, \mathrm{Cl}^{-}$.
\quad Increasing radius \rightarrow
Row $1 \quad \mathrm{~K}^{+}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}<\mathrm{P}^{3-}$
Row $2 \quad \mathrm{~K}^{+}<\mathrm{P}^{3-}<\mathrm{S}^{2-}<\mathrm{Cl}^{-}$
Row $3 \quad \mathrm{P}^{3-}<\mathrm{S}^{2-}<\mathrm{Cl}^{-}<\mathrm{K}^{+}$
Row $4 \mathrm{Cl}^{-}<\mathrm{S}^{2-}<\mathrm{P}^{3-}<\mathrm{K}^{+}$
apreres ous

Row $5 \quad \mathrm{Cl}^{-}<\mathrm{S}^{2-}<\mathrm{K}^{+}<\mathrm{P}^{3-}$
$K^{+}<\mathrm{Cl}^{-}<\mathrm{S}^{-2}<\mathrm{P}^{-3}$
a) Row 1
b) Row 2
c) Row 3
d) Row 4

26. - Selenium $(34 \mathrm{Se})$ element is

a) a nonmetal
b) found in group 6 A
c) found in period 2
d) both a and b
28. The outer electron configuration of the noble gases is
a) $n s^{2} n p^{6}$
b) $n s^{2} n d^{10}$
c) $n s^{2} n p^{4}$
d) $n s^{2} n p^{8}$
29. Which of the following species is isoelectronic with $\mathrm{Cl}^{-} \rightarrow[\mathrm{Ar}]_{18}$
a) $\mathrm{K}^{+} \rightarrow[A r]_{18}$
b) $\mathrm{Na}^{+} \rightarrow[\mathrm{Ne}]_{0}$
c) OF^{-}
d) ${ }^{2}$
30. Gallium (Ga) element is found in the periodic table in
a) period 3 , group $1 B$
b) period 3 A , group 4
c) period 4 , group 1 A
d) period 4, group 3A
31. Titanium (Ti) element is found in the periodic table in
a) s-block
b) P-block
c) d-block
d) f-block
32. Write the electronic configuration for Co^{+2}
a) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$

b) $[\operatorname{Ar}] 4 s^{2} 3 d^{7}$
c) $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{6}$
d) $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5}$

$$
\left(\mathrm{C}^{+2}:[\mathrm{Ar}]_{18} 45^{\circ} 3 \mathrm{cl}^{7}\right.
$$

33. Select the correct order of radius of the two ions
a) $\mathrm{A}^{+}>\mathrm{A}^{-} \times$
b) $\mathrm{A}^{-}<\mathrm{A} \times$
$\int_{2} l l \dot{y}$
c) $\mathrm{A}^{2+}>\mathrm{A}^{+}+$
d) $\mathrm{A}^{2+}<\mathrm{A}^{+} \sim$
34. Two ions are referred to as isoelectronic if they have the same number of
a) electrons.
b) protons.
c) atoms.
d) neutrons.
35. The energy required to remove an electron from an atom in its ground state is known as the
a) potential energy.
b) activation energy.
c) electron affinity.
d) ionization energy.
36. Which will have the highest ionization energy?
a) C
b) N
$\xrightarrow{\text { in }}$

b)	\mathbf{N}	$B \quad C$	$N O$
O	$3 A$	$4 A$	$5 A$

d) B
$1 A<3 A<2 A<4 A<\sqrt{6 A<5 A}<7 A<8 A$
exception
37. Order the following $\left(\mathrm{N}^{-3}, \mathrm{Li}^{+}, \mathrm{C}, \mathrm{O}^{2-}\right)$ according to increasing atomic/ionic radius.
a) $\mathrm{C}<\mathrm{Li}^{+}<\mathrm{O}^{2-}<\mathrm{N}^{3-}$
b) $\mathrm{N}^{3-}<\mathrm{O}^{2-}<\mathrm{C}^{2}<\mathrm{Li}^{+}$
($\left.r 1, \varphi_{4} p_{1}\right)$ r. boas
c) $\mathrm{Li}^{+}<\mathrm{C}<\mathrm{N}^{3-}<\mathrm{O}^{2-}$
d) $\mathrm{Li}^{+}<\mathrm{C}<\mathrm{O}^{2-}<\mathrm{N}^{3-}$

$$
\begin{aligned}
& \mathrm{NO}_{3}^{-} \text {, } 642=05 \mathrm{C}^{10}
\end{aligned}
$$

Choose the most correct answer

1. The two types of chemical bonds commonly found in compounds are:
a) doric and covalent.
b) ionic and electrolytic.
c) ionic and covalent.
d) electrolytic and compound.

2. The electrons used by atoms to form chemical bonds are the:
a) core electrons.
b) valence electrons.
c) lone pair electrons.
d) unpaired electrons.
3. "Atoms tend to gain, lose, or share electrons until they are surrounded by eight valence electrons" is a statement of:
a) the rule of octaves.
b) the double quartet rule.
c) the eight electron rule.
d) the octet rule.
4. When a transition metal atom becomes $\mathrm{a}+1$ ion, the electron lost usually comes from what type of orbital?
a) p
b) $\mathrm{f} \quad n \rho(n-1) d$
c) d
d) s

5. A molecule of CS_{2} contains
a) two single bonds.
b) two double bonds.
c) one single bond and one double bond.

$$
{ }_{n}^{n}=C=\ddot{S}
$$

d) one single bond and one triple bond.
6. An atom in the ground state has atomic number $\mathrm{Z}=5$. Choose the correct electron-dot structure which represents this atom? ANS. B

$$
\geq
$$

$$
\begin{gathered}
1 S^{2} \frac{2 s^{2} 2+p^{1}}{1} \Rightarrow 2+1=3 \\
\dot{x} .
\end{gathered}
$$

7．Which compound below contains an atom that is surrounded by more than an octet of electrons？
a） PF_{5} octet llojisi eris sp di
b） CH_{4}
c） NBr_{3}
d） OF_{2}
8．Which choice below correctly lists the elements in order of increasing electronegativity？
a） C $<$ N $<$ O $<$ F
b） N $<$ C $<$ O $<$ F
c） N $<$ C $<$ F $<$ O
d） C $<$ N $<$ F $<$ O

10 ins
9．Which atom sometimes violates the octet rule？
a） C
b） N
c） O
d） S
NO_{3}^{-}
10．How many resonance structures can be drawn for NO^{3-} ？
a） 1 （A）$=3 \times 6+5+1=24$ é
$\begin{array}{ll}\text { b）} \\ \text { d）} \\ \text { d）} \\ 4\end{array} \quad: \ddot{O}-N=\ddot{O}(\ddot{O}=\underset{\sim}{N}-\ddot{0}:\{: \ddot{O}-N-\ddot{O}$
11．Considering formal charge，what is the preferred Lewis structure of NCO？？ANS． 1
1．$: \mathrm{N} \equiv \mathrm{C}-\mathrm{O}:]^{-\quad} \quad$ 4．$[: \mathrm{N}-\mathrm{C}-\mathrm{O}:]^{-}$
2．$[: \mathrm{N}=\mathrm{C}=\mathrm{O}:]^{-} \quad$ 5．$[: \mathrm{N}=\mathrm{C}=\mathrm{O}:]^{-}$
3．$[\mathrm{iN}-\mathrm{C}=0:]^{-}$
12．In Lewis structure of $(\mathrm{SO} 4)^{-2}$ structure the correct formal charge on sulfur (S) is：

b）-2
c）+1
+2 Up satistiedseg cum

13．Which of these pairs of elements would be most likely to form an ionic compound？
a） Cl and $\mathrm{I} \rightarrow$ non，non
metal, non metal
b） Al and $\mathrm{K} \rightarrow$ metal metal
c） Cl and $\mathrm{Mg} \rightarrow$ metal，nonmetal
d） C and $\mathrm{S} \longrightarrow$ non リクロウ

14. Which of these covalent bonds is the most polar (ie., highest percent ionic character)?

metal
a) $\mathrm{Al}-\mathrm{I}^{\circ} d^{-1}$
b) $\mathrm{Si}-\mathrm{I}-$ yang
c) $\mathrm{Al}-\mathrm{Cl} \rightarrow \mathrm{S}_{1}$
d) $\underset{\substack{\text { metaliacds }}}{\mathrm{Si}-\mathrm{Cl} \rightarrow \mathrm{O} \text { inion }}$
der $\sqrt{\frac{C I}{I}}$,
metariads
15. The Lewis structure for CS_{2} is: ANS. c

a)

d)

$$
C=4-(4+0)=0
$$

16. The number of lone electron pairs in the N_{2} molecule is \qquad -
a) 1
b) 2
c) 3
d) 4

$$
i N \equiv N i
$$

17. Classify the $\mathrm{O}-\mathrm{H}$ bond in $\mathrm{CH}_{3} \mathrm{OH}$ as ionic, polar covalent, or nonpolar covalent.
a) Ionic
$5016 \sqrt{7} \mathrm{EH}$
b) polar covalent
c) nonpolar covalent
d) none of the above
18. The Lewis structure for a chlorate ion, ClO_{3}^{-1}, should show \qquad single bonds), \qquad double bonds), and \qquad lone pairs). $\mathrm{ClO}_{3}{ }^{-}$
a) 2, 1, 10
b) $3,0,9$ (A) $(1 \times 7)+(3 \times 6)+1=26 e$
c) $2,1,8$
(B) $=(1 \times 8)+(3 \times B)=32 e$
d) $3,0,10$
(C) $=B-A=32-26=\frac{6 e}{2}=360$ nd

19. The number of resonance structures for the sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ molecule that satisfy the octet rule is
a) 1
b) 2
c) 3
d) None of these.

$$
A=6+2 \times 6=180
$$

$$
\ddot{0}-S_{i}^{u}=\ddot{0} \quad \int_{i}^{u}=S_{i}^{u}
$$

20. What is the formal charge on the oxygen atom in $\mathrm{N}_{2} \mathrm{O}$ (the atomic order is $\mathrm{N}-\mathrm{N}-\mathrm{O}$)?
a) 0
b) +1
c) -1
d) -2
$\therefore \underset{(2)}{N} \underset{(3)}{O}:$
(1) $5-(3+2)=0$
(2) $5-(4)=+1$
(3) $6-(6+1)=-1$
21. Which of these substances will display an incomplete octet in its Lewis structure?
a) CO_{2}
b) Cl_{2}
c) ICl
d) NO
d) $\ddot{N}=\ddot{0}$
d). There are \qquad 2 paired and \qquad unpaired electrons in the Lewis symbol for a phosphorus atom (P).
a) 4,2
b) 2,4
c) 4,3
d) 2,3

Explanation: Read the question carefully here, you are being asked for how many valence electrons are paired and how many are unpaired. The abbreviated electron configuration of the P atom is given by $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{3}$. The outermost electrons would be arranged as 2 electrons paired and 3 electrons unpaired as shown below:

23. Based on the octet rule, magnesium (Mg) most likely forms a \qquad ion.
a) Mg^{2-}
b) Mg^{2+}

$$
\operatorname{Mg}^{12} 81 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}
$$

c) Mg^{6-}
d) Mg^{6+}

$$
M^{+2}: 15^{2} 25^{2} 2 p^{6} 2+6=8
$$

Explanation: According to the octet rule the Mg atom will achieve an octet by losing its 2 outermost electrons and thus gaining $2+$ charges. Since Mg is located in the alkali metal group it will lose electrons rather than gaining them.
24. Based on the octet rule, phosphorus (P) most likely forms a \qquad P^{-3} ion.
a) P^{3+}
b) P^{5-}
c) P^{5+}
$P^{15}: 1 S^{2} 2 S^{2} 2 P^{6} 3 S^{2}\left(3 P^{3}\right.$
d) P^{3-}

Explanation: According to the octet rule the phosphorus atom should gain 3electrons, thus gaining 3 negative charges and forming the phosphide ion.

25- The only noble gas without eight valence electrons is \qquad .
a) Ar
b) Ne
c) He

d) Kr

Explanation: The noble gases are characterized by the presence of eight electrons in their outermost shell with one notable exception of Helium. Since He has only 2 electrons it can never have 8 in its outermost shell.

26- What is the maximum number of double bonds that a hydrogen atom (H) can form?
a) 0

$$
\left.2 e^{0}, 5\right),(\hat{w}
$$

b) 1
c) 2
cusingl sies
d) 3

Explanation: Each hydrogen atom has a single electron in its valence shell and as a result can form only one bond. It cannot form a double bond as it does not have the necessary electrons to share.
28. What is the maximum number of double bonds that a carbon atom (C) can form?
a) 4
b) 1
$=C=$
三 C
c) $\begin{aligned} & 2 \\ & \text { d) } 0\end{aligned}$
du, 2
d,jell, (dän, ely,
Explanation: Each carbon atom has 4 valence electrons that it can share with other atoms. Since each double bond corresponds to a pair of electrons, the carbon atom can form only 2 double bonds.
29. Given the electronegativities below, which covalent single bond is most polar?

\section*{| Atom | H | C | N | O |
| :--- | :---: | :---: | :---: | :---: |
| Electronegativity | 2.1 | 2.5 | 3.0 | 3.5 |}

b) $\mathrm{N}-\mathrm{H} 3-2.1=0.9$ Polar
c) $\mathrm{O}-\mathrm{H} 3.5-2.1=1.4$ polar
d) $\mathrm{O}-\mathrm{N} 3.5-3=0.5$ polar

Explanation: Bond polarity can be judged based on the differences between the electronegativities of the atoms involved. Of the available choices, the bond between O and H will have the largest electronegativity difference making it the most polar bond in this group.
30. The ion $\mathrm{ICL}_{4}{ }^{-}$has \qquad valence electrons.
IClu_{4}^{-}
a) 34
b) 36
c) 35
$(1 \times 7)+(4 \times 7)+1=36 e$
d) 28

Explanation: valence electrons $\mathrm{A}=(7 \times 1)+(7 \times 1)+1=36$

31- Electronegativity \qquad from left to right within a period and \qquad from top to bottom within a group.
a) decreases, increases
b) increases, increases
c) stays the same, increases
d) increases, decreases

Explanation: Atomic size decreases from the left to the right in a period thus making it easier for the nuclei to attract electrons towards themselves resulting in an increase in the electronegativity. On the other hand atomic size increases down a group making it harder for the nuclei to attract the valence electrons towards themselves resulting in a decrease in electronegativity.
32. The Lewis structure of PF_{3} shows that the central phosphorus atom has \qquad nonbonding and bonding electron pairs.
a) 2,2
b) 1,3
c) 3,1
d) 1,2

$$
\begin{aligned}
& (A)=(1 \times 5)+(3 \times 7)=\overline{266} \\
& (B)=(1 \times 8)+(3 \times 8)=32 e
\end{aligned}\left\{\begin{array}{l}
\left(B-A=32-26=\frac{6 e}{2}=3\right. \text { bond } \\
(D)=A-C=26-6=28 \text { nonbondlingé }
\end{array}\right.
$$

33. Which of the following molecules contains both ionic and covalent bonds?
a) $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{non}, \mathrm{non}$
b) NaClO_{4}
c) $\mathrm{CaCl}_{2 \text { non, metal }}$
d) $\mathrm{H}_{2} \mathrm{O}$ nomenon

34. The ability of an atom in a molecule to attract electron density to itself is termed
a) Electronegativity
b) Electron affinity
c) Diamagnetism
d) Ionization energy

35- the most polar bond is
a) $\mathrm{Br}-\mathrm{H}$
b) $\mathrm{I}-\mathrm{H}$
c) $\mathrm{Cl}-\mathrm{H}$
d) $\mathrm{H}-\mathrm{H}$

 Test bank chapter（14）
 $$
\begin{aligned} & b \rightarrow \mathrm{CO} \\ & c \rightarrow \mathrm{CO}_{2} \end{aligned}
$$

Choose the most correct answer

1．Which is the correct equilibrium constant expression for the following reaction？
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a） $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right]\left[\mathrm{H}_{2}\right]^{3} /[\mathrm{Fe}]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{3}$
b） $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{H}_{2}\right] /\left[\mathrm{H}_{2} \mathrm{O}\right]$
c） $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{H}_{2} \mathrm{O}\right]^{3} /\left[\mathrm{H}_{2}\right]^{3}$
$K_{c}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{-3}}{\left[\mathrm{H}_{2}\right]^{3}}$

$$
\| p>1 \infty
$$

d） $\mathrm{K}_{\mathrm{c}}=[\mathrm{Fe}]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{3} /\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right]\left[\mathrm{H}_{2}\right]^{3}$

```
all
0 少, CL Gec-nty
\(g\), aq lee.
```

2．The following reactions occur at 500 K ．Arrange them in order of increasing tendency to proceed to completion（least \rightarrow greatest tendency）．
1． $2 \mathrm{NOCl} \leftrightharpoons 2 \mathrm{NO}+\mathrm{Cl}_{2}$
$\mathrm{K}_{\mathrm{p}}=1.7 \times 10^{-2}$（1） 0.017
2． $2 \mathrm{SO}_{3} \leftrightharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$
3． $2 \mathrm{NO}_{2} \leftrightharpoons 2 \mathrm{NO}+\mathrm{O}_{2}$
$\mathrm{K}_{\mathrm{p}}=1.3 \times 10^{-5}(2) 0.000013$
$\mathrm{K}_{\mathrm{p}}=5.9 \times 10^{-5}$（3） 0.006059
 Hes yofle－r Jo Jus元
a） $2<1<3$
b） $1<2<3$
$1>3>2$
c） $2<3<1$
d） $3<2<1$

3．Calculate \hat{K}_{p} for the reaction $2 \mathrm{NOCl}(\mathrm{g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at $400^{\circ} \mathrm{C}$ if K_{c} at $400^{\circ} \mathrm{C}$ for this reaction is 2.1×10^{-2} ．
a） $2.1 \times 10^{-2} \quad K p=\frac{\left[\mathrm{Cl}_{2}[\mathrm{NO}]^{2}\right.}{[\mathrm{NOCl}]^{2}} \quad\left(K_{p}=K_{C}\left(R_{T}\right)^{\mathrm{Bn}} \quad G \bar{T}=673.15 \mathrm{~K}\right.$
b） 1.7×10^{-3}
c） 0.70
d） 1.2

$$
\Delta n=(2+1)-2=3-2=1 \quad{ }_{s p}=2.1 \times 10^{-2}(0.082 \times 673.15)^{1}=1.16 \approx 1.2
$$

