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Chapter 1 HALLIDAY * RESNICK

Measurement

1-2 Measuring Physical quantities

v

Derived quantities

Base quantities Quantities are defined interm of base
quantities
Length
Mass Area
Time Volume
Temperature Density
1-3 Units

A unigue name we assign to measures of that quantity

Systems of units

sl FR BR
Length | m feet
Time s Length | €M L?"gth °e
- s Time s
Mass Kg Time slug
Mass g Mass

To express the very large and very small quantity
We use Scientific notation

Scientific notation
Power of ten Exponent of ten
For example:
For example:
1. 3560000000 m = 3.56x10° m
356E9m
2.0.000000492 s =4.92 x 10 s 1

4.92E-7s



When we dealing with very large or very small measurements
we use Prefixes Listed

Prefixes of units
Factor 1072 -9 -6 -3 -2 -1 9 12
10°  100° 10° 102 10 10 100 100 ¢ 10° 10
I I R L | I R I
| 1 | | | | | 1 | |
Prefix pico Nano micro - — deci deka hecto kl.l,o mega giga tera
symbol p n M m c da h k M g T

. For example,
1) a microsecond is 10° s
2) 1.27 x 10° watts = 1.27 gw

3)1.2x10°m=1.2 Mm

1-4 Changing Units

We often need to change the units in the physical quantity by a
method called chain link conversion

In this method we multiply the original measurement by
A conversion Factor

« conversion Factor is (a ratio of units thatis equal

to unity )
Imin=60s
lmin=1 60s =1
60s 1 min

1) For example, the conversion factor to convert 6 m to mm is
1m= 10 mm
6m=->?

6mx - Conversion factor

Jrsadll Jalaa 2

2) Convert 2 mins to seconds



1-5 Length The unit of Length —the meter- is defined as the
length of the path traveled by light in vacuum during
a time interval 1/229 792 458 of a second

1-6 Time
The unit of Time —the second- is defined in terms of
the oscillations of light emitted by an atomic source
{cesium-133) .

1-7 Mass

The unit of mass —one Kilogram - is defined in terms
of a platinum-iridium cylinder kept near Paris.

Atomic mass units  1u=1.660 538 86 x 10"*" kg

Density

The density p of a material is the mass per unit
volume




Chapter 2

Motion Along a Straight Line

In this chapter we will study the motion of
objects and the basic physics of motion.

Examples of motion :

1-Earth’s orbit around the Sun
2-Earth’s rotation on its axis

Every thing in the world moves, even the stationary
objects move with Earth’s rotation.

The motion on a straight line may be vertical,
horizontal, or slanted, but it must be straight.

2-3 Position and Displacement

To locate an object means to find its
position relative to a reference point
origin (or Zero point) of an axis, such
as the X axis. FIG. 2-1

Negative direction Positive direction
‘ L

S AN N N N S N B
4 3 2 19 1 3 3 4
origin

L4

X

The displacement

A change from initial position to final position

AX = Xz - X1
final position initial position

- unit of AX is meter

- AXis a vector quantity



Example page 15

(a) A particle moves from }’l = (5 m) to ?2 =(12m)

So Ax =
(b) A particle moves from ;',1 =(12 m) to ?2 =(5 m)
So Ax =

(c) Find the distance in (a) and (b)

(d) a particle moves from y;= 2m toy, = 8m, so Ay =

Features of a Displacement

1- Its magnitude is the distance, such as the number
of meters, between the original and final positions.

2- Its direction from an original position to a final
position can be represented by a plus sign (+) ora
minus sign {-) if a motionis along a single axis.

- Distance is a scalar quantity  (Absolute

{ number of meters ) value)



CHECKPOINT 1 Here are three pairs of initial and final positions, respec-
tively, along an x axis. Which pairs give a negative displacement: (a) =3 m, +5 m:
(b)-3m,~-7m; (¢) 7Tm,~3m?

2-4 Average Velocity and Average Speed

*Average Velocity is: The ratio of the displacement to time interval (At)

v displacement AX X,-—-X;
* frnd T —
" At At t,—t,

* Unit of the Vave ism/s , Km/s
* Vawg |svector quantity

* Vaw | the slope of the Straight line
Example motion of armadillo

x(m) e —
4 l |
: == s v.“a ‘lope of this line ~
e Ax ]
2 ] :m_ Sen
A : |
vanvm T A
: =1 }
-2 :
I
") x(f A_::t=2m-(—4m)=6m
SN S ——— |---—"----
-5 \ |

lLA:-oh-ls-Sa

Fig 2-3




Fig 2-3 shows how to find V,,, for the time interval t;=1s to t,=4 s
Position is x;= -4m and x,= 2m
The average velocity is 6m/3s = 2 m/second

Average Speed

Average Speed: is a ratio of the total
distance that occurs during a particular
time interval A t to that interval.

total distance numbers of meters
B At

avg =

At
Unitof Savg ism/s , Km/s

Savg Is Scalar quantity

Sample Problem m

You drive a beat-up pickup truck along a straight road
for 8.4 km at 70 km/h, at which point the truck runs out
of gasoline and stops Over the next 30 min, vou walk an-
other 2.0 km farther along the road to a gasoline station.

(a) What s your overall displacement from the begin-
ning of your drive to your arrival at the station?

Av=pv—=x; =104 km - 0= 104 km.

In the positive direction of the x axis

(b) What is the time interval Ar from the beginning of

your drive to your arrival at the station? Z
Calculations: We first write 2 ‘ i~ Truck stops | 527
o I/ ; Stadon
" 10— WAk —

TEE L Ay 5 gl— ! ' == 1.0

Rearranging and substituting data then give us ‘e 20 ‘ l

e .|_-S4 | [
Av g 84 km 2 1=/ ' Ax (= 1044 km)

Arg, = = =0.12h. z s/ | .

v Vavede 70 Kkm/h & 4 = | | ‘ [

|

So, A= Aty + Aty o | [ | -

=0.12 S0h = 0.62 o = \ ‘ ‘ '

012h +050h=0.62h. (Answer) | | Af(=0.62 h) K

(c) What is your average velocity v,,, from the begin- 0 02 0.4 0.6

Time (h)

ning of your drive to your arrival at the station? Find it
both numerically and graphically.




Calculation: Here we find
- Av _ 104 km
- A 0.62h
16.8km/h = 17 km/h.  (Answer)

(d) Suppose that to pump the gasoline, pay for it, and
walk back to the truck takes you another 45 min. What
is your average speed from the beginning of your drive
to vour return to the truck with the gasoline?

Calculation: The total distance 1s 8.4 km + 2.0 km +
20km = 124 km. The total time interval s 0.12 h +
0.50 h + 0.75 h = 1.37 h. Thus, Eq.2-3 gives us

T4
Savg = ll':—_;‘:l =91km/h. (Answer)

2-5 Instantaneous Velocity & Speed

Velocity at any instant

V. = i Ax  dx

Unit of the Vi, ism/s

V; Is vector quantity
Speed is the magnitude of Velocity

The Speedometer in a car measures
speed, not velocity

CHECKPOINT 2

A velocity of +5 m/s or -5m/s

Then the speed is 5m/s

Check point 2

The following equations give the position x(r) of a particle
Page 18

in four situations (in each equation, x is in meters,  is in seconds, and ¢ > 0): (1) x =
3r—2:(2)x = —4r* — 2;(3) x = 2r and (4) x = —2. (a) In which situation is the veloc-
SP 2-3 Page 19

ity v of the particle constant? (b) In which is v in the negative x direction?




Sample Problem m

The position of a particle moving on an x axis is given by
x=T78+4+92r=21¢, (2-5)
with x in meters and ¢ in seconds. What is its velocity at

t =355s? Is the velocity constant, or is it continuously
changing?

v= ‘;—: = ;—’1(7.3 + 920 = 2.11%),
which becomes
ve=04+92=(3)2.1)F=902=63~  (2-6)
Atr=35s
v=02—(63)(3.5) = —68m/s. (Answer)
At = 35 s the particle is moving in the negative direc-
tion of x (note the minus sign) with a speed of 68 m/s
Since the quanuty ¢ appears in Eq. 2-6, the velocity v
depends on r and so is continuously changing.

2-6 Acceleration

Acceleration is the ratio of the velocity Av to time
interval (At)

V,— Vi AV

&2 == -
wE -t At
Where V, is Velocity at t, ,V, is Velocity at t,

Unitof a,,. is m/$? ( length /Time?)

a,,, is Vector quantity .

Instantaneous acceleration

AV

Aipe = lim — = —

Ar—0 At

_av_ d
Cins T T @

dv
dt

dx) _ d2x

dat/  de?

ains is the second derivative of position {x} with

respect to time .

The unit of ains is m/s* OR Length/time? .
ains is vector quantity {(magnitude and

direction ).

An acceleration'’s sign

If the signs of the velocity and acceleration of a particle
are the same, the speed of the particle increases. If the signs

are opposite, the speed decreases

Checkpoint 3
Sample problem 2-4

Page 20-21(a,b)

CHECKPOINT 3 A wombat moves along an x
axis. What is the sign of its acceleration if it is moving (a) in
the positive direction with increasing speed. (b) in the posi-
tive direction with decreasing speed, (¢) in the negative
direction with increasing speed. and (d) in the negative
direction with decreasing speed?

Answer: (a) Plus
(b) minus
(c) minus

(d) plus



Sample Problem [W2.8 Build your skill

A particle’s position on the x axis of Fig. 2-1 is given by
x=4=-27t+ 7,
with x in meters and ¢ in seconds.

(a) Because position x depends on time ¢, the particle
must be moving. Find the particle’s velocity function
v(#) and acceleration function a(¢). v==27+3A~ (Answer)

Calculations: Differentiating the position function, we find

with v in meters per second. Differentiating the velocity
function then gives us

a = +61, (Answer)
with a in meters per second squared.
(b) Isthere everatime whenv = 0?
Calculation: Setting v(r) = O yields
= =27+ 32,
which has the solution
t=*3s (Answer)

Thus, the velocity 1s zero both 3 s before and 3 s after
the clock reads 0.

2-7Constant Acceleration: a special case

What is constant acceleration ?

Constant acceleration is the movement of particles
with constant velocity in equal time.

Example: [ [ vimss) | e=vit a(m/s
(/%)
aft)
20
1 20 20 _ Slope =0
2 40 20
> tis)

3 60 20

4 80 20

s 100 20 A = u

Bty

When the acceleration is constant, v v ¢ ; ¥ ¥
the average acceleration and instantaneous ~ 2 - 27 27
acceleration are equal Vi-Ve t1 -0 X1 - Xo

V_VO
4= G =TTy



TABLE 21

Equations for Motion with Constant Acceleration®  Page 23

Equation Missing
Number Equation Quantity
2-11 Vo bl X =X
215 X — Xy = vof + 3ar? v
216 ? = v} + 2a(x - xp) Check oot 4
eck poin
217 X = Xy =Yy + )t a P
2-18 X—Xg=vl— %arl Ve Page 23
Sample
CHECKPOINT 4  The following equations give the position problem 2-5
x(7) of a particle in four situations: (1) x = 3t — 4; (2) x = =5* + 4:*
+ 6, (3) x = 2/12 = 4ir,(4) x = 52 = 3. To which of these situations do Page 23

the equations of Table 2-1 apply?

