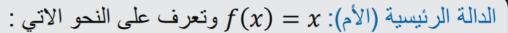


الدالة الثابتة

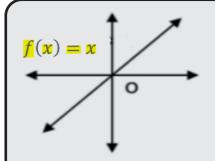
الدالة الرئيسية (الأم):
$$f(x) = c$$
 وتعرف على

النحو الاتي:


المدى: {C}

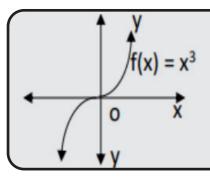
مدى الدالة الثابتة

$$\{c\}$$
 المدى $\leftarrow f(x) = c$


$$\{-2\}$$
 المدى $f(x) = -2$

المجال: مجموعة الأعداد الحقيقة

المدى: مجموعة الأعداد الحقيقية


f(x) = c

مدى الدالة الخطية (من الدرجة الأولى)

$$\mathbf{R}$$
 = المدى $\leftarrow f(x) = ax + b$

$$R = 1$$
 المدى $+ f(x) = -2x + 3$

الدالة التكعيبية

الدالة الرئيسية (الأم):
$$x^3:(x)=x^3$$
 وتعرف على النحو الأتي:

المجال: مجموعة الأعداد الحقيقية

المدى: مجموعة الأعداد الحقيقية

متماثلة حول نقطة الأصل

1443 dipaliaczyll sojuall

الدالة التربيعية

$$f(x) = x^2$$

الدالة الرئيسية (الأم):
$$f(x) = x^2$$
 وتعرف

على النحو الاتي:

المجال: مجموعة الأعداد الحقيقة

$$y$$
 ، متماثلة حول محور $(0,\infty)$: المدى

مدى الدالة التربيعية بالقطوع - بالمميز - بتحديد رأس القطع .

$$f(x) = ax^2 + bx + c$$

مثال:

أوجد مدى الدالة:

$$f(x) = x^2 + 8x + 16$$

الطريقة الثانية : تحديد رأس القطع
$$x=rac{-b}{2a}$$

$$x = \frac{-b}{2a}$$

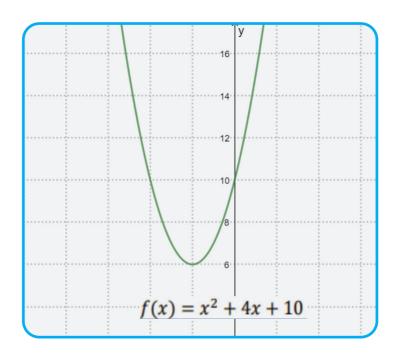
$$x = \frac{-8}{2 \times 1}$$

$$x = -4$$

$$y = (-4)^2 + 8 \times (-4) + 16$$

$$y = 0$$
المدى هو:

$$f(x) = x^2 + 8x + 16$$
 $x^2 + 8x + 16 - y = 0$
 $x^2 + 8x + (16 - y) = 0$
 $a = 1$, $b = 8$, $c = (16 - y)$
 $\Delta = b^2 - 4ac \ge 0$
 $8^2 - 4 \times 1 \times (16 - y) \ge 0$
 $64 - 4(16 - y) \ge 0$
 $64 - 64 + 4y \ge 0$
 $y \ge 0$


[0,∞)

1443 dila John Soiwall

مثال:

أوجد مدى الدالة:

$$f(x) = x^2 + 4x + 10$$

$$x = \frac{-b}{2a}$$

$$x = \frac{-b}{2a}$$

$$x = \frac{-4}{2 \times 1}$$

$$\mathbf{x} = -\mathbf{2}$$

$$y = (-2)^2 + 4 \times (-2) + 10$$

$$y = 6$$

المدى هو:

الطريقة الأولى : (المميز)

$$y = x^2 + 4x + 10$$

$$x^2 + 4x + 10 - y = 0$$

$$x^2 + 4x + (10 - y) = 0$$

$$a = 1$$
, $b = 4$, $c = (10 - y)$

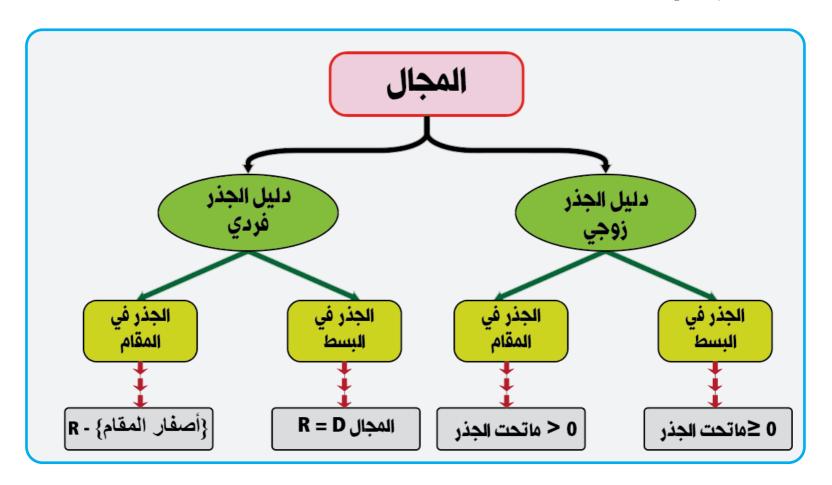
$$\Delta = \mathbf{b}^2 - 4\mathbf{ac} \ge \mathbf{0}$$

$$4^2 - 4 \times 1 \times (10 - y) \ge 0$$

$$\mathbf{16} - 4(\mathbf{10} - y) \geq \mathbf{0}$$

$$16-40+4y\geq 0$$

$$-24+4y\geq 0$$


$$4y \geq 24$$

المدى هو:

المجال والمدى:

الدالة الجذرية

وتعرف على النحو الآتي:
$$\sqrt{x}=\sqrt{x}$$
 الدالة الرئيسية (الأم): المجال $f(x)=\sqrt{x}$ المحال $f(x)=\sqrt{x}$ المدى $f(x)=\sqrt{x}$ المدى $f(x)=\sqrt{x}$

مثال:

أوجد مجال الدالة:

(5)
$$f(x) = \sqrt{2x - 8}$$
 $2x - 8 \ge 0$
 $2x \ge 8$
It is a like the content of the con

$$f(x) = \frac{5x - 8}{\sqrt{2x - 18}}$$
ما تحت الجذر أكبر من الصفر
$$2x - 18 > 0$$

$$2x > 18$$

$$x > 9$$

$$D = (9, \infty)$$

$$y = \sqrt{x+2}$$
 الدليل زوجي والجذر $x+2 \ge 0$ الدليل زوجي والجذر في البسط ، المجال ما $x \ge 2$ المجدد اكبر من $x \ge 2$ الو يساوي الصفر $D = [-2,\infty)$

(8)
$$y = \frac{2}{\sqrt[3]{x+6}}$$
 الدليل فردي والجذر في المقام، $R - \{0\}$ $R - \{-6\}$ $R - \{-6\}$

(1)
$$\mathbf{g}(\mathbf{x}) = \frac{4}{\sqrt{\mathbf{x} - 3}}$$
ما تحت الجذر أكبر من الصفر
$$x - 3 > 0 \quad \rightarrow \quad x > 3$$

