Assignment 1

Mada Altiary

1: Subrings and Ideals

(a) Prove the set of all real numbers of the form $m+n \sqrt{2}$ with $m, n \in \mathbb{Z}$ is a subring of the real numbers.
(b) Show that $2 \mathbb{Z} \cup 3 \mathbb{Z}$ is not a subring of \mathbb{Z}.
(c) Find all subring of \mathbb{Z}_{8}
(d) prove that $I=\{0,3,6\}$ is an ideal of \mathbb{Z}_{9} and compute the cosets of $\mathbb{Z}_{9} \backslash I$
(e) Find all principal ideal in \mathbb{Z}_{15}

2: Units, Zero divisors, idempotent and nilpotent

(a) Find an integer n that shows that the rings Z_{n} need not have the following properties that the ring of integers has.
a. $a^{2}=a$ implies $a=0$ or $a=1$.
b. $a b=0$ implies $a=0$ or $b=0$.
c. $a b=a c$ and $a \neq 0$ imply $b=c$.

Is the n you found prime?
(b) List all zero divisors and units in , $\mathbb{Z}_{10}, \mathbb{Z}_{11}$.
(c) Find all idempotent and nilpotent elements in \mathbb{Z}_{8}

3: Ring, Integral domain and Field

Give an example of the following or explain why it is not possible to do so. Justify your answers.
(a) An integral domain that is not a field.
(b) A field that is not a commutative ring.
(c) A commutative ring with unity that is not an integral domain.
(d) A subring of a ring R that is not an ideal in R.
(e) Zero divisors in $n \mathbb{Z}$.
(f) A subset of a ring that is a subgroup under addition but not a subbing
(g) A commutative ring without zero-divisors that is not an integral domain.

4: Ring and Field

(a) Let $R=\{0,2,4,6,8\}$ under addition and multiplication modulo 10 . Prove that R is a field.
(b) Let S be the subring of \mathbb{Z}_{16} given by $S=\{0,2,4,6,8,10,12,14\}$. What is the characteristic of this ring s

5: True or False

(1) Addition in every ring is commutative (T)
(2)The characteristic of $2 \mathbb{Z}$ is zero (T)
(3) Every ring has a multiplicative identity (F) $2 z$ is ring but 1 \& $2 z$
(4) \mathbb{Z}_{n} is not integral domain if n is not prime $\boldsymbol{\top}$
(5) Multiplication in a field is commutative
(6) $2 \mathbb{Z}$ is not an integral domain τ
(7) \mathbb{Z}_{6} is a subring of $\mathbb{Z}_{12} \quad F$
(8) A field is a commutative division ring T
(9) There is exactly one element $n \in \mathbb{Z}_{8}$ such that $n \neq 0$ but $n^{2}=0$. \boldsymbol{T}
(10) Every integral domain is a field F
(11) The set of odd integers is a subrig of $\mathbb{Z} F, O=\{1,3,5,7, \ldots\}$ and
(12) The integral domain $\mathbb{Z}[i]$ is not a field T

$(14) M_{2}(\mathbb{R})$ is a commutative ring with unity F

(15) The element $3+i$ is a zero in $\mathbb{Z}_{5}[i] T \rightarrow(3+i)(2+i)$
$\begin{aligned} & \text { (16) Multiplication in a field is commutative } T \\ & \\ & \text { (17) } \mathbb{R} \text { have no zero divisors } T \\ & \text { (18) The only units in } \mathbb{Z} \text { are } 1 \text { and }-1 \\ & \\ & \text { (19) Every ideal is a subring } T\end{aligned} \quad=6+5 i+2 i+i^{2}$
$\begin{aligned} & \text { 15) The element } 3+i \text { is a zero in } \mathbb{Z}_{5}[i] \\ & \text { 16) Multiplication in a field is commutative } T \\ & \text { 17) } \mathbb{R} \text { have no zero divisors } T \\ & \text { 18) The only units in } \mathbb{Z} \text { are } 1 \text { and }-1 T \\ &=6+5 i)(2+i)\end{aligned}=6+3 i+2 i+i^{2}, 1$.