4．For the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HI}(\mathrm{g}), \mathrm{K}_{\mathrm{c}}=50.2$ at $445^{\circ} \mathrm{C}$ ．If $\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]=[\mathrm{HI}]=1.75 \times 10^{-3} \mathrm{M}$ at $445^{\circ} \mathrm{C}$ ，which one of these statements is true？
a）The system is at equilibrium，thus no concentration changes will occur．
b）The concentrations of HI and I_{2} will increase as the system approaches equilibrium．
c）The concentration of HI will increase as the system approaches equilibrium．
d）The concentrations of H_{2} and HI will fall as the system moves toward equilibrium．
$Q_{c}=\frac{[H I]^{2}}{\left[\mathrm{H}_{2}\right]\left[I_{2}\right]}$

$=\frac{\left(1.75 \times 10^{-3}\right)^{2}}{\left(1.75 \times 10^{-3}\right)\left(1.75 \times 10^{-3}\right)}$

5．For the following reaction at equilibrium，which choice gives a change that will shift the position of equilibrium to favor formation of more products？
$2 \mathrm{NOBr}(\mathrm{g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}), \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=30 \mathrm{~kJ} / \mathrm{mol} \rightarrow$ en do $54 \mathrm{a} \mathrm{t}-1 /$ of
a）Increase the total pressure by decreasing the volume．\rightarrow dy
b）Add more NO．\longrightarrow ए 国定
c）Remove Br_{2} ， 人
d）Lower the temperature．
X，元

6 - For the following reaction at equilibrium in a reaction vessel, which one of these changes would cause the Br_{2} concentration to decrease?
$2 \mathrm{NOBr}(\mathrm{g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}), \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=30 \mathrm{~kJ} / \mathrm{mol} \rightarrow$ endo
a) Increase the temperature. $\rightarrow \mathrm{G}_{2}{ }_{-}^{20} \mathrm{R}_{3} \mathrm{X}$
b) Remove some NO. $\rightarrow 2 \cos ^{2} x$
c) Add more NOBr $\rightarrow 292$
d) Compress the gas mixture into a smaller volume ${ }^{\circ} y_{0}$
7. For the reaction at equilibrium $2 \mathrm{SO}_{3} \leftrightarrow 2 \mathrm{SO}_{2}+\mathrm{O}_{2}\left(\Delta \mathrm{H}_{\mathrm{rxn}}=198 \mathrm{~kJ} / \mathrm{mol}\right)$, if we increase the reactiontemperature, the equilibrium will ovliés endo?
"ور;
a) shift to the right.
b) shift to the left.
c) not shift.
d) The question cannot be answered because the equilibrium constant is not given.
8. For the equilibrium reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}), \Delta \mathrm{H}_{\mathrm{rxn}}=-198 \mathrm{~kJ} / \mathrm{mol}$. Which one of these factors would cause the equilibrium constant to increase?

位 exo
b) Add SO_{2} gas.
c) Remove O_{2} gas.
d) Add a catalyst.
9. The reaction $2 \mathrm{SO}_{3}(\mathrm{~g}) \quad 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ is endothermic. If the temperature isincreased
a) more SO_{3} will be produced.
b) K_{c} will decrease.

MJJK JI
c) no change will occur in K_{c}.
d) K_{c} will increase.
10.If a catalyst is added to a chemical reaction, the equilibrium yield of a product will be ..., and the time taken to come to equilibrium will bethan before.
a) higher; less
b) lower; the same
c) higher; the same

- j 隹
d) the same; less
gos, is is

11- For the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\mathrm{Kc}=0.0600$ at a certain temperature. In an equilibrium mixture of the three gases, $\left[\mathrm{NH}_{3}\right]=0.242 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=1.03 \mathrm{M}$. What is the concentration of N2 in this system?
a) 3.9 M
b) $3.2 \times 10^{-3} \mathrm{M}$
c) 0.89 M
d) $1.4 \times 10^{-2} \mathrm{M}$

$$
0.0600=\frac{(0.242)^{2}}{N_{2}(1.03)^{3}} \otimes N_{2}=\frac{(0.242)^{2}}{0.0600(1.03)^{3}}
$$

2

$$
N_{2}=0.893 \mathrm{M}
$$

11. Consider the reaction, $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$

If an equilibrium mixture of these three substances is compressed, equilibrium will \qquad because \qquad -
a) shift to the right; higher pressure favors fewer moles of gas
b) shift top the right; higher pressure favors more moles of gas
c) shift to the left; higher pressure favors fewer moles of gas
d) shift to the left; higher pressure favors more moles of gas

$$
\begin{aligned}
& \text { คें } \\
& \text {, (a) Sl (se) }
\end{aligned}
$$

12- Consider the equilibrium system; $\mathrm{C}(\mathrm{s})+\mathrm{CO} 2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$.
If more $\mathrm{C}(\mathrm{s})$ is added, the equilibrium will \qquad ; if CO is removed the equilibrium will \qquad .
a) shift to the left; shift to the left

c) shift to the right; shift to the left $\rightarrow \mathrm{CO}_{2}$

$$
\begin{aligned}
& \text { OVS Lëd Lijj- } \\
& \text { G2り }
\end{aligned}
$$

d) be unchanged; shift to the left
(un)
8. Consider the exothermic reaction at equilibrium: $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$, If the system is cooled, the equilibrium will \qquad , because \qquad .
a) shift to the left; decreased temperature favors an exothermic reaction
b) shift to the fight; decreased temperature favors an exothermic reaction
c) shift to the right; decreased temperature favors an endothermic reaction
d) shift to the left; decreased temperature favors an endothermic reaction
exothermic $\rightarrow \sigma^{-1}$'s

9. A large value of the equilibrium constant indicates that when the reaction reaches equilibrium, mostly \qquad will be present.

$$
K \gg \text { Product }
$$

a) reactants
b) products
c) catalysts
$k<1 \rightarrow$ reactent
d) shrapnel
10. When equilibrium is achieved
a) $Q>K$
b) $Q<K$
c) $Q=K$
d) $\mathrm{Q} 2=\mathrm{K}$

$\sim^{\operatorname{lph} 89, N}$
 U) $\quad \checkmark\left(\mathrm{CO}_{\boldsymbol{\mu}} \mathrm{H}_{-9}\right.$

11. $\mathrm{CO}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$

If all species are gases and H_{2} is added, the amount of CO present at equilibrium will:
a) increase.
b) decrease.
c) remain unchanged.
d) disappear. $0 \mathrm{OR} \mathrm{H}^{-}$
My
12. $\mathrm{CO}_{2}+\mathrm{H}_{2} \leftrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$

If all species are gases and $\mathrm{H}_{2} \mathrm{O}$ is added, the amount of CO present at equilibrium will:
a) increase.
b) decrease.
c) remain unchanged.
d) disappear.

13. $\mathrm{CO}_{2}+\mathrm{H}_{2} \leftrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$

If the reaction is endothermic and the temperature is raised, the amount of CO present will:
a) increase.
b) decrease.
c) remain unchanged.
d) disappear.
14. $\mathrm{CO}_{2}+\mathrm{H}_{2} \leftrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$

If all species are gases and the container is compressed, the amount of CO present will:
a) increase.

b) decrease.
c) remain unchanged. $n=2-2=0$
d) disappear.

$$
G E \text { N (ier, }
$$

d)

$$
\hat{\jmath} t w h o l e r s ~ d s
$$

15. $\mathrm{CO}_{2}+\mathrm{H}_{2} \leftrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$

If all species are gases and the container is compressed, the amount of CO present will:
a) increase.
b) decrease.
c) remain unchanged.
d) disappear.
16. What is K_{P} in terms of K_{c} for the following reaction ? $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \Delta n=2-(1+2)$
a) $\mathrm{Kp}=\mathrm{KcRT}$

$$
=2-3=-1
$$

b) $\mathrm{Kp}=\mathrm{Kc} / \mathrm{RT}$
c) $\mathrm{Kp}=\mathrm{KcR} / \mathrm{T}$
d) $\mathrm{Kp}=\mathrm{Kc} /(\mathrm{RT})^{2}$

$$
\begin{aligned}
& k_{p}=K_{c}(R T)^{s o}
\end{aligned}
$$

$$
\begin{aligned}
& K_{p}=\frac{K_{C}}{R T} \\
& 4
\end{aligned}
$$

$=(1), s c \nu_{j}$ 说
(C) Liosos
17. What is the correct equilibrium constant expression for the reaction:ANS. 3

1. $\left[\mathrm{PCl}_{3}\right]^{4}$
2. $\frac{\left[\mathrm{PCl}_{3}\right]^{4}}{\left[\mathrm{Cl}_{2}\right]^{6}}$
3. $\frac{\left[\mathrm{Cl}_{2}\right]^{6}}{\left[\mathrm{PCl}_{3}\right]^{4}}$
4. $\frac{\left[4 \mathrm{PCl}_{3}\right]^{4}}{\left[\mathrm{P}_{4}\right]\left[6 \mathrm{Cl}_{2}\right]^{6}}$
(3.) $\frac{1}{\left[\mathrm{Cl}_{2}\right]^{6}}$
5. The equation relating Kp and Kc is
a) $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$
b) $K_{p}^{p}=K_{c}^{c} R T^{\Delta n}$
c) $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}} \mathrm{RT}{ }^{\Delta}$
d) ${\underset{c}{c}{ }_{c}^{c}=K_{p}^{p}(R T)^{\Delta n}, ~}_{\text {n }}$

(E.cos ほリ)
6. K_{p} will be equal to K_{c} if
a) $\Delta \mathrm{n}=1$
b) $\Delta \mathrm{n}=0$
c) $\mathrm{RT}=0$
d) $\Delta \mathrm{n}=-1$
7. Consider the reversible reaction at equilibrium at $392{ }^{\circ} \mathrm{C}$:
$2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \rightleftarrows \mathrm{C}(\mathrm{g})$
The partial pressures are found to be: $\mathrm{A}: 6.70 \mathrm{~atm}, \mathrm{~B}: 10.1 \mathrm{~atm}, \mathrm{C}: 3.60 \mathrm{~atm}$. Evaluate K_{p} for this reaction.
a) 7.94×10^{-3}
b) 0.146

$$
\begin{aligned}
& \hbar_{p}=\frac{P C}{P^{2} A P B} \\
& =\frac{3.60}{(6.70)^{2}(10.1)}=7.94 \times 10^{-3}
\end{aligned}
$$

c) 0.0532
d) 54.5
20. Which of the following will result in an equilibrium shift to the right?

$$
\begin{array}{cc}
\mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) & \leftrightarrow \mathrm{PCl}_{5}(g) \quad \mathrm{D} H^{\circ}=-87.9 \mathrm{~kJ} / \mathrm{mol} \\
\times \leftarrow & \times \leftarrow . \\
\text { exo } 5,!\gg
\end{array}
$$

a) Increase temperature/increase volume
b) Increase temperature/decrease volume
c) Decrease temperature/increase volume
d) Decrease temperature/decrease volume

$$
\begin{aligned}
& \rightarrow \mathrm{Cu}^{\mathrm{N}}
\end{aligned}
$$

21. Which accurately reflects the changes in concentration that will occur if O_{2} is added to disturb the equilibrium?

	[NO]	[O_{2}]	[NO]
a)	Increase	Increase	Increase
b)	Increase	Increase	Decrease
c)	Decrease	Decrease	Decrease
d)	Decrease	Increase	Increase

Test bank chapter (15)

$$
\begin{aligned}
& (\pi p) \mid, 1, \rightarrow)< \\
& 2.08 \times 10^{-13}, 0
\end{aligned}
$$

Choose the most correct answer

1-What is the concentration of H^{+}in a 2.5 M HCl solution?
a) 0 ame) Silued bed of
b) 1.3 M
c) 2.5 M
d) 5.0 M

```
[\mp@subsup{\textrm{H}}{}{+}]
```

2. What is the OH^{-}ion concentration in a $5.2 \times 10^{-4} \mathrm{M} \mathrm{HNO}_{3}$ solution?
a) $1.9 \times 10^{-11} \mathrm{M}$
$K_{\omega}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right]$OG जे
b) $1.0 \times 10^{-7} \mathrm{M}$
c) $5.2 \times 10^{-4} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=\frac{1 \times 10^{-14}}{5.2 \times 10^{-4}}=1.9 \times 10^{-1}$
3. Calculate the H^{+}ion concentration in lemon juice having a pH of 2.4.
a) $4.0 \times 10^{-2} \mathrm{M}$
b) 250 M
c) 0.38 M
$\left[\mathrm{H}^{+}\right]=10^{-\mathrm{PH}}$
$\left[\mathrm{H}^{+}\right]=10^{-2.4}$
d) $4.0 \times 10^{-3} \mathrm{M}$

$$
=3.9 \times 10^{-3} \approx 4 \times 10^{-3} M
$$

4. Calculate the pH of a $6.71 \times 10^{-2} \mathrm{M} \mathrm{NaOH}$ solution.

a) 1.00
$\left[\hat{H^{+}}\right]$
b) 1.70
c) 2.30
d) 12.30

$$
P H=-\log \left[H^{+}\right] \Rightarrow P H=-\log (0.0200)=1.699 \simeq 1.70
$$

6. The pOH of a solution of NaOH is 11.30 . What is the $\left[\mathrm{H}^{+}\right]$for this solution?
a) 2.0×10^{-3}
b) 2.5×10^{-3}
c) 5.0×10^{-12}
d) 4.0×10^{-12}
PDI

$$
\begin{aligned}
& \mathrm{POH}+\mathrm{PH}=14 \\
& \mathrm{PH}=14-\mathrm{POH} \\
& \mathrm{PH}=14-11.30=2.7 \quad\left\{\begin{array}{l}
{\left[\mathrm{H}^{+}\right]=10^{-P H}} \\
{\left[\mathrm{H}^{+}\right]=10^{-2.7}}
\end{array}=1.995 \times 10^{-3}\right. \\
& \\
&
\end{aligned} \quad \approx 2 \times 10^{-3}
$$

7. What is the pH of a 0.0400 M aqueous solution of KOH ?

8. What is the approximate pH of a solution labeled $6 \times 10^{-5} \mathrm{M} \mathrm{HBr}$?
a) 4.2
b) 4.5
c) 5.8

$$
\begin{aligned}
& P H=-\log \left[\mathrm{H}^{+}\right] \\
& P H=-\log \left(6 \times 10^{-5}\right)=4.2
\end{aligned}
$$

d) 9.8
9. If the $\mathrm{pH}=2$ for an HNO_{3} solution, what is the concentration of HNO_{3} ?
a) 0.10
$\left[\mathrm{H}^{+}\right]=10^{-P \mathrm{H}}$
$\left.\left[\mathrm{H}^{+}\right] j^{j}-\right]^{7}$
b) 0.20
c) 0.010
d) 0.020
$=10^{-2}=0.01$
10. A solution in which $\left[\mathrm{H}^{+}\right]=10^{-8} \mathrm{M}$ has a pH of 8 and is Dasic
a) 8 , acidic

$$
\mathrm{PH}
$$

b) 6 , basic
c) -6 , basic
$P H=-\log \left[\mathrm{H}^{+}\right] \Rightarrow\left[\mathrm{H}^{+}\right]=10^{-\mathrm{PH}}$
d) 8 , basic

$$
=-\log \left(10^{-8}\right)
$$

1. $=8>7>$ basic
2. Which of the following solutions has the lowestएH at $25^{\circ} \mathrm{C}$? (No calculations required.)
a) $0.2 \mathrm{M} \mathrm{NaOH} \rightarrow \delta, \square^{-}$
b) $0.2 \mathrm{M} \mathrm{NH}_{3} \rightarrow \delta, 56$
c) $0.2 \mathrm{M} \mathrm{HCl} \rightarrow \infty$
d) pure water \rightarrow juleis
056
$\mathrm{PH}>7$

3. Calculate the pH of a $3.5 \times 10^{-3} \mathrm{M} \mathrm{HNO}_{3}$ solution.
a) -2.46
$P H=-\log \left[\mathrm{H}^{+}\right]$
$\begin{array}{ll}\text { c) } 2.46 & \left.=-10^{\circ}\right)\left(3.5 \times 10^{-3}\right) \\ \text { d) } 3.00\end{array}$

$$
=2.46
$$

13. The pH of $2.6 \times 10^{-2} \mathrm{M} \mathrm{KOH}$ is
a) $12.41 \overline{\left[\mathrm{OH}^{-}\right] \text {ज्2s0 }} \quad \mathrm{P}$
b) 15.59
d) 7.00
$P_{\text {OH }}=-\log \left(2.6 \times 10^{-2}\right)$
$\left\{\begin{array}{l}h \omega=\left[\mathrm{H}^{+}\right][\mathrm{OH} \\ {\left[\mathrm{H}^{+}\right]=\frac{k \omega}{\left[0 \mathrm{H}^{-}\right]}}\end{array}\right.$

$2 .=\frac{1 \times 10^{-14}}{2.6 \times 10^{-2}}=3.846 \times 10^{-13}$
$\mathrm{PH}+\mathrm{POH}=14$
$\mathrm{PH}=14-1.59=12.41$

$$
\begin{aligned}
\mathrm{PH} & =-\log \left[H^{+}\right] \\
\mathrm{PH} & =-\log \left(3.846 \times 10^{-13}\right) \\
& =12.41
\end{aligned}
$$

Test bank chapters (24 \& 25)

Choose the most correct answer

1. $\mathrm{C}_{10} \mathrm{H}_{22}$ is the formula of an
a) alkane.
b) alkene.
c) alkyne
d) aromatic hydrocarbon.
$\mathrm{CnH}_{2 n+2}$
$\mathrm{C}_{0} \mathrm{H}_{2(10)+2}$
$C_{10} H_{22}$ UL
2. A molecule with the formula $\mathrm{C}_{3} \mathrm{H}_{8}$ is a
a) hexane
b) propane
c) decane
d) butane
3. Which compound below does not have geometric isomers (cis-trans isomers)?

b) 2-butene plywar
c) 2-pentene
d) 3-hexene
4. The hybridization of carbon atoms in alkanes is

a) sp
b) sp^{2}
c) sp^{3}

a) 1,1,3-trimethylpentane
b) 1-ethyl-1,3-dimethylbutane
ingo
c) 2,4-dimethylhexane 2,4-dimethyldexane
d) 3,5-dimethylhexane