$$\mathbf{D} = (3, \infty)$$

(2)
$$f(x) = \sqrt{16 - x^2}$$

(2) If $(x) = \sqrt{16 - x^2}$

(3) If $(x) = \sqrt{16 - x^2}$

(4) If $(x) = \sqrt{16 - x^2}$

(5) If $(x) = \sqrt{16 - x^2}$

(6) If $(x) = \sqrt{16 - x^2}$

(7) If $(x) = \sqrt{16 - x^2}$

(8) If $(x) = \sqrt{16 - x^2}$

(9) If $(x) = \sqrt{16 - x^2}$

(10) If $(x) = \sqrt{16 - x^2}$

(11) If $(x) = \sqrt{16 - x^2}$

(12) If $(x) = \sqrt{16 - x^2}$

(13) If $(x) = \sqrt{16 - x^2}$

(14) If $(x) = \sqrt{16 - x^2}$

(15) If $(x) = \sqrt{16 - x^2}$

(16) If $(x) = \sqrt{16 - x^2}$

(17) If $(x) = \sqrt{16 - x^2}$

(18) If $(x) = \sqrt{16 - x^2}$

(19) If $(x) = \sqrt{16 - x^2}$

(19) If $(x) = \sqrt{16 - x^2}$

(20) If $(x) = \sqrt{16 - x^2}$

(21) If $(x) = \sqrt{16 - x^2}$

(22) If $(x) = \sqrt{16 - x^2}$

(23) If $(x) = \sqrt{16 - x^2}$

(24) If $(x) = \sqrt{16 - x^2}$

(25) If $(x) = \sqrt{16 - x^2}$

(26) If $(x) = \sqrt{16 - x^2}$

(27) If $(x) = \sqrt{16 - x^2}$

(28) If $(x) = \sqrt{16 - x^2}$

(29) If $(x) = \sqrt{16 - x^2}$

(20) If $(x) = \sqrt{16 - x^2}$

(21) If $(x) = \sqrt{16 - x^2}$

(21) If $(x) = \sqrt{16 - x^2}$

(22) If $(x) = \sqrt{16 - x^2}$

(23) If $(x) = \sqrt{16 - x^2}$

(24) If $(x) = \sqrt{16 - x^2}$

(25) If $(x) = \sqrt{16 - x^2}$

(26) If $(x) = \sqrt{16 - x^2}$

(27) If $(x) = \sqrt{16 - x^2}$

(28) If $(x) = \sqrt{16 - x^2}$

(28) If $(x) = \sqrt{16 - x^2}$

(29) If $(x) = \sqrt{16 - x^2}$

(20) If $(x) = \sqrt{16 - x^2}$

(20) If $(x) = \sqrt{16 - x^2}$

(21) If $(x) = \sqrt{16 - x^2}$

(21) If $(x) = \sqrt{16 - x^2}$

(22) If $(x) = \sqrt{16 - x^2}$

(23) If $(x) = \sqrt{16 - x^2}$

(24) If $(x) = \sqrt{16 - x^2}$

(25) If $(x) = \sqrt{16 - x^2}$

(26) If $(x) = \sqrt{16 - x^2}$

(27) If $(x) = \sqrt{16 - x^2}$

(28) If $(x) = \sqrt{16 - x^2}$

(29) If $(x) = \sqrt{16 - x^2}$

(20) If $(x) = \sqrt{16 - x^2}$

(20) If $(x) = \sqrt{16 - x^2}$

(20) If $(x) = \sqrt{16 - x^2}$

(21) If $(x) = \sqrt{16 - x^2}$

(21) If $(x) = \sqrt{16 - x^2}$

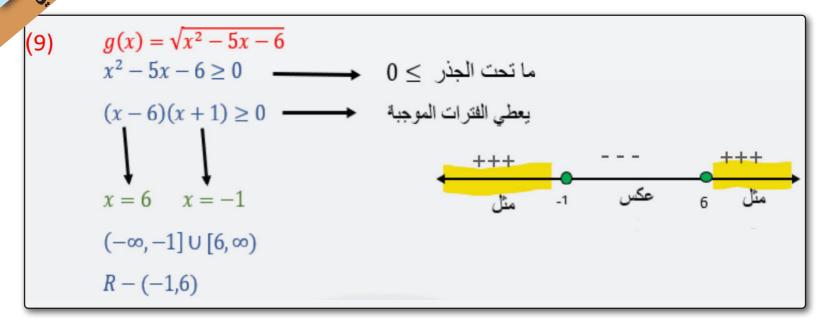
(22) If $(x) = \sqrt{16 - x^2}$

(23) If $(x) = \sqrt{16 - x^2}$

(24) If $(x) = \sqrt{16 - x^2}$

(25) If $(x) = \sqrt{16 - x^2}$

(26) If $(x) = \sqrt{16 - x^2}$


(27) If $(x) = \sqrt{16 - x^2}$

(28) If $(x) = \sqrt{16 - x^2}$

$$f(x)=\sqrt{x^2+4}$$
 $x^2+4\geq 0$ $x^2\geq -4$ مستحیل عدد نربعه $D=\mathbb{R}$ والناتج یکون سالب R بالتالی مجالها R

مثال :

أوجد مجال الدالة:

مدى الدالة الجذرية

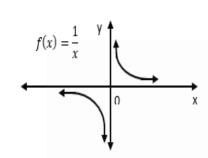
تحتوی علی جذر وهي نوعان:

$$f(x) = \sqrt[3]{3x - 6}$$
 , $f(x) = \sqrt[7]{2x - 1}$

$$R = \text{llac} = R = (-\infty, \infty)$$

ب - الجذر التربيعي مثال:

$$f(x) = \sqrt{ax - b} + c$$
 $f(x) = \sqrt{ax - b} + c$
 $f(x) = -\sqrt{ax - b} + c$
 $f(x) = -\sqrt{ax - b} + c$
 $f(x) = -\sqrt{ax - b} + c$
 $f(x) = \sqrt{a^2 - x^2} + c$
 $f(x) = -\sqrt{a^2 - x^2} + c$
 $f(x) = -\sqrt{a^2 - x^2} + c$


1)
$$\sqrt{x-5}$$
 \rightarrow $[0,\infty)$

2)
$$-\sqrt{x-5}$$
 \rightarrow $(-\infty,0]$

3)
$$\sqrt[3]{2x-3}+1$$
 \to [1, \infty)

4)
$$-\sqrt[3]{2x-3}+1$$
 \to $(-\infty,1]$

دالة المقلوب

الدالة الرئيسية (الأم):
$$\frac{1}{x} = \frac{1}{x}$$
 وتعرف على النحو الآتي:

 $R - \{0\}$: المجال

 $R - \{0\}$: المدى

$$f(x)=rac{x-4}{x^2+5x-1}$$
 عبارة عن بسط ومقام و المقام يحتوى على متغير x مثل : $\frac{2x+3}{x-4}$: مثل

$D = \text{المجال} = R - \{$ أصفار المقام

 χ أ- نضع المقام يساوي صفر ونوجد χ

 $R - \{x$ ب المجال : $\{x \in \mathbb{R}^n : x \in \mathbb{R}^n \}$

مثال:

أوجد مجال الدالة:

(2)
$$f(x) = \frac{3x - 1}{x^2 - 5x - 6}$$

$$→ x^{2} - 5x - 6 = 0$$

$$→ x = -1 \text{ or } x = 6$$

$$→ D = R - \{-1, 6\}$$

(1)
$$f(x) = \frac{3x - 1}{2x - 6}$$

$$\Rightarrow 2x - 6 = 0$$

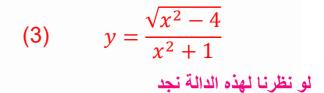
$$\Rightarrow x = 3$$

$$\Rightarrow D = R - \{3\}$$

(4)
$$f(x) = \frac{1}{\sqrt{x^2 - 2}}$$
 $\sqrt{x^2 - 2} > 0$ الدالة معرفة بشرط $x^2 - 2 > 0$ $x^2 > 2$ $|x| > \sqrt{2}$ $-\sqrt{2} > x > \sqrt{2}$ المجال $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$

$$y = \frac{\sqrt{x^2 - 4}}{1 - x}$$

$$x^2 - 4 \ge 0$$

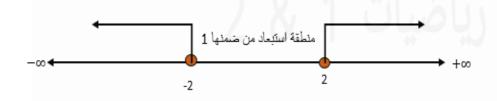

$$x^2 \ge 4$$

$$\Rightarrow |x| \ge 2$$

$$\Rightarrow x \le -2 \quad \text{if } x \ge 2$$

$$1 - x \ne 0$$

$$x \ne 1$$


ا. لا يوجد مشاكل من المقام (مقدار مربع + عدد)
 ٢. يكون التركيز على البسط

$$x^2-4\geq 0$$
 مجال البسط $x^2\geq 0$ $|x|\geq 2$ $x\leq -2$ أو $x\geq 2$

 $: [-\infty,-2] \cup [2,\infty)$ عجال الدالة R-(-2,2) أو

و وضعنا أقواس مفتوحة عند 2 ، 2- لأننا نحتاجها من ضمن المجال ، لا يشملها الاستثناء.

