iy D PR ] P i

PROGRAMMES AND PROBLEMS
PROGRAMMES 'AND PROBLEMS
PROGRAMMES AND PROBLEMS

: PROGRAMMES AND PROBLEMS

PROGRAMMES AND PROBLEMS




‘U\;g‘d ey
ENGINEERING MATHEMATICS
Programmes and Problems

S e AR e (BT R E et

K. A. Stroud

MACMILLAN

LML
7 L S



© K. A. Stroud 1970

All rights reserved. No part of this publication may
be reproduced or transmitted, in any form or by any
means, without permission.

First published 1970

Published by
MACMILLAN AND CO LTD
London and Basingstoke
Associated companies in New York, Toronto,
Melbourne, Dublin, Johannesburg and Madras

<y - : Do —
L .

Printed by photo-lithography and made in Great Britain
at the Pitman Press, Bath



PREFACE

The purpose of this book is to provide a complete year’s course in
mathematics for those studying in the engineering, technical and
scientific fields. The material has been specially written for courses lead-
ingto

(i) Part I of B.Sc. Engineering Degrees,

(ii) Higher National Diploma and Higher National Certificate in techno-
logical subjects, and for other courses of a comparable level. While formal
proofs are included where necessary to promote understanding, the
emphasis throughout is on providing the student with sound mathematical
skills and with a working knowledge and appreciation of the basic con-
cepts involved. The programmed structure ensures that the book is highly
suited for general class use and for individual self-study, and also provides
a ready means for remedial work or subsequent revision.

The book is the outcome of some eight years” work undertaken in the
development of programmed learning techniques in the Department of
Mathematics at the Lanchester College of Technology, Coventry. For the
past four years, the whole of the mathematics of the first year of various
Engineering Degree courses has been presented in programmed form, in
conjunction with seminar and tutorial periods. The results obtained have
proved to be highly satisfactory, and further extension and development
of these learning techniques are being pursued.

Each programme has been extensively validated before being produced
in its final form and has consistently reached a success level above 80/80,
i.e. at least 80% of the students have obtained at least 80% of the possible
marks in carefully structured criterion tests. In a research programme,
carried out against control groups receiving the normal lectures, students
working from programmes have attained significantly higher mean scores
than those in the control groups and the spread of marks has been con-
siderably reduced. The general pattern has also been reflected in the results
of the sessional examinations.

The advantages of working at one’s own rate, the intensity of the
student involvement, and the immediate assessment of responses, are well
known to those already acquainted with programmed learning activities.
Programmed learning in the first year of a student’s course at a college or
university provides the additional advantage of bridging the gap between
the rather highly organised aspect of school life and the freer environment
and which puts greater emphasis on personal responsibility for his own pro-
gress which faces every student on entry to the realms of higher education.

Acknowledgement and thanks are due to all those who have assisted
in any way in the development of the work, including those who have
been actively engaged in validation processes. I especially wish to
record my sincere thanks for the continued encouragement and support
which I received from my present Head of Department at the College,



Mr. J. E. Sellars, M.Sc., A.F.R.Ae.S., FIM.A,, and also from

Mr. R. Wooldridge, M.C., B.Sc., FIM.A., formerly Head of Department,
now Principal of Derby College of Technology. Acknowledgement is also
made of the many sources, too numerous to list, from which the selected
examples quoted in the programmes have been gleaned over the years.
Their inclusion contributes in no small way to the success of the work.

K. A. Stroud
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HINTS ON USING THE BOOK

This book contains twenty-four lessons, each of which has been
written in such a way as to make learning more effective and more
interesting. It is almost like having a personal tutor, for you proceed at
your own rate of learning and any difficulties you may have are cleared
before you have the chance to practise incorrect ideas or techniques.

You will find that each programme is divided into sections called
frames, each of which normally occupies half a page. When you start a
programme, begin at frame 1. Read each frame carefully and carry out
any instructions or exercise which you are asked to do. In almost every
frame, you are required to make a response of some kind, testing your
understanding of the information in the frame, and you can immediately
compare your answer with the correct answer given in the next frame. To
obtain the greatest benefit, you are strongly advised to cover up the
following frame until you have made your response. When a series of dots
occurs, you are expected to supply the missing word, phrase, or number.
At every stage, you will be guided along the right path. There is no need
to hurry: read the frames carefully and follow the directions exactly. In
this way, you must learn.

At the end of each programme, you will find a short Test Exercise.
This is set directly on what you have learned in the lesson: the questions
are straightforward and contain no tricks. To provide you with the
necessary practice, a set of Further Problems is also included: do as many
of these problems as you can. Remember that in mathematics, as in many
other situations, practice makes perfect — or more nearly so.

Even if you feel you have done some of the topics before, work
steadily through each programme: it will serve as useful revision and fill
in any gaps in your knowledge that you may have.

X1i



I

USEFUL BACKGROUND
INFORMATION

Algebraic Identities

(@ +b)* =4+ 2ab + b? (a+b)* =23 +3a% + 3ab* + b3
(@—b)*=a*—2ab + b* (@a—b)* =a®—3a%b + 3ab? - b®

(@ +b)* =a® +42°b + 6a%b? + 4ab® + b*
(@ —b)* =a* —4ab + 6a’b* - 4ab® + b*

a>=b*=(@—b)(a+b). a® = b*=(a—b) (a* +ab + b?)
a® +b*=(a+b)(@®—ab+b?)

Trigonometrical Identities
(1) sin?@ +cos?0=1; sec?d =1 +tan?8; cosec?d =1 + cot?f

(2) sin (A+B)=sin AcosB+cosAsinB
sin (A—B)=sin A cos B— cos A sin B
cos (A + B)=cos A cos B—sin Asin B
cos(A—B)=cos Acos B +sin AsinB
_ tanA+tan B
tEm(A-l-B)n1—-1‘.anAtanB
_ tanA—tan B
tan (A B)_1+tanAtanB
(3) LetA=B=6¢. . sin20=2sinf cosf -
cos 20 = cos?f —sin?0
=1-2sin%f
=2cos?6—1
2tan @
1 - tan?%0

tan 260 =

xiii



(4) Letd =—?— SLsin O =23in9cos9

2 2
4] 9]
= 2 M _sn2 X2
cos @ = cos 5 sin 5
)
=1- 2=
1—2sin >
%)
= 2%
2 cos > 1
2tan%—
tan@F=____ <
(0]
—tan2 2
1 —tan >
(5) sin C+sin D=2sin 1D C;—D
sinC—sinD=2cosC+DsinC;D
cosC+cosD=2cosC+DcosC_D
2 2
cosD-—cosC=2sinC+DsinC;D

(6) 2sin AcosB=sin (A +B)+sin (A—B)
2 cos Asin B=sin (A +B)—sin (A—B)
2cos AcosB=cos(A +B)+cos(A—B)
2sin Asin B=cos(A—B)—cos(A +B)

(7) Negative angles: sin (=8) =—sin 0
cos (—0)=cos §
tan (—0) =—tan 6

(8) Angles having the same trig. ratios:
(i) Same sine: # and (180°—9)
(ii) Same cosine: 6 and (360°—0),i.e. (-6)
(iii) Same tangent: 6 and (180° +9)

xiv



(9) asinf+bcosh=Asin (0 +a)
asin @-bcosh=Asin (§—a)
acosf+bsin 6=Acos(6— o)
acosf—bsin 6 =Acos(§+a)

A=@ +b?)
where: »
a=tan? E(O0 <a <90%

III.  Standard Curves
(1)  Straight line:

=W _Ya—y
Slope, m o ﬁ

. - my—my
Angle between two lines, tan 5 mm,

For parallel lines, m, = m,
For perpendicular lines, m;m, =—1

Equation of a straight line (slope = m)

(i) Intercept ¢ on real y-axis: y =mx +¢

(i) Passing through (x,,51): y—y; =m(x—x;)
Y=yi_ Xx—Xx;

iii) Joining (x,, and (x,, :
(iii) g (x1,y1) and (x5, y,) e e

(2) Circle:
Centre at origin, radius r: x> +y%=r?
Centre (h,k), radius 71 (x —h)2 +(y —k)* =r?
General equation:  x2+y*+2gx+2f +¢=0
with centre (—g, —f); radius =/(g? + /2 — ¢)
Parametric equations: x=rcosf,y =rsin@

(3) Parabola:

Vertex at origin, focus (2, 0): »? = 4ax
Parametric equations: x =ar?, y =2ar



(4) Ellipse:

2 2
. . X
Centre at origin, foci (£+/[a® —5%], 0): pe +2'}_2': 1
where ¢ = semi major axis, b = semi minor axis
Parametric equations: x=acosl, y=bsinf

(5) Hyperbola:

X2 y?
Centre at origin, foci (++/a? + b2, 0): el
Parametric equations: x=asecf, y=btand

Rectangular hyperbola:

2
Centre at origin, vertex+(\/2 \/2) xy = %— =¢2 where ¢ = \%

ie. xy=c?
Parametric equations: x=ct, y =c¢/t

Xvi
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COMPLEX NUMBERS

PART 1



Programme 1

1 Introduction: the symbol j
The solution of a quadratic equation ax? + bx + ¢ = 0 can, of course, be
~b £/(b% ~ 4 ac)
22
For example, if 2x2 + 9x + 7 = 0, then we have

obtained by the formula, x =

=9t V(81-56) 925 _9%5

4 4 4
. __4 _l_cl
. X 4—01' 2
. x=-1 or —3.5

That was straight-forward enough, but if we solve the equation
5x% — 6x + 5 = 0 in the same way, we get
(=62 V(36 — 100) _ 6 £+/(=64)
| 10 10
and the next stage is now to determine the square root of (~64).

Isit (1) 8, (ii)—8, (iii) neither?

neither

It is, of course, neither, since + 8 and — 8 are the square roots of 64 and

not of (—64). In fact, \/(—64) cannot be represented by an ordinary

number, for there is no real number whose square is a negative quantity.
However, —64 = -1 X 64 and therefore we can write

V(=64) =+/(-1 X 64) = /(164 - 8+/(-1)
ie. V(—64) = 8+/(-1)

Of course, we are still faced with \/(-1), which cannot be evaluated asa
real number, for the same reason as before, but, if we write the letter jto
stand for v/(~1), then v/(-64) = v/(—1) .8 = j8.

So although we cannot evaluate \/(—1), we can denote it by j and this
makes our working a lot neater.

V(-64) =+/(-1)\/64 = j8

1 Similarly, VE36) = VDV36 =6

‘ VE D=VEDY T=j2646
| S0 v/(—25) can be WIitten ......co.ceoveveveeeeennnnnn.




Complex numbers |

We now have a way of finishing off the quadratic equation we started in
frame 1.
X = 6 ++/(36 — 100) _6%* V(~64)

2—- -
S5x“—6x+5=0 10 10

. ,=6%i8
R TV

L x=06+j0-8 or x=0-6—j0-8

L x=06%j0-8

We will talk about results like these later.

For now, on to frame 4.

Powers of j
Since j stands for v/(—1), let us consider some powers of j.

i =vVED j
i?=-1 j
PE@i=-li= =
PfEEr=Ere1
Note especially the last result: j* = 1. Every time a factor j* occurs, it can

be replaced by the factor 1, so that the power of j is reduced to one of
the four results above.

eg 7 =G"*=(1)Pj=1j=j
o= =()F =1
j30 = (j4)7j2 = (1)7(_1)= 1(—-1) =—]
and §'% =) = 1(5) =

So, in the same way,j® = ..o,




Programme 1

Every one is done in the same way.
i =G = 1G*)=1¢1)=~1
=GP =1 =
=G =ay =1

So (D) *T T

() 3% = e

i) 31 = e
and (iv) Ifx?*—6x+34=0, x= .coerrrrirrnes

since i* =(*)j=1j=j

@ -1, Gy 1, (i) 5, (@v) x=3=j5

The working in (iv) is as follows:

¥ —6x +34=0 x=6i\/(36—136)=6t\/(—100)

ie. x=3+j5S or x=3-j5
So remember, to simplify powers of j, we take out the highest power of*

j* that we can, and the result must then simplify to one of the four
results: j, -1, —j, 1.

Turn on now to frame 7.




Complex numbers [

Complex numbers 7
The result x = 3 +j5 that we obtained, consists of two separate terms, 3

and j5. These terms cannot be combined any further, since the second is

not a real number (due to its having the factor j).

In such an expression as x = 3 + 5,
3 is called the real part of x
5 is called the imaginary part of x
and the two together form what is called a complex number.
So,a Complex number = (Real part) + j(Imaginary part)
In the complex number 2 +j7, thereal part= .................

and the imaginary part = .......cccceeeveenn.

real part = 2; imaginary part =7 (NOT j7!)

Complex numbers have many applications in engineering. To use them,
we must know how to carry out the usual arithmetical operations.

1. Addition and Subtraction of Complex Numbers. This is easy, as one
or two examples will show.

Example I (4 +j5) +(3—j2). Although the real and imaginary parts
cannot be combined, we can remove the brackets and total up terms of
the same kind.

(4+iS)+(3-j2)=4+]5+3-[2=(4+3) +j(5-2)
=7+j3
Example 2
@+iD-(2-j5)=4+j7-2+i5=(4 -2 +j(7+5)
=2 +jl2
So, in general, (@ +jb)+ (c +jd) = (a+c) +j(b +d)

Now you do this one:

GHiN+B =i = (6=73)= oo, 4



Programme 1

2+i6

since (5+i7)+(3—-jd)—(6-33)
=5+j7+3-j4-6+j3
=(5+3-6)+j(7T—4+3)
=2+j6

Now you do these in just the same way:

() (6+i5) —(4=3) +(2=37) = oo
and (i) (3+35)—(5—j4) = (2= J3) = crrrrrrrrerrrerccanns

10 () 4+j (i) jl12

Here is the working:

@B (6+j5)-(4-j3)+@2-j7
6+j5-4+j3+2-j7
6-4+2)+j(5+3-7)

4+

(i) B+j5)=(5-j4)-(2-j3)
3+j5—-5+j4+2+j3  (Take care
(B=5+2)+j(5+4 +3) with signs!)
0+j12 = ji2

1]

1]

This is very easy then, so long as you remember that the real and the
imaginary parts must be treated quite separately — just like x’s and y’s in
an algebraic expression.

On to frame 11.




Complex numbers 1

2. Multiplication of Complex Numbers 11

Example: (3 +j4)(2+j5)

These are multiplied together in just the same way as you would deter-
mine the product (3x +4y) (2x + 5y).

Form the product terms of (i) the two left-hand terms
(ii) the two inner terms
(iii) the two outer terms

4 .
1 (iv) the two right-hand terms

G+ih 2 +i9)

=6+j8 +jl5+i220
=6+j23—20 (sincej?=-1)
=-14 +j23

Likewise, (4 —=35) (3 +i2) oceveererecrennnne

...... 3

12

2237

for: (4-j5)(3+j2)=12-jl5 +i8 —i10
=12-7+10 (?=-1)
=22-i7

If the expression contains more than two factors, we multiply the
factors together in stages:

B+j4)(2-j5 1 -j2)
=(6+i8-j15-j*20) (1 -j2)
=(6-j7+20)(1-j2)
=(26-iN(1-j2)

Finish it off.
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12 -§59

for: (26 —i7)Y (1 —j2)
=26-i7-i52+j*14
=26-j59—-14=12-j59
Note that when we are dealing with complex numbers, the result of our
calculations is also, in general, a complex number.

Now you do this one on your own.

(5+378) (5=78) = werereerrerrerrranne.

Here it is:
(5+j8)(5—j8) =25 +j40 - j40 — j*64
=25+64
=89
In spite of what we said above, here we have a result containing no j
term. The result is therefore entirely real.
| This is rather an exceptional case. Look at the two complex numbers

we have just multiplied together. Can you find anything special about
them? If so, what is it? '

When you have decided, turn on to the next frame.

- e - e




Complex numbers 1

15

They are identical except for the middle sign in the brackets,
ie. (5+j8) and (5—i8)

A pair of complex numbers like these are called conjugate complex
numbers and the product of two conjugate complex numbers is always
entirely real.

Look at it this way —

(@+b)(@a—b)=a® —b? Difference of two squares

Similarly (5+j8)(5-38) =52 —(j8)? = 52—28?
= 52 + 82 (j2 =_1)
=25+64=89

Without actually working it out, will the product of (7 — j6) and
(4 +j3) be (i) areal number
(ii) an imaginary number
(iii) a complex number

a complex number

since (7 —j6) (4 +j3) is a product of two complex numbers which are not
conjugate complex numbers.

Remember: Conjugate complex numbers are identical except for the
signs in the middle of the brackets.

(4 +j5) and (4 —i5) are conjugate complex numbers
(a +jb) and (@ — jb) are conjugate complex numbers

but (6 +j2)and (2 +j6) are not conjugate complex numbers |
(5 —j3)and (=5 +j3) are not conjugate complex numbers

So what must we multiply (3 —j2) by, to produce a result that is entirely
real?
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17

3+72

because the conjugate of (3 —j2) is identical to it, except for the middle
sign, i.e. (3 +j2), and we know that the product of two conjugate com-
plex numbers is always real.

Here are some examples:
Example] . (3-j2)(3+j2)=3*-(j2)* =9-j%*4
=9+4=13
Example 2 Q+iDQ-jD =22 -(7)? =4—j%49
=4+49=53
. and so on.

Complex numbers of the form (¢ +jb) and (¢ — jb) are called
....................... complex numbers.

18

conjugate

Now you should have no trouble with these—

(a) Write down the following products
() (4-i3)(4+i3)
G) (4+iDE-iD
(i) (a +jb) (a—jb)
(v) x—)(x+iy)
(b) Multiply (3 -j5) by a suitable factor to give a product that is

entirely real.

When you have finished, move on to frame 19.
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Here are the results in detail. 19
@ ) (4-j3) (@+j)=42-732=16+9 = | 25 |

(i) (4+j7)(4~{7)=4> —27° =16 +49 =

(i) (a+jb) (@—jb) =a®—j** =

) G- +ip)=x?=jp? = | x*+y

!

(b) To obtain a real product, we must multiply (3 —j5) by its conjugate,
ie. (3 +j5), giving

(-i5)(3+j5)=3"-*5* =9+25=[ 34

Now move on to the next frame for a short revision exercise.

Revision exercise. Z 0

1. Simplify (i) j'2 (i) j'° (i) j2°

2. Simplify:
H 5-j9-(2-j6)+(3-j4)
(i (6-j3)(2+j5)(6-j2)
(iii) (4-33)?
() (5-j4)(5+j4)

3. Multiply (4 — j3) by an appropriate factor to give a product that is
entirely real. What is the result?

When you have completed the exercise, turn on to frame 21.

10
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21 Here are the results. Check yours.

Lo eGP
() j'° =G} =12¢CD= |1
i) i =G5 =5 =
2. D) -iN-(2-j)+B—i4)
=5-j9-2+j6+3—i4
=(5-2+3)+j(6-9-4)= |6—j7
(i) (6-33)(2+j5)(6—j2)
=(12-j6 +j30-i*15) (6 —j2)
=(27 +j24) (6 —j2)
=162 +jl44—j54 + 48 = |210 +j90
(iii) (4—-j3)? =16-j24-9
= |7-j24
(iv) (5-j4)(5+j4)

=25-j216=25+16= | 41

3. Required factor is the conjugate of the given complex number.

(4-j3)(4+ij3)=16+9=

All correct? Right. Now furn on to the next frame to continue the
programime.

11
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Now let us deal with division.

Division of a complex number by a real number is easy enough.

5-j4_5_4_ .

7-i4,
4+j§3°

But how do we manage with

If we could, somehow, convert the denominator into a real number, we
could divide out as in the example above. So our problem is really, how
can we convert (4 +j3) into a completely real denominator — and
this is where our last piece of work comes in.

We know that we can convert (4 +j3) into a completely real number
by multiplying it by its € ...ccoovrerinnn.

i.e. the same complex number but with the opposite sign
-~ in the middle, in the case (4 —j3)

O0pOoo0o00CcoOo0coOoOooOoOO0OooOoOoO0o0OoOo0oo0oooooooOooa

But if we multiply the denominator by (4 —j3), we must also multiply
the numerator by the same factor.

7-j4_(71-j4)(4—j3) _28-j37-12_16-j37

4+j3 (4+]3)(4—]3) 16 +9 25
16 .37 _ .
ﬁ ]E—O-é4 jl-48

and the job is done.

To divide one complex number by another, therefore, we multiply
numerator and denominator by the conjugate of the denominator. This
will convert the denominator into a real number and the final step can
then be completed.

Thus, to s1mp11fy T3 e shall multiply top and bottom by ................

2’
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24

the conjugate of the denominator, i.e. (1 —j2)

0000000000 O0O0O0000OO0O000000000000000000000

If we do that, we get:

4-j5 _(4- ]5)(1—]2) 4-j13-10
1+j2 T +2)(1-j2)° 1+4

_—6-j13_—6_13
3 55
=-12-j26

Now here is one for you to do:
3+j2

Simplify T3
)

When you have done it, move on to the next frame.

~0-3 +i1-1

3+4j2_(3+j2)(1+j3) _3+jll—6
w -3 (1-3)d+j3) 1+9

_3+jll
10

0oOoOoOOCOCO0000D0DONO0O00ONCOo0000d00000C000000

=03 +jl.1

Now do these in the same way:
~ 4—35 3+j5
1 (i) =—— () —=
| 2-j 5-j3
Lo (2+j3) (1 —j2)
(iii) 37!

When you have worked these, turn on to frame 26 to check your results.

13
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Results: Here are the solutions in detail. 26
) 4—j5=(4—j5)(2+j)=8—j6+5
2§ @2-pE+) 4+1
13706 he—j12
5
(ii) 3+j5=(3+j5)(5+j3)=15+j34—15
5-33 (5-j3)(5+j3) 25+9
=ﬁ= 1
34
(iii) (2+j3)(1-j2) _2-j+6_8—]j
(B +j4) 3+j4  3+j4
_8-HB—-j4)

RCEDICED,
.- _24-i35-4_20-i35

: 9+16 25
: =08—jl4

And now you know how to apply the four rules to complex numbers.

>
b—— —_

. Equal Complex Numbers : 27

Now let us see what we can find out about two complex numbers which
we are told are equal.
Let the numbers be

a+ijb and c +ijd

Then we have

atjb=c+ijd
Re-arranging terms, we get

a—c=jd—b)
In this last statement, the quantity on the left-hand side is entirely real,
while that on the right-hand side is entirely imaginary, i.e. a real quantity
equals an imaginary quantity! This seems contradictory and in general it

just cannot be true. But there is one special case for which the statement
can be true. That is when ..............

14
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each side is zero

a—c=j(d—b)
can be true only if
a—c=0, ie. a=c

andif d—-b=0, ie b=d

So we get this important result:
If two complex numbers are equal
(i) the two real parts are equal
(ii) the two imaginary parts are equal

For example, if x +jy = 5 + j4, then we know x =5 andy =4
and ifa +jp=6—j3,thena=.............. and b= i

a=6 | and | b=-3

Be careful to include the sign!
ooOoO0ooDOOo000Uo0oogUoocooonNoOoooooDooaoooconn
Now what about this one?

If (¢ + b) +j(@ —b) =7 +j2, find the values of @ and b.

Well now, following our rule about two equal complex numbers, what
can we say about (g + ) and (¢ — b)?

15
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at+b=7| and |a—-b=2 30

since the two real parts are equal and the two imaginary parts are equal.

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDUDD

This gives you two simultaneous equations, from which you can deter-
mine the values of ¢ and b,
So what are they?

For ath=7 |

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

We see then that an equation involving complex numbers leads to a !
pair of simultaneous equations by putting \

(i) the two real parts equal |
(ii) the two imaginary parts equal

This is quite an important point to remember.




Programme 1

32

Graphical Representation of a Complex Number
Although we cannot evaluate a complex number as a real number, we can
represent it diagrammatically, as we shall now see.

In the usual system of plotting numbers, the number 3 could be repre-
sented by a line from the origin to
the point 3 on the scale. Likewise,

-— +3 s  aline to represent (—3) would be

3 2 4 o 1 2 3 drawn from the qrigin to the point
(=3). These two lines are equal in
length but are drawn in opposite directions. Therefore, we put an arrow
head on each to distinguish between them.

A line which represents a magnitude (by its length) and direction (by
the arrow head) is called a vector. We shall be using this word quite a lot.

Any vector therefore must include both magnitude (or size)
and .....oceeeeeeeeennn

33

direction 1

ODO0O0000000O0O0D0DCOCOO0O000O0O0O0O0OO0O00OOoOO0Oon0oooo0

If we multiply (+3) by the factor (—1), we get (=3), i.e. the factor (1) |
has the effect of turning the |

180° vector through 180°
-3 » 7 +3

Multiplying by (1) is equivalent to multiplying by j?, i.e. by the factor
j twice. Therefore multiplying by a
single factor j will have half the
effect and rotate the vector through
only ..ooovrvvnvicecanine °

17




Complex numbers 1

- 34

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

The factor j always turns a vector through 90° in the positive direction
of measuring angles, i.e. anticlockwise.

3 If we now multiply j3 by a
further factor j, we get j23,
1l Le.(=3) and the diagram agrees

with this result.

-— . -
T T T T L
-3 -2 A o] 1 2 3

If we multiply (~3) by a further factor J, sketch the new position of
the vector on a similar diagram.

Result: 3 5

Y]
* Let us denote the two reference
i3 lines by XX, and YY, as usual.
-3 +3
X x| "4\ 0 -
-]3

You will see that Y

(i) The scale on the X-axis represents real numbers.
XX, is therefore called the real axis,
(ii) The scale on the Y-axis represents imaginary numbers.
YY, is therefore called the Imaginary axis.
On a similar diagram, sketch vectors to represent

W) s, @) -4, (i) 2, (v) 5



/
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3 6 Results:

Y Check that each of your vectors
carries an arrow head to show
_4 2 5 direction.
il iy

Xy . X

-l

Y,
DDDDDDDDDE]DDDDDDDDDDDDDDDDDDDDDDDDDDDD

If we now wish to represent 3 + 2 as the sum of two vectors, we must
draw them as a chain, the second vector starting where the first one

finishes. - "
! e
0 1 2 3 4 5
i -
3+2=5

The two vectors, 3 and 2, are together equivalent to 2 single vector
drawn from the origin to the end of the final vector (giving naturally that
3+2=5).

Continue

e

37 If we wish to represent the complex number (3 +j2), then we add
together the vectors which repre-
sent 3 and j2.
i Notice that the 2 is now multi-

,bx‘q’ i2 plied by a factor j which turns that
vector through 90°.
3) “@_, The equivalent 'single vector to
; ‘ e s — represent (3 +j2) is therefore the
0 L 2 3 4 5 * vector from the beginning of the

first vector (origin) to the end of
the last one.
This graphical representation constitutes an Argand diagram.

Draw an Argand diagram to represent the vectors
; (l) Zl=2+j3 (11) Z2=_3 +}2
! (iii) z5=4-—i3 (iv) z4=—4-]i5

‘ Label each one clearly.

—

——ron——

e — S SN ———

19
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Here they are. Check yours. 3 8

[ ST y=2+j3

Zo=~34j2 Agr--—- -2

|
t
1
1
'
|
H

[V NG,

Xy —r—— T —r—
-6 - 4 6 X
I
1
I
|
)
""""""" 23=4-j3
24=-4-j5 oo te oy

Note once again that the end of each vector is plotted very much like
plotting x and y co-ordinates.

The real part corresponds to the x-value.

The imaginary part corresponds to the y-value.

Move on to frame 39,

Graphical Addition of Complex Numbers 3 9

Let us find the sumofz, =5 +j2and z, =2 +33 by Argand diagram. If
we are adding vectors, they must be drawn as a chain, We therefore draw
at the end of z,, a vector AP repre-
senting z, in magnitude and
direction, i.e. AP = OB and is
parallel to it. Therefore OAPB is a
parallelogram. Thus the sum of z,
and z, is given by the vector join-
ing the starting point to the end of
the last vector, i.e. OP.

The complex numbers z; and
z, can thus be added together by
drawing the diagonal of the
parallelogram formed by z, and z,.

If OP represents the complex number a + jb, what are the values of ¢ !
and b in this case?

>

) RS IO

20 |
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40 a=5+2=17 b=2+3=5—|

L OP=z=7+j5

You can check this result by adding (5 +j2) and (2 +j3) algebraically.

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDGDD

So the sum of two vectors on an Argand diagram is given by the
...................... of the parallelogram of vectors.

i

diagonal

DDDDDDDE\DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

How do we do subtraction by similar means? We do this rather craftily
without learning any new methods. The trick is simply this:
71 — 23 =2y Y (722)

That is, we draw the vector representing z; and the negative vector of z,
and add them as before. The negative vector of z, is simply a vector with
the same magnitude (or length) as z, but pointing in the opposite direction.

eg.Ifzy =5+j2andz, =2 +j3
3l -8B (2 vector OA=2z, =5 +j2

OP =-z, =2 +j3)
Then OQ =1z, +(-z3)

=Zy T2y

Determine on an Argand diagram (4 +j2) + (=2 + j3) - (-1 +j6)

21
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T T T X
-3 -2 S 6 7
Q (7+ 2 —2z3)
OA=z,=4+72
OB=Z2:-2+j3
OC=—Z3=1~j6
Then OP=z, +2, 0Q=zy +z, —z,4 =3—j

Polar Form of a Complex Number

It is convenient sometimes to express a complex number @ + jb in a differ- 43
Y

ent form. On an Argand diagram,

P let OP be a vector a + jb. Let
i , ! r = length of the vector and @ the
b angle made with OX.
|
g .’
(0] a X
Then r* =q% + p? r=\/(a* + b?)
and ' tan g =2 6 = tar™ 2
a a
Also a=rcosf and b=rsin b
Since z =q + jb, this can be written
z=rcosf +jrsin@ i.e. z=r(cos f +jsin 9)

This is called the polar form of the complex number a + jb, where
r=+/(a® +b* and 6= tan“%

Let us take a numerical example.

22
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44 Example: To express z =4 +j3 in polar form.
First draw a sketch diagram (that always helps)
M We can see that —
() r*=42+3>=16+9=25
r=5

I
]
i3 (ii) tan 6 =%= 0-75
|
i

s 6 = 36°52
0 4 X
z=a+jb=r(cosh +jsinf)
So in this case z = 5(cos 36°52' +j sin 36°52")

Now here is one for you to do—
Find the polar form of the complex number (2 +j3)
When you have finished it, consult the next frame.

45 v z=3.606 (cos 56°19 +j sin 56°19")

Here is the working

3 z=2+i3=r(cosf +jsinf)
rrP=4+9=13 r=3.606

tan 0 =§2—= 1.5 6=56°19'

2=3.606 (cos 56°19'+jsin 56°19")

o] 2 X

OoonNoOoOOoooNO00Cc0NO0Ccn0N00coCOoO0O000Bbnoo0o0nng
We have special names for the values of 7 and 8.
z=a+jb=r(cos@ +jsinf)
(i) r is called the modulus of the complex number z and is often
abbreviated to ‘mod z’ or indicated by |z|.

Thus if z = 2 +]5, then|z| =+/(2% +5%) =/(4 + 25) =v/29

(ii) 6 iscalled the argument of the complex number and can be abbreviated
to ‘arg z'.
Soifz=2+j5,thenargz = ....ccocvrrrinnns

23
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] 6
argz = 68°12' 4

z=2+j5. Thenargz =0 = tan_1%= 68°12'

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Warning. In finding 8, there are of course two angles between 0° and
360°, the tangent of which has the value aé' We must be careful to use the

angle in the correct quadrant. 4lways draw a sketch of the vector to
ensure you have the right one.
e.g. Find argz whenz =-3 —j4.

3 8/ \ 6 is measured from OX to OP. We
; first find £ the equivalent acute
| angle from the triangle shown.

4 4
t
i
|
1

tan£=3=1333 . E=53"7

Then in this case,
0=180°+E£=233°7" argz=233%7

|

Y, Now you find arg (-5 +j2)
Move on when finished.

argz =158°12' M 47

, . =-5+j2
]
2! nE=%=04 . F=21%8
0 : 3 > % In this particular case, § = 180°~F
L0 =158°12'

DDDDDDE\DDDDDDDDDDDDDDDDDDDDDDDDDDDD,DDD

Complex numbers in polar form are always of the same shape and differ
only in the actual values of r and 8. We often use the shorthand version
rlf to denote the polar form.

eg. IfZ=-5+72, r=+/(25 +4)=+/29 = 5.385 and from above
g =158°12'
~ The full polar form is z = 5-385 (cos 158°12' +j sin 158°12') and this
can be shortened to z = 5385 |158°12'
Express in shortened form, the polar form of 4-j3)
Do not forget to draw a sketch diagram first.

24
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z=5 [323°8'
/1\ 4 - r=/(4* +3%) r=5

tan E=0-75 . E=36°52
. 8 =360"—F=323%

Y

", z=5(cos 323°8' +jsin 323°8") =5 |323°8’
DDDDDDDDDD[]DDDEIDDDDDDDDDDDDDDDDDDDDDDD

Of course, given a complex number in polar form, you can convert it
into the basic form a + jb simply by evaluating the cosine and the sine
and multiplying by the value of 7.

e.g. z=5(cos 35° +j sin 35°) = 5(0-8192 +70-5736)
z = 4.0960 + j3-8680

Now you do this one—
Express in the form a +ib, 4(cos 65° +] sin 65%)

49 2= 1.6904 +3-6252

for z = 4(cos 65° +j sin 65°5= 4(0-4226 +j0-9063) = 1-6904 +j3-6252

DDDDDDDDDDDDDDDDD'DDDDDDDDDDDDDDDC\DC!DDC]
If the argument is greater than 90°, care must be taken in evaluating

the cosine and sine to include the appropriate signs.

e.g. If z=2(cos 210° + j sin 210°) the vector lies in the third quadrant.

R A
210°

E 30° cos 210° =~ cos 30°
|
‘1 2 sin 210° = — sin 30°
! [
T
Then z = 2(—cos 30° —j sin 30°)
= 2(~0-8660 — {0-5)
=-1.732~

Here you are. What about this one?
Express z = 5(cos 140° + j sin 140°) in the forma + jb
What do you make it?

25
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z=-3-8300 +j3-2140

|

5 5 Here are the details —

| o _ o

i a0°) 140" Cf)S 140o =—Cos 4:)
% L —t X sin 140" =sin 40

z = 5(cos 140° +j sin 140°) = S(~cos 40° + j sin 40°)
= 5(=0.7660 + j0-6428)
= ~3.8300 +3-2140

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Fine. Now by way of revision, work out the following,

(i) Express —5 + j4 in polar form
(ii) Express 3 [300° in the forma + jb

When you have finished both of them, check your results with those on

frame 51.
Results 51
@) r? =42 +52 =16 +25=41
.7 =6-403
tan £=0-8 .. E=38°40'
, S S 6=141°0
Xy X
=5 +j4 = 6-403(cos 141°20" +j sin 141°20') = { 6-403 [141°20'
(i) 3]300° = 3(cos 300° + j sin 300°)
s A cos 300° = cos 60°
300'/*\ sin 300° = —sin 60°
/ X
/60° .
T ¢ 3|300° =3(cos 60° ~j sin 60°)

= 3(0-500 ~ j0-866)

Y =[1.500 - j2-598

Turn to frame 52.

26
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-

52 We see then that there are two ways of expressing a complex number:

(i) in standard form: z=a+ijb
(ii) in polar form: z=r(cos 8 +jsin 6)
where r=+/(a®> +b*)

and 6 =tan! -3~

If we remember the simple diagram, we can easily convert from one
system to the other. a+ib

So on now to frame 33.

Exponential Form of a complex number.
There is still another way of expressing a complex number which we must
deal with, for it too has its uses. We shall arrive at it this way:

Many functions can be expressed as series. For example,

You no doubt have hazy recollections of these series You had better make
a note of them since they have turned up.

27



Complex numbers ]

If we now take the series for e and write jf in place of x, we get 54

0= 149+ 307, GO, GO

610—l+]0+2—!+3' oot
_ . -262 j303 j464
BRI e

3 g5
B+9

=cos 0 +jsin @

Therefore, 7(cos 6 +j sin 6) can now be written as reJ® . This is called the
exponential form of the complex number. It can be obtained from the
polar form quite easily since the  value is the same and the angle @ is the
same in both. It is important to note, however, that in the exponential
form, the angle must be in radians.

Move on to the next frame.

5b

The three ways of expressing a complex number are therefore

() z=a+jp
(i) z=r(cos8 +jsin@) .. .. Polar form
(i) z=rel® .. .. .. .. Exponential form

Remember that the exponential form is obtained from the polar form.,
(i) the r value is the same in each case.
(i) the angle is also the same in each case, but in the exponential form
the angle must be in radians.
So, knowing that, change the polar form 5(cos 60° +j sin 60°) into the
exponential form.

Then turn to frame 56.

28
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56

-
i

Exponential form Se

for we have S(cos 60° +j sin 60°) r=5

0=60°= g radians

s
. . 13

- Exponential formis Se 3

QoOoOooOo0OOO0OD0O0O0O0O0000C00000O00OCUOO0nCOn0on

And now a word about negative angles

We know elf =cos 8 +jsin 6
If we replace @ by —f in this result, we get
€10 = cos (—6) +j sin (—0)
=cosf —jsind

So we have ; ..
J6 = cos 0 +j sin
€ s0 +jsin 6 Make a note of

€10 = cos § —j sin 0 these.

57 There is one operation that we have been unable to carry out with
complex numbers before this. That is to find the logarithm of a com-
plex number. The exponential form now makes this possible, since the
exponential form consists only of produets and powers.

For, if we have .
z=reld

Then we can say
Inz=Inr+jf

€.g. If Z=6~42&j1'57

then
Inz=1n 642 +j1.57
= 1-8594 +j1.57

and the result is once again a complex number.
Andif z=3.8 e‘jo'236, thenlnz = ..ccoceviiceneeenns
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Inz=1In3.8-j0-236 =| 1.3350-j0.236 58

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Finally, here is an example of a rather different kind. Once you have seen
it done, you will be able to deal with others of this kind. Here it is.

Express €™ in the forma + jb
Well now, we can write
e1—j1r/4, as e1e—j11/4

= e(cos m/4 ~j sin 7/4)

S 1oL
NENG)
e

= —(1—j

\/2( i

This brings us to the end of this programme, except for the test
exercise. Before you do that, read down the Revision Sheet that follows
in the next frame and revise any points on which you are not completely
sure.

Then turn on and work through the test exercise: you will find the
questions quite straightforward and easy.

But first, turn to frame 60.
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6 0 Revision Summary

1. Powers of j
j=vCD, -1 PE L
A factor j turns a vector through 90° in the positive direction.

2. Complex numbers
Y z=g+jb

a = real part
b b= imaginary part

i
|
) DR X

3. Conjugate complex numbers (a +jb) and (a—jb)

The product of twe conjugate complex numbers is always real.
(@+ip)@—jb)=a* +b?
4. Equal complex numbers

If at+jp=c+jd, then a=c¢ and b=d.

S. Polar form of a complex number

Y
' z=a+jb
! r b =r(cosf +jsind)
°|‘-9 . x =rl6
e
r=+/(@* +b%); 0=tan’ {-g—}
also a=rcosf; b=rsind

r = the modulus of z, written ‘mod 2’ or |z|

9 =the argument of z, written ‘arg z’

6. Exponential form of a complex number
z=r(cos § +jsin@)=reld .
o el 9in radians
and r(cosd —jsinf)=re’
7. Logarithm of a complex number
z=rel® Inz=Inr+jé

orif z=rel? L lnz=Inr—jf
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Test Exercise — |

1.

2.

Simplify (i) §°, () j°, Gii) j'2, @v) j'%.

Express in the forma + jb ]
M) @-jN2+j3) (i) (-1 +j)?
@) 5+ (-1 @vis) @) §27

. Express in polar form

() 3+j5 (i) 6+j3 (i) 4 ~j5

. Express in the forma + jb

(i) S(cos 225°+jsin 225% (i) 4 l330°

. Find the values of x and y that satisfy the equation

(x+y)+j(x—y)=14-8 +j6.2

. Express in exponential form

(i) 2, =10137°15' and (i) z, = 10| 322°45'

Hence find In z; and In z,.

. Express z =e!i"/2 in the form a +ib.

Now you are ready to start Part 2 of the work on complex numbers.
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Further Problems — I

1.

10.

11.

. Express

CIfz

. Simplify (2 +j5)* +

Lz =24, 2, =—2+j4andzi- +
3

Simplify () (5 +j4) 3 +i7) (2—3)
o (2-313) (B +j2) ... cos3x +jsin 3x
(if) 4-j3) (iif) cosx +jsinx

+
](-2—_—12) + ]2- in the form a + jb.

1

1 .
= el ——— i
Tt express z in the forma +jb.

2+

LI z= l——;’ find the real and imaginary parts of the complex number

2+d
z

— j(4 — j6), expressing the result in the

5(7 +j2)
3—-j4

forma +ib.

1.1
Zy o

a+ib.1fz,,2,, 25 are represented on an Argand diagram by the

points P, Q, R, respectively, prove that R is the foot of the perpen-

dicular from the origin on to the line PQ.

evaluate z5 in the form

. Points A, B, C, D, on an Argand diagram, represent the complex

numbers 9 +j, 4 +j13, -8 +j8, =3 — j4 respectively. Prove that
ABCD is a square.

CIf(2+3j3) 3—j4) =x +jy, evaluate x and y.

. If @ +B) +jl@—b)=(2+j5)* +j(2—j3), find the values of 2 and b.

If x and y are real, solve the equation
_x _3x*j4
1+jy x+3y
If z =%;:—%g—, where a,b,c,d, are real quantities, show that (i) if z is
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12.

13.

14.

15.

16.

17.

18.

19,

20.

real then% =%, and (ii) if z is entirely imaginary thenill) = —g.

Given that (@ +b) +j(a—b) =(1 + )? +j(2 +j), obtain the values of
a and b.
Express (=1 +3) in the form r eje, where 7 is positive and -7 < 6 < 7.

Find the modulus of z = (2 —j) (5 +j12)/(1 +§2)3.

1 x is real, show that (2 +§) e *13)% + (2 — §) e(193)% g 4150 real.
. . 1
Given thatz; =R, +R tjwl;zy =R, ;24 =jw—C3; and

Za =R, + ;and also that z,z, = 2, z,, express R and L in terms

jwC,y
of the real constants Ry, R,, R4, C5 and C,.
If z=x +jy, where x and y are real, and if the real part of

(z +1)/(z +j) is equal to 1, show that the point z lies on a straight
line in the Argand diagram.

2223
Zy, tz3°

Whenz;, =2 +j3, 2, =3-j4, z3==5+j12, thenz =z, +
If E=]z, find E whenI=5 +j6.

R *jwl _ R,
R3

If

i swhere Ry, Ry, R3,R,, w, L and C are real,

Ra—joF

show that
CR,R;,
W?C?RZ +1

If z and z are conjugate complex numbers, find two complex
numbers, z =z, and z = z,, that satisfy the equation

32Z2+2z-2)=39+j12

On an Argand diagram, these two numbers are represented by the
points P and Q. If R represents the number j1, show that the angle
PRQ is a right angle. ’
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1 Introduction

InPart 1 of this programme on Complex Numbers, we discovered how to
manipulate them in adding, subtracting, multiplying and dividing. We also
finished Part 1 by seeing that a complex number a + jb can also be
expressed in Polar Form, which is always of the form r(cos 6 + j sin 9).

You will remember that values of 7 and @ can easily be found from the

v diagram of the given vector.
r4

rr=a®+b? - r=\(@*+5b?

b
andtan§ =2 - 6 = tan™? b
a a

|
|
I
[
|
Il

0] a X

To be sure that you have taken the correct value of 8, always DRAW A
SKETCH DIAGRAM to see which quadrant the vector is in.

Remember that # is always measured from

{ 0X | i.e. the positive axis OX.

000000 nDO0D0000CcnNO000000Ccuo0acooopooooooon

Right. Just by way of revision and as a warming up exercise, do the
following:

Express z =12 —j5 in polar form.
Do not forget the sketch diagram. It ensures that you get the correct value

for 6.

When you have finished, and not before, turn on to frame 3 to check your
result.
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Result:

b3(cos 337°23" +j sin 337°23") W

Here it is, worked out in full.

Y
N e X PP =122 +52 =144+ 25 =169
3 ls Lr=13
_j r ] 5 ° ,
a tan £ = {5 = 04167 .. F=22°37
Yy

In this case, § = 360° - £'= 360° — 22°37' . § = 337°23’
z=r(cos § +j sin 6) = 13(cos 337°23' +j sin 337°23"

DE]E]DDDDDE|DDEIDDDDDDDDDDDDDDDDDDDDDDDDDD

Did you get that right? Here is one more, done in just the same way.
Express —5 —j4 in polar form.
Diagram first of all! Then you canrot go wrong.

When you have the result, on to frame 4.

Result:

Lz = 6-403(cos 21840’ +j sin 218°40")

Here is the working: check yours.

Y
8
X 2 /t\ X PP =52+ 4 =25+16=41
E
} L r=1/41 =6.403
4
i / tanE=‘§‘=o.8 o E =38%40'
‘ 1, In this case, 6 = 180° + £ = 218°40'

S0 z =5 —j4 = 6-403(cos 218°40’ +j sin 218°40"

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
Since every complex number in polar form is of the same shape,

i.e.r(cos @ +j sin ) and differs from another complex number simply by

the values of 7 and 6, we have a shorthand method of quoting the result

in polar form. Do you remember what it is? The shorthand way of writing

the result above, i.e. 6:403(cos 218°40" +j sin 218°40") is ...........oo...
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6-403 |218°40'

DDDDDDDDDDDDDDDDDDDDDDDDC\DDGE\DGDDDDDC\D

Correct. Likewise:
5.72(cos 322°15' +j sin 322°15") is written 5-72 322°15'

5(cos 105° +j sin 105°) o 51105°
T,. . T T
3.4(cos Z +j sin E) 34 E

They are all complex numbers in polar form. They are all the same
shape and differ one from another simply by the values of ..........
and .......... .

| 6 :
; r {and | 0

DDDDDDDDDD[]DDDDDDDDDDDDDDDDDDDDDDDDDDD

Now let us consider the following example.

Express z = 4 — 3 in polar form.
First the diagram.
Y

‘ From this,
8
A 4 -
Xq X} - i X r=>5 \
} tan E=5=075 - E =36°52
_ i3
) r l g = 360° — 36°52' = 323°8’
j
Yy z=4—ji3=5(cos 323°8' +jsin 323°8")

s e U — - —=

S

/
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z=35 {323°%' ]

EIDDDDDDDE\DDDDDDDDDDDDDDDDDDDDDDDDDDDDD
In this last example, we have

z =5(cos 323°8' +j sin 323°8")
But the direction of the vector,

X measured from OX, could be given
as ~36°52', the minus sign show-
ing that we are measuring the angle
in the opposite sense from the
usual positive direction.

We could write z = 5(cos [-36°52"] +j sin [~36°52]). But you already
know that cos[-0] = cos 6 and sin[-] = ~sin 6.

z = 5(cos 36°52" —j sin 36°52")

i.e. very much like the polar form but with a minus sign in the middle.

This comes about whenever we use negative angles.

In the same way, z = 4(cos 250° + j sin 250°) = 4(cos [~110°] +jsin[-110°])
= A e, )

and Ex.5  z=6(cos 310° +j sin 310%) =

z=4(cos 110° —j sin 110°)

since cos(=110°) = cos 110°
and sin(—=110°) =—sin 110°
DDDDDDDDD[]DDDDDDDDDDDDDDDDDDDDDDDDDDDD

It is sometimes convenient to use this form when the value of § is
greater than 180°, i.e. in the 3rd and 4th quadrants.

Ex. 1 230"/4]\ z = 3(cos 230° +§ sin 230°)

T 130° =3(cos 130° —j sin 130°).

3

Stmilarly, £x.2  z = 3(cos 300° + j sin 300°) = 3(cos 60° - j sin 60°)
Ex.3 2= 4(cos 290° +j sin 290°) = 4(cos 70° — j sin 70°)
Ex.4  z=2(cos 215° +j sin 215°) = 2(cos 145° —j sin 145°)

40
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z = 6(cos 50° —j sin 50°)

since cos 310° = cos 50°
and sin 310° = —sin 50°

DDDDDDGDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

One moment ago, we agreed that the minus sign comes about by the
use of negative angles. To convert a complex number given in this way
back into proper polar form, i.e. with a 4+’ in the middle, we simply
work back the way we came. A complex number with a negative sign in
the middle is equivalent to the same complex number with a positive
sign, but with the angles made negative.
e.g.z = 4(cos 30° — j sin 30°)
= 4(cos [-30°] +j sin [-30°])
= 4(cos 330° +j sin 330°) and we are back in the proper polar form.
You do this one. Convert z = 5(cos 40° —j sin 40°) into proper polar form.

Then on to frame 10.

10

17: 5(cos 320° + j sin 320°)

since 2 =5(cos 40° —j sin 40°) = 5(cos [-40°] +j sin [-40°])
= 5(cos 320° +j sin 320°)

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDGUGUD

Here is another for you to do.
Express z = 4(cos 100° —j sin 100°) in proper polar form.
Do not forget, it all depends on the use of negative angles.
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m

z =4(cos 260° +j sin 260°)

for  z=4(cos 100° —j sin 100°) = 4(cos [~100°] +j sin [~1 00°])
= 4(cos 260° + j sin 260°)

DDDDDDDDDDEIDDDDDDDDDDDDDDDDDDDDDDDDDDD

We ought to see how this modified polar form affects our shorthand
notation.

Remember, 5(cos 60° + j sin 60°) is written 5 | 60°

How then shall we write 5(cos 60° —j sin 60°)?

Y 5(60° We know that this really stands for
S(cos [-60°] +j sin [-60°]) so we
i could write 5 |—60°. But instead of
x 60° x using the negative angle we use a
N\ different symboli.e. 5|~60°
\ becomes 5 [ 60°
Y 5|—-60°

Similarly, 3(cos45° —jsin45°)=3|-45°= .. ... ...

3] 45° 12

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD i

This is easy to remember,
for the sign ___ L resembles the first quadrant and indicates
measuring anglles N ie. in the positive direction,
while the signmjj_ resembles the fourth quadrant and indicates
measuring angles ./ ie. in the negative direction.

e.g. (cos 15° +j sin 15°) is written | 15°

but (cos 15° —j sin 15°), which is really (cos [-15°] +jsin [-15°])

is written IET |

So how do we write (i) (cos 120° +j sin 120°)
and (ii) (cos 135° —j sin 135°)
in the shorthand way?
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() 120° (ii) 135°

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

The polar form at first sight seems to be a complicated way of
representing a complex number. However it is very useful as we shall see.
Suppose we multiply together two complex numbers in this form.

Let z, =r (cos 6; +jsin8,)and z, =r,(cosf, +jsinb,)
Thenz,z, =r;(cosf; +jsinf,;) r,(cos b, +jsinf,)
=p 7, (cos B, cos B, +jsinf, cosf, +jcosby sinb,
+3i% sinf, sinf,)
Re-arranging the terms and remembering that i? =1, we get
2,24 =7 [(cOs By cos B, —sinfy sin §,) +i(sin 6, cos §,
+cos 8, sin6,)]
Now the brackets (cos 8, cos 6, —sin 8, sin 8,) and (sin 6, cos 8,
+cos @, sinf;)
ought to ring a bell. What are they?

14

cos 8, cosf, —sin @, sinf, =cos(§, +6,)
sin @, cos @, +cos 8, sin @, =sin(f; +0,)

0oNOo0go0O0o000oNdDO0pDDNo0000C0Oo0D00O0c0goOoocooooaoon

In that case, z,2, =riry [cos(6, +8,) +jsin(8; +60,)]
Note this important result. We have just shown that
r1(cos By +jsin6,).ry(cos B, +jsinby)
=riry [cos(8; +82) +jsin(6, +6,)]
i.e. To multiply together two complex numbers in polar form,
(i) multiply the r’s together, (i) add the angles, 6, together.

It is just as easy as that!
e.g. 2(cos 30° +j sin 30°) X 3(cos 40° +j sin 40°)

=2 X 3(cos [30° + 40°] +j sin {30° + 40°])

= 6(cos 70° + j sin 70%)
So if we multiply together 5(cos 50° + sin 50°) and 2(cos 65° +jsin 65°)
WE BEL oo .
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10(cos 115° +j sin 115°ﬂ

D000 bODO0D000DND0N0000ND0000N000N000000dn
Remember, multiply the #’s; add the 8s.
Here you are then; all done the same way:

() 2(cos 120° + j sin 120°) X 4(cos 20° +j sin 20°%)
= 8(cos 140° +j sin 140°)
(i) a(cos @ +jsin 6) X b(cos O +j sin Q)
=ab(cos[0 + Q] +jsin[0 + Q])
(i) - 6(cos 210° +j sin 210°) X 3(cos 80° +] sin 80°)
= 18(cos 290° + j sin 290°)
(iv)  5(cos 50° +j sin 50°) X 3(cos[-20°] +j sin [-20°])
= 15(cos 30° +j sin 30°)
Have you got it? No matter what the angles are, all we do is
(1) multiply the moduli, (ii) add the arguments.
So therefore, 4(cos 35° + j sin 35°) X 3(cos 20° + j sin 20°)

15

LlZ(cos 55° +j sin 55°)

DDDDDDDDDDDClCJDGDCJDDDDDDDDGDDDDDDDDDDDD

Now let us see if we can discover a similar set of rules for Division.

+
We already know that to simplify g T ;‘61
that is entirely real by multiplying top and bottom by

we first obtain a denominator
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17

the conjugate of the denominator i.e. 3 —j4

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
Right. Then let us do the same thing with

ri(cos@, +jsinf,)
ry(cosf, +isinf,)

ri(cos 6, +jsinf;) _ri(cosf; +jsinb,) (cosf, —jsin 8,)
ra(cosB, +jsin ;) ra(cosf, +jsinf;) (cosh, —jsinb,)

_r1(cos B, cos @, +jsinf, cosB, —jcosBy sinh, +sinf; sinf,)
ra (cos*6, +sin6,)

_ r1[(cos 6 cos 6, +sin 6, sin 6,) +j(sin 8, cos 8, —cos 8, sinf,)]
¥y i

=;[cos (8, —8,) +j sin(6, —6,)]
2

So, for division, the rule is

18

divide the r’s and subtract the angle

oOo0O00000000O0000000D0000D0000000000000000

That is correct.

6(cos 72° +sin 72°) _ o
2cos 41°+jsin 41°9) 3(cos 317 +j sin 31°)

eg.

So we now have two important rules
Ifz, =r;(cos By +jsin ;) and z, =r,(cosf, +jsinb,)
then (i) 2,2, =ryr, [cos(6; +0;) +jsin(8; +62)]

and (i) 2="1 [cos(8, —0,) +j sin(8; —6,)]
Zy T2
The results are still, of course, in proper polar form.

Now here is one for you to think about.
Ifz, = 8(cos 65° +j sin 65°) and z, =4(cos 23° + j sin 23°)
then (1) 2;27 = cocinevcecinnnne and (ii).g.1 S s
2
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19

2123 = 32(cos 88° + j sin 88°)

212 2(cos 42° +§ sin 42°)
22

DDDDDLIDDDE\DDDDDDDDDDDDDDDDDDDDDDDDDDDD

Of course, we can combine the rules in a single example.
5(cos 60° +j sin 60°) X 4(cos 30° +j sin 30°%)
2(cos 50° + j sin 50°)

_ 20(cos 90° + j sin 90°)
2(cos 50° + j sin 50°)
=10(cos 40° + j sin 40°)

e.g.

What does the following product become?
4(cos 20° + j sin 20°) X 3(cos 30° +j sin 30°) X 2(cos 40° + j sin 40°)

20

Result:

24(cos 90° + j sin 90°)

Le.  (4X3X2) [cos(20° +30° + 40°) + j sin(20° + 30° + 40°)]
= 24(cos 90° + j sin 90°)

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Now what about a few revision examples on the work we have done so
far?

Turn to the next frame.
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21

Revision Exercise
Work all these questions and then turn on to frame 22 and check your
results.
1. Express in polar form,z =—4 +j2.
2. Express in true polar form, z = 5(cos 55° — j sin 55°)
3. Simplify the following, giving the results in polar form
(i) 3(cos 143° +j sin 143°) X 4(cos 57° + j sin 57°)
(i) 10(cos 1206° +j. s'%n 12060)
2(cos 72° - +jsin 727)
4. Express in the forma + jb,
(i) 2(cos 30° +j sin 30°)
(i) 5(cos 57° —jsin 57°)

Solutions are on frame 22. Turn-on and see how you have fared.
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Solutions Y 22

rP=22+4=4+16=20
L r=4.472
tan E=0-5 .. F=26°34
Ne 7 " 5§ =153°26'
z2=—4+j2=4.472(cos 153°26" +] sin 153°26))

2. z=5(cos 5% = j sin 55°) = 5 [cos(=55°) + j sin(~55)]
= 5(cos 305° +j sin 305°)

3. (i) 3(cos 143° +j sin 143%) X 4(cos 57° +§ sin 57°)
=3 X 4{cos(143° + 57°) +j sin(143° + 57°)]
= 12(cos 200° + j sin 200°)
(ii) 10(cos 126 +j sin 126°)
2(cos 72° +j sin 72°)
= 170 fcos(126° — 72°) +j sin(126° — 72°)]
= 5(cos 54° +j sin 54°)

4. (i) 2(cos 30° +j sin 30°)
=2(0-866 +j0-5) = 1.732 +]
(i) 5(cos 57° —jsin 57°)
=5(0-5446 -j0-8387)
= 2.7230 - {41935

Now continue the programme on frame 23,
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23 Now we are ready to go on to a very important section which follows
from our work on multiplication of complex numbers in polar form.
We have already established that —

if zy =ry(cos@; +jsinf;)and z, =r,(cosf, +jsinb,)
then 2129 =ryryfcos(8, +0,) +jsin(0, +6,)]
So if z43 =r3(cos 85 +j sin 83) then we have

212723 TriIy [COS(B] +62) +j Sin(@l +02)] r3(C0593 +j sin 03)

24

212223 =rirarafcos(f, + 0, +03) +jsin(@, +6, +63)]
for in muitiplication, we multiply the moduli and add the arguments.

0000000000000 000000000000000RODDOOO0O0O0O0

Now suppose that z;, z,, z5 are all alike and that each is equal to

z =p(cos 8 + j sin 8). Then the result above becomes
212223 = 2% =r.rr[cos(@ + 6 +0) +jsin(d + 0 + 6)]
=r3(cos 30 + j sin 38).
or 22 = [r(cos @ +;sin 6513 =73 (cos 0 + j sin §)3
=r3(cos 36 +j sin 36).

That is: If we wish to cube a complex number in polar form, we just

cube the modulus (r value) and multiply the argument (6) by 3.

Similarly, to square a complex number in polar form, we square the
modulus (r value) and multiply the argument (6) by ........cooovn....
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} 2 | ie. [r(cos§ +jsin )] =r*(cos 26 +j sin 26)

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Let us take another look at these results.

[r(cos 6 +j sin 8)]* =r*(cos 26 +j sin 20)

[r(cos 6 +sin 8)] =r3(cos 36 + j sin 36)
Similarly,

[r(cos 8 +jsin 6)}* = +*(cos 46 + j sin 46)

[r(cos 6 +j sin 6)]° =5 (cos 56 +] sin 50)

and so on.

In general, then, we can say

[r(cos@ +jsin®)]" = ..

T

[r(cos 6 +jsin 6)]" = | P*(cos né +j sinng)

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

This general result is very important and is called DeMoivre’s Theorem,
It says that to raise a complex number in polar form to any power #, we
| raise the r to the power # and multiply the angle by ».
g [4(cos 50° +j sin 50°]2 = 42 [cos (2 X 50°) +jsin(2 X 50%)]
l =16(cos 109° +j sin 100°)
and  [3(cos 110° +j sin 110°)]° = 27 (cos 330° + j sin 330°)
t and in the same way,
[2(cos 37° +j sin 37°)]% =
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21

16 (cos 148° +j sin 148°)

0QgooOo0DO0o0O00OO0OooOCO0ONDO0000CcCocoQooOoonoopoon

This is where the polar form really comes into its own! For DeMoivre’s
theorem also applies when we are raising the complex number to a
fractional power, i.e. when we are finding the roots of a complex number.

e.g. To find the square root of z = 4 (cos 70° +j sin 70°).
1

We have \/z=z% = [4(cos 70° +j sin 70 )]% ie.n=x

"4’2(cos7—O +Jsm ) )

=72 (cos 35° +j sin 35%)
It works every time, no matter whether the power is positive, negative,

whole number or fraction. In fact, DeMoivre’s theorem is so important,
let us write it down again. Here goes —

Ifz=r(cos @ +jsin@),thenz? = ...

28

z=r(cos 0 +jsin ), then |z =r*(cos nd +j sin nd)

for any value of n.

oOonoOoOCcO0O000O0O00O000OUoDNoNOonoooongonooooaoo

Look again at finding a root of a complex number, Let us find the cube
v root of z = 8(cos 120° +jsin 120°).
z Here is the given complex number
shown on an Argand diagram.
J z=8 |120°
Of course, we could ‘say that 6 was
1eo ‘1 revolution + 120°: the vector
X, 3 X would still be in the same positioré,
or, for that matter, (2 revs. + 1207),
(3 revs. + 120°), etc.
ie.z=8 lE(_)f’ or 8 |480°,0r8 |_84_0° or 8 |1200°, etc. and if we now

apply DeMowre s theorem to each of these, we get

or 8’3 420 Of ooovvvenne. (o] SN etc.

51




Complex numbers 2

At [ sh 0 50 e 28
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If we simplify these, we get

S=2 |40° or 2 |160° or 2 280° or 2] 400° etc.

If we put each of these on an Argand diagram, as follows,

2

40° 2 160° 280°

we see we have three quite different results for the cube roots of z and
also that the fourth diagram is a repetition of the first. Any subsequent
calculations merely repeat these three positions.

| Make a sketch of the first three vectors on a single Argand diagram.

I

|
| Here they are: The cube roots of z = 8(cos 120° +j sin 120°). 3 u

Y

24

Z2

zy = 2 [40°
X; X z; = 2 [160°

23 = 2 |280°

Z3
Yy

E]DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

We see, therefore, that there are 3 cube roots of a complex number.
Also, if you consider the angles, you see that the 3 roots are equally :
spaced round the diagram, any two adjacent vectors being separated
bY e degrees.
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120°

0000000000 J00000CcO00D00000D0On0ooon0oaoocao

That is right. Therefore all we need to do in practice is to find the first of
the roots and simply add 120° on to get the next — and so on.

Notice that the three cube roots of a complex number are equal in
]

30 ie. 120°.

modulus (or size) and equally spaced at intervals of

Now let us take another example. On to the next frame.

32

Example. To find the three cube roots of z = 5(cos 225° +j sin 225°)
The first is give =3 =5 2257 1 Gn 2257
root is given by z, =73 = S’J(COST +j sin =3= )

=1.71(cos 75° +j sin 75°)
z, =171 [75°
We know that the other cube roots are the same size (modulus), i.e. 1.71,

and separated at intervals of 3%9 ,ie. 120°.

So the three cube roots are:

zp =171 | 75°

z, =171 [QS_"_

z3 =171 315°
It helps to see them on an Argand diagram, so sketch them on a combined
diagram.
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- —
Here they are: 2 We find any roots of a complex

j number in the same way.

(i) Apply DeMoivre’s theorem to
find the first of the » roots.

Xi x| (i) The other roots will then be
Z, distributed round the diagram

360°
7

23 at regular intervals of

Y, A complex number, therefore, has

[e)

2 square roots, separated by 3—29 ie. 180°

el

3 cube roots, » ”» §% ie. 120°
4 fourth roots,  » » # ie. 90°
5 fifth roots, » 3 s etc.

There would be 5 fifth roots separated by! ggg ie.72°

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

And now: To find the 5 fifth roots of 12 ] 300°

z2=12300° . z, =12% 3%)9 =125 60°

We now have to find the value of 12%. Do it by logs.
Let A =125 Then log A =—é—log 12 =%(1 0792) =0.2158
Taking antilogs, A =1.644

The first of the 5 fifth roots is therefore, z, = 1-644| 60°
The others will be of the same magnitude, i.e. 1-644, and equally

o

separated at intervals of §g£ ie. 72°

So the required 5 fifth roots of 12 {300° are

z, = 1~644| 60°, z, =1.644 |132°, z3 =1.644 | 204°
2, =1-644| 276°, z5 =1.644(348°
Sketch them on an Argand diagram, as before.
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35

2 j zy = 1644 | 60°
1-644 [136°
1-644(204°
1-644 |276°
1-644 |348°

22

x
>
N
o

[l

N
w»
N
H
]

Zs

Z4
Y

Principal root. Although there are 5 fifth roets of a complex number, we
are sometimes asked to find the principal root. This is always the root
whose vector is nearest to the positive OX axis.
In some cases, it may be the first root. In others, it may be the last
root. The only test is to see which root is nearest to the positive OX axis.
In the example above, the principal root is therefore

36

Principal root | z5 =1-644 |348°

CoOocl0O000000000000000D0oU0000D00OoOOoOoDoDoooaOon

Good. Now here is another example worked in detail. Follow it.
We have to find the 4 fourth roots of z = 7(cos 80° + j sin 80°)

The first root, z, = 7% %9 = 77| 20°
Now find 7% by logs. Let A= 7
Then log A =7 log 7 =5(0-8451) = 02113 and A = 1.627

2y =1.627 | 20°

o

The other roots will be separated by intervals 01‘"'3i0 =90°

4
Therefore the four fourth roots are —

z; =1.627 20° z, =1-627| 110°

z3 = 1.627 | 200° 24 =1-627| 290°

And once again, draw an Argand diagram to illustrate these roots.
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2z = 1627 | 20°
2z =1-627 [110°
X B X 73 = 1627 |200°
z4 = 1627 |290°

i

DC]DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

And in this example, the principal fourth root is

|
|
|

rjrincipal root: z; =1.627 [20°

since it is the root nearest to the positive OX axis.
DDDDDDDDDDDDDDDDDDE\DDDDDDDDDDDDDDDDDDD
Now you can do one entirely on your own. Here it is.

