تسريبات كويز ا ماث 2019

ABEER.

Question No. 5

Simplify the expressions
 pressionusing the quot

$$
\frac{8 p^{6} r^{9}}{27 q^{6}}
$$

○

$$
\frac{2 p^{6} r^{9}}{3 q^{6}}
$$

$$
\frac{8 p^{9} r^{18}}{27 q^{9}}
$$

$$
\frac{2 p^{9} r^{18}}{3 q^{9}}
$$

Total questions in exam: 25 | Answered: 0

Question No. 4

Simplify $\frac{x^{2} \times y^{-\frac{5}{3}}}{\left(x^{\frac{1}{2}} \times y^{-1}\right)^{2}}$$x=y^{\frac{1}{3}}$$x^{\frac{1}{2}} y^{\frac{1}{6}}$
0) $y \cdot x^{-\frac{1}{2}}$
() $x^{\frac{1}{3}} \cdot y^{-\frac{5}{3}}$

Question No. 6

Determine the following union $\emptyset \cup\{1,2\}=$

- $\{1,2, \phi\}$
\bigcirc
$\{1,2\}$
\bigcirc
\{1
\circ
\emptyset

Question No. 7

The expression $x y z$ can be classified as amonomialbinomialtrinomialnone of these

Question No. 2

Simplifying the power of i^{1235} gives$-3 i$$3+i$1235-i
0.

$$
25 \longrightarrow i
$$

$0.50 \longrightarrow-1$

0
75

$$
\frac{1235}{4}=308.75=-i
$$

Total questions in exam: $\mathbf{2 5}$ | Answered: 0

Question No. 3

The solution set of the equation $2(x+3)=2 x-6$ is
$\circ \varnothing$
$\bigcirc 1$
\{2,3\}
All real numbers

Total questions in exam: 25 | Answered: 0

Question No. 9
Let $x \in \mathbb{R}$ and $x>4$. Simplify the expression $\sqrt{x-4 \sqrt{x}+4}$$\sqrt{x}+2$$-\sqrt{x}-2$$\sqrt{x}-2$$-\sqrt{x}+2$

Question No. 8

Let $U=\{-2 ;-1,1,2,3,4\}, A=\{-1,2,4\}$ and $B=\{-2,-1,3\}$, then $A^{\prime} \cap B=$ (-2,3\}
$\{3\}$
$\{-2,-1,3\}$

Total questions in exam: $\mathbf{2 5}$ | Answered: 0

Question No. 1

The exponent of $(2 x y)^{3}$ is

2xy
${ }^{\circ} 6$
${ }_{2}$
${ }^{\circ} 3$

Total questions in exam: $\mathbf{2 5}$ | Answered: 3

Question No. 13

Which one of the following equations is not a linear equation?
\bigcirc

$$
x-1=0
$$

-

$$
\left(\frac{23}{4}\right)^{2} x+0.5(2 x+4)=-3 x
$$

\bigcirc

$$
3 x^{3}-\frac{4}{3} x+1=0
$$

$$
0.02 x-0.002 x=0.50
$$

Total questions in exam: $\mathbf{2 5}$ | Answered: $\mathbf{3}$

Question No. 14

The domain of $\frac{x+1}{(x+3)(2 x-3)}$ is$R \backslash\left\{-3, \frac{3}{2}\right\}$
$R \backslash\left\{3, \frac{-3}{2}\right\}$$R \backslash\{-3,3\}$$R \backslash\{-3\}$

$$
x+3=0 \rightarrow x=-3
$$

$$
\begin{array}{r}
2 x-3=0 \rightarrow 2 x=3 \\
=x=\frac{3}{2}
\end{array}
$$

Question No. 10
Dividing $-33 x^{8}-9 x^{6}+30 x^{4}-21 x^{2}$ by $-3 x^{2}$ gives

$$
\begin{aligned}
& 11 x^{6}+3 x^{4}-11 x^{2}+7 \\
& 11 x^{6}+3 x^{4}-11 x^{2}+7 x \\
& 11 x^{6}+3 x^{4}-10 x^{2}+7 \\
& 11 x^{6}+3 x^{4}-10 x^{2}-7 \\
& \frac{-3 x^{2}}{30 x^{4}-21 x^{2}} \\
& \frac{11 x^{6}+3 x^{4}-10 x^{2}+7}{-23 x^{8}-9 x^{6}+30 x^{4}-21 x^{2}} \\
& \frac{-2 x^{2}}{3 x^{2}}
\end{aligned}
$$