 $(-\infty, -2] \cup [2, \infty)$: المجال

مدى الدالة الكسرية

عبارة عن بسط ومقام والمقام يحتوى على متغير x.

$$y = \lim_{x \to +\infty} f(x)$$
 فقية في نوجد خطوط التقارب الأفقية

$$R = 1$$
معامل أكبر أس للبسط $R = 1$ المدى $R = 1$ معامل أكبر أس للمقام

$$R =$$
المدى $R =$ المدى $R =$ المقام

$$R = \text{llac} = R$$

(2)
$$f(x) = \frac{3x^2 + 7}{5x}$$
 جة البسط $>$ درجة المقام $= R$

$$f(x) = \frac{3x}{2x + 16}$$
 (1) $f(x) = \frac{3x}{2x + 16}$ (1) وجد مدى الدالة:

(2)
$$y = \frac{2x}{-x^2 - 1}$$
 بوال کسریه $y(-x^2 - 1) = 2x$ تحتوی تربیع من الممیز نوجد $-yx^2 - y = 2x$ المدی $-yx^2 - y = 0$ $(-2)^2 - 4(-y)(-y) \ge 0$ الممیز $4 - 4y^2 \ge 0$ $-4y^2 \ge -4$ $y \ge 1$ $|y| \le 1$ $|x| \le 1$

(1)
$$y = \frac{2x}{x^2 - 1}$$
 المعنو يون كسرية $y(x^2 - 1) = 2x$ عن المعنز نوجد $yx^2 - y = 2x$ المعنى $yx^2 - y = 0$ عن المعنى $yx^2 - 2x - y = 0$ عن المعنى $yx^2 - 2x - y = 0$ المعنى $b^2 - 4ac \ge 0$ المعنى $b^2 - 4ac \ge 0$ عن $(-2)^2 - 4(y)(-y) \ge 0$ $4 + 4y^2 \ge 0$ $4y^2 \ge -4$ $y^2 \ge -1$ المعنى $y = \frac{2x}{x^2 - 1}$ المعنى $y = \frac{2x}{x^2 - 1}$

إيجاد المدى بالدالة المكسية

(1)
$$f(x) = \frac{2x}{1-x}$$

$$y = \frac{2x}{1-x}$$

$$\Rightarrow x = \frac{2y}{1-y}$$

$$x - xy = 2y$$

$$\Rightarrow x = 2y + xy$$

$$\Rightarrow x = (x+2)y$$

$$y = \frac{x}{x+2}$$
Application of the problem of the

خطوات إيجاد الدالة العكسية :
$$f(x)$$
 نضع y مكان (Y) نبدل y نبدل موضعي y نبدل y نبدل موضعي y نحل المعادلة بالنسبة للمتغير y ثم نضع $f^{-1}(x)$ مكان (Y)

لاحظ أن : ِ

- 1) لكل علاقة علاقة عكسية ولكن ليس لكل دالة دالة عكسية .
 - 2) إذا كانت الدالة متباينة فإن معكوسها يمثِّل دالة .

 \rightarrow $R-\{-2\}$

 $\int_{-1}^{-1} \int_{-1}^{-1} \int_{$

المجال والمدى:

دالة القيمة المطلقة

الدالة الرئيسية (الأم): |x| = f(x) = |x| وتعرف على النحو الآتي

$$f(x) = \begin{cases} x & x > 0 \\ 0 & x = 0 \\ -x & x < 0 \end{cases}$$

المحال: مجموعة الأعداد الحقيقية

المدى: مجموعة الأعداد الحقيقية غير السالبة

f(x) < 0 ولا يمكن أن تكون x = 0 , f(x) = 0

f(x) = a|nx + m| + c : دالة القيمة المطلقة a : قيمة عبد المدى بحسب

المدى
$$= [C, \infty)$$

$$: f(x) = |ax + b| + c$$

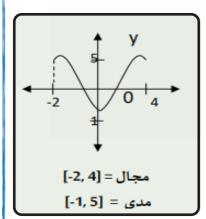
المدى
$$=(-\infty,C]$$

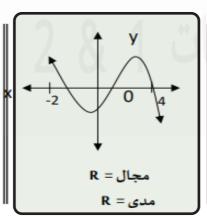
$$: f(x) = -|ax + b| + c$$

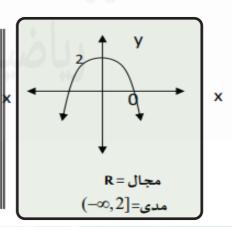
$$\begin{array}{c|c} a < 0 & a > 0 \\ (-\infty, c] & [c, \infty) \end{array}$$

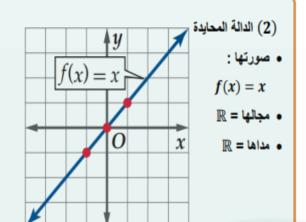
$$-|3x+7|$$
 $\rightarrow (-\infty,0]$ المدى