Find the three cube roots of 6(cos 240° + j sin 240°). Represent them
on an Argand diagram and indicate which is the principal cube root.

|
|
|
|
|
|
|

When you have finished it, turn on to frame 39 and check your results.
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Y
Z
o
i 2z, =1817 |_80
\?oo z; = 1-817 |200°
Xy 20° X 23 = 1-817 |320°
22
Principal root : z3 = 1-817 [320°
23
Yi

0000000000000 000O0000000do0ooo0oon0oooooOn
Here is the working.

£=6]240° 2, =65 %32=1-817 80°

360°
3

Interval between roots = =120°

Therefore the roots are:

z, = 1.817 | 80° z, =1-817 [200° zy =1-817]320°
The principal root is the root nearest to the positive OX axis. In this case,
then, the principal root is z3 = 1.817 [320°
On to the next frame.

By DeMoivre’s theorem, we know that
cosnf +j sinnd = (cos  +j sin §)"
The method is simply to expand the right-hand side as a binomial series,
after which we can equate real and imaginary parts.
An example will soon show you how it is done:

40 Expansion of sin nf and cos nf, where n is a positive integer.

Ex. 1. To find expansions for cos 36 and sin 30.

We have
cos 36 +j sin 30 = (cos § +j sin 8)>

=(c+js)®  wherec=cosf
s=sin@
Now expand this by the binomial series — like (a + b)? so that
cos 30 +jsin30 = ...coieiiiiiiins
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¢® +j3c?s —3cs? — js?

for: cos 30 +jsin 30 = ¢® + 3c2(is) + 3c(is)? + (js)®
=¢® +j3c%s—3cs? —js? since j2 =~1
=(c® ~3cs?) +j(3c?s ~ %) =
Now, equating real parts and imaginary parts, we get
COS 30 = Lo
and $IN 30 = e,

cos 36 = cos>9 — 3 cos 0 sin?6 42

sin 30 =3 cos?8 sin § —sin0

If we wish, we can replace sin?0 by (1 — cos?6)
and cos®6 by (1 —sin?9)
so that we could write the results above as
| cos 30 = (all in terms of cos 8)

sin 30 = (all in terms of sin 6)

sin 30 =3 sin 6 — 4sin®0

cos 30 =4 cos®0 — 3 cos @ 43

since cos 30 = cos’0 — 3 cos § (1 — cos?§)
=c0s*0 ~ 3 cos 0 + 3 cos3H
=4cos*0 — 3 cos 9
and sin 3¢ = 3(1 —sin? @) sin § ~ sin®¢
=3sin @ —3sin®4 —sin30
=3sin 0 —4sin30
While these results are useful, it is really the method that counts.
So now do this one in just the same way:
Ex. 2. Obtain an expansion for cos 46 in terms of cos a.

When you have finished, check your result with the next frame,
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44

cos 40 = 8 cos*0 — 8 cos?9 + 1

Working: cos 40 +j sin 40 = (cos § +j sin §)*
=(ctjs)?
= ¢? + 4¢3 (js) + 67 () + 4c(is)® +(js)?
=c? +j4c3s— 6c25? —jdes® +s*
=(c? — 6c%s? +5%) +j(4cds — dcs?)

Equating real parts:
cos 40 = c¢* —6c?s? +¢*

=c* —6c3(1 —c?)+(1 —c?)?
=c¢t—6c* +6ct +1—-2¢*+c?
=8c* —8c? +1

=8 cos* —8 cos?0 + 1

Now for a different problem. On to the next frame.

45

Expansions for cos0 and sin8 in terms of sines and cosines of
miltiples of 6.
Let z=cosf +jsinf

1
then = Z' =cosf —jsin@

. z+—1=20036andz-l=j2sin9
z z

Also, by DeMoivre’s theorem,
z" = cosnf +jsin nf
1
and —n =z =cosnb —jsinnf

Loz +7 =2 cos nf and 2" —%,7=j 2 sinnf

Let us collect these four results together: z = cos 6 +j sin 6

z+%=2cost9 z—;=j23in0

1
z”+z—,,=2cosn6 z"—;—,,=j231nn0

Make a note of these results in your record book. Then turn on and we
will see how we use them.
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Ex. 1. To expand cos®# 46

From our results, z +-;—= 2 cos @
L (2c0s6)’ =(z 42y
=72 +372 (l) +3z(l—) +L
z z? 3
3 1
=z +3z+ 3Z—+ —2'3

Now here is the trick: we re-write this, collecting the terms up in pairs
from the two extreme ends, thus —

(2 cos 0)® =(23 +El3) +3(z +;)
And, from the four results that we noted,

z+_— =

I
=
[=9
N

w
+
|

w

n

z+—1-—=20050;z3 +—13=2cos36 47
z z

5 (2c0s0)® =2 cos 36 + 3.2 cos 0 ‘
8 cos0 =2 cos 30 + 6 cos 8 i
4cos®f =cos30 +3cosd

cos>6 =%(cos 36 + 3 cos §)

Now one for you:
Ex. 2. Find an expansion for sin*§
Work in the same way, but, this time, remember that !

z—-;l=j2sin9andz” -—Zl—n=j2sinn9

When you have obtained a result, check it with the next frame.
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48

sin* 6 =é [cos 46 — 4 cos 26 + 3]

for, we have:

1 1
) SO S PO
z == j2sind;z i j 2 sin né
L (G2sind)* =(z —-i—)“
1 1 1 1
— 4 _ 4.3 2 _
z 42(7)+6z(-22) 42(33)+E4
1 1
=(7% + 1y — a2
(28 +-a) 4P+ ) +6
Now z" +-;1=2cosn0
~ 16sin*0 =2cos40 —4.2cos20+6

" sin*@ =% {cos 46 — 4 cos 26 + 3]

They are all done the same way: once you know the trick, the rest is
easy.
Now let us move on to something new.

49

Loci Probiems

We are sometimes required to find the locus of a point which moves
in the Argand diagram according to some stated condition. Before we
work through one or two examples of this kind, let us just revise a
couple of useful points.

You will remember that when we were representing a complex
number in polar form, i.e., z=a +jb =r(cos § +j sin 8), we said that
(i) ris called the modulus of z and is written ‘mod z’ or|z| and
(i) » » » argumentofz» » » ‘arg 2’

Also, r=~/(a® + b?)and 6 = tan’* {-g}
so that |z | =+/(a* + b*) and arg z = tan’* {g}

Similarly, if z=x +jy, then |z| = ...
andargz=........cceeenenn.
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[z]=v/(x* +»?) and argz=tan‘1{%} 50

Ifz=x+jy,

Keep those in mind and we are now ready to tackle some examples.
Ex. 1. If z=x +jy, find the locus defined as ’z] =5,
Now we know that in this case, J z ’ =/(x? +y?)

The locus is defined as\/(x? + y?)= 5§

Lx2+y? =25
Y
Locus|z] = 5
ie. x? +y2 =28
5 This is a circle, with centre
% > % at the origin and with
radius 5.
Y

That was easy enough. Turn on for Example 2.

Ex. 2. Ifz=x+jp, find the locus defined as arg z =% 51
. — a1 VY -1 y}=77
In this case, arg z = tan {}_} Sotanm {? T
§=tang.=tan45°=l =1 ~y=x |

fe—— arg z=-f— ‘
ie. y=2x

X4 X \

Y

All locus problems at this stage are fundamentally of one of these
kinds. Of course, the given condition may look a trifle more involved,
but the approach is always the same.

—_— T
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52 Ex. 3. If z=x + ]y, find the equation of the locus z i i

-
Since z = x +jy,
zl=xtip+l=(x+D+iy =r|6 =z

z=1l=x+jy-1=(x—-D+jy =r,|0, =z
ztl_n| 6, N
z—1 |6, rzlel—e_z
lln bl e
z=1| r, |z V- D*+y?]

VI DRy
UV = 1)+ 7]
(1) +y?
(=12 +p?

2

4

All that now remains is to multiply across by the denominator and tidy
up the result. So finish it off in its simplest form.

53 (x+1)? +y2 _

We had G___I)W =4
So therefore (x+ 1?2 +y? = 4{(x _ 1)2 +y2}

X2+ 2y + 1+ =4(x? - 2x + 1 +y?)
=4x? — 8x + 4 + 4p?
L3xP - 10x+ 3432 =

This is the equation of the given locus.

Although this takes longer to write out than either of the first two
examples, the basic principle is the same. The given condition must be
a function of either the modulus or the argument.

Move on now to frame 54 for Example 4.
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Ex. 4. 1f z =x + jy, find the equation of the locus arg(z%) =
z=x+jy=rl_Q Soargz =0 =tan! { J
L tan g =%
x
. By DeMoivre’s theorem, z?2 L

—bl:l
Gl
=

" arg(z?) =20 = —;1
. tan 26 =tan (—;—T) =-1
2tang
" 1-tan%¢
~ 2tanf =tan%@ -1
2
But tan 6 =2 . Zz -1
x x x
Wy =y? —x? o pt=x? 42y
In that example, the given condition was a function of the argument.
Here is one for you to do:
If z=x + jp, find the equation of the locus arg(z + 1) =%

Do it carefully, then check with the next frame

|
Here is the solution set out in detail. 5 5 |
If z=x + iy, find the locus arg(z + 1) =%

z=x+ip .‘.z+1=x+jy+1=(x+l)+jy |

arg(z + 1)=tan‘1{ xi} =7—;~

+1
y y = T = |
T Ctang V3
Y=/3x+1) |

And that is all there is to that.
Now do this one. You will have no trouble with it.
If z=x + iy, find the equation of the locus { z—1 l =5

When you have finished it, turn on to frame 56.
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56

Here it is: z=x+iy;givenlocus]z—1 [=5
z—1l=x+jy—-1=(x-1+jy
clz=1] =i -1+ =5

L x-DT+yr=25
LxP=2x+1+y?2 =25
LxtP-2x+y?2 =24

Every one is very much the same.

This brings us to the end of this programme, except for the final test
exercise. Before you work through it, read down the Revision Sheet
(frame 57), just to refresh your memory of what we have covered in this
programme.

So on now to frame 57.
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Revision Sheet 5 7

1. Polar form of a complex number

z=a+ijp= 0 +jsi =
Sat] r(cos 6 +j sin 6) r{i

! r=m0dz=,z}=\/¢72+b2
{b b
N f=argz =tan‘1{g_}

z=r(cos [-0] +jsin [-0])
X cos [#) =cos 0
sin [-8] = —sin 6
=r(cosf—~jsinf)=r W

3. Multiplication and division in polar form
If zy=ry |0y zy=r, LGJ_

then 212y SFr, }61 + 6,
21 =r1 _
o lo-o
4. DeMoivre’s theorem

If z=r(cos 6 +jsin@), then z" = r"(cos n + j sin nt)
5. Exponential form of a complex number |

z=a+ib.o o oL standard form
=r(cos@ +jsing) ..... polar form |
=rel? [0 in radians] . . .. exponential form [
Also gi® =cosf +jsing

€10=cosf ~jsin0 \
6. Logarithm of a complex number
z=ref Inz=1Inr+jo |

7. Loci problems
i 2=xtiy, J2) = Vi +02)
arg z =tan’! {%}

That’s it! Now You are ready for the Test Exercise on Frame 58.
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5 8 Test Exercise—I1

1.

2.

Express in polar form, z =5 —j3.

Express in the forma +ijb, (i) 2 |156°, (ii) 5] 37°.

. Ifz; = 12(cos 125° +j sin 125°) and

2, = 3(cos 72° +jsin 72°), find (i) z,z, and (ii) % giving

the results in polar form.

. If z=2(cos 25° +j sin 25°), find z* in polar form.

. Find the three cube roots of 8 (cos 264° + j sin 264°) and state which

of them is the principal cube root. Show all three roots on an Argand
diagram.

. Expand sin 48 in powers of sin  and cos 6.
. Express cos*6 in terms of cosines of multiples of 6.

. If z=x +jy, find the equations of the two loci defined by

(i) |z-4[=3 (ii) arg(z+2)=%
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Further Problems—II

1. If z=x +jy, where x and y are real, find the values of x and y when
3z + 32_ 4

=i 5 3]

2. In the Argand diagram, the origin is the centre of an equilateral
triangle and one vertex of the triangle is the point 3 +jv/3. Find
the complex numbers representing the other vertices.

3. Express2 +j3and 1 ~j2 in polar form and apply DeMoivre’s

+i33)*
theorem to evaluate% - Express the result in the forma + jb

4. Find the fifth roots of -3 +j3 in polar form and in exponential form.

5. Express 5 +j12 in polar form and hence evaluate the principal value
on/(S +j12), giving the results in the form « +jb and in form rel?

6. Determine the fourth roots of —16, giving the results in the form
a+ijb.

7. Find the fifth roots of —1, giving the results in polar form. Express
the principal root in the form r i .

8. Determine the roots of the equation x> + 64 = 0 in the form

and in exponential form.
|
|
|
|
| a +jb, where a and b are real.

2]
2+j
modulus/argument form. Express the principal root in the form
a+tijb.

9. Determine the three cube roots of giving the results in

10. Show that the equation z3 = 1 has one real root and two other roots
which are not real, and that, if one of the non-real roots is denoted
by w, the other is then w?. Mark on the Argand diagram the points
which represent the three roots and show that they are the
vertices of an equilateral triangle.
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11.

12.

13.

14.

15.

l6.

17.

18.

19.

20.

21.

Determine the fifth roots of (2 —j5), giving the results in
modulus/argument form. Express the principal root in the form
a +jb and in the formrel? .

Solve the equation z? + 2(1 +j)z + 2 = 0, giving each result in the
forma + jb, witha and b correct to 2 places of decimals.

Express ¢! 77/2 in the forma +jb.
Obtain the expansion of sin 76 in powers of sin §.

Express sin®x as a series of terms which are cosines of angles that
are multiples of x.

If z=x +jy, where x and y are real, show that the locus zZ : ; (=

is a circle and determine its centre and radius.

If z=x +jy, show that the locus arg{%}=%is a circle. Find its

centre and radius.

If z =x + jy, determine the Cartesian equation of the locus of the
point z which moves in the Argand diagram so that

lz+32] 2 +]|z-j2| 2 =40
If z = x + jy, determine the equations of the two loci:

() z+2 (ii) arg{ +2} m

4

If z =x + jy, determine the equations of the loci in the Argand
diagram, defined by

z+ 2 I\ 7
(i ) 2, and (i) arg{ T 2} 3
Prove that
(i) if |z, t 22| =| 2z, — 2z, ,the difference of the arguments of

¢
z; and z, is —.

2
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i Zytz =
(ii) if arg{z1 _22} 5> then |z;| =z,
22. If z=x +jy, determine the loci in the Argand diagram, defined by
M lz+j212 |z —j2|2 =24
(i) |z +jk|® +|z - jk |* = 10k* (k> 0)
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Introduction

When you were first introduced to trigonometry, it is almost certain that
you defined the trig. ratios — sine, cosine and tangent — as ratios between
the sides of a right-angled triangle. You were then able, with the help of
trig. tables, to apply these new ideas from the start to solve simple right-
angled triangle problems . . . . . and away you went,

You could, however, have started in quite a different way. If a circle
of unit radius is drawn and various constructions made from an external
point, the lengths of the lines so formed can be defined as the sine,
cosine and tangent of one of the angles in the figure. In fact, trig. func-
tions are sometimes referred to as ‘circular functions’.

This would be a geometrical approach and would lead in due course
to all the results we already know in trigonometry. But, in fact, you did
not start that way, for it is more convenient to talk about right-angled
triangles and simple practical applications.

Now if the same set of constructions is made with a hyperbola instead
of a circle, the lengths of the lines now formed can similarly be called the
hyperbolic sine, hyperbolic cosine and hyperbolic tangent of a particular
angle in the figure, and, as we might expect, all these hyperbolic functions
behave very much as trig. functions (or circular functions) do.

This parallel quality is an interesting fact and important, as you will
see later for we shall certainly refer to it again. But, having made the
point, we can say this: that just as the trig. ratios were not in practice
defined geometrically from the circle, so the hyperbolic functions are not
in practice defined geometrically from the hyperbola. In fact, the defini-
tions we are going to use have apparently no connection with the hyper-
bola at all.

So now the scene is set. Turn on to Frame I and start the programme.
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You may remember that of the many functions that can be expressed 1
as a series of powers of x, a common one is e*

2 3 4
X - X XX
MR TR AT
If we replace x by —x, we get

x x? x3 x4

e =1l-x +5?———3—!+Z-!— e
and these two functions e* and ¢ are the foundations of the definitions
we are going to use.
(i) If we take the value of e¥, subtract €, and divide by 2, we form
| what is defined as the hyperbolic sine of x.

X _ ax
2

This is a lot to write every time we wish to refer to it, so we shorten it to
sinh x, the h indicating its connection with the hyperbola. We pronounce
it ‘shine x’.

¢ = hyperbolic sine of x

A

. ey —¢- .
So, in the same way,———— would be written as .................

] sinh y 2

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDGDDD o

| In much the same way, we have two other definitions: |

. e +¢*
| (i1) —5— = hyperbolic cosine of x
=coshx  [pronounced ‘cosh x’]
ex —_ e—x
(iii) X reE - hyperbolic tangent of x ‘

= tanhx  [pronounced ‘than x’] |

We must start off by learning these definitions, for all the subsequent
developments depend on them.
So now then; what was the definition of sinh x?
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X X

. e* —¢

sinh x = ———
2

NO0CcoO000O00000D00O00Cc0O0O0OO0000QCODDO00000O00000n
Here they are together so that you can compare them.

X _&X
. e¥ —¢€
sinh x =
2
coshx = e+ et
2
X X
eX —¢
tanh X = —————n
ex + e—X

Make a copy of these in your record book for future reference when
necessary.

. e e*—¢
sinh x = ; cosh x =5 tanhx = ———

4 X _ g oX + &% X_ ;X
2

ex +e—x
OpDDO0OCO0OO0ONDOODDODOCD0O0O0OCDDDODONDDODLOC0ODODDO

We started the programme by referring to e and €™ as series of

powers of x. It should not be difficult therefore to find series at least for
sinh x and for cosh x. Let us try.

(i) Series for sinh x

2 .3 L4
x x* x> x"
e 1+x+2‘+§+4'+
2 .3 LA
Xom e XXX
R A TR TR
If we subtract, we get
- 23 2
X _ X = “
et —¢ 2x + 3 + ST
Divide by 2
ex_ —X x3 5
=sinhx=x+§T+§+
(i) If we add the series for e* and €™, we get a similar result.

What is it?
When you have decided, turn on to Frame 5.
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2 4 6
X X X
x=l4+5+++ .
‘ cosh 2T 417 gl

\ 00000000000 000NO0O000000000 0000000000 oOOn

For we have:
2 3 4
x* x? x
X = S opr ot
R TS TR
2 .3 .4
x? x* x
X = —_ peE ———
A TRETRPTREE
22 2t
. pd X =
. eX +e -2+———2! +—4! + ...
X 4 X 2 .4
e x% x
~—5— =coshx =1+ +>—+ ...
2 2! 4t
Move on to Frame 6.
So we have:
3 5 7
. x° x° x
Sinh X =x bty gt -
2 4 6
x* x* x
coshx =1 +——2! +—4! +—6!+

Note: All terms positive: sinh x has all the odd powers,

cosh x has all the even powers.
We cannot easily get a series for tanh x by this process, so we will leave
that one to some other time.

Make a note of these two series in your record book. Then, cover up
what you have done so far and see if you can write down the definitions
of:

() sinhx= .o, Gi) coshx = ..o,

(iii) tanhx = .....coooovrennn, No looking!
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X —X X X X =X
- e e”r —¢
coshx = tanh x =

sinh x = g U,
2 > 2 i ex + X

All correct? Right.

00D0D0o0O00O0O0O0O00DO0O0DO0OD0D00c0D0DD0Oo0OD0DoOoDOO0DO0ODnQOO

Graphs of Hyperbolic Functions

We shall get to know quite a lot about these hyperbolic functions if we

sketch the graphs of these functions. Since they depend on the values of

¢ and €*, we had better just refresh our memories of what these graphs

look like.
y=e* and y = €* cross the y-axis
at the point y = 1 (¢° = 1). Each
graph then approaches the x-axis
as an asymptote, getting nearer
and nearer to it as it goes away to
infinity in each direction, without
actually crossing it.

X So, for what range of values of x
are ¢* and ¢~ positive?

8 e* and ¢~ are positive for all values of x

Correct, since the graphs are always above the x-axis.

0000000000000 0ocOo00onDOoCcoc0oO0CcO0On0Ooo0oo0DQQoooaon

At any value of x, e.g. x = xy,
X X

te” |
coshx = 6—2——, i.e. the value of

cosh x is the average of the values
of e* and € at that value of x.
This is given by P, the mid point
of AB.

If we can imagine a number of
ordinates (or verticals) like AB and
we plot their mid-points, we shall
obtain the graph of y = cosh x.

Can you sketch in what the
graph will look like?
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Y
Here it is: . / 9
Nald y=€7
\ /
\ /
\\ //
N\ 7/
N\ /
AN e
~N 7
\;e’___/ y = cosh x
- <17 ~_
X4 - [o] x X
We see from the graph of y = cosh x that:
(i) cosh 0=1

(ii) the value of cosh x is never less than 1
(iii) the curve is symmetrical about the y-axis, i.e.
cosh(~x) = cosh x
(iv) for any given value of cosh x, there are two values of x, equally
spaced about the origin, i.e. x = +q.

Now let us see about the graph of y =sinh x in the same sort of way.

| y=e% [ e 10
‘ \ // sinhx= Z j
\ P N ‘
\ /) . _er¥—¢¥ j
| AN /o sinh x =
| Pr N_| v/ rp On the diagram,
K. \ * !
| A:,/ e CA=¢e |
- | o —— = X
> 1 7 ; " CB=¢
BA=¢* —¢”*
! X _ X
Bp = ¢ - € |
Y|

The corresponding point on the graph of y = sinh x is thus obtained
by standing the ordinate BP on the x-axis at C,ie. P;.

Note that on the left of the origin, BP is negative and is therefore
placed below the x-axis.

So what can we say about y = sinh x?
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Y
1 y = sinhx
a: - ’—:c
=—
|
|
|
N
Xy T X
i [0]
t
|
1
Yy

From the graph of y = sinh x, we see
(i) sinh 0=0
(ii) sinh x can have all values from —° to +o°
(iii) the curve is symmetrical about the origin, i.e.
sinh(—x) = —sinh x
(iv) for a given value of sinh x, there is only one real value of x.

If we draw y = sinh x and y = cosh x on the same graph, what do we get?

‘ 12 Y y = cosh X
| /-

y=sinhx

Y
| Note that y = sinh x is always outside y = cosh x, but gets nearer to it
l as x increases . .
ie. asx — oo, sinhx — coshx

| And now let us consider the graph of y = tanh x. Turn on.
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It is not easy to build y = tanh x directly from the graphs of y = ¢* 13
and y = €. If, however, we take values of e* and €* and then calculate
X _ X
¥ 7€ and plot points, we get a graph as shown.
ex + —X

y =tanh x

We see (i) tanh 0=0
(i) tanh x always lies between y =—1l and y = |
(iii) tanh(—x)=—tanh x
(iv) asx = oo, tanhx - 1
asx > —oo tanhx > —1.

Finally, let us now sketch all three graphs on one diagram so that we can
compare them and distinguish between them.

Here they are: Y y=coshx 1 4

One further point t(; note:

At the origin, y = sinh x and y = tanh x have the same slope. The two
graphs therefore slide into each other and out again. They do not cross
each other at three distinct points (as some people think).

It is worth while to remember this combined diagram: sketch it in your
record book for reference.
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15 Revision Exercise
Fill in the following—

X —X
L et ter _
(i) G T e
X _ 45X
G) 28 =,
eX + e—x
. X —eF
(iii) > = e e
@) —mmmmm—qf - —oomeae-
Xy < X
_________ -
Y, P T e
Y
)
1
X4 5 X
V= e
P Y‘
(vi) y
Xy < X
Y= e,
Yy
Results on the next frame. Check your answers carefully.
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Results:  Here they are: check yours.

: X 4 X
1) e* +e
@ 3 = cosh x
X _ X
N €7 ¢
(ii) = tanh x
eX +e¥
X _ X
(iii) = sinh x
Y
(iv) S R
: - —
~+——y = tanh X
X4 0 X
________ =M
Y
Y
%)
«—-y = cosh x
1
X 3) X
Y
(vi)
y = sinh x
X, 0 X

Yy
Now we can continue with the next piece of work.

R e T T
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17 Evaluation of Hyperbolic Functions

The values of sinh x, cosh x and tanh x for some values of x are given in
the tables. But for other values of x it is necessary to calculate the value
of the hyperbolic functions. One or two examples will soon show how
this is done.

Example 1. To evaluate sinh 1.275

Now sinh x = 3(e¥ = €*) .. sinh 1-275=4(e"?" - 1275 We now

have to evaluate e! 275 Note that when we have done that, 1275 §g

merely its reciprocal and can be found from tables. Here goes then:

Let A=e'275  In A=1-275 and from tables of natural logs we
now find the number whose log is 1-275.

This is 3-579 .. A =3-579 (as easy as that!)
1
3:579

. sinh 1-275 =4(3-579 — 0-279)
=1(3-300) = 1.65
. sinh 1275 = 1-65

In the same way, you now find the value of cosh 2-156.
When finished, move on to frame 18.

So e!275=3.579 and ¢'?7* = =0.2794

“ 18 ﬁosh 2-156 =4-377

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
Here is the working:

Example 2. cosh 2-156 = 3(e¥15¢ + €21%)

Let A=e¥!56 - InA=2156 . A=8-637and }f 01158
", cosh 2156 = 4(8-637 + 0-116)
1 =1(8-753) = 4-377
" cosh 2-156 =4-377

| Right, one more. Find the value of tanh 1.27.
When you have finished, move on to frame 19.
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tanh 1.27 = 0-8539 19
OOo00OO0O000CcgoUoOoUCoUooggooUoOoooooooooQao
“Working: (127 _ 127

Example 3. tanh 1.27 = —61—2—7‘_}_—6_1—27

Let A=e"?7 - InA=1.27 - A=3.561 andi=0.2808

197 3561 -0281 _ 3280 05159
< tanh 127 = S T 0281 3-842 05845
19314

tanh 1-27 = 0-8539 —_

So, evaluating sinh, cosh and tanh is easy enough and depends mainly
on being able to evaluate ek, where k is a given number — and that is most
easily done by using natural logs as we have seen.

And now let us look at the reverse process. So on to frame 20.

Inverse Hyperbolic Functions

Example 1. To find sin™! 1-475, i.e. to find the value of x such that zu
sinh x = 1.475.

Here it is: sinhx = 1475 - ¥e¥—€¢*)=1475
L eF - 21; = 2950

Multiplying both sides by e*: (¢*)* — 1 = 2.95(e*)
(e*)? - 2.95(e*)-1=0
This is a quadratic equation and can be solved as usual, giving

ox = 2951/(2952 +4) 295 %+/(8703 +4)

2 2
_ 2-95 ++/12-703 _ 2:95£3.564
2 2
= -6%i or—%‘1 = 3.257 or —0.307

But e* is always positive for real values of x. Therefore the only real solu-
tion is given by e* = 3.257.
Sox=1In3.257=1-1809
Sox=1-1809
Exercise 2,
Now you find cosh™ 2-364 in the same way.
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21 costi! 2364 = £1.507

oQooOOooooOoogooocooogooooooooooooocoaaogpaoopoao
For: To evaluate cosh™® 2.364, let x = cosh™! 2364

X X
» coshx =2.364 .. e—;—e—~ =2.364 . e*+ lx =4.728
[
(€¥)*—4.728(e*)+1=0
ox = 4728 £4/(22:36 - 4) V1836 = 4.285

2

=1(4-728 + 4-285) = 4(9-013) or (0-443)
e* =4.5065 or0-2215
X =In4-5065 or In0-2215
=1.5056 or 2-4926 i.e. —1.5074
x =%1.507
Before we do the next one, do you remember the exponential defini-
tion of tanh x? Well, what is it?

22 tanh x = e — e

ex + e—x

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
That being so, we can now evaluate tanh™ 0-623.

Let x =tanh? 0-623 .. tanh x =0-623
X _ X
ST =0623
eX +¢e~*

L eX— €% =0.623(e* +e7)
L (1-0623)e* =(1 +0-623) €%
0-377 e* = 1623 €*

_ 1623
o 0-2103
L (eX)? 21623 1.5763
0-377 2) 0-6340
©eX=12.075 0-3170

5 x=1n 2-075 = 0-7299
.. tanh™' 0-623 =0-730
Now one for you to do on your own. Evaluate sinh™ 0-5.
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sinh™ 0.5 =0-4810

goooOoQgoocooooRooooopoooooooocoooooononoo

Check your working.
Let x=sinh™? 0-5 .. sinhx=0-5
Ce¥—e¥ _ Cox 1
. 3 05 ..e =

()P -1=¢e*
(e*Y¥—-(e*)-1=0
oo 1 V(1 +4)_1£4/5

2 2
_3-2361 or —1.2361

2 2
= 1.6181 or —0-6181
x=1In1-6181=0-4810

=1

-0-6181

gives no real

sink™? 0-5 = 0-4810 value of x.

And just one more! Evaluate tanh™ 0.75.

23

tanhi™! 0-75 = 0-9731

0000000 0000000o0o0DDOONnO00D000O000c0oogooooo

Let x=tanh!1 0.75 .. tanhx=0.75
LeX—eg¥
=05

e¥ —¢* =0.75(e* + %)
(1-075)e* = (1 +0.75) ¥
0-25¢* =1.75¢*

xye = 175
) =535=7
= +/7 = £2.6458

But remember that e* cannot be negative for real values of x.

Therefore e* = 2.6458 is the only real solution.
=1n 2-6458 = 0.9731
tanh™' 0-75 = 0-9731
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2 5 Log. Form of the Inverse Hyperbolic Functions
Let us do the same thing in a general way.
To find tanh™ x in log. form.
As usual, we start off with: Let y =tanh’x . x=tanhy

: ey_e_y=x el —e” =x(e” +¢7)
e’ +e” h :
ey(l -x)= _y(l +x)= 7(1 +x)
+
oy olex
1+x
L2y = ln{m}
1+
y=tanh‘1x=fln{1_x}
- 1.5
So that tanh™' 0.5 =%ln{(—)—3}
=11n3=4(1-0986) =0.5493

And similarly, tanh (-0- 6) S e

26 tanh™! (—0-6) =—0-6932

O0DOoDCocOoOO0O0O0O00O000ODNODOD00O00O0O0CO000000D0D0O00on

For, tanhlx =3 ln{i +;c
" tanh!'(-0-6) =4 ln{i%?%} =4 ln{%-g}
=51 025 25 09163
2.6137
=1(-1.3863) —
=—-0.6932

Now, in the same way, find an expression for sini ! x.
Start off by saying: Lety =sinh’’x .. x =sinhy

y -y
el -l RS S oy
3 x e 2x e —ey 2x
(€)Y —22x(e”)-1=0 Now finish it off.
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Result: sinh ' x =In{x +/(x? +1)} 27
0DO00ODOO0C0000C0N0N0NN0NN00000000000000
For ¥ -2x(e¥)-1=0
oy = 2X £/(4x2 +4) _2x £2v/(x*+ 1)
2 2
SxEV )

e =x+/(x2+1) or e¥ =x—+/(x*+1)

At first sight, there appear to be two results, but notice this:
In the second result, VEP+1)>x
. e¥ =x — (something >x) 1i.e. negative.

Therefore we can discard the second result as far as we are concerned
since powers of e are always positive. (Remember the graph of e*.)
The only real solution then is given by e” =x ++/(x2 + 1)
y=sinhx =In{x +/(x* + 1)}

Finally, let us find the general expression for cosh™ x. 2 8
Yy
Let y=coshi'x . x=coshys= %e_
1

e +é7=2x LYY -2x(e”)+1=0

ey:2x i\/(4;2—4):xi\/(x2_1)

LY =x+/(x2—1) and ¥ =x—+/(x2 - 1)

Both these results are positive, since /(x2 - 1) <x.

1 _ i x—\/(xz_l)
However, XA —1) 2+ —1) x=x2—1)
XVE T o

x2—(x*-1)
So our results can be written

e’ =x++(x*~1)ande” = !

x+/(x2~1)
e’ =x +4/(x2 = 1) or {x+/(x*— D}
w ¥y =In{x++/(x*-1)} or —In{x + VxE-1)}
Lcosh !l x =2 In{x ++/(x? - 1)}
Notice that the plus and minus signs give two results which are symmetri-

cal about the y-axis (agreeing with the graph of y = cosh x).
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29 Here are the three general results collected together.
sinh’!x = 1n{x +(x? 1)}
cosh'x = xIn {x +/(x% - 1)}

1+x}

-1 =l
tanh™ x 2ln{1_x

Add these to your list in your record book. They will be useful.
Compare the first two carefully, for they are very nearly alike. Note

also that (i) sinh™x has only one value.
(ii) cosh™x has two values.

So what comes next? We shall see in frame 30.

Hyperbolic Identities

3 0 There is no need to recoil in horror. You will see before long that we
have an easy way of doing these. First of all, let us consider one or two
relationshi >s based on the basic definitions.

(1) The first set are really definitions themselves. Like the trig. ratios,
we have reciprocal hyperbolic functions:

(i) coth x (i.e. hyperbolic cotangent) =

tanh x
(ii) sech x (i.e. hyperbolic secant) = ohx
(iii) cosech x (i.e. hyperbolic cosecant) = prevn—

These, by the way, are pronounced (i) coth, (ii) sheck and (iii) co-sheck
respectively.

These remind us, once again, how like trig. functions these hyperbolic
functions are.

Make a list of these three definitions: then turn on to frame 31.
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sinhx ef—¢*  e*¥+e* 31
2) Let us consider = +
(2) Letus St cosh x 2 2
X X
e* —¢
=———=tanhx

eX¥ +¢e*
- tanh x = sinh x Very much like
) cosh x

tan § = sin 61
cos 65

(3) Coshx =4(e* +¢¥); sinhx =4(e¥ —¢¥)
Add these results: cosh x +sinhx = e*
Subtract: cosh x — sinh x = €%
Multiply these two expressions together:
{cosh x +sinh x) (cosh x — sinh x) = e*.¢™
" cosh® — sinh%x = |

[In trig., we have cos?6 + sin?8 = 1, so there is a difference in }

sign here.
On to frame 32.
(4) We just established that cosh®x —sinh?x = 1. 3 2
_sinh’x _ 1

N 2... = 75
Divide by cosh?x: cosh’x cosh’x

1 — tanh®x = sech®x
sech®x = 1 — tanh®x
{Something like sec?§ = 1 + tan?0, isn’t it?}
(5) If we start again with cosh?x — sinh®x = 1 and divide this time by
sinh®x, we get

cosh’x 1
sinh2x sinh2x

" coth?x — 1 = cosech®x
~ cosech®x = coth?x — 1

{ In trig., we have cosec20 = 1 + cot?, so there is a sign difference}
here too.

Turn on to frame 33,

90



Programme 3

3 3 (6) We have already used the fact that

cosh x +sinh x =e* and coshx —sinhx =¢&™*

If we square each of these statements, we obtain

34

cosh?x + 2 sinh x cosh x + sinh?x = e?¥
cosh?x — 2 sinh x cosh x + sinh?x = ¢2*

So if we subtract as they stand, we get

4 sinh x cosh x = e¢** —
2X __ 2X

.. 2sinh x coshx = ‘—2———

e—zx
= sinh 2x

" sinh 2x = 2 sinh x cosh x

If however we add the two lines together, we get
, S

2(cosh?x + sinh?x) = e?* + ¢ 2*¥
2Xx + e—2x

. cosh?x + sinh2x = —s = cosh 2x

. cosh 2x = cosh?x + sinh?x
cosh?x — sinh?x = 1

We already know that
=1 +sinh%x

. cosh®x

Substituting this in our last result, we have
cosh 2x = 1 + sinh®x + sinh®x

" cosh 2x = 1 + 2 sinh®x
cosh?x — 1 = sinh®x
. ‘cosh 2x = cosh?x + (cosh®x — 1)

" cosh 2x =2 cosh?x — 1

Or we could say

Now we will collect all these hyperbolic identities together and com-
pare them with the corresponding trig. identities.

These are all listed in the next frame, so turn on.

91




Hyperbolic Functions

Trig Identities Hyperbolic Identities
(1) cotx=1/tanx cothx = 1/tanh x
secx = I/cosx sech x = [/cosh x
cosec x = 1/sin x cosech x = 1/sinh x
(2) cos?x +sin?x =1 cosh?x — sinh?x = 1
sec?x =1 + tan2x sech®x = 1 — tanh2x
cosec?x = 1 + cot2x cosech®x = cothx — 1
(3) sin2x=2sinx cosx sinh 2x = 2 sinh x cosh x
cos 2x = cos®x — sin%x cosh 2x = cosh?x + sinh2x
=1~ 2sin%x =1+ 2 sinh%x
=2 cos®x — 1 =2 cosh?x — 1

If we look at these results, we find that some of the hyperbolic
identities follow exactly the trig. identities: others have a difference in
sign. This change of sign occurs whenever sin2x in the trig. results is
being converted into sinh?x to form the corresponding hyperbolic
identities. This sign change also occurs when sinZx is involved without
actually being written as such. For example, tanZx involves sinZx since

2 . sin®x
tan®x could be written as ~—5~.

‘ cos“x
with tan’x when it is being converted into tanh2x

cot’x » »» » ” ” coth?x

cosec’x 7 v » » ” cosech?x
The sign change also occurs when we have a product of two sinh terms,
e.g. the trig. identity cos(A + B) = cos A cos B — sin A sin B gives the
hyperbolic identity cosh(A + B) = cosh A cosh B + sinh A sinh B.

Apart from this one change, the hyperbolic identities can be written
down from the trig. identities which you already know.

For example:

The change of sign therefore occurs

_ 2tanx _ 2tanhx
tan 2x " tanZx becomes tanh 2x = % tanhZx

So providing you know your trig. identities, you can apply the rule
to form the corresponding hyperbolic identities.

36
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37

Relationship between Trigonometric and Hyperbolic Functions
From our previous work on complex numbers, we know that:

el® =cos +jsinf

38

and €19 = cos —jsinf
Adding these two results together, we have
el +ei0 =
2cosf
9 4 gie
So that, cosf = 9__.2_6_

A eX +e¥ | .
which is of the form ——=——, with x replaced by (j9)

2

39

cosh jé

Here, then, is our first relationship.
cos § = cosh jf
Make a note of that for the moment: then on to frame 40.

40

If we return to our two original statements

el® =cos +jsin 6

€19 = cos 6 —jsin @
and this time subtract, we get a similar kind of result
jo o =

e —e PP PPN

i

So that, jsinf = 9——2"
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42

sinh jo

So, sinh j@ =j sin 8
Make a note of that also.

So far, we have two important results: 43

(i) cosh i@ =cosd
(ii) sinhj# =jsind

Now if we substitute 8 = jx in the first of these results, we have
cos jx = cosh(jx)
= cosh(—x)

" cosjx =coshx [since cosh(-x) = cosh x]
Writing this in reverse order, gives
coshx =cosjx Another result to note.

| Now do exactly the same with the second result above, i.e. put 6 = jx
in the relationship j sin @ = sinh j6 and simplify the result. What do you get?

44

jsinhx = sinﬂ

For we have: j sin § = sinh j0

j sin jx =sinh(j* x)
= sinh(—x)
=-sinhx  [since sinh(—x)=-sinhx]
Finally, divide both sides by j, and we have
sin jx = j sinh x

Now on to the next frame.
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45 Now let us collect together the results we have established. They are
so nearly alike, that we must distinguish between them.

sin jx =j sinh x sinh jx =jsinx

cos jx = cosh x cosh jx = cos x

and, by division, we can also obtain

‘Eljxﬂtanhx tanh jx =j tan x

Copy the complete table into your record book for future use.

46

Here is one application of these results:

Example 1. Find an expansion for sin(x + jy).
Now we know that

sin(A +B) =sin Acos B+cos Asin B

" sin(x +jy) =sinx cosjy + cos x sin jy
so using the results we have listed, we can replace
COSJY DY i
and SIN jY DY oo,

47 cosjy =coshy | sinjy=jsinhy

So that . ) ) o
sin(x +jy) =sinx cos jy + cosx sin jy

becomes sin(x + jy)=sinx coshy +j cos x sinh y

Note: sin(x +ijy) is a function of the angle (x + jy), which is, of course,
a complex quantity. In this case, (x +jy) is referred to as a Complex
Variable and you will most likely deal with this topic at a later stage of
your course.

Meanwhile, here is just one example for you to work through.

Find an expansion for cos(x — jy).

Then check with frame 48.

95




Hyperbolic Functions

43

cos(x —j¥)=cosx coshy +j sin x sinh y

Here is the working:
cos{A— B)=cos A cos B +sin Asin B
" cos{x —jy)=cosx cosjy +sinx sinjy
But cosjy =coshy
and sin jy =jsinhy

. cos(x —jy) =cosx coshy +jsinx sinh y

‘ 49

All that now remains is the test exercise, but before working through
it, look through your notes, or revise any parts of the programme on
which you are not perfectly clear.

Then, when you are ready, turn on to the next frame.
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, 50 Test Exercise — Il

1

. If L=2Csinh %, find L when H= 63 and C = 50.

CIfv?r =18 Ltanh—6'—5g, find v whend =40 and L = 315.

. On the same axes, draw sketch graphs of (i) ¥ = sinh x, (ii) y =coshx,
(iii) y = tanh x.

1 +sinh 2A + cosh 2A

- Simplify R 3A —cosh 2A
. Calculate from first principles, the value of
() sinh'1-532 (ii) cosh™*1-25
. If tanh x =%, find e** and hence evaluate x.
. The curve assumed by a heavy chain or cable is
y=C cosh%

If C = 50, calculate (i) the value of y when x =109,
(ii) the value of x when y =75.

1

. Obtain the expansion of sin(x — jy) in terms of the trigonometric and.,
hyperbolic functions of x and y.
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Further Problems — III

1.

2.

10.

11,

12.

. Prove that tanh‘l{

Prove that cosh 2x = 1 + 2 sinh?x.

Express cosh 2x and sinh 2x in exponential form and hence solve,
for real values of x, the equation

2 cosh 2x ~sinh 2x =2

. If sinh x = tan y, show that x = In(sec y + tan »).

. Ifa=ccoshx and b = ¢ sinh x, prove that

(@ +b) e =q2~p?

. Evaluate (i) tanh™! 0.75, (ii) cosh™ 2.

x?—1
x2+1

1.
)—lnx.

. Express (i) cosh 1—23— and (ii) sinh %—J in the forma + jb, giving a

and b to 4 significant figures.

. Prove that (i) sinh(x + y) = sinh x cosh y + cosh x sinh y

(i) cosh(x +y) = cosh x cosh y + sinh x sinh y
Hence prove that
tanh x + tanh y

tanh(x +y) = 1 + tanh x tanh y

. Show that the co-ordinates of any point on the hyperbola

x2 2

2?2 p?
Solve for real values of x
3 cosh 2x =3 +sinh 2x

1 +tanh x
Prove that —————= = 2%
rove tha 1 —tanhx ¢

2

t 1+¢
772 and coshx = =2 Hence

It # = tanh % prove that sinh x =

solve the equation
7 sinh x + 20 cosh x = 24

-2 = 1can be represented in the form x = ¢ cosh u,y =bsinhu.
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13.

14.

15.

16.

17.

18.

19.

20.

_ i
Ifx=In ’tan{4

+%}, find e* and €, and hence show that

sinhx =tan@.

Given that sinh 'x = ln{x +/(x?+1) }, determine sinh ' (2 +j) in
the forma + jb.

X

If tan{2

}= tan A tanh B, prove that

tan x = sin 2A sinh 2B )
1 + cos 2A cosh 2B

Prove that sinh 36 = 3 sinh 6 + 4 sinh>4.

+iv = tang ! (e? tib _cosh
Ifx +ijy ta.n b(e ), show that tan 2x Snh 2 and that
_ sin
tanh 2y = cosha
IfA =4 w ,, calculate X whena = 0-215and ¢ = 5.
2 | cosh at — cosat
2 2
1] X" —a . E
Prove that tanh {x2 e } In i

Given that sinh'x =In{x +v/(x? + 1)}, show that, for small values

of x
’ x3  3x5

spely A 42
sinh ' x £ x TR
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1 Determinants
You are quite familiar with the method of solving a pair of simultaneous
equations by elimination.

e.g. To solve 2x+3y+2=0 ... (i)
3x+4p+6=0 ... (ii)

we could first find the value of x by gliminating y. To do this, of course,
we should multiply (i) by 4 and (ii) by 3 to make the coefficient of y the
same in each equation.

So 8x+12y+ 8=0
9x +12y+18=0

Then, by subtraction, we get x + 10 = 0, i.e. x =—10. By substituting back
in either equation, we then obtain y = 6.

So finally, x=-10, y=6

That was trivial. You have done similar ones many times before. In just
the same way, if

ax+bhyy+d,=0 ... (i)
ax thyy+d, =0 ... (ii)

then to eliminate y we make the coefficients of y in the two equations
identical by multiplying (1) by .cc.ovvvveeveennen. and (i) bY «eorreirereiennen,

2 (i) by b, and (ii) by b,

Correct, of course. So the equations
ayx+hyy+d, =0
a)x tbyy+d, =0
become aibyx +b1byy +bydi =0
abyx + bibyy +byd, =0

Subtracting, we get
(@1by —asb1)x + bydy —b1d, =0

so that (albz—a2b1)x=b1d2—-b2d1
Then X = e
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x= bid, —bady
a,bz —da, bl

In practice, this result can give a finite value for x only if the
denominator is not zero. That is, the equations
alx+b1y +d1 =0

ayx +byy+d, =0
give a finite value for x provided that (a1, —a,b1) # 0.

Consider these equations:
Ax+2y—5=0

4x +3y—7=0
In this case, a; =3, by =2, a; =4, b, =3
ayb, —asb; =33 —42
=9 -8~=1
This is not zero, so there {will } be a finite value of x.
will not

S

, 4

The expression a,b, —a,b, is therefore an important one in the solu-
tion of simultaneous equations. We have a shorthand notation for this.

a; by
a1b2 _a2b1 =
’ a, by
a, b .
For to represent @, b, —a,b; then we must multiply the terms
a; Dy

diagonally to form the product terms in the expansion: we multiply

a b
! and then subtract the product e N and —/
2 as
3 7] 13 7
e.g. = - =32-57=6-35=-29
52 2] 15
6 5| |6 )
So = - T oo
1 2 20 |1
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6 5
=12-5= 7
2
oOoDDDO0o0Oo00O0o00C0O0OD0000000DD000DB00D0D0000
@ . . .
is called a determinant of the second order (since it has two
a3 D2

rows and two columns) and represents a,b, —a,b;. You can easily
remember this as +~a——"".

Just for practice, evaluate the following determinants:

2 1 ‘

® (i) G

6 3"

Finish all three: then turn on to frame 6.

4
s 3¢

6 ®

(i)

=43-52=12-10=2]

=73-64=21-24=

N N 3 »n B
—_ W AW N

it =2(-3)—41=—-6—-4=|-10
i) | |=23)

0000000000000 C0OD0N0OND00DDD0D00N0000DDDO00o00

Now, in solving the equations |a;x +by +d; =0
ax +b,y+d, =0

byd, —byd,

we found that x =
arb, —a,by

and the numerator and the denominator

can each be written as a determinant.

bd, —b2d1 T 5 arby, —a3b1 = s
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by 4y % by
by dy| |a; by
If we eliminate x from the original equations and find an expression
for y, we obtain (ayds —ayd,
arby —asby

So, for any pair of simultaneous equations
(l1X+b1y+d1 =0
a,x + by +d, =0

b1d2 - b2d1
alb—z —a2b1

_aldz —ayd;

we have x= —_—
a1by —azby

and y =

Each of these numerators and denominators can be expressed as a
determinant.

So, X T iieiirereeerrienes and ¥ = e
by dy ay dy
b, d, a, d,
and y=-—
a, bl Y ay bl
a, by a, b,
. X 1 d ¥ -1
s = an =
bl dl a bl a, d; ay bl
b, d, a,; by a, d a, b,
We can combine these results, thus:
x A 1
by di a, d; a, b,
by, d, a, dy a, b,

Make a note of these results and then turn on to the next frame.
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So if ax+byy+d, =0
ax thy+d, =0
x -y 1
Th = =
en by dy| |ay di| |a by
b, d, a, d, ay b,

Each variable is divided by a determinant. Let us see how we can get
them from the original equations.

(i) Consider 3 X

1 1

. Let us denote the determinant in the denominator

by dy
by d;
by d,

To form A, from the given equations, omit the x-terms and write down
the coefficients and constant terms in the order in which they stand. |

by Ay, e A =

a1x+b1y+d1=0 . bl dl
gives
a)x +byy+d, =0 b, d,
ay d
(ii) Similarly for , let A, = o
@G @ a, d,
ay d,

To form A, from the given equations, omit the y-terms and write down
the coefficients and constant terms in the order in which they stand.

@ x +byy+di =0 ay d,

gives A, =

a2x+b7_y +d2=0 a, d2

(iii) For the expression , denote the determinant by A,.

ay 1

a; b,
To form A, from the given equations, omit the constant terms and write
down the coefficients in the order in which they stand

ax +byy+di=0 a1 by
gives |
a2x+b7_y+d2=0 a, b2
. ;x.. =——y = —1
Note finally that Al__éz__ﬁ

Now let us do some examples, so on to frame 10.
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Example 1. To solve the equations | 5x +2y+19=0 10
3x+4y+17=0
The key to the method is
.. 1
JAVRAY SRV

To find Ay, omit the constant terms

2
4 =54-32=20-6=14

5
0]
L ho=14 ... ()

Now, to find A, omit the x-terms.

Dy =42 1

2 19 3
| for N = 17 =34-76=-42 ... (i)
Similarly, to find A,, omit the y-terms
| 519
AP 3 17 =85—-57=28 ... (ii)
Substituting the values of A, A;, A in the key, we get
x .1
—-42 28 14

Now for another example.
Example 2. Solve by determinants { 2x +3y—-14=0

3x-2y+ 5=0
First of all, write down the key:

1 =:')_). =.i
Ay Dy Dy
(Note that the terms are alternately positive and negative.)
Th Do 2 3l 4o9=13 @
en = =—4-9=-13 ... (i
: 3 -2

Now you find A; and A, in the same way.
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Al =_13; A2 =-52

For we have 2x +3y—-14=0
3x-2y+ 5=0
3 —-14] |3 —14
. A] = = —
-2 5 S11=2
=15-28=~13. .. A, =-13
2 —-14| 12 —-14
A2 - = -
S 5 3
=10-(—42)=52 . A, =52
- 1
So that XL
o tha A D, B

and A =-13; A, =52 Do =-13 |

IV E ‘
5, =13 1 x=1
Az=—5—2= =4
Ay —13 A
Do not forget the key x_w_1
' A Dy D

with alternate plus and minus signs.
Make a note of this in your record book.

14 Here is another one: do it on your own.
Example 3. Solve by determinants
4x--3y+20=0
3x+2y—- 2=0

First of all, write down the key.
Then off you go: find Ay, Ay 2nd A, and hence determine the values
of x and y.

| When you have finished, turn on to frame 15.
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x =-2; y=4J

Here is the working in detail:

4x -3y +20=0 X ____’1_:_1_
3x+2y— 2=0 AV AS S AT
4 -3
= =8—-(-9)=8+9=17
e N
-3 20
N = =6—40=-34
2 =2
4 20
Ny = l ‘=—8—60=—68
3 2
A R B -
x—AO 7 2 x=-2
-—é2_=_—i8=— =
Y R 17 y=4

0000O0O0CDO0QOON0OND0O0000000NDN00000Onoooon
Now, by way of revision, complete the following:

15 6]

@) '7 g
NER1H

(ii) 3 4 e
s a d —_
(iii) |
@) |7 e o

ros

Here are the results. You must have got them correct.

(i) 20—42=-22
(i) 20— 6 =—26
(iii) ac - bd
(iv) ps—rq

For the next section of the work, turn on to frame 17.
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Determinants of the third order
17 A determinant of the third order will contain 3 rows and 3 columns, thus:
ay bl Cy

a, b, o

as bs ¢
Each element in the determinant is associated with its MINOR, which
is found by omitting the row and column containing the element concerned.

| e.g the minor of a, is obtained ‘4---4---------

b3 C3

I ) " +
tay 1 by oeq

the minor of b, is obtained - -- 4o

as €3 2y ‘ by ¢y
: ¢ '
as 'b3' C3
,,____:,_{:?:k
. . . vay by ey
the minor of ¢, is obtained *--------- oo
as bs a, by ¢y
I
. . . ' i
So, in the same way, the minor of @, iS .....ccceecn.e.. as bs L €3
—_— - = —
. b
Minor of a, is
by ¢;3

since, to find the minor of a,, we simply ignore the row and column con-
taining a,, i.e.

5“15 by

Pt S

[ 2

HECITR Y

» a3t by ¢3 Slmﬂarly, the minor of b3 1S ....cceeeeennnns
19 SRR

Minor of b5 =
a, ¢,

i.e. omit the row and column containing b5 .

| v ay by, 3! Now on to frame 20.
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Evaluation of a third order determinant 2 0
To expand a determinant of the third order, we can write down each

element along the top row, multiply it by its minor and give the terms

a plus or minus sign alternately.

a by o
5 b e _ai|by o —bila, ¢yl tcila, by
2 D €| =

b3 C3 a3 03, as b3

Then, of course, we already know how to expand a determinant of the

second order by multiplying diagonally, +\ -

Example 1. 1 3 2 ‘
1‘5 7'—3‘4 7 +2]4 sl
45 7=
4 8 2 8 2 4
2 4 8
=1(5.8—-4.7)~3(4.8—2.7) + 244~ 25)
=1(40—-28)— 3(32— 14) + 2(16 - 10)
=1(12) - 3(18) + 2(6)
=12-54+12=-30
I — — S S

Here is another. 21

Example 2. 325
3'6 7‘—2,4 71+51\4 6|

4 6 7=
9 2 22 29
292

=3(12-63)- 28— 14) + 5(36-12)
=3(-51)-2(-6) + 5(24) )
=—153+12+120=-21
Now here is one for you to do.
Example 3. Evaluate 275
4 6 3
8 91

Expand along the top row, multiply each element by its minor, and
assign alternate + and — signs to the products.

When you are ready, move on to frame 22.
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2 2 Result 38

For 2175
2(6 3|—7!4 3|+5(4 6
4 6 3|=
9 1 8 1 8 9
8 91

2(6 —27)— 7(4—24) + 5(36 — 48)
=2(-21)— 7(=20) + 5(-12)
=-42+140- 60 =38

We obtained the result above by expanding along the top row of the
given determinant. If we expand down the first column in the same way,
still assigning alternate + and — signs to the products, we get

275
75
|
6 3
8 91

+8

216 3‘—4.7 5
91 9 1

206 —27)—4(7—45) + 8(21 — 30)
=2(=21)— 4(-38) + 8(-9) |
=—42+152-72=38 |
which is the same result as that which we obtained before.

23 We can, if we wish, expand along any row or column in the same way,
multiplying each element by its minor, so long as we assign to each
product the appropriate + or— sign. The appropriate ‘place signs’ are

given by - — 4
— - 4 =
+— + - +
— -t =
etc., etc.
The key element (in the top left-hand corner) is always + . The others are

then alternately + or —, as you proceed along any row or down any column.
So in the determinant 13 7

5609
4 2 8
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since in a third order determinant, the ‘place signs’ are

tor Remember that the top left-hand element
-t - always has a + place sign. The others
+ — + follow from it.
Now consider this one 37 2
6 8 4
1 95
If we expand down the middle column, we get
372
-7/6 4]+8|3 2]—-9|3 2
6 8 4=
15 15 6 4
1 95

Finish it off. Then move on.

Result 2 5

for ~-716 4 +8‘3 21—9|3 2]
115 15 lé6 4
=—7(30—4) + 8(15—2)— 9(12— 12)
=—7(26) + 8(13) — 9(0)
=—182+104=-78

So now you do this one:

Evaluate | 2 3 4| by expandingalong the bottom row.
6 1 3
5 7 2

When you have done it, turn to frame 26.
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26

Answer 119
Wehave |2 3 4| andremember + - +
1 - + -
7 2 + - +
=Sl3 4]—7'2 41+212 3’
1 3 6 3 6 1

= 5(9—4)—7(6 - 24) + 2(2— 18)
= 5(5) - 7(~18) + 2(-16)
=25+126-32=119

One more:
Evaluate |1 2 8| Dby expandingalong the middle row.
1
4 6 9
1
T oo e oo e e e e T L o T T T T T 7TJ
Result 143
For 128 —7‘2 81+ 3|1 8‘—1‘1 2‘
= 6 9 4 9 4 6
6

—~7(18 — 48) + 3(9—32) — 1(6— 8)
—7(=30) + 3(-23) — 1(~2)
=210- 69 +2=143

nEuBuliniulakniuinlnlieininliuisiuBulniapulsiepapalalngn)alspnpsNupnyapnyuin g

We have seen how we can use second order determinants to solve
simultaneous equations in 2 unknowns.

We can now extend the method to solve simultaneous equations in
3 unknowns.

So turn on to frame 28.
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Simultaneous equations in three unknowns 2 8

Consider the equations
a1x+b1y+clz +d1 =0

ayx thyytez+dy=0
azx ¥ byy tczz +d3 =0
If we find x, y and z by the elimination method, we obtain results that
can be expressed in determinant form thus:

x -y z a -1
by ¢ di ) ay; ¢ dy ) ap by dy ay by
by ¢ dy ay ¢y dy a by, d» a; by <
by ¢3 dj a3 c¢3 ds a3 by ds az by ¢

We can remember this more easily in this form:—
x.y_z_"1
JAV YA VA VARAV

where A; = the det. of the coefficients omitting the x-terms

‘ A2 = " b2 b2l k3] E2] 23 2" y-terms
A3 - Al 23 " 3 " 2 b Z-terms
DNo= " 7 > > ” > constant terms.

Notice that the signs are alternately plus and minus.
Let us work through a numerical example.

Example 1. Find the value of x from the equations
2x+3y- z— 4=0
3x+ y+2z—-13=0
x+2y—5z+11=0

. x _yv_z _—1
F t N —_— = = =—
irst the key AR, N D
To find the value of x, we use Kx =i—, i.e. we must find Ay and A,.
1 0
(i) to find Ay, omit the constant terms.
2 3 -1
211 2]—-3|3 2{—-113 1
LD =131 2)=
2 -5 1 -5 1 2
1 2 -5
=—18+51—-5=28

(ii) Now you find A, , in the same way.

114



Programme 4

29

Al =—56
for AL =[3 =1 —4 |=3(22-65) + 1(11 + 26) — 4(=5—4)
1 2 —13[=3(-43)+ 1(37) —4(-9)
2 -5 11 =—129+37+36

=-129+73=-56

x - x _—1

1 —_— = =

Bu A B 756 28
56

Note that by this method we can evaluate any one of the variables,
without necessarily finding the others. Let us do another example.

Example 2. Find y, given that
[2x+ y—5z+11=0
x— yt z— 6=0
14x+2y—3z+ 8=0
First, the key, which is ............coccoi.

30 x_ vz "L

To find y, we use .1
ZAPRAYY
Therefore, we must find A, and Ay .
The equations are (2x+ y-5z+11=0

x— y+ z— 6=0
4x+2y—3z+ 8=0
To find A, , omit the y-terms.

2 -5 11 \
| 2’1—6+51—6+11'1 1‘
A:l —6| =
? 3 gl la 8 4 -3
4 -3 8

=2(8—18) +5(8 +24) + 11(=3 — 4)
=-20+160— 77 =63

To find Ay, omit the constant terms
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31

Dy =21
for 2 1 -5
Ao =1 -1 1_2]—1 ll—lll 1\—511 —11
2 -3 4 -3 4 2
4 2 -3
=23-2)-1(3-4)-5(2+4)
=2+7-30=-21
vl 863
So we have —A—z- i A, 21
Ly=-3

The important things to remember are
(1) The key:

with alternate + and — signs.

(i) To find A, which is associated with x in this case, omit the x-terms
and form a determinant with the remaining coefficients and con-

| stant terms. Similarly for A,, A3, A .

Next frame.

Here is a short revision exercise on the work so far.

Revision Exercise
Find the following by the use of determinants.

1. x+2y—3z—- 3=0

the next frame.

2x— y— z—11=0 Find y.
3x+2y+ z+ 5=0

2. 3x—4y+2z+ 8=Ol
x+5y—3z+ 2=0 Find x and z.
Sx+3y— z+ 6=OJ

3. 2x-2y— z— 3=0
4x +5y—2z+ 3=0 Find x, y and z.
3x+4y—3z+4 7=0

When you have finished them all, check your answers with those given in
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3 3 Here are the answers:

1. y=-4
2. x=-2; z=5
3. x=2;, y=-1; z=3
If you have them all correct, turn straight on to frame 52.
If you have not got them all correct, it is well worth spending a few

minutes seeing where you may have gone astray, for one of the main
applications of determinants is in the solution of simultaneous equations.

If you made any slips, move to frame 34.

The answer to question No. 1 in the revision test was

Did you get that one right? If so, move on straight away to frame 41.
If you did not manage to get it right, let us work through it in detail.

The equations were x+2y—3z— 3=0
2x— y— z—11=0
3x+2y+ z+ 5=0

Copy them down on your paper so that we can refer to them as we go

along.
The first thing, always, is to write down the key to the solutions. In
this case:
X = - -
Ay - -

To fill in the missing terms, take each variable in turn, divide it by the
associated determinant, and include the appropriate sign.
So what do we get?

| On to frame 35.
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35

The signs go alternately + and —.
In this question, we have to find y, so we use the second and last terms
in the key.

So we have to find A, and Ap.

To find A,, we ........... et et beeetreeaetebee e e taeanereeasaraeenarteanses

36

form a determinant of the coefficients omitting those of the y-terms.

So 1 -3 -3
Ny, =12 -1 —11
3 1 5

Expanding along the top row, this gives
_1,—1 —111—(—3)]2 -11
1 5 3 5

2 =

+(—3)12 —1|
3 01

We now evaluate each of these second order determinants by the usual
process of multiplying diagonally, remembering the sign convention that

Nand /

Sowe get Ay = oiiiiiiieiiiciinine
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37

for

A, =120

Ay =1(=5+11)+3(10 + 33) - 3(2 + 3)
=6 +3(43) - 3(5)

=6+129—-15=135-15=120

LA, =120

We also have to find 4, i.e. the determinant of the coefficients omit-
ting the constant terms.

So
Ao =
1 2 -3
N =12 -1 —1
3 2 1

If we expand this along the top row, we get

Dy =

|

-1 —1'—2}2 —1‘—31
2 1 3 1

2 -1

3

2

|

Now, evaluating the second order determinants in the usual way gives

that
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40

Do =—30

for Do = 1(=1+2)~2(2+3)—3(4 +3)

= 1(1)=2(5)-3(7)
=1-10-21=-30

So Dy =—30.

=By (120

So we have ¥y . =30 4
Ly=—4

Every one is done in the same way.

Did you get No. 2 of the revision questions correct?

If so, turn straight on to frame 51.

If not, have another go at it, now that we have worked through No. 1
in detail.

When you have finished, move to frame 41.

— M

The answers to No. 2 in the revision exercise were

Did you get those correct? If so, turn on right away to frame 51. If not,
follow through the working. Here it is:

No. 2 The equations were
3x—4y +2z+8=0
x+5y—3z2+2=0
Sx+3y— z+6=0
Copy them down on to your paper.
The key to the solutions is:

X
by

Fill in the missing terms and then turn on to frame 42.
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42 N

MDAy By A

We have to find x and z. .. We shall use

X1 . =B
Ay Do Do
—Z =—_1 1 :—ﬁ
and 5 ie. z i

So we must find Ay, Az and 4.