Sample Problem m

The liead of a woodpecker is moving forward at a speed
of 7.49 m/s when the beak makes first contact with a tree
limb. The beak stops after penetrating the limb by 1.87
mm. Assuming the acceleration to be constant, find the
acceleration magnitude intermsof g. -




2-9 Free-Fall Acceleration

If you toss an ohject either up or down without an air
effect, you would find that the object accelerates
downward at a certain constant rate .

That rate is called the free-fall acceleration and its
magnitude is g = 9.8 . The acceleraticn is independent
of the ohject’s characteristics, such as mass, density,
or shape.

The free —fall acceleration near Earth’s surface is
a= -g = -9.8m/s?

and the magnitude of the acceleration is g= 9.8 m/s?

-As these objects fall, they acceleration downward at Examples of free —fall acceleration:
the same rate g = 9.8 m/s? '

- Feather S —
-Their speed increases at the same rate

- An apple
-They fall together

-The value of g varies slightly with the latitude and
with the elevation .

The direction of motion are now along a vertical y
axis instead of the x axis

Direction:
Upward - positive {y)

Downward =  negative {y)



Upward /. \, downward
# 0

V (+) v (('))
Vo (+ Vo (-
v((»,)) \ Y ()

al) 2k

free-fall acceleration is always negative and thus
downward

The equation of motion in table 2-1 for constant
acceleration also apply to free-fall near Earth’s
surface

a='g,Xo=Yo;X=Y

V=Vo— gt }’_Yo:Vol—_.‘llz
Vi= VG- 290y o) Y= Yo=5W+ V)

1,
Y= Yo = Vl+§.ql‘
Checkpoint 5

page 25
CHECKPOINT 5 (a) If you toss a ball straight up, what is the sign of the ball's
displacement for the ascent, from the release point to the highest point? (b) What is it

for the descent, from the highest point back to the release point? (¢) What is the ball's
acceleration at its highest point?

10



Sample Problem

{ ¥ ¥ a

On September 26, 1993, Dave Munday went over the ¥y (s} (m) (m/s)(m/s

Canadian edge of Niagara Falls in a steel ball equipped
with an air hole and then fell 48 m to the water (and
rocks). Assume his initial velocity was zero, and neglect
the effect of the air on the ball during the fall. =

(a) How long did Munday fall to reach the water surface?

=
1
1

0 0 0 -0.8

1 -£90 -98 -08

-19.6 -196 -08

- @ - @-—-§--@-

3 44l 204 -O8

—£35.0 -0.8

(b) Munday could count off the three seconds of free
fall but could not see how far he had fallen with each
count. Determine his position at each full second.

11



(c) What was Munday’s velocity as he reached the wa-
ter surface?

(d) What was Munday’s velocity at each count of one
full second? Was he aware of his increasing speed?

12
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—— o

Sample Problem m v=0at
highest point

In Fig. 2-12. a pitcher tosses a baseball up along a y axis,
with an initial speed of 12 m/s.

(a) How long does the ball take to reach its maximum

.

height?
N
I I~ During
: descent,
During ascent, : a=-g
a@=— T fpeed
speed decreases, | : increases,
and velocity : | and velocity
becomes less 0! becomes
positive :f more
I : negative
I
i
9! ——5=0

(b) What 1s the ball's maximum height above ifs release
point?

(c) How long does the ball take to reach a point 5.0 m
above its release point?

13



Chapter 3
Vectors

3-2 Vectors and scalars

1- Vector quantities 2 magnitude and direction. Example: displacement, velocity

2- Scalar quantities = only magnitude (no direction) Example: temperature, pressure
The simplest vector quantity is displacement vector

which we represent by an arrow = from Ato B )

The length of the arrow = magnitude of the vector quantity

The head of the arrow shows the direction for the vector quantity

B’

53.

7

¥4
(&)

FIG. 3-1 (a) All three arrows have
the same magnitude and direction
and thus represent the same dis-
placement. (b) All three paths con-
necting the two points correspond to
the same displacement vector.

3-3 Adding Vectors Geometrically " =

al

*If a particle moves from a to b we will get two displacement vectors.

“|

The net displacement from a to b is called the vector sum (s)
- = (&)
Vector equation T =7 + 5,

*Commutative Law

Al |

“Vector sum

Start

al
-
=
]
=)
+
=|

{commutative law).



*Associative Law

a
ta arh
+ 4 A
b <"' f>
o e T
2N\ 2
~ \ x
v w PRN
(@+B)+T=T+ (P +7T) (associative law).
*Vector Subtraction
AL
¢/ s
/ b ; k
(a)
! Note head-to-tail
" ) = armangement for
~- addidon
i=T-b
i
5 d=ad—-b=a+ (=b) (vector subtraction);

CHECKPOINT 1 The magnitudes of displacements @ and b are 3 m and 4 m,
respectively, and T = @ + b. Considering various orientations of @ and b, what is

(a) the maximum possible magnitude for T and (b) the minimum possible magnitude?

Answer:
(a) 7 m (a and b are in same direction)

(b) 1 m (a and b are in opposite direction




Sample Problem m

In an orienteering class, you have the goal of moving as e —

far (straight-line distance) from base camp as possible
by making three straight-line moves. You may use the
following displacements in any order: (a) @, 2.0 km due
east (directly toward the east): (b) &, 2.0 km 30° north
of east (al an angle of 30° toward the north from due
east): (¢) 7, 1.0 km due west. Alternatively, you may
substitute uthu —F for b or —¢ for T. What is the
greatest distance you can be from base camp at the end
of the third displacement?

Scale of km

1 2

(@)

=

(6

north

‘_.:- i 1

~ J
//
/\'

east

/ =

south

w est

EPLEN)

North of east = toward the north from due east

West of south= = toward the west from due south

3-4 Components of Vectors

A component of a vector is the projection of a vector on an axis

The process of finding the components of a vector is calling resolving the vector

We can find the components of @ ifrom the right tri-anglevlhere:

a,=acosf and a,=asiné,

where 6 is the angle that the vector @ makes with the positive direction of the
x axis, and « is the magnitude of 7.

P




—

To find the magnitude, we use: ol \"a%' + a%
To find direction, we use: tan § = 2
ax
CHECKPOINT 2 y ¥y
Ia the figure, which of
the indicated methods a, 6
for combining the. x —<¢ I — 2 =
and y components of . Gy a,
vector @ are proper to a ' a
determine that vector? r
(s) (9}
b b 4
By
» —
y ay 6) A
]
Rx
(<) (e}

b
a, /
a
)
)
dy
e
b
q__
(N

Answer: ¢, d, f (components must be head-to-tail; a must extend form tail of one

component to head of the other)

Sample Problem m

A small airplane leaves an airport on an overcast day
and 1s later sighted 215 km away, in a direction making
an angle of 22° east of due north. How far east and
north is the airplane from the airport when sighted?

Answer:

To find the compone;lls of d.
6 =68 (= 90° — 22°):

Disance (km)

d, = dcos 8= (215 km)(cos 6587)

=8l km {(Answer)
d, = dsin § = (215 km)(sin 68%)
= 199 km == 2.0 X 10* km. (Answer)

Thus, the airplane is 81 km east and 2.0 X 10? km north
of the airport.

¥ Distance (km)




3-5 Unit Vectors

« A unit vector is a vector that has a magnitude of exactly 1 and points in a particu-
lar direction.

* The unit vectors in the positive directions of the x, y,and < axes are labeled i, j.and k.

« «Where the hat " is used instead of an overhead arrow as for other vectors (Fig. 3-14)

FIG. 314 Unit vectors Ij and k de-
fine the directions of a right-handed
coordinate system.

for example, we can express 7 and &

‘The quantities a,i and a,j are vectors, called the vector components of 7."

The quantities a, and a, are scalars, called the scalar components of @

ﬂ’-a.j+a,i

Example
d= —-(2.6 kﬂl); + (0.025 km)f + (39 klll)f(. —3  voctor components of @

Scalar components'of d



Sample Problem m

3-6 Adding vectors by components

**Finda—-b

CHECKPOINT 23  (a) In the figure here,

are the signs of the x components of dyand &? {b) What
are the signs of the y components of d) and 4,7 {c) What

are the signs of the x and y components of d; + 457

Answers
(a) +,+
(b) +r =

(c) +,+ Draw vector from tail of d; to head of d,

what

Figure 3-16a shows the following three vectors:

and

7 = (42 m)i — (1.5 m)j,
b = (=1.6m)i + (2.9 m)j,
7 = (=3.7m)j.

What is their vector sum 7 which is also shoy

- 3
=
2
1
=’ 2 * S 4 =
-l =
a
-2
T
-3
\]-:_-
(@)
Yy :
X e
X
-3 =2 <1 1 2 3 1
-1 -
— -2.9j
r geasi)
-2
-5
(&)

FIG. 216 Vector 7 is the vector sum of the other three
vectors.



3-8 Multiplying Vectors
There are three ways in which vectors can be multiplied
1) Multiplying vector by scalar: If we multiply a vector a by scalar s we get a new vector

If s is positive, a will become positive, EX:

If s is negative, a will become negative, EX: The vector product

2) Multiplying vector by vector; we get:
\ The scalar product

a) The Scalar product (or dot product)

The scalar product of the vectors @ and b in Fig. 3-20a is written as @-5 and
defined to be

@-b =abcos é.

where a is the magnitude of @, b is the magnitude of 5, and s the angle between
Zand b

If the angle ¢ between two vectors is (°, the component of one vector along the
other is maximum, and so also is the dot product of the vectors. If,instead, ¢ is 90°, the
component of one vector along the other is zero, and so is the dot product.

— _—
If =0 = a.b=ab ==p vectorsare parallel

— 3 -
# =180 = a.b = — ab w=mpvectors are anti parallel <~
6 =90 = a.b=0 ==ectorsare perpendicular
. . - = Component of &
* The scalar product is commutative 7.5 =5§-7. slong direction of
dis&cos @

* When two vectors are in unit vector notation,
a= ayl+ a,f+ azk

- - = -
b= b+ bvj + b,k = \Componem of &
along direction of

we write the dot product as follows: bisacos @

(&)

a- b= aghb,+ ayby + ab,



*Multiplying Unit Vectors

%Z HECKPOINT 4  Vectors C and D have magnitudes of 3 units and 4 units,
respectively. What is the angle between the directions of C and D if C-D equals
(a) zero.(b) 12 units, and (¢) —12 units?

Answer:

Sample Problem [B#;

What is the angle ¢ between @ = 3.0i — 4.0j and & =
=2.01 + 3.0k?

b) The Vector Product (or cross product)

The vector product of @ and &, written @ x 5, produces a third vector € whose
magnitude is

c=absind,

where & is the smafler of the two angles between @ and 5.