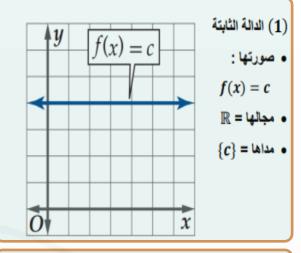
$$-|3x + 7| + 5 \rightarrow (-\infty, 5]$$

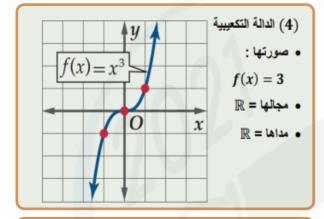

$$\rightarrow (-\infty, 5]$$
 المدى

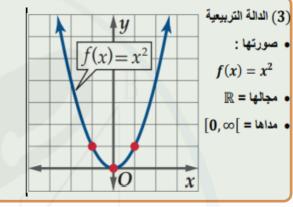

$$|3x + 7|$$

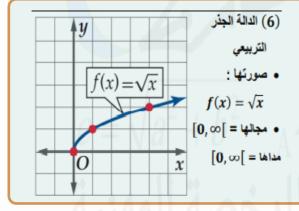

$$|3x+7|$$
 $\rightarrow [0,\infty)$ المدى

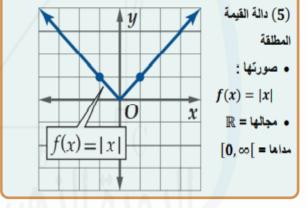

يحدد المجال على محور χ (نحدد بداية ونهاية المنحنى) ويحدد المدى على محور لا (نحدد بداية ونهاية المنحني)

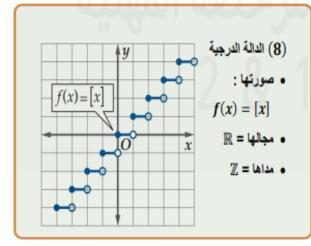

مجال ومدى الدالة بيانياً

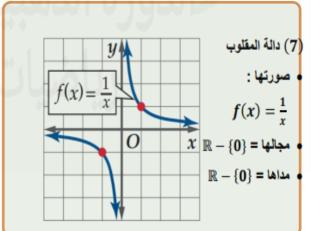












السارين

$$f(x) = -2x + 3$$
 : مدى الدالة

₹†

(c)

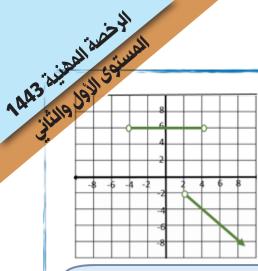
(-∞,∞)

(0,∞)

В

D

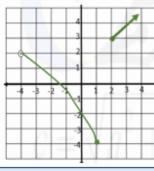
(3,∞)


$$x = \{-2, -1, 2\}$$
 ومجالها $f(x) = 4x - 5$: أوجد مدى الدالة التي قاعدتها

$$\{-13, -9, 13\}$$

$$\{-3, -1, 3\}$$

 $\{3, -1, 13\}$


في الشكل المجاور مدى الدالة:

- $(-4,2) \cup (2,\infty)$

- $(-\infty,-2)\cup\{6\}$

- $(-\infty,-2]\cup\{5\}$
- В

 $(-\infty, \infty)$

السوال (٤)

في الشكل المجاور مدى الدالة:

- $(-4,1)\cup[3,\infty)$

- $[-4,2)\cup[3,\infty)$

- $(-\infty,1] \cup [2,\infty)$

- $(-4,1] \cup (3,\infty)$

السوال (٥)

$$f(x) = \sqrt{x-3} + 5$$
 : مدى الدالة

 $(5, \infty)$

Α

 $\left(\mathsf{c} \right)$

 $(3, \infty)$

 $[5,\infty)$

В

D

 $[3,\infty)$

السوال (٦)

$$f(x)=2\sqrt{x^2}+3$$
 : مدى الدالة

[2,∞)

A

(c)

 $[3,\infty)$

[-3, 2)