(15) The element $3+i$ is a zero in $\mathbb{Z}_{5}[i] T \rightarrow(3+i)(2+i)$
$\begin{aligned} & \text { (16) Multiplication in a field is commutative } T \\ & \\ & \text { (17) } \mathbb{R} \text { have no zero divisors } T \\ & \text { (18) The only units in } \mathbb{Z} \text { are } 1 \text { and }-1 \\ & \\ & \text { (19) Every ideal is a subring } T\end{aligned} \quad=6+5 i+2 i+i^{2}$

(20) $n \mathbb{Z} \unrhd \mathbb{Z} \quad \top$
(a) Prove the set of all real numbers of the form $m+n \sqrt{2}$ with $m, n \in \mathbb{Z}$ is a subring of the real numbers.
prove $z \sqrt{2}=\{m+n \sqrt{2} \mid m, n \in z\}$ is a subring of R.
Solutions
Let $x=m+n \sqrt{2}, y=s+t \sqrt{2}$
for $m, n, s, t \in Z$
1)

$$
\begin{aligned}
& x-y=(m+n \sqrt{2})-(s+t \sqrt{2}) \\
&=m+n \sqrt{2}-s-t \sqrt{2} \\
&=(m-s)+(n-t) \sqrt{2} \\
&=a \sqrt{2}-b \sqrt{2} \\
& \because a, b \in z \Rightarrow x-y \in z \sqrt{2} .
\end{aligned}
$$

2).

$$
\begin{aligned}
& x \cdot y=(m+n \sqrt{2})(s-t \sqrt{2}) \\
&=m s-m t \sqrt{2}+n s \sqrt{2}-n t \\
&=(m s-n t)+(n s-n t \sqrt{2}) \\
&=c+d \sqrt{2} \\
& \because c, d \in z \Rightarrow x \cdot y \in z \sqrt{2}
\end{aligned}
$$

\therefore by subring test, $z[\sqrt{2}]$ is a subring of R.

Show that $2 \mathbb{Z} \cup 3 \mathbb{Z}$ is not a subbing of \mathbb{Z}.
$2 z=\{0, \pm 2, \pm 4, \pm 6, \pm 8, \ldots\}$ and
$3 Z=\{0, \pm 3, \pm 6, \pm 9, \pm 12, \ldots \ldots\}$
$2 Z \cup 3 Z=\{0, \pm 2, \pm 3, \pm 4, \pm 6, \ldots\}$ is not a subring because $2+3=5 \notin 2 z \cup 3 z$
(c) Find all subring of \mathbb{Z}_{8}

The divisors of z_{8} are 1,2,4 and 8. Thus the subrings are:

$$
\begin{aligned}
1 z_{8} & =z_{8} \\
2 \cdot z_{8} & =\{0,2,4,6\} \\
4 z_{8} & =\{0,4\} \\
8 z_{8} & =\{0\}
\end{aligned}
$$

(d) prove that $I=\{0,3,6\}$ is an ideal of \mathbb{Z}_{9} and compute the cosets of $\mathbb{Z}_{9} \backslash I$

+	0	3	6
0	0	3	6
3	3	6	0
6	6	0	3

x	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
3	0	3	6	0	3	6	0	3
6	0	6	3	0	6	3	0	6

- closed under + closed under x.
- offS

$$
\left.\begin{array}{rl}
\rightarrow 0+I & =\{0,3,6\} \\
1+I & =\{1,4,7\} \\
2+I & =\{2,5,8\} \\
3+I & =\{3,6,0\} \\
4+I & =\{4,7,1\}
\end{array}\right\}
$$

2
(a) Find an integer n that shows that the rings Z_{n} need not have the following properties that the ring of integers has.
a. $a^{2}=a$ implies $a=0$ or $a=1$.
b. $a b=0$ implies $a=0$ or $b=0$.
c. $a b=a c$ and $a \neq 0$ imply $b=c$.

