King Saud University Department of Mathematics

244 Second Midterm, April 2016

NAME:

Group Number/Instructor name:

ID:

- Duration of the exam: 90 minutes
- Simple calculators are allowed

Question	Grade
Ι	
II	
III	
IV	
Total	

Question	1	2	3	4	5
Answer					

- I) Choose the correct answer (write it on the table above):
 - 1) If A, B and C are square matrices, such that det(AC) = 2 and det B = 3, then $det(AB^TC)$ is

(A) 6	(B) 5	(C) $\frac{2}{3}$	(D) None
-------	-------	-------------------	----------

2) Let v = (4, 17, -8, 3) and w = (11, -2, 8, -18) be vectors in \mathbb{R}^4 . The vector x that satisfies 5x - 2v = 2(w - 5x) is

(A) $x = (0, 2, 0, -2)$	(B) $x = (2, 0, 2, -2)$	(C) $x = (2, 2, 0, -2)$	(D) None
-------------------------	-------------------------	-------------------------	----------

3) If u = (4, 7, -3, 2) and v = (1, -1, -3, k) are vectors in \mathbb{R}^4 , then the value of k such that vectors u and v are orthogonal is

(A) $k = 0$	(B) $k = -3$	(C) $k = 3$	(D) None
-------------	--------------	-------------	----------

4) If u and v are vectors in \mathbb{R}^n , such that ||u|| = 5, ||v|| = 12 and ||u + v|| = 13, and θ is the angle determined by u and v, then

(A) $\theta < 90^{\circ}$	(B) $\theta = 90^{\circ}$	(C) $\theta > 90^{\circ}$	(D) None
---------------------------	---------------------------	---------------------------	----------

5) The vector w, which is a linear combination of vectors $v_1 = (1, 2, 0)$, $v_2 = (-2, 0, 1)$ and $v_3 = (0, 1, -1)$, with coefficients $c_1 = 2$, $c_2 = 1$ and $c_3 = -1$ is

(A) $w = (0, 2, 3)$	(B) $w = (0, 3, 2)$	(C) $w = (3, 0, 2)$	(D) None
---------------------	---------------------	---------------------	----------

II) Determine whether the following is True or False. Justify your answer.

(1) For all $u, v \in \mathbb{R}^n$, ||u + v|| = ||u|| + ||v||. () (2) If ||u + v|| = 5 and ||u - v|| = 3, then $u \cdot v = 6$. ()

(3) If u and v are vectors in \mathbb{R}^n , then the distance between the vectors 2u + 3v and 3u + 2v is 5||u+v||.

(4) There exist vectors u, v and w in \mathbb{R}^3 , such that

$$(u \cdot v) \cdot w = u \cdot (v \cdot w).$$

()

III) A) Consider the linear system of equations

$$\begin{cases} 2x + y - 3z = -2\\ x + 2y + z = -3\\ -3x - y + 3z = 0 \end{cases}$$

Solve for x, using **Cramer's rule**.

B) Find the values of a, such that

$$\begin{vmatrix} a-1 & 1 \\ 0 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 2 & a & a+1 \\ 4 & a^2 & (a+1)^2 \end{vmatrix}$$

IV) A) Let $V = \mathbb{R}$. Prove that V is not a vector space, when endowed with the usual addition of numbers and the scalar multiplication given by $k \cdot x = k^2 x$, $\forall k \in \mathbb{R}$ and $x \in V$.

B) Prove that the set $W = \{(a, b, c) \in \mathbb{R}^3 : a + b + c = 0\}$ is a subspace of \mathbb{R}^3 .

Scrap paper. This page will not be graded.