Question No. 12

Simplify the compound ratio

-

$$
\begin{aligned}
& \frac{1}{y-3} \\
& \frac{1}{y+3}
\end{aligned}
$$

-

$$
\frac{4}{y+9}
$$

$$
\frac{1}{y}+\frac{1}{3}
$$

Factor: $4 x^{2}-y^{2}-6 y-9$
$O_{(2 x}$
$\frac{O_{(4 x-y-3)}(4 x+y+3)}{O_{(2 x-y-3)(2 x+y+3)}^{O}}$

$$
\begin{aligned}
& 4 x^{2}-\left(y^{2}+6 y+9\right) \\
& 4 x^{2}-(y+3)(y+3) \\
& 4 x^{2}-(y+3)^{2} \\
& (2 x-(y+3))(2 x+(y+3)) \\
& (2 x-y-3)(2 x+y+3)
\end{aligned}
$$

Question No. 25

The quotient $\frac{-2}{-1}$ can be written as$2 i$$-2 i$1- 1

Question No. 22
$\left(7+6 x^{3}+8 x^{5}-4 x^{4}\right)+\left(-5 x^{4}+2 x^{3}-2+7 x^{5}\right)$
$2 x^{5}+2 x^{4}+6 x^{3}+3$$15 x^{3}-9 x^{4}+8 x^{3}+5$
$15 x^{10}-9 x^{8}+8 x^{6}+5$$14 x^{24}+5$

Question No. 23

Write this expression as the product of a real number and i

$$
\frac{3}{4} \sqrt{-80}
$$$12 i \sqrt{5}$$6 i \sqrt{5}$$3 i \sqrt{5}$$-6 \sqrt{5}$

Simplify $\frac{x^{-1}+y^{-1}}{1-x^{-1}}$$\frac{x+y}{x y-1}$
$\frac{x+y}{y(x-1)}$$\frac{x+1}{x-1}$
$\frac{x+y}{x-1}$

Question No. 21

Select the correct property that describes the given equation.
$(8 \times 12) \times 3=8 \times(12 \times 3)$

- Associative property of multiplication

Identity property of additionInverse property of additionCommutative property of addition

Total questions in exam: $\mathbf{2 5}$ | Answered: 11

Question No. 20
Solve $75-\frac{x}{7}=\frac{x}{8}$

- $\frac{1125}{2}$
- 1125

56
${ }^{\circ} 280$
${ }^{\circ} 5$

Question No. 19
The expression $\frac{8}{3 r}+\frac{3}{4 r}-\frac{7}{2 r}$ is equal to$\frac{1}{13}$$-\frac{1}{6 i x}$$\frac{1}{67}$

$$
\begin{aligned}
& =66+\frac{3}{-\frac{1}{12 x}} \\
& \frac{32}{12 x}+\frac{9}{12 x}-\frac{42}{12 x}=\frac{32+9-42}{12 x}
\end{aligned}
$$

Question No. 17

Let $\mathrm{U}=\{1,2,3,4,5,6,7\}$, and $\mathrm{A}=\{1,3,5,7\}$ the complement of A is
$\{1,2,3,4,5,6,7\}$
0
0
0
$\{2,4,6\}$
$\{1,3,5,7\}$

Question No. 18
Factor $-12 x^{2}+27$

$$
\begin{aligned}
& 3(2 x+3)^{2} \\
& -3(2 x+3)^{2} \\
& 3(2 x-3)^{2} \\
& \hline-3(2 x+3)(2 x-3)
\end{aligned}
$$

$$
0=\hat{z} h-3 \text { i } 1 *
$$

$$
-3\left(4 x^{2}-9\right)-\frac{10}{2}, 0,0 i j
$$

$$
-3[(2 x-3)(2 x+3)]
$$

Question No. 19

The expression $\frac{8}{3 x}+\frac{3}{4 x}-\frac{7}{2 \pi}$ is equal to

- $\frac{1}{13 r}$

O $-\frac{1}{6 x}$

- $\frac{1}{6 z}$
- $-\frac{1}{12 x}$

Factoring $\boldsymbol{x}^{\mathbf{3}}-\boldsymbol{y}^{\mathbf{3}}$
${ }^{\circ} x^{3}-y^{3}$
${ }^{\circ}(x-y)\left(x^{2}-2 x y+y^{2}\right)$
${ }^{\circ}(x+y)\left(x^{2}+x y+y^{2}\right)$
${ }^{\circ}(x-y)\left(x^{2}+x y+y^{2}\right)$

