BMT-222 (September 2018)

Chapter 11 Differentiation (Summary)

Terminology and notation

Block 2

The process of finding the rate of change of given function is called differentiation. The function is said to be differentiated. If y is a function of the independent variable x, we say that y is differentiated with respect to (w.r.t.) x.

• There is a notation for writing down the derivative of a function. If the function is y(x), we denote the

derivative of y by $\frac{dy}{dx}$, pronounced 'dee y by dee x'.

- Another notation for the derivative is simply y', pronounced y dash.
- Similarly if the function is y(t) we write the derivative as $\frac{dy}{dt}$ or \dot{y} , pronounced "y dot".

Block 1 Exercises (Terminology and notation) (page 624)

Problem # 1 If x is a function of the independent variable t, write down two ways in which the derivative can be written.

Solutions: (1)
$$\frac{dx}{dt}$$
 or \dot{x}

Problem # 2. If f is a function of x, write down two ways in which the derivative can be written.

Solutions: (2) $\frac{df}{dx}$ or f'

Exercises (Using table of derivatives) (page 629)

Problem # 1 Find the derivative of the following functions: (a) 9x (b) 4x (c) $6x^3$ (d) $-3x^2$ (e) $\ln 3t$ Problem # 2. Find $\frac{dz}{dt}$ when z is defined by

(a)
$$\frac{4}{t^3}$$
 (b) $\sqrt{t^3}$ (c) $5t^{-2}$ (d) $-\frac{3}{2}t^{\frac{3}{2}}$

Problem # 3. Find the derivative of each of the following functions:

(a) $\sin 5x$ (b) $\cos 4t$ (c) $\tan 3r$ (d) e^{2s} (e) $\frac{1}{e^{3t}}$

Problem # 4. Find the derivative of the following:

(a) $\cos \frac{2x}{3}$ (b) $\sin(-2x)$ (c) $\tan f x$ (d) $e^{\frac{x}{2}}$

HW: Problem # 1 (a) and (b), Problem # 2 (c), (d), Problem # 3 (a) and (d), Problem # 4 (b) and (d) (Problems solved in class # 1 (c), (d), and (e), # 2 (a), (b), # 3(b), (c) and (e) # 4(a), and (c))

Extending the table of derivatives

• The derivative of
$$f(x) \pm g(x)$$
 is $\frac{df}{dx} \pm \frac{dg}{dx}$

• The derivative of
$$k f(x)$$
 is $k \frac{df}{dx}$

Exercises (Extending the table of derivatives) (page 631)

Problem # 1 Find $\frac{dy}{dx}$ when y is defined by

(a)
$$4x^6 + 8x^3$$
 (b) $-3x^4 + 2x^{1.5}$ (c) $\frac{9}{x^2} + \frac{14}{x} - 3x$ (d) $\frac{3+2x}{4}$ (e) $(2+3x)^2$

Problem # 2. Find the derivative of each of the following functions:

(a)
$$z(t) = 5\sin t + \sin 5t$$

(b) $h(v) = 3\cos 2v - 6\sin \frac{v}{2}$
(c) $m(n) = 4e^{2n} + \frac{2}{e^{2n}} + \frac{n^2}{2}$
(d) $H(t) = \frac{e^{3t}}{2} + 2\tan 2t$
(e) $S(r) = (r^2 + 1)^2 - 4e^{-2r}$

Problem # 3. Differentiate the following functions:

(a)
$$A(t) = (3+e^t)^2$$
 (b) $B(s) = fe^{2s} + \frac{1}{s} + 2\sin fs$ (c) $V(r) = (1+\frac{1}{r})^2 + (r+1)^2$

(d) $M(_{\pi}) = 6\sin 2_{\pi} - 2\cos\left(\frac{\pi}{4}\right) + 2_{\pi}^{2}$ (e) $H(t) = 4\tan 3t + 3\sin 2t - 2\cos 4t$

HW: Problem # 1 (a) and (c), Problem # 2 (a), (c), (e) Problem # 3 (b) and (e)

(Problems solved in class # 1 (b), (d), (e), # 2 (b), (d), # 3(a), (c) and (d))

Exercises (Evaluating a derivative) (page 633)

Problem # 1 Calculate the derivative of

$$y = 3x^2 + e^x$$
 when $x = 0.5$.