T=axb Right hand rule
The direction of cis L b
<
perpendicular to bothaand b x
(':’ . |
1a)

If 7 and B are parallel or antiparallel, @ x B = 0. The magnitude of @ x B, which
can be written as | x B is maximum when @ and B are perpendicular to each other.



f 9_0=dxph—0o ==p vectorsare parallel ——>—

0=180 > dax b=0 I vectors are anti parallel «<———

0=90 =|a x 1;| =ab ‘ vectors are perpendicular

*The order of the vector in this case is important

b x@=—(7 xb). | e—

(&)

Multiplying Unit Vectors
1 [

-~

ixj=k

~

i ] k
axb =|a a a,
bz b, b,
_3|% 4 _3 Ay Gy |8 ay
b, b, b: b, b, b,

~
.

=(a,b; — I)).(zz)f i (@:b=—bas)]

+ (a,b, — b))k



%HECKPOINT 5  Vectors C and D have magnitudes of 3 units and 4 units,
respectively. What is the angle between the directions of C and D if the magnitude of
the vector product T x D is (a) zero and (b) 12 units?

Sample Problem

If@=23 —4jand b = —2i + 3k, what is T =@ x b?

10



Chapter 4

Motion in Two and Three Dimensions

In this chapter, we will study the motion in two and three dimensions.
Examples of two dimention motion include projectile motion and

uniform circular motion

4-2 | Position and Displacement

Position Vector The location of a particle relative to the
origin of a coordinate system is given by a position vector 7,
which in unit-vector notation is

T=uxi+y +zk. (4-1)

Here xi- v], and zk are the vector components of position vec-
tor ¥, and x, v, and z are its scalar components

Fig. 4-1shows a }mrﬁc‘]e with position vector

- [—1111}; + (2 m}j i m ik
1nd rectangular coordinates (—3 m, 2 m.5 m). Along the x axis the particle 1s 3 m
from the origin. in the —i direction. Along the y axis it 1s 2 m from the origin. in
the +] direction. Along the z axis it 18 5 m from the origin, in the +k direction.

(2mjj

(fmik .
/ |'—37qui

FIG. 41 The position vector 7 for a
particleis the vector sum of its vector

components. 1



If the posiion vector changes—say, from 7, to 7, during a certain time interval— then the
particle’s displacement A7 during that time interval is

.Ii._; == _'2 — _'1. {4—'2}

Using the unit-vector notation of Eq. 4-1. we can rewrite this displacement as

AT = (x50 + v + k) — (xi + v, + z,k)

Or as AT = (r — x)i + (32 — »)i + (z — 2k, (4-3)
AF = Avi + Ayj + Azk. (4-4)
Sample Problem Q3 ¥

InFig. 4-2, the position vector for a particle initially is

Ti=(=30m)i + (20m)j + (.0m)k ; .
and then later is Initial ,r'*"JI K/g

i A : : position """"';J" e

ra=(9.0m)y + (2.0m)j + (8.0m)k. | ;
What is the particle’s displacement AF from 7, to 7,7 -

_,-//— Later
Path of particle : positicn

Calculation: The subtraction gives us

A7 =7 — T, FIG. 42 Thedisplacement A7 = 7, — 7, extendsfrom the
2 p - head of the initial position vector 7 to the head of the later
[9.0 — (—-3.00}i + [2.0 — 2.0)) + [B.0 - 500k position vector Fa.

= (12mn + (30 m)k. (Answer)
¥ tm)

Sample Problem m 40
A rabbit runs across a parking lot on which a set of .
coordinate axes has, strangely enough. been drawn. The 20
coordinates (meters) of the rabbit’s position as func-

tions of time ¢ (seconds) are given by

x=—0312+ T2+ 28 (4-5)

and y = 0222 - 9.1r + 30. (4-6)

(a) Atr= 155 what is the rabbit’s position vector 7 in
unit-vector notation and in magmtude-angle notation?




Calculations: We can write
Fl1) = x(e)i + y(0)). (4-T)

(We write 7(¢) rather than ¥ because the components
are functions of r. and thus 7 is also.)
Atr = 155, the scalar components are

x = (—=031)(152 + (7.2)(15) + 28 = 66 m
and  y = (022)(158 — (9.1)(15) + 30 = =57 m,

50 7 = (66m)i — (57 m)j. (Answer)

which 18 drawn 11 Fig. 4-32. To get the_magmitude and
angle of ¥'. we use Eq. 3-6:

r=x? + y? = y(66 m)* + (—57 m)?

= 87 m, {Answer)

_ o _l'—SF.-’m')=_ "

and #= tan T tan ( G6m 41°
(Answer)

4-3 | Average Velocity and Instantaneous Velocity

If a particle moves through a displacement A¥ in a time interval As. then its
average velocity v 1s
displacement
time interval *

average velocity =

A7
of V. = , 4-8
Vovg A (4-5)
Avi + Ayj + Azk Ax . Ay - g
Vg = Ahazk Sk O ]+ Ic. (4-9)
Ar As Ar Ar

For example. if the particle in Sample Problem 4-1 moves from its imtial position
toats later position in 2.0 s, then its average velocity during that move 1s
. A7 (12m)i + (30m)k
'I__.' == —_—
B 1 20s

= (6.0 m/s)i + (L5 mis)k.

When we speak of the velocity of a particle, we usually mean the particle’s in-
stantaneous velocity v at some instant. This v 1s the value that ¥, approaches in
the hinut as we shrnnk the time interval Ar to 0 about that instant. Using the lan-
guage of calculus, we may write v as the derivative

=
=20 dr
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v=vi+vj+vk,

& _dy

e T e

dt’

e = % -
v _E{“ + v + zk) =

el
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s

_ gz

'I_.'= —
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s de
di el

k.

(4-11)

(4-12)

To find the instantaneous velocity of the particle at, say, instant r, (when the

particle 18 at position 1), we shrink interval Ar to O about ¢, Three things happen
as we do so. (1) Position vector 7, in Fig. 4-4 moves toward 7, so that A7 shrinks| PLEASE READ

toward zero. (2) The direction of AF/A: (and thus of

-
Y

a.-.';l
B

approaches the

direction of the line tangent to the particle’s path at position 1. (3) The average

velocity ¥, approaches the instantaneous velocity v at «,.

avg

In the limit as Ar—0, we have v, — 7V and. most important here,
Vg takes on the direction of the tangent line. Thus, ¥ has that direction as well:

The direction of the instantaneous velocity v of a particle is always tangent to the

particle’s path at the particle’s position.

¥
Ta.ngem—\,\
i o
A= 2
— AT
™
n A
L 5
Faih
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FIG. 44 The displacement A7 of

a particle during a time interval Ar,
from position 1 with position vector
T at time #; to position 2 with
position vector 7, at time #,. The
tangent to the particle’s path at
position 1 is shown.

a

FIG. 45 The velocity ¥ of a particle,
along with the scalar components of ¥



Sample Problem m

For the rabbit in Sample Problem 4-2 find the velocity ¥
at time ¢ = 155,

Calculations: Applying the v, part of Eq. 4-12 to 7:m)
Eq. 4-5,we find the x component of ¥ 1o be 40 ||
de  d .
o patt o el ) .1 2 20
VT = (=031 + 7.2 + 28) \
S 2 4- AY i
0.62¢ + 7.2. (4-13) T Ne o™
At =155 this gives v, = —2.1 m/s. Similarly, applving ) ] \--.,;
the v, part of Eq.4-12 to Eq. 4-6, we find =0 A\
V= % =2 % (0.22¢2 — 9.1+ + 30) | I ‘ J
= (.4dr — 9.1. (4-14) 50—
Atr=15s this gives v, = —1.5 m/s. Equation 4-11 then AT

yields FIG. 46 The rabbit’s velocity vV atr = 15,

¥ =(=21m/s) + (=2.5 m/s)]. (Answer)
which is shown in Fig. 4-6, tangent to the rabbit’s path
and in the direction the rabbitis runningat s = 15s.

To zet the magnitude and angle of ¥, ¥ —25m/s
* &e B ne o and  #=tan~' - = tan~! (—2 0 ]n’rs )
F — L 4

Ve

v =2+ v = (=21 misp + (=25 mis)? = tan~'1.19 = —130°.

=313m/s (Answer)

4-4 | Average Acceleration and Instantaneous
Acceleration

When a particle’s velocity changes from v, to v, in a time interval As, its average
acceleration 7., during At is

average change in velocity
acceleration time interval
— T-’.g T T"Fl .Ii?
OF T, = = ; 4-15)
£ At At (

If we shrink Ar to zero about some instant, then in the limit 7, approaches the
instantaneous acceleration {(or acceleration) 7 at that instant; that is,
dv
dt

—
a =

(4-16)

(Answer)



If the velocity changes in efither magnitude or direction (or both), the particle
must have an acceleration.

We can write Eq. 4-16 1n unit-vector form by substituting Eq. 4-11 for ¥ to
obtain

a = 2 (v + 1'}.]? + v.k)

i
fie . dv. .. dv. .
— : - 1 + ¥ J + = k
) - di dr 't
We can rewrite this as
a=aitajtak, (4-17)

where the scalar components of @ are

dv, dv, dv,
A =—m 8= —5 and a, = . (4-18)

CHECKPOINT 2 Here are four descriptions of the position (in meters) of
a puck asit moves in an xy plane:

(1) x=-32+4—-2 and y=622—-4t (3) 7 =22 — (4 + 3)j

(2) x=-3*-4 and y=-5*+6 4) T =04 =-2m + 3

Are the x and y acceleration components constant? Is acceleration @ constant?

Answer: (1) and (3) ax and a,
are constant and thus a is
constant

(2) and (4) ay is constant but a,
is not, thus a is not




Sample Problem

For the rabbit in Sample Problems 4-2 and 4-3, find the
acceleration 7 at time ¢ = 15 s,

_ dvy
a, o

_ %{—n.azr +72) = 062 m/s

¥

dv d
et M o s Adsy — R i d
a r i (0.44: — 9.1) = (.44 m/s2

G = (—062m/s)i + (0.4 m/s)], (Answer)

Magnitude:

a="va® + a = V(—0.62 m/? + (0.44 m/s?)?
= .76 m/s%. ( Answer)

For the angle we have

@ 0.4 mis?
§=tan-! L = Ian‘l( 4 ) = —35°

G —0.62 m's?
—35° + 180° = 145", { Answer)
Sample Problem m
A particle with velocity ¥, = —2.01 + 4.0 (in meters

per second) at r = 0 undergoes a constant acceleration @
of magmtude a = 3.0 m/s* at an angle § = 130" from the
positive direction of the x axis What 15 the particle’s
velocity v at¢ = 5.0 57

Calculations: We find the veloaity components v, and v,
from the equations

Ve = Vg T at and v, = vy +ayt

In these equations, vy, (= —2.0 m/s) and vy, (= 4.0 m/s)

a, =acos = (30m/s)cos 1307) = —1.93 m/s,
@, = asinf = (3.0m/s*)(sin 1307y = +2.30 m/s",

When these values are inserted into the equations for v,
and v, we find that, at time ¢ = 5.0 5,

v, = —2.0m/s + (—1.93 m/s%)(5.08) = —11.65 m/s,
v, =4.0mfs + (230 m/s?)(5.0s) = 15.50 m/s.