Let $U=\{-3,-2,-1,0,1,2,3,4,5,6\}, A=\{-2,0,2,4,6\}, B=\{0,1,2,3,4,5,6\}$ and $C=\mathbb{C}$ Find $(A \cap B)^{\prime} \cup(A \cap C)^{\prime}$.
${ }^{0}(0,4,6,-2)$
0 $\{-3,-1,1,2,3,5\}$
${ }^{0}\{-3,-2,-1,1,3,5\}$
$\{-3,-2,-1,1,3,5,2\}$

Question No. 25

The exponent of $(2 x y)^{3}$ is

- 3
$2 x y$
O 2
- 6

Question No. 17

Simplify the expression. $\frac{\frac{x^{2}-3 x+2}{x-4}}{x-2}$
$\frac{x-1}{x-4}$
$\frac{x-4}{x-1}$
$\frac{x-2}{x-4}$
$\frac{x+1}{x-4}$

Question No. 23

Perform the indicated operation.

$$
(7-3 i) \div(5-2 i)
$$$\frac{41}{29}-i$$\frac{7}{5}+\frac{3}{2} i$$\frac{41}{29}-\frac{1}{29} i$

$1-\frac{1}{29} i$

If $\mathrm{A}=\{1,2,3,4,5,6\}$ then

$$
\{1,4\} \subseteq A
$$

$1 \notin \mathrm{~A}$
$\{0,1\} \subseteq A$
$\{1\} \in A$

Factor the following polynomial : $4 \mathrm{tx}^{3}+\mathrm{ytz}-4 \mathrm{zt}-\mathrm{tyx}{ }^{3}$

$$
\begin{aligned}
& \left(t x^{3}+z\right)(4 t+y t) \\
& \frac{t\left(x^{3}-z\right)(4-y)}{\left(x^{3}-z\right)(4-y)} \\
& t\left(x^{3}-z\right)(4+y) \\
& \left(4+x^{3}-t y x^{3}\right)+\left(-42 t+y^{2} 2\right) \\
& +y^{\prime}(4-y)-2+(x-y) \\
& (y-y)\left(t x^{3}-2 t\right) \\
& (x-y) t\left(x^{3}-2\right)
\end{aligned}
$$

Question No. 14

The domain of $\frac{x}{x^{2}-5 x-6}$ is$R \backslash\{-1\}$$R \backslash\{6\}$$R \backslash\{-1,6\}$$R \backslash\{1,6\}$

Question No. 13

Factor $-12 x^{2}+27$

- $-3(2 x+3)(2 x-3)$
$3(2 x+3)^{2}$
$3(2 x-3)^{2}$
$-3(2 x+3)^{2}$

$$
\begin{aligned}
& { }^{0} P=\frac{2 A}{r t} \\
& 0 \\
& P=\frac{2 A-3 P}{r t} \\
& P=\frac{2 A-5 \mathrm{Prt}}{3 r t} \\
& P=\frac{3 r t}{2 A-5 r t} \\
& 2 A P-3 \gamma t=9 \rho \gamma t \\
& -3 \gamma t=S \rho \gamma t-2 A P \\
& P(S \gamma t-2 A)=-3 \gamma t \\
& P=\frac{-3 \gamma t}{S \gamma t-2 A}+\frac{+3 \gamma t}{(2 A-5 \gamma t)} \\
& =\frac{3 \gamma t}{2 A-5 \gamma t}
\end{aligned}
$$

Question No. 11

The intersection $\{4,6,8,10,12,14\} \cap\{4,5,6,10\}$ gives
$\{4,6,10\}$$\{4,6,8,10,12,14\}$
\emptyset

- $\{4,6,8,10\}$

Question No. 12

Determine the following intersection $\emptyset \cap\{6,7\}=$
\emptyset
${ }^{\circ}\{6,7\}$
\{7\}
${ }^{\circ}$ (6)

