Chapter 4 Reactions in Aqueous Solution

Dr. Dalal Alezi
dalezi@kau.edu.sa

13/10/2018

Sea water contains roughly 28.0 g of NaCl per litre. What is the molarity of sodium chloride in sea water?
$\mathrm{MM} \mathrm{NaCl}=58.44 \mathrm{~g} / \mathrm{mol}$

$$
\begin{gathered}
n=\frac{m}{M M} \\
n=\frac{28}{58.44}=0.479 \mathrm{~mol} \\
M=\frac{n}{V(L)} \\
M=\frac{0.479}{1} \\
M=0.479 \mathrm{M}
\end{gathered}
$$

What is the molarity of a solution that contains 5.5 moles of solute in 600 ml ?

$$
\begin{gathered}
M=\frac{n}{V(L)} \\
M=\frac{5.5}{0.6} \\
M=9.167 \mathrm{M}
\end{gathered}
$$

How many moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are there in 1.5 L of 0.7 M solution?

$$
\begin{gathered}
M=\frac{n}{V(L)} \\
0.7=\frac{n}{1.5} \\
n=1.05 \mathrm{~mol}
\end{gathered}
$$

What mass of solute is needed to prepare 1.00 L of $0.125 \mathrm{M}^{\text {of }} \mathrm{K}_{2} \mathrm{SO}_{4}$

$$
\begin{gathered}
M M_{K_{2} S_{4}}=174.257 \mathrm{~g} / \mathrm{mol} \\
M=\frac{n}{V(L)} \quad M=\frac{m}{M M \times V(L)} \\
m=M M \times M \times V(L) \\
m=174.257 \times 0.125 \times 1 \\
m=21.8 \mathrm{~g}
\end{gathered}
$$

How many grams of BeCl_{2} are required to prepare 200 mL of a solution of 1.5 M BeCl_{2} ?

$$
\begin{gathered}
M_{B e C l 2}=9.01+(2 \times 35.45)=79.91 \mathrm{~g} / \mathrm{mol} \\
m=M M \times M \times V(L) \\
m=79.91 \times 1.5 \times 0.2 \\
m=23.973 \mathrm{~g}
\end{gathered}
$$

What is the concentration of chloride ion in 0.2 M NaCl solution?

Depends on the number of chloride ion in the compound
\therefore con. of $\mathrm{Cl}^{-}=$con. of $\mathrm{NaCl}=\mathbf{0 . 2} \mathrm{M}$
multiplying the molarity by the number of ions present

What is the concentration of chloride ion in $0.2 \mathrm{M} \mathrm{CaCl}_{2}$ solution?

Depends on the number of chloride ion in the compound
\therefore con. of $\mathrm{Cl}^{-}=2 x$ con. of $\mathrm{CaCl}_{2}=2 \times 0.2=0.4 \mathrm{M}$

What are the concentrations of potassium ion and sulphate ion in 4 M solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$?

Depends on the number of each ion
Conc. Of $\mathrm{K}^{+}=2 \times 4=8 \mathrm{M}$
Conc. Of SO ${ }_{4}^{-2}=1 \times 4=4 \mathrm{M}$

How many milliliters would you need to prepare 150.0 mL of $0.5 \mathrm{M} \mathrm{NaNO}_{3}$ from a stock solution of $2.00 \mathrm{M} \mathrm{NaNO}_{3}$?

$$
\begin{gathered}
\mathrm{V}_{1}=? \quad \mathrm{M}_{1}=2 \mathrm{M} \\
\mathrm{~V}_{2}=150 \mathrm{ml} \\
\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \\
\mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} / \mathrm{M}_{1} \\
\mathrm{~V}_{1}=0.5 \times 150 / 2=37.5 \mathrm{ml}
\end{gathered}
$$

What is the concentration of NaNO_{3} solution prepared by diluting 100 ml of 3 M to 300 ml ?

$$
\begin{gathered}
V_{1}=100 \mathrm{ml} \quad \mathrm{M}_{1}=3 \mathrm{M}=300 \mathrm{ml} \quad M_{2}=? \mathrm{M} \\
M_{1} V_{1}=M_{2} V_{2} \\
M_{2}=M_{1} V_{1} / V_{2} \\
M_{2}=3 \times 100 / 300=\mathbf{1 M}
\end{gathered}
$$

A sample of 60 g of NaCl dissolved in 400 ml , what is the concentration of chloride ion in the solution

Con. of Cl^{-}ion $=$Con. of $\mathrm{NaCl}=$?

$$
M=n / V, n=m / M M
$$

$\therefore \mathrm{M}=\mathrm{m} / \mathrm{MM} . \mathrm{V}$

$$
M=60 / 58.53 \times 0.400=2.56 \mathrm{M}
$$

\therefore con. of $\mathrm{Cl}^{-}=\mathbf{2 . 5 6} \mathrm{M}$

A sample of 55 g of AlCl_{3} dissolved in 500 ml , what is the concentration of chloride ion in the solution

$$
\text { Con. of } \mathrm{Cl}^{-} \text {ion }=3 \mathbf{x} \text { Con. of } \mathrm{AlCl}_{3}=\text { ? }
$$

$$
M=n / V, n=m / M M
$$

$$
\therefore \mathrm{M}=\mathrm{m} / \mathrm{MM} . \mathrm{V}
$$

$$
M=55 / 133.33 \times 0.5=0.825 \mathrm{M} \text { (salt) }
$$

Con. of $\mathrm{Cl}^{-}=3 \times 0.825=2.47 \mathbf{~ M}$