(i) To find A, form the determinant of coefficients omitting those of
the x-terms.

A =
-4 2 8

Ay =[5 32

3 -16

Now expand along the top row.
_—41—3 21—2 ‘ 52
-1 6 36

+8

5 —31

Finish it off: then on to frame 44.
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Ay =48 44

for Ay =—4(=18 +2)— 230 — 6) + 8(=5 + 9)
=—4(-16) - 2(24) + 8(4)
=64—48+32=96—48=48

LA, =48

(i) To find As, form the determinant of coefficients omitting the z-terms.

LDy =

45

Dy = oo,
3|5 21+4[1 2[+8]1 5|
Ay =
36 56 53

Now evaluate the second order determinants and finish it off. So that

On to frame 47.

122



Programme 4

47 Ay =—120

since As = 3(30- 6) +4(6 — 10) + 8(3— 25)
= 3(24) + 4(—4) + 8(-22)
=72-16- 176.
=72-192=-120
© By =—120

(iii) Now we want to find 4.

Do =1...
3 -4 2
Ao =11 5 -3
5 3 -1

Now expand this along the top row as we have done before. Then
evaluate the second order determinants which will appear and so find the
value of Ag.

Work it right through: so that
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Ny =24
for
_3‘5 =3]+4|1 -3[+2]1 5\
3 -1 5 -1 53
=3(-5+9)+4(-1 +15) + 2(3 - 25)
=3(4) +4(14) + 2(-22)
=12+56—44
=68—-44=24
LoDy =24
So we have: Ay =48, A3 =120, Dy =24
Also we know that
Yy ALY
Do and z 2o
Sothat x=..........ccecvieennn. and Z= e

49

_(C120)_ [
2=y =5|2=5 |

Well, there you are. The method is the same every time — but take
care not to make a slip with the signs.

Now what about question No. 3 in the revision exercise. Did you get
that right? If so, move on straight away to frame 52.
If not, have another go at it. Here are the equations again: copy them
down and then find x, y and z.
2X—=2y— z—3=0
4x +5y—2z+3=0
3x+4y—3z+7=0

, When you have finished this one, turn on to the next frame and check
our results.

l— y

’__
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-2 -1 -3
A = -2 3|=54
4 -3 7
-1 -3
by, =| 4 =2 =27
-3 7
- -3
Oy = 3 |= 81
4 7
-2 -1
Ay = -2 |= 27
4 -3
x 1 VUL
M TR TR, T
x=2
N - D27
A Dy Ml v
y ==
Z —_ 1 - A3= 81 -
&R TR
z=-3

All correct now?

On to frame 52 then for the next section of the work.
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Consistency of a set of equations 5 2
Let us consider the following three equations in two unknowns.
3x— y—4=0 ()
2x+3y—-8=0 (ii)
x— y—4=0 (iii)

If we solve equations (ii) and (iii) in the usual way, we find that x = 1 and
y=2.

If we now substitute these values in the left-hand side of (i), we obtain
3x —y—4=3-2-4=-3(and not 0 as the equation states).

The solutions of (ii) and (iii) do not satisfy (i) and the three given
equations do not have a common solution. They are thus not consistent.
There are no values of x and y which satisfy all three equations.

If equations are consistent, they have a ......c.ccocceeee reeencncnann.

53

common solution

Let us now consider the three equations

3x+ y—5=0 @)
2x +3y—-8=0 (i)
x—2y+3=0 (iii)

The solutions of (ii) and (iii) are, as before, x = 1 and y = 2. Substituting
these in (i) gives

3x+y—-5=3+2-5=0

i.e. all three equations have the common solution x = 1, y = 2 and the
equations are said tobe C........eccvveennns
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consistent

Now we will take the general case
ax +bh,y+d, =0
ax +b,ytd,=0
azx +byy+d;=0

If we solve equations (ii) and (iii),
ie. ayx +b,y+d, =0
{ asx +byy+d; =0

x vy _ 1
we get —_ = =—
& A D, D
, b, d a, d
where Ny = : 2, 2 = 2 2, JAY
by dj az dj
AI A2
so that x=— and y=——
Do YT b
If these results also satisfy equation (i), then
Z\x —A2
—= 4 —= 4 =
1 Ao bl Ao dl
ie. ay- Dy —by- By +dir g =0
b, d a, d a
ie. /3] 2 |- 1 : : +d1 ?
b3 d3 as d3 (l3
ay bl d1
ie. a, by d,| =0
ay; by dj

b,

bs

@)
(ii)
(iii)

=0

which is therefore the condition that the three given equations are

consistent.

So three simultaneous equations in two unknowns are consistent if the

determinant of coefficients is ..........cccoceeeeeee.
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zero

Example 1. Test for consistency 2x+ y— 5=0

x+4y+ 1=0
3x— y—10=0
For the equations to be consistent 2 1 -5

1 4 1 must be zero.

3 -1 -10
2 1 -5
=2| 4 1—-11 1j-511 4
1 4 1
-1 —-10 3 -10 3 -1
3 -1 -10

=2(-40 +1)— 1(-10-3) — 5(-1-12)
=2(-39)~ (-13)— 5(-13)
=-78+13+65=-78+78=0
The given equations therefore...............c.... consistent.
(are/are not)

are
Example 2. Find the value of k for which the equations are consistent.
3x+ y+ 2=0 3 1 2
4x +2y— k=0 For comsistency, |4, 5 _l=g
2x— y+3k=0 2 -1 3k
L3 2 k|-1|4 k] +2|4 2]
. ‘—1 3k\ \2 skl 12 —1l—

3(6k=k)—~1(12k +2k)+2(-4—-4)=0
L 15k—14k—~16=0 . k—-16=0 . k=16
Now one for you, done in just the same way.
Example 3. Given x+((k+l)y+1=0
2kx + 5y —3=0
3x + 7y +1=0
Find the values of k for which the equations are consistent.

56
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97 k=2 or 5
The condition for consistency is that
1 k+1 1
2% 5 -31=0
3 7 1
L1S 3k + D)2k —3]+1]2% 5’_
7 11 301 3 7]

G+2D)—-(k+1)(Rk+9)+(14k—15)=0
26—2k2—11k—9+14k—15=0
—2k*+3k+2=0
L2kE=3k—2=0 L (k+1)(k—-2)=0
Lk=2or k=3
Finally, one more for you to do.
x+ y— k=0
kx—3y+11=0
x+4y—- 8=0

Example 4.
Find the values of k for consistency when

58 k=1 or —15

For 1 1 -k
-3 11 (=0
2 4 -8

1]-3 11‘—1]k 11 —k”k —3}_
’4 -8l |2 -8 2 4l
L (24— 44)— (-8k—22) — k(4k + 6) =0
L =20+ 8k+22-4k*-6k=0
—4k* + 2k +2=0
L2 -k-1=0 L Qk+1(k-1)=0

.. -1
. k=1 or k 3
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Properties of determinants 5 9
Expanding a determinant in which the elements are large numbers can be

a very tedious affair. It is possible, however, by knowing something of the
properties of determinants, to simplify the working. So here are some of

the main properties. Make a note of them in your record book for future
reference.

1. The value of a determinant remains unchanged if rows are changed to
columns and columns to rows.

a, a,

bl b2

a, by

|as by
2. If two rows {or two columns) are interchanged, the sign of the
determinant is changed.

a, b, —lay by

a, by a, b,

3. If two rows (or two columns ) are identical, the value of the deter-
minant is zero.

a 4
=0

ay 4,

4. If the elements of any one row (or column) are all multiplied by a
common factor, the determinant is multiplied by that factor.

kay kb, k

a, by

a; by

a, b,

5. If the elements of any one row {or column) are increased (or decreased)
by equal multiples of the corresponding elements of any other row (or
column), the value of the determinant is unchanged.

ll1+kb1 bl
a, +kb, b,

a, by

a, b,

00000000 DO0OO00000000000L0000UOoOUoCOLODOoOoDB

NOTE: The properties stated above are general and apply not only to
second order determinants, but to determinants of any order.

Turn on now to the next frame for one or two examples.
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60 Example 1. Evaluate ,

427 429
369 371

Of course, we could evaluate this by the usual method
(427) (371) — (369) (429)

which is rather deadly! On the other hand, we could apply our knowledge
of the properties of determinants, thus:

427
369
427
B ‘369

427 429]
‘369 371

. \ 58
369

429 —427
371 —369
2
|
0

|

l (Rule 5)

(Rule 5)

=(58)(2)~(0) = 116

Naturally, the more zero elements we can arrange, the better.

For another example, move to frame 61.

Example 2. Evaluate 1 2 2
61 4 3 5 column 2 minus column 3 will
give us one zero
4 2 7
1 0 2
= 4 -2 5 column 3 minus twice (column
1) will give another zero
4 =5 7
0 O
= 4 -2 -3 Now expand along the top row
=5 -1
-2 =3 We could take a factor (—1) from
= 5 - the top row and another factor
(1) from the bottom row.
= DED|2 3
51
= 1(2-15) = -13

Next frame.
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Example 3. Evaluate 4 22 62
2 42
224

You do that one, but by way of practice, apply as many of the listed
properties as possible. It is quite fun.

When you have finished it, turn on to frame 63.

The answer is , but what we are more interested in is the method 63

of applying the properties, so follow it through. This is one way of doing
it; not the only way by any means.

4 22 We can take out a factor 2 from
2 4 2| -eachrow,givinga factor 23, i.e.
8 outside the determinant.
2 2 4
812 11
- 1 21 column 2 minus column 3 will
give one zero in the top row.
1 12
812 01 column 1 minus twice (column
= 1 11 3) will give another zero in the
1 -1 2 same row.
810 01 Expanding along the top row will
= -1 11 now reduce this to a second order
3 -1 2 determinant.
81—-1 1
= Now row 2 + row 1
-3 -1
B 8-1 1
-4 0
- 8(—4) = 32
4 0 —
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64 Here is another type of problem. x 5 3

Example 4. Solve the equation s x+1 1 l=o0

-3 4 x-2

In this type of question, we try to establish common factors wherever
possible. For example, if we add row 2 and row 3 to row 1, we get

(x+2) (x+2) (xt+2)

S x+1 1 =0
-3 —4 x—2

Taking out the common factor (x + 2) gives:

x+2)] 1 1 1

5 x+1 1 |=0
-3 -4 x-2
Now if we take column 1 from column 2 and also from column 3, what

do we get?
When you have done it, move on to the next frame.

6 5 We now have x+2)] 1 0 0
5 x—4 —4 |=0
-3 -1 .x+1
Expanding along the top row, reduces this to a second order determinant.
x+2)|x—4 —4
-1 x+1
If we now multiply out the determinant, we get
x+2)[x—4D(x+1)—4] =0
L (x+2)(x*=3x—-8)=0
L x+2=0 or x*-3x—-8=0

which finally gives x=-2 or x =3 i;/41

Finally, here is one for you to do on your own.

Example 5. Solve the equation

5 x 3
x+2 2 1|=0
-3 2 X

Check your working with that given in the next frame.
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Result:
x=—4 or 1x+/6
Here is one way of doing the problem:
5 x 3
x+2 2 1 =0 Adding row 2 and row 3
to row 1, gives
-3 2 x

xt4 x+4 xt+4

-3 2 X
(x+4) 1 1 1
x+2 2 1 =0
-3 2 X
x+4) O 0 1
x+1 1 1 =

-x—-3 2-x x

x+4)] x+1 1

| =0
-x—-3 2-x

(x+4)’ x 1

X

L (x+4)(x—x2+5)=0
Lx+4=0 or x2-2x—-5=0

which gives x=—4 or x=1%+/6

x+2 2 1 |=0

Take out the common
factor (x +4)

Take column 3 from
column 1 and from
column 2

This now reduces to
second order

Subtract column 2 from
column 1

We now finish it off

0000000000000 00000000000000000D00000O0n

You have now reached the end of this programme on determinants
except for the Test Exercise which follows in frame 67. Before you work
through it, brush up any parts of the work about which you are at all
uncertain. If you have worked steadily through the programme, you

should have no difficulty with the exercise.
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67 Test Exercise — IV

Answer all the questions. Take your time and work carefully. There is
no extra credit for speed.
Off you go then. They are all quite straightforward.

DoOgoUuonNobOOoOoO0o0CcoOnNODoDUOCO0OoO0oOoOoODCcCoo0ooOnUuaon

1. Evaluate (a1 (b)
2

1

DO et
i )

1 23
312
2 31

2. By determinants, find the value of x, given
2x+3y—~ z—-13=0
x—2y+2z+ 3=0
3x+ y+ z—-10=0

3. Use determinants to solve completely
x—3y+4z-5=0
22x+ yt+ z—-3=0
4x+3y+5z—-1=0

4. Find the values of k for which the following equations are consistent
3x + 5Sy+ k=0
2x + y— 5=0
(k+1)x +2y—-10=0

5. Solve the equation

+1 -5 -6
-1 X 2 1=0
-3 2 x+1

Now you can continue with the next programme.

0000000000000 D00000000000gdouUuogQUOooogaoag
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Further Problems — IV

1.

Evaluate @3 5 7 @)1 428 86l
11 9 13 2 535 984

15 17 19 3 642 1107

. Evaluate @l25 3 35 (i)} 155 226 81
16 10 -18 77 112 39

34 6 38 74 111 37

. Solve by determinants

dx— Sy +7z=—14
9x +2y +3z= 47
x— y—5z= 11

. Use determinants to solve the equations

4x -3y +2z=-7
6x +2y—3z=33
2x—4y— z=-3

. Solve by determinants

3x+2y—2z=16
4x +3y +3z= 2
2x— y+ z=-1

. Find the values of A for which the following equations are consistent

Sx +(A+1)y—5=0
A-Dx + 7Ty+5=0
3x + Sy+1=0

. Determine the values of k for which the following equations have

solutions other thanx =y =0
dx—(k—=2)y— 5=0
2x  + y-10=0
(k+1)x - 4y— 9=0
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8. (a) Find the values of k which satisfy the equation
k10

1 k 1[=0

01k

(b) Factorise I 1 1

| 9. Solve the equation ) 3

2 x+3 6 |=0
3 4 x+6

10. Find the values of x that satisfy the equation
x 3+x 2+x

3 -3 -1 |=0
2 2 2
11. Express 1 1 1
aZ b2 C2

(b+c) (c+a)’ (@+b)
as a product of linear factors.
12. A resistive network gives the following equations.
203 =) +5Gs—i) =24
(la=i3)+ 2+ (,—0)= O
5(iy —i3) + 20 —ix) ti;= 6

Simplify the equations and use determinants to find the value of i,
correct to two significant figures.

13. Show that (@ +b + ¢) is a factor of the determinant
btc a a°
cta b b®

a+b ¢

and express the determinant as a product of five factors.
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14. Find values of k for which the following equations are consistent.
x+(l+kpy+ 1=0
2+kx + 5 - 10=0
x + 7y + 9=0
15. Express | 1+x* yz 1| asa product of four linear factors.
1+y?% zx 1
1+z2 xy 1

16. Solve the equation | x+1 x+2 3
2 x+3 x+1|=0
x+3 1 x+2

17. If x, y, z, satisfy the equations
GM, My —Myy =W
“Mox +2Myy +(M; —M,)z =0
My + (GM; + M)z =0
evaluate x in terms of W, M; and M, .
18. Three currents, iy, i,, i3, in a network are related by the following
equations. 2 + 3iy +8i3 =30
6iy — iy +2is= 4
3ip — 12, +8i3= 0
By the use of determinants, find the value of iy and hence solve com-
pletely the three equations.

1I9. If k(x—a)+2x—-z=0
ky—-a)+2y—z=0
k(z—a)—-x~y+2z=0

show that x = M

k*+4k +2

i}

It

20. Find the angles between ¢ = 0 and 6 = m that satisfy the equation

1 +sin%9 cos?f 4 sin 26
sin%@ 1+ cos?8 4sin28 | =0
sin%6 cos?4 1 +4sin 26
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1 Introduction: scalar and vector quantities
Physical quantities can be divided into two main groups, scalar quantities
and vector quantities.
(a) A scalar quantity is one that is defined completely by a single number
with appropriate units, e.g. length, area, volume, mass, time, etc. Once the
units are stated, the quantity is denoted entirely by its size or magnitude.
(b) A vector quantity is defined completely when we know not only its
magnitude (with units) but also the direction in which it operates, e.g.
force, velocity, acceleration, A vecte: quantity necessarily involves
direction as well as magnitude.

So, (i) a speed of 10 km/h is a scalar quantity, but
1 (ii) a velocity of ‘10 km/h due North’is a ...........coce.e. quantity.

vector

A force F acting at a point P is a vector quantity, since to define it

/ completely we must give
'/ . P < (i) its magnitude, and also
47 F oy
;] (i) S oo
I a——"
o=
direction
So that:
(i) A temperature of 100°Cis @ ....ocoveerenncn. quantity.
(ii)) An acceleration of 9-8 m/s® vertically downwardsis a ....................
quantity.

(iii) The weight of a 7Tkgmassisa ..o quantity.
(iv) The sum of £500isa ..cccvveuercnrannene quantity.
(v) A north-easterly wind of 20 knotsisa .......cccccoee quantity.
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(i) scalar, (ii) vector, (iii) vector, (iv) scalar, (v) vector

Since, in (ii), (iii) and (v), the complete description of the quantity
includes not only its magnitude, but also its .........c..........

direction
Vector representation

A vector quantity can be represented graphically by a line, drawn so that:
(i) the length of the line denotes the magnitude of the quantity,
according to some stated vector scale,
(ii) the direction of the line denotes the direction in which the vector

quantity acts. The sense of the direction is indicated by an arrow
head.

e.g. A horizontal force of 35 N acting to the right, would be indicated by
a ling ~—————3——— and if the chosen vector scale were 1 cm =10 N,
the line would be .................... cm long.

y~

The vector quantity AB is referred
to as o

AB or a
The magnitude of the vector
quantity is written |AB| , or] @],
or simply AB, or z (i.e. without
the bar over it).

Note that BA would represent a vector quantity of the same magnitude
but with opposite sense.

A

On to frame 7.
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7 Two equal vectors
If two vectors, @ and b, are said to be
equal, they have the same magnitude
g b and the same direction.

Ifa=b,then (i) a =b (magnitudes equal)
(i) the direction of 7 = direction of b, i.e. the two vectors
are parallel and in the same sense.
Similarly, if two vectors a and B are such that p =—2, what can we say
about (i) their magnitudes,
(ii) their directions?

(i) Magnitudes are equal.
(ii) The vectors are parallel but opposite in sense.

ie. if b =—a, then

9 Types of vectors
(i) A position vector AB occurs when the point A is fixed.
(ii) A line vector is such that it can slide along its line of action, e.g. a
mechanical force acting on a body.
(iii) A free vector is not restricted in any way. It is completely defined
by its magnitude and direction and can be drawn as any one of a set
of equal-length parallel lines.

Most of the vectors we shall consider will be free vectors.

So on now to frame 10.
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Addition of vectors 10

The sum of two vectors, AB and BC, is defined as the single or equivalent
or resultant vector AC

ie. A

+BC=AC
or a +

c

ST

To find the sum of two vectors @ and b, then, we draw them as a chain,
starting the second where the first ends: the sum ¢ is then given by the
single vector joining the start of the first to the end of the second.

e.g. If p =a force of 40 N, acting in the direction due East
g=aforce of 30N, » » » » due North

i . .
then the magnitude of the vector sum r of these two forces will be ...........

r=50N 11

for Pl rr=p+q?
- // .
e q = 1600 + 900 = 2500
-~
o7 r=+/2500= 50N
p

(i) Draw the vectors as a chain.

(ii) Then:
D a+b=AC
AC+¢=AD
L a+b+i=AD
AD +d = AE

La+b+tc+d=AE
i.e. the sum of all vectors, @, b, ¢, d, is given by the single vector joining
the start of the first to the end of the last — in this case, AE. This follows
directly from our previous definition of the sum of two vectors.

R

Q T Similarly,
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12 _

Now suppose that in another case, we draw the vector diagram to find the
sum of @, b, ¢,d, , and discover that the resulting diagram is, in fact, a
closed figure.

What is the sum of the vectors
a,b,c, d, e, in this case?

Think carefully and when you have
decided, move on to frame 13.

13

Sum of the vectors =0

For we said in the previous case, that the vector sum was given by the
single equivalent vector joining the beginning of the first vector to the
end of the last.

But, if the vector diagram is a closed figure, the end of the last vector
coincides with the beginning of the first, so that the resultant sumis a
vector with no magnitude.

Now for one or two examples.

Example 1. Find the vector sum AB+ BC + CD + DE + EF.

Without drawing a diagram, we can see that the vectors are arranged
in a chain, each beginning where the previous one left off. The sum is
therefore given by the vector joining the beginning of the first vector to
the end of the last. .

;. Sum = AF
In the same way,
AK+KL+TP+PQ= oo
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= 14

AQ

Right. Now what about this one?
Find the sum of AB-CB+CD-ED

We must beware of the negative vectors. Remember that —CB = BC, i.e.
the same magnitude and direction but in the opposite sense.

Also —ED = DE
. AB-CB+

+BC+CD +DE

@]

ol

o
H

A

1]
& &

Now you do this one:

Find the vector sum  AB + BC— DC - AD

When you have the result, move on to frame 15.

e

15

0

For:
AB+BC—-DC-AD = AB+BC+CD+DA

and the lettering indicates that the end of the last vector coincides with
the beginning of the first. The vector diagram is thus a closed figure and
therefore the sum of the vectors is 0.

Now here are some for you to do:
(i) PQ+QR+RS+ST = ..o,
(i) AC+CL-ML = ..........c.........
(iii) GH+HI+TK+KL+LG = ..oovvveen.
(ivi AB+BC+CD+DB = ..................

When you have finished all four, check with the results in the next frame.
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16 Here are the results:
() PQ+QR +RS+ST=PT
(i) AC+CL-ML=AC+CL+IM=AM
(i) GH+HI+JK+KL+LG=0
[Since the end of the last vector coincides with the
beginning of the first.]
(ivy AB+BC+CD+DB=AB
2 The last three vectors form a closed
figure and therefore the sum of these

three vectors is zero, leaving only AB ‘
to be considered. 3

O

A B
Now on to frame 17.

17 Components of a given vector

Just as AB + BC + CD + DE can be replaced by AE, so any single vector
PT can be replaced by any number of component vectors so long as they
form a chain in the vector diagram, beginning at P and ending at T.

- ”\\
e.g. 13/’ \\AE
- ~
( \\ 1
\
A / PT=a+b+c+d |
\ /'d *
— - /7
P o T
Example 1.

ABCD is a quadrilateral, with G and H the mid-points of DA and BC
respectively. Show that AB + DC = 2 GH
A

- 8 We can replace vector AB by any
Y " chain of vectors so long as they start
at Aand end at B
> e e.g. we could say }
o, AB=AG +GH + B :

. B
Y A _»____5 y  Similarly, we could say
]Y: =
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C

— 3
{_E=D_G+GH+ 1

So we have —
A AB=AG+ GH + HB

DC=DG +GH + HC

— _ _C
~ AB+DC = AG+GH+HB+DG+GH + HC
2GH+ (AG + DG) + (HB + HC)

Now, G is the mid point of AD. Therefore, vectors AG and DG are equal
in Iength but opposite in sense.

Similarly C=-HB
.. AB+DC

1]
[\)
2
jas)
+

B
()
|
2l
Q
+
g
jwel
|
=)
=

2GH
Next frame.

Example 2.

Points L, M, N are mid points of the sides AB, BC, CA, of the triangle
ABC. Show that

(i) AB+BC+CA=0

(ii) 2AB+3BC+CA=2TIC
(i) AM+BN+CL=0.
A (i) We can dispose of the first part
straight away without any trouble.
We can see from the vector diagram

that AB + BC + CA = 0 since these
B ¢ three vectors forma ........... ...,
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20

closed figure
Now for part (ii).

To show that 2AB + 3BC + CA = 21.C

A
A A
L
L N L L
&C
B M c B B C
From the figure
AB=2AL; BC=BL+LC; CA=CL+IA
. 2AB+3BC+CA = 4AL+3BL+3LC+CL+LA

Now BL=-AL; CL=-LC; LA=-AL
Substituting these in the previous line, gives
2AB+3BC+CA=. .o

21

2LC
For 2AB+3BC+CA = 4AL+3BL+3LC+CL+LA
= 4AL-3AL+3LC-LC-AL
= 4AL-4AL+3LC-LC
= 2LC
Now part (iii)
To prove that AM+BN+CL=0
From the figure in frame 20, we can say
AM = AB + BM
BN =BC +CN
Similarly CL= .
CL=CA+AL
So AM+BN+CL = AB+BM+BC+CN+CA+AL

(AB+BC+TCA)+(BM+CN+AL)
(AB+BC+CA)+3(BC+CA+AB)

e e Finish it off.
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AM+BN+CL=0

CL = (AB+BC+CA) + 5(BC + CA + AB)
> Vectorsum =0

|

Since AM+BN+

Now AB +BC + CA is a closed figure
and BC + CA + ABisa closed figure .. Vector sum =0

L AM+BN+CL=0

Here is another.
Example 3.

ABCD is a quadrilateral in which P and Q are the mid points of the
diagonais AC and BD respectively.
Show that AB+AD+CB+CD=4PQ
First, just draw the figure: then move on to frame 24.

. 24

To prove that AB + AD + CB + CD = 4 PQ
Taking the vectors on the left-hand side, one at a time, we can write

AB= AP +PQ + QB
AD=AP+PQ+QD

Adding all four lines together, we have
* AB+AD+CB+CD = 4G+ 2AP + 2P + 2B +2QD
= 4PQ +2(AP+CP) + 2(QB + QD)

[ Now what can we say about (AP + CP)?
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26

AP+ CP=0

Since P is the mid point of AC .. AP=PC

28 '

Here is one more.
Example 4.

Prove by vectors that the line joining the mid-points of two sides of a
triangle is parallel to the third side and half its length.

Let D and E be the mid-points of AB
and AC respectively.

B c
We have DE=DA + AE

Now express DA and AE in terms of BA and AC respectively and see if
you can get the required results.

Then on to frame 29.
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Here is the working. Check through it.

DE =DA + AE
=3BA +3AC
=3(BA + AC)

DE=3BC

*. DE is half the magnitude (length) of BC and acts in the same direction.
i.e. DE and BC are parallel.

Now for the next section of the work: turn on to frame 30.

29

Components of a vector in terms of unit vectors

Y
b The vector OP is defined by its
1 magnitude (7) and its direction (6).
L 5 It could also be defined by its two
o=t E ) components in the OX and OY

] directions.

i.e. OP is equivalent to a vector @ in the OX direction + a vector b in the
OY direction.

ie. OP =2 (along OX) +b (along OY)

l If we now define 7 to be a unit vector in the 0X direction,

1 then a@=ai

Similarly, if we define j to be a unit vector in the QY direction,
then b=bj

So that the vector OP can be written ¢

Having defined the unit vectors above, we shall in practice omit the
bars over the 7 and j, in the interest of clarity. But remember they are

<
r=ai+bhj
where 7 and  are unit vectors in the OX and OY directions.
r vectors.

30

- S
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31 Let ?1 =2l+4] and 72 =51+2]

Y
Z
{
1
‘4 -
1 ' 22
' 2

0_2_] X

g 5 ———————|

To find Z; +Z,, draw the two vectorsin a chain.

7, +z, =0B
=Q+9)i+@+2)]
=7i+6j

i.e. total up the vector components along OX,
and 2 k2] 2 b2l 2 2] OY

Of course, we can do this without a diagram:
If El =3l+2] and 72 =4l+3]
Zy +Z, =3i+2j+4i+3j
=7 +5j

And in much the same way, Z; =21 = cooeeveeiiieeneen

for 2-2—21 = (41 + 3])_(3l+ 2])
=4i+3j-3i—2j
=1i+1j

Similarly, if T =5i—2); Z, =3i+3f; Z3=4i— 1],
then (1) -Z—l +§2 +E3 R iiveeteeniaaaae
and (11) 71 __2-2 —23 PN

When you have the results, turn on to frame 33.

il $hEE———
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() 12 ; (i) —2i —4j 33
Here is the working:

() 21 +Z, +23 =5i—2j+3i +3/+4i—1j
=(5+3+4)i+(3-2-1)j
=12i

(i) Z1 = Z, — 23 = (5i— 2))— (3i + 3j) - (4i — 1j)
=(5-3-4)i+(=2-3+1)j
=—2i—4j

Now this one. . .
If OA=3i+5; and OB=5i— 2/, find AB.
As usual, a diagram will help. Here it is:

Y
A
\ First of all, from the diagram, write
\ down a relationship between the
o A . Vectors. Then express them in terms
\ of the unit vectors.
\ —
8 AB= s

1>

AB=2i-7j 34
for we have OA + AB=0B (from the diagram)
.. AB=0B-0A
= (Si— 2j)~(3i + 5j)=2i-7j

On to frame 35.

Vectors in space 3 5
The axes of reference are defined by

the ‘right-hand’ rule.

0X, 0Y, OZ form a right-handed set
if rotation from OX to OY takes a
right-handed corkscrew action along
the positive direction of OZ.

Similarly, rotation from OY to OZ gives right-hand corkscrew action
along the positive direction of .....................
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TTTTT A OX

Vector OP is defined by its
components
a along OX

Y b 7 0Y
c " OZ

Let i =unit vector in OX direction,
j - 2 2 3 OY 3
k = ? 29 2 OZ 2
Then OP=ai+bj+ck
Also OL? =4% +b* and OP? = OL? +¢?
OP? =42 +b? +¢?
So, if F=ai+bj +ck, then r=\/(a® +b* +c?)

This gives us an easy way of finding the magnitude of a vector expressed
in terms of the unit vectors.

Now you can do this one:
If PQ=4i+3j+2k, then [PQ|= oo

37 [PQ| =v/29 = 5385
For, if PQ =4i+3j+2k
Q| = via? +32 +2%)
= /(16 +9 +4)=+/29= 5385

Now move on to frame 38.
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Direction cosines 3 8

The direction of a vector in three dimensions is determined by the angles
which the vector makes with the three axes of reference.

Let OP=F=ai+bj+ck

|  Then
' a
II F=cosa La=rcosa
I b
! ;=cos[3 b=rcosf
VAR ¢
s C- =
7= cosy C=rcosYy

d2 + b2 + CZ =r2
. rrcos?a +r?cos?f + r¥costy =2
" cos?q + cos?f + cos?y=1
If ] =cosa
m=cosf then [?2+m?+n®=1
n =cosvy
Note: [I, m,n] written in square brackets are called the direction cosines
of the vector OP and are the values of the cosines of the angles which the
vector makes with the three axes of reference.
So for the vector F=ai+bj+ck

! = é-;
r

~N R

, m==; n =$ and, of course r =+/(a® + b? +¢?)

So, with that in mind, find the direction cosines [/, m, n] of the vector
T=3i-2j+6k
Then to frame 39.

F=3i—2j+6k 39

L a=3,b=-2,c=6 r=+/(9+4+36)
L r=4/49=7

Just as easy as that! On to the next frame.
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40 Scalar product of two vectors

If A and B are two vectors, the scalar product of A and B is defined as
AB cos 8, where A and B are the magnitudes of the vectors A and B, and
0 is the angle between them.

A The scalar product is denoted by
A.B (sometimes called the ‘dot

& - product’, for obvious reasons)
B
- AB=ABcosd In either case, the
= A X projection of Bon A result is a scalar
or BX 2 » A” B quantity.

. For example

=
>

H o35

For, we have:

B
OA.OB=0A.OB.cos 8
7 =5.7.cos 45°
o A 1 352
a5 =35 4 =22V<
) z 3.5 75

Now what about this case:

The scalar product of z and b

dl
]
Q)
o
[
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0

since, in this case, 4.b=a.b.cos90°=a.h.0=0
So, the scalar product of any two vectors at right-angles to each other is
always zero.

And in this case now, with two vectors in the same direction, § = 0°,

42

a _ -
—'_'T_.: SO @B = oo,
b
a.b 43
since @.b.=ab.cos0°=a.b.1=a.b

Now suppose our two vectors are expressed in terms of the unit vectors.

Let K=a1i+b1j+clk
and §_= a2i+b2j+ C2k
Then K_B = (ali + b1j+ Clk).(azi + b2j+ C2k)

=a1a2i.i+ albzi.j+a1C2i.k +b1a2]..i +b1b2j.j
+ b1C2j.k + Cla2k.i +Clb2k.f +C1C'2k.k

This will simplify very soon, so do not get worried.

For ii=1.1.cos0°=1

Cii=1; jj=1; kk=1...... Q)
Also i.j=1.1¢c0s90°=0
' 1j=0; jk=0; Ki=0 oo (i)

So, using the results (i) and (ii), we can simplify the expression for AB
above to give
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44

K_B_ aya, +b b2 + 0y

since XE a1a21 +alb 0+01C20+b1a20+b1b21 +b1C20
+c1a,0+ ;5,0 + ¢c10,1

. KB_ = a4, +b1b2 +C1C2

i.e. we just sum the products of coefficients of the unit vectors along
corresponding axes.

e.g. If A=2i+3j+5k and B=4i+1j+6k
then AB =24+31+56
=8 +3 +30 =41 . AB =41
One for you: If P=3i—2j+ 1k; Q=2i+3j—4k,
then PQ= e,

45

for P.Q=32+(-2)3+1(—4)
=6 - 6 — 4 L PQ=—4
Now we come to:

Vector product of two vectors

The vector product of A and B is written A X B (sometimes called the
‘cross product’) and is defined as a vector having the magnitude AB sin 6,
where 6 is the angle between the two given vectors. The product vector
acts in a direction perpendicular to A and B in such a sense that A, B, and
(A X B) form a right-handed set — in that order

|(AX B)|= ABsin 9

Note that B X A reverses the direction
of rotation and the product vector
would now act downward, i.e.

(BXA)=—(AXB)

|
1
|
:
[ If6 = 0° then|(AX B)|= oo
I —
{ andif 6 =90° then|AX B)|= .o
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0= 0°|(AXB)|=0
6 =90",|(AX B)|=AB

If A and B are given in terms of the unit vectors, then
K=a1i+b1‘j+ clk and §=a2i+b2j+C2k

Then  AX B =(ayi+b1j+cik) X (@i +byj+cyrk)
=a1(12iXi + a1b2i><j + al(:zl.xk + blaz‘in

+b1b2ij +,\b1C2ka + Claszi + Clbsz]'
+C1€2k><k

But iXi=1.1sin0°=0
LIXE =X = kEXE =0 (i)
Also i X j=1.1.sin90° = 1 in direction OZ, ie. iXj=k

LiXj=k
T T T S (i)
kXi=j

And remember too that

iX]==(X i) N
; =_ . since the sense o
JXK (I_C X7 rotation is reversed.
kXi=—=({Xk)

Now with the results of (i) and (ii), and this last reminder, you can
simplify the expression for A X B.
Remove the zero terms and tidy up what is left.

Then on to frame 47.

46

160



Programme 5

4]

AXB=(bicy —bact)i +(aze1 —a163)j + (@1by —azby) k

for AXB= a1a,0-+ alb2k + 0102(_j) + blaz(—k) +b1b,0
+bycyi + cya,j + by (i) + c10,0
= (b1cy — bacy) i+ (ascr —arcy)j+(arhy —azby)k
Now we could rearrange the middle term slightly and rewrite it thus:
AXB=(b1cy —byc1)i— (@105 —a5¢,)j + (a1hy —a2b1)k

and you may recognize this pattern as the expansion of a determinant.
So we now have that:

if A=aji+byj+cik and B=ayi +byj+ ok
then AXB=|i | k

a, by, ¢

a; by ¢

and that is the easiest way to write out the vector product of two vectors.
Note: (i) the top row consists of the unit vectors in order, i, ], k

(i) the second row consists of the coefficients of A

(iii) the third row consists of the coefficients of B.

Example. If P=2i+4j+3k and Q= 1i+5j— 2k first write down
the determinant that represents the vector product P X Q.

PXQ=|li j %k
24 3
152

And now, expanding the determinant, we get
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PX Q=—23i+7j+6k 49

PXQ=|ij k&
2 4 3
15 -2

=il4 3|-j|2 3|+k|2 4

5 =20 |1 -2 15

i(—8—-15)—j(-4—-3)+ k(10— 4)
~23i+7j + 6k

So, by way of revision,
(i) Scalar product (‘dot product’)
AB=ABcosf ascalar quantity.
(ii) Vector Product (‘cross product’)
A X B = vector of magnitude A B sin 6, acting in a direction
to make A, B, (A X B) a right-handed set.
Also AXB =\ i j ok
a by
a4y by
And here is one final example on this point.
Example. Find the vector product of P and Q, where
P=3i—4j+2k and Q=2i+5j- 1k.

PXQ=—6i+7j+23k 50

for PxQ=1|i | k
3 -4 2
2 5-1

=il-4 2|-j|3 2[+k|3 —4

5 -1 2 -1 2 5

= (4= 10)=j(-3-4) + k(15 +8)
= —6i+ 7+ 23k On to frame 51.
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51 Angle between two vectors
Let./__x be one vector with direction cosines [, m, n]
> B be the other vector with direction cosines [I',m’, n']
We have to find the angle between these two vectors.

Let OP and OP' be unit vectors
parallel to A and B respectively.
Then P has co-ordinates (I, m, n)
and P'” ” (d',m',n")

Then (PP')? =(I-1"? +(m—-m')? +(n—n')?
=220+ 1" +m?=2mm' + m'* +n? = 2nn" + n'?
=P +mr+n®)+ "2+ m+ 0" =20 + mm’ +nn')
But (/2+m?+n?)=1and (I"* +m'? +n'?) =1 as was proved earlier.
LPPY =220 +mm' A0 ). @)
Also, by the cosine rule,
(PP')? = OP? + OP'2 — 2.0P.OP" cos 6

1 + 1 —21.1cosf [ OPand OP are
2-2¢080 e (ii) | unit vectors

So, from (i) and (ii), we have:
(PP =2—-2(01' +mm' +nn")
and (PP')>=2-2cosd

i}

52 cos8=1l'+mm +nn

i.e. just sum the products of the corresponding direction cosines of the
two given vectors

So, if {1, m,n] = [0-5,0-3,-0-4]

and [I',m',n'] =[025,06,02]
the angle between the vectorsis 6 = .........cccoevenneee.
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8=77° 53
for, we have

cos 8 =1l + mm' +nn'
=(0-5) (0-25) + (0-3) (0-6) + (-0-4) (0-2)

= 0125 + 018 - 0-08
= 0308 - 008 = 0-225
6=77°

NOTE: For parallel vectors, @ =Q° = 1I' +mm' +nn’ =1
For perpendicular vectors, 8 =90°, . II' +mm' +nn' =0

Now an example for you to work:
Find the angle between the vectors

P=2i+3j+4k and Q=4i-3j+2k

First of all, find the direction cosines of P. You do that.

o4

] = 2_ m= _3—. n= 4
V29’ V29’ V29
for r=[Pl=V(2*+32 +42)=/(4 + 9+ 16) =~/29

° l :2: i
- r /29
m=be 3
r /29
n ==
r 29

L ,m,yn} = 2 3 4
T V29’ /297 /29

Now find the direction cosines [, ', n'] of Q in just the same way.

|
\ When you have done that, turn on to the next frame.

\
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bb

ll:'i m,= i n': 2—
V29° V29’ V29
since r'=Ql= V(47 +32 +2%) = V(16 + 9 + 4) =+/29
iy [l,, m'an,] = -ia ——3 s i
V29’ /297 V29

We already know that, for P,

2 3 4
Lmn]=| =, &, 5—
U m, n] [¢z9 J29 \/29]

So, using cos 8 =1I' + mm’' + nn’, you can finish it off and find the angle

6. Off you go.
6 =762
_ 2 4 3 (-3) 4 2
for cosf= — ., — + — L 4 . L
V29'V29 V2929 V297429
:.§ ——~_9_ + ﬁ. "i
20 29 29
=1 = 02414 6 "'v76°2’
29 A

Now on to frame 57.

517

Direction ratios
If OP=ai+bj+ck, we know that
|OP| =7 =+/a? +b? + 2
and that the direction cosines of OP are given by
_a _b _C
l=—, m=—, n=—
¥ r r
We can see that the components, a, b, ¢, are proportional to the direction
cosines, I, m, n, respectively and they are sometimes referred to as the
direction ratios of the vector OP.
Note that the direction ratios can be converted into the direction cosines
by dividing each of them by r (the magnitude of the vector). J

Now turn on to frame 58.
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Here is a short summary of the work we have covered. Read through it. 5 8

Summary

1. A scalar quantity has magnitude only ; a vector quantity has both
magnitude and direction.

2. The axes of reference, OX, OY, OZ, are chosen so that they forma
right-handed set. The symbols i, j, k denote unit vectors in the direc-
tions OX, OY, OZ, respectively.

If OP =ai + bj +ck, then‘ﬁ?‘=r=\/(a2 +b% +c?)

3. The direction cosines [I, m,n] are the cosines of the angles between
the vector and the axes OX, OY, OZ respectively.

a b c
For any vector l=7, m=, n=7

and P+m?+n*=1.

4. Scalar product (‘dot product’)
AB=ABcosf where@ isangle between A and B.
If A=a,i+bj+cik and B=ayi+byjtek
then AB=a,a, +bby +CiCy

5. Vector product (‘cross product’)

A X B =(ABsin ) in direction perpendicular to A and B, so that
A, B, (A X B) form a right-handed set.

Also AXB=li | k&
ay bl Cq

a3 by €,

6. Angle between two vectors
cos@ =1 +mm' +nn

For perpendicular vectors, /I + mm' +nn' = 0.

All that now remains is the Test Exercise. Check through any points that
may need brushing up and then turn on to the next frame.
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5 9 Now you are ready for the Test Exercise below. Work through all the
questions. Take your time over the exercise: the problems are all straight-
forward so avoid careless slips. Diagrams often help where appropriate.
So off you go.

Text Exercise — V

1. IfOA =4i +3j, OB =6i— 2j, OC = 2i—j, find AB, BC and CA, and
deduce the lengths of the sides of the triangle ABC.

2. IfA=2i+2j—kand B=3i—6j+ 2k, find (i) ABand (i) A X B.

3. Find the direction cosines of the vector joining the two points
(4,2,2) and (7,6, 14).

4. If A=5i+4j+2k,B=4i—5j+3k,and C=2i—j— 2k, where i, ,
k, are the unit vectors, determine
(i) the value of A B and the angle between the vectors A and B.

(ii) the magnitude and the direction cosines of the product vector
(A X'B) and also the angle which this product vector makes
with the vector C.
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Further Problems — V

1.

10.

The centroid of the triangle OAB is denoted by G. If O is the origin
and OA = 4i + 37, 0B = 6i—j, find OG in terms of the unit vectors,
fandj.

. Find the direction cosines of the vectors whose direction ratios are

(3,4,5)and (1, 2, -3). Hence find the acute angle between the two
vectors.

. Find the modulus and the direction cosines of the vectors

3i+7j—4k,i—5j—8k,and 6i— 2j+ 12k. Find also the modulus
and the direction cosines of their sum.

. IfA=2i+4j-3k and B=i+3j+ 2k, determine the scalar and

vector products, and the angle between the two given vectors.

If OA=2i+3j—k, OB =i—-2j+ 3k, determine

(i) the value of OA.OB

(ii) the product OA X OB in terms of the unit vectors
(iii) the cosine of the angle between OA and OB

Find the cosine of the angle between the vectors 2/ + 3j — k and
3i—5j+2k.

. Find the scalar product (A.B) and the vector product (A X B), when

() A=i+2j—k, B=2i+3j+k
(i) A=2i+3j+4k, B=5i—2j+k

. Find the unit vector perpendicular to each of the vectors 2i—j+ k

and 37 + 4j— k, where 7, j, k are the mutually perpendicular unit
vectors. Calculate the sine of the angle between the two vectors.

. If A is the point (1,—1,2) and Bis (—1, 2, 2) and C is the point

(4, 3,0), find the direction cosines of BA and BC, and hence show
that the angle ABC = 69°14".

If A=3i-j+2k,B=i+3j— 2k, determine the magnitude and
direction cosines of the product vector (A X B) and show that it is
perpendicular to a vector C = 9i + 2j + 2k.
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11. ‘A, B, C are vectors defined by A = 8i + 2j— 3k, B =3/ — 6j+ 4k, and
C=2i—2j—k,wherei,j, k are mutually perpendicular unit vectors.

(i) Calculate A-B and show that A and B are perpendicular to each
other

(ii) Find the magnitude and the direction cosines of the product
vector (A X B)

12. If the position vectors of P and Qare i + 3j— 7k and 5i— 2j + 4k
respectively, find PQ and determine its direction cosines.

13. If position vectors, OA, OB, OC, are defined by OA = 2/ — j + 3k,
OB =3i+2j—4k, OC=—i + 3j— 2k, determine
(i) the vector AB
(i) the vector BC
(iii) the vector product AB X BC
(iv) the unit vector perpendicular to the plane ABC
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Standard Differential Coefficients

Here is a revision list of the standard differential coefficients which you
have no doubt used many times before. Copy out the list into your note-
book and memorize those with which you are less familiar — possibly
Nos. 4, 6, 10, 11, 12. Here they are:

d
¥ =) =

1. xn nx"!

2. eX e

3. ekx kekx

4. a* a*.Ina

5. Inx %

6. log, x x. 11‘ 2

7. sin x cos x

8. cosXx —sinXx

9. tan x sec? x
10. cot x - cosec? x
11. sec x sec x.tan x
12. cosec x — cosec x.cot x
13. sinh x cosh x
14. cosh x sinh x

The last two are proved on frame 2, so turn on.
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The differential coefficients of sinh x and cosh x are easily obtained
by remembering the exponential definitions, and also that

d%{ex} =¢* and ag{e‘x} =—gX

X _ o X
(i) y=sinhx y=(i——§—

dy _e* — (%) - e +e*

.'.-d—x— 5 5 = cosh x
—d(sinhx)=coshx
dx
(i) y =coshx y=i%e‘__x
X X X _ X
.‘.%—=e +(26 )=e 2e =sinh x

. d o
s ‘E(coshx) sinh x

Note that there is no minus sign involved as there is when differen-
tiating the trig. function cos x.
We will find the differential coefficient of tanh x later on.

Move on to frame 3.

e S T

Let us see if you really do know those basic differential coefficients.
First of all cover up the list you have copied and then write down the
differential coefficients of the following. All very easy.

1. x° 11. cosx
2. sinx 12. sinh x
3, 3 13. cosec x
4. Inx 14. &3

5. tanx 15. cot x
6. 2% . 16. a*

7. secx 17. x4

8. cosh x 18. log, x
9. logio x 19. Vx
10. & 20. ¢*/?

When you have finished them all, turn on to the next frame to check your

results.
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4

[.

Here are the results. Check yours carefully and make a special note of
any where you may have slipped up.

1. 5x° 11. —sinx

2. cosx 12. cosh x

3. 3e3¥ 13. — cosec x.cot x
4. 1/x 14. 0

5. secx 15. — cosec? x

6. 2%In2 16. a*Ina

7. sec x.tan x 17. —4x75

8. sinh x 18. 1/(x In a)

9. 1/(x In 10) 19. 1x 7 = 1/(23/x)
10. &% 20. Lex/2

If by chance you have not got them all correct, it is well worth while
returning to frame 1, or to the list you copied, and brushing up where
necessary. These are the tools for all that follows.

When you are sure you know the basic results, move on.

5

Functions of a function

Sin x is a function of x since the value of sin x depends on the value of
the angle x. Similarly, sin(2x + 5) is a function of the angle (2x + 5) since
the value of the sine depends on the value of this angle.

i.e. sin(2x + 5) is a function of (2x + 5)
But (2x + 5) is itself a function of x, since its value depends on x.
i.e. (2x + 5)is a function of x
If we combine these two statements, we have

sin(2x + 5) is a function of (2x +5)
” » ” > a function of x

Sin(2x + 5) is therefore a function of a function of x and such expressions
are referred to generally as functions of a function.

So esiny is a function of a function of ......cocveeeveveennn.
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y | since eSinY depends on the value of the index sin y and sin y 6
depends on . Therefore e is a function of a function of y.

0000000000000 000000C00000B0DO0oCODO0goOooaOoo
We very often need to find the differential coefficients of such func-
tions of a function. We could do them from first principles:

Example 1. Differentiate with respect to x, y = cos(5x — 4).

letu=(5x—4) . y=cosu .. % =—sin u =—sin(5x — 4). But this

gives us % , not ;—g- To convert our result into the required coefficient
dy _dy du

we use T du e ie. we mu1t1p1y an (Wthh we have) by - to obtain

i— (Wthh we want),%x—ls found from the substitution u = (5x—4),

ie. Z—z; =5

ag{cos(Sx ~4)}=—sin(5x —4) X 5 =~5 sin(5x — 4)

So you now find from first principles the differential coefficient of

- )
y=e"""Y_ (Asbefore, put u = sin x.)
d sin xy — sin x
d;{e }J=cosx.e
For: y=eSin X Putu=sinx .. y=e' .. .Z%:eu
Bu tdy dy du dizf~cosx

dx du dx dx

sin x}z eSINX (ogx

" a—;{e

This is quite general.

Ify =f(u) and u = F(x), then——-——L—tu—x- ie.if y =In F, where F

is a function of x, then
dy _dy dF _1dF

dx dF dx Fdx

So,if y =Insin x _a.I}Lz__l_ cos x = cot x
dx sinx P
It is of utmost important not to forget this factor 7% beware!

174




Programme 6

8 Just two more examples:

(i) y=tan(5x--4)  Basic standard formis y = tan x, g = sec? x
In this case {(5x — 4) replaces the single x
gz = sec?(5x — 4) X the diff. of the function (5x — 4)
=sec?(5x — 4) X 5= 5 sec?(5x — 4)
(i) y =(4x—-3) Basic standard formisy = x5, % = 5x?
Here, (4x — 3) replaces the single x
y dy = 5(4x — 3)® X the diff. of the function (4x — 3)
=5(4x — 3)* X 4 = 20(4x — 3)* :
So, what about this one? :

dy _

= +2),then—= ...
If y =cos(7x +2), thendx

//y = cos(7x +2) %xJ—)-= =7 sin(7x +2)

o0oooOU0O0OO0C000QQUOoOoOlo0oob0000oo0ooOoooooDooOonoo

Right, now you differentiate these: ‘
1. y=(@x-95)°
2. y=¢g¥¥
3. y=sin2x
4. y=cos(x?)
5. y=In(3—4 cosx)

The results are on frame 10. Check to see that yours are correct. ’
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Results:
1. y=(4x-5)° % =6(4x — 5)%.4 = 24(4x - 5)°

- dy _ _

= a3~X Y — a3 X (1) = —adX
2. y=e ¢ 1) =-—e
3. y=sin2x Q:cosk.2=20032.x

= 2 dJ’:*- 2 -_ o2
4, y=cos(x?) ——=—sin(x?).2x =—2x sin(x*)

dy 1 . 4 sin x

= —_ - . 4 = —

3. y=In@-dcosx) dx 3—4cosx (4 sin x) 3—4cosx

00000000 OCODO000DNDODODO0OO00BO00C00OCcOoOO0Co0OOoga

Now do these:

y= esin 2x
y=sin?x

y =Incos 3x
y = cos3(3x).

y=log;o(2x—1)

© v ™o

1

Take your time to do them.

10

When you are satisfied with your results, check them against the results in

frame 11,
Results: 11
6. y=eSin2x Zx—y=esm 2X.9 cos 2x = 2 cos 2x.eSin 2¥
7. y=sin?x %=2sinxcosx=sin2x
- y_ 1 -
8. y=Incos 3x T cosaw ¢ 3 sin 3x) = -3 tan 3x
9. y=cos’(3x) % =3 cos?(3x).(-3 sin 3x) =—9 sin 3x cos?3x
_ _ dy _ 1 _ 2
10. y=logio(2x~1) 7= = Tn102= (= 1)In 10

All correct? Now on with the programme. Next frame please.
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12

Of course, we may need to differentiate functions which are products
or quotients of two of the functions.

1. Products
If y = uv, where u and v are functions of x, then you already know
that d d d
_:J_) = ._v + __E
ax Yo Vdx
e.g. Ify =x3sin 3x
then (1% =x3.3 cos 3x + 3x? sin 3x

= 3x%(x cos 3x + sin 3x)

Every one is done the same way. To differentiate a product

(i) put down the first, differentiate the second; plus
(ii) put down the second, differentiate the first.

So what is the differential coefficient of e** In 5x?

13

dy= 2x 1
e (;+21n5x)

for y=e*1In Sx, ie. u=e?*, y=1n5x

ay_ ax 1 2x
T e §-S+2e In 5x

= e”‘()l? +21n 5x)

Now here is a short set for you to do. Find g—i- when

y=x%tanx
y=e5*@Bx+1)
¥ =X cos 2x

y =x3sin 5x

I e

y =x%1Insinh x

When you have completed all five move on to frame 14.
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Results:
= 42 LAY _ a2
1. y=x“tanx .. d—x—x sec“x + 2x tan x

=x(x sec®x + 2 tan x)

2. y=e3¥(3x +1) . %= eS¥ 3 +5e5(3x + 1)
=e(3 +15x +5) =e5%(8 + 15x%)

3. y=xcos2x . Z—%=x(—25in2x)+1.cos2x
=cos 2x — 2x sin 2x

4. y=x3sin5x ‘.%=x350035x+3x2 sin 5x
=x2(5x cos 5x + 3 sin 5x)

5. y=x?Insinhx . EZZ:%; cosh x + 2x In sinh x
dx sinh x

=x(x coth x + 2 In sinh x)

So much for the product. What about the quotient?
Next frame.

14

2. Quotients

In the case of the quotient, if # and » are functions of x, and y =%

du dv
dy “ax Yax
then R
Example 1. 1fy=S03x  dy_ {x + 1) 3 cos 3x — sin 3x.1
b T dx (x +1)?
e L nx 2e2%
. _lnx dy _ x )
Example 2. Ify = R T
o2 (;1— 21nx)
e
I 2nx
X
= 2x
If you can differentiate the separate functions, the rest is easy.
. cos 2x dy
Y t My = =
ou do this one. If y 2 dx

178



Programme 6

16 d{COSZX} —2(x sm2x+cos?.x)
dx|l x? x3
d {cos 2.x} _ x2(=2 sin 2x)— cos 2x.2x
dx x? x*
_—2x(x sin 2x + cos 2x)
= =
_—2(x sin 2x + cos 2x)
)
dy dav du
- = — t Y ——
ax Yax | dx
du _ dv

for

So: Fory=uv,

Ve "u —
U dy __dx dx y
fory " Do gE e (ii)

Be sure that you know these.

You can prove the differential coefficient of tan x by the quotient
sin x
Cos X

method, forif y =tanx, y=

Then by the qu0t1ent rule dy (Work it through in detail)

rule, T e Vo
17 y=tanx %=secx
for _sinx . dy _cosx.cosx + sin x. sin x
cosx = dx cos®x
1
= oy sec?x
In the same way we can obtain the diff. coefft. of tanh x
= tanh x = sinhx . dy _coshx.coshx — sinh x.sinh x
y=ian coshx " dx. cosh®x
_ cosh2x — sinhx
cosh?x
=i sech?x
ad; (tanh x) = sech®x

Add this last result to your list of differential coefficients in your note-book.
So what is the diff. coefft. of tanh(5x +2)?
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d — 2 18
(E{tanh (5x + 2)}— E sech?(5x + 2)
for we have: If i[tanhx} = sech®x
dx
then dfjx—{tanh (5x +2)) = sech®(Sx +2) X diff. of (5x +2)

=sech?(5x+2) X 5
=5 sech?(5x +2)

Fine. Now move on to frame 19 for the next part of the programme.

19

Logarithmic differentiation
The rules for differentiating a product or a quotient that we have revised

. . . u
are used when there are just two-factor functions, i.e. uv or > When there

are more than two functions in any arrangement top or bottom, the diff.
coefft. is best found by what is known as ‘logarithmic differentiation’.

It all depends on the basic fact that d%{ln x} = )1? and that if x is

. d _1dF . o
replaced by a function F then i {1n F} = F I Bearing that in mind,

. uv
let us consider the case where y = W where u,vand w — and also y —

are functions of x.
First take logs to the base e.

ny=lhu+lnv—Inw

Now differentiate each side with respect to x, remembering that u, v, w
and y are all functions of x. What do we get?
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20

S
]

:I.>—‘
e

RS
+
<|
SIS
=

So to get dy by itself, we merely have to multiply across by y. Note that

when we do this, we put the grand function that y represents.

dy uV{l du 1 dv 1 dw
dx u'dv vdx wdx;

This is not a formula to memorize, but a method of working, since the
actual terms on the right-hand side will depend on the functions you start
with.

Let us do an example to make it quite clear.

x?sinx fin ddy

I y= s ax

21

To take logs of both sides

x? sin x 2
_ ‘. = + 1 -
s In y =In(x*) + In(sin x) — In(cos 2x)
Now diff. both sides w.r.t. x, remembering that —(ln F)= 1 Zx

1 dy_1 1 1 .
= to—_ - - (=
52X xS0 ¥ T o553 (—2 sin 2x)

2
=;+cotx+2tan2x

. dy x?sinx (2
L= T +
s { cotx + 2tan 2x}

This is a pretty complicated result, but the original function was also
somewhat involved!
You do this one on your own:
ay _

=x%e3* then === .occcieiinrccreennnns
If y=x%¢>* tan x, then o
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4 sec?x

d
B A3 tanx{— +3+
X tan x

Here is the working. Follow it through.
S Iny =In(x*) + In(e*¥) + In(tan x)

y=x%e¢>* tanx
1 1
+ 5% -3e¥ + t—anx-sec2x

}

1dy_ 1 3
yax x* - 4x o3x
2
=i+ 3 4 Sec’x
x tan x
2
.'.Q=x4e3x tanx {i+ 345Cx
dx X tan x
There it is.

Always use the log. diff. method where there are more than two func-

tions involved in a product or quotient (or both).
Here is just one more for you to do. Find%, given that

Y= %% cosh 2x

|23

€
Ldy— i {4-%—2tanh 2x )

dx  x3 cosh 2x
Working. Check yours.
e4x 4x 3
=3 T = -1 -1

Y= X3 cosh 2x In y =1n(e*)— In(x>) — In(cosh 2x)

° l dy - 1 R 4x _ 1 2__—1_ ) .

Ty odx &% € —3-3x osh 2 2 sinh 2x
=4 -3- 2 tanh 2x
x

Sdy e _3_
" dx x3cosh 2x {4 x 2tanh2x}
Well now, before continuing with the rest of the programme, here is a

revision exercise for you to deal with.

Turn on for details.
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24 Revision Exercise on the work so far.

Differentiate with respect to x:

1.

2.

(i) In4x (i) In(sin 3x)
e3% sin 4x

sin 2x
2x +5

(3x + 1) cos 2x

e2x

x> sin 2x cos 4x

When you have finished them all (and not before) turn on to frame 25
to check your results.
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Differentiation

Solutions
. - Lady 1 1
1. () y=In4x o e 4_;_
. - . Ldy_ 1
(ii) y =1Insin 3x e m3cos3x
=3 cot 3x
2. y=e>*sin 4x ‘.%=e3x4cos4x+3e3x sin 4x

= e3¥(4 cos 4x + 3 sin 4x)

3 Sin2x  dy _(2x+5)2cos 2x = 2sin 2x
Y TFS U ax (2x + 5)°

_(Bx +1)cos 2x

e2x

" Iny=1n(3x + 1) + In(cos 2x)—ln(e2x)

. 1ldy _ 1 - ox
Ty de 3x+1 3+cos2x(25m2x) 7 2
3
= 3T 2tan 2x — 2
dy _(3x +1)cos 2x 3 _
2 % {3x+1 2 tan 2x 2}

5. y=x%sin 2x cos 4x
“ Iny =1In(x®) + In(sin 2x) + In(cos 4x)

.ldy 1 4, 2 cos 2x 1
L = + —
y dx x> >x Tsin 2x  cos 4x( 4 sin 4x)
; 2 cot 2x — 4 tan 4x

—X=x5 sin 2x cos4x{i+2cot 2x — 4 tan 4x}
dx X

So far so good. Now on to the next part of the programme on frame 26.

25
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2 6 Implicit functions

If y =x? —4x + 2, y is completely defined in terms of x and y is called an
explicit function of x.

When the relationship between x and y is more involved, it may not be
possible (or desirable) to separate y completely on the left-hand side,

e.g. x y +siny = 2. In such a case as this, y is called an implicit function
of x, because a relationship of the form y = f(x) is implied in the given
equation.

It may still be necessary to determine the differential coefficients of y
with respect to x and in fact this is not at all difficult. All we have to
remember is that y is a function of x, even if it is difficult to see what it
is. In fact, this is really an extension of our ‘function of a function’
routine.

x? +y? =25, as it stands, is an example of an ..o function.

27 x? +y? = 25 is an example of an | implicit | function.

0000OpQO00C000O00C0000C00000000000RD0DDO00Oo0D0O

Once again, all we have to remember is that p is a function of x. So, if

x% +y? =25, let us find d_y
dx

If we differentiate as it stands with respect to x, we get

dy
2% +2y ==
Y dx 0
Note that we differentiate y? as a function squared, giving ‘twice times
the function, times the diff. coefft. of the function’. The rest is easy.

2x+2y%=

oAy LAy x
ey ‘d—x X .. d-—x y
As you will have noticed, with an implicit function the differential coef-
ficient may contain (and usually does) bothx and ....................
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M 28
0000000000000 O0OCCo000DoOooo0onNQoUoooDoaonoo
Let us look at one or two examples.

lel Ifx2+y?=2x—6y+5=0 findgzanddzyatx=3,y=2-
Example 1. xX“+y Y > ax ax?

Differentiate as it stands with respect to x.

24y P-2-62=0

y bt Q: —
(-6 =22

- dy=1_3=:-2-=
G-3)CD-1-0n%
Th Qf__i 1—x } dx
en dx? dx{y 3 (v - 3)?
(] =
Gy--0F
-3
d’y _(3-2)-(1-32 _1-(-4)_
e ¢ R )% N
: dy _ dzy_
. At (3,2) = 2, s 5
Now this one. If x? +2xy +3y% =4, find Zy
Away you go, but beware of the product term. When you come to 2xy
treat this as (2x) ().
x? +2xy +3y% =
B oy D - 29
2.x+2xd +2y+6y 0

. dy __
.(2x+6y)a— (2x +2y)

___(2)C+2y)=_(x+y)
Cdx (x+6y)  (x+3y)

And now, just one more:

. dy
3,3 2=
If x?+3°+3xy?=8, find dx  Turn to frame 30 for the solution.
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3 0 Solution in detail:

x3+y3+3xy2=8
3x2 +3y +3x 2y +3y2"0
0P+ D em 4 y7)

__ 2 +y?)
Cdx (% + 2xy)

That is really all there is to it. All examples are tackled the same way.
The key to it is simply that ‘y is a function of x” and then apply the
‘function of a function’ routine.

Now on to the last section of this particular programme, which starts on
frame 31.

Parametric equations

In some cases, it is more convenient to represent a function by expressing
x and y separately in terms of a third independent variable, e.g. y = cos 2¢,
x =sin ¢. In this case, any value we give to ¢ will produce a pair of values
for x and y, which could if necessary be plotted and provide one point of
the curve of y = f(x).

The third variable, e.g. ¢, is called a parameter, and the two expressions
for x and y parametric equations. We may still need to find the differen-
tial coefficients of the function with respect to x, so how do we go
about it?

Let us take the case already quoted above. The parametric equations
of a function are given as y = cos 2t, x = sin t. We are required to find

dy .d’ Y

expressions for—= and a2

dx

Turn to the next frame to see how we go about it.

187



Differentiation

- . . .dy d?
y=cos2t, x=sint. Find I and (EJ’)—
- y__, .
From y = cos 2¢, we can get V7 —2sin 2t
From x =sin 7, we can get :,.;= cos ¢
dy _dy dr
that —~ =
We now use the fact tha T ar dx
dy . 1
that == —
so tha T 2sin 2¢. o7
=—4sin t cos t.._l_
4 cos
_'y= —_ ]
T 4 sin ¢

That was easy enough. Now how do we find the second diff. coefft.? We
2 2
cannot get it by finding %} and %t—;from the parametric equations and
joining them together as we did for the first diff. coefft. That method
2

could only give us something called Tix Y which has no meaning and is

certainly not what we want. So what do we do?

On to the next frame and all will be revealed.’

32

To find the second differential coefficient, we must go back to the
2

. d*y
very meaning of a2

. dly_ dyay d{_, .
ie. dx’ =i (dx) = dx( 4 sin t)
But we cannot differentiate a function of ¢ directly with respect to x.

Therefore we say d£(—4 sin t) —Fd( 4 sin t) Z;
. d’y

1
vy =—4 cos 1. <Tst=—4
. d? y -
Tax? -
Let us work through another one. What about this?
The parametric equations of a function are given as
y=3sin0 ~sin®f, x =cos’f
.. d d?
Find éc) and c_i;’); Turn on to frame 34.