The quotient $\frac{2}{-i}$ can be written as
O - 1
$O_{2 i}$
\circ_{1}

- -2i

Question No. 8

Simplify the expression

\bigcirc
$-6-2 \sqrt{11}$
12-4 $\sqrt{11}$
\odot

$$
-6+2 \sqrt{11}
$$

$$
12+4 \sqrt{11}
$$

Question No. 7

Simplifying the power of \mathbf{i}^{1235}

$r \neq 0$. Factor out th

Simplify the complex fraction $\frac{\frac{1}{x+3}-\frac{2}{x-1}}{\frac{x}{x-1}+\frac{3}{x+3}}$$\frac{-x+7}{x^{2}+6 x-3}$$\frac{-x-7}{x^{2}+6 x-3}$$\frac{x-7}{x^{2}+6 x-3}$$\frac{x+7}{x^{2}+6 x-3}$

Dividing $-33 x^{8}-9 x^{6}+30 x^{4}$

\bigcirc

$11 x^{6}+3 x^{4}-10 x^{2}-7$

\bigcirc

\bigcirc

$$
11 x^{6}+3 x^{4}-10 x^{2}+7
$$

$$
11 x^{6}+3 x^{4}-11 x^{2}+7 x
$$

Total questions in exam: $\mathbf{2 5}$ | Answered: $\mathbf{0}$

Question No. 3

The solution set of the equation $2(x+3)=2 x-6$ is

All real numbers
θ
$\{2,3\}$
1

Simplify the expression, assuming that the variable can repress
$-\left(\frac{8 a^{3}}{27}\right)^{-\frac{4}{3}}-2.1 \sigma \times 1 \sigma^{-3}$

- $\frac{81}{16 a^{4}}$
$-\frac{16 a^{4}}{81}$
$\frac{16 a^{4}}{81}$
$-\frac{81}{16 a^{4}}$

Total questions in exam: $\mathbf{2 5}$ | Answered: 0

Question No. 1

The expression $8 z^{6}+3 z^{5}+4 z$ can be classified as a
none of these
monomial
trinomial

- binomial

Total questions in exam: 25 | Answered: 0

Question No. 23

Perform the indicated operation.

$$
(7-3 i) \div(5-2 i)
$$

$\frac{41}{29}-i$
$\frac{\frac{7}{5}+\frac{3}{2} i}{\frac{41}{29}-\frac{1}{29} i}$
$1-\frac{1}{29} i$

If $\mathrm{A}=\{1,2,3,4,5,6\}$ then

$$
\{1,4\} \subseteq A
$$

$1 \notin \mathrm{~A}$
$\{0,1\} \subseteq A$
$\{1\} \in A$

Question No. 25

The exponent of $(2 x y)^{3}$ is

- 3
$2 x y$
O 2
O 6

Question No. 19
Select the correct property that describes the given equation.
$15 \times(7+9)=15 \times 7+15 \times 9$

Distributive property
Identify property of addition
Commutative propecty of addition
Imverse property of addrion

Question No. 18

Factoring $x^{3}-y^{3}$

$$
\begin{aligned}
& (x-y)\left(x^{2}+x y+y^{2}\right) \\
& x^{3}-y^{3} \\
& (x+y)\left(x^{2}+x y+y^{2}\right) \\
& (x-y)\left(x^{2}-2 x y+y^{2}\right)
\end{aligned}
$$

Question No. 22

Perform the indicated operation $\frac{\left(2 a^{-1} b^{2} c^{-2}\right)^{2}}{\left(3^{-1} b\right)\left(z^{-1} a c^{-2}\right)^{3}}$
$\frac{24 b c^{2}}{a^{5}}$
$\frac{96 b c^{2}}{a^{5}}$
$\frac{\frac{24 b^{3} c^{2}}{a^{5}}}{\frac{96 b^{3} c^{2}}{a^{5}}}$

Question No. 19
Writing, $\frac{-8+\sqrt{-121}}{8}$ in standard form of complex numbers gives$-1+i \sqrt{2}$$-1-\sqrt{2}$$-1+\sqrt{2}$$-1-i \sqrt{2}$

Question No. 21

Using set notation, write the elements belonging to the set

$$
\left\{x \mid x=n^{3}, n \text { is a natural number less than or equal to } 4\right\} \text {. }
$$

[1, 8, 27]
$0\{1,2,3,4\}$
(1) $\{1.2 .3\rangle$
$\{1,8,27,64\}$


```
O 14,24}
```



```
15n'904480, +5
```

The simplified expression of $(-9)^{\pi / y}$ is positive if the values of x and y are equal to

$$
\begin{aligned}
& x=9, y=3 \\
& x=6, y=2 \\
& x=2, y=2 \\
& x=8, y=2
\end{aligned}
$$

