Chapter 9

*Center of mass

*Linear momentum

*Collision and impulse

*Conservation of linear momentum
‘Momentum and kinetic energy in collision
Inelastic collision in one dimension

*Elastic collision in one dimension



Center of mass for system of
particles:

@ The center of mass of a system of particles is the point that moves as though (1) all of
the system’s mass were concentrated there and (2) all external forces were applied there.



The center of mass of a system of two particles is defined to
be the point whose coordinates are given by
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Then the center of mass of a system of n particles is generally defined to
be:
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“Sample Problem ‘
Three particles of masses m; = 1.2 kg, m, = 2.5 kg,
and m;y = 3.4 kg form an equilateral triangle of edge
length a = 140 cm. Where is the center of mass of this
system?

Particle Mass (kg) x (cm) y(cm)
1.2 0 0
2.5 140 0
34 70 120

The total mass M of the system is 7.1 kg.

_ 1 i _omyxy + myx, + myx,
com M M
( g)(O) + (2.5kg)(140 cm) + (3.4 kg)(70 cm)
7.1kg

=83 cm (Answer)
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Differentiate this equation with respect to time gives
MV m = myvy + myVs + mavy + -+ - + m, V.

Differentiate again with respect to time give

Md,, = ma, + mya, + ma; + -+ + m,a,

From Newton’s second law, m;a; is equal to the resultant force F; that acts
on the ith particle. Thus,
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F... = Md,,  (systemof particles).



Sample Problem JEEY R

The three particles in Fig. 9-7a are initially at rest. Each e} 3
experiences an external force due to bodies outside the 1.0kg
three-particle system. The directions are indicated, and 5
the magnitudes are F; = 60N, F, = 12N, and F; = 14 W o
N. What is the acceleration of the center of mass of the
system, and in what direction does it move? B 9 9 3 41 5

. 4.0k
KEY IDEAS TN position of the center of mass, calcu- 2@ ; D>

lated by the method of Sample Problem 9-1, is marked B
by a dot in the figure. We can treat the center of mass
as 1f it were a real particle, with a mass equal to the
system’s total mass M = 16 kg. We can also treat the
three external forces as if they act at the center of mass

Calculations: We can now apply Newton’s second law
(F .. = ma) to the center of mass, writing

]—3 net — M a-’cnm (9'20)

or F]+F2+F3:MEC()m

. _R+FE+F
SO a com = M .

(9-21)



Sample Problem m

The three particles in Fig. 9-7a are initially at rest. Each
experiences an external force due to bodies outside the
three-particle system. The directions are indicated, and
the magnitudes are F, = 6.0N, F, = 12N, and F; = 14
N. What is the acceleration of the center of mass of the
system, and in what direction does it move?

Calculations: We can now apply Newton’s second law
(F .. = md) to the center of mass, writing

F)ncl - Mﬁcom (9'20)
or ﬁ+E+E=MEC()m
. ﬁ] + 1?, +F 3
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(a)
-Along the x axis, we have
le + F2x + F3x
a. =
com,x M
-60N + 45° + 14N
_ 6.0N + (12 N) cos L3 ms
16 kg
Along the y axis, we have
Fy,+ Fy+F
acom,y = M
+ in 45° + 0
_0 (12 N) sin 45 0530 /s

16 kg



-Along the x axis, we have n
et 3
le + F2x + F3x 4.0 kg
Aeomx = ‘ : ‘
i M come 8.0 kg
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16 kg

Aeom = \j(acom,.r)z + (acom,y‘):2 .
=1.16m/s’ ~ 1.2m/s>  (Answer) 1

a ,
9 = tan' —= = 27°,

acom‘ X




Linear Momentum:

Linear momentum P of a body of mass m and velocity v is defined as



The Linear Momentum of a System of Particles

—

P=Fi+ P+ Pt +7,

=le1+m2V2+m3V3+'“+mV

n-nt

—
P =MV, (linear momentum, system of particles)

_ on_ M7 Fret o (system of particles),

W dt




Sample Problem m

Two-dimensional explosion: A firecracker placed inside
a coconut of mass M, initially at rest on a frictionless
floor, blows the coconut into three pieces that slide
across the floor. An overhead view is shown in Fig. 9-14a.
Piece C, with mass 0.30M, has final speed v = 5.0 m/s.

(a) What is the speed of piece B, with mass 0.20M?
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FIG. 914 Three pieces of an exploded coconut move off in
three directions along a frictionless floor. (a) An overhead
view of the event. (b) The same with a two-dimensional axis
system imposed.

REEIDEA First we need to see whether linear mo-

mentum is conserved. We note that (1) the coconut and
its pieces form a closed system, (2) the explosion forces
are internal to that system, and (3) no net external force
acts on the system. Therefore, the linear momentum of
the system is conserved.




Linear momentum is conserved separately along each axis. Let’s use the y axis and write
P, = P,

Py =Py =pay t Pyt Prey

Pray =0,
pr’v —(). ZOMVfB) —(). ZOMVfB sin 500

Prcy = 0'30vaC,y — 0.3OMVfC sin 80°.