6 - An alkane with seven carbon atoms in a linear configuration is called a
a) hexene
b) heptene
c) hepylane
d) heptane
7. Which type of functional group does not include a carbonyl group in its structure?
a) carboxylic acid $\rightarrow{ }_{C}^{C}$ COU
b) ether $R-O R$
ec) $\begin{aligned} & \text { ketone } \\ & \text { d) aldehyde } \rightarrow \text { ह }-~ \\ & H\end{aligned}$
8. Vanillin is used as a flavoring agent. Identify the functional group circled.
a) aldehyde
b) ketone
c) carboxylic acid
d) Alcohol

The formula $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ represents:
a) an alcohol
b) an alkene
c) an alkyne
d) an unsaturated hydrocarbon
10. Which of the following is a ketone?
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
a) R^{1} (il) R
b) $\mathrm{CH}_{3}^{3} \mathrm{CH}_{2}^{2} \mathrm{CHO}$
b) $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{C}-\mathrm{H}<(\infty) \mid$
c) $\mathrm{CH}_{3}^{3} \mathrm{OCH}_{3}^{2}$
c) $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3} \leftarrow \hat{\sim} 1$
d) $\mathrm{CH}_{3}^{3} \mathrm{CH}+3 \mathrm{COOH}_{2}^{3}$
d) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-{ }^{\text {N }} \mathrm{C}-\mathrm{OH} \in \mathrm{J}_{2} 5$
11. The general formula for alkenes is
a) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
$\mathrm{ChH}_{2 n}$
b) $\mathrm{C}_{2 \mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
c) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}+2}$
d) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$

12- Which of these molecules is unsaturated?
colsos, single polos oie at jis
a) $\mathrm{C}_{3} \mathrm{H}_{2}(3)+2 \Rightarrow \mathrm{C}_{3} \mathrm{H}_{8}$ ज.
a) $\mathrm{C}_{3} \mathrm{H}_{8} \quad$ (general)i shmol)
b) $\mathrm{CH}_{3} \mathrm{OH}$ formula
b) $\mathrm{H}-\mathrm{C}_{\mathrm{H}}^{\mathrm{OH}}$ (H
c) $\mathrm{C}_{5} \mathrm{H}_{40}$
d) $\mathrm{CH}_{4} \rightarrow \mathrm{CO}$
c) $\mathrm{C}_{5} \mathrm{H}_{2(5)+2}^{\mathrm{H}} \underset{\substack{\mathrm{C}_{5} \mathrm{H}_{12}}}{ } \times \mathrm{C}_{5} \mathrm{H}_{20}\left(\underset{5}{ } \rightarrow \mathrm{C}_{10}\right.$
8. Which of these species is an aromatic compound?
a) $\mathrm{C}_{2} \mathrm{H}_{2}$
b) $\mathrm{C}_{6} \mathrm{H}_{12}$
c) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}_{2}$
d) $\mathrm{C}_{5} \mathrm{H}_{10}$

$$
\begin{aligned}
& \text { Cujoalt me } \varphi,
\end{aligned}
$$

$$
\begin{aligned}
& \mu^{2} \text { Lisumudojos }
\end{aligned}
$$

9. Which of these species are structural isomers of $\mathrm{C}_{6} \mathrm{H}_{14}$?
 I. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{4}$

I. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
II. $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
$\stackrel{1}{\mathrm{CH}_{2} \mathrm{CH}_{3}} 7 \mathrm{CX} \quad \stackrel{1}{\mathrm{CH}_{2}-\mathrm{CH}_{3} \& C}$
III. $\begin{gathered}\mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}-\mathrm{CH}_{3} \\ \vdots \\ \mathrm{H}_{3} \mathrm{C} \stackrel{+}{\mathrm{CH}_{3}} \quad 7 \mathrm{C} \times x\end{gathered}$
IV. $\mathrm{CH}_{3}-\mathrm{CH}_{2} \quad \mathrm{CH}_{3}$ $\stackrel{\mathrm{C}}{\mathrm{CH}_{2}-\mathrm{CH}_{2}-\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{H}_{2}} 6 \mathrm{C}$
a) I and II
b) I and III
c) II and III
d) II and IV
10. The compound that has a triple bond between one pair of carbon atoms is called
a) an alkane.
b) a chlorofluorocarbon.
c) an alkyne)
d) an alkene.
11. The correct structure for 2,3,3-trimethylpentane is
A.

B.

c.

D.

12. Which one of these structures represents an ester functional group?
A.

C.

D.

13. The functional group (RCOR) is characteristic of organic \qquad
a) ketones
b) acids
c) aldehydes
d) esters
$R-C^{i}-R$
cigus
14. Which of the following hydrocarbons does not have isomers?
a) $\mathrm{C}_{7} \mathrm{H}_{16}$
b) $\mathrm{C}_{6} \mathrm{H}_{14}$
c) $\mathrm{C}_{5} \mathrm{H}_{10}$

$$
\begin{aligned}
& d(\omega), d \text { us, } 0, \text {, y } \\
& \text { Jéspleq Div }
\end{aligned}
$$

d) $\mathrm{C}_{3} \mathrm{H}_{8}$
15. Which of the following does NOT) exhibit geometric isomerism? (Hint: draw them!)

16. For which of the compounds below are cis-trans isomers possible?
(d) M is

$\mathrm{H}_{3} \mathrm{CH}=$
$\times(1)$
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$
(2)
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$
a) only 2
b) both 1 and 2
c) both 2 and 3
d) all three

yes

17. Select the correct IUPAC name for

$\mathrm{CH}_{3} \mathrm{CH}_{3}$
 $\underset{6}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}_{4}^{2} \mathrm{HCH}_{3} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{HCH}_{3}}$

a) 1,1,3-trimethylpentane
b) 1-ethyl-1,3-dimethylbutane

2,4 - dimethylhexane
c) 2,4-dimethylhexane
d) 3,5-dimethylhexane
18. A protein is:
a) polymer of amino acids
b) a fatty acid ester of glycerol
c) a polysaccharide
d) an addition polymer
19. A peptide bond (also called an amide bond) joins two amino acids together. What atoms are linked by this bond?
a) $\mathrm{C}-\mathrm{O}$
b) $\mathrm{C}-\mathrm{H}$
c) $\mathrm{C}-\mathrm{N}$
d) $\mathrm{N}-\mathrm{S}$

20.An amind acid is a compound that contains at least
a) one amino group and one amide group.
b) two amino groups and one carboxylic acid group.
c) one hydroxyl group and one methyl group.
d) one carboxylic acid group and one amino group

21. The functional group
 (a, al) ásúnápıl)
a) amide.
b) carboxylic acid.
c) amine.
d) amino acid.

22. Which one of these choices is the general structural formula of an amino acid?

A. $\stackrel{\mathrm{R}-\mathrm{CH}_{2}-\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{NH}_{2}}{ }$
B. $\mathrm{R}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
C. $\mathrm{R}-\mathrm{CH}-\mathrm{OH}$
NH_{2}
D. $\mathrm{R}-\mathrm{CH}-\mathrm{NH}_{2}$
$\stackrel{\mathrm{COOH}}{\mathrm{C}}$

Test bank chapter (1)

Choose the correct answer

1. The SI unit of time is the
a) hour
b) second
c) minute
d) ampere
2. The diameter of an atom is approximately $1 \times 10^{-7} \mathrm{~mm}$. What is this diameter when expressed in nanometers?
a) $1 \times 10^{-18} \mathrm{~nm}$
b) $1 \times 10^{-15} \mathrm{~nm}$
c) $1 \times 10^{-9} \mathrm{~nm}$
d) $1 \times 10^{-1} \mathrm{~nm}$
3. $\quad 6.0 \mathrm{~km}$ is how many micrometers?
a) $6.0 \times 10^{6} \mu \mathrm{~m}$
b) $1.7 \times 10^{-7} \mu \mathrm{~m}$
c) $6.0 \times 10^{9} \mu \mathrm{~m}$
d) $1.7 \times 10^{-4} \mu \mathrm{~m}$
4. The SI prefixes giga and micro represent, respectively:
a) 10^{-9} and 10^{-6}.
b) 10^{6} and 10^{-3}.
c) 10^{3} and 10^{-3}.
d) 10^{9} and 10^{-6}.
5. Which of these quantities represents the largest mass?
a) $2.0 \times 10^{2} \mathrm{mg}$
b) 0.0010 kg
c) $1.0 \times 10^{5} \mu \mathrm{~g}$
d) $2.0 \times 10^{2} \mathrm{cg}$
6. How many cubic centimeters are there in exactly one cubic meter?
a) $1 \times 10^{-6} \mathrm{~cm}^{3}$
b) $1 \times 10^{-3} \mathrm{~cm}^{3}$
c) $1 \times 10^{-2} \mathrm{~cm}^{3}$
d) $1 \times 10^{6} \mathrm{~cm}^{3}$
7. Ammonia boils at $-33.4^{\circ} \mathrm{C}$. What temperature is this in ${ }^{\circ} \mathrm{F}$?
a) $-60.1^{\circ} \mathrm{F}$
b) $-92.1^{\circ} \mathrm{F}$
c) $-28.1^{\circ} \mathrm{F}$
d) $+13.5^{\circ} \mathrm{F}$
8. Which of the following is not an SI base unit?
a) Kilometer
b) Kilogram
c) Second
d) Kelvin
9. Which of the following SI base units is not commonly used in chemistry?
a) kilogram
b) kelvin
c) candela
d) mole
10. Which of the following prefixes means $1 / 1000$?
a) kilo
b) deci
c) centi
d) milli
11. Which of the following prefixes means 1000 ?
a) kilo
b) deci
c) centi
d) milli
12. Convert $-77^{\circ} \mathrm{F}$ to kalvin?
a) 212.6 K
b) -212.6 K
c) -28.1 K
d) +13.5 K
13. The number 0.0005678 expressed in scientific notation is:
a) 5.678×10^{4}
b) 5.67×10^{-7}
c) 5.678×10^{-4}
d) 5.67810^{-3}

Explanation: Since this number is less than one star moving the decimal point to the right until there is ONE nonzero number to the left of the decimal point. Write the rest of the number as is. Write the exponent as the number of places the decimal point was moved.
14. Which of the following is the smallest distance?
a) 21 m
b) $2.1 \times 10^{2} \mathrm{~cm}$
c) 21 mm
d) $2.1 \times 10^{4} \mathrm{pm}$

Explanation: Even though 2.1×10^{4} is the largest number in this question, the units of pm (picometers) are the smallest units here, making it the smallest distance.
15. What temperature is $95^{\circ} \mathrm{F}$ when converted to degrees Celsius?
a) $63{ }^{\circ} \mathrm{C}$
b) $35^{\circ} \mathrm{C}$
c) $127^{\circ} \mathrm{C}$
d) $15{ }^{\circ} \mathrm{C}$
16. What temperature is $37^{\circ} \mathrm{C}$ when converted to kelvin?
a) 310.15
b) 99 k
c) 236 k
d) 67.15
17. What temperature is 77 K when converted to degrees Celsius?
a) $-296^{\circ} \mathrm{C}$
b) $105^{\circ} \mathrm{C}$
c) $-196^{\circ} \mathrm{C}$
d) $25^{\circ} \mathrm{C}$
18. Express 75 Tg as pg
a) 0.75 pg
b) $75 \times 10^{24} \mathrm{pg}$
c) 0.75 pg
d) $75 \times 10^{-24} \mathrm{pg}$
19. The SI prefixes Tara and nano represent, respectively:
a) 10 and 10 .
b) 10 and 10 .
c) 10 and 10
d) 10^{12} and 10
20. Which of these quantities represents the smallest mass?
a) $2.0 \times 10^{2} \mathrm{mg}$
b) 0.0010 kg
c) $1 \times 10^{5} \mu \mathrm{~g}$
d) $2.0 \times 10^{2} \mathrm{cg}$
21. Express 7.5 ng as Tg
a) $7.5 \times 10{ }^{-21} \mathrm{Tg}$
b) $75 \mathrm{X10} \mathrm{Tg}$
c) 0.75 Tg
d) $7.5 \times 10 \mathrm{Tg}$
22. At what temperature does the numerical reading on a Fahrenheit thermometer equal that on a Celsius thermometer?
a) $0{ }^{\circ} \mathrm{F}$
b) $-40^{\circ} \mathrm{F}$
c) $100^{\circ} \mathrm{F}$
d) $-32^{\circ} \mathrm{F}$

Explanation: since the temperature reading is the same so that mean ${ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C}$

$$
\begin{gathered}
? \mathrm{~F}=\left[{ }^{\circ} \mathrm{C} \times 9 / 5\right]+32{ }^{\circ} \mathrm{F} \\
\text { Let temperature }=\mathrm{t} \\
\mathrm{t}=[\mathrm{t} \times 9 / 5]+32{ }^{\circ} \mathrm{F} \\
\mathrm{t}-9 / 5 \mathrm{t}=32{ }^{\circ} \mathrm{F} \\
-4 / 5 \mathrm{t}=32{ }^{\circ} \mathrm{F} \\
\mathrm{t}=-40^{\circ} \mathrm{F}=-40^{\circ} \mathrm{C}
\end{gathered}
$$

Test bank chapter (2)

Choose the correct answer

NOTE: A periodic table is required to work many of the problems in this chapter.

1. Which of these elements is most likely to be a good conductor of electricity?
a) N
b) S
c) He
d) Fe
2. An atom of the isotope sulfur- 31 consists of how many protons, neutrons, and electrons? ($\mathrm{p}=$ proton, $\mathrm{n}=$ neutron, $\mathrm{e}=$ electron $)$
a) $15 \mathrm{p}, 16 \mathrm{n}, 15 \mathrm{e}$
b) $16 \mathrm{p}, 15 \mathrm{n}, 16 \mathrm{e}$
c) $16 \mathrm{p}, 31 \mathrm{n}, 16 \mathrm{e}$
d) $32 \mathrm{p}, 31 \mathrm{n}, 32 \mathrm{e}$
3. A magnesium ion, Mg^{2+}, has
a) 12 protons and 13 electrons.
b) 24 protons and 26 electrons.
c) 12 protons and 10 electrons.
d) 24 protons and 22 electrons.
4. Which of these pairs of elements would be most likely to form an ionic compound?
a) P and Br
b) Cu and K
c) C and O
d) O and Zn
5. The elements in a column of the periodic table are known as
a) metalloids.
b) a period.
c) noble gases.
d) a group.

2
6. Which is the correct formula for copper (II) phosphate?
a) $\mathrm{Cu}_{2} \mathrm{PO}_{4}$
b) $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
c) $\mathrm{Cu}_{2} \mathrm{PO}_{3}$
d) $\mathrm{Cu}\left(\mathrm{PO}_{4}\right)_{2}$
7. The correct name for $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is
a) ammonium nitrate.
b) ammonium nitrogen trioxide.
c) ammonia nitrogen oxide.
d) hydrogen nitrogen oxide.
8. What is the formula for the ionic compound formed by calcium ions and nitrate ions?
a) $\mathrm{Ca}_{3} \mathrm{~N}_{2}$
b) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
c) $\mathrm{Ca}_{2} \mathrm{NO}_{3}$
d) $\mathrm{Ca}_{2} \mathrm{NO}_{2}$
9. The Stock system name for $\mathrm{Mn}_{2} \mathrm{O}_{7}$ is
a) dimanganese heptaoxide.
b) magnesium oxide.
c) manganese(VII) oxide.
d) manganese(II) oxide.
10. Which of these elements is chemically similar to oxygen?
a) sulfur
b) calcium
c) iron
d) nickel
11. The formula of stannic oxide is SnO_{2}. The valence of Sn is:
a) +1
b) +2
c) +3
d) +4

Explanation: To know the charge on Sn atom, make this simple calculation remember that the charge on oxygen atom is -2 , let X is the charge on Sn atom
$\mathrm{X}+(-2($ charge on O$) \times 2$ (number of O atoms) $=0$ (equal zero because the compound is neutral)
X $-4=0$ >>>>>> $x=+4$
12. Which pair of atoms constitutes a pair of isotopes of the same element?

