Chapter 11 Differentiation (Summary)

Terminology and notation

The process of finding the rate of change of given function is called differentiation. The function is said to be differentiated. If y is a function of the independent variable x , we say that y is differentiated with respect to (w.r.t.) x.

- There is a notation for writing down the derivative of a function. If the function is $y(x)$, we denote the derivative of y by $\frac{d y}{d x}$, pronounced 'dee y by dee x '.
- Another notation for the derivative is simply y^{\prime}, pronounced y dash.
- Similarly if the function is $y(t)$ we write the derivative as $\frac{d y}{d t}$ or \dot{y}, pronounced "y dot".

Block 1

Exercises (Terminology and notation) (page 624)
Problem \# 1 If x is a function of the independent variable t , write down two ways in which the derivative can be written.

$$
\text { Solutions: (1) } \frac{d x}{d t} \text { or } \dot{x}
$$

Problem \# 2. If f is a function of x , write down two ways in which the derivative can be written.

$$
\text { Solutions: (2) } \frac{d f}{d x} \text { or } f^{\prime}
$$

Block 2
Exercises (Using table of derivatives) (page 629)
Problem \# 1 Find the derivative of the following functions:
(a) $9 x$
(b) $4 x$
(c) $6 x^{3}$
(d) $-3 x^{2}$
(e) $\ln 3 t$

Problem \# 2. Find $\frac{d z}{d t}$ when z is defined by
(a) $\frac{4}{t^{3}}$
(b) $\sqrt{t^{3}}$
(c) $5 t^{-2}$
(d) $-\frac{3}{2} t^{\frac{3}{2}}$

Problem \# 3. Find the derivative of each of the following functions:
(a) $\sin 5 x$
(b) $\cos 4 t$
(c) $\tan 3 r$
(d) $e^{2 s}$
(e) $\frac{1}{e^{3 t}}$

Problem \# 4. Find the derivative of the following:
(a) $\cos \frac{2 x}{3}$
(b) $\sin (-2 x)$
(c) $\tan \pi x$
(d) $e^{\frac{x}{2}}$

HW: Problem \# 1 (a) and (b), Problem \# 2 (c), (d), Problem \# 3 (a) and (d), Problem \# 4 (b) and (d)
(Problems solved in class \# 1 (c), (d), and (e), \# 2 (a), (b), \# 3(b), (c) and (e) \# 4(a), and (c))

Extending the table of derivatives

- The derivative of $f(x) \pm g(x)$ is $\frac{d f}{d x} \pm \frac{d g}{d x}$
- The derivative of $k f(x)$ is $k \frac{d f}{d x}$

Exercises (Extending the table of derivatives) (page 631)

Problem \# 1 Find $\frac{d y}{d x}$ when y is defined by
(a) $4 x^{6}+8 x^{3}$
(b) $-3 x^{4}+2 x^{1.5}$
(c) $\frac{9}{x^{2}}+\frac{14}{x}-3 x$
(d) $\frac{3+2 x}{4}$
(e) $(2+3 x)^{2}$

Problem \# 2. Find the derivative of each of the following functions:
(a) $z(t)=5 \sin t+\sin 5 t$
(b) $h(v)=3 \cos 2 v-6 \sin \frac{v}{2}$
(c) $m(n)=4 e^{2 n}+\frac{2}{e^{2 n}}+\frac{n^{2}}{2}$
(d) $H(t)=\frac{e^{3 t}}{2}+2 \tan 2 t$
(e) $S(r)=\left(r^{2}+1\right)^{2}-4 e^{-2 r}$

Problem \# 3. Differentiate the following functions:
(a) $A(t)=\left(3+e^{t}\right)^{2}$
(b) $B(s)=\pi e^{2 s}+\frac{1}{s}+2 \sin \pi s$
(c) $V(r)=\left(1+\frac{1}{r}\right)^{2}+(r+1)^{2}$
(d) $M(\theta)=6 \sin 2 \theta-2 \cos \left(\frac{\theta}{4}\right)+2 \theta^{2}$
(e) $H(t)=4 \tan 3 t+3 \sin 2 t-2 \cos 4 t$

