Chapter 2 Lecture

Conceptual

Chapter 2:

 Patterns of Motion and Equilibrium

This lecture will help you understand:

- Aristotle on Motion
- Galileo's Concept of Inertia
- Mass-A Measure of Inertia
- Net Force
- The Force of Friction
- Speed and Velocity
- Acceleration

Aristotle on Motion

- Aristotle classified motion into two kinds:
- Natural motion-motion that is straight up or straight down
- Violent motion-imposed motion resulting from an external push or pull
- Two assertions of Aristotle
- Heavy objects fall faster then light objects
- moving objects must have forces exerted on them to keep them moving.

Galileo's Concept of Inertia

- Italian scientist Galileo demolished Aristotle's
assertions in early 1500s.
- In the absence of a force, objects once set in motion
tend to continue moving indefinitely.

Initial position

Galileo's Concept of Inertia

- Discovery:
- In the absence of friction, no force is necessary
to keep a horizontally moving object moving.

Galileo's Concept of Inertia

- Experiment:
- Balls rolling down inclined planes and then up others tend to roll back up to their original heights.

Galileo's Concept of Inertia

- Conclusion:
- The tendency of a moving body to keep moving is natural—every material object resists change in its state of motion. This property of things to resist changes in motion is called inertia.

Mass—A Measure of Inertia

The amount of inertia possessed by an object depends on the amount of matter-the amount of material that composes it-its mass:
greater mass \Rightarrow greater inertia
smaller mass \Rightarrow smaller inertia

Mass—A Measure of Inertia

- Mass
- Quantity of matter in an object
- Measure of inertia or sluggishness that an object exhibits in response to any effort made to start it, stop it, or change its state of motion in any way

Mass-A Measure of Inertia

- Weight
- Amount of gravitational pull on an object
- Proportional to mass

Twice the maSS \Rightarrow twice the weight
Half the mass \Rightarrow half the weight

Mass—A Measure of Inertia

- Mass versus volume:
- Mass involves how much matter an object contains
- Volume involves how much space an object occupies

Mass—A Measure of Inertia

- Kilogram
- standard unit of measurement for mass
- on Earth's surface, 1 kg of material weighs 10 newtons
- Away from Earth
(on the Moon),
1 kg of material weighs less than

10 newtons

Mass—A Measure of Inertia

Measure of compactness

- Density is the measure of how much mass occupies a given space
- Equation for density:

$$
\text { Density }=\frac{\text { mass }}{\text { volume }}
$$

in grams per cubic centimeter ($\mathrm{g} / \mathrm{cm}^{3}$) or
kilograms per cubic meter $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$

Mass—A Measure of Inertia CHECK YOUR NEIGHBOR

The density of 1 kilogram of iron is
A. less on the Moon.
B. the same on the Moon.
C. greater on the Moon.
D. All of the above.

Mass—A Measure of Inertia CHECK YOUR ANSWER

The density of 1 kilogram of iron is
A. less on the Moon.
B. the same on the Moon.
C. greater on the Moon.
D. All of the above.

Explanation:

Both mass and volume of 1 kilogram of iron is the same everywhere, so density is the same everywhere.

Net Force

- Force
- simply a push or a pull
- Net force
- combination of all forces that act on an object
- changes an object's motion

Net Force CHECK YOUR NEIGHBOR

A cart is pushed to the right with a force of 15 N while being pulled to the left with a force of 20 N . The net force on the cart is
A. 5 N to the left.
B. 5 N to the right.
C. 25 N to the left.
D. 25 N to the right.

Net Force CHECK YOUR ANSWER

A cart is pushed to the right with a force of 15 N while being pulled to the left with a force of 20 N . The net force on the cart is
A. 5 N to the left.
B. 5 N to the right.
C. 25 N to the left.
D. 25 N to the right.

The Force of Friction

- Friction
- The resistive force that opposes the motion or attempted motion of an object through a fluid or past another object with which it is in contact
- always acts in a direction to oppose motion

The Force of Friction

- Friction (continued)
- Between two surfaces, the amount depends on the kinds of material and how much they are pressed together
- Due to surface bumps and also to the stickiness of atoms on the surfaces of the two materials

Speed and Velocity

- Speed is described as the distance covered per amount of travel time

Equation for speed:

Speed = distance covered travel time

- Velocity is "directed" speed.