(a). ${ }_{6}^{14} \mathrm{X}$	${ }_{7}^{14} \mathrm{X}$
(b). ${ }_{6}^{14} \mathrm{X}$	${ }_{6}^{12} \mathrm{X}$
(c). ${ }_{9}^{17} \mathrm{X}$	${ }_{8}^{17} \mathrm{X}$
(d). ${ }_{10}^{19} \mathrm{X}$	${ }_{9}^{19} \mathrm{X}$

Explanation: Isotopes of an element are atoms of the same element with same number of protons but different number of neutrons. Only choice (b) has 2 atoms of X with 6 protons and 8 and 6 neutrons respectively.
13. Elements in Group 8A are known as the \qquad .
a) chalcogens
b) alkali metals
c) noble gases
d) alkaline earth metals
14. \qquad typically forms ions with $a+2$ charge.
a) Transition metals
b) Halogens
c) Alkaline earth metals
d) Alkali metals

Explanation: The alkaline earth metals are in group 2A of the periodic table and lose 2 electrons to form cations with 2 positive charges.
15. An anion is defined as
a) a charged atom or group of atoms with a net negative charge.
b) a stable atom.
c) a group of stable atoms.
d) an atom or group of atoms with a net positive charge.
16. A cation is defined as
a) a charged atom or group of atoms with a net negative charge.
b) a stable atom.
c) a group of stable atoms.
d) an atom or group of atoms with a net positive charge.
17. Atoms of the same element with different mass numbers (or number of neutrones) are called
a) ions.
b) neutrons.
c) chemical families.
d) isotopes.
18. How many neutrons are there in an atom of lead ${ }_{82} \mathrm{~Pb}$ whose mass number is 208 ?
a) 82
b) $\mathbf{1 2 6}$
c) 208
d) 290
19. An atom of the isotope ${ }^{16} \mathrm{~S}-31$ consists of how many protons, neutrons, and electrons?
a) $15 \mathrm{p}, 16 \mathrm{n}, 15 \mathrm{e}$
b) $16 \mathrm{p}, 15 \mathrm{n}, 16 \mathrm{e}$
c) $16 \mathrm{p}, 31 \mathrm{n}, 16 \mathrm{e}$
d) $32 \mathrm{p}, 31 \mathrm{n}, 32 \mathrm{e}$
20. A magnesium ion, ${ }_{20} \mathrm{Ca}^{2+}$, has
a) 20 protons and 22 electrons.
b) 20 protons and 20 electrons.
c) 20 protons and 18 electrons.
d) 22 protons and 20 electrons.
21. A sulfide ion, ${ }_{16} \mathrm{~S}^{2-}$, has:
a) 16 protons and 16 electrons
b) 32 protons and 16 electrons
c) 16 protons and 14 electrons
d) $\mathbf{1 6}$ protons and 18 electrons
22. Which of these pairs of elements would be most likely to form a molecular compound?
a) Na and Br
b) Ca and O
c) C and O
d) Zn and O
23. What is the formula for the ionic compound formed by calcium ions and nitrate ions?
a) $\mathrm{Ca}_{3} \mathrm{~N}_{2}$
b) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
c) $\mathrm{Ca} \mathrm{NO}_{2}{ }_{3}$
d) $\mathrm{Ca}_{2} \mathrm{NO}_{2}$
24. Which is the correct formula for copper(II) phosphate?
a) $\mathrm{Cu}_{2} \mathrm{PO}_{4}$
b) $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
c) Cu PO 4
d) $\mathrm{Cu}\left(\mathrm{PO}_{4}\right)_{2}$
25. The correct name for $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is
a) ammonium nitrate.
b) ammonium nitrogen trioxide.
c) ammonia nitrogen oxide.
d) hydrogen nitrogen oxide.
26. The correct name for PCl_{5} is
a) monophosphate pentachloride
b) phosphorus chloride
c) monophosphate tetrachloride
d) Phosphorus pentachloride
27. Which of the following expressions represents two molecules of water?
a) $\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{H}_{2} \mathrm{O}_{2}$
c) $\mathbf{2} \mathbf{H}_{2} \mathrm{O}$
d) $2 \mathrm{HO}_{2}$
28. The empirical formula of a compound with molecules containing 12 carbon atoms, 14 hydrogen atoms, and 6 oxygen atoms is \qquad .
a) $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6}$
b) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
c) $\mathrm{CH}_{2} \mathrm{O}$
d) $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{3}$

Explanation: The empirical formula is always the simplest possible whole number ratio between the atoms of the molecules.
29. The charge on the manganese in the salt MnF_{3} is \qquad .
a) +1
a) -1
c) +3
d) -2

Explanation: Since every F has one negative charge, the Mn can have only 3 positive charges.
30. Magnesium reacts with a certain element to form a compound with the general formula MgX . What would the most likely formula be for the compound formed between potassium and element X ?
a) KX
b) $\mathrm{K}_{2} \mathrm{X}_{2}$
c) $\mathrm{K}_{2} \mathrm{X}_{3}$
d) None of the above

Explanation: In the compound MgX, X must have 2 negative charges since Mg will always have 2 positive charges. The element K will always form an ion with 1 positive charge and hence the only combination of K and X could be $K_{2} X$, which is not one of the options.
31. Barium forms an ion with a charge of \qquad .
a) +1
b) -2
c) +3
d) None of the above.

Explanation: Barium is in group 2A of the periodic table and forms ions with only 2 positive charges.
31. Aluminum forms an ion with a charge of \qquad .
a) +2
b) -3
c) +3
d) +1
32. Iodine forms an ion with a charge of \qquad .
a) -7
b) +1
c) -1
d) +2
33. The chemical symbol for the ion with 11 protons and 10 electrons.
a) Na
b) F^{-}
c) Ne
d) Na^{+}

7
34. Which of these compounds is a binary compound?
a) NaCl
b) MgSO_{4}
c) NaOH
d) HCN
35. Atoms with the same number of electrons and number of protons are called...
a) ions
b) isotopes
c) neutral atoms
d) different atoms
36. Atoms which have different number of electrons are called...
a) ions
b) isotopes
c) neutral atoms
d) different atoms
37. Use the following table and choose which of the species are positively charged?

Atom or ion element	I	II	III	IV	V	VI
Atom or ion electrons (e)	6	10	18	10	28	7
Atom or ion protons (p)	6	8	17	11	30	7
Atom or ion neutrons (n)	6	8	18	11	36	6

A. III and V
C. II and III
B. IV and V
D. I and VI
38. Which isotope has 45 neutrons?
(a). ${ }_{36}^{80} \mathrm{Kr}$
(b). ${ }_{34}^{78} \mathrm{Se}$
(c). ${ }_{35}^{80} \mathrm{Br}$
(d). ${ }_{17}^{34} \mathrm{Cl}$
39. In the periodic table, the elements are arranged in \qquad .
a) alphabetical order
b) order of increasing atomic number
c) order of increasing metallic properties
d) order of increasing neutron content
40. An element in the upper right corner of the periodic table is \qquad .
a) either a metal or metalloid
b) a metal
c) a non-metal
d) either a metalloid or a non-metal
41. An element that appears in the lower left corner of a periodic table is \qquad .
a) either a metal or metalloid
b) a metal
c) either a metalloid or a non-metal
d) a non-metal
42. A molecular formula always indicates \qquad .
a) how many of each atom are in a molecule
b) the simplest whole-number ratio of different atoms in a compound
c) which atoms are attached to which in a molecule
d) the isotope of each element in a compound
e)
43. An empirical formula always indicates \qquad .
a) which atoms are attached to which in a molecule
b) how many of each atom are in a molecule
c) the simplest whole-number ratio of different atoms in a compound
d) the geometry of a molecule
44. There are \qquad protons, \qquad neutrons, and \qquad electrons in ${ }^{131} \mathrm{I}^{-}$
. a) 131,53 , and 54
b) 131,53 and 52
c) $\mathbf{5 3}, \mathbf{7 8}$, and 54
d) 53,131 , and 52
45. Which species has 48 electrons?
(a). ${ }_{50}^{118} \mathbf{S n}^{\mathbf{+ 2}}$
(b). ${ }_{50}^{116} \mathrm{Sn}^{+4}$
(c). ${ }_{48}^{112} \mathrm{Cd}^{+2}$
(d). ${ }_{31}^{68} \mathrm{Ga}$

Test bank chapter (3)

Choose the correct answer

1. What is the mass, in grams, of one copper atom?
a) $1.055 \times 10^{-22} \mathrm{~g}$
b) $\quad 63.55 \mathrm{~g}$
c) 20 g
d) $1.66 \times 10^{-24} \mathrm{~g}$
2. Determine the number of moles of aluminum in 96.7 g of Al ?
a) 0.279 mol
b) $\quad 3.58 \mathrm{~mol}$
c) 7.43 mol
d) 4.21 mol
3. Which of the following samples contains the greatest number of atoms?
a) 100 g of Pb
b) 2.0 mole of Ar
c) 0.1 mole of Fe
d) 5 g of He
4. How many molecules are there in 0.11 g of formaldehyde $\left(\mathrm{CH}_{2} \mathrm{O}\right)$?
a) $\quad 6.1 \times 10^{-27}$
b) 3.7×10^{-3}
c) 4×10^{22}
d) 2.2×10^{21}
5. How many sulfur atoms are present in 25.6 g of $\mathrm{Al}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{3}$?
a) 0.393
b) 6×10^{-5}
c) 3.95×10^{22}
d) 2.37×10^{23}
6. The percent composition by mass of a compound is $76.0 \% \mathrm{C}, 12.8 \% \mathrm{H}$, and $11.2 \% \mathrm{O}$. The molar mass of this compound is $284.5 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of the compound?
a) $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}$
b) $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$
c) $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4}$
d) $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}$
7. What is the coefficient of $\mathrm{H}_{2} \mathrm{O}$ when the following equation is properly balanced with the smallest set of whole numbers?
\qquad
a) 3
b) 4
c) 6
d) 12
8. When 22.0 g NaCl and $21.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ are mixed and react according to the equation below, which is the limiting reagent?

$$
2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}
$$

a) $\mathrm{H}_{2} \mathrm{SO}_{4}$
b) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
c) HCl
d) NaCl
9. What are the coefficients, when the following equation is balanced?

$$
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a) $1,1,1,1$
b) $2,3,2,3$
c) $4,7,4,6$
d) $1,3,1,2$
10. How many moles of carbon atoms are in 4 moles of dimethyl sulfoxide $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}\right)$?
a) 2
b) 6
c) 8
d) 4

Explanation: This is based on reading the formula and correctly extracting information from it. The formula $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}$ indicates that every mole of this compound has 2 moles of carbon atoms in it. Thus 4 moles of the compound would have $4 \times 2=8$ moles of C atoms.
11. How many sulfur atoms are in 25 molecules of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$?
a) 20
b) 4.8×10^{25}
c) 3.0×10^{23}
d) 50

Explanation: The molecular formula indicates that every molecule of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$ has 2 sulfur atoms per molecule and hence 25 molecules of this compound will have $25 \times 2=50$ atoms of sulfur.
12. Calculate hydrogen atoms in 25 molecules of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$.
a) 25
b) 3.8×10^{24}
c) 6.0×10^{25}
d) 100

Explanation: The formula of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$ indicates that there are 4 hydrogen atoms per molecule and hence 100 hydrogen atoms in 25 molecules of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$.
13. How many grams of oxygen are in 65.0 g of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$?
a) 18
b) 29
c) 9.5
d) 35.8

Explanation: This question uses the mole to mole ratio between oxygen and $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$ and needs the following steps.

$$
\frac{65.0 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}}{58.0 \mathrm{~g} \cdot \mathrm{~mol}^{-1}} \times \frac{2 \text { moles } \mathrm{O}}{1 \mathrm{~mole} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}} \times \frac{15.99 \mathrm{~g} \mathrm{O}}{1 \text { mole of O }}=35.8 \mathrm{~g} \text { of O }
$$

14. How many moles of carbon dioxide are there in 52.06 g of carbon dioxide?
a) 0.8452
b) 1.183
c) 1.183×10^{23}
d) 8.648×10^{2}

Explanation: This is a straight-forward conversion from grams to moles of CO_{2} which is done as follows:

$$
52.06 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mole} \mathrm{CO}_{2}}{43.99 \mathrm{~g} \mathrm{CO}_{2}}=1.183 \text { moles of } \mathrm{CO}_{2}
$$

15. How many moles of magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$, are in a 2.35 g of this compound?
a) 38.4
b) 65.8
c) 0.0158
d) 0.0261

Explanation: This is a straight-forward conversion from grams to moles of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ which is done as follows:

$$
2.35 \mathrm{~g} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{1 \mathrm{~mole} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}{148.3148 \mathrm{~g}}=0.0158 \mathrm{moles}
$$

16. How many moles of ammonium ions are there in 25.5 g of ammonium carbonate?
a) 0.468
b) 0.288
c) 0.531
d) 2.00

Explanation: Realize that the formula for ammonium carbonate is $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ and calculate the molar mass ($96.0856 \mathrm{~g} / \mathrm{mol}$). Convert grams to moles and then using the stoichiometric ratio find the \# of moles of ammonium ions.

$$
25.5 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{96.0856 \mathrm{~g}} \times \frac{2 \mathrm{moles} \mathrm{NH}}{4}+\frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{10.531 \mathrm{moles}}
$$

17. Magnesium and nitrogen react in a combination reaction to produce magnesium nitride:

$$
\mathbf{3 M g}+\mathbf{N}_{2} \rightarrow \mathbf{M g}_{3} \mathbf{N}_{2}
$$

In a particular experiment, 5.47 g sample of N_{2} reacts completely. How many grams of Mg are needed for this reaction?
a) 14.2 g
b) 24.1 g
c) 16.1 g
d) 0.92 g

Explanation: Ensure that the equation is balanced. The grams of N_{2} must be converted to moles of N_{2} and then using the stoichiometric ratio between the Mg and N_{2}, the grams of Mg can be calculated.

$$
5.47 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mole}_{2}}{28.0134 \mathrm{~g}} \times \frac{3 \text { mole } \mathrm{Mg}}{1 \mathrm{~mole}_{2}} \times \frac{24.3050 \mathrm{~g} \mathrm{Mg}^{1 \mathrm{~mole} \mathrm{Mg}}}{1 \mathrm{Mg}}=14.2 \mathrm{~g} \mathrm{Mg}
$$

18. What information would you need to calculate the average atomic mass of an element?
a) The number of neutrons in the element.
b) The atomic number of the element.
c) The mass and abundance of each isotope of the element.
d) The position in the periodic table of the element.
19. The atomic masses of ${ }^{35} \mathrm{Cl}(75.53 \%)$ and ${ }^{37} \mathrm{Cl}(24.47 \%)$ are 34.968 amu and 36.956 amu , respectively. Calculate the average atomic mass of chlorine.
a) $\quad 35.96 \mathrm{amu}$
b) 35.45 amu
c) 36.47 amu
d) 71.92 amu
20. How many atoms are there in 5.10 moles of sulfur $\left({ }_{16} \mathrm{~S}=32 \mathrm{amu}\right)$?
a) 3.07×10^{24}
b) 9.59×10^{22}
c) 6.02×10^{23}
d) 9.82×10^{25}
21. Iodine has two isotopes ${ }^{126} \mathrm{I}$ and ${ }^{127} \mathrm{I}$, with the equal abundance. Calculate the average atomic mass of Iodine (${ }_{53} \mathrm{I}$).
a) 126.5 amu
b) 35.45 amu
c) 1.265 amu
d) 71.92 amu
22. The atomic masses of ${ }^{6} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}$ are 6.0151 amu and 7.0160 amu , respectively. Calculate the natural abundance of these two isotopes. The average atomic mass of Lithium $(\mathrm{Li}=6.941 \mathrm{amu})$.
a) ${ }^{6} \mathrm{Li}=7.49 \%,{ }^{7} \mathrm{Li}=92.51 \%$
b) ${ }^{7} \mathrm{Li}=7.49 \%,{ }^{6} \mathrm{Li}=92.51 \%$
c) ${ }^{6} \mathrm{Li}=8.49 \%,{ }^{7} \mathrm{Li}=95.51 \%$
d) ${ }^{7} \mathrm{Li}=7.22 \%,{ }^{6} \mathrm{Li}=82.51 \%$
23. How many atoms are present in 3.14 g of copper (Cu) ?
a) 2.98×10^{22}
b) 1.92×10^{23}
c) 1.89×10^{24}
d) $\quad 6.02 \times 10^{23}$
24. How many moles of NO_{2} can be produced by the reaction of 0.886 mole of NO with 0.503 mole of O_{2} according to the following chemical equation? (Note: First determine which is the limiting reagent).

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

a) 0.886 mol
b) 0.503 mol
c) $\quad 1.01 \mathrm{~mol}$
d) $\quad 1.77 \mathrm{~mol}$
25. How many kilograms of NH_{3} are needed to produce $1.00 \times 10^{5} \mathrm{~kg}$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ according to the following chemical equation?

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

a) $1.70 \times 10^{4} \mathrm{~kg}$
b) $3.22 \times 10^{3} \mathrm{~kg}$
c) $2.58 \times 10^{4} \mathrm{~kg}$
d) $7.42 \times 10^{4} \mathrm{~kg}$
26. When 3.60 moles of CO mixed with excess oxygen gas and CO_{2} is formed. Calculate no. of moles of CO_{2} produced.

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})
$$

a) $\quad 7.20 \mathrm{~mol}$
b) $\quad 44.0 \mathrm{~mol}$
c) 3.60 mol
d) $\quad 1.80 \mathrm{~mol}$
27. How many grams of $\mathrm{N}_{2} \mathrm{O}$ are formed if 0.46 mole of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is used in the following chemical reaction?

$$
\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathbf{H}_{2} \mathrm{O}
$$

a) 2.0 g
b) $3.7 \times 10^{1} \mathrm{~g}$
c) $2.0 \times 10^{1} \mathrm{~g}$
d) $4.6 \times 10^{-1} \mathrm{~g}$
28. What is the theoretical yield of chromium that can be produced by the reaction of $40.0 \mathrm{~g} \mathrm{of} \mathrm{Cr}_{2} \mathrm{O}_{3}$ with 8.00 g of aluminum according to the chemical equation below?

$$
2 \mathrm{Al}+\mathrm{Cr}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr}
$$

a) 7.7 g
b) $\quad 15.4 \mathrm{~g}$
c) 27.3 g
d) 30.8 g
29. What is the percent yield of HF that can be produced by the reaction of 6.00 kg of CaF_{2} with an excess of $\mathrm{H}_{2} \mathrm{SO}_{4}$ which yield 2.86 kg of HF according to the following chemical equation?

$$
\mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{HF}
$$

a) 93.0%
b) 95.3%
c) 47.6%
d) 62.5%
30. Hydrochloric acid can be prepared by the following reaction:

$$
2 \mathrm{NaCl}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})
$$

How many grams of HCl can be prepared from 2.00 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 150 g of NaCl ?
a) $\quad 7.30 \mathrm{~g}$
b) 93.5 g
c) 146 g
d) 150 g
31. Calculate the molar mass of $\mathrm{Li}_{2} \mathrm{CO}_{3}$.
a) $\quad 73.89 \mathrm{~g}$
b) $\quad 66.95 \mathrm{~g}$
c) 41.89 g
d) $\quad 96.02 \mathrm{~g}$
32. How many molecules of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ are present in 0.334 g of $\mathrm{C}_{2} \mathrm{H}_{6}$?
a) 2.01×10^{23}
b) 6.69×10^{21}
c) 4.96×10^{22}
d) 8.89×10^{20}
33. Out of these, which is the richest source of nitrogen on a mass percentage basis?
a) Urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
b) Ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$
c) Guanidine, $\mathrm{HNC}\left(\mathrm{NH}_{2}\right)_{2}$
d) Ammonia, NH_{3}
34. An analysis of Allicin (molar mass $\approx 162 \mathrm{~g} / \mathrm{mol}$) gives $\mathrm{C}: 44.4$ percent; $\mathrm{H}: 6.21$ percent; $\mathrm{S}: 39.5$ percent; O: 9.86 percent. What is its molecular formula?
a) $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~S}_{4} \mathrm{O}_{2}$
b) $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{SO}$
c) $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~S}_{2} \mathrm{O}$
d) $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~S}_{2} \mathrm{O}_{2}$
a) 2.13 mol
b) 0.456 mol
c) 0.154 mol
d) 0.308 mol
36. How many grams of sulfur (S) are needed to react completely with 246 g of mercury (Hg) to form HgS ?
a) 39.3 g
b) 24.6 g
c) $9.66 \times 10^{3} \mathrm{~g}$
d) 201 g
37. What is the mass of F (fluoride) in 24.6 g of Tin (II) fluoride $\left(\mathrm{SnF}_{2}\right)$?
a) 18.6 g
b) 24.3 g
c) 5.97 g
d) 75.7 g
38. What is the empirical formula of the compound with the following composition? 2.1 percent H , 65.3 percent O ,
32.6 percent S .
a) $\mathrm{H}_{2} \mathrm{SO}_{4}$
b) $\mathrm{H}_{2} \mathrm{SO}_{3}$
c) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
d) HSO_{3}
39. Which of the following equations is balanced?
a) $2 \mathrm{C}+\mathrm{O}_{2} \quad \rightarrow \quad \mathrm{CO}$
b) $2 \mathrm{CO}+\mathrm{O}_{2} \quad \rightarrow \quad 2 \mathrm{CO}_{2}$
c) $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow \mathrm{HBr}$
d) $2 \mathrm{~K}+\mathrm{H}_{2} \mathrm{O} \quad \rightarrow \quad 2 \mathrm{KOH}+\mathrm{H}_{2}$

