

Exercises
show that the given function is continuous at the given number

$$
\begin{aligned}
& f(x)=x^{2}-3 x^{2}+x-2, a=2 \\
& D(f)=R \\
& =2 \in D(f)
\end{aligned}
$$

$\therefore f$ is continuous at $x=2$.

$$
\begin{aligned}
& f(x)=\sqrt{x+1}-3 x, a=3 \\
& \text { - } f(3)=\sqrt{3+1}-3(3)=-7 \\
& \lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} \sqrt{x+1}-3=-7
\end{aligned}
$$

- $\lim _{x \rightarrow 3} f(x)=f(3)$
$\therefore f$ is continuous at $a=3$

$$
f(x)=\left\{\begin{array}{l}
\frac{\sin 3 x}{x}, x \neq 0 \\
\frac{1}{3}, x=0
\end{array}\right.
$$

1) $f(0)=\frac{1}{3}$
2). $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}=\frac{3}{1}=3$
3)- $\lim _{x \rightarrow 0} f(x) \neq f(0)$
$\therefore F$ is discontinuous at $x=0$

$$
\begin{aligned}
& f(x)=\left\{\begin{aligned}
& \frac{x^{2}-2 x-8}{x-4}, x<4 \\
& 2 x-2, x \geqslant 4
\end{aligned}\right. \\
& \text { 1) } \begin{aligned}
f(4) & =2(4)-2=6
\end{aligned} \\
& \text { 2)-. } \lim _{x \rightarrow 4^{-}} f(x)
\end{aligned}=\lim _{x \rightarrow 4^{-}} \frac{x^{2}-2 x-8}{x-4} .
$$

$$
\begin{aligned}
& \text { - } \lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{+}} 2 x-2=2(4)-2=6 \\
& \Rightarrow \lim _{x \rightarrow 4^{\prime}} f(x)=6
\end{aligned}
$$

3) $\lim _{x \rightarrow 4} f(x)=f(4)$
$\because F$ is continuous at $x=1$.
show that the given function is continuous at the given interval

$$
\begin{aligned}
f(x) & =\sqrt[4]{x-3}+x \quad[3, \infty) \\
g(x) & =\sqrt[4]{x-3}
\end{aligned}
$$

$$
h(x)=x
$$

g is continuous of $x-3 \geqslant 0 \quad h(x)$ is continuous on R

$$
\begin{aligned}
& \quad \Rightarrow x \geqslant 3 \\
& \therefore D(9)=[3, \infty)
\end{aligned}
$$

f is continuous on $[3, \infty)$

$$
f(x)=\frac{1}{x-3} \quad[4,10]
$$

f is continuous iff $x-3 \neq 0$

$$
\begin{aligned}
& \therefore D(f)=R-\{3\}=(-\infty, 3) \cup(3, \infty) \longleftrightarrow{ }_{3} \longleftrightarrow 4 \text { io } \\
& \because[4,10] \subset D(f) \Rightarrow f \text { is continuous on }[4,10] .
\end{aligned}
$$

Find all the numbers for which the given function is discontinuous

$$
F(x)=\frac{x-1}{x^{3}-x^{2}+4 x-4}
$$

f is continuous iff $x^{3}-x^{2}+4 x-4 \neq 0$

$$
\begin{aligned}
& \Rightarrow x^{2}(x-1)+4(x-1) \neq 0 \\
& \Rightarrow \quad(x-1)\left(x^{2}+4\right) \neq 0 \\
& \Rightarrow x-1 \neq 0 \Rightarrow x \neq 1
\end{aligned}
$$

f is continuous on $R-\{1\}=(-\infty, 1) \cup(1, \infty)$
f is discontinuous at $x=1$

$$
f(x)=[[x-1]
$$

F is discontinuous at $n \in Z$
f is discontinuous from the left. For $n \in Z$ f continuous from the right. for $n \in Z$.

$$
F(x)=\frac{x+1}{\sqrt{2 x-1}-3}
$$

f is continuous of

$$
\begin{array}{lll}
\sqrt{2 x-1}-3 \neq 0 & \text { and } & 2 x-1 \geqslant 0 \\
\sqrt{2 x-1} \neq 3 & 2 x \geqslant 1 \\
2 x-1 \neq 9 & x \geqslant \frac{1}{2} \\
2 x \neq 10 & & \\
x \neq 5 & & \frac{1}{2}
\end{array}
$$

$\therefore f$ is continuous on $\left[\frac{1}{2}, 5\right) \cup(5, \infty)$ F is dis continuous on $\left(-\infty, \frac{1}{2}\right) \cup\{5\}$

$$
f(x)=\left\{\begin{array}{cc}
\frac{\sin (3 x-6)}{x-2}, & x \neq 2 \\
3 & , x=2
\end{array}\right.
$$

1) $-F(2)=3$
2)-

$$
\begin{aligned}
\lim _{x \rightarrow 2} f(x) & =\lim _{x \rightarrow 2} \frac{\sin (3 x-6)}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{\sin 3(x-2)}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{3 \sin (x-2)}{x-2}=3
\end{aligned}
$$