Speed and Velocity

- Average speed
- is total distance traveled divided by travel time
- Equation:
average speed $=$

total distance covered travel time

- Instantaneous speed
- is speed at any instant of time

Speed and Velocity CHECK YOUR NEIGHBOR

The average speed in driving 30 km in 1 hour is the same average speed as driving
A. 30 km in one-half hour.
B. 30 km in two hours.
C. 60 km in one-half hour.
D. 60 km in two hours.

Speed and Velocity CHECK YOUR ANSWER

The average speed in driving 30 km in 1 hour is the same average speed as driving
A. 30 km in one-half hour.
B. 30 km in two hours.
C. 60 km in one-half hour.
D. 60 km in two hours.

Motion is Relative

- Everything is always moving.
- At this moment, your speed relative to the Sun is about 100,000 kilometers per hour.
- When we say a space shuttle travels at 30,000 kilometers per hour, we mean relative to the Earth.

Acceleration

Slope downwardSpeed increases

- Galileo first formulated the
concept of acceleration in
his experime
inclined planes.

with

Slope upward-
Speed decreases

No slopeDoes speed change?

Acceleration

- Acceleration is the rate at which velocity changes with time. The change in velocity may be in magnitude, in direction, or both.

- Equation for acceleration:

Acceleration $=\frac{\text { change of velocity }}{\text { time interval }}$

Acceleration

- Free fall
When the only force
acting on a falling object is gravity, (with negligible air resistance), the object is in a state of free fall.

Acceleration CHECK YOUR NEIGHBOR

If a falling object gains $10 \mathrm{~m} / \mathrm{s}$ each second it falls, its acceleration is
A. $10 \mathrm{~m} / \mathrm{s}$.
B. $10 \mathrm{~m} / \mathrm{s}$ per second.
C. Both of the above.
D. Neither of the above.

Acceleration CHECK YOUR ANSWER

If a falling object gains $10 \mathrm{~m} / \mathrm{s}$ each second it falls, its acceleration is
A. $10 \mathrm{~m} / \mathrm{s}$.
B. $10 \mathrm{~m} / \mathrm{s}$ per second.
C. Both of the above.
D. Neither of the above.

Explanation:

It is common to express $10 \mathrm{~m} / \mathrm{s}$ per second as $10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, or $10 \mathrm{~m} / \mathrm{s}^{2}$.

Acceleration CHECK YOUR NEIGHBOR

A free-falling object has a speed of $30 \mathrm{~m} / \mathrm{s}$ at one instant. Exactly one second later its speed will be
A. the same.
B. $35 \mathrm{~m} / \mathrm{s}$.
C. more than $35 \mathrm{~m} / \mathrm{s}$.
D. $60 \mathrm{~m} / \mathrm{s}$.

Acceleration CHECK YOUR ANSWER

A free-falling object has a speed of $30 \mathrm{~m} / \mathrm{s}$ at one instant. Exactly one second later its speed will be
A. the same.
B. $35 \mathrm{~m} / \mathrm{s}$.
C. more than $35 \mathrm{~m} / \mathrm{s}$.
D. $60 \mathrm{~m} / \mathrm{s}$.

Explanation:

One second later its speed will be $40 \mathrm{~m} / \mathrm{s}$, which is more than $35 \mathrm{~m} / \mathrm{s}$.

Acceleration CHECK YOUR NEIGHBOR

The distance fallen by a free-falling body
A. remains constant each second of fall.
B. increases each second when falling.
C. decreases each second when falling.
D. None of the above.

Acceleration CHECK YOUR ANSWER

The distance fallen by a free-falling body
A. remains constant each second of fall.
B. increases each second when falling.
C. decreases each second when falling.
D. None of the above.

Explanation:

See Table 1.2 for verification of this. Falling distance ~ time squared.

TABLE 1.2 FREE-FALL VELOCITY ACQUIRED AND DISTANCE FALLEN

Time of Fall (s)	Velocity Acquired $(\mathrm{m} / \mathrm{s})$	Distance Fallen (m)
0	0	0
1	10	5
2	20	20
3	30	45
4	40	80
5	50	125