Thus.at ¢ = 5.0 s we have, after rounding,

¥ =(—12m/s) + [lﬁln.-"s}j. (Answer)

Magnitude:

Angle:



4-5 | Projectile Motion

Projectile Motion Projeciile motion is the motion of a
particle that is launched with an initial velocity ¥, During its
flight, the particle’s horizontal acceleration is zero and its
vertical acceleration is the free-fall acceleration —g.

The projectile is launched with an initial velocity ¥, that can be written as

?ﬂ o 1-"|:u_-'i. + 'I-"|:|}.j. {-‘i— lq}

The components vy, and vy, can then be found if we know the angle &, between v,
and the positive x direction:

Vo = Vo COS By and vy, = vy 8in fy. (4-20)

In projectile motion, the horizontal motion and the vertical motion are independent
of each other; that is, neither motion affects the other.

FIG. 410 The pathofa
projectile that is launched at
xp = Oand yy = 0, with an
initial velocity V. The initial
velocity and the velocities at
various points along its path
are shown, along with their
components. Note that the
horizontal velocity compo-
nent remains constant but

| o e b
w‘ &
The range R is the
horizontal distance the pro-
jectile has traveled when it
retums to its launch heighs.




*

CHECKPOINT 3 At a certain instant. a fly ball has velocity ¥ = 251 — 4.9j
(the x axis is horizontal, the y axis is upward. and ¥V is in meters per second). Has the
ball passed its highest point?

4-6 | Projectile Motion Analyzed

Projectile motion

_A

Answer: no

P

S

Horizontal Motion

Vertical Motion

a,=0 v =y, + at a,=-g

|
X — Xo = vt + zat’?

Vor = Vo COS 6,

“'0‘. - "’0 Sin 90

V2 — V(z) -+ Za(x i X())

3 Uy =Ug,— gt

$

Ux = VUgx

Uy=zvysin@y— gt 453

D s .\‘(, - Vu,t.

1
v(iyt - fg 12

4-24

¥y =™
X = X = (v, co8 By). 421 = (vpsin Gp)t — 582, || 22
vi = (vosin 6,)* — 2g(y — yo).

Time of flight:

2V, sinb
T= g From Eq 4-22 (y=0)
t= |22 From Eq 4-22 (6=0)

g

As s illustrated in Fig. 4-10 and Eq. 4-23, the vertical velocity component be-
haves just as for a ball thrown vertically upward. It is directed upward initially,
and its magnitude steadily decreases to zero, which marks the maximum height of
the path. The vertical veloaty component then reverses direction, and its magni-
tude becomes larger with time.

READ

[Yo)




» v, =0

-
- \\

N

Maximum height (H)

_ (vgsinBy)? From Eq 4-24 (v, =

0)

29

PROBLEMS

*21 A projectile is fired horizontally from a gun that is
45.0 m above flat ground, emerging from the gun with a speed
of 250 m/s. (a) How long does the projectile remain in the air?

Answer:

(a) From Eq. 4-22 (with & =0), h=(-gt® )2 . h=-45.0m

the time of flight is

2h J2(45 0m) o3¢
9.80 m/s’

(b) At what horizontal distance from the firing point does it
strike the ground?
Answer:
(b) From (Eq. 4-21)
Ax= V,I=(250 m/s)(3.035) =758 m.

(G

10



(c) What is the magnitude of the vertical
component of its velocity as it strikes the ground?

Answer:

(c) from Eq.( 4-23)

|v,| = gt=(9.80 m/s*)(3.035)=29.7 mv/s.

#+38 You throw a ball toward
a wall at speed 25.0 m/s and at
angle 6, = 40.0° above the hori-
zontal (Fig. 4-38). The wall is
distance d =22.0m from the
release point of the ball
(a) How far above the release
point does the ball hit the wall?

Answer:
.(a) from Eq. 4-21

AT BT NI AT AT A LT\ T T
N Y N Y L A RN RNV B AW RN S Y

FIG. 4-38 Problem 38.

=1.15s.

Ax 220m
v, (25.0 m/s)cos40.0°

The vertical distance ( from Eq. 4-22)

Ay=(y, sinao)t-% gff =(25.0 m/s)sin40.0°(1.15 s)—%(9.80 m/s*)(1.15s) =12.0 m.

What are the (b) horizontal and
(¢) vertical components of its velocity as it hits the wall?

Answer:
(b) ¥x= 1h cos 40.0°=19.2 m/s.

(c) from ( Eq. 4-23)

V,=V,sing,— gf=(25.0 m/s) sin40.0° - (9.80 m/s*)(1.15s)=4.80 m/s.
(d) When it hits, has it passed the highest point on its trajectory?

Answer:
(d) As V= 0 when the ball hits the wall, it has not reached the highest point yet.

11



The Equation of the Path
We can find the equation of the projectile’s path (its trajectory) by eliminating
time r between Eqgs. 4-21 and 4-22. Solving Eq. 4-21 for ¢ and substituting into Eq.

4-22 we obtain, after a little rearrangement.
2
x
& . i trajectory . {4-—?5]

y = (tan fg)r — = (vy cOS 6,)°

v = ax + ba”. in which @ and & are constants.

This 1s the equation of a parabola, so the path 15 parabolic.

horizontal range R, which is the horizontal distance from the
launch point to the point at which the particle returns to
the launch height, is

-
-~
~

v2 /
R =2%4in20, ) b
\

- I
[ )
Maximum range <_f | Y N
\)
v X

0o =45" D R0 =

@ |5

o The horizontal range K 1s maximum for a launch angle of 45°.

CHECKPOINT 4 A fly ball is hit to the outfield. During its flight (ignore the
effects of the air). what happens toits (a) horizontal and (b) vertical components of ve-
locity? What are the (c¢) horizontal and (d) vertical components of its acceleration dur-
ing ascent, during descent. and at the topmost point of its flight?

Answer: (a) v, constant
(b) vy initially positive, decreases to zero and
then becomes more negative

(c)a,=0
12

(d) ay=-§




Sample Problem

Figure 4-16 shows a pirate ship 560 m from a fort de-
fending a harbor entrance. A defense cannon, located at
sea level, fires balls at initial speed v, = 82 m/s.

(a) At what angle 6, from the horizontal must a ball be
fired to hit the ship? y

- R=560m————————=

(b) What is the maximum range of the cannonballs?

4-7 | Uniform Circular Motion [ ; particle travels along a cir-

cle or circular arc of radius r at constant speed v, it is said to be v
in uniform circilar motion and has an acceleration @ of con-
stant magnitnde v \'G’

v \

a=—: (4-34) --
¥ 538 r
@/’

The direction of @ is toward the center of the circle or circular /

arc, and @ is said to be centripetal. The time for the particle to

complete a circle is
\J
T 2ar

- (4-35)

v

FIG. 419 Velocity and acceleration

Tis called the period of revolution, or simply the period, of the vectors for uniform circular motion.
motion.

The velocity is tangent to the circle in
the direction of motion

CHECKPOINT 5 An object moves at constant speed along a circular path in
a horizontal xy plane, with the center at the origin. When the object is at x = —2 m. its
velocity is — (4 m/s)j. Give the object’s (a) velocity and (b) acceleration at y = 2 m.

13



Sample Problem m_

What 15 the magmiude of the acceleration, in
g units, of a pilot whose aircraft enters a horizontal cir-
cular turn with a veloaty of ¥, = (40h + 500y) m's
and 24.0 s later leaves the turn with a velocitv of

—

v, = (—4001 — 5007 ) m/s? o

Answer:

2y

T

a=

v = \"(400 m/s)* + (500 mis)® = 640.31 m/s,
Half circle time: 24 s
Thus full circle T=48 s

2w (640.31 m/s)

&

= 83.81 m/s* = B.6

48.0s i

14



Chapter 5

Force and Motion

5-1

We have seen the acceleration is change in velocity and the cause in
acceleration is the force (push or pull)

5 -2 Newton Mechanics

* The relation between a force and acceleration it causes by
Isaac Newton

*The study of that relation as Newton presented it ,is called
Newtonian mechanics.

* If the speeds of the interacting bodies are very large,
Newtonian mechanics does not apply , and we must replace
Newtonian mechanics with another mechanics as Einstein’s
theory of relativity

or with quantum mechanics as object in size very small .
*Newtonian mechanics is very important special case for the
motion of objects between Einstein’s theory and quantum
mechanics.

5-3 Newton’s First law

»The first law of Newton’s that a body will keep moving with
constant velocity if no force acts on it, and the body cannot
accelerate

Newton's First Law: If no force acts on a body, the body’s velocity cannot change:
that is, the body cannot accelerate.

# In other words , if the body is at rest, It stays at rest, ifitis
moving, it continues to move with the same velocity ( same
magnitude and same direction).

—

Newton's First Law: If no net force acts on a body (£, = 0), the body’s velocity
cannot change; that is, the body cannot accelerate.



5-4 Force

# We know that a force can cause the acceleration of body _ _!

# We shall define the unit of force in terms of the acceleration that a [/ °' AfoceFon e sndard
force gives to a standard reference body, we take to be the standard o
(kilogram).

# If we put the standard body on a horizontal frictionless table and
pull the body to the right. The acceleration of body is 1m/s? where the
magnitude of force acting an standard body equal (1N)

# In general if the our standard body of 1kg mass has an acceleration
of magnitude a, and the force F acting on it we find that :The
magnitude of the force (N)is equal the magnitude of the
acceleration(m/s?).

# The acceleration is a vector quantity then the force a vector
quantity.

# If we acts on a body with two or more forces we find the net
force by adding the forces vectorially. and the direction of the
net force has the same effect on the body as all the individual
forces together .This fact is called the principle of super-
position for forces.

# The net force or force have components forces along
coordinate axis and then have components acceleration.

(Fy.ay).(Fy.ay).(Fz.a,).

A HECKPOINT 1 Which of the figure’s six arrangements correctly show the
vector addition of forces Fl and f to vield the third vector, which is meant to represent
their net force fm

() Fy (b) Fy (©) Fy

(d) (¢)

‘9
2



5-5 Mass
* Mass is depends on the properties of bodies.
* Mass is a scalar quantity.

* We can say that the mass of body is the characteristic
that relates a force on the body to the resulting
acceleration.

The ratio of the masses of two bodies is equal to the inverse of the ratio of
their accelerations when the same force is applied to both. For body X and the

standard body, this tells us that

nmy _ dg
"y, a
Solving for niy vields
o 1.0 m/s?
"Nty = 1 = (1.0 kg) = 4.0 kp.
» N =7 0.25 m/s? &

.mass mg is defined to be 1.0kg , we find that this body X accelerates at 0.25 mis’

where; & :
Suppose that the standard body accelerates at 1.0 m/s-,

5.6 Newton’s Second Law

Newton's Second Law: The net force on a body is equal to the product of the body’s
mass and 1ts acceleration.

=ma (Newton’s second law). (5-1)

The net force | F.... must be the vectorsum of all the
forces that act on that body



Like other vector equations, Eq. 5-1 is equivalent to three component equa-

tions, one for each axis of an xyz coordinate system:

Foeox =ma,, F,,,=ma, and F, .= ma,.