33

——

188



Programme 6

34 y =3 sin 0 — sin>f ."%=3cosﬁ—3sinzﬁcosﬁ
- 3 . dx — 2 .
X =cos 0 g %—3cos 6(—sin 9)
=—3 cos%0 sin 9
Q} = d.l d_e = —_ qin2 i
dx df dx 3cos§ (1~ sin 6)‘—3 cos?8 sin
_ 3 cos3d . ody _
" —3 c0s?4 sin § v T eot 0
d _d(_ _d o
AISO W —d—x‘( cot 0) = (E( cot 0) EC’
1
=—(— 2Ay— -
(= cosec’d) ~3 cos?0 sin 0
dly -l ,
dx* 3 cos*9 sin®9 A S
Now here is one for you to do in just the same way.
_2-3t  _ 3+ dy
If x 7 Y 1+f’ﬁnd3§

When you have done it, move on to frame 35.

35 s

_2-3t dx (1+H(=3)—-(2-30)
For *Ti¥r @ T =+
3t L dy _(1+H()-(3B+2p
Y:T¥r ar T (T +1)
dx_—3-3t=2+3t _ =5
dar (1+1y 1+

dy_2+2-3-2_ -l
dt a+1? (T +27

dy _dydt_ -1 (Q+*_1 _dy_1

dax di'dx (1+0* -5 5 Tdx 5

And now here is one more for you to do to finish up this part of the work.

It is done in just the same way as the others.
If x=a(cos® +6sinf) and y =a(sin § — 6 cos §)
d*y

. dy
find Ix and 2
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Here it is, set out like the previous examples. 3 6

x=a(cos 6 + 6 sin 9)

N g)£=a(~sin(9 +6 cosf +sin@)=ab cosb

" do
y=a(sinf -0 cos §)

d—y=a(cose +0sinf—cosf) =afsinf

de
dyzdyd6= 1 .—1 _ =
o6 aesme.aecose tan 6
%=tan9
-
d’y _ d _d - df
E)—p——&;(tan 6)—d9(tan 0).dx
1
= 2
secB.ae cos 8
d*y _ 1
dx® 48 cos3f

You have now reached the end of this programme on differentiation,
much of which has been useful revision of what you have done before.
This brings you to the final Test Exercise so turn on to it and work
through it carefully.

Next frame please.
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3 7 Test Exercise — VI

Do all the questions. Write out the solutions carefully. They are all quite
straightforward.
1. Differentiate the following with respect to x:

(i) tan 2x (ii) (5x +3)° (iii) cosh® x

(iv) logyo(x? —3x—1) v) In cos 3x (vi) sin®4x
"9\

3 _ N
(vii) e** sin 3x (viid) (x+1)? j (ix) & cosénzfc

2. Ifx? +y?—2x + 2y =23, find ay and a’y at the point where
7 ’ dx dx*
v o x =2, y=3.

3. Find an expression for dy when

\/ dx

2
(’4. If x=3(1—cosf)andy=3(8 —sind) find 4 and g}%} in their
i

x3 +y3 +4xy2 =

dx
51mp1est forms.

191



_ 5. Differentiate: y= esin’5x (i) y = m{

Differentiation

Further Problems — VI

1. Differentiate with respect tox:

Yo
f (i) In {w: } (ii) ln(sec X +tan x) (i/i'Qsin“x cos>x
\

COSX —sSinx

.o dy S~ X SINX - 2}
2. Find T when\/{)y Troosx (i)y= ln{]——j

of
el +1

3. Ifyisa function of x,and x =
dy_ Y
show that 77 x(1—x) o

4. Find % when x3 +y° - 3xy? =

cosh x — 1}
coshx +1

(iif) y = ln{ex(i 2 )3/4 }

6. Differentiate: (i) y = x* cos®x G)y= ln{xzx/(l —xz)}

e** Inx

i)y = 51

\\\]

If (x—y)®=A(x +y), prove that (2x +y) % =x+2y.

2
8/' If x> —xy +y*=7, find % and cdlx—{ at x=3,y=2.

3d>y
~9. Ifx?+2xy +3y? =1, prove that (x +3y) gat 2=0.

10, Ifx=In tan% and y = tan 6 — 8, prove that

LY - tang si 6 +2sccd
W-tan sin 9 (cos sec 6)
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

dy

d +8y=0.

If y =3 " cos (2x — 3), verify that d—l

The parametric equations of a curve are x = cos 20, y=1+sin26.

dy d*y
Fmd T

a relatlonship between x and y.

and at @ = /6. Find also the equation of the curve as
Ify =:x +/(1 +x2)} 32 show that

4(1+x2) +4xd -9y =0

Find % andg ifx=a cos®0, y =a sin’6.

2
If x =3 cos 6 ~ cos@, y=3sin 8 —sin0, express Z—y and d—)f) in terms
of 9.

Show that y = €™ sin 4mx is a solution of the equation

2
gx +4md +20m?y =0
d? dy 2
If y = sec x, prove that yd};—(ng—)) +y4

Prove that x = A ¢ ¥ gin pt, satisfies the equation
x5 BX oy
Gt (P R =0
Ify = e* (A cosh qt + B sinh qf) where A, B, q and k are constants,
show that
d’y o AV aa oy

. _4sinhx—-3 ay _ 5
by = S st oW et G = s Gy
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DIFFERENTIATION APPLICATIONS
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1 Equation of a straight line
The basic equation of a straight line is y = mx + ¢,

Y - Sy _dy
where m = slope R Sial >

4 ¢ = intercept on real y-axis
3x Note that if the scales of x and y

[4

0 X

are identical,-@-) =tan f
dx

e.g. To find the equation of the straight line passing through P(3,2) and
Q(—2,1), we could argue thus:

Y P
ew—"" y=mx +c

Q (3,2)
—— O
(-2,1)

J

X, 0| X

Line passes through P,i.e. whenx=3,y=2 " 2=m3+¢

Line passes through Q,i.e. whenx=-2,y=1 " 1=m(-2) tec

So we obtain a pair of simultaneous equations from which the values
of m and ¢ can be found. Therefore the equationis ...........ccceee......

2 We find m = 1/5 and ¢ = 7/5. Therefore the equation of the line is

y= Sy=x+7

v ®
+
=
—

o

000000000000 0000000000000C0D000N0D0000000

Sometimes we are given the slope, m, of a straight line passing through
a given point (xq, y,) and we are required to find its equation. In that
case, it is more convenient to use the form
y—yi=mx—x;)
For example, the equation of the line passing through the point (5,3)
with slope 2 is simply ...................... which simplifies to .....................

Turn on to the next frame.
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y—3=2(x-9%)

ie.y-3=2%x~10 . "y=2x—7’

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Similarly, the equation of the line through the point (—2,~1) and

having a slope % is

y=D=3{x-(2)

1
Ly+tl==(x+
y+l1 3 (x+2)

y+2=x+2
x

2

So, in the same way, the line passing through (2,~3) and having
slope (—2) 1S cvevireere

y=1-2x

For y—(3)==2(x-2)
Lyt3=-2x+4 L y=1-2

DDDDDDDUDDDDDDDDDDDDDDDDDDDDDDDGDDDDDD

Right. So in general terms, the equation of the line passing through the
point (xy,y;) withslope m is .......ococoveiiini..,

Turn on to frame 5.
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5 y—y; =m(x —x;) | Itis well worth remembering.

0OoQDo0O00O0ONNDO0RO0O0C00OU0O00DOoO00o0OooOooo0noDaoon
So for one last time:
If a point P has co-ordinates (4,3) and the slope m of a straight line
through P is 2, then the equation of the line is thus

y—3=2(x—4)
=2x—8
Lo y=2x-5

The equation of the line through P, perpendicular to the line we have
just considered, will have a slope m; , such that m m; =—1

ie. m; = —711—. And since m = 2, then m = — é— This line passes through
(4,3) and its equation is therefore
y=3=- 5G4
=—x/2+2
=-Z+5 2=10-x

6 If m and m, represent the slopes of two lines perpendicular to each
other, thenm m,; =—1 or m; = _’%

Consider the two straight lines
2y=4x—5 and 6y=2—-3x

If we convert each of these to the form y =m x + ¢, we get

b - _i 11 = — _1_ l
() y=2x > and (i) ¥ A% + 3 1
So in (i) the slope m = 2 and in (ii) the slope m; = —

2
. . . 1
We notice that, in this case, m; =~ P or that mm,; =—1

Therefore we know that the two given lines are at right-angles to each
other.

Which of these represents a pair of lines perpendicular to each other:
() y=3x-5 and 3y=x+2.

(i) 2y=x—-S5 and y=6—x

(iii) y—3x—2=0 and 3y+x+9=0.

(iv) S5y—-x=4 and 2y +10x+3=0.
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Result:

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

(iii) and (iv)

For if we convert each to the form y = mx + ¢, we get

Gy y

x_
2

m=

N X2
G y=3x Sandy—3+3
[
3;m1=§ mml#_l
-S—and =—x+6
2 ryE=
1
Sime=—1 " mm # -1

(iii) y=3x+2 and y=%—3

(ivy y

1

m=3;m1=_§ .‘-mm1=—1
=x,4 =5 —3
—5+5 and y=-5x 3

1
mEgim ==5 Lomm; =-1

Do you agree with these?

to AB.

Not perpendicular.

Not perpendicular.

Perpendicular.

Perpendicular

mmg; =

Here is one further example:
A line AB passes through the point P (3,-2) with slope -15 . Find its
equation and also the equation of the line CD through P perpendicular

Remember that if y =m x +¢ and y =m;x +¢, are perpendicular
to each other, then

1

-1, ie.m, 2—7n-

When you have finished, check your results with those on frame 9.

198



Programme 7

9 Equation of AB:

Equation of CD:

So we have:

1

Y= (== 5(x=3)
__x_1
Y =7373

Jy+x+1=0

slope m; =— %1=—_'1-%=2
y=(=2)=2x-3)
y+2=2x-6
y=2x-8

10

mm;, =-—1

0000000000000 0000ONUOONoO0OODNOoONo0OOOoO0O0oOnoon

And now, just one more to do on your own.

The point P(3, 4) is a point on the line y =5x — 11.

Find the equation of the line through P which is perpendicular to the

given line.

That should not take long. When you have finished it, turn on to the

next frame.
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1

For: slope of the given line, y = 5x — 11 is 5.

slope of required line = — %

w The line passes through P, i.e. when x = 3,y=4.

yod=—@-3)

Sy—~20=-x+3 . Sp+x=23
U0O00NO0OO00U00000O0NN000000n000000000000no0

Tangents and normals to a curve at a given point.

The slope of a curve, y = f(x), at a point P on the curve is given by the
slope of the tangent at P. It is also given by the value of % at the point P,
which we can calculate, knowing
the equation of the curve. Thus
we can caiculate the slope of the
tangent to the curve at any point P.

Iol X

What else do we know about the tangent which will help us to
determine its equation?

We know that the tangent passes through P, ie. whenx =x,,y =y,.
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 12

Correct. This is sufficient information for us to find the equation of the
tangent. Let us do an example.

e.g. Find the equation of the tangent to the curve y=2x> +3x2 -2x -3
at the point P,x =1,y =0.

%:=6x2 +6x—2

Slope of tangent =<fb—}} =6+6-2=10, ie.m=10
dx x=1

Passes through P ie. x =1,y =0.
Y=yi=mlx—xy)givesy —0=10(x — 1)
Therefore the tangent is  y = 10x — 10

We could also, if required, find the equation of the normal at P which is
defined as the line through P perpendicular to the tangent at P. We know,
for example, that the slope of the normalis ...................

T ,7;1
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13

Slope of normal —m =— 0

0000000000000 C000d0ogdOoDoCOONoooDUooDooooa

The normal also passes through P, i.e. whenx =1,y =0.

. Equation of normalis: y—0 =—110 x—-1
I0y=-=x+1 10p+x=1

That was very easy. Do this one just to get your hand in:
Find the equations of the tangent and normal to the curve
y=x>—2x* + 3x — 1 at the point (2,5).
Off you go. Do it in just the same way.

When you have got the results, move on to frame 14.

14

Tangent: y=7x—-9 Normal: 7y +x =37

Here are the details:
y=x>-2x* +3x -1

-,%=3x2—4x+3 L ALB(2,5) 2= 12-8+3=7

Tangent passes through (2,5),ie. x=2,y=5
y—5=7(x—2) Tangentisy =7x—9
—1 1

For normal, slope = m =_ a

Normal passes through P(2, 5)
y—s=_ Ll
Ly-—-S5= 5 (x—2)
Ty —35=—x+2
Normal is Ty + x = 37
You will perhaps remember doing all this long ago.

Anyway, on to frame 15.
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The equation of the curve may, of course, be presented as an implicit 15
function or as a pair of parametric equations. But this will not worry you
for you already know how to differentiate functions in these two forms.
Let us have an example or two.
Find the equations of the tangent and normal to the curve
x* +y* +3xy—11=0at the pointx =1,y = 2.

First of all we must find% at (1,2). So differentiate right away.

2x+2y%+3x%+3y=0

dy
+3x)—= = «2x
2y + 3x) o —(2x + 3y)

4y x+3y
dx 2y +3x
Therefore,atx =1,y =2,
dy _
'(‘i; .......................
dy__2+6_8 \dy_8 16
dx 4+3 7 |ax 7

Now we proceed as for the previous cases.

Tangent passes through (1,2) . y~2=-— % x-1)

7y —14=-8x+8
S Tangent is 7y + 8x =22
Now to find the equation of the normal.

-1

Slope = Slope of tangent

=7
8

Normal passes through (1,2) .. y—2 =~g (x-1)
8y—-16=Tx-~7

.. Normalis 8y =7x+9 That’s that!
Now try this one: -

Find the equations of the tangent and normal to the curve
x* +x?y+y* ~7=0at the pointx =2,y =3.
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17 Results:

Here is the working:

Tangent: 31y +24x =141 Normal: 24y =31x+ 10

X +xty+y2-7=0
3x? +x2 —Z——+2xy+3y2 oy

dy . dy _ 3x* +2xy
2 2 - 2 = X T XY
(x? + 3y )——dx ~(3x% + 2xy) T 37

. dy __12+12_ 24
- At(2,3) W av27 31

(i) Tangent passes through (2,3) .. y—3=- 33% (x—2)
31y*93=~24x+48 So3ly +24x =141

31
(i) Normal: slope = 2—4 Passes through (2,3) =~y —3 Y (x—2)

24y ~72=31x~62 . 24y =31x + 10

Now on to the next frame for another example.

1 Now what about this one?

2
The parametric equations of a curve are x = 137[[’ y= 1 i ;
Find the equations of the tangent and normal at the point for which

t=2.
First find the value of % when ¢ = 3.

= 3 dx_(1+£)3-3t_3+3r—3t_ 3

L+t “dr - (1+02 (14 (Q+0)?
_ P dy _(1+02e—r _u+2u’ -1 2u+r?
YIT¥: T ar (1+1)? (1+1)? (1+0)?

dx dr'dx (1+02 3 3 dx
To get the equatijon of the tangent, we must know the x and y values of a
point through which it passes. At P—

1+2

dy _dy dt _2t+1* (1+0)? _2r+12 - Att=2,ﬂ=—:8;—

_6_
_g 23 y

1
Continued on frame 19,
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So the tangent has a slope of% and passes through (2, %)
~. Its equation is y- % = % x-2)
3y-4=8x—16 .. 3y=8x—12 (Tangent)

-1 3
t = = —C
For the normal, slope STope of tangent 8

Also passes through (2, %) Ly- % = —g—(x -2)

24y —32=-9x + 18 5 24y +9x =50 (Normal)

Now you do this one. When you are satisfied with your resuit, check

it with the results on frame 20. Here it is:

If y = cos 2¢ and x = sin ¢, find the equations of the tangent and

m
normal to the curve at ¢ =

19

g .
Results:
Tangent: 2y +4x =3 Normal: 4y =2x + 11
Working: d
y=cos2t . Fi)= —2sin2t=—4sint cost
X =sint 'i)f=cosr
odt
dy _dy dt _—4sintcost _ .
dx dt dx cost 4sint
= l _d;y_z — 1 1: — l = =
At ot o i 4 sin 3 4(2) 2
" slope of tangent =2
Passes through x= sin L = 0.5, y= cos L= 0-5

6 3
.. Tangent is y —-é— =2(x— 17) L2y-l=—4x+2
S 2y +4x =3 (Tangent)
Slope of normal = %— . Line passes through (0.5, 0.5)
Equation is y —% = %—(x - %)
L4y —2=2x—1
L4y =2x11 (Normal)
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21 Before we leave this part of the programme, let us revise the fact that

we can easily find the angle between two intersecting curves.
dy

Since the slope of a curve at (x,,»,) is given by the value Of?l_f at

that point, and % = tan @, where 6 is the angle of slope, then we can

use these facts to determine the angle between the curves at their point
of intersection: One example will be sufficient.

e.g. Find the angle between y? = 8x and x> + »? = 16 at their point of
intersection for which y is positive.

Y
p First find the point of intersection.
i.e. solve ? = 8x and
x2 +y? =16
Xy 0 X We have x® +8x =16 . x> +8x—16=0
_ 8+/(64+64) —8%+/128
2 2
Y, _8+11314 _ 3314 or -19.314
2 2 2
x=1-657 or [-9-655] Not a real point of
intersection.

When x=1.657, y* =8(1.657) = 13256, y = 3-641
Co-ordinates of Pare x =1.657, y =3.641

Now we have to find % for each of the two curves. Do that.

2 dy_g . dy_4_ 4 1
22 By =8x 2y gr=8 =361 om0 - 0%

tan 6, =1-099 .. 8, =47°42'
(ii)  Similarly for x? + y* =16
Yoo W X LT 445

=0 T Ty 3%l
tan 0, =—0-4551 . 6, =—24°28'
Finally, =0, -0, =47°42" — (—24°28")
= 47°42' +24°28'
=72°10'
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That just about covers all there is to know about finding tangents and 23
normals to a curve. We now look at another application of differentiation.

Curvature

The value of % at any point on a curve denotes the slope (or direction)

of the curve at that point. Curvature is concerned with how quickly the
curve is changing direction in the neighbourhood of that point.
Let us see in the next few frames what it is all about.

24

Let us first consider the change in direction of a curve Y = f(x) between
the points P and Q as shown. The direction of a curve is measured by the

Y

=f(x)
y(I\_

Xy~

[¢]

lengthof .....................

slope of the tangent.

Slope at P=tan g, = {%}

/P

- _lay
Slope at Q = tan 4, {E}Q
These can be calculated, knowing

the equation of the curve.

From the values of tan 6, and tan 8, ,the angles 8, and 6, can be found
from tables. Then from the diagram, 8 =9, -8, .

If we are concerned with how fast the curve is bending, we must
consider not only the change in direction from P to Q, but also the
which provides this change in direction.
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2 5 the arc PQ

i.e. we must know the change of direction, but also how far along the
curve we must go to obtain this change in direction.

Now let us consider the two points, P and Q, near to each other, so
that PQ is a small arc (= 8 s). The change in direction will not be great,
so that if 8 is the slope at P,
then the angle of slope at Q can
beputasf +646.

X

The change in direction from P to Q is therefore 5 6.
The length of arc from Pto Qis 6.
The average rate of change of direction with arc from P to Q is
the change in direction fromPto Q 86
the length of arc from P to Q T8
This could be called the average curvature from P to Q. If Q now moves

down towards P, i.e. § s - 0, we finally get'(-i;, which is the curvature

at P. It tells us how quickly the curve is bending in the immediate
neighbourhood of P.

2 6 In practice, it is difficult to ﬁndi9 since we should need a relationship

between 6 and s, and usually all we have is the equation of the curve,
y = f(x) and the co-ordinates of P. So we must find some other way
round it.  Cv. 8¢
\\7\\\ R Let the normals at P and Q meet

N - in C. Since P and Q are close,
CP = QC (=R say) and the arc PQ
can be thought of as a small arc
of a circle of radius R. Note that
PCQ = 66 (for if the tangent turns
through &6, the radius at right
angles to it will also turn through
the same angle).
You remember that the arc of a circle of radius 7 which subtends an angle
6 radians at the centre is given by arc =r0. So, in the diagram above,
arcPQ =65= .
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arc PQ =6s=R&60 27

If 85 = 0, this becomes% =1§ which is the curvature at P.

That is, we can state the curvature at a point, in terms of the radius R
of the circle we have considered. This is called the radius of curvature,
and the point C the centre of curvature.

. do .
So we have now found that we can obtain the curvatureg if we have
some way of finding the radius of curvature R.
If R is large, is the curvature large or small?

If you think ‘large’, move on to frame 28.
If you think ‘small’ turn on to frame 29.

28

Your answer was : ‘If R is large, the curvature is large’

DDDDDDDE]DDDDDIZ|DDDDDDDDDDDDDDDDDDDDE\DDD

. dé .
This is not so. For the curvature = a5 and we have just shown that

%S—Q= ;—{ . Ris the denominator, so that a large value for R gives a small

.1
value for the fractlon—R and hence a small value for the curvature.
You can see it this way. If you walk round a circle with a large radius R,
then the curve is relatively a gentle one, i.e. small value of curvature, but
if R is small, the curve is more abrupt,

So once again, if R is large, the curvature is ......................

208
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2 9 If R is large, the curvature is | small

Correct, since the curvature gg = i—l

000000000000 00000QUO0OD0O0DCcO00O0O0oOoOoooooooa

In practice, we often indicate the curvature in terms of the radius of
curvature R, since this is something we can appreciate.

Let us consider our two points P and Q again. Since §s is very small,
there is little difference between
the arc PQ and the chord PQ, or
between the direction of the chord
and that of the tangent.

So, when §s >0, Zy =tan

dx
——=cos ¥
ay _ ds
= tan 0. Differentiate with respect to s.
X
d(dy\_d
Then ds {dx }— 7 {tan 0}

d ﬁd_t 9}4_0.
dx dx ds db “ds

2
N 4 = 2930
. —=5 cos 0 =sec’f s

sec3 9 ﬁ— d2
ds dx?

3/2
Now sec®d = (sec?0)*/2 = (1 + tan?9)*/? = {1 +( ) }

d2y
— 21 3
a6 1 dx* {1+(%)}/2
.'d_=§=—_3/2 R:*—i——
CE @ 5
pe

Now we have got somewhere. For knowing the equation y = f(x) of
the curve, we can calculate the first and second differential coefficients
at the point P and substitute these values in the formula for R.

This is an important result. Copy it down and learn it. You may never
be asked to prove it, but you will certainly be expected to know it and to
apply it.

So now for one or two examples. Turn on to framme 30.
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Example 1. Find the radius of curvature for the hyperbola xy = 4 at the 3 n
pointx =2,y =2. 232

[+ )

R= dx

=4 - =4 -
xy=4 .y - 4 I X
d*y 5 _ 8
and 7=8x3=;3~
dy _ 4 d’y 8
At (2,2 dy__4__ . dy_8_
(2.2) x4 LTyl

24 3/2 3/2
. R={‘l+(1—1) } ={1-;1} =(2)3/2=2\/2

5 R=24/2=2-828 units.
There we are. Another example on frame 31.

Example 2. 1f y = x + 3x*> —x3, find Rat x = 0. 1
dy. 2 3/2 3
LG )
X
R=
ay
dx? )
dy 2 dy dy
—_= + — = — = — =
S 1H6x=3x7 L Atx=0,2 (dx) 1
d’y —o. &
=6- Atx=0,4) -
i 6 — 6x P 6

S R=0-471 units
Now you do this one:

3
Find the radius of curvature of the curve y? =£4— at the point ( 1 ,—2->

When you have finished, check with the solution on frame 32.
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32

R =5-21 units

Here is the solution in full.
2 =X_3 * d_y=_3£ . dy 3x2
YT YT Ta U ax 8y

a1y 22 (iy,f:ﬁ

20dx 4 " \ax) 16
8y (6x) — 3x> 8 %L
__d_y_3i2 * d2y= dx
dx 8y = ax? 64 y*
1\ d?y _24-243 24-18 3
t =} — = ==
A (1’2)’ 2~ 16 6 8
dy\? 3/2 9 \3/2 {25}3/2
+ {— _— —_—
R—{l (dx)} ={1+161 = 16 =.§ 1_25_=1—25.= 5_
a2y 3 3 3° 64 24 24
! 2
dx 8 8 .. R=15.21 units

33

Of course, the equation of the curve could be an implicit function, as
in the last example, or a pair of parametric equations.

eg. Ifx=0—sin0andy=1—cos(),findehen6=60°=%
=0 —si 'ﬂ: —
x=0-sing .. rl 1—cos® dy _dy do
dx do dx
y=1—cosb .‘.%=sin6
Ldy _ . 1 _ sinf
"—a’;_sme'l-cose 1—cos6
— £A° o _\/3 __] dy___ﬁ
At 8 =60",sinf = 2,0056——2-, i 1
d2y=_d__ sin 6 _4d sin @ a6
ax? dx|\T—cosBf db \l —cosf) dx
=(1—cos@)cos@—sin6.sin6 1
(1 = cos 6)? "1-cos@
_cosf —cos*f —sin’f _ cosf§—-1 _ -1
(1 —cos 8)° (1 =cos8)® (1 —cosb)*
2 —_ —
SAate=e0 =t =Tl

&xTO0- %

y R= {1 t 3}3/2=2_3=_8
- —4 —4 4

=-—2 .. R=-2units
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You notice in this last example that the value of R is negative. This 34
merely indicates which way the curve is bending. Since R is a physical
length, then for all practical purposes, R is taken as 2 units long.
If the value of R is to be used in further calculations however, it is
usually necessary to maintain the negative sign. You will see an example
of this later.

Here is one for you to do in just the same way as before:
Find the radius of curvature of the curve x = 2 cos®6,y = 2 sin®6,

at the point for which ¢ _Z =45°.

Work through it and then go to frame 35 to check your work.

Result:
R = 3 units 35
- 3 dx
For x=2cos’@ E=6cos 6 (—sin ) = —6 sin 9 cos> 4
. L dy .
- 3 @y _ 2
y=2sin°0 .. 20 6 sin”* @ cos 6
dy _dy df _ 65sin*6 cos§ __sinf = tan
dx df dx —6sin0 cos’f cos 6 an
o dy _
Ato=45°L=-1 2 &)
dy _d | _ 1 d6 . —sec?f
Also “dx? —21;{ tanB} —%{ tan 0 dx —6sin8 cos’f
1

" 65sin 6 cos*

. o dy_ 1 _4/2_ W
. Atf =45 =
dx? 65 (G 6 3

{1+(%)2}3/ {1 +1}3/2

R= = =3 53
d’y W2 22 2
dx? 3
3.2v/2 _
22
R = 3 units
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Centre of curvature. To get a complete picture, we need to know also the
3 6 position of the centre of the circle of curvature for the point P(xy,71)-

If the centre C is the point (&, k),
we can see from the diagram that:

h=X1—LP=xl _Rsine
k=y, +LC=y; +Rcosb

Thatis, | h=x, —Rsind
k=y; +Rcost

where x; and y, are the co-
ordinates of P, R is the radius of

curvature at P, 6 is the angle of
slope at P, i.e. tan § = {Q}
dx)p

Example. Find the radius of curvature and the co-ordinates of the centre

7 11 -4 .
3 of curvature of the curve y = 3 —xx at the point (2,3).

dy (B-x)(EH-(1-4)CH _—l12+4x+1l-4dx 1
dx (3 -x)? (3-x)? (3-x)?

-y 4y _~1_ Ay© _
Atx—2, ’Ex————l 1 (dx) 1
d’y _d 2 -3 ~2
E——t— — = — —1Y=—=3
E)?f dx{(3 x).} 2(3 x) ( ) (3_x)3
: -, dy_2__
SOAtx 2, -(7;7 1 2
Ay 3/2
_ ) ™ 22 A
FTEE R
dx?
R=—y2
Now before we find the centre of curvature (k, k) we must find the angle
of slope 6 from the fact that tan 6 =%at P.
ie. tan®=-1 . §=—45° (9 measured between + 90°)
Losin 0= andcosf = .............
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T 38

sm6=—\—/7 COSG=$

COO000O0DODO000O000C0OC0O000C00000O0ODU0OQO0OO0oOoOaQg

So we have: x1=2,y,=3

=_\/2
1

1
sinf§ =——=,cos 6 =
N vz
1
Zh=x, —Rsin8=2-(—+/2) (—\ﬁ)=2—1=1,h=1

k=y, +Rc038=3+(—\/2)(:/-15)=3—1=2,k=2

. centre of curvature C is the point (1,2)

NOTE': If, by chance, the calculated value of R is negative, the minus sign
must be included when we substitute for R in the expressions for 4 and .

Next frame for a final example.

Example. Find the radius of curvature and the centre of curvature for 3 9
the curve y = sin?8,x = 2 cos 6, at the point for which 9 =%.

Before we rush off and deal with this one, let us heed an important
WARNING. You will remember that the centre of curvature (A, k) is
given by

h=x, —Rsiné
k=y, +Rcosf
6 is the angle of slope of the curve at the point being considered

ie. tanf = {-‘ZZ}
P

} and in these expressions

dx

Now, in the probiem stated above, 8 is a parameter and not the angle
of slope at any particular point. In fact, if we proceed with our usual
notation, we shall be using 8 to stand for two completely different
things — and that can be troublesome, to say the least.

So the safest thing to do is this. Where you have to find the centre of
curvature of a curve given in parametric equations involving 6, change the
symbol of the parameter to something other than 8. Then you will be safe.
The trouble occurs only when we find C, not when we are finding R only.
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40 So, in this case, we will re-write the problem thus:
Find the radius of curvature and the centre of curvature for the curve
y =sin?t,x =2 cos t, at the point for which =%
Start off by finding the radius of curvature only. Then check your
result so far with the solution given in the next frame before setting out
to find the centre of curvature.

———— -

41 R=-2-795,i.e. 2-795 units

Here is the working.

y =sin®t .. %=2sintcost

_ Ladx .
x—Zcost..dt 2sin t

dy _dy dt _2sintcost _

dx di dx  —2sint = mcost
f = o_dl:__ o=__1_ 'Q—=-—1-
At =60 Ix cos 60 3 2
: d*y _d |_ _df dt _ sinr__ 1
AlSO—d—x;—E{ cost}—d—t—{ COSt}'dx——2sint =75
Ly |
| dx* 2
\ dy\2)3/2 1)3/2
+ N Y
| 2y il
| dx? 2
_—2:54/5 _—5V/5 _=5(2:2361)
8 4 4
=;“_'1_8_05_=_2.7951
R =-2.795

‘ All correct so far? Move on to the next frame, then.
i: e e e '14&,—7,‘.4__/;‘—
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Now to find the centre of curvature (%, k)

h =X, — Rsin 8
k=y, +Rcos@
W _ 1 ea °
where tanf =—< =—= . §=-26 34 (6 between + 90°)
dx 2
. sin(=26°34") = —0-4472; cos(~26°34") = 0-8944
Also X, =2 cos 60°=2.—;-=1
2
—an? 0 =1¥3V_3
¥, =sin® 60 { 2} 7

and you have already proved that R = —2.795.
What then are the co-ordinates of the centre of curvature?

Calculate them and when you have finished, move on to the next Jframe.

42

Results: h=-025; k=-1.75
For: h=1=(=2.795) (-0-4472) (_)-4464
=1-1250 16505
0-0969

. h=-025

and k =075 + (~2-795) (0-8944) 0-4464
=075 - 2.50 (1)'95;5
k=-1.75 3979

Therefore, the centre of curvature is the point (-0-25, -1 -75)

This brings us to the end of this particular programme. If you have

followed it carefully and carried out the exercises set, you must know
quite a lot about the topics we have covered. So turn on now and work

the Test Exercise. It is all very straightforward.

43
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44 Test Exercise—VII

Answer all questions

1. Find the angle between the curves x* + y? =4 and 5x* + y% =5 at
their point of intersection for which x and y are positive.

2. Find the equations of the tangent and normal to the curve

10
2 11—
y =1 4—x

3. The parametric equations of a function are x = 2 cos®8,y = 2 sin®4.

at the point (6, 4).

Find the equation of the normal at the point for which § =%= 45°.

4. Ifx=1+sin26,y =1+ cos 8 + cos 20, find the equation of the
tangent at § = 60°.

5. Find the radius of curvature and the co-ordinates of the centre of
curvature at the point x = 4 on the curve whose equation is
y=x%+5Ilnx—24.

2

6. Giventhat x=1+sin 8,y =sin 0 —%— cos 26, show thatéid;)gi =2. Find

the radius of curvature and the centre of curvature for the point on
this curve where 6 = 30°.

Now you are ready for the next programme.
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———

Further Problems—VI1I

1.

Find the equation of the normal to the curve y= xz—zfi at the point

(3, 0-6) and the equation of the tangent at the origin,

. Find the equations of the tangent and normal to the curve

4x> +4dxy + y? = 4 g (0,2), and find the co-ordinates of a further
point of intersection of the tangent and the curve.

. Obtain the equations of the tangent and normal to the ellipse

2
%9— + %= 1 at the point (13 cos 8, 5 sin 8). If the tangent and

normal meet the x-axis at the points T and N respectively, show that
ON.OT is constant, O being the origin of co-ordinates.

Xy +xy? —x3 - 3% +16=0, ﬁnd%ici in its simplest form. Hence

find the equation of the normal to the curve at the point (1,3).

. Find the radius of curvature of the catenary y = ¢ cosh (cz) at the

pOint (xl » 1 )

2%+t —6p - 9x = 0, determine the equation of the normal to

the curve at the point (1,7).

- Show that the equation of the tangent to the curve x = 2z cos®t¢,

Y =asin’z, at any point POt g%) is

xsint+2ycost—2asintcost=0

If the tangent at P cuts the y-axis at Q, determine the area of the
triangle POQ.

. Find the equation of the normal at the point x =a cos 8,y = b sin 6,

x? y?
of the ellipseﬁ + bE 1. The normal at P on the ellipse meets the

major axis of the ellipse at N. Show that the locus of the mid-point
of PN is an ellipse and state the lengths of its principal axes.
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10.

11.

12.

13.

14.

15.

16.

17.

2

. For the point where the curve y =_)1c_x passes through the origin,

+x?
determine:
(i) the equations of the tangent and normal to the curve,
(ii) the radius of curvature,
(iii) the co-ordinates of the centre of curvature.

In each of the following cases, find the radius of curvature and the

co-ordinates of the centre of curvature for the point stated.
2,2

1 X_ y_::
(i) S5 +3z=1at(0,4)

(i) y*=4x—x*-3atx=25
@ii) y=2tan 6,x =3 sec O at 6 = 45°

Find the radius of curvature at the point (1, 1) on the curve
x3-2xy+y3=0.

If 3gy? = x(x —a)? witha > 0, prove that the radius of curvature at

the point (32, 24) is 5—22

If x =26 —sin 20 and y = 1 — cos 26, show that% = cot 6 and that

d
dy_ -1 . , .
I asn’e If p is the radius of curvature at any point on the

curve, show that p? = 8y.

Find the radius of curvature of the curve 2x? + 2 —6y —9x =0 at
the point (1,7).

Prove that the centre of curvature (%, k) at the point P(ar?, 2at) on
the parabola y* = 4ax has co-ordinates h = 2a + 3ar* | k = ~Zar®.

If p is the radius of curvature at any point P on the parabola

x? =4ay, S is the point (0, a), show that p = 24/[(SP)*/SO], where O
is the origin of co-ordinates.

The parametric equations of a curve are x = cos ¢ + ¢ sin f,

y =sint —t cos £. Determine an expression for the radius of curvature
(p) and for the co-ordinates (h, k) of the centre of curvature in terms
of .
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18. Find the radius of curvature and the co-ordinates of the centre of
curvature of the curve y = 3 In x, at the point where it meets the
X-axis.

19. Show that the numerical value of the radius of curvature at the point
2Ua +x,)3?
all?
of curvature at the origin O and S is the point (a, O), show that

OC =2(0S).

(x1,y1) on the parabola y? = dax is . If Cis the centre

20. The equation of a curve is 4y% = x2(2 ~— x?).
(i) Determine the equations of the tangents at the origin.

(ii) Show that the angle between these tangents is tan™! (24/2).
(iii) Find the radius of curvature at the point (1, 1/2).
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DIFFERENTIATION APPLICATIONS

PART 2



1 Inverse trigonometrical functions

Programme 8

You already know that the symbol sin ' x (sometimes referred to as
‘arcsine x”) indicates ‘the angle whose sine is the value x’.
e.g. sin"' 0-5 = the angle whose sine is the value 0-5
=30°

There are, of course, many angles whose sine is 0-5, e.g. 30°, 150°, 390°,

510°,750°, 870

[e]
s .

etc., so would it not be true to write that

sin"! 0-5 was any one (or all) of these possible angles?

The answer is no, for the simple reason that we have been rather
lax in our definition of sin™' x above. We should have said that sin™! x
indicates the principal value of the angle whose sine is the value x;
to see what we mean by that, move on to frame 2.

The principal value of sin* 0-5 is the numerically smallest angle
(measured between 0° and 180°, or 0° and —180°) whose sine is 0-5.
Note that in this context, we quote the angle as being measured from 0°

Y
7717700 to 180°
/ N
/ \
/
Y
X, k\ 0 X
AY /
\\ //
~aolo " 0 to —-180°
Y
Y
Q _1.150° p
- ~
7z \\
Xy of =o° X

to 180°, or from 0° to —180°.
In this range, there are two

angles whose sine is 0.5, i.e. 30°

and 150°. The principal value of

the angle is the one nearer to the

positive OX direction, i.e. 30°.

sin10.5 = 30°
and no other angle!

Similarly, if sin # = 0-7071, what is the principal value of the angle 67

When you have decided, turn on.
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F’rincipal value of § = 45j 3

for: sin @ =0-7071 .. In the range 0° to 180°, or 0° to —180°, the
possible angles are 45° and 135°.
M The principal value of the angle is
the one nearer to the positive OX
axis, i.c. 45°.
sin'0-7071 = 45°

X X

0D0DO000CO0O0O0O00000000000o0O0OO0000o0o0o0DoDoO0o0oOoo0oaoan
In the same way, we can find the value of tan™ /3.
If tan § =+/3 =1-7321, then § = 60° or 240°. Quoted in the range 0° to
180° or 0° to —180°, these angles are 8 = 60° or —120°.
Y P Y
2400~ e
! \

Q Yy Q Yy

The principal value of the angle is the one nearer to the positive OX
direction, i.e. in this case, tarr 'a/3 = ....ocovieivirenennn.

tan"'/3 = 60° 4

Now let us consider the value of cos™ 0-8192.
From the cosine tables, we find one angle whose cosine is 0-8192 to be
35°. The other is therefore 360° — 35°, i.e. 325° (or —35°).

Y P
35°
X, X, 0 X
_35°
v e

Of course, neither is nearer to OX: they are symmetrically placed. In
such a situation as this, it is the accepted convention that the positive
angle is taken as the principal value, i.e. 35°, .. cos”! 0-8192 = 35°

So, on your own, find tan™* (-1). Then on to frame 5.
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5 | tan™ (-1) = —45°]

For, if tan 8 = -1, 6 = 135° or 315° P Y
-1~135°
A\
\
X, 0 X
-a5°
Y, Q
In the range 0° to + 180°, these angles are 135° and —45°.
The one nearer to the OX axis is —45°. . Principal value = —45°.

tan™! (1) = —45°
Now here is just one more:
Evaluate cos™* (—0-866)
Work through it carefully and then check your result with that on frame 6.

6 Fos-l(—o.sss) =150°

For we have:

cos £=0866 .. E=30°

~ 8 =150°or210°

In the range 0° + 180°, these
angles are § = 150° and —150°
Neither is nearer to the positive

OX axis. So the principal value is
X taken as 150°.

cos™ (—0-866) = 150°

Yl
So to sum up, the inverse trig. functions, sin"*x, cos™' x, tan™'x
indicate the p.........cccoonuee. Vittriieencraeeeeens of the angles having the value
of the trig. ratio stated.
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principal value

Differentiation of inverse trig. functions
Sin"'x, cos™'x, tan"!x depend, of course, on the values assigned to x.
They are therefore functions of x and we may well be required to find
their differential coefficients. So let us deal with them in turn.

(i) Lety = sin 'x. We have to findg‘)l:—

First of all, write this inverse statement as a direct statement.
y=sintx L ox=siny

Now we can differentiate this with respect to y and obtain a

- LAy
E’ cosy e
@1
dx cosy

Now we express cos y in terms of x, thus:
We know that cos?y + sin%y = 1
. cos?y =1 —sin®y = 1 —x? (since x = sin y)

L ocosy =+/(1-x2)
Ay 1
TdxAJ(1-x%)

& {S‘“ "} \/(11—

. d - )
Now you can determine d—;{cos lx} in exactly the same way.

Go through the same steps and finally check your result with that on
frame 9.
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9 4 cosix} = i
dx (1-x?)

Here is the working:

Let y=costx .. x=cosy
y _d;)i = :i—
T dx siny

y d_x =—sin

coszy + Sin2y= 1 - Sin2y= 1 —Cos2y= |-
siny =+/(1-x?)

Ldy -l . d _ _
de ) @ {cos‘x:}— =%

So we have two Very similar results

(i) —g—{sin"x} —
dx J(1-x%)
4 . Different only in sign.
i _© ~1 P S
(ii) o {cos x} (1-x%)
Now you find the differential coefficient of tan™" x. The working is

slightly different, but the general method the same. See what you get and
then move to frame 10 where the detailed working is set out.

2

10 4 tantyx | = —1
dx * 1+x?

Working: Lety =tanx .. x=tany.
£= sec’y=1+tan?y=1+x2
dx &y 1
_—= + 2 S ==
o Y T TERe

41 x } =1
dx 1+ x?
Let us collect these three results together. Here they are:-

ad;{sin‘lx = \%Tl—_x‘i) ................... @)
™ {cos“x } = \/(_ll—xz) ................... (i)
%{tan“x} =1i7 ................... (iii)

Copy these results into your record book. You will need to remember them.
On to the next frame.
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Of course, these differential coefficients can occur in all the usual 11
combinations, e.g. products, quotients, etc.

Example 1. Find % ,given that y = (1 —x%) sin'x
Here we have a product

'éZ=_2
..dx(l x%)

Ja 1—x2)+ sin”!x (—2x)

=/(1-x2) - 2x.sin x

Example 2. If y = tan™ (2x = 1), find-d%

d
This time, it is a function of a function.
@} = _-——-—1 2 = ———i—‘——
dx 1+(2x—1* ° 1+4x? —4x+1
2 1

v ax?—dx 2 -2x+1

and so on.

12

Here you are. Here is a short exercise. Do them all: then check your
results with those on the next frame.

Revision Exercise

Differentiate with respect to x:
1. y=sin™ 5x
2. y=cos! 3x
3. y=tan! 2x
4. y=sin"t(x?)
5. y=x? .sin'l(%)

When you have finished them all, move on to frame 13.
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- . d 1 5
=sin! 5x . 2= =
FEMLSX VA= (5%)%} S V{1 -25x%
_ dy -1 — 3
2. = 1 = = =
R e e R T
- . dy 1 2
3. = ! L= = =
y=tan" 2x & 1+ (x)? .2 1T 4x2
. . d 1 2x
4, =sin(x?) . ¥ = =
Y e = Ty X T
=2t XY - Y- 21 T -1 X
5. y=x%.sin (2) X \/{1_ (5 2}. + 2x. sin (2)
2

Right, now on to the next frame.

1 4 Differential coefficients of inverse hyperbolic functions

In just the same way that we have inverse trig. functions, so we have
inverse hyperbolic functions and we would not be unduly surprised if
their differential coefficients bore some resemblance to those of the
inverse trig. functions.

Anyway, let us see what we get. The method is very much as before.

(i) y=sinh'x To find d—;’

d
First express the inverse statement as a direct statement.
Ll . dx dy 1
=sinh™x . x=sinhy . ==coshy - Z2=—r
Y > dy cosh y dx coshy

We now need to express cosh y in terms of x
We know that cosh?y —sinh®y =1 .. cosh®y =sinh?y + 1 =x?+1
cosh y =/(x? +1)
- 1
%;\/(le 1) cgix {smh 1x} T 1)
Let us obtain similar results for cosh " x and tanh™' x and then we will
take a look at them.

So on to the next frame.
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a 5
We have just established dx{ sinh” x} \/(x ) 1
i) y= cosh'x .. x=coshy
® L dx sinhy . 1
T dy Y " dx  sinh y

Now cosh?y —sinh?y =1 . sinh®y =cosh®’y —1=x% -1
" sinhy =+4/(x* ~ 1)

dy 1 df 4\ 1
Tdx VP -1) dx {“’Sh }_\/(x’—l)

Now you can deal with the remaining one

dy
f = tanh™! = e
I ta X, =

Tackle it in much the same way as we did for tan™ x, remembering this
time, however, that sech?x = 1 — tanh®x. You will find that useful.

When you have finished, move to frame 16.

y =tanh™'x %= 12 16

y=tanhlx .. x=tanhy

for:

. dx 2, 21— 2,12 - B
" dy sech®’y =1—tanh®’y =1—-x* .. =
4 SN
dx {tanh x} 1-x?

Now here are the results, all together, so that we can compare them.

dd {smh’ } I 1+ I —— @v)
Ed; (cosh"‘x} =\7(x.2_1~—1) ................ )
dix{tanh“x}= 1 —1x2 ................ (vi)

Make a note of these in your record book. You will need to remember
these results.

Now on to frame 17.
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17 Here are one or two examples, using the last results.

Example 1. y =cosh™! {3—2x}
LAy _ 1 -2 _ -2
Tdx JIB-2 - VO —12x +4x7 — 1)
V(8= 12x +4x2) HN/(x?* —3x+2) V(x* -3x+2)
= tapp-1 (3% —_—
Example 2. y =tanh ( 7 )
dy_ 1L 3 1 3
Cdx 1-(&)2 4%y
4 16
_ 16 3_ 12
16-9x% "4 16— 9x?
Example 3. y=sinh™ {tanx}
SR SR S secix
" dx Nf(tan’x + 1) Vsec?x
=secx

18 Here are a few for you to do.

Exercise
Differentiate:
1. y =sinh™® 3x
S5x
_ =-1{ A
2. y =cosh (2 )

3. y = tanh™! (tan x)
4. y=sinh™ \/(x2 - 1)
5. y =cosh™ (e?¥)

Finish them all. Then turn on to frame 19 for the results.
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Results: 19

L. y=sinh™ 3x . Z—i =\/{(3x)21+ T 3=\/(9x23+1)
2. = cosh™? X 1 5—_ >
= ( ) dx\/{z_x‘) } 2\/{2_21_1}
- 5 - 5
) \/(25x2—4) V(25x% —4)
3. y=tanh! (tanx) .. %= 1—_—;—112—; Csec’x = 1—%7;
4. y=sinh™ {{/(x* - 1)}

dy _ 1 1., o3 B 1
ax JxT -1+ 1)'3(" -1 @) V2 -1)

dy 1 2 2e2¥

3. y =cosh™® (e?¥) .. o i/W‘T}— 2e*X = Wx—__'l)___

All correct?

On then to frame 20.

Before we leave these inverse trig. and hyperbolic functions, let us

look at them all together. 2 u
Inverse Trig. Functions Inverse Hyperbolic Functions
dy d
Y dx y d_))c)
.- 1
sin”x 1 sinh™ x —_—
VURED Vet +1)
cos™'x N cosh™ x L
V(1 - x?) V- 1)
- 1 1
1 -1
tan™" x T+ 2 tanh™" x =32
It would be a good idea to copy down this combined table, so that you
compare and use the results. Do that: it will help you to remember them
and to distinguish clearly between them.
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21 Before you do a revision exercise, cover up the table you have just copied
and see if you can complete the following correctly.

p—

6.

Ify=sm1x,j—i:=..
Ify=cos“x,§—§:=.
If y =tan” x,%=.
If y = sinh™ x,zy-
If y = cosh™ x,Z

If y = tanh™ ,gy—

Now check your results with your table and make a special point of
brushing up any of which you are not really sure.

22

Revision Exercise

Differentiate the following with respect to x:

1.

2.
3.
4
5

Take care with these; we have mixed them up to some extent.

tan™! (sinh x)
sinh™ (tan x)
cosh™ (sec x)
tanh™ (sin x)

(X
sin ‘(—)
a

When you have finished them all — and you are sure you have done
what was required — check your results with those on frame 23.
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Solutions 2 3

d 1
IS a 1.0 =
1. y = tan™! (sinh x) i {tan x} e
Lay _ 1 _coshx _
S T 1T sinbex cosh x osh x sech x
2. y =sinh™! (tan x) d J sinh™ x } \77+—)
S S S =sec x
" dx \/(tan’x + 1) Vsectx
a d gl 1
3. y = cosh™ (sec x) i cosh™ x —\/(7_—1)
L dy _ 1 _secx.tanx

il P SRR Xx.t =
dx +/(sec*x —1) secX-aNX = Jtan? x

=secx
4, y = tanh™ (sin x) c;ix {tanh~1 x} =1 —1x2
dy . —5— .COSX = —5 - =secX
dx 1-—sin‘x cos“x
— win-1) X dj.. -1 _ 1
5. y =sm {a—; d—;{SII’] x}—\/(l_xz)
Ldy _ 1 1_1 1
N R T
(- Vi-%)
L !
a

VEZ2) Ve
a

If you have got those all correct — or nearly all correct — you now
know quite a lot about the differential coefficients of Inverse Trig. and
Hyperbolic Functions.

You are now ready to move on to the next topic of this programme, SO
off you go to frame 24.
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24 Maximum and minimum values (turning points)

You are already familiar with the basic techniques for finding
maximum and minimum values of a function. You have done this kind of
operation many times in the past, but just to refresh your memory, let us
consider some function, y = f(x) whose graph is shown below.

Y y = f(x)

C

/7

A
!
I
|
1
1
!
|
|

|
i
|
]
1
[}
L
o] x4 X2 X3 X

At the point A, i.e. at x = x;, a maximum value of y occurs since at A,
the y value is greater than the y values on either side of it and close to it.

Similarly,at B,y isa .....c.ccoeee.. ..., since the y value at the point B is
less than the y values on either side of it and close to it.

25 AtB,yisa value.

{max) Point of
A inflexion
C

i
!
1
'
i
!
|
1
X

I
|
|
1
|
!
|
1
|
i
X

|
|
i
0 1 X 3 X

The point C is worth a second consideration. It looks like ‘half a max.
and half a min.” The curve flattens out at C, but instead of dipping down,
it then goes on with an increasingly positive slope. Such a point is an
example of a point of inflexion, i.e. it is essentially a form of S-bend.

Points A, B and C, are called turning points on the graph, or
stationary values of y, and while you know how to find the positions of
A and B, you may know considerably less about points of inflexion. We
shall be taking a special look at these.

L On to frame 26.
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If we consider the slope of the graph as we travel left to right, we can
draw a graph to show how this slope varies. We have no actual values for
the slope, but we can see whether it is positive or negative, more or less
steep. The graph we obtain is the first derived curve of the function and

we are really plotting the values of Z—;} against values of x
y = f{x)

Point of
inflexion

=<

Yy

We see that at x = x, x,, X3, (corresponding to our three turning

. dy . .
points) the graph of d%)c is at the x-axis — and at no other points.

Therefore, we obtain the first rule, which is that for turning points,
D _
T e

Turn on to frame 27.
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d
27 For turning points, A, B, C, 4 -

If we now trace the slope of the first derived curve and plot this
against x, we obtain the second derived curve, which shows values of

d’y .
~% against x.
dx2 g v
= fla)
| C
|
) '
y / ; l
: B !
: I |
) e %2 | X3 X
1 \ :
| |
i | !
o | | |
ax | | ! y = f'lx)
| : 1
! 1
’ | I ! i
’ I'\/xz o
| 1
| ! ! |
[}
T o !
] I
| 1 1 : :
a2y | : ! ! y = "(x)
dx? ! ! T\ ! I
. I I ! I
!
0 e 1X2 13 X
| =2 NS
| I |
|
Y, :

From the first derived curve, we see that for turning points,

dy _
dx
From the second derived curve, we see that
d’y
for maximum y, pl is negative
2
for minimum y, s is positive
d’y .
for P-of-, Ex_}; is zero

Copy the diagram into your record book. It summarizes all the facts on
max. and min. values so far.
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From the results we have just established, we can now detérmine 28

(i) the values of x at which turning points occur, by differentiating

the function and then solving the equation i—% =
(ii) the corresponding values of y at these points by merely substitut-

ing the x values found, in y = f(x)
(iii) the type of each turning point (max., min., or P-of-1) by testing

2
in the expression for Z—x_};
With this information, we can go a long way towards drawing a sketch

of the curve. So let us apply these results to a straightforward example in
the next frame.

Example. Find the turning points on the graph of the function 2 9
2
yE3-5 - 2x + 5. Distinguish between them and sketch the graph of

the function.

‘ There are, of course, two stages:

| (i) Turning points are given by % =0
(if) The type of each turning point is determined by substituting the
2
roots of the equation % =0 in the expression for Z—x%i

d*y . . . .
If (EJQ—) is negative, then y is a maximum,

» »  » positive, » »» » minimum,

3 » i3]

zero, » » » o point of inflexion.

We shall need both the first and second differential coefficients, so find

R dy _
them ready. If y = 377 2x + 5, then il and
ay _
dx2 .............. .

238



Programme 8

0000000 pO00D0O000O0D00D000D0CcO0000000000000

@ _
dx

Cxr=x-2=0 L (x-2)(x+1)=0 . x=2andx=-1

i.e. turning points occur at x =2 and x =—1.

(i) Turning points occur at

(ii) To determine the type of each turning point, substitute x = 2 and

then x = —1 in the expression for Z—;%)
. dy 2 aives e
Atx =2, dx2 =4 —1 =3, ie. positive .. x =2 gives Ymin.
d2
Atx =-1, 2 =-2—1,i.e. negative .. x =—1 gives Ymax.

Substituting in y = f(x) givesx =2, yin = % andx= =1, Ymax = 6%

Also, we can see at a glance from the function, that whenx = 0,y = 5.

You can now sketch the graph of the function. Do it.

v |

. 6V
3 b

We know that (i) atx =—1, Yax = 6%

i

I

! B

L qZ/3p- - = — -

I L | 1 1 1 i) atx=2 =1
Xy 1 0 1 2 3 4 5 X (i) » Ymin =13

(ii) atx=0,y=5
Joining up with a smooth curve gives:

Y
A - x3 _x% _
. Y, 3 2 2x+5
]
\ 5
! B
1 L4
1 1 lL | 1 1l
X 1 ) 1 2 3 4 5 X

There is no point of inflexion like the point C on this graph. Move on.
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All that was just by way of refreshing your memory on work you have 3 2
done before. Now let us take a wider look at these

Points of Inflexion

The point C that we considered on our first diagram was rather a
special kind of point of inflexion. In general, it is not necessary for the
curve at a P-of-I to have zero slope.

A point of inflexion is defined simply as a point on a curve at which
the direction of bending changes, i.e. from a right-hand bend to a left-
hand bend, or from a left-hand bend to a right-hand bend.

The point C we considered is, of course, a P-of-I, but it is not essential at
a P-of] for the slope to be zero. Points P and Q are perfectly good points
of inflexion and in fact in these cases the slope is

positive
negative } Which?
Zero
At the points of inflexion, P and Q, the slope is in fact 3 3

positive

Correct. The slope can of course be positive, negative or zero in any one
case, but there is no restriction on its sign.

Q0000000000000 000000000 000N 000U OoOOoooOo

A point of inflexion, then, is simply a point on a curve at which there is a
change inthed ................... of b

i 240



Programme 8

34 Point of inflexion: a point at which there is a change in the

dy
dx

dzy
dx?

direction of bending J

O0D0D0o0o0o0DD0D000000C0CcO0QO0O00O0O0CcoOOoOO0OoOooooooooo

If the slope at a P-of-1 is not zero, it will not appear in our usuval max.
and min. routine, for % will not be zero. How, then, are we going to
find where such points of inflexion occur? Let us sketch the graphs of the
slopes as we did before.

Y

P and Q are points
of inflexion.

positive slope than +.

£ I

always negative.

34
*dx
value but not zero.

o

b —

8

<

l
N x=Xx4 and x = X5
| 2
2y _q

d*y

&

Q
8
»
8
/
>
=
[ )

We see that where points of inflexion occur =0

So, is this the clue we have been seeking? If so, it simply means that to
find the points of inflexion we differentiate the function of the curve

2
twice and solve the equation Z—x%f =0.

That sounds easy enough! But turn on to the next frame to see what is
involved.

\ _ Incurve 1, the slope is always
RHA™ - positive, ++ indicating a greater
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Similarly in curve 2, the slope i

d . .
In curve 1, = reaches a minimt

d .
In curve 2, Zi% reaches a maxim
/\‘ value but not zero. |

For both points of inflexion, i.
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We have just found that

35

where points of inflexion occur,

day

dx?

2

0

This is perfectly true. Unfortunately, this is not the whole of the story,

2
for it is also possible for ZTJ;
inflexion!

2

So if we solve e

to be zero at points other than points of

=0, we cannot as yet be sure whether the solution

x = q gives a point of inflexion or not. How can we decide?
Let us consider just one more set of graphs. This should clear the

matter up.

Let S be a true point of inflexion and T a point on y = f(x) as shown.

Clearly, T is not a point of inflexion,

Y
y +
T
S +t
y + |
| I
I |
+ | 4 |
+ ! !
| + 1
o] }xs 1Ly X
|
| !
| 1
f 2 i
dy - i + |
Py |
dx 1 OI
10 :
; |
0 | Xg :x7 X
|
! i
) |
dzy : :
dx? : !
H
o] /Is X7 X
Yi

36

The first derived
curves could well
look like this.

Notice the difference between the two second derived curves.

Although Z—x{ is zero for each (at x = x¢ and x = x), how do they differ?

When you have discovered the difference, turn on to frame 37.
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37 In the case of the real P-of-I, the graph of sz crosses the x-axis.

d*y

In the case of no P-of-l, the graph of e

only touches the x-axis

d? .
and Elx_%) does not change sign.

00000000000 0000000 DO00000000000o000ooD0OQ
This is the clue we have been after, and gives us our final rule.

) d*y . d*y
For a point of inflexion, e = Q gnd there is a change of sign ofaj
as we go through the point.
(In the pheoney case, there is no change of sign.)
So, to find where points of inflexion occur, )
d
(i) we differentiate y = f(x) twice to get d;%
2
(ii) we solve the equation'f?{ =0
2
(iii) we test to see whether or not a change of sign occurs in d—x}; as we

go through this value of x.
d* .
For points of inflexion, then, c_i;c%} =0, withe ........... of S.rvvernns

2
3 8 For a P-of-, %;c% =0 with |change of sign

This last phrase is all-important.
OUuoO0O0pDO0O000000000000000000000000000000B0

Example 1. Find the points of inflexion, if any, on the graph of the function

x> x?

y=% - -2x+s.

3 2
2
() Diff twice. 2 =x? —x-2, 4 =251

B | —

For P-of-I, - Ly =0, with change of sign. ", 2x—-1=0 .. x=

If there is a P-of-, it occurs at x = 1 1
(ii) Test for change of sign. We take a point just before x = 5, ie.x =54,

L 1 1 . -
and a point just after x = 5; i.e. x ==+ a, where a is a small positive

2 2
. . , , d*y
quantity, and investigate the sign of ) at these two values of x.

Turn on.
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2
4y -1 39

dx2
: o &yl
(i) Atx—§ a,d?—2(5 a) 1_-—1 2a—1
= —2a (negative)
i S Yo N SR _
(ii) Atx—2+a,dx2 —2(2+a) 1=1+4+2a-1
= 2a (positive)
. . o d*y 1
There is a change in sign ofa2 as we go throughx=5

. . . 1
.. There is a point of inflexion at x = )

If you look at the sketch graph of this function which you have
already drawn, you will see the point of inflexion where the right-hand
curve changes to the left-hand curve.

<6l .
1 Point of x3  x2
/‘;\QF lexion y=3 -5 -2x+5

1

o
-
nN
Wt
x

Example 2. Find the points of inflexion on the graph of the function 40
y=3x*-5x*+x+4

dty

dx?
values of x at which there are possibly points of inflexion. We cannot be

First, differentiate twice and solve the equation = 0. This will give the

2
‘—%’ . We will do that

sure until we have then tested for a change of sign in a

in due course.
2

So start off by finding an expression for 3}%} and solving the equation
d’y _
ax =0

When you have done that, turn on to the next frame.
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41 We have: y=3x5-5x*+x+4
Zy = 15x% —20x3 + 1
. IZ_Z - 3 2 - 2 (y —~
- I 60x°> — 60x* = 60x*(x — 1)
d’y _ . .
For P-of-], e A 0, with change of sign.

L 60x3(x—1)=0 . x=0orx=1

If there is a point of inflexion, it occurs at x = 0,x = 1, or both. Now
comes the test for a change of sign. For each of the two values of x we
have found, i.e. x = 0 and x = 1, take points on either side of it, differing
from it by a very small amount.

(i) Forx=0

Atx=-a, Z—;{ = 6(-a)*(—a—1)

_— :(+) ) (2—) —_negatlve gg sign _ﬁlange-

x=ta, 3 =60(+a)*(a—1)
= (+H)(t)(-) = negative

(i) Forx =1

Atx=1- d—{ 60(1 —a)2(1 —a—1)

) 2y _( ) )2 negative Qhange_ in sign.
Atx=1+a,73=60(1+a)(1+a-1)| - P-of-1.
= (+)(+)(+) = positive

Therefore, the only point of inflexion occurs when x = 1, i.e. at the point

x=1,y=3

That is just about all there is to it. The functions with which we have
to deal differ, of course, from problem to problem, but the method
remains the same.

Now turn on to the next frame and complete the Test Exercise awaiting
you. The questions are all very straightforward and should not cause you
any anxiety.
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Test Exercise— VIII 42

Answer all the questions.

1. Evaluate (i) cos™(-0-6428), (ii) tan™(—0-7536).
2. Differentiate with respect to x:

(i) y=sin'(3x +2)
cos'x

(i) y = <

-2 1 X
(i) y =x*tan (2)
(iv) y =cosh™(1 - 3x)
(v) ¥ =sinh™ (cos x)
(vi) y =tanh™ 5x
3. Find the stationary values of y and the points of inflexion on the

graph of each of the following functions, and in each case, draw a
sketch graph of the function.

@ y=x*-6x2+9x+6
iy 1
(i) y=x+-
X

(iii) y=x¢

Well done. You are now ready for the next programme.
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Further Problems— VI

1. Differentiate (i) tan™ {

LIfy=

1+tanx
1—tanx

(i) xv/(1 —x2) —sin™? /(1 —

sin” - prove that
\/(1 —xz)’
@ Q xz) —-xy+ 1

i) (1- 2)‘” =

.. dy I OV }
. Fmd(zx—when (i) y=tan {1 e

2x
. - _l
(i) y =tanh {1 +x2}

. Find the co-ordinates of the point of inflexion on the curves

() y=(x-2>*x-7)
(i) y =4x> +3x2 - 18x -9

. Find the values of x for which the function y = f(x), defined by
y(3x —2) =(3x — 1)? has maximum and minimum values and

distinguish between them. Sketch the graph of the function.

. Find the values of x at which maximum and minimum values of y

and points of inflexion occur on the curve y = 12 Inx + x2 — 10x.

. If 4x? + 8xy + 9% —8x — 24y + 4 = 0, show that when Z—i’ =

_ d’y 4 ; .
x+y=1and X -5y Hence find the maximum and

minimum values of y.

. Determine the smallest positive value of x at which a point of

inflexion occurs on the graph of y = 3 e%* cos(2x — 3).

42
. Ify® = 6xy —x® — 1, prove that v 2—32/—)‘— and that the maximum

dx y* —2x
value of y occurs where x> = 8 + 24/14 and the minimum value
where x® = 8 —2./14.
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10.

11.

12.

13.

14.

15.

16.

17.

For the curve y = ¢ sin x, express % in the form Ae™ cos(x +a)

and show that the points of inflexion occur at x = —2—+ kn for any

integral value of k.

Find the turning points and points of inflexion on the following
curves, and, in each case, sketch the graph.

() y=2x3-5x? +4x -1
o _x(x—1)
) y="5T=—>"
(ili) y =x + sin x (Take x and y scales as multiples of 7.)

Find the values of x at which points of inflexion occur on the
following curves.
2
() y=e™* (i) y=e?¥(2x2 +2x + 1)
(iii) y=x*-10x2 + 7x + 4
The signalling range (x) of a submarine cable is proportional to

r? In ( 1) where # is the ratio of the radii of the conductor and cable.

Find the value of # for maximum range.

3
The power transmitted by a belt drive is proportional to Ty — W
where v = speed of the belt, T = tension on the driving side, and
w = weight per unit length of belt. Find the speed at which the
transmitted power is a maximum.

A right circular cone has a given curved surface A. Show that, when
its volume is a maximum, the ratio of the height to the base radius

is\/2:1.

