CHAPTER(4) Motion in Two and Three Dimensions

	1D	2/3 D
1-Position	In x-axis $\rightarrow x$	Position vector: (\vec{r})
	In y-axis → y	$\vec{r} = x i + y j + z k$
	In z-axis →z	
2-Displacement	$\Delta x = x_2 - x_1$	$\Delta \mathbf{r} = r_2 - r_1$
	$\Delta y = y_2^2 - y_1^2$	$\Delta r = \Delta x \mathbf{i} + \Delta y \mathbf{j} + \Delta z \mathbf{k}$
	$\Delta z = z_2 - z_1$	
3-Velocity:		Velocity Vector
-Average	_	$\mathbf{n} = \frac{\Delta \mathbf{r}}{r_2 - r_1}$
Velocity	$\mathbf{v}_{avg} = rac{\Delta x}{\Delta t}$	$O_{avg} = \frac{\Delta t}{\Delta t} = \frac{\Delta t}{\Delta t}$
	Δt	$= \frac{\Delta x}{At}i + \frac{\Delta y}{At}j + \frac{\Delta z}{At}k$
- Velocity	$\mathbf{v} = \frac{\mathbf{d}x}{\mathbf{d}t}$	$v_{avg} = \frac{\Delta r}{\Delta t} = \frac{r_2 - r_1}{\Delta t}$ $= \frac{\Delta x}{\Delta t} i + \frac{\Delta y}{\Delta t} j + \frac{\Delta z}{\Delta t} k$ $v = \frac{dr}{dt} = \frac{dx}{dt} i + \frac{dy}{dt} j + \frac{dz}{dt} k$ dr
		$v = \frac{dr}{dt} = v_x i + v_y j + v_z k$
		The direction of v of a particle is always
		tangent to the particle's path at the
4 4 7 4		particle's position.
4- Acceleration	Λα, Λα	$Au r_2 - r_4 \qquad Ar \qquad Av \qquad Az$
Average	$a_{avg} = \frac{\Delta v}{\Delta t} = \frac{\Delta x}{(\Delta t)^2}$	$a_{avg} = \frac{\Delta v}{\Delta t} = \frac{r_2 - r_1}{(\Delta t)^2} = \frac{\Delta x}{\Delta t^2} i + \frac{\Delta y}{\Delta t^2} j + \frac{\Delta z}{\Delta t^2} k$
acceleration:	$\Delta t (\Delta t)^2$	du du du
Acceleration	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2x}{\mathrm{d}t^2}$	$a = \frac{dv}{dt} = \frac{dv_x}{dt}i + \frac{dv_y}{dt}j + \frac{dv_z}{dt}k$
	$dt = dt^2$	$a = \frac{d^2r}{dt^2} = \frac{d^2x}{dt^2}i + \frac{d^2y}{dt^2}j + \frac{d^2z}{dt^2}k$
Magnitude &	W = (1)	$ V =V=\sqrt{{V_x}^2+{V_y}^2}$
Driection	$V = \underbrace{+}_{\text{magnitude}} $ magnitude	$\theta = \tan^{-1} \frac{V_y}{V_x}$
6-Uniform	//	V = (dir.) (mag.)
circular Motion	//	variable (tangent) Const. (speed= v)
		$a = (dir.) (mag.)$ variable (inward) $Const. (a = \frac{v^2}{r})$ $Period = T = \frac{Circumference(distance)}{r} = \frac{2\pi r}{r}$
174		$Period=T = {speed} = { v }$

المقذوفاتProjectiles

1D

Const. acceleration

الحركة الأفقية بتسارع ثابت

Horizontal motion(x-axis)

$$1-v=v_0+at$$

2-
$$x - x_0 = v_0 t + \frac{1}{2} a t^2$$

$$3-v^2=v_0^2+2\ a(x-x_0)$$

4-
$$x - x_0 = \frac{1}{2} (v + v_0) t$$

5-
$$x - x_0 = vt - \frac{1}{2}at^2$$

Free Falling الحركة العمودية بتسارع ثابت

Vertical motion(y-axis)

$$1-v=v_0-gt$$

2-
$$y - y_0 = v_0 t - \frac{1}{2} g t^2$$

$$\begin{vmatrix} 2 \cdot y - y_0 = v_0 t - \frac{1}{2} g t^2 \\ 3 \cdot v^2 = v_0^2 - 2 g (y - y_0) \end{vmatrix}$$

$$4-y-y_0=\frac{1}{2} (v+v_0) t$$

2D

Projectile motion

$$v_0 = v_{0x}i + v_{0y}j$$

Horizontal motion

$$a_x = 0$$
, $v_{0x} = v_0 \cos \theta$

1-
$$v_x = v_{0x}$$

$$2-x=v_{0x}t$$

Horizontal range (R)=

$$R = \frac{v_0^2}{g} \sin 2\theta$$

Maximum range

$$\theta = 45^0 \implies R_{max} = \frac{v_0^2}{g}$$

$$a = a_x i + a_y j$$

Vertical motion

$$a_y = -g$$
, $v_{0y} = v_0 \sin \theta$

1-
$$v_v = v_{0v} - g t$$

2-
$$y = v_{0y}t - \frac{1}{2}gt^2$$

3-
$$v_y^2 = v_{0y}^2 - 2 gy$$

Vertical height (H)=

$$H=rac{(v_0\sin heta)^2}{2g}$$
 , where $\,v_y=0\,$

Maximum height

$$\theta = 90^0 \implies H_{max} = \frac{v_0^2}{2g}$$

Problems:

