Test bank chapter (3)

Choose the correct answer

1. What is the mass, in grams, of one copper atom?
a) $1.055 \times 10^{-22} \mathrm{~g}$
b) $\quad 63.55 \mathrm{~g}$
c) 20 g
d) $1.66 \times 10^{-24} \mathrm{~g}$
2. Determine the number of moles of aluminum in 96.7 g of Al ?
a) 0.279 mol
b) $\quad 3.58 \mathrm{~mol}$
c) 7.43 mol
d) 4.21 mol
3. Which of the following samples contains the greatest number of atoms?
a) 100 g of Pb
b) 2.0 mole of Ar
c) 0.1 mole of Fe
d) 5 g of He
4. How many molecules are there in 0.11 g of formaldehyde $\left(\mathrm{CH}_{2} \mathrm{O}\right)$?
a) $\quad 6.1 \times 10^{-27}$
b) 3.7×10^{-3}
c) 4×10^{22}
d) 2.2×10^{21}
5. How many sulfur atoms are present in 25.6 g of $\mathrm{Al}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{3}$?
a) 0.393
b) 6×10^{-5}
c) 3.95×10^{22}
d) 2.37×10^{23}
6. The percent composition by mass of a compound is $76.0 \% \mathrm{C}, 12.8 \% \mathrm{H}$, and $11.2 \% \mathrm{O}$. The molar mass of this compound is $284.5 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of the compound?
a) $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}$
b) $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$
c) $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4}$
d) $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}$
7. What is the coefficient of $\mathrm{H}_{2} \mathrm{O}$ when the following equation is properly balanced with the smallest set of whole numbers?
\qquad
a) 3
b) 4
c) 6
d) 12
8. When 22.0 g NaCl and $21.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ are mixed and react according to the equation below, which is the limiting reagent?

$$
2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}
$$

a) $\mathrm{H}_{2} \mathrm{SO}_{4}$
b) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
c) HCl
d) NaCl
9. What are the coefficients, when the following equation is balanced?

$$
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a) $1,1,1,1$
b) $2,3,2,3$
c) $4,7,4,6$
d) $1,3,1,2$
10. How many moles of carbon atoms are in 4 moles of dimethyl sulfoxide $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}\right)$?
a) 2
b) 6
c) 8
d) 4

Explanation: This is based on reading the formula and correctly extracting information from it. The formula $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}$ indicates that every mole of this compound has 2 moles of carbon atoms in it. Thus 4 moles of the compound would have $4 \times 2=8$ moles of C atoms.
11. How many sulfur atoms are in 25 molecules of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$?
a) 20
b) 4.8×10^{25}
c) 3.0×10^{23}
d) 50

Explanation: The molecular formula indicates that every molecule of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$ has 2 sulfur atoms per molecule and hence 25 molecules of this compound will have $25 \times 2=50$ atoms of sulfur.
12. Calculate hydrogen atoms in 25 molecules of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$.
a) 25
b) 3.8×10^{24}
c) 6.0×10^{25}
d) 100

Explanation: The formula of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$ indicates that there are 4 hydrogen atoms per molecule and hence 100 hydrogen atoms in 25 molecules of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$.
13. How many grams of oxygen are in 65.0 g of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$?
a) 18
b) 29
c) 9.5
d) 35.8

Explanation: This question uses the mole to mole ratio between oxygen and $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$ and needs the following steps.

$$
\frac{65.0 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}}{58.0 \mathrm{~g} \cdot \mathrm{~mol}^{-1}} \times \frac{2 \text { moles } \mathrm{O}}{1 \mathrm{~mole} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}} \times \frac{15.99 \mathrm{~g} \mathrm{O}}{1 \text { mole of O }}=35.8 \mathrm{~g} \text { of O }
$$

14. How many moles of carbon dioxide are there in 52.06 g of carbon dioxide?
a) 0.8452
b) 1.183
c) 1.183×10^{23}
d) 8.648×10^{2}

Explanation: This is a straight-forward conversion from grams to moles of CO_{2} which is done as follows:

$$
52.06 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mole} \mathrm{CO}_{2}}{43.99 \mathrm{~g} \mathrm{CO}_{2}}=1.183 \text { moles of } \mathrm{CO}_{2}
$$

15. How many moles of magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$, are in a 2.35 g of this compound?
a) 38.4
b) 65.8
c) 0.0158
d) 0.0261

Explanation: This is a straight-forward conversion from grams to moles of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ which is done as follows:

$$
2.35 \mathrm{~g} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{1 \mathrm{~mole} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}{148.3148 \mathrm{~g}}=0.0158 \mathrm{moles}
$$