The motlon of a particle performing damped vibrations is given by

y =¢"sin 2t, y being the displacement from its mean position at
time ¢. Show that y is a maximum when ¢ = % tan™* (2) and determine
this maximum displacement to three significant figures.

The cross-section of an open channel is a trapezium with base 6 cm
and sloping sides each 10 cm wide. Calculate the width across the

open top so that the cross-sectional area of the channel shall be a
maximum.
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18.

19.

20.

The velocity (v) of a piston is related to the angular velocity (w) of

the crank by the relationship v = cor | sin 6 + 2—1 sin 26 ; where

= length of crank and I = length of connecting rod. Find the first
positive value of 8 for which v is a maximum, for the case when
[=4r

A right circular cone of base radius 7, has a total susface area S

and volume V. Prove that 9V2 =72 (82 — 2m%S). If S is constant,
prove that the vertical angle (6) of the cone for maximum volume

is given by 8 =2 sin™* (%—)
d*x dx
Show that the equation 4 —5 a +4u— ar + u%x = 0 is satisfied by

x=(At+B) gHil , where A and B are arbitrary constants. If

x =0and Z—: = C when t =0, find A and B and show that the

maximum value of x is i—g— and that this occurs when ¢ = ;27
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1 Partial differentiation

The volume V of a cylinder of radius
r and height & is given by

i V=nrih
! i.e. V depends on two quantities, the
TS values of 7 and A.

If we keep r constant and increase the height h, the volume V will
increase. In these circumstances, we can consider the differential coef-
ficient of V with respect to 4 — but only if r is kept constant.

i.e [ﬂ] is written v
"~ Ldh r constant oh
Notice the new type of ‘delta’. We already know the meaning of

&y dy oV V., L .
a—and Vs Now we have a new one, AT called the partial differential
coefficient of V with respect to A4 and implies that for our present

purpose, the value of r is considered as being kept

2 constant

0o0DO0QoOOooO0o0oCcoODooUiOoCcoo0OgnDoDoo0o0ooooO0oooooon
., 9V . . . . .
V = arth. To find g_h’ we differentiate the given expression, taking all
symbols except V and h as being constant .. ?TZ= ar?.l = gqr?

Of course, we could have considered / as being kept constant, in which
case, a change in r would also produce a change in V. We can therefore

talk about‘g—r\{ which simply means that we now differentiate V = nrh

with respect to r, taking all symbols except V and r as being constant for
the time being. Y
.~ =un2rh=2nrh
ar
In the statement, V = nr2h, V is expressed as a function of two
variables, r and h. It therefore has two partial differential coefficients,
one with respect to .................... and one with respect to ....................
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One with respect to r; one with respect to &

0000000000000 000000NO000000000D0BO0oOOooO

Another Example

Let us consider the area of the curved
T surface of the cylinder.

h ) A=2nrh

A is a function of r and A, so we can

oA oA
ﬁnd-é-;- and 7

To find%—? we differentiate the expression for A with respect to r, keep-

ing all other symbols constant.

To find g—h we differentiate the expression for A with respect to %, keep-

ing all other symbols constant.

o 0A _ 0A
So,if A=2nwrh, then By s and 7 S e reaanans
amrn| 24 0A _
A=2nrh 3 2nh| and YA 2wr

OO00000UO0OOO0DO00CO000000D00000uLD0O000000oDoOooO0Aaon

Of course, we are not restricted to-the mensuration of the cylinder.
The same will happen with any function which is a function of two
independent variables. For example, consider z = x?y3.

Here z is a fUnCtIOH of x and y. We can therefore ﬂnd-; and gy

(i) To ﬁnd = , differentiate w.r.t. x, regarding y as a constant.

a
g %;C =2x y3 = 2xy3
(ii) To find %j-} , differentiate w.r.t. y, regarding x as a constant.
2 -
ay =x2 3y? = 3x%y

Partial differentiation is easy! For we regard every independent
variable, except the one with respect to which we are differentiating,
as being for the time being ....................
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5 constant l

DOOO0O0O0OOODOONODO0ONOO0O00C00DODNO0O00D0NNON000noO
Here are one or two examples:

Example 1. u=x*+xy+y*
(i) To find %i—i , we regard y as being constant.

Partial diff. w.r.t. x of x> = 2x

” ” » % ” xy=yp  (yisaconstant factor)
» o » » g2 (y?isa constant term)
ou _
3u ax xty
@ii) To find 3 we regard x as being constant.
Partial diff. w.r.t. y of x? = (x? is a constant term)
” ” » »» xp=x (xisaconstant factor)
i 3y ”» 9 y2 = 2y
ou
= =y +
ay x +2y
Another example on frame 6.
6 Example 2. z=x3+y3 - %
%)Z'c-__ 3x2? + 0~ 4xy = 3x2 —4xy
9z 2 2 2 2
LZo0+3y? - =3y— 2
2y 0+3y" —2x Y
And it is all just as easy as that. )
Example 3. z=(2x =) (x +3))

This is a product, and the usual product rule applies except that we

keep y constant when finding g—i , and x constant when findingg—;

%:(u—y)(1+0)+(x+3y)(2"0)
=2x—-y + 2x+6y=4x+5y
g—;=(2x—y)(o+3)+(x+3y)(o—1)
=6x—3y - x—3y=5x—6y
Here is one for you to do. 3z

(4 — oz
If z = (4x — 2y) (3x + 5y), find ™ and %

Find the results and then turn on to frame 7.
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Results: 9z 92 _ 14y — 20
v =24x + 14y 5 x — 20y

For z = (4x —2y) (3x + 5p), i.e. product
¥ (4 -2) 3+ 0)+ Bx 4 5) (4= 0)
=12x—6y +12x + 20y = 24x + 14y
=(4x—29)(0+5)+(Bx+5y)(0—2)

= 20x — 10y — 6x — 10y = 14x — 20y
There we are. Now what about this one? -

xX-y . ., 0z oz
E: . = = ol
xample 4. If z Pt find 3 nd T

Applying the quotient rule, we have
@t Q-0)-(2x-y)(A+0)__ 3y

ax (e +p)? (x+y)
g E_EENO-D)-Qx=p) @+ 1) 3
ay (x +y)? (x +»)*
That was not difficult. Now you do this one:
Sx + 0z

If z= 'x—l—"deand_

When you have finished, on to the next frame.

% iy | [z, 1ix
x (=207 |oy (x-2p)?

Here is the working:

@) To find 2,

7 We regard y as being constant.

_x-2)(+0)-Gx+y)(1-0)
ax (x—2p)*
5x —l0y—S5x—y__—lly
(x—2)? (x—2y)°
(ii)) To ﬁnd-%f , we regard x as being constant.
L0z _(x—2y) 0+ 1)—£5x+y)(0"£)
¥y (x-2)°
_x—2p+10x+2y  llx
-2 -2w)
In practice, we do not write down the zeros that occur in the working,
but that is how we think.
Let us do one more example, so turn on to the next frame.
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az

Example 5. If z =5sin(3x + 2y) find T

0z
and 5

Here we have what is clearly a ‘function of a function’. So we apply
the usual procedure, except to remember that when we are finding

. 0z
(i) F treat y as constant, and

..y 0Z
(ii) E we treat x as constant.

Here goes then.
z _ KA
Foie cos(3x +2p) X > (3x +2y)
=cos(3x +2y) X 3=3 cos(3x + 2y)

0z

0 .
—_— = + —_
% cos(3x +2y) X 5 (BGx +2p)

=cos(3x +2y) X 2=2 cos(3x + 2p)

There it is. So in partial differentiation, we can apply all the ordinary
rules of normal differentiation, except that we regard the independent
variables other than the one we are using, as being for the time

being .....cccecernennn

10

constant

JoOO0OD00NO00QOONO00000000000000000000000
Fine. Now here is a short exercise for you to do by way of revision

Exercise

In each of the following cases, find oz and oz
ox oy

1. z=4x* +3xy +5p%
2. z=(Cx+2y)(4x—5y)"
3. z=tan(3x +4y)

4 7= sin(3x + 2y)

xy

Finish them all, then turn to frame 11 for the results.
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Here are the answers: 11
1. z=4x?+3xy + 5y?

0z 0z

— + —

3 8x + 3y a =3x+ 10y

2. z=Cx+2y)(4x—5y)
0z _ _ 0z _ ., _
% 24x — Ty 2 Tx — 20y

3. z=tan(3x +4y)

2 _3 sec?(3x +4y) %2 _y sec?(3x +4y)
ox oy e
4 z= sin(3x +2y)
Xy

3z _ 3x cos(3x + 2y)—— sin(3x +2y)

ox xty -
0z _ 2y cos(3x +2y)—sin(3x +2y)
dy xy*

DDDDDDDDDDDDBDDDDDDDDDDDDDDDDDDDDDDDDD
If you have got all the answers correct, turn straight on to frame 15.

If you have not got all these answers, or are at all uncertain, move to
frame 12.

Let us work through these examples in detail.

1. z=4x? +3xy +5y? 12
To find %Z-C , regard y as a constant.

.'--g-i=8x+3y+0, ie. 8x+3y . a— =8x +3y

Similarly, regarding x as constant,

9z _ .9z
2y 0+ 3x + 10y, i.e. 3x + 10y oy 3x+10y

2. z=(3x+2y)(4x —5y) Product rule.
=@Bx+20) (@D + (@x—-5)(3)
=12x+8y+12x— 15y =24x— Ty

0
a—j: (3x +29) (=5) + (4x = 5) (2)
=—15x — 10y +8x — 10y =—7x — 20y

Turn on for the solutions to Nos. 3 and 4.
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13

3. z=tan(3x +4y)

Z = sec?(3x + 4y) (3) = 3 sec?(3x + 4y)

ox
g—; = sec?(3x + 4y) (4) = 4 sec®(3x + 4y)
4 _sin(3x +2y)
. P
9z _xy cos(3x +2y) (3) —sin(3x +2y) (»)
ax x%y?
_3x cos(3x + 2y) — sin(3x + 2y)

x%y

Now have another go at finding g—; in the same way.

Then check it with frame 14.

14

Here it is:
,= sin(3x + 2y)

Xy

. 2z _xp cos(3x + 29).(2) = sin(3x + 29).(x)
‘ ay x2y2

_ 2y cos(3x +2y)—sin(3x + 2y)

xy?

That should have cleared up any troubles. This business of partial
differentiation is perfectly straightforward. All you have to remember is
that for the time being, all the independent variables except the one you
are using are kept constant — and behave like constant factors or constant
terms according to their positions.

On you go now to frame 15 and continue the programme.
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Right. Now let us move on a step. 15
Consider z = 3x? + 4xy — 5y?

dz _ 92 _4x-
Then ax-6x+4y and 3 4x — 10y

The expression %)Z; = 6x + 4y is itself a function of x and y. We could

therefore find its partial differential coefficients with respect to x or to y.
(i) If we differentiate it partially w.r.t. x, we get:
d [oz N 4
P {‘ax} and this is written ——=3 2 (much like an ordinary second
differential coefficient, but W1th the partial 3)
aZ
L3 —— +

! (6x 4y)=6
This is called the second partial dlfferentlal coefficient of z with respect
to x.

(ii) If we differentiate partially w.r.t. y, we get:
2

0z 0%z
3 { ax} and this is written 5y o

Note that the operation now being performed is given by the left-hand
of the two symbols in the denominator.

2
%z a(az} a{6x+4y}=4

3y.0x oy lox
So we have this:
z=3x%+4xy — 5y° 16
dz _ 0z _, _
= =6x +4y 3 4x — 10y
2z
P 7 =6
a 4

ay ax
Of course, we could carry out sirnilar steps with the expression for-g% on

the right. This would give us:
2z

P
%z _

- 10

9%z 3 [dz 3%z
tet —
Note that 3y o means — Z) [ax} 3y MeAns ......oevvevveevnnes
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17 iz_ means _i_). ?—g
0x.0y ox | oy

00o0Cc0000000CO0O00NDODOU000DD0N000C0DOo0OonEooo

Collecting our previous results together then, we have

z=3x? +4xy - 5y*

0z 0z
.= =6xt4 L — =4x -
/ 3% 6x +4y 7 oy 4x - 10y
7,02z {y 8%z
I ‘( = V=L = —
:: ax? L 10
\ 2, \ 2
% 0%z ‘A 0‘z =4
ay x 0x.0y
o’z _ 3%z

W —_— =
e see, in this case, that 3y 2 30 5
There are then, two first differential coefficients, and
four second differential coefficients, though the last two

seem to have the same value.
Here is one for you to do.
3z 3%z ¥’z ¥’z @z
= 3 9z 9z 07z 27z 0°z
Ifz = 5x3 + 3x%y + 4y, find ax’ 3y’ ax? P ax.ay’ ayax

When you have completed all that, turn to frame 18.

Here are the results:
18 z=5x% +3x2y + 4y°

~ 0z aZ 2 2
i-w + o= =3x? +
A ax = 15x% + 6xy oy 3x® +12y
F. 3%z ,// '\ 32z
;M= =30x+ [ou==
: ™ 30x + 6y ,‘ 2" 24y
\\ aZZ ‘\ az z
£ = . =
dy.ox 6x 0x.0y 6x
Again in this example also, we see that 0%z a 2 Now do this one.
’ ay.ox ~ ox.0) .8y

It looks more complicated, but is done in just the same way. Do not rush
at it; take your time and all will be well. Here it is. Find all the first
and second partial differential coefficients of z = x.cos y — y.cos x.

Then to frame 19.
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Check your results with these. 19

Z=XCOSYy—y.COSX
When differentiating w.r.t. x, y is constant (and therefore cos y also)

" 2”7 3 y’ x 29 k2] ( 3 3 cos x b )
So we get:
oz =cosy tysinx 9z =—x.siny —cosx
ox yry. a Sy
Qil_ =y.cos X ___82 =—x.cos
ax2 y a . y
92z . 2
- +si = —in v 4 s
3y o sin y +sin x a0y sin y +sin x
92z 9%z
And agai =
agamn, dy.0x 0x.0y

In fact this will always be so for the functions you are likely to meet, so
that there are really three different second partial diff. coeffts. (and not
2
four). In practice, if you have found ai azx it is a useful check to find
5 .

axa aj, separately. They should give the same result, of course.

3’V 3’V
+ 2 +22 =
If V=In(x? + y?), prove that—— o Tyt 0
This merely entails finding the two second partial diff. coeffts. and sub-
stituting them in the left-hand side of the statement. So here goes :

V=In(x? +y?)

What about this one? 20

v _ 1 2x
x 2+r7) X2
a2v (x +92)2—2x.2x
P (* +y?)?
2 _ 2 _ 2 .
2242 —4x? - &)

(x2 +y2)2 - (x2 +y2)2
9tV . . .
Now you ﬁndTyT in the same way and hence prove the given identity.

When you are ready, turn on to frame 21.
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82V - 2x?
ax? Tk +y?)

So making a fresh start from V = In(x? + 3?), we get

21 We had found that

av__ 1 __ 2y
ay_x2+y2'2y-x2 + 2
3’V _(x?+y?)2—2p2
ay* (2 +y?)?
2Pt -4yt Pyt (ii)

&2 +y?) )
Substituting now the two results in the identity, gives
PV PV _22 -2 2P -0
axz ay2 (x +y2)2 (x2 +y2)2
_29t =2 +2x% - 2y? -0
2 +y2)2 y

Now on to frame 22.

22 Here is another kind of example that you should see.
Example 1. 1f V= f(x? +y?), show that x g;\:—y gv
Here we are told that Visa function of (x? + 2 ) but the precise nature
of the function is not given. However, we can treat this as a ‘function of
a function’ and writef '(x* +y?) to represent the diff. coefft. of the func-
tion w.r.t. its own combined variable (x? + y?).

‘-5-‘f(x +y)><—‘(x +y?)=f'(x* +y*).2x

Y ,
3 =f'(x*+y )-5; (? +p?)=f'(x* +y*).2p

V_ 3V

—_— - = "(y2 2 _ 0.2 2
x 3 y % xf'O? +y3). 2y —yfi(x? +y*)2x
= 200.1'(x* +y%) = 2op.f'(x* +y?)

=0

Let us have another one of that kind on the next frame.
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Example 2. Ifz=f[ } showthatxg- +ygz 0 23

Much the same as before.

Rl o v R o R

2o 2= b=t

ay x)  oylx
w5t ) o)
Lt
And one for you, just to get y;—r_ hand in.
If V =f(ax + by), show thatbg-\—/—ag—;/- =0

When you have done it, check your working against that on frame 24.

Here is the working; this is how it goes. 24
V =f(ax + by)
LAV _ 2
Loy =S (ax +by).ax (ax +by)
=f'(ax + by).a =a.f'(ax +5Y) e )

=f'(ax *by) 5> (ax+by)

= f'(ax +by).b=b.f @x +by) o (i)
g:—a%\; =gb.f'(ax + by)—ab. f'(ax + by)
=0

Turn on to frame 25.
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25 So to sum up so far.

Partial differentiation is easy, no matter how complicated the expres-
sion to be differentiated may seem.

To differentiate partially w.r.t. x, all independent variables other than x
are constant for the time being.

To differentiate partially w.r.t. y, all independent variables other than y
are constant for the time being.

So that, if z is a function of x and y, i.e. if z = f(x, ), we can find

2 &
0x oy
ax? oy?
9z 9%z
ay.ox ox. ay
And also: 3z _ 325
dy.0x 0x.0y

Now for a few revision examples.

2 6 Revision Exercise
1 Fi

. Find all first and second partial differential coefficients for each of
the following functions.

() z=3x% + 2y + 47

(ii) z=sinxy

Lo Xty
(iif) z =

2. Ifz=1n(e* +¢”), showthata—+g; 1.

3. Ifz=x.f(xy), express xg—— y g in its simplest form.

When you have finished check with the solutions on frame 27.
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Results
1. (i) z=3x2 + 2xy + 42 27
‘;Z 6x + 2y —g—;-—2x+8y
%z 9%z
Froat » &
9%z 3tz _
dy.ax _2_ 0x. 9y —_2_
(ii) z =sinxy
0z _ )
o Y cosxy 5y = X cosxy
%z ., . 9%z 2
oy - Y sinxy W=—x sin xy
*z _ 3’z _ -
5. o =y(—x sin xy) + cos xy 3%.3y =x(—y sinxy)+cos xy
= COos Xy — XY sin xy =cos xy —xy sin xy
Ly Xty
(iii) z oy
2 _(-y)l-(x+y)l _ 2y
w o) o=yP
0z _x- -ty 2%
ay (x—y)? (x—»)?
9’z 2) 4y
== = :
ot OGP & —y)3
82
32 o L2y = A
y X x=y) (x y)
_ =P - 22— p) (1)
8y ax x—-*
20—y —4y(x—y)
Ge—y)
-2 v
(x—»)? (x -y
_T&xt2y-— _ 2x =2y
(- y)3 T —y)? .
-_— /continued
—
/
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%z _ (=P 2x2x -1 Continuation of frame 27.
ox.0y x—y)?
= 2x—y) —dx(x—y)
G-y
2 4x

TEoy -y
Xy —4x _ T2x—2y
(x-y)y (x—»)

2. z=In(e* +¢%)

g=—l ex 22_— 1 y
ox e*+e¥’ ¢')y_e"+ey'e
9 0z _ _ eX e

ox dy eX+er Texter

__:ex +eY -1
eX+e)
0z 0z _
Ex'*"a;—l
3. z=x.f(xy)
& e f )y + £x)
ox VTS
0z _ '
Ej_x'f (xy).x
0z oz

X VT X2y f(xy) + x f(xy) —x2y f'(xy)

9z 0z _ -
X537 ay-xf(xy)—z

That was a pretty good revision test. Do not be unduly worried if you
made a slip or two in your working. Try to avoid doing so, of course, but
you are doing fine. Now on to the next part of the programme.

Turn on to frame 28.
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So far we have been concerned with the technique of partial differenti- 28
ation. Now let us look at one of its applications.

Small increments

If we return to the volume of the cylinder with which we started this
programme, we have once again that V = wrth. We have seen that we can

f1r1d~a—V with & constant, andg\-{ with
or oh
r constant.
oV _ V2
3 2nrh, oh mr

Now let us see what we get if r and &
both change simultaneously.

If r becomes r + 8r, and h becomes i + 6k, let V become V + 6V. Then
the new volume is given by
V48V =na(r+6r)2(h+58h)
=2 +2r.8r +6r*) (h+56h)
=q(r2h + 2rhér + hSr* +r28h + 2r6r8h + 5r* 5h)

Subtract V = 772k from each side, giving

SV =n(2rh.8r+ h.6r® +r26h ¥ 2r6r8h + 5r2.6h)

2q(2rhdr + r’.8h) since r and k are small and all the remain-
ing terms are of a higher degree of smallness.
L8V 2 2nrhér + nr*dh

(‘SV—"3§,6r+aV

or oh oh

Let us now do a numerical example to see how it all works out.

On to frame 29.
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2 9 Example.

A cylinder has dimensions 7 = S cm, A = 10 cm. Find the approximate
increase in volume when r increases by 0-2 cm and & decreases by 0-1 cm.

Well now, V=nrih
N 2nrh N nr?
or

oh
In this case, whenr = 5cm, h = 10 cm,

v _ - OV _ o 2.
Py 275.10= 1007 an =75°=25n
6r=0-2and 6k =—0-1 (minus because A is
sV decreasing)
L Ve a— &r +ah Sh

8V = 1007(0-2) + 257(~0-1)
=20m—257=17-57

L 8V 25496 cm?
i.e. the volume increases by 54-96 cubic centimetres.
Just like that!

3 u This kind of result applies not only to the volume of a cylinder, but to
any function of two independent variables.

Example. 1f z is a function of x and y,i.e.z =f(x,y)and if x and y
increase by small amounts §x and 8y, the increase 6z will also be
relatively small.

If we expand 8z in powers of §x and 8y, we get

8z = Abx + B 8y + higher powers of §x and 6y, where A and B are
functions of x and y.

1f y remains constant, so that §y =0, then
§z = ASx + higher powers of 6x

L bz A. So that if §x - 0, this becomes A = 0z
ox ax
Similarly, if x remains constant, making §y —> O gives B =%32;
‘ . 8z —é— ox + %— 8y + higher powers of very small
| Y quantities which can be ignored.
5z = —5 sx + 2 5
ox oy
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= 1tc) 31

0z
82—5—5x +5—8y

This is the key to all the forthcoming applications and will be quoted

over and over again.
The result is quite general and a similar result applies for a function of

three independent variables
eg. If z=f(x y,w)

So, if

9z
then 6z = o &x a 5 a dw
If we remember the rule for a function of two independent variables,
we can easily extend it when necessary.

Here it is once again:
If z=f(x,y) then 6z= =7 6x +g—;6

Copy this result into your record book in a prominent position, such

as it deserves!

Now for an example or two. 3 Z

Example 1. 1If 1= R’ and V = 250 volts and R'= 50 ohms, find the change

in [ resulting from an increase of 1 volt in V and an increase of 0-5 ohmin R.

_ . ol
I=f(V,R) . 8l 5V+aR8R
a _1 .4 £=_L

1
v R 3R R

g 61=-1-8V—'§-28R

R
So when R=150, V=250, 6V=1,and 8R=0-5,
250
6[— (l) 2500(0 5)
__1_ 1
50 20

=0:02-0-05=-0-03
i.e. Idecreases by 0-03 amperes.
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33

Here is another example.

ws?
d4 , find the percentage increase in y, when w
increases by 2 per cent, s decreases by 3 per cent and d increases by 1 per
cent.

Notice that, in this case, y is a function of three variables, w, s and d.
The formula therefore becomes:

Example 2. Ify=

oy oy 3y
Sy = T Sw+— a5 Ss + = 7 5d
dy _s° 9y _3ws® 3 4ws?
We h =2 9y
e have w P s 4 3d PE
. s —4ws?
. by = d5w+ d46+ dSSd,,
Now then, what are the values of w, 8s and 6d?
2 -3 1
1 = _-— =-—_9
Is it true to say that  éw 160° s 100° od 100
If not, why not? Next frame.

34

No. It is not correct. For 6w is not 2 of a unit, but 2 per cent of w,

100
. 2 2w
ie. dw= 100 ofw= 100
. _3 _d
Slmllarly,ﬁs—loo ofs = 1Ooandéd 100" Now that we have cleared
that point up, we can continue with the problem.
2wy | 3ws?(=3s\ 4ws’(d
by = ar“(loo)+ 2 (100) FE (100)
_wsP(2 ws>( 9 wsd( 4
Tar (100) d“(loo) at (100)
w2 9 _ ;4_=
d* \100 100 100

; =—11 per cent of y

i.e. y decreases by 11per cent

Remember that where the increment of w is given as 2 per cent, it is not

2
100 —— of a unit, but 166

Turn on to frame 35.

of w, and the symbol w must be included.
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Now here is one for you to do. 3 5

Exercise

P = w2hd. If errors of up to 1% (plus or minus) are possible in the
measured values of w, # and d, find the maximum possible percentage
error in the calculated value of P.

This is very much like the last example, so you will be able to deal
with it without any trouble. Work it right through and then turn on to
frame 36 and check your result.

P=wihd . 6P= %35 +ﬁ8h+§£5d 36

oP _ OP_ ., OP_
3w 2whd, 3 w*d; % wh

5P = 2whd.5w + w2d.8h + wih.6d

. 2w2hdi w2dh N w2hd
100 100 100

The greatest possible error in P will occur when the signs are chosen so
that they are all of the same kind, i.e. all plus or all minus. If they were
mixed, they would tend to cancel each other out.
4
(i50)

1 1
+ w? —_—=
L OP=tw hd{lOO T 100} *
" Maximum possibie error in P is 4% of P

Finally, here is one last example for you to do. Work right through it and
then check your results with those on frame 37.

Exercise. The two sides forming the right-angle of a right-angled triangle
are denoted by a and b. The hypotenuse is 4. If there are possible errors
of £ 0-5% in measuring 2 and b, find the maximum possible error in
calculating (i) the area of the triangle and (ii) the length of 4.
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37 Results: (i) 6A=1%of A
(ii) 8% =0-5% of h

0oOoo00NOC0ODO0000NOONO000NOoN0O0DoNo000oc0no0000no0Q
Here is the working in detail:

. a.b A A
A=— = —_
® > A== .5a+ab.6b
A b dA_a o _, 8 . 5., b
32 "2 357 %300 90T Eang
Y IR P R
b 0A=3\t3 o)*z(izoo)
a .
A =+££ _l__+__1__ =+A1—
. “7271200 200 100
L 8A=1%0f A
L
(i) h=+J(a* +b?)=(a®+ b3’
_oh dh
Qf_l=1 2 z‘% = a
aa i(a +b) (2a) \/(a2+b2)

M 12730y = L
35 3@ +5%) *(2b) J@ +b?)

=+

200\/(“2+b2)=i271)6(h)

5 8h=05%o0fh

That brings us to the end of this particular programme. We shall meet
partial differentiation again in a later programme when we shall consider
some more of its applications. But for the time being, there remains only
the Test Exercise on the next frame. Take your time over the questions;
do them carefully.

So on now to frame 38.
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Text Exercise — IX 3 8

Answer all questions.

1.

Find all first and second partial differential coefficients of the
following:

() z=4x®—5xy* +3y*
(ii) z = cos(2x + 3y)
(iii) z= e>—yh
(iv) z=x?sin(2x + 3y)
(i) If V=x2+3? +z?, express in its simplest form

v, a9V a3V
X +yo—+z

ox ay oz
aZ 2
(i) If z =f(x +ay) + F(x —ay), ﬁnd—— and o 2 and hence prove
%z _ , 0%z
that 2" 27030

2
The power P dissipated in a resistor is given by P = % . If E =200 volts

and R = 8 ohms, find the change in P resulting from a drop of 5 volts
in E and an increase of 0-2 ohmin R.

1
If§ = kHLV 2, where k is a constant, and there are possible errors of
+ 1% in measuring H, L and V, find the maximum possible error in
the calculated value of .

That’s it.

272



Programme 9

Further Problems — IX

_ 1 0z 0z
1. Ifz—xw‘z_l,showthatx——+ya =-2z(1 + 2).
2y 52
2. Prove that, if V =1n(x? + y?), theni— + B_V =0.
ax?  ay?
B 9%z 3%z
3. Hz=sin(3x +2y), verify that 35 — 25 =62.
9y? ox
x+y+z
4. Ifu= 24 showthatxg—u+ygu a—u=0.
(2 +y2 4 22) x
3%z 82 L
5. Show that the equation =—5 a2 a ~ 2 = 0, is satisfied by

z=In/(x? +3?) +%—tan‘l(%)

6. Ifz=e*(x cosy —y sin y), show that— +g—2— =0.
7. Ifu=(1+x)sinh (5x — 2y), verify that
4y 20635‘ 2sg—;%=0
8. 1fz=7(Z), show that
ng% 2 a-i%} 2 gyi =0

9. Ifz=(x +y).f(§), where fis an arbitrary function, show that

82 0z _
*ax +y ~2
10. In the formula D = __ER h is given as 0-1 £ 0-002 and v as
12(1 —v?)”°
0-3 £ 0-02. Express the approximate maximum error in D in terms

of E.
2

11. The formula z = 2—%—-2 is used to calculate z from observed
x“+y°—a

values of x and y. If x"and y have the same percentage error p, show
that the percentage error in z is approximately —2p(1 + z).
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12.

13.

14.

15.

le.

17.

18.

19.

20.

In a balanced bridge circuit, R; = R,R3/Ry4. If Ry, R3, Ry, have
known tolerances of + x%, * y %, + z% respectively, determine the
maximum percentage error in R,, expressed in terms of x, y and z.

The deflection y at the centre of a circular plate suspended at the
4

edge and uniformly loaded is given by y = kw3d , where w = total

load, d = diameter of plate, # = thickness and k is a constant.
Calculate the approximate percentage change in y if w is increased
by 3%, d is decreased by 2%% and ¢ is increased by 4%.

The coefficient of rigidity (7)) of a wire of length (L) and uniform

diameter (d) is given by n = AL where A is a constant. If errors of

d4 ’
+0-25% and * 1% are possible in measuring L and d respectively,

determine the maximum percentage error in the calculated value of n.

If k/ko = (T/To)". p/760, show that the change in k due to small
changes of 2% in T and b% in p is approximately (na + b)%.

The deflection y at the centre of a rod is known to be given by
3

]
y =% , where k is a constant. If w increases by 2%, [ by 3%, and
d decreases by 2%, find the percentage increase in y.

The displacement y of a point on a vibrating stretched string, at a
distance x from one end, at time ¢, is given by

aZ =282

ar? “ax?
Show that one solution of this equation is y = A sin ng .sin(pt + a),
where A, p, ¢ and a are constants.

If y = A sin{px +a) cos(gt + b), find the error in y due to small
errors 6x and &¢ in x and ¢ respectively.

Show that O =Ae k’/ 2 sin pt cos gx, satisfies the equation

2% _1 [2%@ . 222 K
Fre {aﬂ k at , provided that p“ =c*q e
2 2
Show that (i) the equation gx + g}_}/ + gzv = 0 is satisfied by
L
\/(x +y 22) and that (ii) the equation 2 + ot Ois

satisfied by V = tan™ (?):)
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1 Partial differentiation

In the first part of the programme on partial differentiation, we estab-
lished a result which, we said, would be the foundation of most of the
applications of partial differentiation to follow.
You surely remember it: it went like this:
If z is a function of two independent variables, x and y, i.e. if
z=f(x,y), then
0z 9z

52——5 +a—5

We were able to use it, just as it stands, to work out certain problems
on small increments, errors and tolerances. It is also the key to much of
the work of this programme, so copy it down into your record book, thus:

If z = f(x,y), then 6z ——6x + ng; 8y
0z
Ifz=f(x,y), then6z——-8 +a—y§

In this expression, — and-a— are the partial differential coefficients

> ox
of z with respect to x and y respectively, and you will remember that to
find

@) g—; , we differentiate the functian z w.r.t. x, keeping all independent
variables other than x, for the time being, ........ccocueee. .
(ii) —%, we differentiate the function z w.r.t. ¥, keeping all independent

variables other than y, for the time being, .......c....e..c.. .
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constant constant

0000000000000 o000D00D0OU0O000UO0o0O000NOoOcOn

An example, just to remind you:

If z=x3 + 4x%y — 3y3

then % =3x*+8y—0 (y is constant)
0z _ 2 2 .
and —5— 0 +4x* -9y (x is constant)

In practice, of course, we do not write down the zero terms.
Before we tackle any further applications, we must be expert at find-
ing partial differential coefficients, so with the reminder above, have a go

at this one:
0z 0z

- 2_ .2 9z 2L
(1) Ifz=tan(x* - yp?), find e and 5

When you have finished it, check with the next frame.

oz 0z __ 2002 2
o 2y sec’(x* —y?)

= 2x sec?(x? —y?); -a—;

for z = tan(x? — y?)
2 2 ecd(x? - y?) X o2 (x2 ~ y?)
T oox ax
= sec?(x? — y2) (2x) = 2x sec?(x? — y?)

0z _ 202 avy O o2 o
and 5 sec?(x?* —y?) X 3 (x*—-»%
=sec?(x? — y?) (—2y) = 2y sec?(x? — y?)

That was easy enough. Now do this one:

8%z 9%z 92z
= a2X —3y « < U<
@) Ifz=e » find ax?’ 3’ oax.oy

Finish them all. Then turn on to frame 5 and check your results.
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5 Here are the results in detail:

z=e2X—3V - % =e2X =3y 5= g2X—3Y
82 = X = (=3) = 2% —3Y
ay —_—
X A
2
2722 =3¢ 3 (=3)=92¥~%
a)a:;y =—3e¥ 73 2=—6e2* "3

All correct?
You remember, too, that in the ‘mixed’ second partial diff. coefft.,
the order of differentiating does not matter. So in this case, since

3%z 2% — 3y 3’z
5x.09 =—6.e , then 8_5. = e
a2Z 622 _6e2x_3y‘
0x. 0y ay x

000000000000 00O0D0O0O0D0O0000c00O000O00ooOoBD00Q0n

Well now, before we move on to new work, see what you make of

these.
Find all the first and second partial differential coefficients of the

following:
(i) z=xsiny

(i) z=(x +y)In(xy)

When you have found all the diff. coefficients, check your work with
the solutions in the next frame.
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Here they are. Check your results carefully.

(i) z=xsiny
y -£=sin —a£=xcos
T Y a 24
azZ=O §~2—Z-=—xsin
ax? ay2 —Z.
2 9%z
dy.ox Y ax.oy Y
() z=(+y)In(xy)
L)y i) = S G
oz 1 x*y)
—=x+y)—.x +tln(xy) = +In(x
ay( y)xy (y)= 7 »)
L% _x—(x+y) . 1 ax—x—y 1
ey ety == +—
ox X Xy X X
X=X
x2
2 — — —
%= x4y), L ymxoy 1
Y y Xy y y
=J’_.5_,_x
y
2
@z 1,1 1.1
day.ox x xy x y
=YX
Xy
9%z 1. 1 1.1
=_+——_. == i
ox.0y y xyy y+x
=x+y h
xy
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8 Well now, that was just by way of warming up with work you have
done before. Let us now move on to the next section of this programme.

Rates-of-change problems
Let us consider a cylinder of radius 7 and height / as before. Then the
volume is given by
V=nr’h
a3

. 0V _ v _
Ry =2qnrh and 5 mr

Since V is a function of r and A, we also know that

oV ov
§V = E—,(Sr +ﬁ.8h (Here it is, popping up again!)

i o by 52 BY 2V br 3V oh
Now divide both sides by &¢: TR TR AR R,

. 8V dV ér _dr &h _dh
Then if 81~ 0,57 ~ G5t " a5t " dr”

coefficients, which do not contain §¢, will remain unchanged.

but the partial differential

\%
So our result now becomes ﬁ__ = vcrenrenrrea—a

dt
9 dv _av.dr, 3V dh
dt or dt ohdt

This result is really the key to problems of the kind we are about to
consider. If we know the rate at which » and 4 are changing, we can now
find the corresponding rate of change of V. Like this:

Example 1.

The radius of a cylinder increases at the rate of 0-2 cm/sec while the
height decreases at the rate of 0-5 cm/sec. Find the rate at which the
volume is changing at the instant when r=8 cmand 2 = 12 cm.
WARNING: The first inclination is to draw a diagram and to put in the
given values for its dimensions,i.e.r =8 cm, k=12 cm. This we must NOT
do, for the radius and height are changing and the given values are instan-
taneous values only. Therefore on the diagram we keep the symbols r and
A to indicate that they are variables.
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Here it is then: V = nrh 10
oV aVv

6V=E 8r+ﬁ 8h

. dV_3Vdr av dh
dt  9r'dr ohar

v _ 9V _
37 2nrh; o nr
L dV_ . dr._,dh
“ar SR T

Now at the instant we are considering

_ —1n dr_ dh_ . . ) .
r=8, h=12, ar 0.2, ar 0-5 (minus since h is decreasing)
So you can now substitute these values in the last statement and finish
off the calculation, giving

v =20-1 cm? /sec 11

d
av_, . dr. L, dh
for ar 277rh.dt+11r i

=278.12.(0-2) + 764(=0-5)
=384n7— 327
= 6471 = 20-1cm?/sec.

Now another one.

Example 2.
In the right-angled triangie shown,

x is increasing at 2 cm/sec while y is .
z decreasing at 3 cm/sec. Calculate the
rate at which z is changing when
x=5cmandy =3 cm.

b4
The first thing to do, of course, is to express z in terms of x and y.
That is not difficult.
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12 z =/(x2-?)

D0000O00000O0o0O0OoOO0OoNoOO0poO0OoOOo0oooo0oo0O0oOoooo
z=(? —y?) = (2 —y

_0z 0z (The key to the whole
- oz Tox 5ty oy ¢ business)

Tdt ox'dt  dy'dt

. 92 _1 5 a7} = *
In this case » 2(x y?)*(2x) VT =7?)
0z -4

—2y) = Y
2y) N
dz_ x d&x___y &
dt G-y dr P -y?)de
So far so good. Now for the numerical values

1
.,aj; =.§(x2 _yz)

=5 y=3 Py D__
X=5, =3 =% 473
gz _
dt Finish it off, then move to frame 13.
dz
13 i =4.75 cm/sec
for we have dz > (2) (-3)
dt (5P -3 \/(52 3%)

10 3(3) 10,2 19,
-4—+—4—— 4 4 4 475Cm/sec

". Side z increases at the rate of 4-75 cm/sec

Now here is
Example 3. The total surface area S of a cone of base radius r and per-
pendicular height h is given by
S=nar’* +ar/(r* + h?)

If r and k are each increasing at the rate of 0-25 cm/sec, find the rate at
which S is increasing at the instant whenr =3 cmand 2 =4 cm.

Do that one entirely on your own. Take your time: there is no need to
hurry. Be quite sure that each step you write down is correct.
Then turn to frame 14 and check your result.
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Solution. Here it is in detail. 1 4
S=art +ar/(* +h?*)=m? +nr(r* + hz){;

38 . dS_0S dr, 3S dh
88 a 2or Tt T attonar

@ ) =2nr+qr. -(r +h?) 7(2,-) +(? + hz)'i'

2
=27rr+\/(2 ) +m/(rt +h?)

Whenr=3and h =4,

s 19 4 5= 9n _64m
5= 2m3+ I e ms =1l et =&

2=y +iri e =

_m34_127

5 5

1 dr = d—h= B
Also we are given that p7ie 0-25 and a 0-25

. dS_o64n
odre

So there we are. Rates-of-change problems are all very much the same.
What you must remember is simply this: 15

(i) The basic statement

= =a_z az 7
If z=f(x,y) then &z Xty 50 EY e @)

(ii) Divide this result by 8¢ and make &¢ — 0. This converts the result into
the form for rates-of-change problems:

dz_dz dx 9z dy ;

a ax'dt+ay'dt .......................... (i)

The second result follows directly from the first. Make a note of
both of these in your record book for future reference.

Then for the next part of the work, turn on to frame 16.
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16 Partial differentiation can also be used with advantage in finding
differential coefficients of implicit functions.
For example, suppose we are required to find an expression for%
when we are given that x? + 2xy + y3 =

We can set about it in this way:
Let z stand for the function of x and y, i.e. z =x? + 2xy + y3. Again

we use the basic relationship 6z = %— ox + gi &y.
If we divide both sides by éx, we get
bz _oz | az &y
5x  ox ay 6x
. dz _0z 9z dy
N féx > Dot B Wotuli 4
ow, if 6x >0, = 3 + 5y
If we now fmd expresswns for gz nd g , we shall be quite a way
towards fmdmg (whlch you see at the end of the expression).
oz 9z _
In this partlcular example, — P and Ay
17 z=x>+ 2y +y* g=2x+2y' a—Z=2.)c+3y2
ox Y

Substituting these in our previous result gives us

_ 2y
L =@t Y

If only we knewZ , we could rearrange this result and obtain an expres-
sion for%c . So where can we find out something about %)Z_c ?

Refer back to the beginning of the problem. We have used z to stand
for x? + 2xy + y* and we were told initially that x2 + 2xp +»*

. - dz
Therefore z =0, i.e. z is a constant (in this case zero) and hencea =0.

L 0=(2x+ )+ (2x + M= y

From this we can ﬁnd%. So finish it off.

On to frame 18.
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d=_2x+2y' 18
dx  2x +3y?

0000nDCc0O00000C0000000D00O0N0NoO00NR0DO0O0000
This is almost a routine that always works. In general, we have —

-n finq 9
If fix,y)=0, fdeC-

Let z =f(x, y) then 6z = g—; Sx + gf} 8y. Divide by éx and make 5x - 0,
in which case

dx 3x dydx
But z = 0 (constant) .. %fc =0 L 0= %Zc + g_;%

. dy__dz oz
giving Vi a_x/ay

The easiest form to remember is the one that comes direct from the
basic result

6z-—ax6x+ay6y
Divide by 8x, etc.
dz_vz bz dy [d_g
dx ox 9y'dx | dx

Make a note of this result.

Now for one or two examples.
Example 1. IfeX +x+y=1, evaluate% at (0,0). The function can be 19
writtene*y +x+y—1=0.

bz, . dz_dz bzdy

az
= Xy +y-— == 8x+ L =
Letz=eXY +x +y—1 6z ax.Sx 3y Sy dx ax Taydx

oz oz dz dy
—_ = Xy « — = . = Y - . Y +
% eVy+1; 5 eVx+1. v e+ 1)+ (x e +1) =

P
= 'ﬂ—- y iyz— yexy+1
Butz=0 -~2=0 & {x.exy+1

—oy=0P-_1__, .a&__
Atx=0,y O’dx 1 1 i 1
All very easy so long as you can find partial differential coefficients
correctly.

On to frame 20.
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20 Now here is:

Example 2. 1fxy +siny =2, find %
Letz=xy +siny—2=0

bz L0z
6z-ax5x+ay6y
dz _9z 0z dy
dx dOx dydx

9z _ . 0z _
Flad ay-—x+cosy
. dz _ dy
. ..—‘—i}—y+(x+cosy)dx
Butz=0 . —=0
dx

LAy Y

T dx x+tcosy
Here is one for you to do:

Example 3. Find an expression for % when x tan y = y sin x. Do it all

on your own. Then check your working with that in frame 21.

21 dy _ _tany—ycosx
v ¥ emmtv—ain oy

dx X sec“y—sinx
Did you get that? If so, go straight on to frame 22. If not, here is the

working below. Follow it through and see where you have gone astray!
xtany=ysinx . xtany—ysinx=0

letz=xtany—ysinx =0

6z—ax6x+ay8y
d_Z=?_Z+a—Z(_1'Z
dx ox dydx

ax
. d
©odx

z oz s .
=tany—ycosx, S =Xsecy—sinx
oy
2 ; dy
= (tan y — y cos x) + (x sec y—smx)a}

- - 4z_
Butz=0 . o 0
dy_ tany—ycosx
p i S
dx Xx sec’y —sinx On now to frame 22.
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Right. Now here is just one more for you to do. They are really very 22
much the same.

Example 4. 1f eX *Y = x2y? find an expression for.%
eXty —x2y2=0. Letz=eX*V-x%?=0

0z 0z
= e— +.__.-

6z o™ Sx % 5y
dz _oz +% dy
dx ox oydx

So continue with the good work and finish it off, finally getting that
D
T e

Then move to frame 23.

@2 23

dx ex*y—2x2y

For z=eX¥tY —x%p?=0
92 _ x+ 2. 0z + 2
—_—= ¥y — Zx e meXTY —Dx
ox € Vs oy € Y

é.%: x+y — 2 x+y - 9y2 d_y
L ety (e Y- 2 P

= 'E:
Butz=0 e 0

Cdy _ (XY - 2xy?)
Tdx (eXTY—2%y)
Ldy _2xyt—eXtY
e eX TV —2x2y

That is how they are all done.

Now on to frame 24.
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2 4 There is one more process that you must know how to tackle.
Change of variables

If z is a function of x and y, i.e. z = f(x, ), and x and y are themselves
functions of two other variables « and v, then z is also a function of u

0z 0z

and v. We may therefore need to fmd-—L-l and-a—v- How do we go about it?
z=f(x,y) - 62=?—8x+a—5
3 y b ax ay y

Divide both sides by 6u.
bz 0z bx bz by
du ox du dy bu
If v is kept constant for the time being, then%ﬁ- when du ~ 0 becomes%l—);
dy

8y
d=b —
and 5, decomes =7 . 0z _0z ox az a9y

" u ox du ay ou

3z bz ox 0z 0y Note these
and — = + ==
v oxov ay’' ov
Next frame.
Here is an example on this work.
25 Ifz=x%+y? where x =rcos @ and y =7 sin 20, ﬁnd%zand gg
o2 _dz x 9z By
or 9x'0or ay or
g Dz dzdx b dy
an 30 ox 00  ay 00
0z 0z
N X _ g
M mTE Y
ox _ ay —
- o8 0 3, sin 20
. 0z .
M 5—=2xcosf) + 2y sin 26
ox_ .
And 36 rsin 8 and 39 2rcos 26
gf) = 2x(~r sin 8) + 2y (27 cos 26)
60 =4 yrcos 20 — 2 xr sin §

And in these two results, the symbols x and y can be replaced by r cos
and r sin 26 respectively.
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One more example.

If z = e*¥ where x =In(u +v) and y = sin(u —»), find %Z; and '?)—lz;
We have 2 _& ga_c+_§£.a_y

=yeX), +x.e*Y.cos(u—v)

utv

= e"y! o4 +x.cos(u —v)}

luty
9z _ 0z ax+az ay

and v axdv  ayov

=y.eX +x.e*Y {—cos(u - v)}

‘utv

y
=exyl X -
e {u+v x cos(u v)}

Now move on to frame 27.

Here is one for you to do on your own. All that it entails is to find the 27

various partial differential coefficients and to substitute them in the
established results.

0z _0dz ox 9z 9y

ou 09x du a—y'au
8z _dz dx 0z By

and v ax v 9y v

So you do this one:
s .2 2 - . 9z 0z
If z = sin(x +y), where x =u* +v* and y = 2uy, flndgl‘l and »

The method is the same as before.

When you have completed the work, check with the results in frame 28.
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28

Also

z=sin(x +y); x =u?+v%;

y=2uy

0z az

—= + VT = +
- osx y) ; y cos(x +)
ox oy _

a2 Y
ooz ax & o

du ox du 9y du

= cos(x +y).2u +cos(x +y).2v
=2(u +v)cos(x +y)

dz _03z ox 0z 9y
oy ax ov ay £
Ox ay_

Y = 5— 2u

% =cos(x +y).2v + cos(x + y).2u

=2 +v)cos(x +y)

29

during the work, so let us list them once more.

You have now reached the end of this programme and know quite a bit
about partial differentiation. We have established some important results

1. Small increments

2=£(x, ) b= sx+3 +?£ 5y
2. Rates of change
dz_0z dx 0z dy
dr oxdr ay'dt
3. Implicit functions
dz _dz +Bz dy
dx ox ay’ dx
4. Change of variables
2 0 ox b by
ou Ox'ou 0y ou
20z ax 2z by
ov ox'dv dy dv

All that now remains is the Test Exercise, so turn on to frame 30 and
work through it carefully at your own speed. The questions are just like
those you have been doing quite successfully.
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Test Exercise — X 3 0

Answer all the questions. Take your time over them and work care-
fully.

1. Use partial differentiation to determine expressions for % in the
following cases:

(@) x* +»* — 2% =0
(ii) eX cosy=eVsinx

(iii) sin?x— 5 sinx cosy +tany =0

2. The base radius of a cone, 7, is decreasing at the rate of 0-1 cm/sec
while the perpendicular height, 4, isincreasing at the rate of 0-2 cm/sec.
Find the rate at which the volume, V, is changing whenr = 2 cm and
h=3cm.

3. If z=2xy— 3x%y and x is increasing at 2 cm/sec determine at what
rate y must be changing in order that z shall be neither increasing nor
decreasing at the instant whenx =3 cmandy =1 cm.

2anda—z

4. Ifz=x* + x*y +yandx=rcosf and y =rsin 9, find > 20

in their simplest forms.
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Further Problems — X

1. If F=f(x,y) where x = e cos v and y = e¥ sin v, show that
oF oF oF aF oF _oF

and —=—y —

EY x’a‘?”’a v ox xay

2. Given that z =x® + % and x? + 2 = 1, determine an expression for

% in terms of x and y.

dy oz /az
dx  ox ay
and x> + 2x33 + 3y — 1 = 0 intersect at the point (2,~1). Find the
tangent of the angle between the tangents to the curves at this point.

3. Ifz=f(x,y) =0, show that—= The curves 2y% +3x—8=0

4. If u = (x2—y?) f(r) where t = xy and f denotes an arbitrary function,
prove that 32y

0x.9y

=02 =y {tf"O+31'®)}

5. FV=xp/(x*+y?)?andx =rcosf,y =rsin @, show that
2V 19V .1 32V

ot Tror TP aer T

6. If u=f(x,y) where x =r? —s? and y = 2rs, prove that

Qu_ du_ ., o 04
"or % 20 +s)ax

7. Iff=F(x,y)and x =re® and y =r €, prove that

o L o Y
2o Tartae MY 5T % o

8. Ifz=xIn(x?+y?) -2y tan™ (—ii) verify that

0z 0z
—_—+ —_—
xax yay z+2x

9. By means of partial differentiation, determine dy in each of the

following cases. dx
@) xy+2y-x=4 4y 2

(i) x3y2—2xzy + 3xy2 —8y =15 (i) = +7— 3

293




Partial Differentiation 2

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Ifz = 3xy —p® + (» — 2x)*/?, verify that

3%z _ 3%z 0%z 9% _( 3% Y
@ ax.0y  0y.0x cand that (i ax? " 9y? (ax.ay)

1 of of
Iff=, ————r t = = — —_
f =2y 777) show that y P =),

Ifz=xf (Z)+ F(—Ji> prove that

0z _ 9%z 2 0%z
O xZ+yEez-FE) ()0 5+ gt et il
Ifz=ek(’~x),wherekisaconstant and % = x? + y?, prove
D(3) 4 (2] +2kZ =0 iy L5 B2 40 2 ok
() +(ay/ +2kSE =0 (i) +a +2k 52 =

If z = f(x — 2y) + F(3x +y), where f and F are arbitrary functions,

0%z 9%z 3%z _
and 1f—a—x-3 3x. 3y th3— FYE 0, find the values of 2 and .

2z 3%z

= 2 4 ,2y2 : oz =
If z = xy/(x* + y?)*, verify that e + 27 0.

If sin?x — Ssinx cosy +tany =0, fmd by using partial
differentiation.

Fmdg- by partial differentiation, when x tan y = y sin x.

IfV=tan' {x2_2f2y_}’ prove that

oV av 82V 3%V _
(1)x yay =0, (i pwe) +ay 0

Prove that, if z =2xy + x.f(J—/-) then

8 0z
6 +ya =z +2xy

® Find% given that x?y +sinxy =0

(i) Find-;% given that x sinxy = 1
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1 Series

A series, uy, Uy, U3 . .. is a sequence of terms each of which is formed
according to some definite pattern.

e.g. 1,3,5,7,... is aseries (the next term would be 9)
2,6,18,54, ... isa series (the next term would be 3 X 54, ie.162)
12,-2%,32 —4% . isa series (the next term would be 5?)

but 1,-5,37,6, ... is not a series since the terms are not formed to a

regular pattern and one cannot assess the next term.

A finite series contains only a finite number of terms.
An infinite series is unending.
So which of the following constitutes a finite series:
(i) All the natural numbers, i.e. 1,2, 3, . .. etc.
(ii) The page numbers of a book.
(iii) The telephone numbers in a telephone directory.

The page numbers of a book

Correct. Since they are in regular sequence and terminate at the last page.
(The natural numbers form an infinite series, since they never come to an
end: the telephone numbers are finite in number, but do not form a
regular sequence, so they do not form a series at all.)

0cgoOoob0cooo0Oo0000OD0D0o000D0ocOonNoooooooono0ooaan

We shall indicate the terms of a series as follows:

uy will represent the first term, u, the second term, u4 the third term, etc.,
so that u, will represent the rth term, and u, + , the (r + 1)th term, etc.

Also the sum of the first 5 terms will be indicated by S;.
So the sum of the first n terms will be stated as ....................
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Sn

00000 0d0co0oC0000000000N0000o0000ooO0o0o0Aanan

You will already be familiar with two special kinds of series which
have many applications. These are (i) arithmetic series and (ii) geometric
series. Just by way of revision, however, we will first review the important
results relating to these two series.

1. Arithmetic series (or arithmetic progression) denoted by A.P.
An example of an A.P. is the series
2,5,8,11,14,
You will note that each term can be written from the previous term
by simply adding on a constant value 3. This regular increment is called

the common difference and is found by selecting any term and subtract-
ing from it the previous term

eg 11-8=3; S5-2=3; etc.

Move on to the next frame.

The general arithmetic series can therefore be written:
a,atd,a+2d,a+3d, atdd, ... (i)

where ¢ = first term and d = common difference.
You will remember that

(i) thenth term = a+(n—1)d .o (ii)
(ii) the sum of the first n terms is given by

S, =I’2_(7ﬂ N R ) P (iii)

Make a note of these three items in your record book.

By way of warming up, find the sum of the first 20 terms of the

series:
10,6,2,-2,—6, ... etc.

Then turn to frame 5.
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5 Sy0 =560

Since, for the series 10, 6,2,—2,—6, ... etc.
a=10 and d=2-6=—4 |

Sn =%(2a +h-14d)

S0 =-%Q(2o +19[~4])

= 1020 - 76) = 10(=56) = —560
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
Here is another example:

If the 7th term of an A.P. is 22 and the 12th term is 37, find the series.
We know 7thterm=22 ..a+6d =22
and 12th term=37 " a+11d=37

So the seriesis 4,7,10,13,16, ... etc.

Here is one for you to do:

The 6th term of an A.P.is—5 and the 10th term is —21. Find the sum
of the first 30 terms.

J Sd=15 . d=3
La=4

6 ' S50 =—1290

since:
6thterm=—-5 .. a+5d=-5
10th term=—21 . a+9d=-21

4d=-16 . d=-4
a=15
. a=15,d=-4, n=30, S, =-;—(2a +n~1d)

+ S30=21 (30 +29[-4])
=15(30 - 116) = 15(-86) =—1290
Arithmetic mean

We are sometimes required to find the arith. mean of two numbers, P and
Q. This means.that we have to insert a number A between P and Q, so that
P, A and Q form an A.P.

A-P=d and Q—A=d p
+
LS A-P=Q—-A 2A=P+Q . A= 2Q

The arithmetic mean of two numbers, then, is simply their average. There-
fore, the arithmetic mean of 23 and 58 i ......cc.cc.......
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The arithmetic mean of 23 and 58 is |40-5 l

If we are required to insert 3 arithmetic means between two given
numbers, P and Q, it means that we have to supply three numbers,
A, B, Cbetween P and Q, so that P, A, B, C, Q form an A.P.

Example. Insert 3 arithmetic means between 8 and 18.

Let the means be denoted by A, B, C.
Then 8, A, B,C, 18 forman A.P.

First term, 2 = 8. fifthterm=a +4d =18

a=38
=10 . d=25
a+4d=18}4d
g j Z : ?5 '=' 1(3)5 } Required arith. means are
cosersoiss) s 118S

Now, you find five arithmetic means between 12 and 21-6.

Then turn to frame 8.

Required arith. means: E3-6, 15-2, 16-8, 184, 20
Here is the working:
Let the 5 arith. meansbe A,B,C,D,E.
Then 12,A,B,C,D, E, 21-6 form an A.P.
La=12; at+é6d=21-6
L6d=96 d=16
Then A=12+16=136 A=136
B=12+32=152 B=152
C=12+48=16-8 C=168
D=12+64=184 D=184
E=12+8-0=20-0 E =20.

So that is that! Once you have done one, the others are just like it.

Now we will see how much you remember about Geometric Series.

So, on to frame 9.
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2. Geometric series (Geometric progression) denoted by G.P.
An example of a G.P. is the series:
1,3,9,27,81, ... etc.
Here you see that any term can be written from the previous term by
multiplying it by a constant factor 3. This constant factor is called the

common ratio and is found by selecting any term and dividing it by the
previous one.

eg. 27+9=3; 9+3=3; etc.
A G.P. therefore has the form:
a, ar, ar?, ar®, ar*, ... etc.

where g = first term, r = common ratio.
So in the geometric series 5,—10, 20, —40, etc. the common ratio,
S L S

10

20

= o=

-10

The general geometric series is therefore:

a, ar, ar?, ar’, ar*, ... etc. .. (iv)

and you will remember that

(i) thenth term =g/t )
(ii) the sum of the first n terms is given by
a(l—r" .
S, = __(_1_:) ....................... (vi)

Make a note of these items in your record book.
So, now you can do this one:
For the series 8,4,2,1,1 ... etc., find the sum of the first 8 terms.

Then on to frame 11.
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1

15
Sg =1516
Since, for the series 8,4,2,1, ... etc
g ,=2-1 o _a—r")
a=8; r 4= S, =s
L. 8(-[31®
Sy = ———1—
-3
8(1~ 51
_ %5 _16.255_255_
1-4% 6 1

Now here is another example.

If the Sth term of a G.P. is 162 and the 8th term is 4374, find the

series.
We have Sthterm= 162 .. ar*= 162
8th term=4374 .. ar’=4374
ar’ _4374 3 _ _
7 16 r°=27 r=3
A
a=?2 12
for ar*=162; ar’ =4374 and r=3
e . 162 .
La3t=162 a 3l La=2

- The seriesis: 2,6,18,54, ... etc.

Of course, now that we know the values of 4 and r, we could calculate
the value of any term or the sum of a given number of terms. For this

same series, find
(i) the 10th term

(ii) the sum of the first 10 terms.

When you have finished, turn to frame 13.
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13

(i) 10th term = ar® =2.3% = 2(19683) = (39366

o _a(l=rt%) 2(1-3')
@ S0 ==y =713

= 225909 (59048
Geometric mean

The geometric mean of two given numbers P and Q is a number A such
that P, A and Q forma G.P.
Q

A— —
P—r and A r

CA_Q L, _
e S A2=PQ A=+(PQ)

So the geometric mean of 2 numbers is the square root of their product.
Therefore, the geom. mean of 4 and 251 «....ccecvveeennne.

14 A=+/(4X 25)=+/100 =

00oD0D0oD0oOOoO000000O0OO0O0DCCcO000O0O0Cc0ObO0Oo0OoOonOoDoOOn

To insert 3 G.M’s between two given numbers, P and Q means to
insert 3 numbers, A, B, C, such that P, A, B, C, Q form a G.P.
Example. Insert 4 geometric means between 5 and 1215.

Let the means be A, B, C, D. Then 5, A, B, C, D, 1215 form a G.P.

ie. a=5 and ar’ =1215

=132 043 =3
5
~A=53 = 1§
B=5.9 = 45 The required geometric means are:
C=5.27=135 15, 45,135, 405
D=5.81=405 -
Now here is one for you to do: Insert two geometric means between 5

and 8-64.
Then on to frame 15.
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Required geometric means are 6-0, 7-2

For, let the means be A and B.
Then 5, A, B, 8-64 form a G.P.

La=5; Lar’=864; r3=1728; r=12

A=512=6 Required means are
B=5.144=1720 6-0 and 7-2

Arithmetic and geometric series are, of course, special kinds of series.
There are other special series that are worth knowing. These consist of
the series of the powers of the natural numbers. So let us look at these in
the next frame.

16

Series of powers of the natural numbers

n

1. Theseries 1+2+3+4+5+...+n etc.=21r.

This series, you will see, is an example of an A.P., wherea =1 and d=1.
The sum of the first n terms is given by:

Tr=1+243+4+5+. .. +n
1

-n — n_nmtl)
2(2a+n 1d) 3
£ _n(n+1)
,=
1 2

So, the sum of the first 100 natural numbers is ....................

Then on to frame 17.
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17

100
Zr =500
for r= 1002101 = 50(101) = 5050

o000 00000D0DCCO0O0ORO0000D00O0OooooooOODaono

2. That was easy enough. Now let us look at this one: To establish the
result for the sum of # terms of the series 12+ 22 +32 442+ 52+ _+n2,
we make use of the identity

n+1)P=n®+3n%+3n+1

(n+1®-n*=3n2+3n+1
Replacingn by n — 1, we get

nP—-m—-1P2=3mn-1P2+3n-1)+1
and again n—1P-n-2=3n-22+3(n-2)+1
and n-2P-(n-3P2=3(n-32+3(n-3)+1
Continuing like this, we should eventually arrive at:
33-23=322+3.2+1

2-13=3.12+3.1+1
If we now add all these results together, we find on the left-hand side
that all the terms disappear except the first and the last.

(n+1)3—13=3{n2+(n—1)2+(n—2)2+...+22+121
+3{n+(n—1)+(n—2)+.,.+2+1} +n(1)

We write this as

n n
=3.21?r2+3§r+n
n n
L mP+3n2 430+ k= ¥=3Tr +3Zr +n =3>';’,2+3’L2”)+,,
1 1
n
L nd+3n2+2n=33%r? +%—(n2+n)
1
n
L2m +6n2 +4n=63r* +3n +3n
1
n
6§r2=2n"‘+3n2 +n

. z’:'r2=ngn+ DH2n+1)
"z 5

So, the sum of the first 12 terms of the series 12 +22+3%+ .. | is
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2, _nm )@l 18
1 6
12

.z =—-———12(13)6(25)=26(25)= 650

3. The sum of the cubes of the natural numbers is found in much the
same way. This time, we use the identity

n+1)*=n*+dnd+6n>+4n+1
We rewrite it as before
n+1)*—n*=dn®+6n’>+4an+1

If we now do the same trick as before and replace n by (n — 1) over and
over again, and finally total up the results we get the result

n n o\
Note in passing that Tr° = { 12 r}
1

19

Let us collect together these last three results. Here they are:

1 glr - ; D (vii)
2 g ="t D@atl) (viii)
3 ‘%r"’ ={n(n-;1)} .......................... (ix)

These are handy results, so copy them into your record book.

Now turn on to frame 20 and we can see an example of the use of these
results.
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5
zu Example: Find the sum of the series T n(3 +2n)
ne

Ss =

3.56,2.56.11

2 6
=45+110
=155

It is just a question of using the established results. Here is one for you
to do in the same manner.

a
Find the sum of the series El Qn+n®
n =

21

= 20+ 100 = {120

Remember
Sum of first # natural numbers =

n(n +1)
2

nn+1)2n+1)
6

n(n + 1)}

R

Sum of squares of first n natural numbers =

Sum of cubes of first #» natural numbers = {
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Infinite series 2 2

So far, we have been concerned with a finite number of terms of a given
series. When we are dealing with the sum of an infinite number of terms
of a series, we must be careful about the steps we take.

Example: Consider the infinite series 1+ 3+ + 5 +. ..

This we recognize as a G.P. in whicha =1 and r =} . The sum of the first
n terms is therefore given by

5= 10 :%[%]"L 20-L)
Now if # is very large, 2” will be very large and therefore % will be
very small. In fact, as n = oo, ?12; - 0. The sum of all the terms in this
infinite series is therefore given by So = the limiting value of S, as n > oo.
ie. Seo = ngtw {Sp} =2(1-0)=2

This result means that we can make the sum of the series as near to the
value 2 as we please by taking a sufficiently large number of terms.

Next frame.

This is not always possible with an infinite series, for in the case of an
A.P. things are very different. 23
Consider the infinite series 1 +3+5+ 7+, ..

This is an A.P. in whiche=1and d = 2.

Then S, = '5’(2(1 +h—1.d) =’2i(2 +h—1.2)
=2Q+2n-2)
Sy=n*

Of course, in this case, if 7 is large then the value of S, is very large. In
fact, if n > oo then S,, - oo, which is not a definite numerical value and
of little use to us.

This always happens with an A.P.: if we try to find the “sum to
infinity”, we invariably obtain + o or — o as the result, depending on the
actual series.

Turn on now to frame 24.
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24

In the previous two frames, we made two important points.

(i) We cannot evaluate the sum of an infinite number of terms of an A.P.
because the result is always infinite.