Test bank chapter (4)

Choose the correct answer

1. A 50.0 mL sample of $0.436 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$ is diluted with water to a total volume of 250.0 mL . What is the ammonium nitrate concentration in the resulting solution?
a) 21.8 M
b) 0.459 M
c) $2.18 \times 10^{-2} \mathrm{M}$
d) $8.72 \times 10^{-2} \mathrm{M}$
2. How many milliliters would you need to prepare 60.0 mL of $0.200 M \mathrm{HNO}_{3}$ from a stock solution of $4.00 M \mathrm{HNO}_{3}$?
a) 3 mL
b) 240 mL
c) 24 mL
d) 1000 mL
3. What is the concentration (M) of $\mathrm{CH}_{3} \mathrm{OH}$ in a solution prepared by dissolving 11.7 g of $\mathrm{CH}_{3} \mathrm{OH}$ in sufficient water to give exactly 230 mL of solution?
a) 11.7
b) 2.30×10^{-2}
c) 0.0841
d) 1.59

Explanation: Need to convert the grams of CH 3 OH to moles and then find the molarity of the solution by using the molarity formula. Do not forget to convert the ml to L .

$$
11.7 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH} \times \frac{1 \mathrm{~mole} \mathrm{CH}_{3} \mathrm{OH}}{32.042 \mathrm{~g}} \times \frac{1}{0.230 \mathrm{~L}}=1.59 \mathrm{M}
$$

4. How many grams of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are in 35.1 mL of a 2.75 M solution of $\mathrm{H}_{3} \mathrm{PO}_{4}$?
a) 0.61
b) 9.46
c) 20
d) 4.9

Explanation: Need to convert the ml of $\mathrm{H}_{3} \mathrm{PO}_{4}$ to liters and then find the \# of moles of phosphoric acid. The moles of phosphoric acid can then be converted to grams of phosphoric acid.

$$
35.1 \mathrm{ml} \times \frac{1 \mathrm{~L}}{1000 \mathrm{ml}} \times 2.75 \mathrm{M} \times \frac{97.99 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}}{1 \mathrm{~mole}}=9.46 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}
$$

reaction

 in aqueous solution5. What is the concentration (M) of a $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution prepared by dissolving 5.35 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in sufficient water to give 330 mL of solution?
a) 1.14×10^{2}
b) 0.016
c) 61.7
d) 0.114

Explanation: Convert grams of $\mathrm{Na}_{2} \mathrm{SO} 4$ to moles of $\mathrm{Na} 2 \mathrm{SO} 4, \mathrm{ml}$ of water to liters of water and then find the molarity of the solution by using the molarity formula.

$$
5.35 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4} \times \frac{1 \mathrm{~mole} \mathrm{Na}_{2} \mathrm{SO}_{4}}{142.035 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}} \times \frac{1}{0.330 \mathrm{~L}}=0.114 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}
$$

6. How many grams of LiOH are there in 750.0 mL of a 0.0158 M LiOH
solution?
a) 2.11×10^{-5}
b) 11.3
c) 0.284
d) 3.50

Explanation: Calculate the number of moles of LiOH present in this solution using the molarity formula and the convert the number of moles to grams of LiOH .

$$
7.50 \times 10^{-1} \mathrm{~L} \times 0.0158 \mathrm{M} \times \frac{23.948 \mathrm{~g}}{1 \text { mole } \mathrm{LiOH}}=0.284 \mathrm{~g} \mathrm{LiOH}
$$

7. A 50.0 mL sample of $0.436 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$ is diluted with water to a total volume of 250.0 mL . What is the ammonium nitrate concentration in the resulting
solution?
a) 21.8 M
b) 0.459 M
c) $2.18 \times 10^{-2} \mathrm{M}$
d) $8.72 \times 10^{-2} \mathrm{M}$
8. A 3.682 g sample of potassium chlorate KClO_{3} is dissolved in enough water to give 375 mL of solution. What is the chlorate ion concentration in this solution?
a) 3.00 M
b) $4.41 \times 10^{-2} \mathrm{M}$
c) 0.118 M
d) $8.01 \times 10^{-2} \mathrm{M}$

Gases

Test bank chapter (5)

Choose the most correct answer

1. A sample of oxygen occupies 47.2 liters under a pressure of 1240 torr at $25^{\circ} \mathrm{C}$. What volume would it occupy at $25^{\circ} \mathrm{C}$ if the pressure were decreased to 730 torr?
a) 27.8 L
b) 29.3 L
c) 32.3 L
d) 80.2 L
2. Under conditions of fixed temperature and amount of gas, Boyle's law requires that
I. $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
II. $\mathrm{PV}=$ constant
III. $\mathrm{P}_{1} / \mathrm{P}_{2}=\mathrm{V}_{2} / \mathrm{V}_{1}$
a) I only
b) II only
c) III only
d) I, II, and III
3. The volume of a sample of nitrogen is 6.00 liters at $35^{\circ} \mathrm{C}$ and 740 torr. What volume will it occupy at STP?
a) 6.59 L
b) 5.46 L
c) 6.95 L
d) $\mathbf{5 . 1 8} \mathbf{L}$
4. The density of chlorine gas at STP, in grams per liter, is approximately:
a) 6.2
b) 3.2
c) 3.9
d) 4.5

Explanation: $\mathrm{d}=$ molar mass $\times \mathrm{p} / \mathrm{RT}=70 \times 1 / 0.082 \times 273=3.17 \mathrm{~g} / \mathrm{L}$
5. What pressure (in atm) would be exerted by 76 g of fluorine gas in a 1.50 liter vessel at $-37^{\circ} \mathrm{C}$?
a) 26 atm
b) 4.1 atm
c) $19,600 \mathrm{~atm}$
d) 84 atm
6. What is the density of ammonia gas at 2.00 atm pressure and a temperature of $25.0^{\circ} \mathrm{C}$?
a) $0.720 \mathrm{~g} / \mathrm{L}$
b) $0.980 \mathrm{~g} / \mathrm{L}$
c) $1.39 \mathrm{~g} / \mathrm{L}$
d) $16.6 \mathrm{~g} / \mathrm{L}$
7. Convert 2.0 atm to mmHg
a) 150 mmHg
b) 0.27 mmHg
c) 150 mmHg
d) $\mathbf{1 5 2 0} \mathbf{~ m m H g}$

Gases

8. A container with volume 71.9 mL contains water vapor at a pressure of 10.4 atm and a temperature of $465^{\circ} \mathrm{C}$. How many grams of the gas are in the container?
a) 0.421 g
b) 0.222 g
c) 0.183 g
d) 0.129 g

Explanation: $\mathrm{n}=\mathrm{PV} / \mathrm{RT}=0.0719 \times 10.4=0.0821 \times(465+273)=0.012$ mole

$$
\text { Mass }=\mathbf{n} \times \mathbf{m o l a r} \mathbf{m a s s}=0.012 \times 18=0.222 \mathrm{~g}
$$

9. What is the molar mass of a pure gaseous compound having a density of $4.95 \mathrm{~g} / \mathrm{L}$ at $-35^{\circ} \mathrm{C}$ and 1020 torr?
a) $24 \mathrm{~g} / \mathrm{mole}$
b) $11 \mathrm{~g} / \mathrm{mole}$
c) $72 \mathrm{~g} / \mathrm{mole}$
d) $120 \mathrm{~g} / \mathrm{mole}$
10. A 0.580 g sample of a compound containing only carbon and hydrogen contains 0.480 g of carbon and 0.100 g of hydrogen. At STP, 33.6 mL of the gas has a mass of 0.087 g . What is the molecular (true) formula for the compound?
a) CH_{3}
b) $\mathrm{C}_{2} \mathrm{H}_{6}$
c) $\mathrm{C}_{2} \mathrm{H}_{5}$
d) $\mathrm{C}_{4} \mathrm{H}_{10}$
11. Gas occupy 6 L at $37^{\circ} \mathrm{C}$ what will be its volume when its temperature is doubled?
a) 12 L
b) 6 L
c) 3.2 L
d) 2 L
12. A mixture of 90.0 grams of CH_{4} and 10.0 grams of argon has a pressure of 250 torr under conditions of constant temperature and volume. The partial pressure of CH_{4} in torr is:
(a) 143
(b) 100
(c) 10.7
(d) 239

Explanation: from Dalton law $\ggg \mathrm{P}_{\mathrm{CH} 4}=\mathrm{X}_{\mathrm{CH} 4} \mathrm{P}_{\text {total }}, \mathrm{n}_{\mathrm{CH} 4}=90 / 16=5.625$ mole, $\mathrm{n}_{\mathrm{Ar}}=10 / 39.95=$ 0.250 mole $\mathrm{X}_{\mathrm{CH} 4}=\mathrm{n}_{\mathrm{CH} 4} / \mathrm{n}_{\mathrm{CH} 4}+\mathrm{n}_{\mathrm{Ar}}=5.625 / 5.625+0.250=0.96 \ggg>\mathrm{P}_{\mathrm{CH} 4}=0.96 \times 250=239.3$ torr
13. What pressure (in atm) would be exerted by a mixture of 1.4 g of nitrogen gas and 4.8 g of oxygen gas in a 200 mL container at $57^{\circ} \mathrm{C}$?
a) 4.7
b) 34
c) 47
d) 27

Explanation: $\mathrm{P}=\mathrm{n}_{\text {total }} \mathrm{RT} / \mathrm{V}, \mathrm{n}_{\mathrm{N} 2}=1.4 / 2 \times 14=0.05$ mole , $\mathrm{n}_{\mathrm{O} 2}=4.8 / 2 \times 16=0.15$ mole

$$
\mathrm{P}=(0.05+0.15) 0.0821 \times(57+273) / 0.2=27 \mathrm{~atm}
$$

Gases

14. A sample of hydrogen gas collected by displacement of water occupied 30.0 mL at $24^{\circ} \mathrm{C}$ and pressure 736 torr. What volume would the hydrogen occupy if it were dry and at STP? The vapor pressure of water at $24.0^{\circ} \mathrm{C}$ is 22.4 torr.
a) 32.4 mL
b) 21.6 mL
c) 36.8 mL
d) 25.9 mL

Explanation: from Dalton law $\ggg \mathrm{P}_{\mathrm{H} 2}=\mathrm{P}_{\text {total }}-\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}, \mathrm{P}_{\mathrm{H} 2}=736-22.4=713.6$ torr
$\mathrm{n}=\mathrm{PV} / \mathrm{RT} \ggg \gg \mathrm{n}=(713.6 / 760) \times 0.03 / 0.0821 \times(24+273)=0.00115 \mathrm{mle}$
at $\mathrm{STP} \ggg \gg \mathrm{V}=\mathrm{nRT} / \mathrm{P}=0.00115 \times 0.0821 \times 273 / 1=0.026 \mathrm{~L} \times 1000=25.89 \mathrm{~mL}$
15. Ammonia burns in oxygen gas to form nitric oxide (NO) and water vapor. How many volumes of NO are obtained from one volume of ammonia at the same temperature and pressure?

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a) One
b) Two
c) Three
d) Four
16. The pressure of 6.0 L of an ideal gas in a flexible container is decreased to one-third of its original value, and its absolute temperature is decreased by one-half. What is the final volume of the gas?
a) 9.0 L
b) 6.0 L
c) 4.0 L
d) 1 L

Explanation: let $V_{1}=6 \& V_{2}=?, T_{1}=T \& T_{2}=1 / 2 T, P_{1}=P \& P_{2}=1 / 3 P$
From combined gas law $\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}} / \mathbf{T}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}} / \mathbf{T}_{\mathbf{2}} \ggg \gg \frac{\mathrm{P} \times 6}{\mathrm{~T}}=\frac{\left(\frac{1}{3}\right) \mathrm{P} \times \mathrm{V} 2}{\underset{2}{(-1) \mathrm{T}}} \ggg \mathrm{V} 2=\underset{\mathrm{T} \times 2 \times \mathrm{P}}{\mathrm{P} \times 6 \times \mathrm{T} \times 3}$
17. Gas A is at $30^{\circ} \mathrm{C}$ and gas B is at $20^{\circ} \mathrm{C}$. Both gases are at latmosphere. What is the ratio of the volume of 1 mole gas A to 1 mole of gas B
a) $606: 303$
b) $3: 2$
c) $2: 3$
d) $303: 293$

Explanation:

18. The sample of argon occupies 50L at standard temperature. Assuming constant pressure, what volume with the gas occupy if the temperature is doubled.
a) 25 L
b) 50 L
c) 100 L
d) 100 mL

Gases

19. What total gas volume (in liters) at $520^{\circ} \mathrm{C}$ and 880 torr would result from the decomposition of 33 g of potassium bicarbonate according to the equation:

$$
2 \mathrm{KHCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

(a) 56 L
(b) 37 L
(c) 10 L
(d) 19 L
20. Calculate the weight of KClO_{3} that would be required to produce 29.5 L of oxygen measured at $127^{\circ} \mathrm{C}$ and 760 torr.

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

(a) 73.5 g
(b) 12.2 g
(c) 14.6 g
(d) 24.4 g
21. The ideal gas law predicts that the molar volume (volume of one mole) of gas equals:
(a) $\mathrm{mRT} / \mathrm{PV}$
(b) $(\mathrm{MM}) \mathrm{P} / \mathrm{RT}$
(c) $1 / 2 \mathrm{~ms}^{-2}$
(d) RT / P
22. For a gas, which pair of variables are inversely proportional to each other (if all other conditions remain constant)?
a) P, V
b) V, T
c) n, V
d) n, P
23. Convert 562 mmHg to atm
a) 0.739 atm
b) $4.27 \times 10^{5} \mathrm{~atm}$
c) 1.05 atm
d) 0.562 atm
24. What is the volume of one mole of an ideal gas at STP?
a) 24.5 L
b) 22.4 L
c) 1.0 L
d) 10.0 L
25. What are standard temperature and pressure (STP)?
a) $0{ }^{\circ} \mathrm{C}, 1$ torr
b) $25^{\circ} \mathrm{C}, 1$ torr
c) $0^{\circ} \mathrm{C}, 1 \mathrm{~atm}$
d) $25^{\circ} \mathrm{C}, 1 \mathrm{~atm}$
26. What is the unit of mole fraction
a) mol
b) mol^{-1}
c) unitless
d) mol^{2}

Gases

27. Refer to Dalton's law of partial pressures explain what mole fraction is
a) The number of moles of one component
b) The ratio of the number of moles of one component to the number of moles of all components present.
c) The number of moles of one component divided by 100
d) The ratio of the number of moles of all components present to the number of moles of one component.
28. Write the ideal gas equation. Give the units for each term in the equation
a) $P V=n R T$; P in torr, V in L, n in mol, R in Latm $/ \mathrm{Kmol}, T$ in ${ }^{\circ} \mathrm{C}$.
b) $\quad P V=n R T$; P in torr, V in L, n in mol, R in Latm $/ \mathrm{Kmol}, T$ in K .
c) (c) $P V=n R T$; P in atm, V in L, n in mol, R in Latm $/ \mathrm{Kmol}, T$ in K.
d) $P V=n R T ; P$ in atm, V in L, n in mol, R in Latm $/ \mathrm{Kmol}, T$ in ${ }^{\circ} \mathrm{C}$.
29. What is the difference between a gas and a vapor?
a) A gas is a substance normally in the gaseous state at normal atmospheric conditions (25C, $1 \mathbf{a t m}$); a vapor is the gaseous form of any substance that is a liquid or a solid at normal temperatures and pressures.
b) A gas is the gaseous form of any substance; a vapor refers to a gas over a water surface.
c) A gas is a substance normally in the gaseous state at normal atmospheric conditions (25C, 1 atm); a vapor is a gas over a water surface.
d) A gas and a vapor are two interchangeable nomenclatures; they are identical.
30. What volume is occupied by 19.6 g of methane $(\mathrm{CH} 4)$ at $27^{\circ} \mathrm{C}$ and 1.59 atm ?
a) 1.71 L
b) 18.9 L
c) 27.7 L
d) 302 L
31. A 4.37 gram sample of a certain diatomic gas occupies a volume of 3.00 L at 1.00 atm and a temperature of $45^{\circ} \mathrm{C}$.