3). $\lim _{x \rightarrow 2} f(x)=f(2)=0$
f is continuous at $x=2$

$$
g(x)=\frac{x-2}{\sqrt{x^{2}-4}}
$$

$q(x)$ is continuous iff

$$
\begin{aligned}
& x^{2}-4>0 \\
& x^{2}>4 \\
& \sqrt{x^{2}}>\sqrt{4} \\
& |x|>2 \\
\Rightarrow & x>2 \text { or } x<2
\end{aligned}
$$

$\therefore F$ is continuous on $(-\infty,-2) \cup(2, \infty)$ f is discontinuous on $[-2,2]$.

$$
\begin{aligned}
& f(x)=\frac{x+1}{x\left(x^{2}-1\right)} \\
& x\left|x^{2}-1\right| \neq 0 \\
& \Rightarrow x \neq 0 \text { or }\left|x^{2}-1\right| \neq 0 \\
& x^{2}-1 \neq 0 \\
& x^{2} \neq 1 \\
& x \neq \pm 1
\end{aligned}
$$

f is continuous on $(-\infty,-1) \cup(-1,0) \cup(0,1) \cup(1, \infty)$
f is discontinnos on $-1,0,1$

Find all numbers for which the given function is continuous

$$
\begin{aligned}
& f(x)=\sqrt[12]{3 x-6}+\frac{1}{x-7} \\
& g(x)=\sqrt[12]{3 x-6}
\end{aligned}
$$

$$
h(x)=\frac{1}{x-7}
$$

g is continuous iff $3 x-6 \geqslant 0$
h is continuous iff

$$
\begin{aligned}
& 3 x \geqslant 6 \\
& x \geqslant 2
\end{aligned}
$$

$\therefore f$ is continuous on

$$
\begin{aligned}
& {[2,7) \cup(7, \infty)} \\
& F(x)=\frac{3 x-4}{\left(x^{2}-5\right)\left(x^{2}-4 x+3\right)}
\end{aligned}
$$

$$
\begin{aligned}
x-7 & \neq 0 \\
\Rightarrow x & \neq 7
\end{aligned}
$$

f is continuous of

$$
\begin{array}{ll}
\left(x^{2}-5\right)\left(x^{2}-4 x+3\right) \neq 0 \\
x^{2}-5 \neq 0 & x^{2}-4 x+3 \neq 0 \\
x^{2} \neq 5 & (x-1)(x-3) \neq 0 \\
\sqrt{x^{2}} \neq \sqrt{5} & \Rightarrow x \neq 1, x \neq 3 \\
x \neq \pm \sqrt{5} & \\
D=R-\{ \pm \sqrt{5}, 1\} & \sqrt{-5} \quad: \quad 0
\end{array}
$$

$\therefore f$ is continuous on

$$
(-\infty,-\sqrt{5}) \cup(-\sqrt{5}, 1) \cup(1, \sqrt{5}) \cup(\sqrt{5}, 3) \cup(3, \infty)
$$

Find the constant and such that the function is continuous on the real entire real line

$$
f(x)= \begin{cases}\frac{\sin (\alpha x)}{x}, & x \neq 0 \\ 4, & x=0\end{cases}
$$

1). $f(0)=4$
2). $\lim _{x \rightarrow 0} \frac{\sin (\alpha x)}{x}=\alpha$
F is continuous iff $\lim _{x \rightarrow 0} f(x)=f(0)$

$$
\Rightarrow \quad \alpha=4
$$

$$
F(x)= \begin{cases}3 x+1, & x \geqslant 2 \\ \alpha x^{2}-1, & x<2\end{cases}
$$

F is continuous iff

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x) \\
& \lim _{x \rightarrow 2^{-}} \alpha x^{2}-1=\lim _{x \rightarrow 2^{+}} 3 x+1 \\
& \alpha(2)^{2}-1=3(2)+1 \\
& 4 \alpha-1=3 \\
& \Rightarrow 4 \alpha=8 \Rightarrow \alpha=2
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
x, x \leqslant-1 \\
\alpha x+\beta,-1<x<3 \\
2 x+1, x \geqslant 3
\end{array}\right. \\
& \begin{array}{ccccc}
x \leqslant-1 & & -1<x<3 & & x \geqslant 3 \\
\hline x & 1 & \alpha x+\beta & 1 & 2 x+1
\end{array}
\end{aligned}
$$

At $x=-1$

$$
\begin{aligned}
& \lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}} x=-1 \\
& \lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} \alpha x+\beta=-\alpha+\beta \\
& -\alpha+\beta=-1 \rightarrow 1
\end{aligned}
$$

At $x=3$

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \alpha x+\beta=3 \alpha+\beta \\
& \lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} 2 x+1=7 \\
& 3 \alpha+\beta=7 \rightarrow 2 \\
& \begin{array}{ll}
-\alpha+\beta=-1 \quad(\times 3) \\
3 \alpha+\beta=7 & \\
3 \alpha+3 \alpha+3 \beta=-3 \\
& \frac{3 \alpha+\beta=7}{4 \beta=4 \Rightarrow \beta=1}
\end{array}
\end{aligned}
$$

To find α :

$$
\begin{aligned}
-\alpha+1=-1 & \Rightarrow-\alpha=-2 \\
& \Rightarrow \alpha=2
\end{aligned}
$$