HW: Problem \# 1 (a) and (c), Problem \# 2 (a), (c), (e) Problem \# 3 (b) and (e)
(Problems solved in class \# 1 (b), (d), (e), \# 2 (b), (d), \# 3(a), (c) and (d))
Exercises (Evaluating a derivative) (page 633)
Problem \# 1 Calculate the derivative of

$$
y=3 x^{2}+e^{x} \text { when } x=0.5 .
$$

Problem \# 2. Calculate the rate of change of

$$
i(t)=\sin 2 t+3 t \text { when (a) } t=\frac{\pi}{3} \text {, (b) } t=0.6
$$

Problem \# 3. Evaluate the rate of change of

$$
H(t)=5 \sin t-3 \cos 2 t \text { when (a) } t=0, \text { (b), } t=1.3
$$

HW: Problem \# 2
(Problems solved in class \# 1, \# 3)

Higher derivatives

Notation

We know that the first derivative is denoted by $\frac{d y}{d x}$ or y^{\prime}. The second derivative is calculated by differentiating the first derivative, that is

$$
\text { Second derivative }=\frac{d}{d x}\left(\frac{d y}{d x}\right)
$$

So, the second derivative is denoted by $\frac{d^{2} y}{d x^{2}}$. This often written more concisely as $y^{\prime \prime}$.

If $y=y(x)$
first derivative $=\frac{d y}{d x} \quad$ sec ond derivative $=\frac{d^{2} y}{d x^{2}} \quad$ third derivative $=\frac{d^{3} y}{d x^{3}}$

- Derivative with respect to \mathbf{t} are often indicated using a dot notation, so $\frac{d x}{d t}$ can be written as \dot{x}.

Similarly, a second derivative with respect to \mathbf{t} can be written as \ddot{x}, pronounced x double dot.

- We may need to evaluate higher derivatives at specific points. The second derivative of $y(x)$, evaluated at, say, $x=2$, is written as $\frac{d^{2} y}{d x^{2}}(2)$, or more simply as $y^{\prime \prime}(2)$.
Block 3

Exercises (Higher derivatives) (page 637)

Problem \# 1 Find $\frac{d^{2} y}{d x^{2}}$ where $y(x)$ is defined by
(a) $3 x^{2}-e^{2 x}$
(b) $\sin 3 x+\cos x$
(c) \sqrt{x}
(d) $e^{x}+e^{-x}$
(e) $1+x+x^{2}+\ln x$

Problem \#2. Find $\frac{d^{3} y}{d x^{3}}$ where $y(x)$ is defined is given in question 1.
Problem \# 3. Find $\ddot{y}(1)$ where $y(t)$ is given by
(a) $t\left(t^{2}+1\right)$
(b) $\sin (-2 t)$
(c) $2 e^{t}+e^{2 t}$
(d) $\frac{1}{t}$
(e) $\cos \left(\frac{t}{2}\right)$

Problem \# 4 Find $\dddot{y}(-1)$ of the functions given in question 3 .
HW: Problem \# 1 (a) and (e), Problem \# 2 (a), (b), (e) Problem \# 3 (b) and (e) Problem \# 4 (b) and (e)
(Problems solved in class \# 1 (b), (c), (d), \# 2 (c), (d), \# 3(a), (c) and (d), \# 4(a), (c) and (d))

Exercises (end of block exercises) (page 637-638)

Problem \# 1 Calculate $y^{\prime \prime}$ where y is given by
(a) $\cos 2 t-\sin 2 t$
(b) $e^{2 x}-e^{x}$
(c) $2 x^{6}-3 x^{7}$
(d) $-x^{3}+3 x^{2}$
(e) $9-\frac{9}{x}$

Problem \# 2. Find the fourth derivative of the following functions:
(a) $e^{3 t}$
(b) $e^{k x}$, where k is a constant (c) $\sin 2 t$
(d) $\sin k t$ where k constant
(d) $\cos k t$ where k constant

Problem \#3. Show that $y=e^{x}+2 x$ satisfies the equation $y^{\prime \prime}-y^{\prime}-y=-2-2 x-e^{x}$
Problem \# 4. Evaluate $y^{\prime \prime \prime}(0)$ where y is given by
(a) $\sin 3 t+t^{3}$
(b) $2 \cos t+\cos 2 t$
(c) $e^{-x}\left(e^{x}+1\right)$
(d) $3-3 t^{4}$
(e) $\frac{e^{2 x}+1}{e^{x}}$

Problem \# 5. The function $y(x)=x^{4}-3 x^{3}+3 x^{2}+1$, Calculate the value of x where $y^{\prime \prime}=0$.
HW: Problem \# 1 (c) and (e), Problem \# 2 (b), (c), (e) Problem \# 4 (b) and (e)
(Problems solved in class \# 1 (a), (b), (d), \# 2 (a), (d), \# 3, \# 4(a), (c) and (d), \# 5)