Identify this gas.
a) F_{2}
b) N_{2}
c) H_{2}
d) O_{2}

Explanation: $\mathrm{MM}=\mathrm{mRT} / \mathrm{PV} \ggg>\mathrm{MM}=4.37 \times 0.0821 \times(45+273) / 1 \times 3=37.77 / 2=18.88 \mathrm{~g} / \mathrm{mole} \sim \mathrm{F}_{2}$
32. A sample of hydrogen gas was collected over water at $21^{\circ} \mathrm{C}$ and 685 mmHg . The volume of the container was 7.80 L . Calculate the mass of $\mathrm{H}_{2}(\mathrm{~g})$ collected. (Vapor pressure of water $=18.6 \mathrm{mmHg}$ at $21^{\circ} \mathrm{C}$.)
a) 0.283 g
b) 0.571 g
c) 0.589 g
d) 7.14 g
33. Which of the following is/are characteristic(s) of gases?
a) High compressibility
b) Relatively large distances between molecules
c) Formation of homogeneous mixtures regardless of the nature of gases
d) High compressibility, relatively large distances between molecules AND formation of homogeneous mixtures regardless of the nature of gases

Gases

34. A small bubble rises from the bottom of a lake, where the temperature and pressure are $4^{\circ} \mathrm{C}$ and 3.0 atm , to the water's surface, where the temperature is $25^{\circ} \mathrm{C}$ and the pressure is 0.95 atm . Calculate the final volume of the bubble if its initial volume was 2.1 mL .
a) 0.72 mL
b) 6.2 mL
c) 41.4 mL
d) 7.1 mL
35. Calculate the mass, in grams, of 2.74 L of CO gas measured at $33^{\circ} \mathrm{C}$ and 945 mmHg .
a) 0.263 g
b) 2.46 g
c) 3.80 g
d) 35.2 g
36. Which of the following gases will have the greatest density at the same specified temperature and pressure?
a) H_{2}
b) CClF_{3}
c) CO_{2}
d) $\mathrm{C}_{2} \mathrm{H}_{6}$
37. Determine the molar mass of chloroform gas if a sample weighing 0.389 g is collected in a flask with a volume of $102 \mathrm{~cm}^{3}$ at $97^{\circ} \mathrm{C}$. The pressure of the chloroform is 728 mmHg .
a) $187 \mathrm{~g} / \mathrm{mol}$
b) $121 \mathrm{~g} / \mathrm{mol}$
c) $112 \mathrm{~g} / \mathrm{mol}$
d) $31.6 \mathrm{~g} / \mathrm{mol}$
38. What is the molar mass of Freon-11 gas if its density is $6.13 \mathrm{~g} / \mathrm{L}$ at STP?
a) $0.274 \mathrm{~g} / \mathrm{mol}$
b) $3.64 \mathrm{~g} / \mathrm{mol}$
c) $78.2 \mathrm{~g} / \mathrm{mol}$
d) $137 \mathrm{~g} / \mathrm{mol}$
39. A mixture of three gases has a total pressure of $1,380 \mathrm{mmHg}$ at 298 K . The mixture is analyzed and is found to contain $1.27 \mathrm{~mol} \mathrm{CO}_{2}, 3.04 \mathrm{~mol} \mathrm{CO}$, and 1.50 mol Ar . What is the partial pressure of Ar ?
a) 0.258 atm
b) 301 mmHg
c) 356 mmHg
d) $5,345 \mathrm{mmHg}$

Gases

41.A sample of hydrogen gas was collected over water at $21^{\circ} \mathrm{C}$ and 685 mmHg . The volume of the container was 7.80 L . Calculate the mass of $\mathrm{H}_{2}(\mathrm{~g})$ collected. (Vapor pressure of water $=18.6$ mmHg at $21^{\circ} \mathrm{C}$.)
a) 0.283 g
b) 0.572 g
c) 0.589 g
d) 7.14 g
42. A 0.271 g sample of an unknown vapor occupies 294 mL at $140^{\circ} \mathrm{C}$ and 847 mmHg . The empirical formula of the compound is CH_{2}. What is the molecular formula of the compound?
a) CH_{2}
b) $\mathrm{C}_{2} \mathrm{H}_{4}$
c) $\mathrm{C}_{3} \mathrm{H}_{6}$
d) $\mathrm{C}_{4} \mathrm{H}_{8}$
43. How many liters of chlorine gas at $25^{\circ} \mathrm{C}$ and 0.950 atm can be produced by the reaction of 12.0 g of $\mathrm{MnO}_{2} ? \mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MnCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g})$
a) $5.36 \times 10^{-3} \mathrm{~L}$
b) 0.138 L
c) 0.282 L
d) 3.55 L

Test bank chapter (7)

Choose the most correct answer

1. The lowest energy state of an atom is referred to as its
a) bottom state.
b) ground state.
c) fundamental state.
d) original state.
2. All s orbitals are
a) shaped like four-leaf clovers.
b) dumbbell-shaped.
c) spherical.
d) triangular.
3. $[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$ is the electron configuration of which element?
a) Beryllium Be
b) Boron B
c) carbon C
d) nitrogen N
4. What are the valence electrons of vanadium (V)?
a) $4 s^{2}$
b) $3 \mathrm{~d}^{3}$
c) $4 s^{2} 3 d^{3}$
d) $3 d^{5}$
5. What are the valence electrons of gallium Ga ?
a) $4 \mathrm{~s}^{2}$
b) $3 d^{3}$
c) $4 s^{2} 4 p^{1}$
d) $3 d^{5}$
6. The electron configuration of a neutral atom is $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{1}$. The four quantum numbers of the last electron are:
a) $(2,1,-1,+1 / 2)$
b) $(3,3,-1,+1 / 2)$
c) $(3,0,-1,+1 / 2)$
d) $(3,1,-1,+1 / 2)$
7. How many unpaired electrons does chromium (Cr) have?
a) 0
b) 2
c) 4
d) 6
8. How many unpaired electrons does selenium (Se) have?
a) 0
b) 2
c) 4
d) 6
9. What is the maximum number of orbitals described by the quantum numbers: $n=3 \quad l=2$
a) 1
b) 3
c) 5
d) 9
10. What is the maximum number of orbitals described by the quantum numbers: $n=4$
a) 7
b) 14
c) 16
d) 48
11.The maximum number of electrons that can occupy an energy level described by the principal quantum number, n, is
a) $n+1$
b) $2 n$
c) $2 n^{2}$
d) n^{2}
11. A possible set of quantum numbers for the last electron added to complete an atom of sodium Na in its ground state is
a) $n=3, l=1, m_{l}=0, m_{s}=1 / 2$
b) $n=3, l=0, m_{l}=0, m_{s}=1 / 2$
c) $n=2, l=1, m_{l}=-1, m_{s}=1 / 2$
d) $n=2, l=0, m_{l}=-1, m_{s}=1 / 2$
12. The ground-state electron configuration of a calcium Ca atom is
a) $[\mathrm{Ne}] 3 \mathrm{~s}^{2}$
b) $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$
c) $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{1}$
d) $[\mathrm{Ar}] 4 \mathrm{~s}^{2}$
13. Which one of the following sets of quantum numbers is not possible?

	n	l	$\mathrm{~m}_{l}$	$\mathrm{~m}_{\mathrm{s}}$
Row 1	4	3	-2	$+1 / 2$
Row 2	3	2	-3	$-1 / 2$
Row 3	3	0	0	$+1 / 2$
Row 4	4	1	1	$-1 / 2$
Row 5	2	0	0	$+1 / 2$

a) Row 1
b) Row 2
c) Row 3
d) Row 4
15. The number of orbitals in a d subshell is
a) 1
b) 3
c) 5
d) 7
16. Which ground-state atom has an electron configuration described by the following orbital diagram?

a) phosphorus
b) germanium
c) selenium
d) tellurium
17. A ground-state atom of nickel has \qquad unpaired electrons and is \qquad .
a) 0 , diamagnetic
b) 6 , diamagnetic
c) 3, paramagnetic
d) 2, paramagnetic
18. What is the frequency $\left(\mathrm{s}^{-1}\right)$ of electromagnetic radiation that has a wavelength of 0.53 m ?
a) 5.7×10^{8}
b) 1.8×10^{-9}
c) 1.6×10^{8}
d) 1.3×10^{-33}

Explanation: The frequency and wavelength of electromagnetic radiation are related by the equation $\mathrm{c}=\lambda \nu$, where c is the speed of light $\left(=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$, λ is the wavelength in m and v is the frequency is s^{-1} or Hz . The frequency can be calculated by rearranging the above formula to get $v=\mathrm{c} / \lambda=3 \times 10^{8} / 0.53=5.7 \times 10^{8} \mathrm{~s}^{-1}$
19. The energy of a photon of light is \qquad proportional to its frequency and \qquad proportional to its wavelength.
a) directly, directly
b) inversely, inversely
c) inversely, directly
d) directly, inversely
20. The wavelength of a photon of energy $5.25 \times 10^{-19} \mathrm{~J}$ is \qquad m.
a) 2.64×10^{6}
b) 3.79×10^{-7}
c) 2.38×10^{23}
d) 4.21×10^{-24}

Explanation: The wavelength and energy are related by the formula $\mathrm{E}=\mathrm{hc} / \lambda$, where $\mathrm{h}\left(6.626 \times 10^{-34} \mathrm{Js}\right)$ is Planck's constant, c is the speed of light ($3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$) and λ is the wavelength in meters. The wavelength can then be calculated by rearranging the above formula as follows: $\lambda=\mathrm{hc} / \mathrm{E}=6.63 \times 10^{-34} \times 3 \times 10^{8} / 5.25 \times 10^{-19}=3.79 \times 10^{-7} \mathrm{~m}$
21. What is the frequency $\left(\mathrm{s}^{-1}\right)$ of a photon of energy $4.38 \times 10^{-18} \mathrm{~J}$?
a) 438
b) 1.45×10^{-16}
c) 6.61×10^{15}
d) 2.30×10^{7}

Explanation: The frequency v of this photon can be calculated by rearranging the equation $\mathrm{E}=\mathrm{h} v$ where E is the energy, $\mathrm{h}=$ Planck's constant and $v=$ frequency in $\mathrm{s}^{-1} . v=\mathrm{E} / \mathrm{h}=4.38 \times 10^{-18} / 6.63 \times 10^{-34}=6.61 \times 10^{15}$
22. An electron is a Bohr hydrogen atom has energy of $-1.362 \times 10^{-19} \mathrm{~J}$. The value of n for this electron is \qquad .
a) 1
b) 2
c) 3
d) 4

Explanation: The energy of an electron in a particular energy state in the hydrogen atom can be calculated by using the formula $E=-R_{H} / n^{2}=\left(-2.18 \times 10^{-18} \mathrm{~J}\right) / \mathrm{n}^{2}$, where n is the principal quantum number for the energy state. The value of n can be found by rearranging the above formula as follows:

$$
n=\sqrt{\frac{-2.18 \times 10^{-18} \mathrm{~J}}{-1.362 \times 10^{-19} \mathrm{~J}}}=4
$$

19. The $\mathrm{n}=2$ to $\mathrm{n}=6$ transition in the Bohr hydrogen atom corresponds to the \qquad of a photon with a wavelength of \qquad nm.
a) emission, 411
b) absorption, 411
c) absorption, 657
d) emission, 389

Explanation: There are 2 parts to this question. Since the electron is moving from a smaller value of $n\left(n_{i}\right)$ to a larger value of $\mathrm{n}\left(\mathrm{n}_{\mathrm{f}}\right)$, it must be absorbing energy. The wavelength responsible for this transition can be calculated by using the formula: $E=R_{H}\left(1 / n_{i}^{2}-1 / n_{f}^{2}\right) \& E=h c / \lambda, R_{H}$ is $($ Rydberg constant $)=2.18 \times 10^{-18} \mathrm{~J}$
20. How many quantum numbers are necessary to designate a particular electron in an atom \qquad ?
a) 3
b) 4
c) 2
d) 1
21. The \qquad quantum number defines the shape of an orbital.
a) spin
b) magnetic
c) principal
d) angular
22. There are \qquad orbitals in the third shell
a) 25
b) 4
c) 9
d) 16

Explanation: The number of orbitals in a shell is easily calculated by the formula $\#$ of orbitals $=n^{2}$ where $n=$ principal quantum number, which is 3 in this case.
23. The angular quantum number is 2 in \qquad orbitals.
a) s
b) p
c) d
d) f
24. The $\mathrm{n}=1$ shell contains \qquad p orbitals. All the other shells contain \qquad p orbitals.
a) 3,6
b) $\mathbf{0 , 3}$
c) 6,2
d) 3,3

Explanation: If $\mathrm{n}=1$, then the only possible value of ℓ is 0 which means that $\mathrm{n}=1$ can contain only s orbitals. When $\mathrm{n}>$ 1 , the value of $\ell=1$ is possible making the existence of 3 p orbitals possible.
25. The principal quantum number of the first d subshell is \qquad .
a) 1
b) 2
c) 3
d) 4
26. The total number of orbitals in a shell is given by \qquad .
a) L^{2}
b) \mathbf{n}^{2}
c) 2 n
d) $2 \mathrm{n}+1$
28. Each p-subshell can accommodate a maximum of \qquad electrons.
a) 6
b) 2
c) 10
d) 3

Explanation: There are 3 different p orbitals: p_{x}, p_{y} and p_{z}. Each of these can contain 2 electrons leading to the maximum number of electrons as 6 .
29. Each p-subshell can accommodate a maximum of \qquad electrons.
a) 6
b) 2
c) 10
d) 3

Explanation: There are 3 different p orbitals: p_{x}, p_{y} and p_{z}. Each of these can contain 2 electrons leading to the maximum number of electrons as 6 .
30. The $3 p$ subshell in the ground state of atomic xenon contains \qquad electrons.
a) 2
b) 6
c) 36
d) 10

Explanation: Since Xe is a noble gas, its subshells will be completely filled regardless of their principal quantum number. Thus, the 3 p subshell will contain 6 electrons.
31. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{3}$ is the electron configuration of $a(n)$ \qquad atom.
a) As
b) V
c) P
d) Sb

Explanation: The easiest way to answer this question is to count the total number of electrons and find which element that number corresponds to. The total number of electrons is $=18$ (for the Ar) $+2+10+3=33$ which corresponds to As.
32. The principal quantum number for the outermost electrons in a Br atom in the ground state is \qquad _.
a) 2
b) 3
c) 4
d) 5

Explanation: The electronic configuration of bromine is $[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{5}$ shows that the outermost electrons are in the s and p orbitals in the $4^{\text {th }}$ energy level making the principal quantum number $=4$.
33. All of the \qquad have a valence shell electron configuration $n s^{1}$.
a) noble gases
b) halogens
c) chalcogens
d) alkali metals
34. Which one of the following is correct?
a) $v+\lambda=c$
b) $\quad v / \lambda=c$
c) $\lambda=\mathrm{c} v$
d) $\quad v \lambda=c$
35. In the Bohr model of the atom, \qquad .
a) electrons travel in circular paths called orbitals
b) electrons can have any energy
c) electron energies are quantized
d) electron paths are controlled by probability
36. Which one of the following is not a valid value for the magnetic quantum number of an electron in a 5 d subshell?
a) 2
b) 3
c) 0
d) 1

Explanation: For an electron in the 5 d subshell the value of $\ell=2$ and the magnetic quantum number m_{ℓ} can have values from $-1, \ldots 0, \ldots+1$, meaning $m \ell$ could not have a value $=3$.
37. Which of the subshells below do not exist due to the constraints upon the angular quantum number?
a) 2 s
b) 2 d
c) $2 p$
d) none of the above

Explanation: The values of the azimuthal quantum number " l " are decided by the values of the principal quantum number " n ". The values of 1 will only be from $0 \ldots n-1$. Thus, for $n=2$, only the values of 0 and 1 will be possible for ℓ, which means that only the 2 s and 2 p orbitals will be possible.
38. An electron cannot have the quantum numbers $\mathrm{n}=$ \qquad , $\ell=$ \qquad , $\mathrm{m}_{\ell}=$ \qquad .
a) $2,0,0$
b) $2,1,-1$
c) $3,1,-1$
d) $1,1,1$

Explanation: The values of $1,1,1$ would be impossible since if $\mathrm{n}=1$, the only value of ℓ would be $=0$.
39. Which quantum number determines the energy of an electron in a hydrogen atom?
a) n
b) n and ℓ
c) m_{ℓ}
d) ℓ
39. Which electron configuration represents a violation of the Pauli exclusion principle?
(a).

(b).

(c).

Explanation: According to the Pauli Exclusion Principle no two electrons in an atom cannot have the same 4 quantum numbers. The 2 electrons in the 2 s orbital have the same value for their m_{s} which is not allowed. (d)
40. Which of the following is a valid set of four quantum numbers? $\left(\mathrm{n}, \ell, \mathrm{m}_{\ell}, \mathrm{m}_{\mathrm{s}}\right)$
a) $2,0,0,+1 / 2$
b) $2,2,1,-1 / 2$
c) $1,0,1,+1 / 2$
d) $2,1,+2,+1 / 2$

Explanation: Here is why only option (a) is the correct answer: In option (b), $\ell=2$ which is not allowed, in (c) $\mathrm{m} \ell \neq 1$ since $\mathrm{l}=0$ and in (d) $\mathrm{m} \ell>1$ which are all not allowed.
41. Which of the following is not a valid set of four quantum numbers? $\left(\mathrm{n}, \ell, \mathrm{m}_{\ell}, \mathrm{m}_{\mathrm{s}}\right)$
a) $2,0,0,+1 / 2$
b) $2,1,0,-1 / 2$
c) $1,1,0,+1 / 2$
d) $1,0,0,+1 / 2$

Explanation: Since n can never be equal to ℓ, option c is the only set that is not valid

Test bank chapter (8)

Choose the correct answer

1. Elements in the modern version of the periodic table are arranged in order of increasing \qquad .
a) oxidation number
b) atomic mass
c) average atomic mass
d) atomic number

Explanation: The older version of the periodic table had the elements arranged in order of increasing atomic mass, but the modern version of the periodic table is based on the increasing order of atomic number.
2. The first ionization energies of the elements \qquad as you go from left to right across a period of the periodic table, and \qquad as you go from the bottom to the top of a group in the table.
a) increase, increase
b) increase, decrease
c) decrease, increase
d) decrease, decrease

Explanation: The ionization energies (IE s) of elements increase to the right in a row since larger amounts of energy need to be supplied to remove an electron. The elements become more non-metallic making it harder to remove an electron.
3. The \qquad have the most negative electron affinities
a) alkaline earth metals
b) alkali metals
c) halogens
d) transition metals

Explanation: The electron affinity of an element is defined as the energy change that occurs when an electron is added to a gaseous atom. The halogens have the most negative electron affinities indicating that they are most comfortable accepting an electron. The formation of an anion essentially gives the halogen atom the electron configuration of the nearest noble gas. The negative sign here indicates that the addition of an electron to the halogens results in energy being released by the halogen atom.
4. Na reacts with element X to form an ionic compound with the formula $\mathrm{Na}_{3} \mathrm{X}$. Ca will react with X to form .
a) CaX_{2}
b) CaX
c) $\mathrm{Ca}_{2} \mathrm{X}_{3}$
d) $\quad \mathrm{Ca}_{3} \mathrm{X}_{2}$