(3-2)

Each of these equations relates the net force component along an axis to theacceleration along that same axis.

o The acceleration component along a given axis is caused only by the sum of the

force components along that same axis, and not by force components along any
other axis.

TABLE 5-1

Units in Newton's Second Law (Eqgs. 5-1 and 5-2)

System Force Mass Acceleration
S1 newton (N) kilogram (kg) m/s>
CGS” dyne gram (g) cm/s?
British® pound (Ib) slug ft/s?

“1 dyne = 1 g-cm/s%.
*11b = 1 slug- ft/s*.

From eq.(5-1) we find that: ———
Foop =m a) (5-1)

(1} *if the net force on a body is zero ,the body’s acceleration a=0

(2} *if the body’s is at rest , It stays at rest, If it is moving it continues
to move at constant velocity .

(3Mn such cases (1,2) we find that if any forces on the body balance
one another, we say that the forces and the body are to be in
equilibrium state the forces also said to cancel one another.



To solve problem with Newton’s Second law we often draw a free

- body diagram which is usually represent with a dot (@ ), and
each force on the body is drawn as a vector arrow with its tail on

the body 4N 5N
F2 Fi
——>
4 N 5N

CHECKPOINT 2 The figure here shows two_horizontal forces acting on a
block on a frictionless floor. If a third hgrizontal force F; also acts on the block, what
are the magnitude and direction of F; when the

- : . : 3N 51
block is (a) stationary and (b) moving to the left with &
/7
a constant speed of 5 m/s’ page 92

Answer:

(a) and (b) 2N, Leftward (acceleration is zero in each situation)

Sample Problem m page 93

Figures 5-3a to ¢ show three situations in which one or
two forces act on a puck that moves over frictionless ice
along an x axis, in one-dimensional motion. The puck’s
mass is m = 0.20 kg. Forces F| and F, are directed along
the axis and have magnitudes Fi=40N and F, =
2.0 N. Force F; is directed at angle = 30° and has
magnitude F;= 1.0 N. In each situation, what is the
acce leration of the puck?




A
7
L .
(a)

Puck 7‘;
%—x

(d)

(e)

C
73:*_

X
()
K
I
(f)

FIG. 53 (a)-(c) In three situations, forces act on a puck that
moves along an x axis. (d )~(f) Free-body diagrams.

Situation A:

Foei x = ma,.

Fy = ma,,

I

Situation B:

Fox = ma,.

F, = F,=ma,
LB 4ON-2N

m 020kg

=10 m:’s’.

Sample Problem page 93

Situation C:
Foei s = ma,.

F; .= F,=ma,

2 F3J'F2 gl F;COSO'FZ
b= mooom
_ (LON)(cos 30°) = 20N

= -5Tmis

020 ko

In the overhead view of Fig. 5-4a, a 2.0 kg cookie tin is
accelerated at 3.0 m/s? in the direction shown by @, over
a frictionless horizontal surface. The acceleration is
caused by three horizontal forces, only two of which are
shown: F; of magnitude 10 N and F, of magnitude 20 N.
What is the third force F in unit-vector notation and in

magnitude-angle notation?




(o)

?3=m?1°— 7. - fz.

x components: Along the x axis we have

F3J=max—Fl.x—F2.x
= m(a cos 50°) = F, cos(=150°) = F; cos %°.
Then, substituting known data, we find
Fy, = (20 kg)(3.0 m/s?) cos 50° — (10 N) cos(—150°)

= (20 N) cos %0°
=125N.

(h

y components: Similarly, along the y axis we find
Fyy=ma, - F,, - i,
= m(asin 50°) = F, sin(=150°) = F; sin %0°
= (2.0 kg)(3.0 m/s%) sin 50° = (10 N) sin(—150°
= (20 N) sin %0°
=-104N.

Vector: In unit-vector notation, we can write
F = Fy,i+ Fy,) = (125N)i - (104N);

F3=VF§J+ F£y= 16N

F
6= tan"% = —40°.



5-7 Some Particular Forces

1. The Gravitational Force
() A gravitational force l?;, ona body s a certain type of pull that is directed toward @ second body,
(2) F, is force between two objects

(3) If the second body is Earth ,thus it is a force that pulls on a body directly
toward the center of earth.

(4) The direction of F, is directly down toward the ground .

* Free Fall Acceleration

—

F =ma
F, =mg

The magnitude of the gravitational is equal to the product mg

We can write Newton’s Second law for the gravitational force in these vector
forms

Fo=—=F,=—mgj=mg.

i\

Where ] is the unit vector, g is the free fall acceleration

2-Weight

We can write Newton's second law for vertical y axis, with the positive
direction upward as

Frery = ma,.

| W= F,=m(0) ‘

W=F g

13

The weight W of a body is equal to the magnitude F, of the gravitational force

on the body.

W = mg Weight



To weigh a body (or measure its weight ) we have two
methods

l l

An equal — arm balance A spring scale

: Scale marked
in either
T - weight or
' N mass units
[ |
| \

| J 1
| f
I'r ‘l J ‘I
| = \ [ g \
'—.-‘:‘34 UAT@
b u !
Fy=mg Fo= meg

The weight of a body must be measured when the body is not accelerating
vertically relative to the ground .

For example : you can measure your weight on a scale in your bathroom or
on a fast train . But you can’t do that at elevator.

Caution A body’s weight is not its mass.

For example : The body has mass m, then the weight is different from the
earth and moon because the acceleration on the mooniis only 1.6 m/s?

On Earth On the moon
Mass = 0.3 Kg Mass = 0.3 Kg
p_— g= 9.8 m/s? a= 1.6 m/s?
- W=(0.3) (9.8)=2.9N W= (0.3) (1.6) = 0.49 N




3- The normal force F,

When a body presses against a surface , the surface (even a seemingly

rigid one ) deforms and pushes on the body with a normal force F that
is perpendicular to the surface .

(Facry = ma,) I?No Y_,
FN p
Fy — F, = ma,. Bloc Bloc
. &
Fy —mg = ma,.
. F
Fy =mg + ma,=m(g + a,) o L il

If the table and block are not accelerating g = ()

Fy =mg

Page 97

CHECKPOINT 3 InFig 57, is the magnitude of the normal force Fy greater
than, less than, or equal to mg if the block and table are in an elevator moving upward
(a) at constant speed and (b) at increasing speed?

Fy=mg + ma,=m(g + a,) Normal force Fy

(@) (h

FIG. 5.7 (a)A block resting on a_
table experiences a normal force K
perpendicular to the tabletop. (b)
The free-body diagram for the block.

10



4- Friction

IF we slide a body on a surface the motion is resisted by a
bonding between the body and the surface .

—

fi| Is directed a long the surface, but in opposite the
direction of motion.

Direction of
ey attempted

: slide

s o

7

5- Tension

IF a cord or rope or other such object is attached to a body,
the cord pull’s on the body with T

T is directed away from the body and a long the cord .

11



CHECKPOINT 4  The suspended body in Fig. 5-9¢ weighs 75 N. Is T equal to, Page 97
greater than, or less than 75 N when the body is moving upward (a) at constant speed,
(b) at increasing speed, and (c) at decreasing speed?

5-8 Newton's Third Law

Newton's Third Law: When two bodies interact, the forces on the bodies from each
other are always equal in magnitude and opposite in direction.

*The action and reaction forces are in opposite directions

Book B i Crate €

ch B C fCB

—0 66—

_,ch = - _,fca (equal magnitudes and opposite directions).

Fpc= Fcp  (equal magnitudes)

Another Example:
Fr :force from table on the Cantaloupe
A (action)
Force from cantaloupe on the table
(reaction)

Cantalpuge: C

H Table T

Cantaloupe pulls ¥ £,  earthpulls on

on the earth.(Reaction) Eah £ Cantaloupe .(Action) 12



5-9 Applying Newton's Law

Sample Problem_ | Build your skill__page 100
Figure 5-13 shows a block § (the sliding block) with
mass M = 3.3 kg The block is free to move along a hori-
zontal frictionless surface and connected, by a cord that
wraps over a frictionless pulley, to a second block #
(the hanging block), with mass m = 2.1 kg. The cord
and pulley have negligible masses compared to the

blocks (they are “massless™). The hanging block Z7 falls
as the sliding block S accelerates to the right. Find (a)
the acceleration of block 3 ib; the acceleration of block

H ., and (c) the tension in the cord.

Shiching

Frictionless
surface

FIG.5-13 A block S of mass M is connected to a block H of
mass oz by a cord that wraps over a pulley.

y
L y
;‘; _-a..o lL
4R T
M T4 x M ¥
\ » N Hanging
Rl Shidin a F
F 8 & block H
& block S !
v
(a) L]

FIG.515 (a) A free-body diagram for block § of Fig. 5-13. (b)

A free-body diagram for block H of Fig. 5-13. FIG.5-14 The forces acting on the two blocks of Fig. 5-13.

13



Sample Problem E page 101

In Fig. 5-16a, a cord pulls on a box of sea biscuits up

along a frictionless plane inclined at

6 = 30°. The box

has mass m = 5.00 kg, and the force from the cord has
magnitude T = 25.0 N. What is the box’s acceleration

component a along the inclined plane?

m=5Kg
T=25N

6 =30°

F, . = ma
T—-F, =ma

T— mgsin@ = ma

FIG. 5-16 (a)A boxis
pulled up a plane by a
cord. (b) The three
forces acting on the
box: the cord’s force 7.
the gravittional force
Fg. and the normal force
Fy. (¢) The components
of F, along the plane
and pependicular

toit,

a
m

_ T— mgsin@ N 25—(5)(9.8)sin 30 =.1m/52

5

14



In Fig. 5-19a, a passenger of mass m = 72.2 kg stands on
a platform scale in an elevator cab. We are concerned

with the scale readings when the cab is stationary and if’f’::’*:’:‘:’“ﬂ:‘:'

when it is moving up or down. 008 iy o %4 0002

ook
RS SR

FIG.519 (a)Apas- | X | {5252;'

senger standson aplat- |

form scale that indi-

cates either his weight

or his apparent weight.

(b) The free-body dia-

gram for the passenger,

showing the normal

force Fy on him from

the scale and the gravi-

tational force F;,

(a) Find a general solution for the scale reading, what-
ever the vertical motion of the cab.

m=722Kg
F

net

Fy=m(a+ g)

=ma— Fy—F,=ma— Fy=mg+ma

(b) What does the scale read if the cab is stationary or
moving upward at a constant 0.50 m/s?

m=72.2
v=.5m/s
a=>0

Fy=ma+g)—> Fy=m0+g)—> Fy=mg
F, =(72.2)(9.8)
F, =708N

15




(c) What does the scale read if the cab accelerates
upward at 3.20 m/s* and downward at 3.20 m/s*?

a=32 m/S2 Upward
Fy=ma+g)—> Fy=722(3.2+9.8)
F, =939N

a=-32 m/ s’ Downward
Fy=m(a+g)—> F,=72.2(-3.2+9.8)
Fy=47TN

(d) During the upward acceleration in part (c), what is
the magnitude F, of the net force on the passenger,

Fnet = FNU_ Fg o
Fnet =939 — (722)(98)
Fnet =231IN
sample Problem [ Build your skil —

In Fig. 5-20a, a constant horizontal force f:pp of magni-
tude 20 N is applied to block A of mass m, = 4.0 kg,

(a) What is the acceleration of the blocks?