(ii) We can sometimes evaluate the sum of an infinite number of terms of
. . a(l—r7 .
a G.P. since, for such a series, S, = —Ll——r—) and provided {r] <1,then as

al-0)_ a . __a
l—r—l—r’l'e‘sm 1-r

n— oo r?— Q. In that case Seo =

So, find the ‘sum to infinity’ of the series

20+4+08+016 +0032+ oo

25

Soo = 25

For 20+4+0-8+0-16+0:032+ ...

0000000000000 0O0O0C0c0o00000No00Cc0oO0c00D00a0

Limiting values

In this programme, we have already seen that we have sometimes to
determine the limiting value of S, as n - . Before we leave this topic,
let us look a little further into the process of finding limiting values.
One or two examples will suffice.

So turn on to frame 26.
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Example 1. To find the limiting value of

2n '; as’n > oo 26
We cannot just substitute n = oo in the expression and simplify the

result, since oo is not an ordinary number and does not obey the normal
rules. So we do it this way:

';Z—i—%= ;t %Z (dividing top and bottom by n)

Limit ont3l_ Limit 5+3/n
2n—17

n-~»00 n-—>oo 2=7In
Now whenn e, 3/n—>0 and 7/n >0
Sn+3 5+3/n +0
o t = =——
e

=2
nse2=1n 2-0 2
We can always deal with fractions of the form < 23 c_§ tc., for when

n - o _each of these tends to zero, which is a precise value
Let us try another example.

On to the next frame then.

2 -
Example 2. To find the limiting value of %as n->oo, 27

First of all, we divide top and bottom by the highest power of n which is
involved, in this case n?.

2n® +4n—-3_2+4/n—3/n?
5n%2 ~6n+1

5—6/n+1/n®

Lt m?+4n—3 _ 2+4/n—3/n*

" pooo S —6n+1 ,1-><>c.5—-6/n+1/n2
=2+0—0=_2_
5=0+0 5

n®-2
Example 3. To fmd P e —

n this case, the first thing is to

Turn on to frame 28.
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28

Divide top and bottom by n’

Right. So we get
nd-2 1-2/nd

WM3+3n—4 2+3/n2-4/n3

. -2 _
'nktoﬂn PRy R

Finish it off. Then move on to frame 29.

29

1

2

00Do0OC00O00000000000C0OCO00o00oD00DCcOoOooDOn

Convergent and divergent series

A series in which the sum (S, ) of n terms of the series tends to a definite
value, as n — o=, is called a convergent series. If S, does not tend to

a definite value as n = oo, the series is said to be divergent.

1 1 1
Example: Consider the G.P. 1 +- 3 9 + -2-—7 + g + .
We know that fora G.P, S, = (i )so in this case since a = 1 and
r=1—, we have:
3 1 1
S =1(1—3—n)_1 371_;(1__)
"ol 2 2
3 3
1 . _3
. Asn—> I -0 . ngtoo Sy 5

The sum of n terms of this series tends to the definite value % asn —> oo,

It is therefore a .........cocoviiinieni series.
(convergent/divergent)
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30

If S, tends to a definite value as n — oo, the series is convergent.
If S,, does not tend to a definite value as n — oo, the series is divergent.

0000000000000 0NO00ODDoOOO0DOD00000OUOo0oOoOCoOOo

Here is another series. Let us investigate this one.
1+3+9+27+81+...
This is also a G.P. witha =1 and r = 3.
—a(l=r) _1(1-3") _1-3"
I-r 1-3 -2
3n—1
2

S,

Of course, when 7 —> o0, 37 — oo als0.

Lt S, = (which is not a definite numerical value)
n—>oo

So in this case, the series iS ........coue......

31

We can make use of infinite series only when they are convergent and
it is necessary, therefore, to have some means of testing whether or not a
given series is, in fact, convergent.

Of course, we could determine the limiting value of S, asn = =, as we
did in the examples a moment ago, and this would tell us directly whether
the series in question tended to a definite value (i.e. was convergent) or
not.

That is the fundamental test, but unfortunately, it is not always easy
to find a tormula for S;, and we have therefore to find a test for con-
vergence which uses the terms themselves.

Remember the notation for series in general. We shall denote the
termsby uy tu, tus tug +. ..

So now turn on to frame 32.
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3 2 Tests for convergence

Test 1. A series cannot be convergent unless its terms ultimately tend

to zero, i.e. unless 1t u, =0.
n—>oo

If Lt u, #0,the series is divergent.
n-—>c0
This is almost just common sense, for if the sum is to approach some

definite value as the value of » increases, the numerical value of the
individual terms must diminish. For example, we have already seen that

(i) the series 1 + %+-$-+§1-7' + -811 + ... converges,

while (ii) the series 1 +3+9+27 +81 + ... diverges.

So what would you say about the series

1,1,1,1.1 :
1+-2~+-§+z+§-+g+,_,?

Just by looking at it, do you think this series converges or diverges?

33 Most likely you said that the series converges since it was clear-that
the numerical value of the terms decreases as n increases. If so, [ am
afraid you were wrong, for we shall show later that, in fact, the series

1,11 1 .
tststo+=t
1 >t3tztst - diverges.
It was rather a trick question, but be very clear about what the rule
states. It says:
A series cannot be convergent unless its terms ultimately tend to zero,

ie. Lt wup=0.1t does not say that if the terms tend to zero, then the
n->roo

series is convergent. In fact, it is quite possible for the terms to tend to
zero without the series converging — as in the example stated.
In practice, then, we use the rule in the following form:

If Lt u, =0, the series may converge or diverge and we must test
n-—>rco

further.
If Lt u, # 0, we can be sure that the series diverges.
n—>oo

Make a note of these two statements.
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Before we leave the series 34
1,1, 1.1.1 1
1+2+ += +5+6+ Aot

here is the proof that, although Lt u, = 0, the series does, in fact,
diverge.
We can, of course, if we wish, group the terms as follows:

11,1ty 1, 1,1
1+2+{3+4}+{5+6+7+8}+,,,

Lol gl 11
Now {3+4 >{4+4}>2
L1, 1 1t )1 1,1 111
and {5+6+7+8}>{8+8+8+8}>2 etc
1,1, 1. 1.1,
So that s,n>1+2 5 -2-+2+2
" Seo =00

35

divergent

The best we can get from Test 1, is that a series may converge. We must
therefore apply a further test.
Test 2. The comparison test

A series of positive terms is convergent if its terms are less than the
corresponding terms of a positive series which is known to be convergent.
Similarly, the series is divergent if its terms are greater than the correspond-
ing terms of a series which is known to be divergent.

An example or two will show how we apply this particular test.

So turn on to the next frame.
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3 6 Example. To test the series

1 .1 1 1 1
1+§2+§3+Z4+35+36+"'+_ﬁ”+"'

we can compare it with the series

1 1 .1 1 1
F2¥ 3 tgatos toet .

2% 28
which is known to converge.
If we compare corresponding terms after the first two terms, we see

1+

that 33 < >33 44 < 24 ; and so on for all further terms, so that, after the
first two terms, the terms of the first series are each less than the corres-
ponding terms of the series known to converge.

The first series also, therefore,

37

converges

The difficulty with the comparison test is knowing which convergent
series to use as a standard. A useful series for this purpose is this one:

1 1 1 1 1 1 & 1

- =t +=_ += + += +...= T —

ettt e W2
It can be shown that

(i) ifp>1, the series converges
(ii) if p <1, the series diverges

o0
So what about the series X

Lo
n=1 n*

1

Does it converge or diverge?
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Converge| since the series 2 is the series E-l- with p > 1 3 8

0000DbD000D0DD0000000000D0U000N00N000D0D0ODGOo

Let us look at another example.

1 1 1
To test tne series ﬁ+23 34+4ﬁ +,

If we take our stanaard series

11 .1 .1 .1
ettt et

when p = 2, we get
PR NS SR SR Y
2 22 32 42 52 62 e
which we know to converge.
1 1.1 1. 1 1
12517 23°2% 34 32’
Each term of the given series is less than the corresponding term in the
series known to converge.

But etc.

Therefore .......oovvveeennns

The given series converges 3 9

0000000000000 Cc00000000000000000000000n

It is not always easy to devise a suitable comparison series, so we look
for yet another test to apply, and here it is:

Test 3. D’Alembert’s ratio test for positive terms

Letu; +u, Yustug +...+u, +... be aseries of positive terms.
Find expressions for u, and u, 4+, i.e. the nth term and the (n + 1)th

term, and form the ratio——. Determine the limiting value of this ratio

n
asp—>oo,
If Lt Unti o 1, the series converges
n—oo Up
” > 1, the series diverges
» = 1, the series may converge or diverge and the test

gives us no definite information.

Copy out D’Alembert’s ratio test into your record book. Then on to
Jframe 40,
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40

Here it is again:
D’Alembert’s ratio test for positive terms

Up+1
If Lt .
n—>oo Uy < 1,the series converges

” > 1, the series diverges
» = 1, the result is inconclusive.

00O0ON0O00O0COO0000O0CN0O000000000000000000000

Example: To test the series-} +%+%2 +;—3 +...

We first of all decide on the pattern of the terms and hence write down

the nth term. In this case u, ='2—;'7,.—1—1. The (n + 1)th term will then be the

same with n replaced by (n + 1)
2n+1
2n
Cgey_2n¥1 270 12n+1
u,  ? -1 22m-1
We now have to find the limiting value of this ratio as n - o, From our

previous work on limiting values, we know that the next step, then, is to
divide top and bottom by .......cccceence

ie. Up4q =

41

Divide top and bottom by n

Un+1 1 2m+1 12+1/n
t ——— = -=. = —=.
o Lt === U 351 Y231/
1l 2+0_1
T2°2-0 2

. s Up + . .
Swnce, in this case. Lt —221< 1, we know that the given series is
n-—roo un
convergent.
OooOoOoo0oOooDO0O0ooO0O0gpDUOOOoODNOoO0DNoCcOooODOoCcoo0Oooooooa
Let us do ancther one in the same way.

Example: Apply D’Alembert’s ratio test to the series

First of all, we must find an expression for u,,.
In this series, Uy = ..oooovcvniniennn.

317




Series 1

B —

Then up, + 1 is found by simply replacing # by (n + 1).
U _ntl
TERtL T n 42

un+1=n+ln+1_n2+2n+l

So that . =
2 u, nt2 n n%+2n

u . ..
We now have to find Lt —"5—‘ and in order to do that we must divide
n—>oo n

top and bottom, in this case, by .......coveenee

Lt Un+1 _ Lt nt+2n+1_ ; 1+2/n+1/n?
nooo Up proo n® +2n n—>o0 1+2/n
_1+0+0_,
" 1+0
Lt —Z*! =1 which isinconclusive and which merely tells us that

n—>roo un

the series may be convergent or divergent. So where do we go from there?
We have, of course, forgotten about Test 1, which states that

(i) if Lt u, =0, the series may be convergent
n 24
n—>oo

(ii) if Lt uy #0, the series is certainly divergent
n—>oo

In our present series, u, =

n+1l
RS R Sru b ey il

This is not zero. Therefore the series is divergent.

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Now you do this one entirely on your own:
. 1 2 2% 23 28
et b -+
Test the series =tets tg Yo

When you have finished, check your result with that in frame 44.
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44 Here is the solution in detail: see if you agree with it.

1,222 2 2

stet7T Ty T T
2n—1 on

Un=gwns Ui T5ag

cUp+r M 449
Up 5+n 21

The power 2™ cancels with the power 2 1o leave a single factor 2.
. Un+a =2(4+n)

Uy S5+n
Up+1 _ 2(4+n) _ 2(4/n+ 1)
= Lt —_——— = Lt S o
nE)toc Up nI:)oo 5+n ngoo 5/’1 +1
_2(0+1)_
=To+1 2
Lt M:z
n—>o0 un

And since the limiting value is > 1, we know the series is ..........cc.c.c.c.....

4 5 divergent

Series in general. Absolute convergence

So far, we have considered series with positive terms only. Some series
consist of alternate positive and negative terms.

Example: the series 1 —% + %—:11 + ... isin fact convergent
while the series pedelydy is divergent
Sttt .

If u,, denotes the n'h term of a series in general, it may well be positive
or negative. But |uy|, or ‘mod u,,’ denotes the numerical value of uy,, so
that if u, +u, +us +us + ... is a series of mixed terms, i.e. some positive,
some negative, then the series |uy |+ [uy |+ Jus |+ lug 1+ . . . will be a series
of positive terrhs.

Soif Zu,=1-3+5-7+9—...

Then Z|uy| = e
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46

Slup|=1+3+5+7+9+. ..

oOooOopOO0O00O00CcoOoO0DONO0000c0000Ooocoooanooooo

Note: If a series Zuy, is convergent, then the series Z|u, | may very well
not be convergent, as in the example stated in the previous frame. But if
Z|uy| is found to be convergent, we can be sure that Zu, is convergent.
If Z|u,| converges, the series Zuy is said to be absolutely convergent.
If Zju,| is not convergent, but Tu, does converge, then Zu,, is said
to be conditionally convergent.

. 1,1 1 .1
= -t — —_ —_——
So,if Zu, =1- 5t372 + 5T converges
_.l1 101 .
and Z{uy|=1+3 3 3+4 3 . diverges
then 2y 1S coveeveiieeee e convergent.

(absolutely or conditionally)

conditionally 47

Example: Find the range of values of x for which the following series
is absolutely convergent.

| = =5 |un+1‘ =X
(n+1)5" (n+2)s
_ xn+1 (n + 1)5"
(n+2)s"*r xP
x(n+1) _x(1+1/n)
S(n+2) 5(1+2/n)

Lt |Hrtr|=X
n—>ool Up 5
u
For absolute convergence I_;too nt ll < 1. .. Series convergent
n

when‘%l< 1,ie. for|x|<S5.
On to frame 48.
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48 You have now reached the end of this programme, except for the test
exercise which follows in frame 49. Before you work through it, here is a
summary of the topics we have covered. Read through it carefully: it will

refresh your memory of what we have been doing.

Revision Sheet

1. Arithmetic series: a, a+d, a+2d, a+3d, ...

u,=a+m-1d Sn=-ni-(2a+n—1.d)
2. Geometric series: a, ar, ar’, ar®, ar*, ... ...
- a(l1—r?
Up =ar™! S”:—_(l—r )
_ a
If|r|<1, Soo‘*lTr

3. Powers of natural numbers':

g _nn+l) L, _n+xDQ@ntD)
1 2 1 6

§r3 ={L nt 1) 2

1 2

4. Infiniteseries: S, =uytustustust. .. tupt...

If Lt S, isa definite value, series is convergent
n—>roe

If »  js not a definite value, series is divergent.
5. Tests for convergence:
(1) If Lt u, =0, the series may be convergent
n—>oo

If »  #0, the series is certainly divergent.

(2) Comparison test — Useful standard series
LENAS SRS S S S

1P 2P 3P 4P 5P T P c
For p > 1, series converges: for p <1, series diverges.

(3) D’Alembert’s ratio test for positive terms.

u ,
If Lt =27t < 1 series converges.
bl
n—>oo Up
"

> 1, series diverges.
= 1, inconclusive.

(4) For general series
(i) If Zjuy,|converges, Zu, is absolutely convergent.
(i) If Z|u,|diverges, but Zu,, converges, then Zuy, is
conditionally convergent.
Now you are ready for the Test Exercise so turn to frame 49.
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Test Exercise — XI 49

Answer all the questions. Take your time over them and work carefully.

1.

The 3rd term of an AP is 34 and the 17th term is —8. Find the sum
of the first 20 terms.

For the series 1,1-2,1-44, ... ... find the 6th term and the sum of
the first 10 terms.

8
Evaluate = n(3 +2n+n?).
n=1

Determine whether each of the following series is convergent.

@ 5.-3+3_24+4£5+5_26+ ......
)3 22 §2+42+ ot
(iii) un=%'22—2

) un = o

Find the range of values of x for which each of the following series is
convergent or divergent.

2 3 x4
R R R TR TR
x xr x> x*
i) = +t=stes t— 7+
Wi5*353%33%35 "
® (n+
(i) Z ("nal)x"
-
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Further Problems — XI

1. Find the sum of n terms of the series
Sy =12+32+5%2+. . . +(2n—1)?

2. Find the sum to n terms of

1 3 5 7
1237333 345 s

3. Sum to n terms, the series
1.35+24.6+3.57+...

4. Evaluate the following:

() :Er(r+3) (i0) vlf(r+1)3

5. Find the sum to infinity of the series

4 6 .8
1 +?! +:ﬁ +§ + ...
6. For the series
5,55 (=1*'s
5 2+4 ‘8-+...+-—§7F1——+...
find an expression for S, the sum of the first # terms. Also, if the
series converges, find the sum to infinity.

7. Find the limiting values of

3x2+5x—4
5x2—x +7
o XP45x—4
G gy oy

(i) as x > oo

as x> oo

8. Determine whether each of the following series converges or diverges.

N2 n S N

O 3557 R s
i 21 R 1
(i) Tz g ™) G
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9. Find the range of values of x for which the series

x | x? xh

T e I
27 125 77 (2n+1)?
is absolutely convergent.

10. Show that the series

x  x* x3

1+1—.2+'2?+§.—4+...

is absolutely convergent when —1 <x < +1.

11. Determine the range of values of x for which the following series is

convergent 2 3 4
__x_+ xT X X
33723473435 336"

12. Find the range of values of x for convergence for the series
4.2 14,3 44,4

2x7 37 4°x
2! 3! 4!

x +

13. Investigate the convergence of the series

14. Show that the following series is convergent

31.41 51
4= —F+= 5 4+—= -+
2 24 3'4% 44>
15. Prove that
1 1 1 1 o
S+ -+ =+ —4
VITNV2ZNB NE is divergent
and that
R T ... is convergent.

12 22 32 42

16. Determine whether each of the following series is convergent or

divergent.
1+3n?
O 2o+ T) 2n(2n +1) (i) =5 1+n?
sy e, 3n + 1
(iii) E\/————(4n2+ 0 (iv) E -
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17. Show that the series

2x | 3x? | 4x3 .
1+ 5 +25 125 ... is convergent

if =8 <x < 5 and for no other values of x.

18. Investigate the convergence of

3 7 15 31
(1)1+24 49+816+ 25+...

111
) Stspt3patgat--

19. Find the range of values of x for which the following series is
convergent.
- -2 — )3 -
G-, -2 x=2) +.”+(x 2)”+
1 2 3 n

n
20. Ifu, =r(2r+1)+ 2" find the value of T u,.
1
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1 Power series

Introduction: 1In the first programme (No. 11) on series, we saw how
important it is to know something of the convergence properties of any
infinite series we may wish to use and to appreciate the conditions in
which the series is valid.

This is very important, since it is often convenient to represent a
function as a series of ascending powers of the variable. This, in fact, is
just how a computer finds the value of the sine of a given angle. Instead
of storing the whole of the mathematical tables, it sums up the terms of
a series representing the sine of an angle.

That is just one example. There are many occasions when we have
need to express a function of x as an infinite series of powers of x.

It is not at all difficult to express a function in this way, as you will soon
see in this programme.

So make a start and turn on to frame 2.

Suppose we wish to express sine x as a series of ascending powers of x.
The series will be of the form

sinx Ta+bx +ex?+dx® +ext+. ..

where a, b, c, etc., are constant coefficients, i.e. numerical factors of
some kind. Notice that we have used the ‘equivalent’ sign and not the
usual ‘equals’ sign. The statement is not an equation: it is an identity.
The right-hand side does not equal the left-hand side: the R.H.S. is the
L.H.S. expressed in a different form and the expression is therefore true
for any value of x that we like to substitute.

Can you pick out an identity from these?

(x+4)* =3x2-2x+1
(2x+1)?=4x*+4x -3
(x+2)* =x*+4x+4

When you have decided, move on to frame 3.
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l(x+2)2=x2+4x+4

Correct. This is the only identity of the three, since it is the only one in
which the R.H.S. is the L.H.S. written in a different form. Right. Now
back to our series:

sinx =a+bx +ex?+dxd+ext+. ..

To establish the series, we have to find the values of the constant coeffi-
cientsa, b, c,d, etc.
Suppose we substitute x = 0 on both sides.

Then sin0=ag+0+0+0+0+...

and since sin 0 = 0, we immediately get the value of 4.

Now can we substitute some other value for x, which will make all the
terms disappear except the second? If we could, we should then find the
value of b. Unfortunately, we cannot find any such substitution, so what
is the next step?

Here is the series once again:

sinx=a+bx+ex? +dxd +ext +. ..

and so far we know thata = 0.
The key to the whole business is simply this:

Differentiate both sides with respect to x.

On the left, we get cos x.
On the right the terms are simply powers of x, so we get
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5 [E)sx=b+c.2x+d.3x2+e.4x3+...

This is still an identity, so we can substitute in it any value for x we
like.

Notice that the g has now disappeared from the scene and that the
constant term at the beginning of the expression is now b.

So what do you suggest that we substitute in the identity as it now
stands, in order that all the terms except the first shall vanish?

We substitute x = ................... again.

Substitute x = 0 again J

Righr: for then all the terms will disappear except the first and we shall
be able to find 5.

cosx=b+c2x+d3x?+edx®+. ..
Putx=0
L cos0=1=H+0+0+0+0+...
L b=1
So far, so good. We have found the values of 4 and 4. To find ¢ and d
and all the rest, we merely repeat the process over and over again at each
successive stage.
i.e. Differentiate both sides with respect 10 X

and SubSHItULe .......coveeeeeeennnnnn.
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substitute x =0

So we now get this, from the beginning:

sinx=a+bx+ex?+dxd tex* +fx5+ ...

Putx=0. . sin0=0=a¢+0+0+0+... L a=0

{ Diff. cosx = b+c2x +d3x% +edxd +f5x% ...
Putx=0. .. cos0=1=bH+0+0+0+... . b=1
Diff. —sinx = c2+d3.2x ted43x? +f.54x3
Putx=0. .. —=sin0=0= ¢2+0+40+... .c=0

{ Diff. —cosx = d3.2.1+e432x+f543x2...

| Putx=0. . —cosO=-1=  d31+0+0+... .d=-%
And again, sinx = ed4321+f5432x+...
Putx=0. ..sin0=0= ed4!+0+0+ . e=0

{ Once more. cosx = 54321 +...
Putx=0. = cos0=1= f51+0+ nf=1,

etc.  etc.

All that now remains is to put these values for the constant coeffi-

cients back into the original series.
. 1 1
sinx =0+ 1.x+0.x2+—§,x3 +0.x“+§|x5 +...

x3 x5

i.e. smx=x——3-!+5—!——

Now we haveobtained the first few terms of an infinite series represent-
ing the function sin x, and you can see how the terms are likely to

proceed.
Write down the first six terms of the series for sin x.

When you have done so, turn on to frame &.
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8 3 5 7 9 11

. X X X X
x-S - g
R TR T TR TR T TR

Provided we can differentiate a given function over and over again,
and find the values of the derivatives when we put x = 0, then this
method would enable us to express any function as a series of ascending
powers of x.

However, it entails a considerable amount of writing, so we now
establish a general form of such a series, which can be applied to most
functions with very much less effort. This general series is known as
Maclaurin’s series.

So turn on to frame 9 and we will find out all about it.

9 Maclaurin’s series: To establish the series, we repeat the process of
the previous example, but work with a general function, f(x), instead of
sin x. The first differential coefficient of f(x) will be denoted by f'(x};
the second by f"'(x); the third by f""(x); and so on. Here it is then:

Letf(x) =a+bx +tcx?> +dx® +ex® + 5 + . ..
Putx =0.Then (0)=a+0+0+0+... ..a=£0).
ie. a = the value of the function with x put equal to 0.

Diff. fi(x)= b+c2x+d3x*+edx® +f5x* + . .,

Putx=0 .f(0)= b+0+0+... - b=f'(0)
Diff. f"(x)= ¢2.1+d32x+e43x>+f54x3 ...
Putx=0 ./ (0)= c2!'+0+0+. .. c=}¥2

Now go on and find d and e, remembering that we denote

2{ro6) by 170

and ‘%{f”’(x)} by fiV(x), etc.
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Q) 1) 10

d="= 41

Here it is. We had:
frx)=c21+d3.2x +ed43x* +f54x> + . ..

{Diff. L) = d321+ed432x+f543x2+ ...
IH 0
‘Putx=0 .. f""(0)= d3!'+0+0... .. d= 3,()
(Diff. fiV(x) = €e4321+f5432x+.
. V(0
1Putx=0 A e4!+0+0+... ﬂ4$)
etc. etc.
"(0) Q. /Y0,

So a=f(0); b=fH0); - d=

31 0 6T Tgr

Now, in just the same way as we did with our series for sin x, we put
the expressions fora, b, c, . . . etc., back into the original series and get:

=10+ @z + e e 1

and this is usually written as

f6) =10 +x.£1(0) +5; L0 + 3,f"’(0) I

This is Maclaurin’s series and important!
Notice how tidy each term is.
The term in x? is divided by 2! and multiplied by £'(0)
SO S § B ? ” f(0)
SO A A ” » fiv(0)

Copy the series into your record book for future reference.

Then on to frame 12.
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12 Maclaurin’s series
2
76)=£(0) +x. 'O ¥ 31 1O+ 2 @) + ..

0o0O0O0O0oOO0000O0NO0O0000000c000O0O00000000000000

Now we will use Maclaurin’s series to find a series for sinh x. We have
to find the successive differential coefficients of sinh x and put x =0 in
each. Here goes, then:

f(x) =sinh x f(0)=sinh0=0

f'(x) = cosh x f(0)=cosh 0=1

f"x)=sinhx f"(0)=sinh 0=0

f'"(x) =cosh x () =cosh0=1

f¥(x) =sinh x fiV(0)=sinh 0=0

fY(x)=coshx f¥Y(0)=cosh0=1 etc.
2. sinh x /0/+x 1 +}—(@+3, n +/—(-(6)+ D+

» sinhx =x +§-! +J§c—! +J7%+ .

Turn on to frame 13.

13 Now let us find a series for In(1 +x) in Just the same way.

) =1n(1 +x) Lf0) = e
o= ——-(1 + Xy R0 N
Frix)=—(1 +xy?= (1':x)2 R 20 B I
r(x) =2(1 +x)° -(I—%x—)3 S 241 (0) T

F(x)==3.2(1 +x)*= (13+2x)4 2 FYO) = e

i}

1}

FY00)=4.32(1 + %) (14+' 5 O =

You complete the work. Evaluate the differentials when x =0,
remembering that In 1 = 0, and substitute back into Maclaurin’s series to
obtain the series for In(1 +x).

So, In(1 +X)= v
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Also

fO=In1=0; f(O)=1; fA0)=-1; f"(0)=2; 14
vy =-34 fv(0)=4"

fx)= f(0)+Xf'(0)+ f"(0)+ f”'(0)+

In(1 +x) = o+x1+2'(—1>+3,<2)+ NG

2 .3 5
In(l +x)=x > tT g +5

Note that in this series, the denominators are the natural numbers, not

factorials!

Another example in frame 15.

15

Example: Expand sin’x as a series of ascending powers of x.

Maclaurin’s series.:

f@x)=1(0) +x.1'(0) + f”(O) +-' S0 +.

5 f(x) =sin’x FO) = e
fix)=2sinxcosx=sin2x f'(0) = ..cceouerne.
f'(x)=2cos2x M0 = e
F(x) =— 4 sin 2x F70) = oo,
V@) = YO) = e

There we are! Finish it off: find the first three non-vanishing terms of the

series.

Then move on to frame 16.

334



Programme 12

16 ;
sinfx=x2—% + Zx6 .

3 "35>

For f(x) = sin’x S f(0)=0
fix)=2sinxcosx=sin2x .. f(0)=0
f"(x)=2cos 2x L fM0)=2
f"(x) =—4 s 2x L f"0)=0
FY¥(x) =8 cos 2x L fv)=-8
f¥(x)=16sin 2x L fY0)=0
FYi(x) =32 cos 2x LfYi0)=32 etc.

1(6) = F0) +x.£0) +5,.77(0) +51.F70) + ..
Lsintx =0 +x(0) +5 () +5 (0 + 5 (-8)+5 (0 + X 32)

4 6
G2 2 X0 2X
. sin“x = x 3+4—5

Next we will find the series for tan x. This is a little heavier but the method
is always the same.

Move to frame 17.

17 Series for tan x

f(x) =tanx L f0)=0
Lfx) =secx s fr(0)=1
S f'x) =2sec’x tanx L frO)=0
S f™(x) = 2 sec*x + 4 sec’x tan®x L0y =2

=2 sec*x + 4(1 + tan®x) tan’x
=2 sec*x + 4 tan®x + 4 tan*x
L fV(x) = 8 secx tan x + 8 tan x sec’x + 16 tan®x sec®x
=8(1+ 122 +81(1 +1¥) +163(1 +12)
=8(1 +2r2 + M) + 8t + 83 + 1613 + 16£°

=161 + 4013 + 24¢1° L fv)=0
SfY(x) =16secix + 12022 sec®x + 1201% sec®x
V(N =
tanx=.............. = fO)=16
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R

3
X
" =x+x +
tanx =x 3 1

w

5
+...
Standard series

By Maclaurin’s series. we can build up a list of series representing many
of the common functions — we have already found series for sin x, sinh x
and In(1 + x).

To find a series for cos x, we could apply the same technique all over
again. However, let us be crafty about it. Suppose we take the series for
sin x and differentiate both sides with respect to x just once, we get

Diff. cosx=1-3F +5—!——7—!* ... etc.

" cosx=1—%—!+z—! 6_!+

In the same way, we can obtain the series for cosh x. We already know
that .S 7
sinh x = x +§+§+ Tt
so if we differentiate both sides we shall establish a series for cosh x.
What do we get?

19

We get: P T
Diff.
giving:

coshx—l+2,+? z— %+

Let us pause at this point and take stock of the series we have obtained.
We will make a list of them, so turn on to frame 20.
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2 Summary

Here are the standard series that we have established so far.
sin x =x—J3c—?+)—56—?—§—,7+%?. II
cosx =l—)—2‘—!2+zﬂ‘:—z-?—+)8c—7 I
tan x =x+2c3—3+%c—5+. v
sinh x =x+2€3—?+2§—?+)§—!7+ \Y
coshx=1+ ;—2 §+z~?+§; VI
ln(1+x)=x—§—2+§—§+§i... Vil

Make a note of these six series in your record book.

Then turn on to frame 21.

21 The binomial series
By the same method, we can apply Maclaurin’s series to obtain a power
series for (1 + x)*. Here it is:

f(x)=(1+x) f0)=1

frx)y=n.(1 +x)*! f0)=n

fr1ee)=n(n—1).(1 +x)"? "0y =n(n-1)

) =nn—-1)(n-2).(1 +x)*3 Q) =n(n-1)(n-2)

V@) =n(n—-1)(n-2)(n-3).(1 + x)t"“" f¥(0)=n(n—1)(n—-2) (nt-,-3)
etc. etc.

General Maclaurin’s series:
f(x) = £(0) +x.£1(0) + 37 f”(O) +% f"'(O)

Therefore, in this case,

x2 x3
(1+xy'=1+xn +-—,n(n— 1)+—,n(n— Dnr-2)...
(1+xy"=1+nx+ (2 1) 2+”(”_1;‘(" D v
Add this result to your list of series in your record book. Then, by
replacing x wherever it occurs by (—x), determine the series for (1 —x)”.
When finished, turn to frame 22.
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‘:l—x)n=l—nx +n(n2!— l)xz_n(n—l;!(n~23x3 ... 22

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Now we will work through another example. Here it is:
Example: To find a series for tan !x.

As before, we need to know the successive differential coefficients in order
to insert them in Maclaurin’s series.

_ , 1
f(x)=tan"x and f"(x)= e
If we differentiate again, we get f "(x)=- - after which the work-

(1 + x2)2 »
ing becomes rather heavy, so let us be crafty and see if we can avoid
unnecessary work.

We have f(x) = tan"x and f'(x) = l—i_x_2 =(1 +x2y. If we now expand

(1 +x2y" as a binomial series, we shall have a series of powers of x from
which we can easily find the higher differential coefficients.

So see how it works out in the next frame.

To find a series for tan™ ' x
J(x) =tan'x L f0)=0 23

LF0)= e = (1

SN e I L IO

123
=1-x2+x*-xS+x¥— ... f10)=1
L) =2 +4x? —6x5 +8x7T— .. f"0)=0
L) =-2412%% - 30x% +56x5— L. fr(0) =2
S FV(x) = 24x — 120x +336x5 ~ . . . 0)=0
L f¥(x)=24—-360x? + 1680x* — . .. FY0)=24 etc.

. tarx = £(0) +x.£(0) + X7 £1(0) + Lo+ ...

Substituting the values for the derivatives, gives us that tan'x = ...

Then on to frame 24.
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24 tan'x = O+x(1)+2,(0)+ (2)+4.(0)+ (24) ..
3 5 7
—1o _E_ X _X
tanx =x—F tz- -+ X

This is also a useful series, so make a note of it.
0O0ODO0O000000000000000000000N000000000nOon

Another series which you already know quite well is the series for e*.
Do you remember how it goes? Here it is anyway.

x3 x*

ex—1+x+2, THaTt. .. XI
and if we simply replace x by (~x), we obtain the series for €~
x? x3 x4
_1—x+2'_§!-+5!_,"‘ XII

So now we have quite a few. Add the last two to your list.

And then on to the next frame.

Examples: Once we have established these standard series, we can of
2 5 course, combine them as necessary.

Example 1. Find the first three terms of the series for eX In(1 + x).

a
We know that =l+x+% 2‘ +Z—'+
: Xt Xt
and that In(1 +x)=x 2R b e
- x2 x3, xt X2  x3
ex'ln(l"”x)"{1"’X+§+—!+—!—...}{x—2—+§-—...

Now we have to multiply these series together. There is no constant
term in the second series, so the lowest power of x in the product will be
x itself. This can only be formed by multiplying the 1 in the first series
by the x in the second.

2
The x? term is found by multiplying 1 X(— Q_)} 2 2
2 _
and xXx *

3
The x3 term is found by multiplying 1 X %—

SR Y AT SR S o

and  xx(-F )5 -F+F =3
2

and ;— X x and so on.
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- 26
LCeXIn(ltx)=x+E +3 4

2 3

It is not at all difficult, provided you are careful to avoid missing any of
the products of the terms.

0cdo0oo0ooocoOoopooUoococJUu0nDO0oco0goooOooocOocooocooaoao

Here is one for you to do in the same way:

Example 2. Find the first four terms of the series for e* sinh x.

Take your time over it: then check your working with that in frame 27.

Here is the solution. Look through it carefully to see if you agree with 27
the result.

3 5 7
sinhx =x +§; +’% +£7+ ..

7
x2 53 X3 x5 )
eXsinhx={1+x+5+57. .. x+—,+—7+..‘J

Lowest power is x

Terminx =l x=x
1 ”x2 =x‘x=x2
3 2 3
I EY x3 =1._3x_!+L!.x=x3(%+é_)=2x——3—
3 3 4
2 » 4 — L L = 4 l 1_. =x_
<= x g+ Erx =gt )=%

3 4
. e¥.sinhx =x +x? +2% +’3C—+ o

There we are. Now turn on to frame 28.
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28 Approximate values

This is a very obvious application of series and you will surely have done
some examples on this topic some time in the past. Here is just an example
or two to refresh your memory.

Example 1. Evaluate /1.02 correct to 5 decimal places.

1.02=1+0.02
V102 =(1 +0-02)Y/?
1,1 1, 1,,.3
2 1+2002 + 22 0027 + 222 2 .02
P 1.2 123

=1+001 - 5(0.0004) + 1%(0000008) _

=1 +0-01 - 0-00005 + 0-0000005 . . .
= 1-010001 — 0-000050
=1.009951 .. /102 =1.00995

Note that whenever we substitute a value for x in any one of the
standard series, we must be satisfied that the substitution value for x is
within the range of values of x for which the series is valid.

The present series for (1 + x)? is valid for|x | <1, so we are safe
enough on this occasion.

Here is one for you to do.

Example 2. Evaluate tan’' 0.1 correct to 4 decimal places.

Complete the working and then check with the next frame.

29 e tar'0-1 = 0.0997

3 5 7
_ X
tan1x=x—§ +§ -%4’...

“ tarrl01=0.1 - 0-001 + 0-00001 _ 0-0000001 N
3 5 7
=0.1 - 0-00033 + 0-000002 - . ..
=0-0997

We will now consider a further use for series, so turn now to frame 30.
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Limiting values — Indeterminate forms 3 0

In Part I of this programme on series, we had occasion to find the

limiting value of <27~ Z asn = oo, Sometimes, we have to find the limiting
n

value of a function of x when x - 0, or perhaps when x - a.

x?+5x—14]_0+0-14_ 14_ 7
x2-5x+ 8) 0-0+ 8 8 4

That is easy enough, but suppose we have to find

e.g. Lim

x =0

Lim{x2+5x_l4;

x—>2lx*=5x+ 6

Putting x = 2 in the function, gives ——-1—8:—1—% %and what is the value
0
=9

ofo.

Is it zero? Is it 17 Is it indeterminate?
When you have decided, turn on to frame 31.

—8—, ag it stands, is !indeterminate 31

We can sometimes, however, use our knowledge of series to help us out
of the difficulty. Let us consider an example or two.

Example 1. Find the }Lr% { @B?}
If we just substitute x = 0 in the function, we get the result %which is
indeterminate. So how do we proceed?

Well, we already know that tanx =x + %3 + %—’;—5 +... Soif we replace
tan x by its series in the given function, we get

Limiti%,—x} {9/+_ +f—’5f ...)—/}

x>0 x—>0 X
- 1 2x? _1
'XL‘%{TTS‘ ) }_3
| Lim {tanxa—x}=1_ — and the job is done!
x>0 P 3

Move on to frame 32 for another example.
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32 Example 2. To find Lim {Sm)}: x}

x>0
o . inh0 .. .0 . .
Direct substitution of x =0 gives SI—O— which is o 2gain. So we will
express sinh x by its series, which is

Sinh X = oo
(If you do not remember, you will find it in your list of standard series
which you have been compiling. Look it up.)
Then on to frame 33.

3 5 ¥i
33 sinhx=x+% +%+%+
x> x5 X7
. x+5+5+5
S Lim {smhx}___Lim{ 31t Sit T ]
x>0 X x>0 X
1 x_
‘A,Lii%{ ntat }
=1+0+0+... =1
. Lim {smhx}=1
x>0 X

Now, in very much the same way, you find Lim {smzx}
x>0

Work it through: then check your result with that in the next frame.

34 Lim {S‘l’f} 1
' x>0\ X

Here is the working:

4 6
2 X7 2x°
. {sin%c}_ . {x 3755 }
Lim >— {= Lim 3
x>0\ X x>0 x
: R
%i“o{l 3 Tas : !
sinZx
) -1
i {%)

Here is one more for you to do in like manner.

. . sinh x —x
Then on to frame 35. Find )IC_,_I)II’(; { x* }
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3 5 7
sinhx=x+%c!+)5i!+%c—!+..
x> x5, X
sinh x —x /+§!+5‘+7+ /
X x3
X2 5t
—§'+§+§—|+
. f[sinhx—x .1 z2 xt
= — 4 — —
31“0{ x }}‘i‘é{s' SART }
1.1
3! 6
sinhx—x{_1
,}—l»r%{ x3 }—6

So there you are: they are all done the same way.
(i) Express the given function in terms of power series
(ii) Simplify the function as far as possible

35

(iii) Then determine the limiting value — which should now be possible.

o00o0ooOo0o0op0oo00oo00o0o0do0o0oooo0oooooDoo0nooooa

Of course, there may well be occasions when direct substitution gives

. . 0 . .
the indeterminate form 0 and when we do not know the series expansion

of the function concerned. What are we going to do then?
All is not lost! — for we do in fact have another method of finding

limiting values which, in many cases, is quicker than the series method.

It all depends upon the application of a rule which we must first
establish, so turn to the next frame for details thereof.
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3 6 L Hopital’s rule for finding limiting values.
Suppose we have to find the limiting value of a function F(x) _gx;

at x =ga, when direct substitution of x = a gives the indeterminate form

0, ie.atx=ga, flx)=0andg(x)=0.
If we represent the circumstances graphically, the diagram would look
like this:— Y

y=f{x)

Note that at x =a, both of the
graphs y = f(x) and y = g(x) cross
the x-axis, so that at x =4, f(x) =1

and g{x) =

AtapointK,ie x =(a+h),KP=f(z +h)and KQ=g(a +h)
flat+h) _KP
gla+h) KQ
Now divide top and bottom by AK
fla+h) _KP/AK _tan PAK
gla+h) KQ/AK tan QAK

f)_ . fath)_ . tanPAK _['(a)
Now xL—gzlg(x) hl»og(d +h) hL_IEIa tan QAK g'(a)

fx)
g(x)
direct substitution gives%) is given by the ratio of the differential coeffi-
cients of numerator and denominator at x = g (provided, of course, that
both f'(a) and g'(a) are not zero themselves)!
: )@, f_(x_)}
()i~ Lim 75

i) -un )

This is known as [’Hopital’s rule and is extremely useful for finding
limiting values when the differential coefficients of the numerator and
denominator can easily be found.

Copy the rule into your record book. Now we will use it.

i.e. the limiting value of as x > a (at which the function value by
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L {f( )} Lim {f’(x)} 37

0| x5a |£k)

X ext-x—1
Example 1. To find :IcJ—I)nl { e —— }
Note first that if we substitute x = 1, we get the indeterminate form 8
Therefore we will apply ’Hopital’s rule.
We therefore differentiate numerator and denominator separately
(not as a quotient).

Lim x}+x?-x—1 - Lim 3x?+2x 1
x>1| x*+2x-3 x=>1 2x +2
_—_M:i:l
2+2 4
. Lim x3+x’—x—1}___
.x‘—>1 x2_2x—3

and that is all there is to it!
Let us do another example, so, on to the next frame.

Example 2. Determine Lim
x>0

cosh x — eX
x

38

We first of all try direct substitution, but we find that this leads us to

the result 1%1 ,i.e. g—which is indeterminate. Therefore, apply I'Hopital’s

rule (X)} {f'(x) }

Lim Lim { =

x*a{ &(x) x—~>al &£(x)
i.e. differentiate top and bottom separately and substitute the given value
of x in the differential coefficients.

— pX H —_pX
. Lim{cosh:)cc e }=Lim{smhx e }

x>0 x>0 1
=0-t__

1

- Lim cosh x— ex

T x>0

Now you can do this one™
Determine Lim {x —sin 3x}
x>0 x +4x
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39

i _
}_If(l) x? +4x

x*—sin3x)|__3
4

The working is simply this:

Direct substitution gives %, so we apply I’Hopital’s rule which gives

2 _ o —
Lim{x sm3x}=Lim{2x 3cos3x}

x>0 x? +4x x>0 2xt+4
-0-3__3
0+4 4

WARNING: I'Hopital’s rule applies only when the indeterminate form
arises. If the limiting value can be found by direct substitution, the rule
will not work. An example will soon show this.

. . (x*+4x—3
Consider }Lﬂ;{ ——5——_‘5— }
. o s 4+8—-3 _ ) o1
By direct substitution, the limiting value = 7 9. By I’Hopital’s

rule Lim
x>2

{x2+4x—3}=

2x +4
5—2x o

}= —4. As you will see, these results
x>2 -2

do not agree.
Before using I’Hopital’s rule, therefore, you must satisfy yourself that

direct substitution gives the indeterminate form ((—)) If it does, you may
use the rule, but not otherwise.

40

Let us look at another example

; . [x—sinx
Example: Determine le{—z—}
x>0 x
By direct substitution, limiting value =

Apply ’Hopital’s rule:

x
We now find, with some horror, that substituting x = 0 in the differen-

tial coefficients, again produces the indeterminate form % So what do you
. . [1—co
suggest we do now to find Lim { co8 X
x>0

T}’ (without bringing in the use of

series)? Any ideas?
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We apply the rule a second time. 41

Correct, for our immediate problem now is to find Lim {1——;?1} If we
do that, we get: x>0

. x —sinx . 1—cosx . sinx |_0O
L ———}:L —— = ==
] e B Y I

N e 2 N 4
Flrst stage Second stage
" Lim {x—_ o x} =0
x>0 X

So now we have the rule complete:

| For limiting values when the indeterminate form (i.e. -) exists, apply |
I’Hopital’s rule \
|

’
) X
Lim f(x)} T )}
x—>a | glx} x—>a g(x)
|| and continue to do so until a stage is reached where either the numerator
and/or the denominator is not zero.

Next frame.
Just one more example to illustrate the point. 4 2
Example: Determine Lim :wa}
x—=0 x
. oo . Q0=-0. 0 . .
Direct substitution gives o ey (indeterminate)
. L {Sinhx - sinx} - Lim {coshx —cosx| . 1-1_0
ol 3 30 7 )BT To
=Lim{sinhx+sinx es 0T0_0
o x| B T0 o
= Ly [ooshx +cosx}___ 1+1_1
x—=0 6 6 3
. 1. fsinhx—sinx|_1
. le - 3 (T35
x>0 X 3

Note that we apply I’Hopital’s rule again and again until we reach the
stage where the numerator or the denominator (or both) is not zero. We
shall then arrive at a definite limiting value of the function.

Turn on to frame 43.

=
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Here are three Revision Examples for you to do. Work through all of
them and then check your working with the results set out in the next
frame. They are all straightforward and easy, so do nou peep at the
official solutions before you have done them all.

| (X —2x+4x -3
Determine )] i{’f}{W}
(ii) le{tifi‘__’ﬁ} (iif) Lim{ M}
x—olsin x —x x>0 X

4 4 Solutions:
:x3—2x2 +4x—3}

. . . .0
6] )I:gnl % By (Substitution gives &)
. [3x*—4x+4|_3_
—;}E}{ 8 -5 }—3_1
Lim x3—2xz+4x—3}___]
x=>1 4x2—5x + 1
.. . f[tanx —x) .0
(i) }l{% {m (Substitution gives 0)
sec?x — 1 I ¢
{ s =1 } (still gives 6)
_ 2 sec?x tan x -y
= { % } (and again!)
2 sec2x sec?x + 4 sec’x tan x} 2+O=_2
—COs X -1
tan x —x N
x—>0 sin x —x

X COs x — sin x}

(iii) Lim {———3——— (Substitution gives 9)
x>0 0

x
. {—xsinx+cosx-—cosx}
= Lim -
x>0 3x
= Lim [ZS0X 4 (5 [Tcosx __1
x>0 3x x>0 3 3
. {x €Os X — sin x} 1
Lim{——————=~=
x>0 x 3 Next frame.
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Let us look at another useful series: Taylor’s series. 45
Maclaurin’s series f(x) = £(0) +x.£'(0) + % f"(O) +... expresses a
Y .
y=f(x) functlon in terms of its
differential coefficients
P ) )
. at x = 0, i.e. at the point K.
i
K 1(h)
o] l
£(0) E
O PE——— X

AP, 1) = £(0) +h.'0) + 2 10) + 2 o)

If we now move the y-axis a

units to the left, the equation

of the curve relative to the

new axes now becomes

Flh+a) ¥ =F(a +x) and the value at
K is now F(a)

y=Flx +a)

X

At P, F(a+h)=F(a) + h.F'(a) + F"( ) + F”’(a) +.

This is, in fact, a general series and holds good when a and h are both
variables. If we write 4 = x in this result, we obtain

f(x+h)=f(x) +h. f’(x)+ f”(x)+—.f"'(x)+

which is the usual form of Taylor’s series.

Maclaurin’s series and Taylor’s series are very much alike in some
respects. In fact, Maclaurin’s series is really a special case of Taylor’s. 46

Maclaurin’s

series:  f(x) = f(0) +x.1"(0) + % f”(o) +3 31 f"'(o) t.

Taylor’s
series:  f(x +h)=f(x) +h.f(x) + f"(x) o 3 f”’(x) t.

Copy the two series down together: it wﬂl help you learn them.
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47 Example 1. Show that, if 4 is small, then

h xh?
T+x* (1 +x%)?
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDE\DDDDDDDD
Taylor’s series states

Fox W) =G0+ hf 1)+ ) + )

where f(x) is the function obtained by putting # = 0 in the function

f(x+h).
In this case then, f(x) = tan'x.

tan!(x + &) = tan 'x + —— approximately.

Lfx)= I%? and f"(x)=-— (%)2
Putting these expressions back into the series, we have
LR 2x
1+x2 201 +x%)?
_h Xk
1+x2 (1+x%)?
Why are we justified in omitting the terms that follow?

tan™ (x + k) = tan 'x + 4.

=tan lx + approx.

48

The following terms contain higher powers of 4 which, by
definition, is small. These terms will therefore be very small.

Example 2. Express sin (x + /) as a series of powers of 4 and evaluate
sin 44° correct to 5 decimal places.

sin(x + h) = f(x) + h.f1(x) +75; f"(x) +— )+
f(x) = sin x; f(x)=cosx, f"(x)—-smx,

f"(x)= —cosx; F¥(x) =sin x; etc.
2 3
. sin(x+h)—smx+hcosx—§-‘s1nx—§7cosx+
in 44° = sin(45°—1°) =sin (= — O- T coslT= ~
s sin( °) =sin (4 0-01745) and sm4 cos \/2
+} h=-0.01745

2 3

. h
. sin 44° \/2{1+h 776

0-0003045 | 0-0000053
\/2{ —0:01745 - > + 3 +}

\/2{ —0-01745 —0-0001523 + 0-0000009 . }

=0.7071 (0-982399) = 0-69466
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You have now reached the end of the programme, except for the test 49
exercise which follows. The questions are all straightforward and you will
have no trouble with them. Work through all the questions at your own
speed. There is no need to hurry.

Test Exercise—XII

1. State Maclaurin’s series.
2. Find the first 4 non-zero terms in the expansion of cos®x.

3. Find the first 3 non-zero terms in the series for sec x.
3

5 7
o X L XX
4. Show that tan 'x = x 3 +5 7 + ...

5. Assuming the series for ¢* and tan x, determine the series for e*.tan x
up to and including the term in x*.

6. Evaluate +/1-05 correct to 5 significant figures.

— 2. 3
7. Find (i) Lim{l 2sin X — o5 x}
x>0

5x?
o, [tanx .tanlx —x? }
i) Lim{ ————p——
(i) Lim 102020
. X —sin x
(iii) Lim {— }
x—=>0lx—tanx

8. Expand cos(x + /) as a series of powers of 4 and hence evaluate
cos 31° correct to 5 decimal places.

You are now ready to start the next programme.
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Further Problems—XII

x? x* x®

1. Prove that cosx =1 ~5 +ﬂ— a+ ... and that the series is valid

for all values of x. Deduce the power series for sin?x and show that,
if x is small,

sin?x —x®cosx _ 1 x* imatel
@ ~gtigp @pproxima ely.
2. Apply Maclaurin’s series to establish a series for In(1 + x). If 1 +x =§,
show that 2 x3?
(b* ~a*)[2ab =xTT AT

Hence show that, if b is nearly equal to a, then (b2 —a*)/2ab exceeds

ln(-g-)by approximately (b —a)?/6a°.

(1 — i 2y — 3
3. Evaluate (i) Lim il 2 Sms x2 23 x}
x>0 x

(i) Lim {sm x— ); cos x} (i) Lim{ tan x —351n x}

x>0 x=>0 X
. sinx —x tan x — x

Lim /80X =X o [tanx = x

@) =50 { x? } ) xLin&{x — sin x}

4. Write down the expansions of (i) cos x and (ii) 1—_1'_—);, and hence
show that
cos X _ 2 x* 13
1+x

5. State the series for In(1 + x) and the range of values of x for which it
is valid. Assuming the series for sin x and for cos x, find the series for

/sin x . .
ln(T) and In(cos x) as far as the term in x*. Hence show that, if x
2
is small, tan x is approximately equal to x.e* /3 .

6. Use Maclaurin’s series to obtain the expansion of e* and of cos x in
ascending powers of x and hence determine

Li e* +te*—2
xl_% 2 cos2x—2
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10.

11.

12.

13.

x—3

. Find the first four terms in the expansion of (I—:W) in

ascending powers of x.

. Write down the series for In(1 + x) in ascending powers of x and

state the conditions for convergence.
If a and b are small compared with x, show that

bz_xa)(ln(x+b)—lnx}

=2
1n(x+a)—lnx—b (1 +

. Find the value of k for which the expansion of

(1+kx) (1+2) In(1+x)

contains no term in xZ.

Evaluate @ Um‘f Slnhx_—;f}&C}
x"O\ X
x—=>1 x?—-1 o —_~X2+x

If 4, and u,.; indicate the rtt term and the (r — 1)!h term respectively
of the expansion of (1 + x)”, determine an expression, in its simplest

form, for the ratio u—uL Hence show that in the binomial expansion

-1

of (1 +0-03)!2, the rth term is less than one-tenth of the (7 — D)th
term if r > 4. Use the expansion to evaluate (1-03)'? correct to three
places of decimals.

By the use of Maclaurin’s series, show that
3 5
s 1 x> 3x
sin'x=x+= +57 +...
*T6 Ta0
Assuming the series for eX, obtain the expansion of e* sin !x, up to
and including the term in x*. Hence show that, when x is small, the

graph of y = e* sin ' x approximates to the parabola y = x4+ x.

By application of Maclaurin’s series, determine the first two non-
vanishing terms of a series for In cos x. Express (1 + cos 0) in terms
of cos 8/2 and show that, if § is small,

2 4

g 00 :
In(1 +cos@)=1n2 4 o6 approximately.
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14.

15.

16.

17.

18.

19.

20.

If x is small, show that

1 \/{;ji}ﬁ1+x+5§

(1+3x2 2
(i) \/{——————‘11 E); ) 1 § 32X, 2

2 8

Prove that ) a

: X Xy XX

O F==1-2*7 7%+

X x x* o x*

) 7317377 %

. N o, fsinhix—x o . feSinX—1—

Find (i) ){_,LI%{ i }, (ii) ){{1}1}){ = }

Find the first three terms in the expansion of
sinh x/.In(1 + x)
x2(1 +x)3

The field strength of a magnet (H) at a point on the axis, distance x
from its centre, is given by

H = —1\4 ._1_ ._—1
A \x=D* (x+D)?
where 2/ = length of magnet and M = moment. Show that, if / is

very small compared with x, then H = 2}1\34

Expand [In(1 + x)]? in powers of x up to and including the term in
x*. Henece determine whether cos 2x + [In(1 + x)] ? has a maximum
value, minimum value, or point of inflexion at x = 0.

If 1is the length of a circular arc, a is the length of the chord of the
whole arc, and b is the length of the chord of half the arc, show that

(i) a =2rsin L and (ii) b = 2rsin L where r is the radius of the

2r 4r’
circle. By expanding sin L and sin —las series, show that /= 8 —a
) 2r 4r ’ 3
approximately.
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1 Introduction

You are already familiar with the basic principles of integration and have
had plenty of practice at some time in the past. However, that was some
time ago, so let us first of all brush up our ideas of the fundamentals.

Integration is the reverse of differentiation. In differentiation, we start
with a function and proceed to find its differential coefficient. In integra-
tion, we start with the differential coefficient and have to work back to
find the function from which it has been derived.

e.g. 4 (x® + 5) = 3x2. Therefore it is true, in this ease, to say that the
dx

integral of 3x2, with respect to x, is the function from which it came,
ie. §3x2dx =x3 + 5. However, if we had to find S3x2dx, without know-

ing the past history of the function, we should have no indication of the
size of the constant term involved, since all trace of it is lost in the differ-
ential coefficient. All we can do is to indicate the constant term by a
symbol, e.g. C.
So, in general, s3x2dx =x3+C

Although we cannot determine the value of this constant of integration
without extra information about the function, it is vitally important that
we should always include it in our results. There are just one or two
occasions when we are permitted to leave it out, not because it is not
there, but because in some prescribed situation, it will cancel out in sub-
sequent working. Such occasions, however, are very rare and, in general,
the constant of integration must be included in the result.

If you omit the constant of integration, your work will be slovenly and,
furthermore, it will be completely wrong! So, do not forget the constant
of integration.

1. Standard integrals
Every differential coefficient, when written in reverse, gives us an
integral,

eg. d (sinx)=cosx .. jcos xdx=sinx+C

dx
It follows then that our list of standard differential coefficients will form
the basis of a list of standard integrals — sometimes slightly modified to
give a neater expression.
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Here is a list of basic differential coefficients and the basic integrals

that go with them:

1.

10.

11.

12.

13.

14,

15.

16.

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

d Yy = n-1
i (x™) =nx
d _1

x 00 =%
d

— XY = pX
I (e¥)=e

ad; (ekx) = kekx
dif_c (@*)=a*Ina

d .
a(cos x) =-sinx

d . _
b (sin x) = cos x

d = cac?
e (tan x) = sec’x

7) o
i~ (cosh x) = sinh x

i (sinh x) =coshx

dx (s %)= \/(1 2

J—(cos_ x) =\/(1 —x2)

(tan x) =

1+x2
d—x(sinh’lx) = \/—_—(x2+ H
d. . 1
E(Cosh X) —\/(x2—1)

d g1
I (tanh 'x) = -2

as a reference list.

Je
5
|
.'.Scosxdx—smx+C
gl
S
|

[

'.‘jxn dx =x"+1 iC {pro;nded

nt+l

.'.jldx=lnx+C
X

.'.j‘ex dx=e*+C
ek d +C

. axdx——+C

"Asinxdx=—-cosx+C

“1sec’xdx=tanx +C

“\sinh x dx = coshx +C

cosh x dx =sinhx +C

. \/(l—xz dx =sintx +C

“L dx = cos™! x+C

V(1 -x?%)

1 > dx=tan'x + C

1+x

\/(le T lij =sinh 'x + C
1 _

——— dx = cosh'x + C

V- 1)

1

1—x

=dx = tanh 'x + C

Spend a little time copying this list carefully into your record book
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3

Here is a second look at the last six results, which are less familiar to
you than the others.

S\](—il?;)dx:Sin—lx+C S\/( +1) =sinh!x + C
S\ﬁ)dx =cos'x+C Sm)dx =coshlx + C

1 _
Sl—i—ﬁdx=tan_1x+c Sl—xz dx=tanh'x +C

Notice (i) How alike the two sets are in shape,
(ii) Where the small, but all important, differences occur.

On to frame 4.

Now cover up the lists you have just copied down and complete the
following.

(1)S R (vi)S%dx= ........ S

(ii) jx X (vii)j‘\/(l_lxz)dxz .................
(iii) 5\/x dx = .. (viii) S 5%dx = i,

(iv) Ssinxdx e (ix) L/(x2 1 AR
(V)S2sinhxdx= ................. (x)sli dX= e,

When you have finished them all, check your results with those given in
the next frame.

1
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Here they are:

e 5
(@) eSde=?+c (vi) Tdx=5mx+C
(ii) J ax=X 40 (vii) E\/ - ixz)dx = sin"lx + C
X
(iii) S\/x dx j. Y2 gx (viii) ssx dx==—<+C
3/2
=2t —+¢C
(iv) Jsin xdx=—cosx+C (ix) S\Zx%_l)dx =cosh'x +C
) SQ sinh x dx =2 cosh x + C ) j 3 dx = tan lx + C

All correct? — or nearly so? At the moment, these are fresh in your
mind, but have a look at your list of standard integrals whenever you
have a few minutes to spare. It will help you to remember them.

Now move on to frame 6.

2. Functions of a linear function of x

We are very often required to integrate functions like those in the
standard list, but where x is replaced by a linear function of x,

e.g. s(Sx = 4)® dx, which is very much like JxG dx except that x is
replaced by (Sx — 4). If we put z to stand for (5x — 4), the integral

becomes | z° dx and before we can complete the operation, we must

J‘z6dx=s 6Zxafz

Now g%c can be found from the substitution z = 5x — 4 for (fEZ =5, there-

change the variable, thus

dx_1 :
fore Z°3 and the integral becomes

1 ¢dx 1 1 1z
6y =\ 26 =126 (D dz ==\ ,6 =1
Sz dx jz dzdz jz (S)dz sz dz 55 +C

Finally, we must express z in terms of the original variable, x, so that

j(Sx — &) dX = o,
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1l

7 S(Sx — 4)°dx (5"5?74)7 +C

7
The corresponding standard integral iijédx = )7C— + C. We see, there-

fore, that when x is replaced by (5x — 4), the ‘power’ rule still applies,
i.e. (5x — 4) replaces the single x in the result, so long as we also divide by
the coefficient of x, in this case 5.
7 7
6 3., =% . AN6 g = (5x-4)
jx dx 7 +C ..S.(Sx 4)°dx —35

This will always happen when we integrate functions of a linear function
of x.
e.g. S e dx =jex +C .'.Je””“dx =

ie. (3x+4yreplaces x in the integral,
then (3x +4) » v regylt, provided we also divide by the
coefficient of x.

Similarly, since Scos xdx=sinx +C,

+C

3x+4

3

+C

then Scos (2x+5)dx = i

_sin(2x +5)
x+dx=""2"" "+
' Similarly, j‘ cos( ) dx 2 ¢
jseczx dx=tanx +C 5secz4x dx = tan 4x +C
1., _ _In(2x +3)
S;dx Inx+C 2x+3 3 +C
_ cosh(3 — 4x)

=3
__cosh(3—4x) +C

cos 3x

5 ¢

sin.3x dx =—

jsinh xdx=coshx+C gsmh(3 4x) dx

Ssinxdx=—cosx+C

Sexdx=ex+C .f“xdx -4—+C
So if a linear function of x replaces the single x in the standard integral,
the same linear function of x replaces the single x in the result, so long as
we also remember 10 ......coceeeeneee.
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. divide by the coefficient of x 1 9
Now you can do these quite happily — and do not forget the constants
of integration!
3

1. j(Zx 7)3 dx 6. Sl+(2x)2dx

2. S cos(7x + 2) dx 7. Ss c2(3x + 1)dx

3. S e3* T idx 8. S sin(2x — 5)dx

4. Ssmh Tx dx 9. §cosh(l +4x)dx

. 5x

5J4x+3dx 10,S3 dx

Finish them all, then move on to frame 10 and check your results. \

Here are the results: :
i (XD x—-7)* 1.
1. S(Zx 7) dx 33 +C= = +C

_sin(7x + 2)
7

o

cos(7x +2)dx =

Sx+a
5X+4dx =

W

+C

e

cosh 7x
7
1 In(4x +3
4x+3a7x= ( 7 )+C
1 dx = _tan 1(in)
1+(2x)2 2
tan(3x3+ 1) +C
_cos(2x—5) +C
2
_sinh(1 + 4x) ic
4

b

C\
L‘—-ﬁg’a ey €S Oy &Y €y e,

sinh 7x dx = +C

UI

~

sec?(3x + 1)dx =

o

sin(2x — 5)dx

9. { cosh(l + 4x)dx =

35x'

5% o .
3dx =3

10.

+C

Now we can start the next section of the programme. So turn on to frame 11.

=
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11 3. Integrals of the formS j;(( )) dx andj f(x).f'(x) dx.
2x +3
x*+3x-5
integrals, so how shall we tackle it? This is an example of a type of integral
which is very easy to deal with but which depends largely on how keen
your wits are.
You will notice that if we differentiate the denominator, we obtam
the expression in the numerator. So, let z stand for the denominator,
ie.z=x>+3x—35

Consider the integral§ dx. This is not one of our standard

- %—zx+3 - dz=(2x +3)dx

The given integral can then be written in terms of z.
(2x +3) dz 1. - +
fm dx = - and we know that z dz=Ilnz+C
=lnz+C
If we now put back what z stands for in terms of x, we get

f_L_+_3_1d_

x*+3x—5
(2x + 3) - 2 _
12 _[x R de In(x* +3x-5)+C

Any integral, in which the numerator is the differential coefficient of

the denominator, will be of the kind §((§) dx = ln{ (x)}+ C.

e.g. ( 3 dx is of the form i—z, since d(x —4) = 3x2, i.e. the differ-

ential coefﬁment of the denominator appears as the numerator. Therefore,
we can say at once, without any further working

3x
x3—4

o 6x> 3x2
Similarly, Sx3 —dx =2 §x3 —a

dx=2In(x*-4)+C

2x> _2f 3x? _2 3 _
and S dx—3Sx3_ dx—31n(x 4)+C

2
and S X AX T et
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13

x? 1y 3xr 1 3
jx3_4dx—3$x3_4dx—31n(x 4)+C

We shall always get this log form of the result, then, whenever the
numerator is the differential coefficient of the denominator, or is a
multiple or sub-multiple of it.