Then, with vy = 5.0 m/s, we have

0= 0 — 0.20Mvg sin 50° + (0.30M)(5.0 m/s) sin 80°

v = 9.64m/s = 9.6 m/s. (Answer)



(b) What is the speed of piece A?

Calculations: Because linear momentum 1s also con-
served along the x axis, we have

P,‘x = P]:t" (9'49)

P = ~0.50Mvy,
pﬂg’x — 0.20M VfB,x = 0.20M va COS 500,
Prcx = 0.30Mvyc, = 0.30Mvy cos 80°.

Pi = Py = Pppax + Px * Prca

0= -0.50Mvg, + 0.20M(9.64 m/s) cos 50°
+ 0.30M(5.0 m/s) cos 80°,

via = 3.0 m/s. (Answer)




Collision and impulse:

Let us study the time rate of change of linear momentum: @
dt —
@ — d(mv) But m is constant dﬁ — m@
dt dt dt dt
dp .
= 772
dt
Newton’s second law tells us F = mc_i

Then




= dp
Fnet_ dt

Newton expressed his second law of motion in terms of momentum:

The time rate of change of the momentum of a particle is
equal to the net force acting on the particle and is in the
direction of that force.



A force F acts on a particle in time interval At (from t; to t,), we define the Impulse J

net

1
4]
If force F acts on a particle is not known we can estimate the average force from the relation

J=F At

ave

If force F acts on a particle is constant then

J = F Af Constant force only

net



net

tz-»
J=!F dt

j=Ap=l_5f_l_5i

Thus, the change in an object’s momentum is equal to the impulse on
the object

* Sl unit for impulse is: N-s



z Conservation of Linear Momentum :

p:\.ml :3/' Consider a system of particles for whichF , =0
p m; d]_i

%\ E =F  =0— P = Constant

If no net external force acts on a system of particles, the total linear momentum

P cannot change.

[total linear momentum] [total linear momentum

at some initial time 7, at some later time t,

The conservation of linear momentum is an important principle in physics.
It also provides a powerful rule we can use to solve problems in mechanics

such as collisions.

Note 1: In systems in which ]7:1 =0 we can always apply conservation of

et
linear momentum even when the internal forces are very large as in the case
of colliding objects.

Note 2: We will encounter problems (e.g., inelastic collisions) in which the

energy 1s not conserved but the linear momentum is.



Momentum and Kinetic Energy in Collisions

L % Consider two colliding objects with masses m;, and m,,

initial velocities vy, and v,;, and tinal velocities v, , and v, ,,

After —_— —_—

respectively.

If the system is isolated, i.e., the net force F_ = 0, linear momentum is conserved.
The conservation of linear momentum is true regardless of the collision type.

This 1s a powerful rule that allows us to determine the results of a collision
without knowing the details. Collisions are divided into two broad classes:

elastic and inelastic.

A collision is elastic if there 1s no loss of kinetic energy, 1.e., K, = K ,.

A collision is inelastic if kinetic energy is lost during the collision due to
conversion into other forms of energy. In this case we have K, < K.

A special case of inelastic collisions are known as completely inelastic.

In these collisions the two colliding objects stick together and they move as a

single body. In these collisions the loss of kinetic energy 1s maximum.



Sample Problem:

Race-car wall collision. Figure 9-12a is an overhead view of the path taken by a race car driver as his car collides
with the racetrack wall. Just before the collision, he is travelling at speed v= 70 m/s along a straight line at 30°
from the wall. Just after the collision, he is travelling t speed v, 50m/s along a straight line at 10° from the wall.
His mass m is 80 kg.

(a) What is the impulse J on the driver due to the collision?

(b) The collision lasts for 14 ms. What is the magnitude of the average force on the driver during the collision?

Wall

: —x \ - —x
= — -— — — STy — 30°) m\s\ \7~D
J =p,—pi=mv, — mv,=m({i, - 7). 10 ™

x component: Along the x axis we have (a) *)
Je=m{vy —vy) !
= (80 kg)[(50 m/s) cos(—10°) — (70 m/s) cos 30|

= =910 kg - m/s.

-
"

i A
y component: Along Lhe y axis, T
J,=m(vy, —v) which mecans the impulse magnitude 1s
= (80 kg)[(50 m/s) sin(—10°) — (70 m/s) sin 30°] J = \/Jf_+ ‘/% = 3616 kg m/s =~ 3600 kg-m/s.
= —3495 kg-m/s =~ —3500 kg - m/s. .
The angle of J is given by
Impulse: The impulse is then J,
6 = tan ! A (Answer)

J = (=910 ~ 3500)) kg-m/s,  (Answer)

which a calculator c¢valuates as 75.4°. Recall that the



(b) The collision lasts for 14 ms. What is the magnitude of the average force on the driver during the collision?