16. How many moles of ammonium ions are there in 25.5 g of ammonium carbonate?
a) 0.468
b) 0.288
c) 0.531
d) 2.00

Explanation: Realize that the formula for ammonium carbonate is $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ and calculate the molar mass ($96.0856 \mathrm{~g} / \mathrm{mol}$). Convert grams to moles and then using the stoichiometric ratio find the \# of moles of ammonium ions.

$$
25.5 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{96.0856 \mathrm{~g}} \times \frac{2 \mathrm{moles} \mathrm{NH}}{4}+\frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{10.531 \mathrm{moles}}
$$

17. Magnesium and nitrogen react in a combination reaction to produce magnesium nitride:

$$
\mathbf{3 M g}+\mathbf{N}_{2} \rightarrow \mathbf{M g}_{3} \mathbf{N}_{2}
$$

In a particular experiment, 5.47 g sample of N_{2} reacts completely. How many grams of Mg are needed for this reaction?
a) 14.2 g
b) 24.1 g
c) 16.1 g
d) 0.92 g

Explanation: Ensure that the equation is balanced. The grams of N_{2} must be converted to moles of N_{2} and then using the stoichiometric ratio between the Mg and N_{2}, the grams of Mg can be calculated.

$$
5.47 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mole}_{2}}{28.0134 \mathrm{~g}} \times \frac{3 \text { mole } \mathrm{Mg}}{1 \mathrm{~mole}_{2}} \times \frac{24.3050 \mathrm{~g} \mathrm{Mg}^{1 \mathrm{~mole} \mathrm{Mg}}}{1 \mathrm{Mg}}=14.2 \mathrm{~g} \mathrm{Mg}
$$

18. What information would you need to calculate the average atomic mass of an element?
a) The number of neutrons in the element.
b) The atomic number of the element.
c) The mass and abundance of each isotope of the element.
d) The position in the periodic table of the element.
19. The atomic masses of ${ }^{35} \mathrm{Cl}(75.53 \%)$ and ${ }^{37} \mathrm{Cl}(24.47 \%)$ are 34.968 amu and 36.956 amu , respectively. Calculate the average atomic mass of chlorine.
a) $\quad 35.96 \mathrm{amu}$
b) 35.45 amu
c) 36.47 amu
d) 71.92 amu
20. How many atoms are there in 5.10 moles of sulfur $\left({ }_{16} \mathrm{~S}=32 \mathrm{amu}\right)$?
a) 3.07×10^{24}
b) 9.59×10^{22}
c) 6.02×10^{23}
d) 9.82×10^{25}
21. Iodine has two isotopes ${ }^{126} \mathrm{I}$ and ${ }^{127} \mathrm{I}$, with the equal abundance. Calculate the average atomic mass of Iodine (${ }_{53} \mathrm{I}$).
a) 126.5 amu
b) 35.45 amu
c) 1.265 amu
d) 71.92 amu
22. The atomic masses of ${ }^{6} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}$ are 6.0151 amu and 7.0160 amu , respectively. Calculate the natural abundance of these two isotopes. The average atomic mass of Lithium $(\mathrm{Li}=6.941 \mathrm{amu})$.
a) ${ }^{6} \mathrm{Li}=7.49 \%,{ }^{7} \mathrm{Li}=92.51 \%$
b) ${ }^{7} \mathrm{Li}=7.49 \%,{ }^{6} \mathrm{Li}=92.51 \%$
c) ${ }^{6} \mathrm{Li}=8.49 \%,{ }^{7} \mathrm{Li}=95.51 \%$
d) ${ }^{7} \mathrm{Li}=7.22 \%,{ }^{6} \mathrm{Li}=82.51 \%$
23. How many atoms are present in 3.14 g of copper (Cu) ?
a) 2.98×10^{22}
b) 1.92×10^{23}
c) 1.89×10^{24}
d) $\quad 6.02 \times 10^{23}$
24. How many moles of NO_{2} can be produced by the reaction of 0.886 mole of NO with 0.503 mole of O_{2} according to the following chemical equation? (Note: First determine which is the limiting reagent).

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

a) 0.886 mol
b) 0.503 mol
c) $\quad 1.01 \mathrm{~mol}$
d) $\quad 1.77 \mathrm{~mol}$
25. How many kilograms of NH_{3} are needed to produce $1.00 \times 10^{5} \mathrm{~kg}$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ according to the following chemical equation?

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

a) $1.70 \times 10^{4} \mathrm{~kg}$
b) $3.22 \times 10^{3} \mathrm{~kg}$
c) $2.58 \times 10^{4} \mathrm{~kg}$
d) $7.42 \times 10^{4} \mathrm{~kg}$
26. When 3.60 moles of CO mixed with excess oxygen gas and CO_{2} is formed. Calculate no. of moles of CO_{2} produced.