0s X . .
Example: gcot xdx = jfinsx dx and since we know that cos x is the

differential coefficient of sin x, then

j‘cotxdx=g-c—.9£cdx=lnsinx+C
sin x

In the same way, sin x
Stan x dx =S dx
COos X

14

Stan xdx= §SI_I_15 dx = _‘S(—sm X) dx

Ccos X COS X

-Freeee]

Whenever we are confronted by an integral in the form of a quotient,
our first reaction is to see whether the numerator is the differential coeffi-
cient of the denominator. If so, the result is simply the log. of the

denominator. ‘
4x — 8 _
eg. Sx2—4x s dX = i,
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15 S—“x—_—idﬁzg x4 dx [=2In(x> = 4x +5) + C |

x2—dx +5 —-4x+5

Here you are: complete the following:

2
1.Sse°"dx= ....................
tan x
2. __2xt4 -
o +4x—1 ....................
sinh x
P
[

16

Here are the results: check yours.

xdx=lntanx+C

x> +4x—1

dx=Incoshx +C

2.S St gy = (e +ax—1)+C

x—3 1 2
et = — +
4'Jx2—6x e dx 2ln(x 6x+2)+C

Now turn on to frame 17.
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In very much the same way, we sometimes have integrals such as 17
gtan x. sec’x dx

This, of course, is not a quotient but a product. Nevertheless we notice
that one function (sec?x) of the product is the differential coefficient of
the other function (tan x).

If we put z = tan x, then dz = sec?x dx and the integral can then be

2
writtenjz dz which gives %— +C.

2
Stan x.sec’x dx =

tan“x

+C

Here, then, we have a product where one factor is the differential coeffi-
cient of the other. We could write it as

tan x. d(tan x)

2
This is just like Sz dz which gives %— +C

tan’x .
§ tan x .sec®x dx =-Stan x.d(tan x) = -t C
On to the next frame.
Here is another example of the same kind:
sin®x 18

5sinx .cos x dx =jsin x.d(sinx) ie. likeSZ dz = -—2—+ C

The only thing you have to spot is that one factor of the product is
the differential coefficient of the other, or is some multiple of it.

Example 1. Sln—xdx =jln x.ldx
x X
2
=jlnx .d(ln x) = On—%-) +C
Example 2 sin”x dx =jsin_lx L dx
pEs f V(1 -x% M1-x?)
=\ sirlx.d(sin " x)
c o102

_(sin"x) +C

Example 3. jsinh x.coshxdx = cooovveeerierenaen,
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19 Ssinh x.coshx dx = Ksinh x. d(sinh x)

sinh?x

;7 ¢

Now here is a short revision exercise for you to do. Finish all four and
then check your results with those in the next frame.

1. S }—2:2%;_-3-7 dx 2. jr%dx
2. s(xz +7x — 4) (2x + T)dx 4. Sx?"_27 dx
20 Results:
Y S 2x +3 Notice that the top is exactly the diff.
x* 4 3x = 7 coefft. of the bottom, i.e. Sc_i_z

_2x+3 . _[dx*+3x-7)
x?+3x— 7 X2 +3x~17

= In(x*+3x-7)+C

) cosx _[d(1 +sinx)
"1 +sinx 1 +sinx

= In(l +sinx)+C_

3. (x2+7x—4)(2x+7)dx=[(x2+7x—4).d(x2+7x—4)
2 _ 2
. P+ Ix—4) +C

2

4x 4 3x®
4'S‘X dx— §x3_7dx

=%1n(x3—7)+C

Always be prepared for these types of integrals. They are often missed,
but very easy if you spot them.

Now on to the next part of the work that starts in frame 21.

___ Nowontothenext, ORI e
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4. Integration of products — integration by parts 21
We often need to integrate a product where either function is not the
differential coefficient of the other. For example, in the case of
jx? In x dx,
In x is not the differential coefficient of x2
x2 3 53 53 ”» b3 LH] ].l'l x
s0 in situations like this, we have to find some other method of dealing
with the integral. Let us establish the rule for such cases.
If u and v are functions of x, then we know that
4 (uv)=udV +vdu
dx dx = dx
Now integrate both sides with respect to x. On the left, we get back to
the function from which we started.
dv du
= —_— + —_
uy Su x dx jv Tx dx
and rearranging the terms, we have
dv du
—_ = —_ —_— d
judxdx uv jvdx x
On the left-hand side, we have a product of two factors to integrate.
One factor is chosen as the function u: the other is thought of as being
the differential coefficient of some function v. To find v, of course, we
must integrate this particular factor separately. Then, knowing u and v
we can substitute in the right-hand side and so complete the routine.
You will notice that we finish up with another product to integrate on
the end of the line, but, unless we are very unfortunate, this product will
be easier to tackle than the original one.
This then is the key to the routine:
dy du
u—dx=uv—|v—dx
j‘ ax T _[ dx
For convenience, this can be memorized as
Judv=uv——jva’u
In this form it is easier to remember, but the previous line gives its mean-
ing in detail. This method is called integration by parts.
|
i S
r:—’—_’..

368



Programme 13

av | du
So jua;cdx—uv Svdxdx
ie. Su dv=uv —j.v du

Copy these results into your record book. You will soon learn them. Now
for one or two examples involving integration by parts.

Example 1. Sx’ JIn x dx

The two factors are x2 and In x, and we have to decide which to take
as u and which as dv. If we choose x? to be « and In x to be dv, then we

shall have to integrate In x in order to find v. Unfortunately, J.In x dx is

not in our basic list of standard integrals, therefore we must allocate u

and dv the other way round, i.e. let In x = u and x* = dv.
3
S lxtinxdx=In x(f-) e .—l-dx.
3 3 x
Notice that we can tidy up the writing of the second integral by writing
the constant factors involved, outside the integral.

3 3
-2 = Xy _1p 51 = X _1f,
..Sx In x dx Inx(3) 3jx .xdx =3 In x 3 xX“dx

3

_X _ X
=3 n x

x3 3 1
3 +C = g{lnx—§}+c

Note that if one of the factors of the product to be integrated is a log
term, this must be chosen as .............. (u or dv)

AN

\

23 - ~

Example 2. Sx’e”dx Let u = x? and dv = ¢3% -
3X ¢
Then S x%e3* dx=x2(e—3—")—%ge3xxdx ©
j

/ . _xz.e:sx 2{ €3x 1 ax i _x2 e3x 2x e3x 2 e3x

- =3 §x(3) §Se dx} —3 5 +-9-.—3—+C
_e¥ ., 2x 2
= —3—{x —3— +§}+C

On to frame 24.

369

_ A



/

/

Integration 1

In Example 1 we saw that if one of the factors is a log function, that 24
log function must be taken as u.
In Example 2 we saw that, provided there is no log term present, the
power of x is taken as u. (By the way, this method holds good only for
positive whole-number powers of x. For other powers, a different method
must be applied.)
So which of the two factors should we choose to be u in each of the

following cases?
@ gx. In x dx

(ii) jxs. sin x dx

Injx.lnxdx, u=Inx 25

Jx3 sinxdx, wu=x3

Right. Now for a third example.
Example 3. S €* sin x dx. Here we have neither a log factor nor a power
of x. Let us try putting u = ¢* and dv = sin x.
.‘.je”‘ sin x dx = e3*(—cos x) + 3 Scos x.e3* dx
=—e* cosx + 3Se3x cos x dx
=—e3* cosx +3 {eax(sin x) - 3fsin x.e¥ dx}
and it looks as though we are back where we started. However, let us write
1 for the integral je”‘ sin x dx

[=—e3* cos x + 3¢ sin x — 91
Then, treating this as a simple equation, we get

101 =¢%*(3sinx — cos x) + C;
ax

e .
= a— —_— +
I 16 (3sinx—cosx)+C

Whenever we integrate functions of the form e** sin x or e ¥* cos x,
we get similar types of results after applying the rule twice.

Turn on to frame 26.
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26

The three examples we have considered enable us to form a priority
order for u:

() Inx
(i) x?
(iii) ek
i.e. If one factor is a log function, that must be taken as ‘u’.
If there is no log function but a power of x, that becomes ‘u’.
If there is neither a log function nor a power of x, then the exponen-
tial function is taken as ‘v’.
Remembering the priority order will save a lot of false starts,

So which would you choose as ‘u’ in the following cases

® jx“ cos 2x dx, U oevereeeeenens
(ii)g x* e dx, U rrerineenenns
(iii)

3 In@+4)dx, u=

(iv) v[ e?* cos 4x dx, UT ooeeereversennans

217

(i)g x* cos 2x dx, u=x
(ii)j x* e3* dx, u=x*
amgﬁm@+@w,u=mu+®

@iv) Sezx cos 4x dx, u=e**

Right. Now look at this one.

Iesx sin 3x dx

Following our rule for priority for u, in this case, we should put

iR
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= 28

Correct. Make a note of that priority list for u in your record book.
Then go ahead and determine the integral given above.

j‘es" sin3xdx | u=e

When you have finished, check your working with that set out in the
next frame.

29

e%* sin 3x d =3e—sx ésin3x-—cos3x}+C
s 34 (3

Here is the working. Follow it through.

cos3x\) S sx
3 )+3j§9§§’€g, dx

__e** cos 3x 5{5x sin 3xy  S5( . sx
= ~—3——+3 e (—-3_—) 3sm3x.e dx

Sesx‘sin 3xdx = esx(

cq__€e%cos3x 5 o ., 25
L I= 3 +9e sin 3x 9-I

34 _e¥(5 | '
—_ = —{= -— +C
91 3 {3sm 3x — cos 3x} 1

_3es

= si - +C
I 34 {3s1n3x cos3x}

There you are. Now do these in much the same way. Finish them both
before turning on to the next frame.

; )] Sx In x dx

(i) jxe‘ e**dx
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3 0 Solutions:

and continue the good work.

x 1,1
) lenxdx (7) jx .;dx
2ln x

- _1

= 2gxalx
x?Inx 1 x?
=== 4+

2 2°2 ¢
:x_21n —l +C
21772
2X
3 2x _o3(eN_ 3| ax 2
(i) Sxe dx x(z) 2je x*dx

2 4 2 2 2
=x3 eZX 3x2 e2x Ix er—§£x+C
2 4 4 42
=e_2x_' __3,12_+3x_3}+c

2 2 2 4

That is all there is to it. You can now deal with the integration of products.
The next section of the programme begins in frame 31, so turn on now

31

5. Integration by partial fractions
x+1
x*=3x+2
types, and the numerator is not the differential coefficient of the

denominator. So how do we go about this one?

In such a case as this, we first of all express the rather cumbersome
algebraic fraction in terms of its partial fractions, i.e. a number of simpler
algebraic fractions which we shall most likely be able to integrate
separately without difficulty.

x+1 2

i 3
x2—3x +2 S fact, be expressed as x—2 x-1

. x+1
'yx —3x+2 f dx — f dx

Suppose we have E dx. Clearly this is not one of our standard
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3In(x—-2)—2In(x—-1)+C 32

The method, of course, hinges on one’s being able to express the given
function in terms of its partial fractions.

The rules of partial fractions are as follows:

(i) The numerator of the given function must be of lower degree than
that of the denominator. If it is not, then first of all divide out by long
division.

(ii) Factorize the denominator into its prime factors. This is important,
since the factors obtained determine the shape of the partial fractions.

(iii) A linear factor (ax + b) gives a partial fraction of the form
A, B
ax+b (ax +b)?
A B + C
ax +b  (ex +b)* (ax +b)?

Ax+B
ax?+bx +c

A
ax+b
(iv) Factors (ax + b)? give partial fractions

(v) Factors (ax + b)? give p.fs

(vi) A quadratic factor (ex*+ bx + c) gives a p.f.

Copy down this list of rules into your record book for reference. It
will be well worth it.

Then on to the next frame.

Now for some examples.

Example 1. j_x_+1_ dx 3 3

x*—-3x+2
x+1 _ x+1 _ A + B
x2=3x+2 (x-1D(x~-2) x—1 x-2

Multiply both sides by the denominator (x — 1) (x — 2).

x+1=Ax-2)+B(x—1)
This is an identity and true for any value of x we like to substitute. Where
possible, choose a value of x which will make one of the brackets zero.

Let (x —1) =0, i.e. substitute x = 1
L2=ACD+BO) L A=-2
Let (x —2) =0, i.e. substitute x =2

L3=A0)+B(l) . B=3
So the integral can now be written ........ccccccceeenennn.

374



Programme 13

N

4

x+1
34 jx —3x+2d j dx = J dx
Now the rest is easy.

x+1 DN R SN i
jx2—3x+2dx_3x—2dx 2jx—1dx

=3 In(x—2)—2In(x—1)+C (Do not forget the constant of integration!)

And now another one.
X2
Grne-1p %
Numerator = 2nd degree; denominator = 3rd degree. Rule 1 is satisfied.
Denominator already factorized into its prime factors. Rule 2 is satisfied.

x2 _ A B C

GIDG-12 71 %=1 (x-1)°
Clear the denominators ~ x* = A(x — 1)*> + B(x + 1) (x = 1) + C(x + 1)

Example 2. To determine S

Put (x—1)=0, ie.x=1 .~ 1=A0)+B0)+C(2) .. C=%

Put (x +1)=0, ie.x=~1 .. 1=A4) +B0)+C0O) .. A= 3
When the crafty substitution has come to an end, we can find the remain-

ing constants (in this case, just B) by equating coefficients. Choose the
highest power involved, i.e. x? in this example.
[x}] .~ 1=A+B . B=1-A=1-%:B=%
L _x 11,31 11
Tx+tD(x-1)? 4x+1l A4x—1 2°(x— 1)

- X 11 3L et Mx—=1y2
"[(W)Zd 4jx+1dX+4Jx—1dX+zj(x " ax

\

Gt1)(x DTS D

35 J‘——-12—_T)2dx=iln(x+l)+%1n(x —.__1__+C l

2

Example 3. To determine j e )3 dx

Rules 1 and 2 of partial fractions are satisfied. The next stage is to
write down the form of the partial fractions.
xZ+1 _
(x + 2)3 I P
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xt+1 A B C

Gr? xi2txry T rrp

36

Now clear the denominators by multiplying both sides by (x + 2)3. So we ’

get

x2+1=A(x+2)*+B(x+2)+C

We now put (x +2)=0, ie.x=-2
“4+1=A0)+BO)+C . C=5

There are no other brackets in this identity so we now equate coeffi-

cients, starting with the highest power involved, i.e. x*. What does that
give us?

37

xX2+1=A(x+2)?+Bx+2)+C. C=5
[x*}. 1=A LOA=1

We now go to the other extreme and equate the lowest power involved,

i.e. the constant terms (or absolute terms) on each side.
[CT] .~ 1=4A+2B+C
1=4 +2B+5 . 2B=—-8 .. B=-4
x2+1 1 4 5

TGt a2 xr2 T xr2)?

x2+1 _
(x + 2)3 175 A
X+l (x + 2)‘ (e +2)? 3 9
S(x+2)3dx In(x+2)—4 +5 = +C
= 4 S
ln(x+2)+x+2 2(x+2)2 +C

Now for another example, turn on to frame 40.

376



Programme 13

40

x2

CEPICE

In this example, we have a quadratic factor which will not factorize any
further.

Example 4. To find S

. x? - A Bx#C

Tx-2)2H+1) x—2 xP+1

LxP=AETH 1)+ (x—2)(Bx+0)
Put(x—2)=0, ie.x=2

L 4=A(5)+0 .‘.A=%
Equate coefficients

)] 1=A+B - B=l1-A=1-3 L B=i
N 5 5
[CT] 0=A-2C - C=A]2 .-.c=§

1 2

x4 1 5%7S

x—2)(x2+1) 5x—-2 x*+1
41 1 x 2 1
_S'x—2+5'x2+1+5'x2+1

. x? _
"J.(x—2)(x2 1) AX = e

41 X dx=iln(x-2)+ L ln(x2+1)+2tan"x+C
(x=2)(x*+1) 5 10 5

Here is one for you to do on your own.

. 4x* +1

Example 5. Determine jx(2x 1) dx

Rules 1 and 2 are satisfied, and the form of the partial fractions will be
4x% + 1 A B C

Ao -1 T x T -1 T ax- 2

Off you go then. When you have finished it completely, turn on to
Sframe 42.
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L

= - +
o 1)zdx Inx S — C

j4x +1 2 42

Check through your working in detail.
Airl A B, C
x(2x—1) x 2x—-1 (2x-1)?
L 4x?+1=A2x—1)? +Bx(2x—1)+Cx
Put (2x~1)=0,ie.x=1/2

. 2=A(O)+B(0)+§- L C=4
[x*] 4=4A+2B . 2A+B=2 A=1
[CT] 1=A B=0

4x?+1 .
x(2x—1)?% x (2x-1)?

4x%+1 _

Jx(2x—l)2dx j dx+4j(h 172 dx
_ 4.(2x—- 1)t
Inx + =) +C
2
=lnx 2x—1+C

Move on to frame 43.

So, on we go to frame 44.

K

We have done quite a number of integrals of one type or another in 43
our work so far. We have covered:

1. the basic standard integrals,

2. functions of a linear function of x,

3. integrals in which one part is the differential coefficient of the
other part,

4. integration by parts, i.e. integration of products,

5. integration by partial fractions.

Before we finish this part of the programme on integration, let us look
particularly at some types of integrals involving trig. functions.

|
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44 6. Integration of trigonometrical functions
(a) Powers of sin x and of cos x
(i) We already know that

sin xdx =—cosx +C
Scosxdx= sinx +C

(i) To integrate sin’x and cos®x, we express the function in terms
of the cosine of the double angle.

| cos 2x =1 — 2 sin’x and cos 2x =2 cosix -1

" sin?x = -;— (1 —cos 2x) and cos®x = % (1 + cos 2x)

. . 2 1 _ X _sin 2x
.Ssmxdx 3 (1 —cos 2x) dx 3T +C
" § coszxdx=%g(l + cos 2x) dx =%+Sm42‘x+C

Notice h(m‘nearly alike these two results are. One must be careful
to distinguish between them, so make a note of them in your record
book for future reference.

Then move on to frame 435.

(iii) To integrate sin®x and cos’x.
45 To integrate sin3x, we release one of the factors sin x from the
power and convert the remaining sinx into (1 — cos®x), thus:

5 sin®x dx =S sin®x .sin x dx =j(1 — cos?x) sin x dx
= S sin x dx —jcoszx .sin x dx
3
cos’x
C

= —CosX + ==+
3

We do not normally remember this as a standard result, but we
certainly do remember the method by which we can find

Jsin3x dx when necessary.

So, in a similar way, you can now find fcos3x dx.

Samant”

When you have done it, turn on to frame 46,
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i 3
3 _ . sin’x
cos”x dx =sin x 3

+C

For:

jcos3x dx = Scos2x ,cos x dx = j.(l —sinx) cos x dx
( ) in
=Scosxdx~§31n2x.cosxdx = sinx— s__3_x +C

Now what about this one?

(iv) To integrate sin*x and cos®x.
2
-gsm xdx = j(sm x)? dx = J(l_‘___cEZ_x)

cos?x =% (1 + cos 2x)

=J‘1—2 cos 2x + cos?2x

N.B.
3 dx

cos?2x =4 (1 +cos4x)

=%j‘(1 —2cos 2x +—; + % cos 4x) dx

{3 1
—15(2 2cos2x+2cos4x)dx

I{BX 2 sin 2x lsin4x= _3x sin2x | sin 4x
=_}— — + = +C =

32 2 2 a 8 a4 T3 tC

Remember not this result, but the method.

Now you findJ‘cos“x dx in much the same way.

46

Scos"‘xd _3x  sin 2x +sm4x+C

8 4 32
The working is very much like that of the last example.

2
jcos“x dx =J(c052x)2 dx = j(l * cos 2x)°

2
=§(1 +2 cos 2"4* c0S"2X) g = -—S(l 2 cos 2x +§ % cos 4x) dx
= %S(%+ 2cos 2x + % cos 4x)dx = 211.{3;2)‘ +5sin 2x + sin84x}+ C
- 3_§c sin42x + sir;;lx +C
On to the next frame.

4]
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4 (v) To integrate sin®x and cos®x

We can integrate sin®x in very much the same way as we found
the integral of sin>x.

jsmsx dx =Jsin4x .sin x dx =j(l - cos®x)? sin x dx
=|(1 — 2 cos®x + cos*x) sin x dx
=§ sin x dx — 2Sc052x,. sin x dx + Scos“x .sin x-dx

2 cos®x  cos’x
=Te0s X+ e +C

Similarly,

~
Scossx dx= 3 cos*x .cos x dx =[(l —sin®x)? cos x dx
=S (1 = 2 sin’x + sin*x) cos x dx
S cos x dx — Z[Sinzx .cos x dx +jsin4x .cos x dx

2sin®x  sin’x
- + 2+ C
3 5

Note the method, but do not try to memorize these results. Some-
times we need to integrate higher powers of sin x and cos x than
those we have considered. In those cases, we make use of a different
approach which we shall deal with in due course.

= sinx

49 (b) Products of sines and cosines

Finally, while we are dealing with the integrals of trig. functions,
let us consider one further type. Here is an example:

j. sin 4x .cos 2x dx

To determine this, we make use of the identity
2sin A cos B =sin(A + B) +sin(A ~ B)

" sin 4x.cos 2x = % (2 sin 4x cos 2x)

= {sin(4x +2x) + sin(4x — 2x)}

s

[T T

{sin 6x + sin 2x]

/
JSin 4x cos 2x dx = %j(sin 6x + sin 2x) dx =_c_o_1szﬂ_ coz2x

+C
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This type of integral means, of course, that you must know your trig. 50
identities. Do they need polishing up? Now is the chance to revise some
of them, anyway.
There are four identities very like the one we have just used.
2sin A cos B = sin (A + B) +sin (A —B)
2cos Asin B = sin (A + B)—sin (A - B)
2 cos A cosB = cos(A + B) + cos(A —B)
2sin Asin B =sim(A — B) — cos(A + B
“N]'-VIDS‘\‘ < Qr*‘l3 G! ( }; < )

]

ot

Remember that the compound angles are interchanged in the last line.
These are important and very useful, so copy them down into your record
book and learn them.

Now move to frame 51.

51

Now another example of the same kind.
Example: y cos 5x sin 3x dx

= %f@ cos 5x sin 3x) dx

= %j{sm (5x + 3x) —sin(5x — 3x)} dx

= —S { sin 8x — sin Zx'}dx

NI | —

=l '_cos8x+cos2x +C
8 2

-
_cos2x cos 8x
( R S T

And now here is one for you to do:

Jcos 6X COSAX AX = ..

Off you go. Finish it, then turn on to frame 52.
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in 10 in 2x
Scos 6x cos 4xdx=sm2—0)f+5m4 s

For j‘cos 6x cos 4x dx = %jz cos 6x cos 4x dx

= %“cos 10x + cos 2x}dx

_ %{sm 10x sin 2x}+c

10 2
_sin 10x + sin 2x
20 4
Well, there you are. They are all done in the same basic way. Here is one
last one for you to do. Take care!

+C

~I‘sin Sxsinxdx=.vieiieeeiiinn

This will use the last of our four trig. identities, the one in which the
compound angles are interchanged, so do not get caught.

When you have finished, move on to frame 53.

53

Well, here it is, worked out in detail. Check your result.

jsin S5x sin x dx = %82 sin Sx sin x dx ?

=1 {cos(SQ.x —Xx)—cos(5x + x)}dx

{cos 4x — cos 6x}dx

{sin 4x _sin ox| C
4 6

sin 4x  sin 6x ,

_ - +C —
8 12

Co0oD0OC00OQDO00D0D0ON0O00000 0000000 D00O00R0DOD0O00

This brings us to the end of Part 1 of the programme on integration,
except for the Test Exercise which follows in the next frame. Before you
work the exercise, look back through the notes you have made in your
record book, and brush up any points on which you are not perfectly
clear.

When you are ready, turn on to the next frame.

2
1
2
1
2
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Here is the Test Exercise on the work you have been doing in this pro- 54
gramme. The integrals are all quite straightforward so you will have no
trouble with them. Take your time: there is no need to hurry — and no

extra marks for speed!

Test Exercise — XIII

Answer all the questions.

Determine the following integrals:

»

1.] €98 X gin x dx
v

f Inx
2. \/x dx

3.1 tan®x dx

e

"~

4.1 x? sin 2x dx

S.S € 3% cos 2x dx
6.jsin5xdx
7.Jcos4xdx
dx+2
8'jx2 +x+5dx
9.fx\/(1 +x%)dx
2x—1
lo'jx2~8x+ Tha
2x2+x+1
1. g(x—l)(x2+l)dx

12. S sin 5x cos 3x dx

You are now ready to start Part 2 of the programme on integration.
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Further Problems — XI1I

Determine the following:

1. 3x?
G-DeZrxr
sin 2x

3. 1+cosx

4

x sin?x dx

x+1
=D @EF+x+1)

~

dx

9. 2x +x+1 dx

x—-l)(x +1)

1| x*(n—x)Pdx, forp >0

13. sin 5x cos 3x dx

1

U\

17. x? sin%x dx

19. 2(1 +x2)
) = 2) (x+l)
23. sin®x cos®x dx

25. sin wt cos 2wt dt
_ 2x+3 dx
(x—4(5x+2)
Sx2+11x -2

x+HE2+9)

[\
~

e
i
i
I
J.
)7
jo (2x+ 1)(x *
I,
J
Jeram
I
I
|
J

29.

wf2
2. J sin 7x cos S5x dx

4 j”/’ x2(a? — x2y 3% dx
0
2x +1
6. (x% +x +1)%/? dx
2
X
8 [x+1dx

10.

12.

14.

20. | x/(1 +x%) dx 3
. {
22 e cos 4x dx
0
[ n/6 N
24. e%9 cos 30 df *
J O

26. | tan2x sec?x dx
dx
Vxi+ax +4
——1
J 9x?—18x+ 17

28.

30.
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PR

a1 [ &2, 32. 2
N j‘x In(1 +x%)dx
33, cosB—s?n@d6 34.[1=sin6 sme
cos @ +sin @ ost 0
[ 2x—3 sin x
35.
] (x— D -2 +3) & 36. jo (T % cos x)?
» 2
371 (- 12 Inx dx 38. S‘E‘——jﬁi—lgdx
J 1
(x3+x+1
39. 1l dx

40. If L(%Jr Ri = E, where L, R and E are constants, and it is known that
i=0atz =0, show that

t i2
J (Ei-Ri%)dr = 2
0 2

Note. Some of the integrals above are definite integrals, so here is a
reminder.

b
In S f(x)dx, the values of a and b are called the limits of the integral.
a

Ifo(x)dx =F(x)+C

b
thengaf(x)dx = [F(x))y=p — [F(X)]y =,
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. . 7
1 1. Consider the 1ntegraljz2—_——A2

From our work in Part 1 of this programme on integration, you will
recognize that the denominator can be factorized and that the function
can therefore be expressed in its partial fractions.

2 -A? T (Z-A(Z+A) Z-A Z+A

where P and Q are constants.

C1=P(Z+A)+Q(Z—-A)

PutZ=A " 1 =P(2A) +Q(0) L P= g
Putz=- % 1= P(0) + Q(-2A) L Q=g
L1 _1 1 1 1
CZP-A?TOAZ-A 2AZ+AA
. 1 - S
'fz —azdz= 2A 2AjZ+AdZ

1 1 1
Sﬂdz=27x.ln(l—A)—2K.ln(Z+A)+C

(1 Jz=a1. |
- 2Aln{Z+A}+C

This is the first of nine standard results which we are going to establish
in this programme. They are useful to remember since the standard results
will remove the néed to work each example in detail, as you will see

1 1 Z-A
We have _[ZZ—A2dZ ln{Z+A}+C

. 1 1 [z-4
..fzz_wdz Jzz 7 dZ m{ ;+c

8 |Z+4

and jx ——dx Jﬁzdx 2\/5 1n{——%5-}+c

(Note that 5 can be written as the square of its own square root.)

So jzzl 2 dZ= 52 mfz A}+c

|Z+A
Copy this result into your record book and move on to frame 3

la
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dZ__ _ 1  |Z—-A
We had jZ2_A2_2A1n{Z+A}+C
So therefore:
dZ -
[ 7254 =
d’Z _
S‘Z2_7 ....................

gz _(_az [1 . Jz=s5
fz2—25 'Jzz—sz‘ 10'1n{z+5}+c

fzzd—z7 =§22—aZ/7)2= 2\1/7‘1“{;%}+C

00oDO0O0OC00000000Cc00CC0D00D000000UOCoDooooa

Now what about this one? 1

x2+4x+2dx

At first sight, this seems to have little to do with the standard result, or
to the examples we have done so far. However, let us re-write the
denominator, thus:

x*+4x+2=x%+4x + 2. (Nobody will argue with that!)

Now we complete the square with the first two terms, by adding on the
square of half the coefficient of x.

x2+4dx+2=x2+4x+2° +2

and of course we must subtract an equal amount, i.e. 4, to keep the
identity true.

LxTH4x+2=x+4x+22+2-4

\_——\,——/
= (x+2) -2
S ——I—-—dx an be written -——————1 dx
© j x2+4x+2 ¢ j‘ ....................

Turn on to frame 5.
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b j 1 _

P j( +2)i 5 9

Then we can express the constant 2 as the square of its own square
root.

; S-—1~ dx = f—~—L—— dx

T xt+ax +2 (x +2) = (V22
You will see that we have re-written the given integral in the form
jzz 1 27 dZ where, in this case, Z = (x + 2) and A = v/2. Now the

standard result was
1 _ 1 fZ-A
JZ’—AZdZ l”{zm}*c

Substituting our expressions for Z and A in this result, gives

—L dx = —1 dx
x2+4x+2 (x +2)2 -(/2)?
_ 1 x +2=+/2
2\/7 xr2+32) "
Once we have found our particular expressions for Z and A, all that
remains is to substitute these expressions in the standard result.

On now to frame 6.

6 Here is another example.

1
jx2+6x+4dx

First complete the square with the first two terms of the given
denominator and subtract an equal amount.

x*+6x+4=x+06x +4
=x?+6x+32+4-9
\h_—\(-_/

(x+3)2 -5
(x+37 = (/57

1 1
> Jx vor a4 S(x+3)2 W3




Integration 2

x+3- ){5 7

1
5 dx= In
jx +6x+4 2\/5 x+3+\/5
0000000000000 ON00C00NIC0000000000000000
And another on your own:

1
Find S )

PTG
When you have finished, move on to frame 8.

jmm s R 8
For: x2-10x+18=x>—10x  +18
=x2—-10x+52+18-25
=(x—5)*~-
=(x— 352 -(7)

. 1 x=5—+/7
"jx T jox+18¢ 2\/7m{x—5+\/7}+c

Now on to frame 9

Sx?—-2x—4
In order to complete the square, as we have done before, the coeffi-
cient of x must be 1. Therefore, in the denominator, we must first of all
take out a factor 5 to reduce the second degree term to a single x*.

1 1 1
e dx==| ————dx
. 55x2—2x~4dx sj 22, 4
575
Now we can proceed as in the previous examples.

Now what about this one? j——l—— dx 9

(Remember the factor 1/5 in the front!)
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1 _ 1 [sx—1-4/21
J5x2—2x—4dx_2\/2lln{ }+C

Sx—1++/21
Here is the working: follow it through

1 1 1
SSxZ—zx—4d"‘ S(

1 5 x—l/S—\/21/5}
5 V21 ln{x—1/5+\/21/5 tC
1 5x—1—+/21
_2\/211“{5x—1+\/21}+c

UD0C000CO00000N0000000000000000000000000
II. , 1

Now, in very much the same way, let us establish the second

standard result by considering j A_72
This looks rather like the last one and can be determined again by
partial fractions.

Work through it on your own and determine the general result

Then turn on to frame 11 cmd check your workzng o
dl  _ 1 A+Z
1 fAZ—z2 5A° {A z}*c
1 1 P
For: Al-72 = = Q

(A-2)A+Z) A-Z A+Z
1=P(A+Z)+ QA7)

PutZ=A . 1=P(2A) + Q(0) p:z_k
PutZ=-A . 1=P(0)+Q(24) Q= 2LA
'Lv 72 2= f———dZ f !
2A ln(A+Z)—— In(A-Z)+C

5A2izzdz——1n{A+Z}+c

2AT |A-Z

Copy this second standard form into your record book and compare
it with the first result. They are very much alike
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L Finish it off.

So we have: 12
dz_ _ 1 [z2-A
jZZ—AZ “IA l“{z+A}+C

iz 1 . [A+Z
jAZ—zz'zAm,{A—z}+C

Note how nearly alike these two results are.
Now for some examples on the second standard form.

1 1 _1 [3t+x
Examplel.s9_x2 dx—j32_x2dx—61n{3_x}+c

! _ 1 1 [Vstx
Example 2. j5~x2dx—,f(J5)2—x2 dx—z\/5 In{\/s_x}+C

Example 3. j‘

1
3—x?

1

Example 4. §3—+_6—x_—;2

dx

We complete the square in the denominator as before, but we must be
careful of the signs — and, do not forget, the coefficient of x* must be 1.
So we do it like this:

3+6x—x2=3~—(x*—6x )

Note that we put the x* term and the x term inside brackets with a minus
sign outside. Naturally, the 6x becomes — 6x inside the brackets. Now we
can complete the square inside the brackets and add on a similar amount
outside the brackets (since everything inside the brackets is negative).

So 3+6x—xr=3-(x?—6x+3%)+9
=12—(x~3)?
=(2/3)*— (x— 3)?

In this case, then, A = 23/3 and Z = (x — 3)

. 1 - N
" fm dx = §(2\/3)2 -3 ¥
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14 Lo {2\/3+x—3}+c

43 N3 -x+3

ODooOOo0o0oDO0O0ooCOo0O0CO0Oo0DD0DO00O0C0O0O0O0O00gC0OCOoOooOoo
Here is another example of the same type.

1
9 —4x —x? dx

First of all we carry out the ‘completing the square’ routine.
9—4x-x2=9—-(x*+4x )
=9—(x*+4x+2%) +4
=13—(x+2)?
=(\/13)2 - (x +2)?
In this case, A =+/13 and Z=(x +2)

Now we know that §A2dZZ2 _ L ln{ + Z} ‘C

Example 5. S

15 2\/113 lﬂfﬁ?ﬁf}*c

D000 O0O000000UoaQoooOooooeoooonDoDonnoDooonn

1
Example 6. 55 T dx — o2 dx

Remember that we must first remove the factor 2 from the denominator
to reduce the coefficient of x* to 1.

1 1 s i
NN — ,dx=x |7/ dx
. — 2
S 5+ 4x—2x 203 oy x2
Now we proceed as before. 2

§+2x x? A-——(x—2x )

=§-—(x2—2x+12)+1

=T (x—1y

= (/357 ~ (=1
S_—l_ e
5 +4x_2x2 ....................

(Do not forget the factor 2 we took out of the denominator.)
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1 l{\/3-5+x—l}+c 16

35 WES—xH 1

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Right. Now just one more.

. 1
E.
xample 7. Determine s Py ——! dx

What is the first thing to do?

Reduce the coefficient of x? to 1, 17
i.e. take out a factor 5 from the denominator.

Correct. Let us do it then.
1 1 1
S6—6x—5x2dx S6 6 5 dx
—5X~ x?
Now you can complete the square as usual and finish it off.

Then move to frame 18.

56—6x1-5x2dx=2\/1391“{£3i§ii§}+c 18
For J6—6x1—5x2 x—éjg_éi_xz *
573
R AR GRS S
S-fe b ()&
2

5
So that A = %9 and Z=(x+g)
N 1 _ 1 A+Z
ow JAz-—ZZdZ 2Aln{A 7 +C
S 1 x _1_ V/39/5 +x +3/5 4 C
6—6x—x? \/ \/39/5 x—3/5
__1_h1\/39+5x+3
Now turn to frame 19. T 2V39 T V39 -5x -3 te
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19

By way of revision, cover up your notes and complete the following.
Do not work out the integrals in detail; just quote the results.

(l)j = i

(ii)SA—2—_2—Zi = e

Check your results with frame 20.

20

az =_1_1 Z-A), .
72— A? Z+A

AL - LAtz ¢
A-z2 " 3AMA=z

0000000000000 0000OCO0CO000000000C00OonoOOoon

III. Now for the third standard form.

Consider JZZdZAz

Here, the denominator will not factorize, so we cannot apply the rules
of partial fractions. We now turn to substitution, i.e. we try to find a sub-
stitution for Z which will enable us to write the integral in a form which
we already know how to tackle.

Suppose we put Z = A tan 6.

Then 72+ A%=A%tan%) + A2 = A%(1 + tan?0) = A? sec?0

Also Zg = Asec?d ie. dZ=A sec’0 do

The integral now becomes

_ o1 29 0=\ L
j22+A2 dZ—SA2secze.Asec 6 do SAdB

=1
= 50+C

This is a nice simple result, but we cannot leave it like that, for 6 is a

variable we introduced in the working. We must express 8 in terms of the
original variable Z.
Z=Atang, .. %=tan6 L0 =tan?

'JZzIAz dZ=Ktan {i}w ............. (iii)

Add this one to your growing list of standard forms.

>IN
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ZE Lo

A

e 21

1 _ 1 L. afx
Example 1. sz'f' 16dx —sz + 42 dX—Ztan {Z}+C

Example 2. j x_ZTleJr_30 dx
As usual, we complete the square in the denominator
x?+10x+30=x%+10x +30
=x?+10x + 52 + 30— 25
=(x+5)2+5
=(x +5)7 +(V5)?

j 1 dx = 1 dx
TJxT+10x+30 (x+5)?2+(H/5)?

22

1 tan /% s +C
V5 NG

Co00O00C0CO0O00C0000O00O00dO0O0UdO0O000000DDocoooOooonaa

Once you know the standard form, you can find the expressions for
Z and A in any example and then substitute these in the result, Here you
are; do this one on your own:

1

il

Example 3. Determine S

Take your time over it. Remember all the rules we have used and then
you cannot go wrong.

When you have completed it, turn to frame 23 and check your working.
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23 N ] L G
2x% + 12x + 32 N

Check your working.

2x2 +12x + 32 2T+ 6x+16%F
x2+6x+16=x%+6x +16
=x*+6x+32+16—9
\__V—/
x+3)2+7
(x+3)? +(V7)?

SoZ=(x+3) and A=+/7

1 L. 4z
= - — C
SZZ+ > dZ tan { }+v

'S——l dx=1—-—1tn_1{x+3}+C
M PR T T R RV Al V]
Now move to frame 24.

24 IV. Let us now consider a differen;[ integral.

1
Z
vz
We clearly cannot employ partial fractions, because of the root sign.
So we must find a suitable substitution.

Put Z=Asin0
Then A2-Z2=A%-A%sin%0 = A*(1 —sin’9) = A? cos?d
V(AT -Z*)=Acos 0

dZ
Also £=Acos6 L dZ=Acos6.db

So the integral becomes

1
[m2)dl =jjr(;6)-.A cos 0.d6=jd¢9 =8+C

Expressing 8 in terms of the original variable:

Z=Asinf . sin0=-i— .‘.6=sin'1§—
N G R/ .
. S\/(AZ _Zz)dz sin {A} +C e (iv)

This is our next standard form, so add it to the list in your record book.
Then move on to frame 25.
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S\/(Kzl_—zz)dz =sin* {IZ;} +C 2 5

Example 1. J¢(2T£;ﬂdx = J‘\/‘(',‘Sz-l_';z)dx = sin"{§}+ C

Example 2. f\/(3_—-21x——;2—) dx
As usual 3-2x—x?=3-(x*+2x )
=3-(x*+ 2w +1%)+1
=4—(x + 1)
=22 —(x +1)?

So, in this case, A =2 and Z=(x+1)

fm dx = gv{f P o

Similarly, = Sin—l{x—;_l} +C
Example 3. | 75 o Y ————
jJ(S —4x—x )dx Sm_l{x—;—g} +C—} 26
For: S—dx—x%=5~(x*+4x )
=5-(x2+4x+22)+ 4
=9 —(x +2)?
- 32 _ (x + 2)2

_ +2
5— 4 3
Now this one: \/( *- x - -

Example 4. Determine f 4— 12x 27 dx.

Before we can complete the square, we must reduce the coefficient of
x? to 1, i.e. we must divide the expression 14 — 12x — 2x? by 2, but note
that this becomes v/2 when brought outside the root sign.

SR U | SN S
,{\/(14— 12x -2y ® " \/25\/(7—6x e

Now finish that as in the last example.
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| Tz e )

1 _ _lj__l__
js/(14—12x—2x2)dx V2 JT—6x—2) >
T—6x=x*=T—(x*+6x )
=7-(x*+6x+3%)+9
= 16— (x + 3)?

=42 — (x + 3)?
So A=4 and Z=(x+3)

f\/(_&i—ﬁ)dz = sin_l{%}+ C

S\/m) \/231 _1{x13}+C

28

V. Let usnow look at the next standard integral in the same way.
. dz_ . ) . .
To determine j N Az).Agam we try to find a convenient substitu-

tion for Z, but no trig. substitution converts the function into a form that
we can manage.

We therefore have to turn to the hAyperbolic identities and put
Z=Asinh 0.

Then Z* + A% = A% sinh260 + A% = A%(sinh?6 + 1)
Remember  cosh?§ —sinh?¢ =1 .. cosh?# =sinh?0 + 1
L Z?+ A?=A%cosh®0 . \/(Z*+A*) = A cosh @
Also gg =Acosh8. dZ=A cosh8.d6
dZ 1
= = = +
So j\/(Z2+A2) jA coshB'A cosh 8 do sd() 0+C
Asinho . smho=Z - g=sinit[Z
But Z=Asinhf .. sinh? 3 0 = sinh {A}
Z
S\/(Zz A2) = sinh’ { } +C o, W)
Copy this result into your record book for future reference.
1
Then j \/(xz n 4)dx ......................
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29

S\/(;;l_;z)dx = sinh"{zcz-}+ c

000000000000 COO0OO0OO0O0O0O0OO0O00DO0O0DDCOO0O0O0NOoOOOogQo

Once again, all we have to do is to find the expressions for Z and A in
any particular example and substitute in the standard form.
Now you can do this one all on your own.

. 1
Determine f JoF +5x+12) dx

Complete the working. then check with frame 30.

—

30

1
S\/(x2+5x+12)dx sinh {\/23

Here is the working set out in detail:

x> +5x+12=x*+5x +12
=x2+5x+(%)2 +12—24—5
(’”2) 5
(’”2) (\/23)
So that Z = x+§ and A—\/§3

1 x+3
Sl — = k!
..jv(f*5x+12)dx—31nh [\/23/2}+C

Now do one more.

$__1_,d _
\/(2x2+8x+15) X S i,
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31 \/5 sinh” {()—C—%)l/—z—)

Here is the working:

e SR R B,
V(2x? +8x + 15) V2 \/(x2+4x+§5_)
N

2

=x2+4x+22+155—4

x2+4x+1§5=x2+4x

7
= 2 -
(x+2)"+5

v
So that Z=(x +2) and A=\/%

. 1 x+2
| Va5 h{w}
1(x+2)\/2

inh 77

\/2

Fine. Now on to frame 32.

Now we will establish another standard result.
32 | 0z
VI. Consider J\/(ZT—;V)
The substitution here is to put Z = A cosh §.
72— A? = A? cosh?0 — A% = A%(cosh?8 — 1) = A% sinh*6
LA(Z?—A%) = Asinh 6
Also Z=Acoshf .. dZ=Asinh8df

S\/(Zg% A2)= SA Siilh 6.A sinh 6 d6 =§d0 =6+C

Z=Acoshf .. coshe=Z 0=cosh'1(AZ—}+C

4| Z .
= +C e
“ \/( 22 = cosh { A} (vi)
This makes the sixth standard result we have established. Add it to your
list. Then move on to frame 33. J
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33

S\/—(Z%Az) = cosh ! {%} +C
Example 1. j\/@l—_@dx = cosh’l{g} +C

1 -
Example 2. J‘\/m AX = e

You can do that one on your own. The method is the same as before:
just complete the square and find out what Z and A are in this case and
then substitute in the standard result.

34

1 _ 1 fx+3
f\/(x2+6x+1)dx cosh {2\/2}+C
Here it is:
x*+6x+1=x%+6x +1
=x?+6x+32+1~-9
=(x+3)*-8

= (x +3)* - (V27
Sothat Z=(x +3) and A =2v/2

A (R S (R SR
"jJ(xz +6x+1)dx __[¢{(x +3)2 —(2\/2)2}dx

- o fx+3
cosh {m}"’c

Let us now collect together the results we have established so far so
that we can compare them.

So turn on to frame 35.

,l—;-r -
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3 Here are our standard forms so far, with the method indicated in each
case. az 7
1. j 22" 1 l {Z T :}+ C Partial fractions
[ dZ — 1 A + Z b4 "
2. ] 2_22—2A1n:A Z}+C

»
Zz(iZA‘z = }:tan'l {%} +C PutZ=Atan§

4. \/(Tzd_%): sin"l{§}+ C

dZ -l Z
5. \/-(Zz—+A_i =smh1{x}+C

v

JJ(ZZ ) = cosh { l+C Put Z=A cosh @

Note that the first three make one group (without square roots).

Note that the second three make a group with the square roots in the
denominators,

You should make an effort to memorize these six results for you will be

expected to know them and to be able to quote them and use them in

various examples.

PutZ=Asiné

Put Z = A sinh 6

You will remember that in the programme on hyperbolic functlons
3 6 we obtained the result sinh 'x = ln{x +/(x% + 1)}

3 sinh’1{§}= 1n{§- +\/(-§—Z—+ 1)}
ol )
z MZ ;A2)}

{{z +AZ? + A?)

"

=In
sinh‘l{%} In

cosh™? {%} =In {Z_L\E__Az.)}

Similarly

A

This means that the results of standard integrals 5 and 6 can be expressed
either as inverse hyperbolic functions or in log form according to the

needs of the exercise.
Turn on now to frame 37.
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The remaining three standard integrals in our list are: 37
7. f V(A* -2%).dz 8. 5\/(22 +A?dZ 9. f V(Z* - A?).dz

In each case, the appropriate substitution is the same as with the
corresponding integral in which the same expression occurred in the
denominator,

ie. for S\/(A2 —-7*).dZ put Z=Asin@
S\/(zz +A%).dZ ” Z=Asinh6
j WZ2=A?). dZ " Z=A coshd

Making these substitutions, gives the following results.

fs/(A2 Zz)dZ”—( (A) Zﬁ"%{f_} C ...... (vii)
j¢(Zz+A2)dZ— {mh ( ) Z_\_/_(le_z-r_Ai} ...... (viii)

Jx/(z2 AY.aZ=3 {%j;—"f cosh“(i)}w ...... (ix)

These results are more complicated and difficult to remember but the
method of using them is much the same as before. Copy them down.

Let us see how the first of these results is obtained. 38
V(A2—7%).dZ PutZ=Asin6
—Z* =A% — A%sin%0 = A%(1 —sin?) = A? cos?6
LA(A?-Z2)=Acos8  AlsodZ=A cos 6 db
jv\/(AZ—-Zz). dz =jA cos 6. A cos 6 df = Azjcoszﬂ do

6  sin 20 A? 2sin @ cos 0
212 .
__A[2+ ]+( _3{6+._T__}+(j

2 2_ 72 2_ 72
Now sin0=% and cos20=1—§2=é—AzZ— cos@=\/M

v -z2y.02.- B2y é\/<A_—Z_)}

A A
AT (Z), A -2
5 { sin ( A) + e +C
The other two are proved in a similar manner. Now on to frame 39.
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3 9 Here is an example

Vx? + dx +13).dx

First of all complete the square and find Z and A as before. Right.
Do that.

40 x?+dx + 13=(x+2)* +3?

So that, in this case [Z =x+ 2| and [A = SJ
§¢(x2 +4x +13).dx =§\/{(x +2) +3%).dx
This is of the form
J\/(22+A2) dZ = {smh (A) gl/(z—ziﬁ'i}Jr C

A2

So, substituting our expressions for Z and A, we get

f V2 +ax+13)dx = o

41 j\/(x +4x +13). dx=—{smh (x;2)+(x+2)\/(x29+4x+13)}+c

We see then that the use of any of these standard forms merely involves
completing the square as we have done on many occasions, finding the
expressions for Z and A, and substituting these in the appropriate result.
This means that you can now tackle a wide range of integrals which were
beyond your ability before you worked through this programme.

0oOoOUD00o0O00D0DDO0NOO0CDO0O00O0O00D00O00DO0O0OooDoOn

Now, by way of revision, without looking at your notes, complete the
following:
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AT-727 IA"

z_ _ 1 . ,fZ
f22+A2 A.tan {A}+C

And now the second group:

z__ L m{A—i Z}+ C

J@%%f sinh“‘{%} +C

J‘\/—(Z—zdtZA—z) = cosh'l{i } +C

You will not have remembered the third group, but here they are again.
Take another look at them.

j\/(AZ ~7%).dZ = %2{ st (£)+ X2 Zz)} e

A
(v a0y a2 - A () L S
J 22— AY).dzZ= -1252{2—‘/(—-?—‘\3)— coshi’l ( %)}+ C

Notice that the square root in the result is the same root as that in the
integral in each case.

0No00D00U0000N00000000C00O00o00O0DooO0oo0DOoDDOo00Dn

That ends that particular section of the programme, but there are

‘ other integrals that require substitution of some kind, so we will now deal
: with one or two of these.

Turn on to frame 44.

42

408



Programme 14

44 :
Integrals of the form j“l T sinZx 4 ¢ cosix dx

Example 1. Consider dx, which is different from any we

3+ cos®x
have had before. It is certainly not one of the standard forms.

The key to the method is to substitute ¢ = tan x in the integral. Of
course, tan x is not mentioned in the integral, but if tan x = £, we can
soon find corresponding expressions for sin x and cos x. Draw a sketch
diagram, thus:

Sosinx =
< ¢ \/(1 +1%)
tanx =t

x Socosx = 2
+
; V(1 +1%)

Also, smcet—tanx,g—t——sec x=1+tan?x=1+12
° q.'_x: 1 'de _‘1!—.
dr 1+t 7 1+1¢2
1 _3+32%+1 _4+32
1+¢2 1+12 1+72

Then 3 +cos®x =3+ —

So the integral now becomes:

1 dx = 1+¢2 dr
3 +cos?x’ 4+362°1+12

_ 1 _1t 1
‘S4+3r2d’ 35& , 4
3

+t

and from what we have done in the earlier part of this programme,
this is ceeevvecriniinnnss

1{ 1 13, o ¢t }
sy di=s=tan!{ —— 1+
45 3,{& 377 {2/\/3 ¢
3
1v3, ot [\/3
3 2
Finally, since ¢ = tan x, we can return to the orlgmal variable and obtain

j 1 a’x=2*1‘ _,{\/S.tanx}+c \

3+ cos?x V3 2

Turn to frame 46.
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46

The method is the same for all integrals of the type

1
a + b sin%x + ¢ cos?x

In practice, some of the coefficients may be zero and those terms
missing from the function. But the routine remains the same.
Use the substitution ¢ = tan x. That is all there is to it.

From the diagram

47

Lot R
s1nx—\/(l+t2) COSX—\/(1+I2)

We also have to change the variable.

. dt
t=tanx.. — =sec’x=1+tan’x=1+?

dx
cax_ 1~
"d—t_1+t2’dx_ ....................
— 43
=

Armed with these substitutions we can deal with any integral of the
present type. This does not give us a standard result, but provides us with

a standard method.
We will work through another example in the next frame, but first of

all, what were those substitutions?
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49

P S N
Slnx—\/(1+t2) COos X ‘\/(1+[2)

Right. Now for an example.

1
2sin% + 4 cos?x

Example 2. Determine S dx

we have

. R t
Using the substitution above, and that dx = (47

212 4 _2u*+4
T+22 1+£2 1+£2

: ’—l—dx=§1+t2 dr
" ) 2sin%x + 4 cos®x 224471 +¢2

2 sin?x + 4 cos?x =

50 i )€

and since ¢ = tan x, we can return to the orlgmal variable, so that

1 _yftan x
—— . tan +
I2 sin?x + 4 cos?x dx = 2\/2 an { V2 } ¢
Now here is one for you to do on your own. »
Remember the substitutions:

. t
t=tanx sin X :\/HT;Z)

N 1
cos x —\/———(1 )
dr
dx = ——
RVAETD
Right, then here it is:
— L -
Example 3. 3 cosix + 1 dX = ..

Work it right through to the end and then check your result and your
working with that in the next frame.
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= 51

1 tan x
2 cos?x + 1 \/3 \/3

Here is the working:

2+1+¢4

2 -
2co8’x + 1= ,t 1= [+ 2

1
_3+
1+ﬂ

, 1 dx:juﬁ dt
" J2costx 1 341271412

= _L = _l STERA
—j3+t2dt \/3tan (%)i-C

-7 _1ltil/l3x} e

So whenever we have an integral of this type, with sin?x and/or cos®x
in the denominator, the key to the whole business is to make the substitu-
tHON £ = ieceeeenes

=tan x

Let us now consider the integral s ——— dx
S+4cosx
This is clearly not one of the last type, for the trig. function in the
denominator is cos x and not cos®x.
In fact, this is an example of a further group of integrals that we are
going to cover in this programme. In general they are of the form

1 . . . . .
- dx, i.e. sines and cosines in the denominator but not
atbhsinx +ccosx

squared.

So turn on to frame 53 and we will start to find out something about
these integrals.
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53 Integrals of the type j‘ !

- x
at+bsinx+ccosx

The key this time is to substitute 7 = tan%

From this, we can find corresponding expressions for sin %and cos %C
from a simple diagram as before, but it also means that we must express
sin x and cos x in terms of the trig. ratios of the half-angle — so it will
entail a little more work, but only a little, so do not give up. It is a lot
easier than it sounds.

First of all let us establish the substitutions in detail.

sin x = 2sm 2\7(1—;[')\/(1”2) l+t2
cosx = cos? E—gin2 2= Lo _ Lo _1=r
2 2 1+82 1+42 1+

Also, since £ =tanZ ‘i{=1—sec2£=—(l+tan2)—c)

27dx 2 2 2 2

L
2

dx_ 2 gz 24t

dr 1+¢? tiye

So we have: N 2t

Ift=tan—2- sinx = ——

cosx—l—t2

1+72

_ 2dt

T 1422

It is worth remembering these substitutions for use in examples. So

copy them down into your record book for future reference Then.we
shall be ready to use them.

On to frame 54.
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dx
Example 1. j‘sm
Using the substitution ¢ = tan 262-, we have
ms e (28
5+4cosx=5+4 52
_S+52+4—-4a 9+
1+122 1+72

, ax _ _(1+2 2dr _f ar
" J5+4cosx J9+r2l+12 9+ £2

b4

i
WIN Wik
=+
™
ad
e
e
~
=
=
S—
[ N7
v
+
(@}

Here is another.

dx
Example 2. L sinx +4 cos x

Using the substitution ¢ = tan>

2
) 6t 411D
351nx+4cosx-l+12+ T
_4+6t—4s?
1472

j dx =J’ 1+12 24t
“J3sinx+dcosx JA4+6t—~4r21+¢2

a1
—§2+3t—2t2 at

=l _‘—1'—_’dt

2 3. _ 2
1+2t t

Now complete the square in the denominator as we were doing earlier

in the programme and finish it off.

Then on to frame 56.

0b
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56

%.ln{l +2tanx/2}+C

4-72 tan x/2
3, , 3
+t—tr=] —(1*-%
For 1 St 1—( 2t )
o223, .3, 2
1 \t 2t+[4])+16

1 f5A+e-3/4). .
_s_ln{5/4—r+3/4}+c =
2

._.

2.
1
5

4-72t 4+ 2 tan x/2

{1 +2t}+c =§1n{1 +2tanx/2'}+c

And here is one more for you, all on your own. Finish it: then check your

working with that in the next frame. Here it is.

Example 3. j.————L-—— dx =
1 +sinx—cosx

57

tan x/2 !
In{l +tan x/2} +iJ

2t
1+22

Here is the working.
-1
1+¢2
_L+2+u—-1+7
1+12
_S 1+¢2
T2 1+

) J(%_ 171?'

t)dt

l+sinx—cosx=1+

2dt

+12

B {1 +[}+C—In{1 +tanx/2}+C

1+¢

1
Lzﬂdt

tan x/2
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You have now reached the end of this programme except for the Test 5 8
Exercise which follows. Before you work through the questions, brush up
any parts of the programme about which you are not perfectly clear. Look
back through the programme if you want to do so. There is no hurry.
Your success is all that matters.
When you are ready, work all the questions in the Test Exercise. The
integrals in the Test are just like those we have been doing in the pro-
gramme, so you will find them quite straightforward.

Test Exercise — XIV

Determine the following:

L S\/(49 —X?)
2. Sx +3x—5
3. S 2x? +8x+9
4}'\/(3): +16)
| st
6j V(1 —x—x%).dx
7.

[J(Sx +10x—16)
8. S 1+2smx
» | T

2cosx+351nx

IO.j. sec x dx

You are now ready for your next programme. Well done!




Further Problems — XIV

Determine the following:

1 dx

T x*+12x+ 15

i dx
] x? +14x + 60
¥ dx

Vo +12x +48)
* dx

2

J Vi +16x +36)

dx
9'_"2+cosx
dx
11'Jx2+5x+5

13.f\/(3—2x—x2)dx

dx
15'J\/(x2—4x—21)

dx
17'f 3sinx—4cosx

x+3
1. j\/u =7

x2—x+14

B NET e
x+2
> S\/(x2+9)d"
25 | b X
V) (4-x))
x+3
) JEr 10 &
a ax
29 o ((12 +x2)2

(Put x = a tan 6)

(S

N

@2}

0o

10.

12.

14.

16.

18.

20.

22.

24.

26.

28.

30.

Programme 14

dx
1 8-12x—x?
x—8
) sz +4x+16dx
dx
'j\/(17*14x—x2)

6x—35 d
'J\/(x2—12x+52) *

J’ 4smx+Scosx
x3—4x +3x
y x2+1 dx
ng(6x 8—x?)

4 sin?x + 9 cos’x
[ ! x
—-2 > dx
(Put x = 25in%6)
" COos X
J 2—~cosx
* dx
Js+4 cos?x
[ _dx
V(2x*~T7x +5)
db
J 25in?0 — cos?6

g V(15 —2x —x%dx)

LY
»

I 2dx
(x +a)(x* + 24%)
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Programme 15

1 In an earlier programme on integration, we dealt with the method of
integration by parts, and you have had plenty of practice in that since
that time. You remember that it can be stated thus:

jﬁdv=uv—jvdu

So just to refresh your memory, do this one to start with.

‘ Here is the working, so that you can check your solution.
sz & dx=x%(e") - 2Sex xdx
=x2 & ~2[x(e) —jex dx]
=x2e -2xef+2e5 +C

=X x2-2x+2] +C
0ntofmme3 x |

~ __ Now let us try t};e same thing with this one —
3 fx" eFdx =x"(e*) - nfex x"t dx
=x" & —nS & x™ 1 dx
Now you will see that the integral on the right, i.e. j e X dx, is of

exactly the same form as the one we started with, i.e. | x" dx, except
for the fact that n has now been replaced by (n—1)
Then, if we denotejx" e*dxbyl,

we can denote | x™! €¥ dx by I,,_;

So our result

Sx"exdx=x"ex—nj‘e"x"” dx

L, =x" e — i Then on to frame 4. r

419 ,
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L, =x"¢* —nl,_,

This relationship is called a reduction formula since it expresses an
integral in » in terms of the same integral in (n—1). Here it is again.

If [, =fx" “dx

then I, =x"¢&* —n.l,_,

Make a note of this result in your record book, since we shall be using
it in the examples that follow.

Then to frame 5.

Example Considerfx2 e dx

This is, of course, the case of I, = | x” ¢* dx in which n = 2.
We know that I,, = x" ¢¥ —n ,,., applies to this integral, so, putting
n=72, we get
L=x2e 21,
and then I =xte&f—1l],
Now we can easily evaluate I, in the normal manner —

Io =J‘x°exdx=j>lexdx=fe"dx=e’c +C
So I, =x?e -21,
and I, =xef - +C;
,=x2e —2xef +2&5 +C
= [x* -2 +2] +C

And that is it. Once you have established the reduction formula for a
particular type of integral, its use is very simple.

In just the same way, using the same reduction formula, determine the

integral st e* dx.

Then check with the next frame.
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fx3exdx=ex[x3—3x2+6x—6] +C

Here is the working. Check yours. I, =x" & —n1l,.,

n=3 I, =x3e -31,

n=2 I, =x?e-2],

n=1 Il =xex_l.Io
and10=5x°exdx= &cdx=e"+C

.. I3=x3€x~3.12

=xe" —3x2 & + 6],
=x3e¥ -3x2 e +6xe* — 65 +C
=" [x3-3x2+6x—-6]+C

Now move on to frame 7.

7

Let.us now find a reduction formula for the integralS x" cos x dx.

I, jx” cos x dx

I

x"(sinx) —n Jsin xx" dx
Xsinx—n jx”" sin x dx.

Note that this is nor a reduction formula yet, since the integral on the
right is not of the same form as that of the original integral. So let us
apply the integration-by-parts routine again.

n=x" sinx-—njx""1 sin x dx

L, =x"sinx +nx""! cosx—n (n—l)j x"2 cos x dx

Now you will see that the integral jx”' % cos x dx is the same as the

integral fx" cos x dx, with n replaced by ................

421
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n—2 9

ie. p=x"sinx+nx""! cosx—n(n—-1)1,_,

So this is the reduction formula for I, = | x" cos x dx
Copy the result down in your record book and then use it to find

x?* cos x dx. First of all, put n =2 in the result, which then

ZIVES Liiiiiiieiitetiecirreeneet e e s enta e e r e

I, =x?sinx + 2x cosx = 2.1. I 10
Now 1o =fx° cos x dx =jcosxdx =sinx +C,
And so I, =x®sinx+ 2x cosx —2sinx +C

Now you know what it is all about, how about this one?
Find a reduction formula forf,x” sin x dx.
Apply the integration-by-parts routine: it is very much like the last one.

When you have finished, move on to frame 11.

L, ==x"cosx +nx"" sinx—n(n-1)1,_, 11

For: I, =Jx" sin x dx
= x"(—cosx) +n fcosx XY dx
= —x" cosx + n{x"‘1 (sinx) - —1) | sinx x™? dx}

1

I, = x"cosx+nx"tsinx—n(n—-1)1,.,
n n

Make a note of the result, and then let us find J.x"‘ sin x dx.
Puttingrn = 3,13 =—x2 cosx + 3x% sinx —3.2.1;

and then I, = J.x sin x dx
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I, ==xcosx +sinx +C

So that I3 =-x3 cosx +3x?sinx—61,
I; ==x® cosx+3x?sinx+6xcosx—6sinx+C

Note that a reduction formula can be repeated until the value of n
decreases to n =1 or n = 0, when the final integral is determined by
normal methods.

13 Let us now see what complications there are when the integral has limits.
T

Example. To determineJ' x" cos x dx.
0

Now we have already established that, if I, =fx" cos x dx, then
Iy =x"sinx+nx"" cosx—n(n—11,_,

m
If we now define I, =f x" cos x dx, all we have to do is to apply the
0

limits to the calculated terms on the right-hand side of our result
I, = |x" sinx +n x"? cosxi\ Z -n(n—-1)L, ,
=[0+na? (-1)] [0+ 0] ~n(n-1)1,_,
Ly E=endt —n(n-1) 1,

This, of course, often simplifies the reduction formula and is much
quicker than obtaining the complete general result and then having to
substitute the limits.

m
Use the result above to evaluatej x* cos x dx.

First putn=4, giving Iy = ..o

14 I, =—4n® —43.1,

Now put n =2 to find I, , whichisI; = ...c.ccceeennenne. '
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and

So we have

and

I, =

—2.r=2.1.1,

0

[

I,=-47-121,
I, =-27

L

kid m m”
Io='[ x°cosxdx=f cosxdx=l'sinx] =0

0

0

m
j‘ x* cosxdx =1, =47 + 24n

Now here is one for you to do in very much the same way.

Evaluate

Work it right through and then check your working with frame 17.

J,

x5 cosx dx.

Working:

and

Is =—57* + 60n? — 240

S
1,, =—nn

IS =_57T4 -54. 13
13 = _3772 —-3.2. Il

0
= [0-0] — [—cosx:l .
= l:cos le =-D)-(1)=-2
0
. 15 = _5774 -20 I3
I; = —3n2 — 6(-2)

I, =§: x cos x dx =l:x(sin x)}lT —f

nn-1)1,_,

m

0

" Is = =57% + 60n% — 240

Turn on to frame 18.

sin x dx
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18 Reduction formulae for (i) fsin"x dx and (i) jcos”x dx.
(i) { sin"x dx.
Let I,= jsin”x dx = f sin™x . sin x dx =.[ sin™ x . d(—cos x)
Then, integration by parts, gives
I, =sin""'x.(—cos x) + (n — 1) J cos x.sin™%x _cos x dx

=—sin"!x.cosx +(n—1) jcoszx.sin”‘zx dx
=—sin""x.cosx + (n— 1) | (1 —sinx) sin™2x dx
=—sin"'x.cosx +(n—1) Usin"‘zx dx — ~J‘sin"x dx}

LIy =ssinixlcosx t(n - DI, ~(n—1)1,
Now bring the last term over to the left-hand side, and we have
nly ==sin"'x.cosx+(n-11, ,

n—lI
n

So finally, if I, =JAsin"x dx, Iy = _rlf sin!x, cos x + -

Make a note of this result, and then use it to find Jsinsx dx

19 Is =—é sinsx.cosx—2i4 sin"’x,.cosx—%5 sin x cos x + ng—+c

For Is =—é~sin5x cos x +%.I4.
| =—}Isin3x cosx +% 1.
I, =—é—sinxcosx+ 12 N YR P =de=x+C
L g = —%sinsx cosx + g [—}Tsin3x cos x +%—. Ig]
= —é— sin®x cos x — iSZ sin®x cos x +% l:-% sin x cos x +§]+ C

= —é— sin®x cos x —2% sin®x cos x — 1_56 sinx cosx +?—)6c +C
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(i) jcos’bc dx. 2 0

Let I,= j‘cos”x dx = S cosIx cosx dx = jcos"‘lx d(sin x)

cos™lx.sinx —(n — 1) J sinx.cos™2x (—sin x) dx

n

cos™ x . sinx +(n— l)j. sin?x cos™2x dx

cos™ lx.sinx +(n— l)j (1 — cos®x) cos™ 2x dx

cos"lx sinx+(n—1) {Scos’”x dx — J.cos”x dx}

Now finish it off, so that I, = ...