Problem # 2. Calculate the rate of change of

$$i(t) = \sin 2t + 3t$$
 when (a) $t = \frac{f}{3}$, (b) $t = 0.6$.

Problem # 3. Evaluate the rate of change of

 $H(t) = 5 \sin t - 3 \cos 2t$ when (a) t = 0, (b), t = 1.3.

HW: Problem # 2

(Problems solved in class # 1, # 3)

Higher derivatives

Notation

We know that the first derivative is denoted by $\frac{dy}{dx}$ or y'. The second derivative is calculated by differentiating the first derivative, that is

Second derivative
$$= \frac{d}{dx} \left(\frac{dy}{dx} \right)$$

So, the second derivative is denoted by $\frac{d^2y}{dx^2}$. This often written more concisely as y".

If y = y(x)

first derivative =
$$\frac{dy}{dx}$$
 second derivative = $\frac{d^2y}{dx^2}$ third derivative = $\frac{d^3y}{dx^3}$

• Derivative with respect to **t** are often indicated using a dot notation, so $\frac{dx}{dt}$ can be written as \dot{x} .

Similarly, a second derivative with respect to \mathbf{t} can be written as \ddot{x} , pronounced x double dot.

• We may need to evaluate higher derivatives at specific points. The second derivative of y(x), evaluated

at, say, x = 2, is written as $\frac{d^2 y}{dx^2}(2)$, or more simply as y''(2).

Block 3

Exercises (Higher derivatives) (page 637)

Problem # 1 Find $\frac{d^2 y}{dx^2}$ where y(x) is defined by

(a) $3x^2 - e^{2x}$ (b) $\sin 3x + \cos x$ (c) \sqrt{x} (d) $e^x + e^{-x}$ (e) $1 + x + x^2 + \ln x$

Problem # 2. Find $\frac{d^3y}{dx^3}$ where y(x) is defined is given in question 1.

Problem # 3. Find $\ddot{y}(1)$ where y(t) is given by

(a) $t(t^2+1)$ (b) $\sin(-2t)$ (c) $2e^t + e^{2t}$ (d) $\frac{1}{t}$ (e) $\cos(\frac{t}{2})$

Problem # 4 Find $\ddot{y}(-1)$ of the functions given in question 3.

HW: Problem # 1 (a) and (e), Problem # 2 (a), (b), (e) Problem # 3 (b) and (e) Problem # 4 (b) and (e)

(Problems solved in class # 1 (b), (c), (d), # 2 (c), (d), # 3(a), (c) and (d), # 4(a), (c) and (d))

Exercises (end of block exercises) (page 637-638)

Problem # 1 Calculate y'' where y is given by

(a)
$$\cos 2t - \sin 2t$$
 (b) $e^{2x} - e^{x}$ (c) $2x^6 - 3x^7$ (d) $-x^3 + 3x^2$ (e) $9 - \frac{9}{x}$

Problem # 2. Find the fourth derivative of the following functions:

(a) e^{3t} (b) e^{kx} , where k is a constant (c) $\sin 2t$ (d) $\sin kt$ where k constant (d) $\cos kt$ where k constant Problem # 3. Show that $y = e^x + 2x$ satisfies the equation $y'' - y' - y = -2 - 2x - e^x$ Problem # 4. Evaluate y'''(0) where y is given by

(a) $\sin 3t + t^3$ (b) $2\cos t + \cos 2t$ (c) $e^{-x}(e^x + 1)$ (d) $3 - 3t^4$ (e) $\frac{e^{2x} + 1}{e^x}$

Problem # 5. The function $y(x) = x^4 - 3x^3 + 3x^2 + 1$, Calculate the value of x where y'' = 0.

HW: Problem # 1 (c) and (e), Problem # 2 (b), (c), (e) Problem # 4 (b) and (e) (Problems solved in class # 1 (a), (b), (d), # 2 (a), (d), # 3, # 4(a), (c) and (d), # 5)