Explanation: The element X must have 3 negative charges for it to form the compound $\mathrm{Na}_{3} \mathrm{X}$, since each Ca has 2 positive charges, the formula of the compound formed by the reaction of Ca and X would have to be $\mathrm{Ca}_{3} \mathrm{X}_{2}$.
5. Atomic radius generally increases as we move \qquad -.
a) down a group and from right to left across a period
b) up a group and from left to right across a period
c) down a group and from left to right across a period
d) up a group and from right to left across a period
6. The atomic radius of main-group elements generally increases down a group because \qquad .
a) effective nuclear charge increases down a group
b) effective nuclear charge decreases down a group
c) both effective nuclear charge increases down a group and the principal quantum number of the valence orbitals increases
d) the principal quantum number of the valence orbitals increases
7. Which of the following correctly lists the five atoms in order of increasing size (smallest to largest)?
a) O $<$ F $<$ S $<$ Mg $<$ Ba
b) F $<\mathbf{O}<$ S $<\mathbf{M g}<\mathbf{B a}$
c) F $<$ O $<$ S $<$ Ba $<\mathrm{Mg}$
d) $\mathrm{O}<$ F $<$ S $<\mathrm{Ba}<\mathrm{Mg}$

Explanation: Fluorine and oxygen are in the same period (\#2) and next to each other with F being the smallest of these 5 atoms. Ba is in group 2A and in row 6 (farthest "down" a group) and is the largest of the atoms. Mg is in group 2A and in the third period and hence will be bigger than F, O and S . Even though S is in the same period as Mg it is in group 6A making it smaller than Mg.
8. Which of the following correctly lists the five atoms in order of increasing size (smallest to largest)?
a) $\mathrm{F}<\mathrm{K}<\mathrm{Ge}<\mathrm{Br}<\mathrm{Rb}$
b) $\mathrm{F}<\mathrm{Ge}<\mathrm{Br}<\mathrm{K}<\mathrm{Rb}$
c) $\mathrm{F}<\mathrm{K}<\mathrm{Br}<\mathrm{Ge}<\mathrm{Rb}$
d) $\mathbf{F}<\mathbf{B r}<\mathbf{G e}<\mathbf{K}<\mathbf{R b}$

Explanation: Fluorine is in group 7A and period 2 making it the smallest of the 5 atoms here. Br is also in group 7A but is in period 4 making it larger than F , Ge is in group 4 A and also in period 4 but is to the left of Br making it larger than Br . K and Rb are both in group 1 A but K is in period 4 and Rb is in period 5, making the Rb atom the largest of all the 5 atoms.
9. Of the following atoms, which has the largest first ionization energy?
a) Br
b) O
c) C
d) P

Explanation: The ionization energy (IE) typically increases from left to right in a period and decreases from top to bottom in a group. Thus for C and O which are in the same period, O will have the larger $\mathrm{IE} . \mathrm{Br}$ is in period $\# 4$ and will have the lowest IE out of these 4 elements.
10. Of the following elements, which has the largest first ionization energy?
a) Na
b) A 1
c) Se
d) C 1

Explanation: The ionization energy (IE) typically increases from left to right in a period and decreases from top to bottom in a group. Na, Al and Cl are all in period 3 with the chlorine atom to the farthest right and will have the highest IE.
11. Which ion below has the largest radius?
a) $\mathrm{C1}^{-}$
b) K^{+}
c) Br^{-}
d) F^{-}

Explanation: Typically cations are smaller than their parent atoms while anions are larger than the parent atoms. Of the atoms here, the Br atom would be the largest as it is farthest down the group and hence its anion also will be the largest ion.
12. The ion with the smallest radius is \qquad .
a) Br^{-}
b) Cl^{-}
c) O^{2-}
d) F^{-}

Explanation: Typically anions are larger than the parent atoms. Of the atoms here, the F atom would be the smallest as it is farthest up the group and hence its anion also will be the smallest ion
13. Which of the following is an isoelectronic series?
a) $\mathrm{B}^{5-}, \mathrm{Si}^{4-}, \mathrm{As}^{3-}, \mathrm{Te}^{2-}$
b) $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Ne}, \mathrm{Na}^{+}$
c) $\mathrm{S}, \mathrm{C} 1, \mathrm{Ar}, \mathrm{K}$

Explanation: Isoelectronic series contain a combination of atoms and ions or only ions with the same number of electrons. Here the series containing the $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Ne}$ and Na^{+}is the only one where all atoms/ions contain 10 electrons.
14. \qquad is isoelectronic with argon and \qquad is isoelectronic with neon.
a) $\mathrm{C1}^{-}, \mathrm{F}^{-}$
b) $\mathrm{C1}^{-}, \mathrm{C1}^{+}$
c) $\mathrm{F}^{+}, \mathrm{F}^{-}$
d) $\mathrm{Ne}, \mathrm{Kr}^{+}$

Explanation: The Cl^{-}ion has 18 electrons and is isoelectronic with argon while the F^{-}ion has 10 electrons making it isoelectronic with neon.
15. Chlorine is much more ability to exist as an anion than is sodium. This is because \qquad .
a) chlorine is bigger than sodium
b) chlorine has a greater ionization energy than sodium does
c) chlorine has a greater electron affinity than sodium does
d) chlorine is a gas and sodium is a solid
16. The alkaline earth metals are found in \qquad of the periodic table.
a) Group 1 A
b) Group 2A
c) Group 7A
d) Group 8A
17.How many valence electrons does a boron atom (B) have?
a) 1
b) 3
c) 5
d) 7
18. Which ion is isoelectronic with Ar ?
a) Ni^{2+}
b) F^{-}
c) Br^{-}
d) K^{+}
19. Which of these choices is the electron configuration of the iron (III) ion (Fe^{3+})?
a) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{3}$
b) $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5}$
c) $[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
d) $[\mathrm{Ar}] 3 \mathrm{~d}^{6}$
20. In what group of the periodic table is the element with the electron configuration $[\operatorname{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{1}$?
a) 1 A
b) 2 A
c) 3 A
d) 4 A
21. How many valence electrons does a tin (Sn) atom have?
a) 2
b) 4
c) 14
d) 36
22. Which of these ground-state ions has unpaired electrons?
a) P^{3-}
b) V^{5+}
c) S^{2-}
d) Sc^{2+}
23. Consider the element with the electron configuration $[\mathrm{Xe}] 6 \mathrm{~s}^{2} 4 \mathrm{f}^{7}$. This element is
a) a representative element.
b) a lanthanide element.
c) a nonmetal.
d) an actinide element
24. If the radius of atom X is greater than the radius of atom Y, then it is also likely that
a) X has a larger electron affinity than Y does.
b) X has a larger first ionization energy than Y does.
c) X has greater metallic character than Y does.
25. Arrange these ions in order of increasing ionic radius: $\mathrm{K}^{+}, \mathrm{P}^{3-}, \mathrm{S}^{2-}, \mathrm{Cl}^{-}$. Increasing radius \rightarrow
Row $1 \quad \mathrm{~K}^{+}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}<\mathrm{P}^{3-}$
Row $2 \quad \mathrm{~K}^{+}<\mathrm{P}^{3-}<\mathrm{S}^{2-}<\mathrm{Cl}^{-}$
Row $3 \quad \mathrm{P}^{3-}<\mathrm{S}^{2-}<\mathrm{Cl}^{-}<\mathrm{K}^{+}$
Row $4 \quad \mathrm{Cl}^{-}<\mathrm{S}^{2-}<\mathrm{P}^{3-}<\mathrm{K}^{+}$
Row $5 \quad \mathrm{Cl}^{-}<\mathrm{S}^{2-}<\mathrm{K}^{+}<\mathrm{P}^{3-}$
a) Row 1
b) Row 2
c) Row 3
d) Row 4
26. Selenium $\left({ }_{34} \mathrm{Se}\right)$ element is
a) a nonmetal
b) found in group 6A
c) found in period 2
d) both a and b
28. The outer electron configuration of the noble gases is
a) $n s^{2} \mathrm{np}^{6}$
b) $n s^{2} n d^{10}$
c) $n s^{2} n p^{4}$
d) $n s^{2} n p^{8}$
29. Which of the following species is isoelectronic with Cl^{-}
a) K^{+}
b) Na^{+}
c) O_{2}
d) F^{-}
30. Gallium (Ga) element is found in the periodic table in
a) period 3, group 1 B
b) period 3, group 4 A
c) period 4, group 1 A
d) period 4, group 3A
31. Titanium (Ti) element is found in the periodic table in
a) s-block
b) P-block
c) d-block
d) f-block
32. Write the electronic configuration for Co^{+2}
a) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$
b) $[\mathrm{Ar}] 3 \mathrm{~d}^{7}$
c) $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{6}$

Periodic
Relationships
Among the
Elements
d) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{7}$
33. Select the correct order of radius of the two ions
a) $\mathrm{A}^{+}>\mathrm{A}^{-}$
b) $\mathrm{A}^{-}<\mathrm{A}$
c) $\mathrm{A}^{2+}>\mathrm{A}^{+}$
d) $\mathbf{A}^{2+}<\mathbf{A}^{+}$
34. Two ions are referred to as isoelectronic if they have the same number of
a) electrons.
b) protons.
c) atoms.
d) neutrons.
35. The energy required to remove an electron from an atom in its ground state is known as the
a) potential energy.
b) activation energy.
c) electron affinity.
d) ionization energy.
36. Which will have the highest ionization energy?
a) C
b) \mathbf{N}
c) O
d) B
37. Order the following $\left(\mathrm{N}^{-3}, \mathrm{Li}^{+}, \mathrm{C}, \mathrm{O}^{2-}\right)$ according to increasing atomic/ionic radius.
a) $\mathrm{C}<\mathrm{Li}^{+}<\mathrm{O}^{2-}<\mathrm{N}^{3-}$
b) $\mathrm{N}^{3-}<\mathrm{O}^{2-}<\mathrm{C}<\mathrm{Li}^{+}$
c) $\mathrm{Li}^{+}<\mathrm{C}<\mathrm{N}^{3-}<\mathrm{O}^{2-}$
d) $\mathrm{Li}^{+}<\mathbf{C}<\mathbf{O}^{2-}<\mathbf{N}^{3}$

Test bank chapter (9)

$\underline{\text { Choose the most correct answer }}$

1. What are the two types of chemical bonds commonly found in compounds?
a) doric and covalent.
b) ionic and electrolytic.
c) ionic and covalent.
d) electrolytic and compound.
2. Which type of electrons are used by atoms to form chemical bonds ?
a) core electrons.
b) valence electrons.
c) lone pair electrons.
d) unpaired electrons.
3.What is the statement of "Atoms tend to gain, lose, or share electrons until they are surrounded by eight valence electrons" called?
a) the rule of octaves.
b) the double quartet rule.
c) the eight electron rule.
d) the octet rule.
3. What type of orbital will lost the electron firstly when a transition metal atom becomes a +ve ion?
a) p
b) f
c) d
d) s
5.What type of bonds dose a molecule of CS_{2} contain?
a) two single bonds.
b) two double bonds.
c) one single bond and one double bond.
d) one single bond and one triple bond.
4. What is the correct electron-dot structure of an atom has atomic number $\mathrm{Z}=5$ in the ground state? $\mathbf{A N S}$. \mathbf{B}

5. Which compound below contains an atom that is surrounded by more than an octet of electrons?
a) PF_{5}
b) CH_{4}
c) NBr_{3}
d) OF_{2}
6. Which choice below correctly lists the elements in order of increasing electronegativity?
a) C $<\mathbf{N}<\mathbf{O}<\mathbf{F}$
b) N $<$ C $<$ O $<$ F
c) N $<$ C $<$ F $<$ O
d) C $<$ N $<$ F $<$ O
7. Which atom sometimes violates the octet rule?
a) C
b) N
c) O
d) S
8. How many resonance structures ca n be drawn for $\mathrm{NO}_{3}{ }^{-}$?
a) 1
b) 2
c) 3
d) 4
11.Considerin g formal charge, what is the preferred Lewis structure of NCO^{-}? ANS. 3
9. $[\mathrm{N}=\mathrm{C}-\ddot{\mathrm{O}}:]^{-}$
10. $[: \stackrel{N}{N}-\mathrm{C}-\mathrm{O}:]^{-}$
11. $[: \ddot{N}=\mathrm{C}=\ddot{\mathrm{O}}:]^{-}$
12. $[: \ddot{N}=C=\ddot{O}:]^{-}$
13. $[: \ddot{\mathrm{N}}-\mathrm{C}=\mathrm{O}:]^{-}$
14. What is the correct formal charge on sulfur (S) in Lewis structure of $\left(\mathrm{SO}_{4}{ }^{-2}\right)$ that satisfy the octet rule?
a) +2
b) -2
c) +1
d) 0
15. What is the correct formal charge on sulfur (S) in the favorable Lewis structure of $\left(\mathrm{SO}_{4}^{-2}\right)$?
a) +2
b) -2
c) +1
d) 0
16. Which of these pairs of elements would be most likely to form an ionic compound?
a) Cl and I
b) Al and K
c) Cl and Mg
d) C and S
15.Which of these covalent bonds is the most polar (i.e., highest percent ionic character)?
a) $\mathbf{\Delta \mathbf { A }}-\mathbf{I}$
c) $\mathrm{Al}-\mathrm{Cl}$
d) $\mathrm{Si}-\mathrm{Cl}$
17. which of these structures is the correct Lewis structure for CS_{2} ? ANS.c
a)

b)

c)

d)
18. How many lone pairs in the N_{2} molecule are there?
a) 1
b) 2
c) 3
d) 4
17.Classify the $\mathrm{O}-\mathrm{H}$ bond in CH 3 OH as ionic, polar covalent, or nonpolar covalent?
a) Ionic
b) polar covalent
c) nonpolar covalent
19. How many single bond(s), double bond(s) and lone pair(s) are there in Lewis structure for a chlorate ion, $\mathrm{ClO}_{3}{ }^{-}$?
a) 2, 1, 10
b) $3,0,9$
c) $2,1,8$
d) $3,0,10$
20. How many resonance structures are there for the sulfur dioxide molecule that satisfy the octet rule ?
a) 1
b) 2
c) 3
d) none of these.
21. What is the formal charge on the oxygen atom in N 2 O (the atomic order is $\mathrm{N}-\mathrm{N}-\mathrm{O}$)?
a) 0
b) +1
c) -1
d) -2
22. Which of these substances will display an incomplete octet in its Lewis structure?
a) CO_{2}
b) Cl_{2}
c) ICl
d) NO
23. How many paired and unpaired electrons are there in the Lewis symbol for a phosphorus atom?
a) 4,2
b) 2, 4
c) 4,3
d) 2, 3

Explanation: Read the question carefully here, you are being asked for how many valence electrons are paired and how many are unpaired. The abbreviated electron configuration of the P atom is given by [Ne$] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{3}$. The outermost electrons would be arranged as 2 electrons paired and 3 electrons unpaired as shown below:

$\stackrel{P}{P}$

23. What is the most likely forms of magnesium ion based on the octet rule?
a) $\mathrm{Mg}^{2+}{ }_{2-}$
b) $\mathrm{Mg}^{2-}{ }_{2+}$
c) $\mathrm{Mg}^{6+}{ }_{6-}$
d) Mg^{6-6+}

Explanation: According to the octet rule the Mg atom will achieve an octet by losing its 2 outermost electrons and thus gaining $2+$ charges. Since Mg is located in the alkali metal group it will lose electrons rather than gaining them.
24. What is most likely forms of phosphorus ion based on the octet rule?
a) P^{3+}
b) P^{5-}
c) P^{5+}
d) P^{3-}

Explanation: According to the octet rule the phosphorus atom should gain 3electrons, thus gaining 3 negative charges and forming the phosphide ion.

25- What is the only noble gas without eight valence electrons?
a) Ar
b) Ne
c) He
d) Kr

Explanation: The noble gases are characterized by the presence of eight electrons in their outermost shell with one notable exception of Helium. Since He has only 2 electrons it can never have 8 in its outermost shell.

26- What is the maximum number of double bonds that a hydrogen atom can form?
a) 0
b) 1
c) 2
d) 3

Explanation: Each hydrogen atom has a single electron in its valence shell and as a result can form only one bond. It cannot form a double bond as it does not have the necessary electrons to share.
28. What is the maximum number of double bonds that a carbon atom can form?
a) 4
b) 1
c) 2
d) 0

Explanation: Each carbon atom has 4 valence electrons that it can share with other atoms. Since each double bond corresponds to a pair of electrons, the carbon atom can form only 2 double bonds.
29. Given the electronegativities below, which covalent single bond is most polar?

Atom	H	C	N	O
Electronegativity	2.1	2.5	3.0	3.5

a) $\mathrm{C}-\mathrm{H}$
b) $\mathrm{N}-\mathrm{H}$
c) $\mathrm{O}-\mathrm{H}$
d) $\mathrm{O}-\mathrm{N}$

Explanation: Bond polarity can be judged based on the differences between the electronegativities of the atoms involved. Of the available choices, the bond between O and H will have the largest electronegativity difference making it the most polar bond in this group.
30. How many valence electrons dose the $\mathrm{ICI}_{4}{ }^{-}$ion have?
a) 34
b) 36
c) 35
d) 28

Explanation: valence electrons $\mathrm{A}=(7 \times 1)+(7 \times 1)+1=36$

31-What is the trend of the electronegativity from left to right within a period and from top to bottom within a group?
a) decreases, increases
b) increases, increases
c) stays the same, increases
d) increases, decreases
32. How many nonbonding and bonding electron pairs in the central phosphorus atom are there in Lewis structure of PF_{3} ?
a) 2,2
b) 1,3
c) 3,1
d) 1,2
33. Which of the following molecules contains both ionic and covalent bonds?
a) $\mathrm{C}_{5} \mathrm{H}_{12}$
b) NaClO_{4}
c) CaCl_{2}
d) $\mathrm{H}_{2} \mathrm{O}$
34. What is the term of the ability of an atom in a molecule to attract electron density to itself?
a) Electronegativity
b) Electron affinity
c) Diamagnetism
d) Ionization energy

35-Which one of the below is the most polar bond?
a) $\mathrm{Br}-\mathrm{H}$
b) $\mathrm{I}-\mathrm{H}$
c) $\mathrm{Cl}-\mathrm{H}$
d) $\mathrm{H}-\mathrm{H}$

Test bank chapter (14)

Choose the most correct answer

1. Which is the correct equilibrium constant expression for the following reaction?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a) $\mathrm{Kc}=\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right]\left[\mathrm{H}_{2}\right]^{3} /[\mathrm{Fe}]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{3}$
b) $\mathrm{Kc}=\left[\mathrm{H}_{2}\right] /\left[\mathrm{H}_{2} \mathrm{O}\right]$
c) $\mathrm{Kc}=\left[\mathrm{H}_{2} \mathrm{O}\right]^{3} /\left[\mathrm{H}_{2}\right]^{3}$
d) $\mathrm{Kc}=[\mathrm{Fe}]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{3} /\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right]\left[\mathrm{H}_{2}\right]^{3}$
2. The following reactions occur at 500 K . Arrange them in order of increasing tendency to proceed to completion (least \rightarrow greatest tendency).

$$
\begin{array}{ll}
\text { 1. } 2 \mathrm{NOCl} \leftrightarrow 2 \mathrm{NO}+\mathrm{Cl}_{2} & \mathrm{Kp}=1.7 \times 10^{-2} \\
\text { 2. } 2 \mathrm{SO}_{3} \leftrightarrow 2 \mathrm{SO}_{2}+\mathrm{O}_{2} & \mathrm{Kp}=1.3 \times 10^{-5} \\
\text { 3. } 2 \mathrm{NO}_{2} \leftrightarrow 2 \mathrm{NO}+\mathrm{O}_{2} & \mathrm{Kp}=5.9 \times 10^{-5}
\end{array}
$$

a) $2<1<3$
b) $1<2<3$
c) $2<3<1$
d) $3<2<1$
3.Calculate Kp for the below reaction if Kc at for this reaction is $2.1 \times 10^{-\mathbf{2}}$ at $400^{\circ} \mathrm{C}$.

$$
2 \mathrm{NOCl}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

a) 0.689
b) 0.115
c) 0.137
d) 1.2
4. For the following reaction:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HI}(\mathrm{~g})
$$

$\mathrm{Kc}=\mathbf{5 0 . 2}$ at $445{ }^{\circ} \mathrm{C}$. If $\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]=[\mathrm{HI}]=1.75 \times 10^{-3} \mathrm{M}$ at $445{ }^{\circ} \mathrm{C}$, which one of these statements is true?
a) The system is not at equilibrium; thus, no concentration changes will occur.
b) The concentrations of HI and I_{2} will increase as the system approaches equilibrium.
c) The concentration of HI will increase as the system approaches equilibrium.
d) The concentrations of H_{2} and HI will decrease as the system moves toward equilibrium.
5. For the below reaction at equilibrium, which choice gives a change that will shift the position of equilibrium to favor formation of more products?

$$
2 \mathrm{NOBr}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})
$$

$$
\Delta \mathbf{H}^{0}{ }_{\mathrm{rxn}}=30 \mathrm{~kJ} / \mathrm{mol}
$$

a) Increase the total pressure by decreasing the volume.
b) Add more NO.
c) Remove Br_{2}.
d) Lower the temperature.