(b) What is the (horizontal) force Fy, on block B from _
block A (Fig.5-20¢)?

(a) (&) ()

16



6-1

Chapter 6

Force and Motion - II

In this chapter, we will study two types of forces: friction

force and centripetal force.

6-2 Friction There are two types of friction force:

1- static friction force

2- kinetic friction forces

§ e >

fs

(h

v

(a)A block lies on

a table, so friction

force = zero

The block in (b),
(c), (d) is not
moving, then
static friction
force = applied
force in
magnitude but
opposite
direction

(e) The block is

along the surface. The
friction force is called
kinetic friction force

(f) The block moves at
constant velocity

accelerating in direction
| of F. The block slides

| Maximum value of g
fi I8 approximately
constant -
\

\

\
NI et e PN NN

fricnonal torce

Magnitude of

_— Breakaway
.

|
|
|
|
|
|
|
|
I

(2) Time

FIG. 61 (a)The forces on a stationary
block. (b—d) An external force F,ap-
plied to the block, is balanced by a sta-
tic frictional force 7, As Fis increased,

f, also increases, until £, reaches a cer-

tain maximum value. (¢) The block
then “breaks away,” accelerating
suddenly in the direction of F. (f) If
the block 1s now to move with constant
velocity, F must be reduced from the
maximum value it had just before the
block broke away. (g) Some experi-
mental results for the sequence (a)
through (f).



6-3 Properties of Friction

*Pmperty 1. If the body does not move. then the static frictional force f, and
the component of F that is parallel to the surface balance each other. They
are equal in maguitude,and 7, is directed opposite that component of F.

Property 2. The magnitude of 7, has a maximum value fe.max that is given by
fs.max = #JF."-"*

where g, 15 the coefficient of static frietion and Fy is the magnitude of the
normal force on the body from the surface. If the magnitude of the compo-
nent of 7 that is parallel to the surface exceeds £, ..., then the body begins to
slide along the surface.

* Property 3. If the body begins to slide along the surface, the magnitude of the
frictional force rapidly decreases to a value £, given by

[ = miFy, (6-2)

where gy is the cocfficient of kinetic friction. Thereafter, during the sliding,
a kinetic frictional force }; with magnitude given by Eq. 6-2 opposes the
motion.

The coefficients p, and u; are dimensionless and must be determined experi-
mentally. Their values depend on certain properties of both the body and the
surface

CHECKPOINT 1 A block lies on a floor. {a) What is the magnitude of the
frictional force on it from the floor? (b) If a horizontal force of 5 N is now applied to
the black, but the block does not move, what is the magnitude of the frictional force on
it? (c) If the maximum value f; o of the static frictional force on the block is 10 N, will
the block move if the magnitude of the horizontally applied force is 8 N? (d) If it is 12
N? (e) What is the magnitude of the frictional force in part (c)?

Answer: (a) zero (b) 5 N (c) no (d) yes (e) 8 N



- Sample Problem

If a car’s wheels are “locked” (kept from rolling) during __~@ L N L., " .
emergency braking, the car slides along the road. | S
Ripped-off bits of tire and small melted sections of road
form the “skid marks”™ that reveal that cold-welding (a)
occurred during the slide. The record for the longest

skid marks on a public road was reportedly set in 1960 )

by a Jaguar on the M1 highway in England (Fig. 6-3a)— A Fy
the marks were 290 m long! Assuming that gz, = 0.60
and the car’s acceleration was constant during the brak-

ing, how fast was the car going when the wheels became
locked? - = :

Answer: To find the car's initial speed, we can

use the constant acceleration equation because -
£
the acceleration is constant T

v = v§ + 2a(x — xp)
—fk = ma.

__Je _ g
a=— "= T T TH&E

= (-0.6) (9.8) = -5.88 m/s”

Acceleration is in negative direction of x axis

|

Sample Problem
y

In Fig. 6-4a, a block of mass m = 3.0 kg slides along a |_
floor while a force F of magnitude 12.0 N is applied to it X
at an upward angle 8. The coefficient of kinetic friction
between the block and the floor is u, = 0.40.

What is the acceleration of the block?

B 0

‘: a '



6-5 Uniform Circular Motion

From Section 4.7, recall that when a body moves in a circle (or a circular arc) at
constant speed v, it is said to be in uniform circular motion. Also recall that the
body has a centripetal acceleration (directed toward the center of the circle) of
constant magnitude given by

2
v
a= R (centripetal acceleration), (6-17)

where K is the radius of the circle.
We have three exampl es

1- Rounding a curve in a car: in this situation, centripetal force is

frictional force on the tires from the road

2- Orbiting Earth: in this situation,

cetripetal force is gravity force

A centripetal force accelerates a body by changing the direction of the body’s

velocity without changing the body's speed.

From Newton's second law and Eq. 6-17 (a = v*/R), we can write the magnitude
F of a centripetal force (or a net centripetal force) as

-
=

F= m? (magnitude of centripetal force). (6-18)

Because the speed v here is constant, the magnitudes of the acceleration and the
force are also constant.



/C HECKPOINT 2 When you ride in a Ferris wheel at constant speed, what are
the directions of your acceleration @ and the normal force Fy on you (from the always
upright seat) as you pass through (a) the highest point and (b) the lowest point of the
ride?

Answer: (a) a downward, Fy upward (b) a and Fy upward

Sample Problem m

Igor is a cosmonaut on the International Space Station,
in a circular orbit around Earth, at an altitude h of
520 km and with a constant speed v of 7.6 km/s. Igor’s
mass m is 79 kg.

(a) What is his acceleration?

Answer:

Ry is Earth’s radius (6.37 X 10°m,

2
v ve

R Rg+h
3 (7.6 X 10* m/s)?
6.37 X 10°m + 0.52 X 10°m

= 8.38 m/s? = 8.4 m/s2. (Answer)

L]

a=

(b) What force does Earth exert on Igor?

F, = ma = (79 kg)(8.38 m/s?)
= 662 N == 660 N. (Answer)



Chapter 7

Kinetic Energy and Work

7-2 | What Is Energy?

energy is a scalar quantity associated with the state (or condition) of one or more
objects.
Energy is a number that we associate with a system of one or more objects.

If a force changes one of the objects by, say, making it move, then the energy number changes.

Energy can be transformed from one type to another and transferred from one
object to another, but the total amount is always the same (energy is conserved).

7-3 | Kinetic Energy

Kinetic energy K is energy associated with the state of motion of an object.

For an object of mass m whose speed v is well below the speed of light

K = %mv2 (kinetic energy).

For example, a 3.0 kg duck flying past us at 2.0 m/s

K=6)J
The ST unit of kinetic energy is the joule (J).

1joule = 1J = 1kg-m?%s>

Sample Problem

In 1896 in Waco, Texas, William Crush parked two loco-
motives at opposite ends of a 6.4-km-long_track, fired
them up, tied their throttles open, and then allowed
them to crash head-on at full speed (Fig. 7-1) in front of
30,000 spectators. Hundreds of people were hurt by
flying debris; several were killed. Assuming each loco-
motive weighed 1.2 X 10° N and its acceleration was a
constant 0.26 m/s?, what was the total kinetic energy of
the two locomotives just before the collision? -




v = v} + 2a(x — x,).

With v =0 and x — x; = 3.2 X 10° m (half the initial
separation), this yields

v =0+ 2(026 m/s?)(32 X 10° m),

or v=40.8 m/s

(about 150 km/h).
We can find the mass of each locomotive by divid-

ing its given weight by g:
12 Xx10°N
YT

we find the total kinetic energyof the two locdmoiivesjust before the collision as

=122 x 105kg.

K = 2(zmv?) = (122 X 10° kg)(40.8 m/s)’
= 2.0 X 10%]. (Answer)

7-4 | Work

If you accelerate an object to a greater speed by applying a force to the object,
you increase the kinetic energy K (= 5 mv?) of the object. Similarly, if you decel-
erate the object to a lesser speed by applying a force, you decrease the kinetic
energy of the object. We account for these changes in kinetic energy by saying
that your force has transferred energy 7o the object from yourself or from the
object to yourself In such a transfer of energy via a force, work W is said to be
done on the object by the force. More formally, we define work as follows:

Work W is energy transferred to or from an object by means of a force acting on the

object. Energy transferred to the oslect is positive work, and energy transferred from
the object is negative work.

% Work has the same units as énergy and is a scalar quantity.

% we shall use the symbol W only for work and shall represent a weight with its equivalent mg.



7-5 | Work and Kinetic Energy

| ) Work done by constant force:

Let us find an expression for work by considering a bead that can slide along
a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant
force F, directed at an angle ¢ to the wire, accelerates the bead along the wire.

v We can relate the force and the acceleration with Newton’s second law, written
for components along the x axis:

F. = ma,, (7-3)

FIG. 7-2
vi=vi+2ad.  (7-4)

1 i
tmvt —smvi = Ed. (7-5)

W=Fd (7-6)

To calculate the work a force does on an object as the object moves through some
displacement, we use only the force component along the object’s displacement. The
force component perpendicular to the displacement does zero work.

W = Fdcos¢  (work done by a constant force). (7-7)

where ¢ is the angle between the directions of the displacement d and the force F.’

W =F-d  (work done by aconstant force), (7-8)

w Cautions:
First, the force must be a constant force;

Second, the object must be particle-like.



* Signs for work.

A force does positive work when it has a vector component in the same direction
as the displacement, and it does negative work when it has a vector component in the
opposite direction. It does zero work when it has no such vector component.

when¢ =90° = cos¢p=0=> W =0
when ¢ < 90° = cos¢p = +ve = W = +ve
when ¢ > 90°(up to 180°) = cos¢p = —ve = W = —ve

* Units for work.
Work has the SI unit of the joule.
1J=1kg'm*s*=1N-m

* Net work done by several forces.

We can calculate the net work in two ways.

1) |Find the work done by
each force and then sum
those works

W1 = F]_d
WZ = de
W3 - F3d

Wnet = W1+ Wz+ W3+'”

2) |Find the net force F.. then

Whet = (Free)d cos ¢,

where ¢ is the angle between ﬁnet and d



Il) Work-Kinect Energy Theorem

Equation 7-5 relates the change in kinetic energy of the bead (from an initial
K= 'Emvé to a later Ky = %mvz) to the work W (= F.d) done on the bead. For
such particle-like objects, we can generalize that equation. Let AK be the change
in the kinetic energy of the object, and let W be the net work done on it. Then

AK=K;— K, =W, (7-10)
which says that

(change in the k'metic) - (net work done on)
energy of a particle | the particle
We can also write

K=K, + W, (7-11)
which says that

kinetic energy after ) _( kinetic energy ( the net
the net work is done/ ~ \ before the net work work done )

For example, if the kinetic energy of a particle is initiallv 5 J and there is a
pet transfer of 2 J to the particle (positive net work), the final Kinetic energy is
7 J.If, instead. there is a net transfer of 2 J from the particle (negative net work),
the final kinetic energy is 3 J.