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})
$$

a) $\quad 7.20 \mathrm{~mol}$
b) $\quad 44.0 \mathrm{~mol}$
c) 3.60 mol
d) $\quad 1.80 \mathrm{~mol}$
27. How many grams of $\mathrm{N}_{2} \mathrm{O}$ are formed if 0.46 mole of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is used in the following chemical reaction?

$$
\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}
$$

a) 2.0 g
b) $3.7 \times 10^{1} \mathrm{~g}$
c) $2.0 \times 10^{1} \mathrm{~g}$
d) $4.6 \times 10^{-1} \mathrm{~g}$
28. What is the theoretical yield of chromium that can be produced by the reaction of $40.0 \mathrm{~g} \mathrm{of} \mathrm{Cr}_{2} \mathrm{O}_{3}$ with 8.00 g of aluminum according to the chemical equation below?

$$
2 \mathrm{Al}+\mathrm{Cr}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr}
$$

a) 7.7 g
b) $\quad 15.4 \mathrm{~g}$
c) 27.3 g
d) 30.8 g
29. What is the percent yield of HF that can be produced by the reaction of 6.00 kg of CaF_{2} with an excess of $\mathrm{H}_{2} \mathrm{SO}_{4}$ which yield 2.86 kg of HF according to the following chemical equation?

$$
\mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{HF}
$$

a) 93.0%
b) 95.3%
c) 47.6%
d) 62.5%
30. Hydrochloric acid can be prepared by the following reaction:

$$
2 \mathrm{NaCl}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})
$$

How many grams of HCl can be prepared from 2.00 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 150 g of NaCl ?
a) 7.30 g
b) 93.5 g
c) 146 g
d) 150 g
31. Calculate the molar mass of $\mathrm{Li}_{2} \mathrm{CO}_{3}$.
a) $\quad 73.89 \mathrm{~g}$
b) $\quad 66.95 \mathrm{~g}$
c) 41.89 g
d) $\quad 96.02 \mathrm{~g}$
32. How many molecules of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ are present in 0.334 g of $\mathrm{C}_{2} \mathrm{H}_{6}$?
a) 2.01×10^{23}
b) 6.69×10^{21}
c) 4.96×10^{22}
d) 8.89×10^{20}
33. Out of these, which is the richest source of nitrogen on a mass percentage basis?
a) Urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
b) Ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$
c) Guanidine, $\mathrm{HNC}\left(\mathrm{NH}_{2}\right)_{2}$
d) Ammonia, NH_{3}
34. An analysis of Allicin (molar mass $\approx 162 \mathrm{~g} / \mathrm{mol}$) gives $\mathrm{C}: 44.4$ percent; $\mathrm{H}: 6.21$ percent; $\mathrm{S}: 39.5$ percent; O: 9.86 percent. What is its molecular formula?
a) $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~S}_{4} \mathrm{O}_{2}$
b) $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{SO}$
c) $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~S}_{2} \mathrm{O}$
d) $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~S}_{2} \mathrm{O}_{2}$
a) 2.13 mol
b) 0.456 mol
c) 0.154 mol
d) 0.308 mol
36. How many grams of sulfur (S) are needed to react completely with 246 g of mercury (Hg) to form HgS ?
a) 39.3 g
b) 24.6 g
c) $9.66 \times 10^{3} \mathrm{~g}$
d) 201 g
37. What is the mass of F (fluoride) in 24.6 g of Tin (II) fluoride $\left(\mathrm{SnF}_{2}\right)$?
a) 18.6 g
b) 24.3 g
c) 5.97 g
d) 75.7 g
38. What is the empirical formula of the compound with the following composition? 2.1 percent H , 65.3 percent O ,
32.6 percent S .
a) $\mathrm{H}_{2} \mathrm{SO}_{4}$
b) $\mathrm{H}_{2} \mathrm{SO}_{3}$
c) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
d) HSO_{3}
39. Which of the following equations is balanced?
a) $2 \mathrm{C}+\mathrm{O}_{2} \quad \rightarrow \quad \mathrm{CO}$
b) $2 \mathrm{CO}+\mathrm{O}_{2} \quad \rightarrow \quad 2 \mathrm{CO}_{2}$
c) $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow \mathrm{HBr}$
d) $2 \mathrm{~K}+\mathrm{H}_{2} \mathrm{O} \quad \rightarrow \quad 2 \mathrm{KOH}+\mathrm{H}_{2}$