Find the $\operatorname{sum} \frac{3}{2 y}+\frac{5}{4 y}$$\frac{11}{y}$
$\frac{11}{4 y^{2}}$$\frac{22}{4 y}$$\frac{11}{4 y}$

Questorn No. 18

Factor out the least power of the variable $18 n^{4 / 3}-12 n^{1 / 3}$$6 n^{\frac{1}{3}}(3 n-2)$$6 n^{\frac{1}{3}}\left(3 n^{2}-2 n\right)$$6 n^{\frac{1}{2}}\left(3 n^{2}-2\right)$$6 n^{\frac{4}{3}}(3-2 n)$

Question Nu. 13

Whiter this number as tile product of a real number ind i $\sqrt{-225}$$-i \sqrt{15}$11515 f$-15 i$
n

$$
1
$$

Question No. 12

Using set notation, write the elements belonging to the set
$\{x \mid x$ is a natural odd number between 2 and 14$\}$

Of, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}
$0\{3,5,7,9,11,13\}$
(1, 3, 5, 7, 9, 11, 13)
($4,6,8,10,12$).

shes fext anjur

Guestorn No. 11

The solution set of the equation $\frac{1}{20}(2 x+5)=\frac{x+2}{5}$ is$\left\{\frac{2}{3}\right\}$

$$
\left\{-\frac{2}{3}\right\}
$$$\left\{\frac{3}{2}\right\}$$\left\{-\frac{3}{2}\right\}$

Question No. 7
Factor completely: $y^{4}-13 y^{2}+36$

$$
\begin{aligned}
& { }^{0}\left(y^{2}-4\right)\left(y^{2}-9\right) \\
& \left(y^{2}+4\right)\left(y^{2}+9\right)
\end{aligned}
$$

${ }^{0}\left(r^{2}-\sigma^{2}\right.$

$$
\begin{aligned}
& y^{4}=a^{2} \\
& \left.a^{2}-1\right] a+36 \\
& (a-4)(a-9) \quad(y-3 b \\
& \left(y^{2}-4\right)\left(y^{2}-9\right)= \\
& \quad(y-2)(y+2)(y-3)(y+3)
\end{aligned}
$$

Question No, a
If $\mathrm{A}=\{1,2,3\}$ ana $\mathrm{B}=\{0,1,2,3\}$ then.

- $\mathrm{A}=\mathrm{B}$
- A and B are disjoints sets
${ }^{\circ} \mathrm{B} \subseteq \mathrm{A}$
${ }^{\circ} \mathrm{A} \subseteq \mathrm{B}$

Question No. 9

Factoring $x^{2}-y^{2}$
$x^{2}-y^{2}$
$(x-y)\left(x^{2}+x y+y^{2}\right)$
$(x+y)\left(x^{2}+x y+y^{2}\right)$
0 $(x-y)\left(x^{2}-2 x y+y^{2}\right)$

Perform the indicated operations and Simplify. $\frac{a-b}{b-a} \div \frac{a^{2}+2 a b+b^{2}}{a^{2}+a b}$

$$
\frac{-a+b}{a}
$$

Total questions in exam: 25 | Answered: 1

Question No. 5

When factored completely $25 x^{2} y^{3}+10 x y^{2}$ becomes$5 x y^{2}(5 x y+2)$$5 y^{2}\left(5 x^{2} y+2 x\right)$$5 x y^{2}\left(5 x y+2 y^{2}\right)$$5\left(5 x^{2} y^{3}+2 x y^{2}\right)$

$$
5 x y^{2}(5 x y+2)
$$

Questien No. 1

Seked the corroct property that descrites the given equation
$15 \times(7+9)=15 \times 7+15 \times 9$

Identity property of addtion
Dswbutwe properly

- Commulame property of addton

O liverse property of addton

Question No, 4
Evaluate for $x=-2, y=5$, and $z=-3$ the expression : $\frac{2(x-5)^{2}+4 y}{z+4}$118. 181181$-118$

n

Question No. 2

Thequoticnt $\frac{5-1}{3+31}$ cain be written as

Question No. 3

Simplify $\left[\frac{x^{2} y^{-2 / 3}}{x^{-1 / 2} y^{-3}}\right]^{-1 / 7}$
$\frac{\frac{1}{x^{5 / 14} y^{1 / 2}}}{\frac{1}{x^{3 / 14} y^{11 / 21}}}$$x^{5 / 14} y^{1 / 3}$

$$
\frac{1}{x^{3 / 14} y^{2 / 3}}
$$