CHECKPOINT 1 A particle moves along an x axis. Does the kinetic energy of
the particle increase, decrease, or remain the same if the particle’s velocity changes
(a) from —3 m/s to —2 m/s and (b) from —2 m/s to 2 m/s? (c) In each situation, is the
work done on the particle positive, negative, or zero?

(a) decrease
(b) same

(c) Work done in (a) is negative and (b) is zero



Sample Problem

Figure 7-4a shows two industrial spies slidm% an mmally
stationary 225 kg floor safe a displacement d of magni-
tude 8.50 m, straight toward their truck. The push F , of
spy 001 is 12.0 N, directed at an angle of 30.0° down-
ward from the horizontal; the pull £ of spy 002 is
10.0 N, directed at 40.0° above the horizontal. The mag-
nitudes and directions of these forces do not change as
the safe moves, and the floor and safe make frictionless

contact.

(a) What is the net work done on the safe by forces F,
and F, during the displacement d?

Calculations: From Eq. 7-7 and the free-body diagram

for the safe in Fig. 7-4b, the work done by F,is
W, = Fid cos ¢, = (12.0 N)(8.50 m)(cos 30.0%)
= 88.33],
and the work done by F, is
W, = Fyd cos ¢, = (10.0 N)(8.50 m)(cos 40.0%)
=65.111.
Thus, the net work Wis
W=W,+W,=8833]+65.11]

=1534J ~153]. (Answer)

(b) During the displacement, what is the work W, done
on the safe by the gravitational force F and what is the
work Wy done on the safe by the nonnal force FN from
the floor?

Calculations: Thus, with mg as the magnitude of the
gravitational force, we write

W, = mgd cos 90° = mgd(0) =0 (Answer)
and Wy = Fyd cos90° = Fod(0) = 0. (Answer)

Safe




(c) The safe is initially stationary. What is its speed v, at
the end of the 8.50 m displacement?

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

W =K;— K, =1mv} — gmvi.

The initial speed v; is zero, and we now know that the
work done is 153.4 J. Solving for v;and then substituting
known data, we find that

o \lzw B \/2(153.4J)
r~ m 225kg

= 1.17 m/s. (Answer)

Sample Problem

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement d = (—3.0 m)i
while a steady wind pushes against the crate with a
force F = (2.0 N)i + (—6.0 N)j.'Ihe situation and coor-
dinate axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate
during the displacement?

(b) If the crate has a kinetic energy of 10J at the
beginning of displacement d, what is its kinetic energy
at the end of d?

(@ W=F-d=-601

(b) K;=K,+ W=10J+(—6.0J)=4.0J. (Answer)



7-6 | Work Done by the Gravitational Force

W = Fd cos ¢

Wy = Fgd cos¢
W,=mgdcos¢  (workdone by gravitational force)

For a rising obiject, force F, is directed opposite the displacement d.

W, = mgd cos 180° = mgd(—1) = —mgd.

For falling object force F, is directed along the displacement d

W, = mgd cos 0° = mgd(+1) = +mgd



Sample Problem

One of the lifts of Paul Anderson (Fig. 7-8) in the 1950s
remains a record: Anderson stooped beneath a rein-
forced wood platform, placed his hands on a short stool
to brace himself, and then pushed upward on the plat-
form with his back, lifting the platform straight up by 1.0
cm. The platform held automobile parts and a safe filled
with lead, with a total weight of 27 900 N (6270 Ib). —g=

(a) As Anderson lifted the load, how much work was
done on it by the gravitational force F,?

Answer:

W, = mgd cos ¢ = (27 900 N)(0.010 m)(cos 180°)
= —2801J.

7-7 | Work Done by a Spring Force

The Spring Force

Figure 7-11a shows a spring in its relaxed state—that is, neither compressed nor
extended. One end is fixed, and a particle-like object—a block, say—is attached
to the other, free end. If we stretch the spring by pulling the block to the right as
in Fig. 7-11b, the spring pulls on the block toward the left. (Because a spring

force acts to restore the relaxed state, it is sometimes said to be a restoring force.)
If we compress the spring by pushing the block to the left as in Fig. 7-11c, the
spring now pushes on the block toward the right.

X

£

Black
attached
10 spring

0
0

FIG. 7-11 (a) A spring in its relaxed

state. The origin of an x axis has been
* placed at the end of the spring that is
attached to a block. (b) The block is
displaced by d, and the spring is
stretched by a positive amount x.
Note the restoring force F, exerted
by the spring. (¢) The spring is com-
pressed by a negative amount x.
Again, note the restoring force.

o—

(a)

x positive
I, negative ’i;

L——-.t—bl
0

(b)

X negative
F, posiuve




.The spring force is given by
F—.', = —kd (Hooke's law),

17 The constant k is called the spring constant (or force constant)
7.r. The ST unit for  is the newton per meter.
¢ The minus sign indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.

F.=—kx  (Hooke’slaw),

The Work Done by a Spring Force
W, = J T F, de

.I, Ry
w,=f —kx dx = —kf'xdx

= (—3R)[¥J = (—3K)(xF — ¥ (7-24)
Multiplied out, this yields

W, = %kx,'2 = ;—kx} (work by a spring force). (7-25)

Work W, is positive if the block ends up closer to the relaxed position (x = 0) than it

was initially. It is negative if the block ends up farther away from x = 0. It is zero if the
block ends up at the same distance from x = 0.

If x; > xp= Ws = +ve
If xp > x; = W = —ve
If x; = 0 and if we call the final position x, then Eq. 7-25 becomes
W, =—1kx®  (workbyaspring force). (7-26)

CHECKPOINT 2 For three situations, the initial and final positions, respec-
tively, along the x axis for the block in Fig.7-11 are (a) —3 em, 2 em:(b) 2 em, 3 em: and
(c) =2 cm, 2 cm. In each situation, is the work done by the spring force on the block
positive, negative, or zero?

10



Sample Problem

A package of spicy Cajun pralines lies on a frictionless
floor, attached to the free end of a spring in the arrange-
ment of Fig. 7-11a. A rightward applied force of magni-
tude F, = 4.9 N would be needed to hold the package at
X, = 12 mm.

(a) How much work does the spring force do on the
package if the package is pulled rightward from x, = 0
tox, = 17 mm?

Answer:

eo B ___ 49N
X1 12X 1073 m

Now, with the package at x, = 17 mm, Eq.7-26 yields

= 408 N/m.

W, = —tkx} = —3(408 N/m)(17 X 107> m)?
= —0.059 J.

the spring force F, would have to be —4.9 N

(b) Next, the package is moved leftward to x;=
—12 mm. How much work does the spring force do on

the package during this displacement? Explain the sign
of this work.

Calculation: Now x; = +17 mm and x; = —12 mm, and
Eq.7-25 yields

W, = tkx? — 3kx} = 3k(x} — x})
= 1(408 N/m)[(17 X 107 m)? — (=12 X 107> m)?]
=0.030J = 30 mJ. (Answer)

This work done on the block by the spring force is
positive because the spring force does more positive
work as the block moves from x; = +17 mm to the
spring’s relaxed position than it does negative work as
the block moves from the spring’s relaxed position to
Xy, = —12 mm.

11



7-9 | Power

The time rate at which work is done by a force is said to be the power due to the
force. If a force does an amount of work W in an amount of time A, the average power

w
Poy = 2y (average power). (7-42)

The instantaneous power P is the instantaneous time rate of doing work, which
we can write as

P= dd_ptV (instantaneous power). (7-43)

The SI unit of power is the joulé ber second.

lwatt =1W =11J/s
1 horsepower = 1 hp = 550 ft-Ib/s = 746 W. (7-45)

1 kilowatt-hour = 1 kW -h = (10° W)(3600 s)
= 3.60 X 10fJ = 3.60 MJ. (7-46)

_ dW _ Fcosdx _ (ﬂ)
P=—=—"PF—=Fosé :

or P = Fvcos ¢. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product F-V,we may also write
the equation as

P=F-V (instantaneous power). (7-48)

CHECKPOINT 3 A block moves with uniform circular motion because a

cord tied to the block is anchored at the center of a circle. Is the power due to the force
on the block from the cord positive, negative, or zero?

12



Sample Problem

Figure 7-16 shows constant forces F, and F, acting on a
box as the box slides rightward across a frictionless
floor. Force F, is horizontal, with magnitude 2.0 N;
force F, is angled upward by 60° to the floor and has
magnitude 4.0 N. The speed v of the box at a certain
instant is 3.0 m/s. What is the power due to each force
acting on the box at that instant, and what is the net
power? Is the net power changing at that instant?

[

Frictionless B Z

FIG. 7-16 Two forces F, and F; act on a box that slides right-
ward across a frictionless floor. The velocity of the box is V.

Calculation: We use Eq. 7-47 for each force. For force
F,.at angle ¢, = 180° to velocity 7, we have

Py = Fiv cos ¢ = (2.0 N)(3.0 m/s) cos 180°
=—60W. (Answer)

This negative result tells us that force F,is transferring
energy from the box at the rate of 6.0 J/s.
For force F,, at angle ¢, = 60" to velocity 7, we
have
P> = F>v cos ¢, = (4.0 N)(3.0 m/s) cos 60°
= 6.0 W. (Answer)

This positive result tells us that force F, is transferring
energy fo the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers:

Ppu=P+ P,
=—60W+60W=0, (Answer)
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Chapter 9
Center of Mass and Linear Momentum

9-2 The Center of Mass

We define the center of mass (com) of a system of particles (such as a person) in
order to predict the possible motion of the system.

The center of mass of a system of particles is the point that moves as though (1) all of
the system’s mass were concentrated there and (2) all external forces were applied there.

()

Fig. 9-1 (a) A ball tossed into the air
follows a parabolic path. (b) The center
of mass (black dot) of a baseball bat
flipped into the air follows a parabolic
path, but all other points of the bat fol-
low more complicated curved paths.

(a: Richard Megna/Fundamental
Photographs)
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Systems of Particles

Figure 9-2a shows two particles of masses m; and m, separated by distance d. We have
arbitrarily chosen the origin of an x axis to coincide with the particle of mass m;. We
define the position of the center of mass (com) of this two-particle system to be

_ my

Xcom =

my + m, ©-1)

Suppose, as an example, that m, = 0. Then there is only one particle, of mass m;,,
and the center of mass must lie at the position of that particle; Eq. 9-1 dutifully reduces
t0 X oo, = 0.If m; = 0, there is again only one particle (of mass m,), and we have, as we
expect, X, = d. If m; = m,, the center of mass should be halfway between the two
particles; Eq. 9-1 reduces to x,,, = %d, again as we expect. Finally, Eq. 9-1 tells us that
if neither m, nor m, is zero, x,, can have only values that lie between zero and d; that
is, the center of mass must lie somewhere between the two particles.

Figure 9-2b shows a more generalized situation, in which the coordinate sys-
tem has been shifted leftward. The position of the center of mass is now defined
mix; + m,Xx,

as Xeom = (9-2)

my + m,
Note that if we put x; = 0, then x, becomes d and Eq. 9-2 reduces to Eq. 9-1, as
it must. Note also that in spite of the shift of the coordinate system, the center
of mass is still the same distance from each particle.