Is the n you found prime?
Solution: $\operatorname{In} Z_{6}$
a) $3^{2}=3$ but $3 \neq 0$ or $3 \neq 1$
b) $2 \cdot 3=6=0$ but $2 \neq 0$ and $b \neq 0$
c). For $a=2, b=4, c=1$, we have $2.4=2=2.1$ but $4 \neq 2$
(b) List all zero divisors and units in , $\mathbb{Z}_{10}, \mathbb{Z}_{11}$.

$$
\text { All zero divisors of } \begin{aligned}
Z_{10} & =\left\{a \in Z_{10} \mid \operatorname{gcd}(a, 10) \neq 1\right\} \\
& =\{2,4,5,6,8\} \\
U_{10} & =\left\{a \in Z_{10} \mid \operatorname{gcd}(a, 10)=1\right\} \\
& =\{1,3,7,9\}
\end{aligned}
$$

In Z_{11} : There is no zerodivisors.

$$
\text { All unils }=\{1,2,3,4,5,6,7,8,9,10\}
$$

(c) Find all idempotent and nilpotent elements in \mathbb{Z}_{8}

All Idempotent:

$$
\begin{aligned}
& 0^{2}=0 \\
& 1^{2}=1
\end{aligned}
$$

All nilpotent:

$$
\begin{aligned}
& 2^{3}=8=0(\bmod 8) \\
& 4^{2}=16=0(\bmod 8) \\
& 6^{3}=64=0(\bmod 8) .
\end{aligned}
$$

3 Give an example of the following or explain why it is not possible to do so. Justify your answers.
(a) An integral domain that is not a field.
Z is an integral domain but not a field because $2 \in Z$ but $\frac{1}{2} \notin Z$.
(b) A field that is not a commutative ring.

Impossible. A field is a commutative ring with unity in which each element has an multiplicative inverse
(c) A commutative ring with unity that is not an integral domain.
z_{4}, z_{6}, z_{12}. In general:
Any Z_{m}, m is not prime will be an example.
(d) A subring of a ring R that is not an ideal in R.
Z is a subring of Q but is not ideal of Q becanse is not closed under multiplication.
let $3 \in Z$ and $\frac{1}{4} \in Q$ the $3 \cdot \frac{1}{4}=\frac{3}{4} \notin Z$.
(e) Zero divisors in $n \mathbb{Z}$.

Impossible.
(f) A subset of a ring that is a subgroup under addition but not a subbing

Let $R=C$ and $S=\{i k: x \in R\}$

but $i \cdot i=i^{2}=-1 \notin S$ not oubring
(g) A commutative ring without zero-divisors that is not an integral domain. \mathcal{Z}.

4
(a) Let $R=\{0,2,4,6,8\}$ under addition and multiplication modulo 10. Prove that R is a field.

Solution:-

+7	0	2	4	6	8
0	0	2	4	6	8
2	2	4	6	8	0
4	4	6	8	0	2
6	6	8	0	2	4
8	8	0	2	4	6

x	0	2	4	6	8
0	0	0	0	0	0
2	0	4	8	2	6
4	0	8	6	4	2
6	0	2	4	6	8
8	0	6	2	8	4

- closed under addation
- $0 \in R$
- Addation is asso
- Commutative
- Satisfy distributive Law
- each element has an inverse

a	0	2	4	6	8
a^{-1}	0	8	6	4	2

- closed under multiplication
- $6 \in R$
- multiplication is asso
- Commutative
- Satisfy distributive Law
- each element has an inverse

a	2	4	6	8
a^{-1}	8	4	6	2

(b) Let S be the subring of \mathbb{Z}_{16} given by $S=\{0,2,4,6,8,10,12,14\}$. What is the characteristic of
this ring s

$$
\begin{aligned}
& 2 \cdot 1=2 \neq 0 \\
& 2 \cdot 2=4 \neq 0 \\
& 2 \cdot 3=6 \neq 0 \\
& 2 \cdot 4=8 \neq 0 \\
& 2 \cdot 5=10 \neq 0 \\
& 2 \cdot 6=12 \neq 0 \\
& 2 \cdot 7=14 \neq 0 \\
& 2 \cdot 8=16=0
\end{aligned}
$$

$$
\therefore \text { The char }(s)=8 \text {. }
$$