- A particle goes from $x = -2 \,\mathrm{m}$, $y = 3 \,\mathrm{m}$, $z = 1 \,\mathrm{m}$ to $x = 3 \,\mathrm{m}$, $y = -1 \,\mathrm{m}$, $z = 4 \,\mathrm{m}$. Its displacement is:
 - Λ . $(1 \text{ m}) \hat{i} + (2 \text{ m}) \hat{j} + (5 \text{ m}) \hat{k}$
 - B. $(5 \text{ m}) \hat{i} (4 \text{ m}) \hat{j} + (3 \text{ m}) \hat{k}$
 - C. $-(5 \text{ m}) \hat{\mathbf{i}} + (4 \text{ m}) \hat{\mathbf{j}} (3 \text{ m}) \hat{\mathbf{k}}$
 - D. $-(1 \text{ m})\hat{i} (2 \text{ m})\hat{j} (5 \text{ m})\hat{k}$
 - E. $-(5 \text{ m}) \hat{i} (2 \text{ m}) \hat{j} + (3 \text{ m}) \hat{k}$

ans: B

- 2-A stone thrown from the top of a tall building follows a path that is:
 - A. circular
 - B. made of two straight line segments
 - C. hyperbolic
 - D. parabolic
 - E. a straight line

ans: D

3-A stone is thrown horizontally and follows the path XYZ shown. The direction of the acceleration of the stone at point Y is:

ans: A

- 4-A large cannon is fired from ground level over level ground at an angle of 30° above the horizontal. The muzzle speed is 980 m/s. Neglecting air resistance, the projectile will travel what horizontal distance before striking the ground?
 - A. 4.3 km
 - B. 8.5 km
 - C. 43 km
 - D. 85 km
 - E. 170 km

ans: D

- A projectile is fired from ground level over level ground with an initial velocity that has a 5vertical component of 20 m/s and a horizontal component of 30 m/s. Using g = 10 m/s², the distance from launching to landing points is:
 - A. 40 m
 - B. 60 m
 - C. 80 m
 - D. 120 m
 - E. 180 m

ans: D

6- An object, tied to a string, moves in a circle at constant speed on a horizontal surface as shown. The direction of the displacement of this object, as it travels from W to X is:

A. ← B. ↓ C. ↑ D. / E. ✓

ans: E

A toy racing car moves with constant speed around the circle shown below. When it is at point A its coordinates are $x=0,\ y=3\,\mathrm{m}$ and its velocity is $(6\,\mathrm{m/s})\,\hat{\mathrm{i}}$. When it is at point B its velocity and acceleration are:

- A. $-(6 \text{ m/s}) \hat{j}$ and $(12 \text{ m/s}^2) \hat{i}$, respectively
- B. $(6 \,\mathrm{m/s}) \,\hat{\mathrm{i}}$ and $-(12 \,\mathrm{m/s}^2) \,\hat{\mathrm{i}}$, respectively
- C. $(6 \text{ m/s})\hat{j}$ and $(12 \text{ m/s}^2)\hat{i}$, respectively
- D. $(6 \,\mathrm{m/s}) \,\hat{\mathrm{i}}$ and $(2 \,\mathrm{m/s}^2) \,\hat{\mathrm{j}}$, respectively
- E. $(6 \,\mathrm{m/s})\,\hat{\mathrm{j}}$ and 0, respectively

ans: C

- 8- An object is moving on a circular path of radius π meters at a constant speed of $4.0\,\mathrm{m/s}$. The time required for one revolution is:
 - A. $2/\pi^2$ s
 - B. $\pi^2/2 \, \text{s}$
 - C. $\pi/2s$
 - D. $\pi^2/4$

E. $2/\pi s$

ans: B

- 9- A particle moves at constant speed in a circular path. The instantaneous velocity and instantaneous acceleration vectors are:
 - A. both tangent to the circular path
 - B. both perpendicular to the circular path
 - C. perpendicular to each other
 - D. opposite to each other
 - E. none of the above

ans: C

- A car rounds a 20-m radius curve at 10 m/s. The magnitude of its acceleration is:
 - A. 0
 - $B.~~0.20\,\mathrm{m/s^2}$
 - C. $5.0 \,\mathrm{m/s}^2$
 - D. $40 \,\mathrm{m/s^2}$
 - E. $400 \,\mathrm{m/s^2}$

ans: C