We can rewrite Eq.9-2 as

myx; + myx,

com = M ’ (9‘3)

X
in which M is the total mass of the system. (Here, M = m; + m,.) We can extend
this equation to a more general situation in which n particles are strung out along
the x axis. Then the total massis M = m; + m, + --- + m,,, and the location of the

center of mass is
mixy + myx; + maxs + -0+ mux,

xcom M

1 n
= gl m;x;. (9-4)

The subscript i is an index that takes on all integer values from 1 to n.

This is the center of mass
of the two-particle system.

my m
com * I com Shifting the axis
d ” " | d does not change
the relative position

of the com.

Mo

W&

(a) (b)

Fig. 9-2 (a) Two particles of masses m, and m, are separated by distance d. The dot
labeled com shows the position of the center of mass, calculated from Eq.9-1. (b) The
same as (a) except that the origin is located farther from the particles. The position of the
center of mass is calculated from Eq. 9-2.The location of the center of mass with respect to
the particles is the same in both cases.



If the particles are distributed in three dimensions, the center of mass must
be identified by three coordinates. By extension of Eq. 9-4, they are

1 & 1 & 1 &
- ﬁ igl m;x;, Yeom = ﬁ igl nm;y;, Zcom = ﬁ igl m;z;. (9'5)

We can also define the center of mass with the language of vectors. First
recall that the position of a particle at coordinates x;, y;, and z; is given by a posi-
tion vector:

F=x1+y) + zk (9-6)

Here the index identifies the particle, and i, j, and k are unit vectors pointing,
respectively, in the positive direction of the x, y, and z axes. Similarly, the position
of the center of mass of a system of particles is given by a position vector:

?com = 'xcomﬁi + ycomj + Zcomlz' (9-7)
The three scalar equations of Eq. 9-5 can now be replaced by a single vector
equation,
Teom = L ﬁ‘, mr; (9-8)
com M = rn

Sample Problem 1

150

Three particles of masses m; = 1.2 kg, m, = 2.5 kg, =
and m, = 3.4 kg form an equilateral triangle of edge

length a = 140 cm. Where is the center of mass of this 1

system? a a
504 ST |
Particle Mass (kg) x (cm) y (cm) |
2 ‘com =
1 1.2 0 0 !
2 25 140 0 O0m 50 om 100 150
3 34 70 120

The total mass M of the systemis 7.1 kg.
From Eq. 9-5, the coordinates of the center of mass are

o = % é S + m;;cz + msx;
_ (1.2 kg)(0) + (2.5 kg)(140 cm) + (3.4 kg)(70 cm)
7.1kg
= 83 cm (Answer)
13 my; + myy, + msy;
a0 Yo = 7 3y = T
(12 kg)(0) + (2.5 kg)(0) + (3.4 kg)(120 cm)
N 7.1kg
= 58 cm. (Answer)

the center of mass is located by the position vec-
tor 7., , which has components x,, and y .



9-3 | Newton’s Second Law for a System of Particles
i::lct = Macom

1. fnc, is the net force of all external forces that act on the system.

~ -

2. M is the total mass of the system. We assume that no mass enters or leaves the
system as it moves, so that M remains constant. The system is said to be closed.

3. @.om 1s the acceleration of the center of mass of the system.

Fnct.x o Macorn.x Fnct.y = Macom._v Fnct.: = Macom.:

Sample Problem m 7

G0 3
The three particles in Fig. 9-7a are initially at rest. Each i . 9
experiences an external force due to bodies outside the desy 8.0 kg
three-particle system. The directions are indicated, and
the magnitudes are Fy, =6.0N, F, =12N,and F; = 14 0
N. What is the acceleration of the center of mass of the =D s el 1 2 B3 % 8
system, and in what direction does it move? =1

9-4 Linear Momentum

In this section, we discuss only a single particle.
The linear momentum of a particle is a vector quantity p that is

defined as

—

P = mvV  (linear momentum of a particle), (9-22)

in which m is the mass of the particle and v is its velocity.

Eq. 9-22 tells us that p and v have the same direction. From Eq. 9-22,

the Sl unit for momentum is the kilogram.meter per second (kg . m/s).



Newton expressed his second law of motion in terms of
momentum:

-
W The time rate of change of the momentum of a particle is equal to the net force

acting on the particle and is in the direction of that force.

In equation form this becomes

_ dp
= (9-23)
In words, Eq. 9-23 says that the net external force F,, on a particle changes the
particle’s linear momentum p. Conversely, the linear momentum can be
changed only by a net external force. If there is no net external force, p cannot
change. As we shall see in Section 9-7, this last fact can be an extremely power-
ful tool in solving problems.

Manipulating Eq. 9-23 by substituting for p from Eq. 9-22 gives, for constant
mass m,

- dp d . dv
Foo = - dr (mV) =m o~ ma.

Thus, the relations F, net = dpldt and F net = ma are equivalent expressions of
Newton’s second law of motion for a particle.

\. CHECKPOINT 3

The figure gives the magnitude p of the linear momentum versus time ¢ for a particle mov-
ing along an axis. A force directed along the axis acts on the particle. (a) Rank the four re-
gions indicated according to the magnitude of the force, greatest first. (b) In which region
is the particle slowing?

Answer:

Consider slopes
and equation 9-
23

(a) 1,3, and then
2 and 4 tie (zero
force);

(b) 3




9-5 The Linear Momentum of a System of Particles

P=ﬁl+ﬁ2+ﬁ3+”'+ﬁn
. m171 -+ sz)’z -+ m3T;3 + - + m"V". (9-24)

If we compare this equation with Eq.9-17, we see that

P=Mv_, (linear momentum, system of particles),  (9-25)

which is another way to define the linear momentum of a system of particles:

a The linear momentum of a system of particles is equal to the product of the total
mass M of the system and the velocity of the center of mass.

If we take the time derivative of Eq. 9-25, we find

di)’ chom .
? =M —dt = Macom. (9'26)

Comparing Eqgs. 9-14 and 9-26 allows us to write Newton’s second law for a sys-
tem of particles in the equivalent form

~ _ dP
Foo = — (system of particles), (9-27)

where F,., is the net external force acting on the system. This equation is the gen-
eralization of the single-particle equation F,, = dp/dt to a system of many
particles. In words, the equation says that the net external force F‘:,el on a system
of particles changes the linear momentum P of the system. Conversely, the linear
momentum can be changed only by a net external force. If there is no net exter-
nal force, P cannot change.



9-7 Conservation of Linear Momentum

Suppose that the net external force F,,, (and thus the net impulse J) acting on a
system of particles is zero (the system is 1solated) and that no particles leave or

enter the system (the system is closed). Putting F,. =0in Eq. 9-27 then yields
dP/dt = 0,0r

P = constant  (closed, isolated system). (9-42)

In words,

: If no net external force acts on a system of particles, the total linear momentum P of
the system cannot change.

This result is called the law of conservation of linear momentum. It can also be
written as
P, = P} (closed, isolated system). (9-43)

In words, this equation says that, for a closed, 1solated system,

total linear momentum _ [total linear momentum
at some initial time ¢ at some later time ¢;

Caution: Momentum should not be confused with energy. In the sample prob-
lems of this section, momentum is conserved but energy is definitely not.

Equations 9-42 and 9-43 are vector equations and, as such, each is equivalent
to three equations corresponding to the conservation of linear momentum in
three mutually perpendicular directions as in, say, an xyz coordinate system.
Depending on the forces acting on a system, linear momentum might be
conserved in one or two directions but not in all directions. However,

-
W If the component of the net external force on a closed system is zero along an axis, then

the component of the linear momentum of the system along that axis cannot change.



\. CHECKPOINT 6

An initially stationary device lying on a frictionless floor explodes into two pieces,
which then slide across the floor. One piece slides in the positive direction of an x axis.
(a) What is the sum of the momenta of the two pieces after the explosion? (b) Can the

second piece move at an angle to the x axis? (¢) What is the direction of the momentum
of the second piece?

Answer:

No net
external force,

(a)0

(b) no

(c) -x




Sample Problem m

One-dimensional explosion: A ballot box with mass
m = 6.0 kg slides with speed v = 4.0 m/s across a friction-
less floor in the positive direction of an x axis. The box ex-
plodes into two pieces. One piece, with mass m; = 2.0 kg,
moves in the positive direction of the x axis at v; = 8.0 m/s.
What is the velocity of the second piece, with mass m,?



Section Exercises

sec.9-2 The Center of Mass

*1 A 2.00 kg particle has the xy coordinates (—1.20 m, 0.500 m),
and a 4.00 kg particle has the xy coordinates (0.600 m, —0.750 m).
Both lie on a horizontal plane. At what (a) x and (b) y coordinates
must you place a 3.00 kg particle such that the center of mass of the
three-particle system has the coordinates (—0.500 m, —0.700 m)?

1. We use Eq. 9-5 to solve for (x;,, y,).

(a) The x coordinates of the system’s center of mass is:
Solving the equation yields x3 =—-1.50 m.
(b) The y coordinates of the system’s center of mass is:

my, +myy, +myy,  (2.00kg)(0.500 m)+(4.00 kg)(~0.750 m)+(3.00 kg) y,

o I—— 2.00 kg +4.00 kg +3.00 kg
~-0.700 m.

Solving the equation yields y3 =-1.43 m.

sec.9-5 The Linear Momentum

of a System of Particles

*18 A 0.70 kg ball moving hori-

zontally at 5.0 m/s strikes a vertical

wall and rebounds with speed 2.0

m/s. What is the magnitude of the change in its linear momentum?

18. The magnitude of the ball’s momentum change is

10



Chapter 7

*+13  Figure 7-28 shows three
forces applied to a trunk that
moves leftward by 3.00 m over
a frictionless floor. The force
magnitudes are F; = 500N, F,
=0900N, and F; =3.00N, and

théindicited snglois g enig®, erwe Froblemld:
During the displacement. (a) what is the net work done on the
trunk by the three forces and (b) does the kinetic energy of the
trunk increase or decrease? =

*43 A 100 kg block is pulled

at a constant speed of 5.0 m/s

across a horizontal floor by an applied force of 122 N directed
37° above the horizontal. What is the rate at which the force
does work on the block? ssmnw

11



13. (a) The forces are constant, so the work done by any one of them is given by
W=F- a’ where d is the displacement. Force F is in the direction of the displacement,

)
= Fdcos@ = (5.00N)(3.00m)cos0°=15.0 J.

Force 1_52 makes an angle of 120° with the displacement, so

W, = F,dcos ¢ =(9.00N)(3.00m)cos120°=-13.5 J.

Force l_i is perpendicular to the displacement, so
W3 = Fsd cos ¢ = 0 since cos 90° = 0.
The net work done by the three forces is

W =W, +W,+W,=15.0T-13.5 J+0=+1.50 .

(b) If no other forces do work on the box, its kinetic energy increases by 1.50 J during the
displacement.

43. The power associated with force F is givenby P = F - ¥, where ¥ is the velocity
of the object on which the force acts. Thus,

P=F-V=Fvcos@=(122 N)(5.0 m/s)cos37°=4.9x10° W

12