В

(D

 $[-3,\infty)$

السوال (٧)

$$f(x) = |x| + 2$$
 : أوجد مدى الدالة

(-∞, **2**] A

(c

 $[-2,\infty)$

 $(2, \infty)$

В

D

[2,∞)

السوال (٨)

$$f(x) = -|x-2|+3$$
 : مدى الدالة

(-∞,**0**) A

(c)

 $(-\infty, 3]$

 $(-\infty, 0]$

В

D

 $(-\infty, -3]$

AAA3 didaby 1891 Soil

$$f(x) = rac{1}{\sqrt{x}}$$
مجال الدالة

R

A

(C)

 $R - \{0\}$

 R^+

В

D

 $R - \{1\}$

$$1<|x-3|\le 2$$
 مجال الدالة

 $[1,2) \cup (4,5]$

Α

С

 $(1,2) \cup [4,5)$

[1, 5]

 $\left(B \right)$

 $\left(\mathsf{D} \right)$

(1, 2]

$$f(x) = \frac{x^2 - 4x - 5}{x^2 - x - 2}$$
 مجال الدالة

- $(-\infty, -2) \cup (1, \infty)$
- - $(-\infty,-1)\cup(2,\infty)$

- $(-\infty, -1) \cup (-1,2) \cup (2, \infty)$

- $(-\infty, -2) \cup (-2,1) \cup (1,\infty)$

$$f(x) = \sqrt{x^2 + 1}$$
 مجال الدالة

- $R \{1\}$

- (-1, 1)

R

- $R \{0\}$

السوال (۱۴)

$$f(x) = \sqrt{x-2}$$
 مدى الدالة

[0·∞)

[2,∞)

R (B)

[0,2]

السؤال (١٤)

$$f(x) = 5$$
 : مدى الدالة

 $(-\infty,\infty)$ A C $\{5\}$

 $(-\infty,5)$ B $(-\infty,0)$

مجال الدالة $f(x) = \sqrt[3]{x-2}$ هو

R

Α

C

(2,∞)

 $(-2,\infty)$

В

D

 $R - \{2\}$

(1,4]

A

C

R

(1, 8]

В

D

[4,8]

السؤال (۱۷)

 $y = -4x^2 + 2x + 5$

أوجد مدى الدالة التربيعية:

 $\left[\frac{21}{4},\infty\right)$

(A

(c)

79 [16,∞)

 $\left(-\infty, \frac{21}{4}\right]$

В

D

 $(-\infty, \frac{79}{16}]$

السوال (۱۸)

$$f(x) = -\frac{1}{2}x^2 + 6x + 17$$

مدى الدالة:

(35,∞)

(A

C

(-∞, -35]

[-35,∞)

В

D

(−∞,35]

السوال (۱۹)

$$f(x) = rac{x^2 + 16}{2}$$
 : أوجد مدى الدالة

- [8,∞)
- [0,∞)
- $(-\infty, \infty)$
- $(0,\infty)$

السوال (۴)

$$f(x) = \sqrt{\frac{x-4}{x^2+16}}$$

أوجد مجال الدالة:

(4,∞)

[0,∞)

- (-∞,∞)

[4,∞)

1443 diadi dasy jiilly Joyll Soiwall

خاص في المستوى الثاني

$y = a^x$ الدالة الأسية

هي دالة أساسها عدد حقيقي موجب لا يساوي واحد وأسها متغير

$$f(x) = y = \left(\frac{1}{2}\right)^x$$
 ادالة متناقصة علي مجالها $R: \mathbb{R}^+ = (0,\infty):$ محال $R^+ = (0,\infty):$ الدالة تمر بالنقطة R

أمثلة : $f(x) = y = (3)^x$ ١) دالة متزايدة على مجالها R : مجال $R^+=(0,\infty)$: مدی (۳ الدالة تمر بالنقطة (0,1)

$f(x) = ab^{nx-m} + c$ الدالة الأسية

المدى بحسب قيمة ه

$$a < 0 \qquad a > 0$$

$$(-\infty, c) \qquad (c, \infty)$$

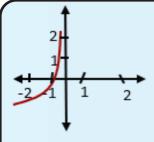
$$f(x) = 3(2)^{4x} - 1$$

$$\rightarrow 3 > 0$$

$$\rightarrow (-1, \infty)$$

$$y = -5\left(\frac{1}{10}\right)^{-3x} + 2$$

$$\rightarrow -5 < 0$$

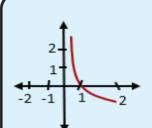

$$\rightarrow \text{ (local points)} = (-\infty, 2)$$

المجال والمدى:

خاص في المستوى الثاني

الدالة اللوغاريتمية الالله اللوغاريتمية

إذا كان x, b عددين موجبين ، $1 \neq b$. يرمز للوغاريتم x للأساس b بالرمز $\log_b x$ ويعرف على الأس y الذي يجعل المعادلة x صحيحة.