Calculations: We have
J  36l6kg-m/s

Ar 0.014 s
— 2583 X 10°N =~ 2.6 X 10°N. (Answer)

EWg =



Sample problem:

One-dimensional explosion: A ballot box with mass m = 6.0 kg slides with speed v = 4.0 m/s across a friction- less floor in
the positive direction of an x axis The box explodes into two pieces. One piece, with mass m, = 2.0 kg, moves in the
positive direction of the x axis at v; 8.0 m/s. What is the velocity of the second piece, with mass m,?

—> — — — r— e —>
P,=mV. Pf=Pf1+Pf2:mlv|+m2V2.

my — iV + Fri->Vo.

(6.0 kg)(4.0 m/s) = (2.0 kg)(8.0 m/s) + (4.0 kg)v,

vV, = 2m/s



A 3.50 g bullet is fired horizontally at a block at rest on a frictionless table. The bullet
embeds itself in the block (mass 2.5 kg). The block ends up with speed 1.5 m/s. Find the

speed of the bullet as enters the block.

T = >
>y [l ot %,_ i
e ST e e o=
— = - — ==X ———
e ——
o ————

_ = +
Pix = Poulteti T P block.i Prc= Pouttets * P block f

p,=mv+0 P = mV+ MV
Py = (M + M)V
Pix =MV
conservation of linear momentum
P.=8P
‘ d m+ M = 7?77
V= V V= 2?77 m/s

mv=(m+M)V



Example: A cart with mass 340 g moving on a frictionless linear air track at an initial speed of 1.2 m/s
undergoes an elastic collision with an initially stationary cart of unknown mass. After the collision,
the first cart continues in its original direction at 0.66 m/s. (a) What is the mass of the second cart?

(b) What is its speed after impact?

Conservation of momentum
My Vi My Vy; =My Vet My Vg X - components

0.34 kgx (+1.2 m/s) + 0 = 0.34 kgx (+0.66 m/s) + m, v,
m, v,.= 0.1836 kg- m/s

Because the collision is elastic then the kinetic energy is conserved.
samy (vy; )2+ 2 my (v )2 =2 my (vig )2+ 25 m, (v )?
my (v )+ m, (v, )>= my (Vlf)2+ m, (vzf)2

0.34 kgx (+1.2 m/s)? + 0 = 0.34 kgx (+0.66 m/s)? + m, (v, )?

m, (v,;)°=0.341496 )



*61 A cart with mass 340 g moving on a frictionless linear air track at an initial speed of 1.2 m/s
undergoes an elastic collision with an initially stationary cart of unknown mass. After the collision,
the first cart continues in its original direction at 0.66 m/s. (a) What is the mass of the second cart?

(b) What is its speed after impact?

m, v,.=0.1836 kg- m/s eql

m, (v, )>=0.341496 ) eq 2

now we use eql to calculate the mass
divide eg2 by eql

m, x 1.86 m/s = 0.1836 kg- m/s

m, (vy )? 0.341496
m, Vs 0.1836
m, = 0.0987 kg
v, =1.86 m/s

m,=98.7¢g




Conservation of total
momentum

m.V; = myvitm,v,
miVy —my vy = myv,

my(Vi—v1) = myv,

mq(V3—v1)(V1+v1) _
mq(V1—v1)

Conservation of total kinetic
energy

1 2 _ 1 2 ;1 2
smq Vi = smqvi + smpv;

m, V¢ = myvs + m,v3

m,V# — mv$ = myvs

2 2N 2
my (Vi —v1) = myv3

my(Vi—v1)(V1+v1) = myv

2

mzvz
movU,

2

2



mq(V1—v1)(V1+vq) _ mov3

mq(V1—v1) myv;

V1+'U1=172

mq(Vi—vq) = myv;
mq(V1—v1) = my(V; +vq)
m1V1 —mqvq = m2V1 + mo-,vVq
m1V1 — m2V1 = MoV + mqvq

(m;—my)V; =(m, + my)v,

mq —mp

(%] =V1
m1+m2

mp —m;
U2:V1+V1
mq +m,
mqi —m
VZ:V1[1+ = 2“
m1+m2
27?11
Vo =
2 1m1+m2



Sample Problem 9-4
When a male bighorn sheep runs head-first into another male, the rate at which its speed drops to zero is dramatic.

Figure 9-11 gives a typical graph of the acceleration a versus time t for such a collision, with the acceleration taken as
negative to correspond to an initially positive velocity. The peak acceleration has magnitude 34 m/s? and the duration of
the collision is 0.27 s. Assume that the sheep’s mass is 90.0 kg. What are the magnitudes of the impulse and average

force due to the collision?

a (m/s?)
0.27
0 t(s)
_g44 J = area = 3(0.27 $)(90.0 kg)(34.0 m/s?)

=413 X 10°N-s = 4.1 X 10°N-s. (Answer)

1

For the magnitude of the average force, we can write

J 4.13 X 102 N-s
Fu\!g = e~—

Af 0.27 s
= 1.5 X 10°N. ( Answecr)