6 - For the following reaction at equilibrium in a reaction vessel, which one of these changes would cause the $\mathbf{B r}_{2}$ concentration to decrease?

$$
2 \mathrm{NOBr}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}), \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{0}=30 \mathrm{~kJ} / \mathrm{mol}
$$

a) Increase the temperature.
b) Remove some NO.
c) Add more NOBr .
d) Compress the gas mixture into a smaller volume.
7. For the below reaction at equilibrium, if we increase the reaction temperature, the equilibrium will:

$$
2 \mathrm{SO}_{3} \leftrightarrow 2 \mathrm{SO}_{2}+\mathrm{O}_{2} \quad\left(\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=198 \mathrm{~kJ} / \mathrm{mol}\right)
$$

a) shift to the right.
b) shift to the left.
c) not shift.
d) The question cannot be answered because the equilibrium constant is not given.
8. For the equilibrium reaction:
$\mathbf{2 S O} \mathbf{2}_{\mathbf{2}}(\mathrm{g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g}) \leftrightarrow \mathbf{2 S O}_{\mathbf{3}}(\mathrm{g}), \quad \Delta \mathrm{H}^{\mathbf{o}}{ }_{\mathrm{rxn}}=\mathbf{- 1 9 8} \mathrm{kJ} / \mathrm{mol}$.
Which one of these factors would cause the equilibrium constant to increase?
a) Decrease the temperature.
b) Increase the temperature.
c) Add SO_{2} gas
d) Remove O_{2} gas.
9. The reaction below is endothermic. If the temperature is increased,

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

a) more SO_{3} will be produced.
b) Kc will increase.
c) Kc will decrease.
d) no change will occur in Kc.
10. If a catalyst is added to a chemical reaction, the equilibrium yield of a product will be, and the time taken to come to equilibrium will be \qquad .than before.
a) higher; less
b) lower; the same
c) higher; the same
d) the same; less

11- For the reaction:

$$
\mathbf{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathbf{2} \mathrm{NH}_{3}(\mathrm{~g})
$$

$\mathrm{Kc}=\mathbf{0 . 0 6 0 0}$ at a certain temperature. In an equilibrium mixture of the three gases, $\left[\mathrm{NH}_{3}\right]=$ 0.242 M and $\left[\mathrm{H}_{2}\right]=1.03 \mathrm{M}$. What is the concentration of N_{2} in this system?
a) 3.9 M
b) 0.003 M
c) 0.89 M
d) 1.12 M

12. Consider the reaction,

$$
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

If an equilibrium mixture of these three substances is compressed, equilibrium will \qquad ., because \qquad
a) shift to the right; higher pressure favors fewer moles of gas
b) shift top the right; higher pressure favors more moles of gas
c) shift to the left; higher pressure favors fewer moles of gas
d) shift to the left; higher pressure favors more moles of gas

13- Consider the equilibrium system:

$$
\mathrm{C}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{CO}(\mathrm{~g})
$$

If more $\mathbf{C}(s)$ is added, the equilibrium will \qquad ; if CO is removed the equilibrium will \qquad
a) shift to the left; shift to the left
b) shift to the right; shift to the left
c) be unchanged; shift to the right
d) be unchanged; shift to the left
14. Consider the exothermic reaction at equilibrium:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

If the system is cooled, the equilibrium will \qquad because \qquad
a) shift to the left; decreased temperature favors an exothermic reaction
b) shift to the right; decreased temperature favors an exothermic reaction
c) shift to the right; decreased temperature favors an endothermic reaction
d) shift to the left; decreased temperature favors an endothermic reaction
15. A large value of the equilibrium constant indicates that when the reaction reaches equilibrium, mostly \qquad will be present.
a) reactants
b) products
c) catalysts
d) shrapnel
16. When equilibrium is achieved?
a) $\mathrm{Q}>\mathrm{K}$
b) $\mathrm{Q}<\mathrm{K}$
c) $\mathrm{Q}=\mathrm{K}$
d) $\mathrm{Q} 2=\mathrm{K}$
17. for the following reaction:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \leftrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

If all species are gases and H_{2} is added, the amount of CO present at equilibrium will:
a) increase.
b) decrease.
c) remain unchanged.
d) disappear.
18. For the reaction:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \leftrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

If all species are gases and $\mathrm{H}_{2} \mathrm{O}$ is added, the amount of CO present at equilibrium will:
a) increase.
b) decrease.
c) remain unchanged.
d) disappear.
19. For the reaction:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \leftrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

If the reaction is endothermic and the temperature is raised, the amount of CO present will:
a) increase.
b) decrease.
c) remain unchanged.
d) disappear.
20. For the reaction:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \leftrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

If all species are gases and the container is compressed, the amount of CO present will:
a) increase.
b) decrease.
c) remain unchanged.
d) disappear.
21. What is K_{P} in terms of $K c$ for the following reaction?

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

a) $\mathrm{Kp}=\mathrm{Kc} \mathrm{RT}$
b) $\mathrm{Kp}=\mathrm{Kc} / \mathrm{RT}$
c) $\mathrm{Kp}=\mathrm{KcR} \mathrm{R} / \mathrm{T}$
d) $\mathrm{Kp}=\mathrm{Kc} /(\mathrm{RT})^{2}$
22. What is the correct equilibrium constant expression for the reaction:

$$
\mathrm{P}(\mathrm{~s})+6 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{PCl}_{3}(\mathrm{l})
$$

a. $\frac{\left[\mathrm{PCl}_{3}\right]^{4}}{\left[\mathrm{P}_{4}\right]\left[\mathrm{Cl}_{2}\right]^{6}}$
b. $\frac{1}{\left[\mathrm{Cl}_{2}\right]^{6}}$
c. $\frac{\left[\mathrm{PCl}_{3}\right]^{4}}{\left[\mathrm{Cl}_{2}\right]^{6}}$
d. $\frac{\left[\mathrm{PCl}_{3}\right]^{4}}{[\mathrm{P}]\left[6 \mathrm{Cl}_{3}\right]}$
23. The equation relating Kp and Kc is:
a) $\mathrm{Kp}=\mathrm{kc}(\mathrm{RT})^{\Delta \mathrm{n}}$
b) $K p=K c R T^{\Delta n}$
c) $K c=K p R T^{\Delta n}$
d) $K c=K p(R T)^{\Delta n}$
24. Kp will be equal to Kc if:
a) $\Delta n=1$
b) $\Delta \mathrm{n}=0$
c) $\Delta \mathrm{n}=-1$
d) $\mathrm{RT}=0$
25. Consider the reversible reaction at equilibrium at $392{ }^{\circ} \mathrm{C}$:

$$
2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \leftrightarrow \mathrm{C}(\mathrm{~g})
$$

The partial pressures are found to be: A: $6.70 \mathrm{~atm}, \mathrm{~B}: 10.1 \mathrm{at}, \mathrm{C}: \mathbf{3 . 6 0} \mathbf{~ a t m}$. Evaluate Kp for this reaction.
a) 7.94×10^{-3}
b) 0.0794
c) 0.794
d) 7.94
26. Which of the following will result in an equilibrium shift to the right?

$$
\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{PCl}_{5}(\mathrm{~g})
$$

$$
\Delta H=-87.9 \mathrm{KJ} / \mathrm{mol}
$$

a) Increase temperature/increase volume
b) Increase temperature/decrease volume
c) decrease temperature/increase volume
d) decrease temperature/decrease volume
27. Which accurately reflects the change in concentration that will occur if O_{2} is added to disturb the equilibrium?

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

	$[\mathbf{N O}]$	$\left[\mathbf{O}_{2}\right]$	$\left[\mathbf{N O}_{2}\right]$
a)	Increase	Increase	Increase
b)	Increase	Increase	Decrease
c)	Decrease	Decrease	Decrease
d)	Decrease	Increase	Increase

Test Bank Chapter (15)

Choose the most correct answer:
1-What is the concentration of H^{+}in a 2.5 M HCl solution?
a) 0
b) 1.3 M
c) 2.5 M
d) 5.0 M
2. What is the OH^{-}ion concentration in a $5.2 \times 10^{-4} \mathrm{M} \mathrm{HNO}_{3}$ solution?
a) $1.9 \times 10^{-11} \mathrm{M}$
b) $1.0 \times 10^{-7} \mathrm{M}$
c) $5.2 \times 10^{-4} \mathrm{M}$
d) Zero
3. Calculate the H^{+}ion concentration in lemon juice having a pH of 2.4
a) $4.0 \times 10^{-2} \mathrm{M}$
b) 250 M
c) 0.38 M
d) $4.0 \times 10^{-3} \mathrm{M}$
4. Calculate the pH of a $6.71 \times 10^{-2} \mathrm{M} \mathrm{NaOH}$ solution.
a) 12.83
b) 2.17
c) 11.82
d) 6.71
5. What is the pH of 0.0200 M aqueous solution of HBr ?
a) 1.00
b) 1.70
c) 2.30
d) 12.30
6. The pOH of a solution of NaOH is 11.30 , what is the $\left[\mathrm{H}^{+}\right]$for this solution?
a) 2.0×10^{-3}
b) 2.5×10^{-3}
c) 5.0×10^{-12}
d) 4.0×10^{-12}

Acids
 and

7. What is the pH of a 0.04 M aqueous solution of KOH ?
a) 12.60
b) 10.30
c) 4.00
d) 1.40
8. What is the approximate pH of a solution labeled $6 \times 10^{-5} \mathrm{M} \mathrm{HBr}$?
a) 4.2
b) 4.5
c) 5.8
d) 9.8
9. If the $\mathrm{pH}=2$ for an HNO_{3} solution, what is the concentration of HNO_{3} ?
a) 0.10
b) 0.20
c) $\mathbf{0 . 0 1 0}$
d) 0.020
10. A solution in which $\left[\mathrm{H}^{+}\right]=10^{-8} \mathrm{M}$ has a pH of \qquad and is \qquad .
a) 8 , acidic
b) 6 , basic
c) -6 , basic
d) 8, basic
11. Which of the following solutions has the lowest pH at $25^{\circ} \mathrm{C}$? (No calculations required.)
a) 0.2 M NaOH
b) $0.2 \mathrm{MNH}_{3}$
c) 0.2 M HCl
d) pure water
12. Calculate the pH of a $3.5 \times 10^{-3} \mathrm{M} \mathrm{HNO}_{3}$ solution.
a) -2.46
b) 0.54
c) 2.46
d) 3.00
13. The pH of $2.6 \times 10^{-2} \mathrm{M} \mathrm{KOH}$ is
a) 12.41
b) 15.59
c) 2.06
d) 7.00

Acids
 and

14. What is the $\left[\mathrm{H}^{+}\right]$ion in a $4.8 \times 10^{-2} \mathrm{M} \mathrm{KOH}$ solution?
a) $2.08 \times 10^{-13} \mathrm{M}$
b) $1 \times 10^{-7} \mathrm{M}$
c) $4.8 \times 10^{-11} \mathrm{M}$
d) $4.8 \times 10^{-2} \mathrm{M}$
15. What is the $\left[\mathrm{OH}^{-}\right]$ion in a $5.2 \times 10^{-4} \mathrm{M} \mathrm{HNO}_{3}$ solution?
a) $1.9 \times 10^{-11} \mathrm{M}$
b) $1.0 \times 10^{-7} \mathrm{M}$
c) $5.2 \times 10^{-4} \mathrm{M}$
d) zero

Test bank chapters (24\&25)

Choose the correct answer

1. $\mathrm{C}_{10} \mathrm{H}_{22}$ is the formula of an \ldots..
a) alkane.
b) alkene.
c) alkyne.
d) aromatic hydrocarbon.
2. A molecule with the formula $\mathrm{C}_{3} \mathrm{H}_{8}$ is a
a) hexane
b) propane
c) decane
d) butane
3. Which compound below does not have geometric isomers (cis-trans isomers)?
a) 1-butene
b) 2-butene
c) 2-pentene
d) 3-hexene
4. The hybridization of carbon atoms in alkanes is
a) sp
b) sp^{2}
c) sp^{3}
d) $\mathrm{sp}^{3} \mathrm{~d}$
5. Select the correct IUPAC name for

a) 1,1,3-trimethylpentane
b) 1-ethyl-1,3-dimethylbutane
c) 2,4-dimethylhexane
d) 3,5-dimethylhexane.

6 - An alkane with seven carbon atoms in a linear configuration is called a
a) hexene
b) heptene
c) hepylane
d) heptane
7. Which type of functional group does not include a carbonyl group in its structure?
a) carboxylic acid
b) ether
c) ketone
d) aldehyde
8. Vanillin is used as a flavoring agent. Identify the functional group circled.

a) aldehyde
b) ketone
c) carboxylic acid
d) Alcohol
9. The formula $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ represents:
a) an alcohol
b) an alkene
c) an alkyne
d) an unsaturated hydrocarbon
10. Which of the following is a ketone?
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
c) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
11.The general formula for alkenes is
a) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
b) $\mathrm{C}_{2 \mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
c) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}+2}$
d) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
12. Which of these molecules is unsaturated?
a) $\mathrm{C}_{3} \mathrm{H}_{8}$
b) $\mathrm{CH}_{3} \mathrm{OH}$
c) $\mathrm{C}_{5} \mathrm{H}_{10}$
d) CH_{4}
8. Which of these species is an aromatic compound?
a) $\mathrm{C}_{2} \mathrm{H}_{2}$
b) $\mathrm{C}_{6} \mathrm{H}_{12}$
c) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}_{2}$
d) $\mathrm{C}_{5} \mathrm{H}_{10}$
9. Which of these species are structural isomers of $\mathrm{C}_{6} \mathrm{H}_{14}$?
I. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{1}$
II. $\mathrm{CH}_{3}-\underset{!}{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
III.

IV. $\stackrel{\mathrm{CH}_{3}-\mathrm{CH}_{2}}{\stackrel{\stackrel{\mathrm{C}}{\mathrm{C}}}{2} \mathrm{CH}_{2}} \stackrel{\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{CH}_{2}}{ }$
$\mathrm{CH}_{3} \mathrm{CH}_{3}$
a) I and II
b) I and III
c) II and III
d) II and IV
10. The compound that has a triple bond between one pair of carbon atoms is called
a) an alkane.
b) a chlorofluorocarbon.
c) an alkyne.
d) an alkene.
11. The correct structure for 2,3,3-trimethylpentane is
a)

b)

c)

d)

12. Which one of these structures represents an ester functional group?
a)

b)

c)

d)

13. The functional group (RCOR) is characteristic of organic \qquad
a) ketones
b) acids
c) aldehydes
d) esters
14. Which of the following hydrocarbons does not have isomers?
a) $\mathrm{C}_{7} \mathrm{H}_{16}$
b) $\mathrm{C}_{6} \mathrm{H}_{14}$
c) $\mathrm{C}_{5} \mathrm{H}_{10}$
d) $\mathrm{C}_{3} \mathrm{H}_{8}$
15. Which of the following does NOT exhibit geometric isomerism? (Hint: draw them!)
a) 4-octene
b) 2-pentene
c) 3-hexene
d) 1-hexene
16. A protein is:
a) a polymer of amino acids
b) a fatty acid ester of glycerol
c) a polysaccharide
d) an addition polymer
17. A peptide bond (also called an amide bond) joins two amino acids together. What atoms are linked by this bond?
a) $\mathrm{C}-\mathrm{O}$
b) $\mathrm{C}-\mathrm{H}$
c) $\mathrm{C}-\mathrm{N}$
d) $N-S$
18. An amino acid is a compound that contains at least
a) one amino group and one amide group.
b) two amino groups and one carboxylic acid group.
c) one hydroxyl group and one methyl group.
d) one carboxylic acid group and one amino group
19. The functional group found in proteins is called a (an)

a) amide.
b) carboxylic acid.
c) amine.
d) amino acid.
20. Which one of these choices is the general structural formula of an amino acid?

b) $\mathrm{R}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$

d) $\stackrel{\mathrm{R}-\mathrm{CH}-\mathrm{NH}_{2}}{\mathrm{COOH}}$
21.Which one of these structures represents a ketone functional group?
a) -oH

c)