أمثلة:

$$y = \log_{\frac{1}{2}} x$$

$$b < 1$$
 دالة متناقصة (۱

$$R^+ = (0,\infty)$$
 : امجالها (۲

 γ محور x=0 خط التقارب هو

أمثلة:

$$y = \log_2 x$$

دالة متز ايدة

$$R^+ = (0, \infty)$$
 : مجالها (۱

۲) مدی: R

y محور x=0 خط التقارب هو

$$\log(2x-4)$$
 , $\log_3(x^2-4)$: مثل

$$D = log$$
 فاعدة : $0 < a$ ما بجوار

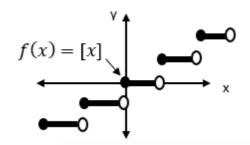
$f(x) = \log_5(x^2 - 9)$

 $\rightarrow D = (-\infty, -3) \cup (3, \infty)$

أوجد مجال الدالة:

$$f(x) = \log_{10}(2x - 8)$$

$$\begin{array}{ccc}
\rightarrow & 2x - 8 > 0 \\
\rightarrow & 2x > 8
\end{array}$$


$$\rightarrow x > 4$$

$$\rightarrow D = (4, \infty)$$

1443 dipadiacsyll

خاص في المستوى الثاني

دالة أكبر عدد صحيح (الدالة الدرجية)

الدالة الرئيسية (الأم): f(x) = [x] وتعرف على النحو الآتي: المجال: مجموعة الأعداد الحقيقية المعدى: مجموعة الأعداد الصحيحة

الدوال المثلثية

الرسم	الدورة	المدى	المجال	الدالة
1	$2\pi = 360$	[-1,1]	BR	$y = \sin x$
الدورة y = cos θ 0 90° 180° 770° 360° 450° 540° θ -1 -	$2\pi = 360$	[-1,1]	R	$y = \cos x$
$y = \tan \theta$ $y = \tan \theta$	$\pi = 180$	R	$\mathbb{R} - \{\frac{\pi}{2} + n\pi\}$ $\mathbb{R} - \{90^\circ + 180n^\circ\}$ n لأي عدد صحيح	$y = \tan x$

ما في المستوى الثانول والثاني

السوال (۲۱)

$$y = 2^x + 1$$
 : مدى الدالة

$${y:y > -1}$$

 ${y:y < 2}$

 ${y:y > 1}$

 ${y: y > -2}$

السوال (۲۲)

$$f(x) = 8(5)^x - 4$$
 : أوجد مدى الدالة التالية

ماص في المستوى الثاني والثاني

 $f(x) = 8 \sin^{-1} x$: مدى الدالة

 $[-4\pi, 4\pi]$

(c)

 $(-\infty,\infty)$

[-1, 1]

В

(D

[-8, 8]

السؤال (٤٤)

 $y = (\sin x + \cos x)^2$: أوجد أعلى قيمة يمكن أن تصل إليها الدالة

(c)

2

1

1443 diaglas de sainal خاص في المستوى الم

السوال (٢٥)

$$f(x) = \frac{3x^2}{x^2 - 4}$$

أوجد خطوط التقارب الرأسية و الأفقية للدالة:

$$x=2$$
, $y=0$

$$x = 3, y = \pm 2$$

$$x = \pm 2$$
 , $y = 3$

$$x=\pm 2$$

السوال (٢٦)

$$f(x) = \frac{1}{x+2} - 7$$
 خط التقارب الأفقي للدالة :

$$x = 7$$

$$y = 7$$

$$x = 2$$

$$y = -7$$

ماص في المستوى الثانكي والثاني

السوال (۲۷)

 $f(x) = \log(x^2 - 4)$: مجال الدالة

(c)

(-2,2)

R - [-2, 2]

В

(D)

(2,∞)