_1 - . n—1 21
I, —;cos" Ixosinx tT—— 1, ,
For I,=cos™x.sinx+(n—-1)L,_,—(n—1)I,
n Ip=cos'x.sinx+(n-1)1L,_,.
D

n—lI

L I, ==cos™ lxsinx +
o n n "2

Add this result to your list and then apply it to find | cos®x dx

When you have finished it, move to frame 22.

1 . 4 . 8 .
S = —cos? — cos? +— + 22
jcos x dx 5cos xsmx+15 cos®x sinx 15 sinx +C

Here it is:

Is =-§- cos*x sin x +%13

2
I, =% cos?x sin x +-§Il

And I, =jcosxdx =sinx + C;

5 513

| 4 2 8 .
5cosxsmx+1—§cosxsmx+lssmx+C

v ls ='l-cos4x sin x +i-|:l cos?x sinx +% sin x] +C

L‘ On to frame 23.

\ 426



Programme 15

23 The integrals jsin”x dx and jcos"x dx with limits x = 0 and x = 7/2,

give some interesting and useful results.
We already know the reduction formula

. 1. n-1
sinx dx = [,, = —=sin""'x .cos x + ——1,
n n "2

Inserting the limits

R /2 n—1
I, —[—n—sm xcosx}0 + - L,

= [0—0]+n—11n_2
-1

Ip

And if you do the same with the reduction formula for [cos”x dx, you
get exactly the same result.

12 /2
So for fﬂ sinx dx and fﬂ cosx dx, we have
0

Also _—
(i) If n is even, the formula eventually reduces to I,

/2 w2

i.e.'[ ldx={x] =a/2 > 1lg=1/2
0 0

(i) If n is odd, the formula eventually reduces to I,

w2 a2

i.e.f sinx dx = [—cosx] =—(-1) ~ I =1

0 0
w2

So now, all on your own, evaluate f sin®x dx. What do you get?
)]

24

(TN

2 ._8
.’3—.1—-1—3

15=

For

ot
©»
1]
ot
w

S
—

and we know thatI; =1

H
w
n
wib Wi »nlks
|oe

0 W
<) 3 .
e
N

—
wn
"
—
"

[om—
W

In the same way, find cos®x dx.

Then to frame 25.
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I, =22 25

32
5
For I6=“6‘.I4
3
,I4=Z‘~Iz
1 m
12 =3.Io andlo=‘2_
=33 1m om
67647272 32

Note that all the natural numbers from n down to 1 appear alternately
on the bottom or top of the expression. In fact, if we start writing the
numbers with the value of n on the bottom, we can obtain the result
with very little working.

n-1 (n—13) n-5) ..
n (1-2) T e

If n is odd, the factors end with 1 on the bottom

e.g. '7—6‘%% and that is all there is to it.
If n is even, the factor 1 comes on top and then we add the factor m/2
7.5.3.1 =

8 8 6.4.2 2

So (i) jsin“x AX = oo
and (ii) jcossx AX = e

in? =—3iT-- 5 =§ 26
Jsmxdx 6’ cos’x dx G

This result for evaluating j‘sin"x dx or fcos”x dx between the limits

x =0 and x = /2, is known as Wallis’s formula. It is well worth
remembering, so make a few notes on it.

\: Then on to frame 27 for a further example.
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27 Here is another example on the same theme.

w2
Example. Evaluate'( sin®x cos?x dx.
(1]

We can write
nl2

/2
J‘ sin®x cos®x dx = j sin®x (1 — sin®x) dx
0 0

nl2
j. (sin®x — sin” x) dx

0
"15—17
Finish it off.
8
105
=42 _8 | _ 6.4.2 _16
575.3.1 157 7°7.5.3.1 3
8 16 8
Is—l={5 35105

z 9 All that now remains is the Test Exercise. The examples are all very

straightforward and should cause no difficulty.
Before you work the exercise, look back through your notes and

revise any points on which you are not absolutely certain: there should

not be many.

On then to frame 30.
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Test Exercise— XV

Work through ail the questions. Take your time over the exercise:
there are no prizes for speed!
Here they are then.

1. IfI, = J-x" e?* dx, show that

x"e n
In = ) - 'i- In—l
and hence evaluate Jx3 e?* dx,
w2
2. Evaluate (i) j sin®x cos®x dx
(V]

w2
(ii) f sinx cos®x dx
0

3. By the substitution x =a sin 8, determine

a 2
J. x3(a? — x? )3/ dx
(V]

4. By writing tan”x as tan2x. (sec?x — 1), obtain a reduction formula

forf tan"x dx.

n/4 " 1
Hence show that I, -‘;f tan"x dx = bl PN

5. By the substitution x = sin26, determine a reduction formula for the
integral

J‘xs/z(1 _ x)3/2 dx
Hence evaluate

1
j. 2 (1= ax

[

30
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Further Problems— XV

/2 .
1. If 1, =j x cos”x dx, when n > 1, show that
0

nn—1)

Iy == Iy, — 1

2. Bstablish a reduction formula for f sin”x dx in the form

1 n—1
I =—=sin"!x cos x +——1
n n n "2

and hence determine Jsin7x dx.
3.If1, = j x" 9% dx, show that I, =-Z—. I,_, - Hence evaluate
0
j~ x9 e—2xdx
(4]

kil —_
4. IfI, = S e sinx dx, show that I,, = n(n=1)
0

Wil ne

/2
5. If1, = J x" sin x dx, prove that, forn > 2,
0

I, = n(%)n_l -n(n—-11,_,

Hence evaluate I3 and I,4.

6. IfI, =J‘x"ex dx, obtain a reduction formula for I, in terms of In_1

and hence determinefx“ " dx.

7. If 1, =f sec’ x dx, prove that

1 " n-2
L, =-—tanx sec"2x Jrn—_-TIn_2 n>=2)

/6
Hence evaluate j secBx dx.
o
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/2
8. If 1, =j e* cos"x dx, where n > 2, prove that

10.

11.

12.

0

w2
() I,=1-n f e sinx cos™ 'x dx
0

() @+ DI =1+nn-1)1,,

- -7/2
Show that I = 263—621346—

CIfL, = g(x2 +a*)" dx, show that

-1 2
=57 [x(x* +a®)" + 204 1,,_ ]
If 1, = Scot”x dx, (n > 1), show that

__cot"!x
nTT o)

Hence determine I .
IfI, = f(in x)* dx, show that
L, =x(Inx)" —n.1,_,

Hence find j (In x)? dx.

Ifl, = j‘cosh"x dx, prove that

1 1 n
I, = ;cosh" 'x sinh x + | Y

a
Hence evaluate j cosh®x dx, where @ = cosh™ (1/2).

0

e —
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We now look at some of the applica-
tions to which integration can be put.
Some you already know from earlier
work: others will be new to you. So
let us start with one you first met
long ago.

Areas under curves

To find the area bounded by the
curve y = f(x), the x-axis and the
ordinatesat x =aand x = b
There is, of course, no mensuration
formula for this, since its shape
depends on the function f(x). Do
you remember how you established
the method for finding this area?

Move on to frame 2.

Let us revise this, for the same
principles are applied in many other
Y cases.

y=Ff(x)
Let P(x, y) be a point on the curve
Q » =fl{x) and let A, denote the area

P under the curve measured from
—V'§ some point away to the left of the
7J diagram.
Y Toa The point Q, near to P, will have
Az N co-ordinates (x + 8x, y +8y) and
%é the area is increased by the extent
Ol x| X of the shaded strip. Denote this
8z by SA,.

Pé R If we ‘square off’ the strip at the level of P, then
we can say that the area of the strip is
approximately equal to that of the rectangle
(omitting PQR).

ie.area of Strip=8A, = oo vvvceriieene

~

Turn to frame 3. ’
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5A, = ybx

S5A,
Therefore,gx— 2y

i.e. the total area of the strip divided by the width, 8x, of the strip gives
approximately the value y.

The area above the rectangle represents the error in our stated
approximation, but if we reduce the width of the strips, the total error is
very much reduced. ( A{

re— 8¢ —™

If we continue this process and make §x — 0, then in the end the error

. . . 5A
will vanish, and, at the same tlme,—(ﬁf S e

bAy , dAs
6x dx

Correct. So we have%‘ =y (no longer an approximation)

Y dx
y =f{x)
noA, =fy dx

- f fx) dx
X A, =Fx)+C
AN
X4 [o] x X

and this represents the area under the curve up to the point P.

Note that, as it stands, this result would not give us a numerical value
for the area, because we do not know from what point the measurement
of the area began (somewhere off to the left of the figure). Nevertheless,
we can make good use of the result, so turn on now to frame §.
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5 Ay = J ¥ dx gives the area up to the point P(x, y).

Y
y=fz Qo

L (i) If we substitute x = b, we have
the area up to the point L

;27 ie. Ap =.fy dx with x = b.
%%
X, O b x
M y=flx) (ii) If we substitute x = a, we
have the area up to the point X
K i.e.Aa=fydxwithx=a.
Xy O a X
If we now subtract the second result from the first, we have the area
Y y=fx) under the curve between the
L ordinates at x =@ and x = b.
K ie. A= dx —\ydx 8
— jy (x=b) 5}’ (x=a)
X, O [ b X
This is written b
A=| yadx
a

and the boundary values @ and b are called the limits of the integral.

Remember: the higher limit goes at the top. That seems logical
the lower limit goes at the bottom. great.

So, the area under the curvey = f{x) between x = 1 and x = 5 is written

5
A=f y dx.
1

Similarly, the area under the curve y = f(x) between x = =5 and x = -1

On to frame 6.

437

iswritten A= ... '
|
|



Integration Applications 1

-1

A =J ydx
-5
Let us do a simple example.
Find the area under the curve y =x% + 2x + 1 betweenx = 1 and x = 2.
2

2
A=J ydx=J 2 +2x + 1 dx
1 1
3 2
=|ix—+x2+x+C]
3 1

=[—§+4+2+le —[%+1+1+CJ

(putting x=2) (puttingx=1)

][]

12
63 units

[

Note: When we have limits to substitute, the constant of integration
appears in each bracket and will therefore always disappear. In practice
therefore, we may leave out the constant of integration when we have
limits, since we know it will always vanish in the next line of working.
Now you do this one:
Find the area under the curve y = 3x? + 4x — 5 between x = 1 and

x=3.

Then move on to frame 7.

A = 32 units?

3 3
For A=f (3x? +4x—5)dx=l:x3 + 2x? —5x]
1

<[] [
SRR

Definite integrals

An integral with limits is called a definite integral.

With a definite integral, the constant of integration may be omitted,
not because it is not there, but because .........occooovvieiiveiveeriiiieesie e

1
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8 ... it occurs in both brackets and disappears in
subsequent working.

So, to evaluate a definite integral
(i) Integrate the function (omitting the constant of integration) and
enclose within square brackets with the limits at the right-hand
end.
(ii) Substitute the upper limit.
(iii) Substitute the lower limit.
(iv) Subtract the second result from the first result.

J jy dx = [F(x)] j = F(b) - F(a)

Now, you evaluate this one.
1

2
j 4> dx = oo,
1

9 5-166

Here it is:

/2
Now, what about this one: J X cos x dx.
0

First of all, forget about the limits.

fx COSXAX = i,

When you have done that part, turn to frame 10.
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10

Jx cos x dx = x(sin x) - Jsinx dx

=xsinx+tcosx+C

/2 /2
f x cosx dx = [x sinx + cosx]

0 0
= You finish it off.

1

w2 .77/2
forj xcosxdx= [x sin x + cos x]
J 0 0
=T _
—[2.+0J [0+l:]
m
=3 1

If you can integrate the given function, the rest is easy.

So move to the next frame and work one or twWo on your own.

Exercise
Evaluate: 12
2
(1)J (2x - 3)* dx
1
Jim
S I
3 ax
(3) 5_3 x2 +9

e
(4)f x? Inx dx
1

When you have finished them all, check your results with the solutions
given in the next frame.
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13 Solutions

o [ @r-ar ax ] ST - -y

On to frame 14.

In very many practical applications we shall be using definite
14 integrals, so let us practise a few more.

Do these: Zx
sin
(S)J 1 + cos?x dx
(6)] x e dx
1

m
@) f x? sin x dx |
0

Finish them off and then check with the next frame. ’
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Solutions 1 5

r w2
%) j S s L—ln (1+ coszx):l

1+cosx 0

=[-In(1+ O)}— ‘:-ln(l + 1)]

(1

= —ln1+ln2]=ln2

—

(6) Ixexdx=x(eX)—fe"dx

=xe—e* +C

2 2
f xe* dx =[ex(x—l)]

1 1
=32—0=i

@) j‘xz sin x dx = x2 (—cosx) + 2 j cos x dx

=—x% cosx + 2{x(sinx)~ jsinxdx}

=—x2 cosx+2xsinx +2cosx +C

ki i
: 5 x? sinxdx=[(2—x2) cosx+2xsinx:l

0 0

= [(2—772)(—1) + 0] - [2 + O}

=q2-2-2=g2-4

Now move on to frame 16.

16

Before we move on to the next piece of work, here is just one more
example for you to do on areas.

Example. Find the area bounded by the curve y = x? — 6x + 5, the
x-axis, and the ordinates at x = 1 and x = 3.

\ Work it through and then turn on to frame 17.
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17

= — .1.. ite2
A 53 units

Here is the working:
3 3 X3 3
A=J ydx=J (x2—6oc+5)dx=—§—3x2+5x
1 1 1

=(9-27+15)-(3-3+5)
=(-3)- (21) = —51—un'ts2
¥~ 3

If you are concerned about the negative sign of the result, let us
sketch the graph of the function. Here it is:

\

Y4

We find that between the limits we are given, the area lies below the
Xx-axis.
For such an area, y is negative
. ybx is negative
. & Aisnegative .. A is negative.
So remember,

Areas below the x-axis are negative.

Next frame.

18 The danger comes when we are integrating between limits and part of
the area is above the x-axis and part below it. In that case, the integral
will give the algebraic sum of the area, i.e. the negative area will partly
or wholly cancel out the positive area. If this is likely to happen, sketch
the curve and perform the integration in two parts.

Now turn to frame 19.
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Parametric equations

Example. A curve has parametric equations x = at?, y = 2 at. Find the
area bounded by the curve, the x-axis, and the ordinates at ¢ = 1 and
t=2.

b

We know that A =5 y dx where @ and b are the limits or boundary
a

values of the variable.
Replacing y by 2 at, gives

b
A= g 2atdx
a
but we cannot integrate a function of ¢ with respect to x directly. We
therefore have to change the variable of the integral and we do it thus —
dx

We are given x=at? .. 5= 2at . dx =2ardt
2 2

We now have A =j 2at.2at dt = J 44% 12 dt
1 1

19

>
it
——
—_
~
Q
[ %)
-~
~
Q
~
H
N
Q
[
~
w
L— 1
— [

The method is always the same —

(i) Express x and y in terms of the parameter,
(ii) Change the variable,
(iii) Insert limits of the parameter.

Example. Ifx=asin 6,y = b cos 8, find the area under the curve
between § =0 and 8 = 7.

b i
A=f ydx=j bcosf.acosf.d0 x=asind
a 0 dx=acosf db

m
abf cos20 dof
Q

20
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21 b

For A=abj cos®9 df = b[
0
mab

o] 5]

Now do this one on your own:

Example. If x=6 ~sinf,y =1—cos 8, find the area under the curve
between 8 =0 and 8 = 7.

sin 20]

When you have finished it, move on to frame 22.

22

LI
A 2umts

Working:

jydx y=(1—cosh)
a x =(6 — sin 8)
Sw dx=(1-cos9)db

(1—cos8) (1 —cos)de

(1~2cos 6 + cos?0) do

=[e 2sin6 +— +Sm20]

2 4 0
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Mean values

To find the mean height of the students in a class, we could measure
their individual heights, total the results and divide by the number of
subjects. That is, in such cases, the mean value is simply the average of
the separate values we were considering.

Y y= f(;)
To find the mean value of a

continuous function, however,
J requires further consideration.

[¢) a b X

When we set out to find the mean value of the function y = f(x)
between x = and x = b, we are no longer talking about separate items
but a quantity which is continuously changing fromx =a tox =b. If we
estimate the mean height of the figure in the diagram, over the given

range, we are selecting a value M such that the part of the figure cut off
would fill in the space below.

Y
y=flx) In other words, the area of the

figure between x =g and x = b is
shared out equally along the base

M ; line of the figure to produce the

I J rectangle.
-
5 X

b
T«——(u-u)——[ P VR L

" Base line b —a
1 J‘b
;| yax
b—a 2

So, to find the mean value of a function between two limits, find the area
under the curve between those limits and divide by

On to frame 24.
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24 length of the base line

So it is really an application of areas.

Example. To find the mean value of y = 3x? + 4x + 1 between x =—1 and
x=2,

1 b
werl [y
—-a

a

2,
= __ﬁ)j 1(3x2 +4x+ 1) dx

- 2

x% +2x? +xJ
L 1

_(8+8+2)—(—1+2—1)il

18}=6 L M=6

Here is one for you:

Example. Find the mean value of y = 3 sin 5r + 2 cos 3¢ between £ = Q
andt=n7

Check your result with frame 25.

25

Here is the working in full:

m
M= LJ\ (3 sin 5¢ + 2 cos 3t) dr
7—0 0

=L[ 3 cos 5¢ 2sin3t:|"
77 3 0

1 3 cos S 2s1n37r 3 }
== -+
[Py [
=1(3.3 -6

n{S 5} M—Er
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RM.S. values 2 6

The phrase ‘r.m.s. value of y” stands for ‘the square root of the mean
value of the squares of y” between some stated limits.

Example. If we are asked to find the r.m.s. value of y = x* + 3 between
x=1and x = 3, we have —

r.m.s. =+/(Mean value of y* betweenx = 1 and x = 3)

= (r.m.s.)? = Mean value of y* betweenx = 1 and x = 3

3
(rm.s)? = é—J‘ (x* +6x* +9)dx
1
5 3
[x—s +2x° + 9x}
1

05002 {10209

{486+81—112}
{29-6—11-2}

:1184} =592

1t 1}
(S

[}

]

Nl-— w|~ STEE Y

rms. =4/59-2=7.694 . rms.=7.69

So, in words, the r.m.s. value of y between x = a and x = b means

(Write it out)

Then to the next frame.
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28 <. the square root of the mean value of the squares of y
betweenx =g andx=b’

There are three distinct steps:

(1) Square the given function.
(2) Find the mean value of the result over the interval given.
(3) Take the square root of the mean value.

So here is one for you to do:

Example. Find the r.m.s. value of y = 400 sin 200n¢ between ¢ = 0 and
1

=100

i When you have the result, move on to frame 29.

29

See if you agree with this —
»? = 160000 sin? 200mz

- 160000.—15(1 ~ cos 400mr)

= 80000 (1 — cos 400m¢)

1 1/100

S (rms)? = —1———f 80000 (1 - cos 400m?) dt

00970

__sin 4007t ] 1/100

= 100. 80000 |:t 4007

=2 106 L _
8.10 [100 o]
=8.10*
Lorms. =+/(8.10%) = 200+/2 = 282.8

0

Now on to frame 30.
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Before we come to the end of this particular programme, let us think 3 n
back once again to the beginning of the work. We were, of course,
considering the area bounded by the curve y = f(x), the x-axis, and the
ordinates atx =g and x = b.

Y y=f(ax)
/ We found that
b
A= f ydx
a
——
A
% a b X
Let us z(ook at the figure again. y=Fz)

If P is the point (x, y) then the
area of the strip A is given by

6A~y.bx

If we divide the complete figure
up into a series of such strips,
then the total area is given
approximately by the sum of
the areas of these strips.

i.e. A = sum of the strips betweenx =g andx =5

x=b
i A= 3 y.8x Z =‘the sum of all terms like..
X=a
The error in our approximation is caused by ignoring the area over each
rectangle. But if the strips are made narrower, this error progressively
decreases and, at the same time, the number of strips required to cover

the figure increases. Finally, when §x - 0,
A = sum of an infinite number of minutely thin rectangles

b x=b
~ A=) ydx= Z y.bxwhenx—>0
a x=a

It is sometimes convenient, therefore, to regard integration as a summing
up process of an infinite number of minutely small quantities each of
which is too small to exist alone.

We shall make use of this idea at a later date.
Next frame.
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31 Summary Sl;eet

1. Areas under curves y=flx)
Y
b
A =j ydx
=] A a
0 a b X

Areas below the x-axis are negative.
2. Definite integrals

A definite integral is an integral with limits.

g b dx = [F(x)t = F(6) - F(a)

a

3. Parametric equations
x=f(t), y =F(@)

X9 X2 1y dx
j ydx= j F(?) dx =f F(r).— dt
f dr

X1 Xy
4. Mean values

1 (2
M—b_ajaydx

5. RM.S. values

1 (b,
(rms)? = b——_;j yedx
a
6. Integration as a summing process

x=b b
When 6x -0, Z y.6x=S ydx

x=a a

All that now remains is the Test Exercise set out in the next frame.
Before you work through it, be sure there is nothing that you wish to
brush up. It is all very straightforward, so take your time.

On then to frame 32. 4‘
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Test Exercise—XVI 3 2

Work all the questions.
1. Find the area bounded by the curves y = 3¢2* and y = 3¢™ and the
ordinates at x = 1 and x = 2.

2. The parametric equations of a curve are

= ain = _ Z
y-—ZSmIOt,x 2+ 2t 2coslot

Find the area under the curve between =0 and £ = 10.

3. Find the mean value of y = QTJCS—_? between x = —317

=+L
and x = +3.

4. Calculate the r.m.s. value of i = 20 + 100 sin 1007z between r =0
and r = 1/50.

di

dt

2
vibetweent=0and ¢t = —01—7

5. Ifi=1sin wrand v = L + R4, find the mean value of the product

6. If i = 300 sin 1007t + I, and the r.m.s. value of i between =0
and ¢ = 0-02 is 250, determine the value of 1.
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Further Problems—XVI

1.

10.

Find the mean height of the curve y = 3x% + 5x — 7 above the
x-axis between x = —~2 and x = 3.

. Find the r.m.s. value of { = cos x + sin x over the range x =0 to

x=37
7

. Determine the area of one arch of the cycloid x =6 —sin 6,

Y =1—cos@,i.e. find the area of the plane figure bounded by the
curve and the x-axis between 8 = 0 and 6 = 27.

. Find the area enclosed by the curves y = sin x and y = sin 2x,

between x =0 and x = 71/3.

. Ifi=0-2 sin 10wt + 0-01 sin 30wz, find the mean value of i between

t=0and t=0-2.

. Ifi =iy sin pt +1, sin 2pt, show that the mean value of i* over a

period is %-(if +i3).

. Sketch the curves y = 4 ¢* and y = 9 sinh x, and show that they

intersect when x = In 3. Find the area bounded by the two curves
and the y-axis.

. Ifv = vy sinwt and i =4 sin(wt — a), find the mean value of vi

betweent=0and ¢t = 2%

CIfi= % + Isinwt, where E, R, 1, w are constants, find the r.m.s.

. 27
value of i over the range r=0tot = o
The parametric equations of a curve are

x=acos’tsint,y =acostsin’t

Show that the area enclosed by the curve between =0 and ¢ =

2
. Ta .
is — units?.

32

YR
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11. Find the area bounded by the curve (1 —x?) y = (x — 2) (x — 3), the
x-axis and the ordinates at x = 2 and x = 3.

12. Find the area enclosed by the curve a(z —x) y = x*, the x-axis and
the line 2x = q.

13. Prove that the area bounded by the curve y = tanh x and the straight
line y = 1 between x =0 and x = o, is In 2.

14. Prove that the curve defined by x = cos®¢, y = 2 sin®¢, encloses an
area %17 units?.

15. Find the mean value of y = x ¢*/7 between x = 0 and x = 2.

(16. A plane figure is bounded by the curves 2y = x? and x3y = 16, the D
' x-axis and the ordinate at x = 4. Calculate the area enclosed.

17. Find the area of the loop of the curve y? = x* (4 + x).

18. Ifi =1, sin(wt + a) + I, sin(2cot + B), where I, , 1, , w, a, and 3 are
constants, find the r.m.s. value of { over a period, i.e. from¢=0

27
tot=—.
w

19. Show that the area enclosed by the curve x = a (2¢ — sin 2r),
y =2a sint, and the x-axis between ¢ = 0 and ¢ = 7 is 37a? units?.

20. A plane figure is bounded by the curves y = 1/x2,y = /2 — 3 and
the lines x = 1 and x = 2. Determine the extent of the area of the
figure.
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1 Introduction

In the previous programme, we saw how integration could be used

(a) to calculate areas under plane curves,
(b) to find mean values of functions,
(¢) to find r.m.s. values of functions.

We are now going to deal with a few more applications of integration:
with some of these you will already be familiar and the work will serve as

revision; others may be new to you. Anyway, let us make a start, so move
on to frame 2.

2 Volumes of solids of revolution

If the plane figure bounded by the curve y = f(x), the x-axis, and
the ordinates at x = g and x = b, rotates through a complete revolution
about the x-axis, it will generate a solid symmetrical about OX.

¥ y =Ffx) Y
8
A Let V be the
volume of
the solid
of e b x 0 generated.
Yy Yy

To find V, let us first consider a thin strip of the original plane figure.

y=f(x)
”

,/
p o~
y
¥

T x‘.lsx]‘_ X

Y

(e

Y

The volume generated by the strip = the volume generated by the
rectangle.
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SV =amy? §x

Correct, since the solid generated is a flat cylinder.
If we divide the whole plane figure up into a number of such strips,
each will contribute its own flat disc with volume my2. 6x.

Y Y -
B
y = f(x)

x=b
.. Total volume, V& 5 7y%8x
x=a

The error in the approximation is due to the areas above the rectangles,
which cause the step formation in the solid. However, if 6x — 0, the error
disappears, so that finally V= ...

b
V=j y? dx

a

This is a standard result, which you have doubtless seen many times
before, so make a note of it in your record book and move on to frame 5.

Here is an example:
Example. Find the volume generated when the plane figure bounded by

y =5 cos 2x, the x-axis, and ordinates at x =0 and x =E-, rotates about

4
the x-axis through a complete revolution.
n/4 /4
We have: V= S nyidx = 25w s cos® 2x dx
0 0

Express this in terms of the double angle (i.e. 4x) and finish it off.
Then turn on to frame 6.
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For:

2
V= 2om units®

8
nf4 nf4
\' =7rj‘ y2dx= 2517j cos® 2x dx
0 0
/4 cos 20 =2 cos?6 — 1
=-2—5sz (1+ cos4x)dx 1
2 ), cos?6 = 5(1 + cos 20)
257 [ sin 4x ]“/4
=— | x t+——
2 4

0

_2sa[fa, N . }:]_25772 3
=3 [{4+0j {U+O =73 units

Now what about this one?

Example. The parametric equations of a curve are x = 3% |y = 3r — 2.
Find the volume generated when the plane figure bounded by the curve,
the x-axis and the ordinates corresponding to ¢ = 0 and ¢ = 2, rotates
about the x-axis. [Remember to change the variable of the integral!]

Work it right through and then check with the next frame.

V =49.627 = 156 units>

Here is the solution. Follow it through.

V=S ny? dx x=322, y=3t—-¢*
=2
\Y =J 7 (3t —1%)? dx x =3¢2
t='20 dx = 6tdt
=1rj. 922 =61 +t*) 6t dt
0

2

=67rj (9 —6¢* + %) dt
0

ot 6 tﬁ]z

-6"[7 5 Y%,

=6n [36 —384+ 1067 |=6n 1:46-67 - 38-4:‘
= 67 (8-27) = 49-627 = 156 units®

So they are all done in very much the same way.

Turn on now to frame 8.
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Here is a slightly different example. 8
Example. Find the volume generated when the plane figure bounded by
the curve y =x? + 5, the x-axis, and the ordinates x = 1 and x = 3, rotates
about the y-axis through a complete revolution.

Note that this time the figure rotates about the axis of y.

Y y=x2+5 Y y = f{x)
8
A
ol 1 3 X X, )

X

Half of the solid formed, is shown in the right-hand diagram. We have
b
no standard formula for this case. I:V =j my? dx refers to rotation
a
about the x-axis.} In all such cases, we build up the integral from first

principles.
To see how we go about this, move on to frame 9.

Here it is: note the general method.
\ 9
y=x%+5
Pa If we rotate an elementary strip
e PQ, we can say —
r g Vol. generated by the strip = vol.
3 o T generated by rectangle
! aJ L (i.e. hollow thin cylinder)
[
Sx

.. 6V = area of cross section X circumference
8V = yéx 2mx = 2nxy bx
For all such strips betweenx = 1 and x = 3
=3
VoEsve's  2nxy.sx
x=1
As usual, if §x = 0, the error disappears and we finally obtain

3

V= 2J~ Xy dx
1

Since y = x? + 5, we can now substitute for y and finish the calculation.

Do that, and then on to the next frame.
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10

V = 80 units®

Here is the working: check yours.

3 3
\Y =J 2nxy dx = 211J. x(x +5)dx
1 1

3
= 21rj (x3 + 5x)dx
1

o[
=27 [20 + 20:] = 807 units>

Whenever we have a problem not covered by our standard results, we
build up the integral from first principles.

1

¥ = f(x), the x-axis and the ordinates x = a and x = b rotates completely

This last result is often required, so let us write it out again.
The volume generated when the plane figure bounded by the curve

about the y-axis is given by:

b
V= 27Tj‘ xy dx

a

Copy this into your record book for future reference.

Then on to frame 12, where we will deal with another application of
integration.

—
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Centroid of a plane figure 12

The position of the centroid of a plane figure depends not only on
the extent of the area but also on how the area is distributed. It is very
much like the idea of the centre of gravity of a thin plate, but we cannot
call it a centre of gravity, since a plane figure has no mass.

We can find its position, however, by taking an elementary strip and
then taking moments (i) about OY to find X, and (ii) about OX to find 7.
No doubt, you remember the results. Here they are:

v y=flx)

F—f—’x ' o

Which give Xx=4<4__, V=

Add these to your list of results.

Now let us do one example. Here goes.

Find the position of the centroid of the figure bounded by y = **, 13
the x-axis, the y-axis, and the ordinate at x = 2.
v y= 82::

First, to find x

2
S xy dx
w— C )_c= 0__
f 2
! S y dx
0 : 2 X 0
1—{2‘—]

I
We evaluate the two integrals quite separately, so let x = =

2
Then I, =S x e dx = oo
0
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2 x 2
FOl’Z Il =5 X ezx dx = x(iz_ ) _l_fe2x dx]
0 2 2 0
[xe”‘ ezx]z
2 4 1,
4
=4 €N (-1
(e 4) 4)
3t 1 36+
4 4 4
2
Similarly, I, =S e®* dx which gives I, = ..cocooovevinnns
0
et -1
15 L = 2
2 r.2x12 4 4 _
e e 1 e 1
For: I, =j e dx = _:] =€ _1_
0 L2 o 2 2 2
So, therefore, L 3t « 2
X" 2- 4 64"1

3e* +1 _ 3(54-60)+ 1 _ 163-8+1 _164-8

X 1) 25460-1) 1092-1 1082
X =1-523
Now we have to find y 2y,
S PR ,  Note that the
7=-—2———~— =—  denominator is the
j ydx 12 same as before.
0
I =182 y?dx=
3 ......................
2 0 |

463



Integration Applications 2

13-1—[8—1] }7=‘i‘[€4+l]
2 2 4x7]2
I =%§0y2 dx=%go e dx = [ET:‘O
=
SRR S VI v
2 2(64_1)__5_5_ﬁ_13_9
7 - 139

So the results are:
x=1-523; y=139
Now do this one on your own in just the same way.

Example. Find the position of the centroid of the figure bounded by the

. . . il
curve y = 5 sin 2x, the x-axis, and the ordinates at x = 0 and x = G

SR n/6
=5[x(—£ﬁx-) +l cos2xdx}

i
L 6272
| 8 24| 4 6
6 " cos 2x ”/6_ 1 5
Also 1, SOSSmQ.xdx—S_— 5 :l =-— [2 ljl-—i

=3 [5E] 5[5

=0-8660 —0-5236 ..
Do you agree with that? If so, push on and find y.
When you have finished, move on to frame 19.
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19 =

Here is the working in detail.

/6
I =§§ 25 sin? 2x dx

2(
25 [x_s1n4x:l /6
4 4 1,

=§[1_sm<2ﬂ/3>] in T ognT=V3
6 3 M37 3

0
/6
=25—S 1 —cos 4x) dx

1
HIFNES
1
NE
|
<
Qo | W
[

NN

l:O 5236 - 0~2153J

[03083} =25(0-07708) = 1.927
-_I3 1927 _( 927}
YL T 5a 1-542
So the final results are
£=0342, §=1-542

Therefore

Now to framg 20

2 0 Here is another apphca‘uon of mtegrat10n not very dlfferent from the

last.
Centre of gravity of a solid of revolution

To find the position of the centre of gravity of the solid formed when
the plane figure bounded by the curve y = f(x), the x-axis, and the

ordinates at x =g and x =b r)otates about the x-axis.
Y y=flx
If we take elementary discs and

sum the moments of volume (or
mass) about OY, we can calculate
X. b

xy? dx

-~

o
81
4o

o
>

This gives X =
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720 21

Correct, since the solid generated is symmetrical about OX and therefore
the centre of gravity lies on this axis,i.e.y = 0.
So we have to find only X, using

b
j xy? dx
—=va

=Y =1
T L
5 y? dx
a
and we proceed in much the same way as we did for centroids.
Do this example, all on your own:
Example. Find the position of the centre of gravity of the solid formed

when the plane figure bounded by the curve x? + y? = 16, the x-axis, and
the ordinates x = 1 and x = 3 rotates about the x-axis.

When you have finished, move to frame 22.

¥=189, =0 22
Check your working.

3 3 x4 3
I, =S x(16 —x¥) dx =J. (16x—x3)a?x=[8x2 _Z]
1

1 1
=(2-9)~(s-3)
=64-20=44 . I, =44

3 x3 3
I, =S (16 ~x*)dx = |:16x——:|
1

34
=(a8 -9\ —(16-L1
(48 9) (16 3)
3 .e 2 3
gl 313
X L~ 170 o 1-89

So x=189, y=0
‘ They are all done in the same manner.
Now for something that may be new to you.

F Turn on to frame 23.
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23 Lengths of curves

To find the length of the arc of the curve y = f(x) between x =a and

x=b. y = f(x)
7,5/'\

iy 3
e e

4\"

<

of--———=-——-—-\I

J N

y

oo I
3x

Let P be the point (x, ) and Q a point on the curve near to P.

Let &s = length of the small arc PQ.
(6y)?

2 2 o (6s) .
Then (85)? = (8x)* +(8») c (2 T (8x)2

YNNI BV
If 5x >0 %=\/{1+(%)2} s=Si\/{1+(%)2}dx

Make a note of this result.
Then on to the next frame.

2 4 Example. Find the length of the curve y? = x* betweenx = 0 and x = 4.
y

2 3 c = 3/2 Q:é% _d_-yz= %
x> Ly=x ~ dx 2x “(dx) 1+4

) (142 ax=[2 4 (142"’

0
=8 ~11=38 _
- [10\/10 1] = [31-62 1]
- % (30-62) = 9.07 units

That is all there is to it. Now here is one for you:

Example. Find the length of the curve y = 10 cosh -1% between x =—1
and x = 2.

Finish it, then turn to frame 25.
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( s =3-015 units 25

Here is the working set out.

=10 cosh 1_5 §= jj\/{l +(Z§:) }dx

dy . x . dy 2 2
— = —_— s — = + _—=
sinh 10 1 +( ) 1 + sinh 1 O cosh 1 O

s =.§‘_21 \/{coshz 10} dx = j‘j cosh l_x() dx = [10 sinh Txb:i j
=10 [sinh 02 ~ sinh (-0-1)]  sinh(~x) = ~sinh x
= 10 sinh 0.2 + sinh 0-1)
= 10[ 02013 + 0-1002 ]
=10 [ 03015] = 3015 units

Now to frame 26.

Lengths of curves — parametric equations

Instead of changing the variable of the integral as we have done before 26
when the curve is defined in terms of parametric equations, we establish
a special form of the result which saves a deal of working when we use it.

H it is.
eeits g Lety =10, x = FQ®)
s ¥

\(/ _3{ As before
P (85)% = (8x)* + (6)>
l-— 8x —-—J Divide by (61)*

AR
(@) =(5) 2)

If 8¢~ 0, this becomes

soef L s

This is a very useful result. Make a note of it in your book and then turn
on to the next frame.
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27 Example. Find the length of the curve x = 2 cos®6,y = 2 sin®6 between
the points corresponding to @ = 0 and 6 = 7/2.

n/2 dx\2 dy 2
Remember s—g . \/{(3—6) +(E§)}'d6
dx 2 . _ 2p
We have -(-j-é=6cos 6 (—sin 0) =—6 cos*f sin @
Q: 102
76 6sin*8 cos 0
C(dx\ dy\E 44 o2 i 4 2
L (%) +(d6> =36 cos?0 sin®8 + 36 sin* 0 cos* 0

= 36 s5in%6 cos?6 (cos®6 + sin9)

=36 sin%4 cos?0

\/{(-‘(%)2 +(%)2} =6 sin 6 cos 8 =3 sin 26

w
1l

w2
j 3sin 20 d@
0

= Finish it off.

/2
For we had s =S 3 sin 26 df

_ N1y .
[(2> ( 2):\ 3 units
It is all very straightforward and not at all difficult. Just take care not
to make any silly slips that would wreck the results.

Here is one for you to do in much the same way.
Example. Find the length of the curve x = 5(2¢ — sin 21),y = 10 sin®t
betweenr=0and r=n.

When you have completed it, turn on to frame 29.

- |
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For: x =5(2t —sin 2t), y = 10 sin?¢
. Z—x =5(2—2cos 2t) = 10(1 — cos 2¢)
%} 20 sin ¢ cos t = 10 sin 2¢.

dxy®  (dy 2 2

=) +(=) = - + +

(d[,) +(dl) 100(1 — 2 cos 2¢ + cos®2¢) + 100 sin 2t
=100(1 — 2 cos 2t + cos? 2¢ + sin® 2¢)
=200(1 — cos 2f) But cos 2t = 1 — 2 sin?¢
=400 sin*¢

\/{(Z—;‘)Z +(%)2) =20 sin ¢

m m
LS =f 20 sin t dr =20 [—cos til
0 Q

=20 [(1) - (—1)] = 40 units
Next frame. :

29

So, for the lengths of curves, there are two forms:

() s= j \/{1+(gy)}dx when y = F(x)

62
(i) s f \/ }dﬁ for parametric

equations.

Just check that you have made a note of these in your record book.

Now turn on to frame 31 and we will consider a further application of
integration. This will be the last for this programme.
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31 Surfaces of revolution
If an arc of a curve rotates about an axis, it will generate a surface. Let

us take the general case.
Find the area of the surface generated when the arc of the curve

y = f(x) between x = x, and x = x, rotates about the x-axis through a
complete revolution.

Y y =f(x) Y
l’
I ] A
0 Xy XL X 0o E X
|
\
‘\
Y, Y,
Y
8s
p) 8
/r
T
3
o) % If we rotate a small element of
X arc 6s units long, it will generate
a thin band of area §A.
Then 6 A = 27y. 6s
Y1
Dividing by éx, gives SA 5 S
5x e 6x
and if 6x > O, %=2ny%§-€

Now we have previously seen that % =\/ {1 +(d_i:)2}
B 2

Sgt@ﬁ ......................
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X7
=S 27Ty\/ 1 + dy 32
This is another standard result, so copy it down into your record

book.
Then on to the next frame

Here is an example requiring the last result.

Example. Find the area generated when the arc of the parabola y? = 8 3 3
between x = 0 and x = 2 rotates about the x-axis.

We have A=j2 2ny\/{1 +(Z ) }dx
0

4 d - dyy* _2
2 = C = 2 .4y _ 3 Y z
yi=8x Ly=2/2x* . s V2x? o ( ) p

dx
R RS

x X
2
. A=S 2n2\/2x%\/{x—:—g}dx
__:5 4\/2 __+_%2.)Z
=4\/2.ﬂj (x+2)715dx
0

................................. Finish it off: then move
on.

A =19-57 = 61-3 units? 1

2 1
For we had A=4\/2.7rj (x +2)2 dx
0

=h/2.7 [Mﬁ?} 2

3/2 0
sl [OREV)

8” [8\/2 4:] 83” {7.312]
=19.57 =61.3 units?

Now continue the good wark by moving on to frame 35.
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35

36

Surfaces of revolution — parametric equations

We have already seen that if we rotate a small arc 8s, the area § A of
the thin band generated is given by

8A = 2ny. bs
If we divide by 64, we get

6A o &s

56 ™56
and if §6 — 0, this becomes

dA N ds

do a0

We already have established in our work on lengths of curves that
S/ G @)
2 4By \/{(%)2 *(%)2}
L A= g: 2./ {(%)2 HD)} a0

This is a special form of the result for use when the curve is defined as a
pair of parametric equations.

On to frame 36.

Example. Find the area generated when the curve x = a(8 — sin 6),
y =a(l — cos ) between 6 = 0 and & = «, rotates about the x-axis
through a complete revolution.

_ dx 201 _ 2
Here dB =g(1—cos §) . (d(j) =g%(1 -2 cosf + cos?6)
dy = . (ay 222
¥ asin 6 L (d()) =qa° sin“f

. (d@) +(dy) =g*(1 ~ 2 cos § + cos?8 + sin%0)

do 6
=24%* (1 —cos6) But cosO=1—2sin2—§

., 0
=4 4% sin® =

B ATt T A

Finish the integral and so find the area of the surface generated.
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JE) () 20w 37
A= J‘ : 2my /| (%):Z %%}2}. do

™
= 27rj a(l —cos 0). 2a sin% do
0

m .2 0 .6
=2n |\ a(2sin®* ). 2z sin= df
0 2 2

fl
[0 ]

g (sm =~ —cos? ﬁ in in> )d@

J e 2

874 [ 2¢ cos? 6/2}
[
|

o

8ma® | (0) - (—2+2/3)}

4/3:| 323

units?

Here is one final one for you to do.
Example. Find the surface area generated when the arc of the curve
y=3¢*, x=3t—1> between ¢ = 0 and ¢ = | rotates about OX through
27 radians.

When you have finished — next frame.

Here it isin full. _ _, dy_ (DN _acn |
y=3i =6 ..(E) = 36 38
—a,_.3 . dx 2 _ C(dx\?
x=3t-1 L —=3-3 =3(1-1%) "(E) =9(1-22 +1%)
dx\? dy 2 _ 2 4 2
(E) +(E) =9— 1872 +91* + 36t

. =9+ 182 +9* =9(1 + 12)?
LA =j 2736 \/9(1 + £%)2. dt
0

1 1
= 1871J 2(1+2)de= 1817[ (2 +t")dre
0 0

Sk 1.1 8 _ 487
181rl:3 5]0 —1871[3 5} 18ﬂE=? units?
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3 9 Rules of Pappus

There are two useful rules worth knowing which can well be included
with this stage of the work. In fact we have used them already in our
work just by common sense. Here they are:

1. If an arc of a plane curve rotates about an axis in its plane, the area
of the surface generated is equal to the length of the line multiplied by
the distance travelled by its centroid.

2. If a plane figure rotates about an axis in its plane, the volume
generated is equal to the area of the figure multiplied by the distance
travelled by its centroid.

You can see how much alike they are.

By the way, there is just one proviso in using the rules of Pappus: the
axis of rotation must not cut the rotating arc or plane figure.

So copy the rules down into your record book. You may need to
refer to them at some future time.

Now on to frame 40.

40 Revision Summary

1. Volumes of solids of revolution
(a) about x-axis

Y y = flx)
!
I
. Voo b .
o g b X V=§ 7y dx i
' a
Y, o) .
Parametric equations V =S ny? 7);- dg (ii)
(b) about y-axis o1
Y
y = flx)
\ b
\" =j 2axy dx e (iii)
a
X1 o a b X
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Y

y=flx)

3. Centres of gravity of solids of revolution

y=flx)

Yy

4. Lengths of curves

y=flx)

Parametric equations

5. Surfaces of revolution

y=fix)

Parametric equations

b
J xy dx
x= ‘; ............ (iv)
I ydx
a
b
\[ .1_y2 dx R
R 2
7: 8 @ e, (V)
b
j ydx
a
b
f xy? dx
=2 (vi)
b
J y2dx
a
y=0

=J‘X2 \/{]+(%)2} dx e (vii)
s= j :j\/ {(g—’af)z (%}2}. 40 (vili)
A =j j 27ry\/{l + (%)2} dx . (ix)
A =S:j 2ny {(gg)er (36)2}.(16 ............ x)

10.

All that now remains is the Test Exercise in frame 41, so when you are

ready, turn on and work through it.
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41 Test Exercise—XVII

The problems are all straightforward so you should have no trouble

with them. Work steadily: take your time. Do all the questions. Off
you go.

1.

477

. Find the length of the curve x = 5(cos 6 + 8 sin 6),

. The parametric equations of a curve are x =ef sin¢, y = ¢! cost. If the

Find the position of the centroid of the plane figure bounded by the
curve ¥ = 4 —x? and the two axes of reference.

. The curve y? = x(1 — x)? between x = 0 and x = 1 rotates about the

x-axis through 2w radians. Find the position of the centre of gravity
of the solid so formed.

. M x=a(6 —sind), y =a(l —cos 8), find the volume generated when

the plane figure bounded by the curve, the x-axis, and the ordinates at
6 = 0 and 0= 27, rotates about the x-axis through a complete
revolution.

. Find the length of the curve 4xy =x? + 4 betweenx =1 and x =e.

. The arc of the catenary y = 5 cosh%c-between x =0 and x = 5 rotates

about OX. Find the area of the surface so generated.

Yy =5(sin 9 — 6 cos ) between§ =0 and § = 7/2.

arc of this curve between ¢ = 0 and ¢ = 7/2 rotates through a complete
revolution about the x-axis, calculate the area of the surface generated.

Now you are all ready for the next programme. Well done, keep it up!
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Further Problems—XV1I

In(1 —x) betweenx =0

o=

. x_x*
1. Find the length of the curve y =5-7t

and x =

N —

2 For the catenary y = 5 cosh-)sﬁ, calculate

(i) the length of arc of the curve between x =0 and x = 2.
(i) the surface area generated when this arc rotates about the x-axis
through a complete revolution.

3. The plane figure bounded by the parabola y* = 4ax, the x-axis and
the ordinate at x = a, is rotated through a complete revolution about
the line x = —a. Find the volume of the solid generated.

4. A plane figure is enclosed by the parabola y* = 4x and the line y = 2x.
Determine (i) the position of the centroid of the figure, and (ii) the
centre of gravity of the solid formed when the plane figure rotates
completely about the x-axis.

5. The area bounded by y2x = 442 (2a — x), the x-axis and the ordinates
x =a, x = 2a, is rotated through a complete revolution about the
x-axis. Show that the volume generated is 4ma® (2 In 2 — 1).

6. Find the length of the curve x2/® + y2/3 = 4 between x = 0 and
x=8.

7. Find the length of the arc of the curve 6xy = x* * 3, betweenx = 1
and x = 2.

8. A solid is formed by the rotation about the y-axis of the area bounded
by the y-axis, the lines y =—5 and y = 4, and an arc of the curve
2x? —y? = 8. Given that the volume of the solid is L%S_zr , find the

distance of the centre of gravity from the x-axis.
9. The line y = x — 1 is a tangent to the curve y = x3 —5x2 +8x—4

at x = 1 and cuts the curve again at x = 3. Find the x coordinate of
the centroid of the plane figure so formed.
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10. Find by integration, the area of the minor segment of the circle

11.

x? +y* =4 cut off by the line y = 1. If this plane figure rotates
about the x-axis through 27 radians, calculate the volume of the
solid generated and hence obtain the distance of the centroid of the
minor segment from the x-axis.

If the parametric equations of a curve are x = 3g cos § — « cos 30,
¥ =3asin 6 —a sin 30, show that the length of arc between points
corresponding to 8 =0 and § = ¢ is 6a(1 — cos ¢).

12. A curve is defined by the parametric equatjons

x=60-sinf, y=1-cosf
(i) Determine the length of the curve between 8 = 0 and 6 = 27.
(ii) If the arc in (i) rotates through a complete revolution about the
x-axis, determine the area of the surface generated.
(iii) Deduce the distance of the centroid of the arc from the x-axis.

13. Find the length of the curve y = cosh x between x =0 and x = 1.

Show that the area of the surface of revolution obtained by rotating
the arc through four right-angles about the y-axis is 21%——“1) units.

14. A parabolic reflector is formed by revolving the arc of the parabola

15.

16.

¥* = 4ax from x = 0 to x = h about the x-axis. If the diameter of the
reflector is 2/, show that the area of the reflecting surface is

f,;la {(z2 +anzpl? —13}

A segment of a sphere has a base radius 7 and maximum height .
. . Th
Prove that its volume 15’6—{ h* + 3r? }
A groove, semi-circular in section and 1 ¢m deep, is turned in a solid

cylindrical shaft of diameter 6 cm. Find the volume of material
removed and the surface area of the groove.

17. Prove that the length of arc of the parabola y? = 4ax, between the

points where y = 0 and y = 24, isa{~/2 + In(1 ++/2)} This arc is
rotated about the x-axis through 27 radians. Find the area of the
surface generated. Hence find the distance of the centroid of the
arc from the line y = 0.
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18. A cylindrical hole of length 24 is bored centrally through a sphere.
3

. ... 4ma
Prove that the volume of material remaining is 3 -

19. Prove that the centre of gravity of the zone of a thin uniform
spherical shell, cut off by two parallel planes is halfway between the
centres of the two circular end sections.

20. Sketch the curve 3ay? = x(x —4)?, when ¢ > 0. Show that
3 —
% = i_—_2j(3a()lc) and hence prove that the perimeter of the loop is

4a/ /3 units.
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1 1. Moments of inertia

The amount of work that an object of mass m, moving with velocity v,
will do against a resistance before coming to rest, depends on the values
of these two quantities: its mass and its velocity.

The store of energy possessed by the object, due to its movement, is
called its kinetic energy, and it can be shown experimentally that the
kinetic energy of a moving object is proportional

(1) to its mass,
and (ii) to the square of its ....... s

velocity

That is,
KE. «mv? . KE.=kmv?

and if standard units of mass and velocity are used, the value of the
constant k is §.

~ KE.=3mv?

No doubt, you have met and used that result elsewhere.
It is important, so make a note of it.

In many applications in engineering, we are concerned with objects
that are rotating — wheels, cams, shafts, armatures, etc. — and we often
refer to their movement in terms of ‘revolutions per second’. Each
particle of the rotating object, however, has a linear velocity, and so has
its own store of K.E. — and it is the K.E. of rotating objects that we are
concerned with in this part of the programme.

So turn on to frame 4.
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Let us first consider a single particle P of mass m rotating about an 4
axis X with constant angular velocity  radians per second.
N
m This means that the angle 0 at the
centre is increasing at the rate of
w radians/ per second.

Of course, the linear velocity of P, v cm/s, depends upon two quantities

(i) the angular velocity (w rad/s)
and also (i) eeevererrene e

how far P is from the centre 5
\ To generate an angle of 1 radian in a
/‘\ second, P must move round the circle

a distance equal to 1 radius length,

! radian BL ie.r(cm).

If 6 is increasing at 1 rad/s, P is moving at » cm/s,
»or ” ” 2 ”  Pismoving at 2r cm/s,
R ” ” 3 ” Pismoving at 3r cm/s, etc.
So, in general,

if 6 is increasing at w rad/s, P is moving at wr cm/s.
Therefore, if the angular velocity of P is w rad/s, the linear velocity,

v,of Pis oo

We have already established that the kinetic energy of an object of
mass m moving with velocity v is given by
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So, for our rotating particle, we have
KE.=%my?
=L m(wr)?
=tme?r?
and changing the order of the factors we can write
K.E. =1 w? mr?

where = the angular velocity of the particle P about the axis (rad/s)
m = mass of P
r = distance of P from the axis of rotation

Make a note of that result: we shall certainly need that again.

KE. =% w2 mr?

If we now have a whole system of particles, all rotating about XX
with the same angular velocity «w rad/s, each particle contributes its own
store of energy.

fy ————m,

ra ma K.E2 R T LT T TR
e ry ———ems KE;= .
ra ma KEs= i,
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So that, the total energy of the system (or solid object) is given by
KE.=KE, +KE, +KE; +KE; +...

=5l minltiti myrttiwimyr? +. .

KE, =4 w?.myr?
K.E2 =’%w2.m2 r22
K.E; =% w? myrs®

1,2 2
K.E4_2(.O My 7y

KE.=2% w?.mr?

KE =%w2 Zmr?

This is another result to note.

This result is the product of two distinct factors:

(since w is a constant)

KE.=}w: Zmr?

(i) % w? can be varied by speeding up or slowing down the rate of

rotation,

but (i) Tmr?is a property of the rotating object. It depends on the
total mass but also on where that mass is distributed in relation to
the axis XX. It is a physical property of the object and is called its
second moment of mass, or its moment of inertia (denoted by the

symbol I).

L I=Zmr?

(for all the particles)

Example: For the system of particles shown, find its moment of inertia

about the axis XX.

X
 — —————
Tm 2 kg
1 kge—
tm
T 3 kg
4kg'——2m
X
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11 I=21kgm?

Since [=Xmr? . .
=23+1.1+32+42"

=6 +1+6 +8 =Akgm?*
% £ Ak
Move on to frame 12. IS

12 2. Radius of gyration
X

I£] = m

If we imagine the total mass M of

2 e the system arranged at a distance k
oM from the axis, so that the K.E. of M
k would be the same as the total K.E.

— r3—em3 of the distributed particles,

rg————*my,

then 3 w2 Mk%2=4 w2 Zms?
MEk? =T ms?

and k is called the radius of gyration of the object about the particular
axis of rotation.

So, we have 1=Smrl, Mi2=]

I'=moment of inertia (or second moment of mass)
k= radius of gyration about the given axis.

Now let us apply some of these results, so on you go to frame 13.

Example 1. To find the moment of inertia (I) and the radius of
13 gyration (k) of a uniform thin rod about an axis through one end perpendi-

cular to the length of the rod.
X

T b
r‘ﬁzg——l Let p = mass per unit length of rod

))-(‘ x ‘—~‘ }-\ Mass of element PQ = p.5x.
-]

X
. Second moment of mass of PQ about XX = mass X (distance)?
=p.6x. x% = px2.6x.
.. Total second moment for all such elements can be written ‘
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a
123 px26x
0

The approximation sign is included since x is the distance up to the
left-hand side of the element PQ. But, if §x — 0, this becomes

a %302 pad pa3
I=\ pxldx= l:—} == ==
So Pl 1, 3 3
Now, to find k, we shall use Mk? =1, so we must first determine the
total mass M.
Since p = mass per unit length of rod, and the rod is « units long, the
total mass, M= ....................

M=ap

3

Mk? = . apk? :p_3
2

k2 :% k=\]a§
3

L - 4

1= 3 and k \/3

Now for another:

Example 2. Find I for a rectangular plate about an axis through its c.g.
parallel to one side, as shown.
X

g

Tt

Let p = mass per unit area of plate.
Mass of strip PQ = b.86x.p

|
|
i Second moment of mass of strip
3 about XX

- k-’”ﬂ‘ 4 ~p §x p.x?

x  8x (i.e. mass X distance?®)
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Did you remember the limits?
So now, if §x =0,

dj2 3 df2
I=S bpxz.dx=bp[?}

—dj2 —df2
a3 B\ _bpd®
b {(24) ( 24); 12
_bd®p
12

2
and since the totalmass M = bdp, 1= Ng

S 1= bd’p _Md*

’ 12 12

This is a useful standard result for a rectangular plate, so make a note of
it for future use.

17 Here is an example very much like the last, for you to do.

Example 3. Find I for a rectangular plate, 20 cm X 10 cm, of mass 2 kg,
about an axis 5 ¢cm from one 20-cm side as shown.
XI
: }4—— 10cm~>f
f 3
|
| Take a strip parallel tothe axis and
| argue as before.
|
: Note that, in this case,
| 20¢cm 5 5
|
} P=1020 300 901
: ! 5 em ie. p=0-01kg/cm?
! Q
§ S
x

Finish it off and then turn on to the next frame.
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I=217 kg cm? 18

Xpe———15cm———> Here is the working in full:
P T
p = 0-01 kg cm?
|‘| IzO cm
Scm Area of strip = 20.6x
. Mass of strip = 20.6x.p
Q .. 2nd moment of mass of strip
T = ——Js;— about XX = 20.5x.p.x2

X 5
- Total 2nd moment of mass=1= = 20 px26x.

x=S5
15 3715
If 5x = 0, I=S 20px2.dx=20pB—} =2gp{3375—125}
5 5 -
=20 1 _650_, 2
3 {3250}100 3 =217kg cm

Now, for the same problem, find the value of k.

k=104 cm 19
for Mk? =1 and M=2kg

L2kr=217 L k*=1085
5 k=+/108-5=10-4 cm
Normally, then, we find I this way:

(i) Take an elementary strip parallel to the axis of rotation at a
distance x from it.
(ii) Form an expression for its second moment of mass about the axis.
(iii) Sum for all such strips.
(iv) Convert to integral form and evaluate.

| It is just as easy as that!
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20 3. Parallel axes theorem

If I is known about an axis through the c.g. of the object, we can easily
write down the value of I about any other axis parallel to the first and a
known distance from it.

A
} } Let G be the centre of gravity of the
| object
: Let m = mass of the strip PQ
{ Then Ig=Zmx?
: and L= Sm(x+ 1)
|
|
Ble—— | ————>pex
DR P

" IAB = Em(x2 + 2lx + 12)
=Smx? + X 2mxl+ Tml?

=YXmx®+2ATmx+1?Tm  (since /is a constant)

Right. In the middle term we have Tmx. This equals 0, since the axis XX
by definition passes through the c.g. of the solid.
In our previous result, then,

Imx*=1g; Imx=0;, Em=M
and substituting these in, we get
I =1g + M

Thus, if we know I, we can obtain [ , 5 by simply adding on the
product of the total mass X square of the distance of transfer.
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Example 1. To find I about the axis AB for the rectangular plate shown 22

below. A
L—v4 m——*’l

O

A

Total mass = 3kg

le———3 cm——]

j¢————— S5cm -

B

Md® 3.16

We have: =4 240
€ nave IG 5 12

Vg =1g M2
=4+325=4+75=79 kg cm?
S Iy =79 kg em?

i

=4 kg cm?

As easy as that!
Next frame.

You do this one:

Example 2. A metal door, 40 ¢cm X 60 cm, has a mass of 8 kg and is 23
hinged along one 60-cm side.
Here is the figure:
A §
{—— 40cm’——>1 Calculate
‘r (i) I about XX, the axis through the c.g.
' (ii) Iabout the line of hinge, AB.
\ (iii) k about AB.
G% 60 cm
j Y
B [
X
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24 | Ixx =1067 kg cm?; Inp = 4267 kg cm®; kap =231 cm |

Solutions: e @ ———
1 2
. + _Md
(1) I TIG = E
! _8.40% _8. 1600
o b 12 12
i i =3’2—309= 1067 kg cm?
i

T
(i) Lyp=lg+M? =1067+8.20% = 1067 + 3200
= 4267 kg cm?
(iii) MkK?= L L8k2=4267 . k*=5334 . k=231cm

If you made any slips, be sure to clear up any difficulties.

25 Let us now consider wheels, cams, etc. — basically rotating discs.
To find the moment of inertia of a circular plate about an axis through
its centre, perpendicular to the plane of the plate.

Sx

b
D
H
4
7
Y
U
4
H
Y
’
/
4
4
’
U
?

Z

If we take a slice across the disc as an elementary strip, we are faced
with the difficulty that all points in the strip are not at the same distance
from the axis. We therefore take a circular strip as shown.

Mass of strip = 2nx.8x.0  (p = mass per unit area of plate)
. 2nd moment of strip about ZZ = ...
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> 2nd moment of strip about ZZ = 2mpx>6x
.. Total 2nd moment for all such circular strips about ZZ, is given by

X=r 3
I, = 2mpx=.6x
x=0
¥ x4 r
If §x 0, I, =\ 2mox3.dx=2mp [—
0 4 Jo
_ 2mpr® _mr'p
4 2
Total mass, M = mr’o
1, = m'p _M.r?
Z 2

This is another standard result, so note it down.

Next frame.

Example 1. Find the radius of gyration of a metal disc of radius 6 cm

and total mass 0-5 kg.
We know that, for a circular disc,

2
I, =M2'1 and, of course, Mk2? =1

so off you go and find the value of k.

2= T T
Mk2=1 . $k*=9 . k*=18
L k=424 cm

They are all done in very much the same way.

Turn to frame 29.
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2 4 Perpendicular axes theorem (for thin plates)
Y

Let 6m be a small mass at P.
Then Iy =ZXém.y?

and Iy = Zém.x?

Z
Let ZZ be the axis perpendicular to both XX and YY.
Then I, = Z6m.(OP)* = Z6m.(x* + y?)
=28m.y? + Tom.x?
Ly =i+l
~. If we know the second moment about two perpendicular axes in the

plane of the plate, the second moment about a third axis, perpendicular to
both (through the point of intersection) is given by

Ip=Ix+1ly
And that is another result to note.

3 0 To ﬁh?lfor a c}mm o
Z
We have already established that
X X _ar'o _M.r?
Z"72 72
Let XX and YY be two diameters
perpendicular to each other.
z 2
Then we know Ix t1y =1z = ME"
But all diameters are identical
. . M. M.
L IX=IY ..QIX—T L IX——4'
.. For a circular disc:
_wrs _ M.r? I _ar'p _M.?
Iz=5"=—= and Ix~73 =73
Make a note of these too.
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Example. Find I for a circular disc, 40 cm diameter, and of mass 12 kg,

(i) about the normal axis (Z axis),
(ii) about a diameter as axis,
(iii) about a tangent as axis.

Work it through on your own. When you have obtained (ii) you can
find (iii) by applying the parallel axes theorem.

Then check with the next frame.

31

1, =2400 kg cm?; Iy =1200 kg cm?; I = 6000 kg cm?
z

For:

(i) Iy =1200kg cm?

By the parallel axes theorem
Ip = Iy + M2

16 =1200 + 12.20%

| =1200 + 4800
r = = 6000 kg cm?

I P

In the course of our work, we have established a number of important
results, so, at this point, let us collect them together, so that we can see
them as a whole.

On then to the next frame.

32
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3 3 Useful standard results, so far.

1. I=Zmr?t; MK2=1
2. Rectangular plate (p = mass/unit area)

|
I _bd% _M.d?
G™ 12 1

|

@
- L e e — =}
s

3. Circular disc

_mr'p _M.r?
277 T
X _ar'p _M.r?
X=7 71
z
4. Parallel axes theorem 5. Perpendicular axes theorem
A X z
' Y
|
|
|
! ¢ X X
| S
o — *
g/ X z
Iap =1g + MI* Iz=Ix +1y

These standard results cover a large number of problems, but some-
times it is better to build up expressions in particular cases from first
principles. Let us see an example using that method.

o
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Example 1. Find I for the hollow shaft shown, about its natural axis. 34

Density of material = 0-008 kg/cm?®. L
: @L‘:"“_"“t""_‘"“t““?ﬂ."} )?%n gom
____________________________ W/
Y
!4 40cm —.’

Mass of shell &2nx.6x.40p. kg

" 2nd mt.about XX = 27nx.8x.400.x2
2= 807px>.6x

x=8

© Total2ndmt. X

x=4

807px3.8x

Now, if 6x >0, 1=

and finish it off, then check with the next frame.

I=1931%kg cm? 35

8 4 8
For I=801rpg x3dx = 807rp[——:,
4 4 14

=&4”" [642 —162]
= 20mp . 48. 80 = 207 .48.80.0-008

=614.47=1931 kg cm?
Here is another:

Example 2. Find 1 and k for the solid cone shown, about its natural axis

.

Y of symmetry.
First take an elementary disc at

/ distance x from the origin. For this
disc, OX is the normal axis,so -

4 " 4 cm
t ' { Iy =
0 |L x X T LY L LY R T TP T PPy
1
\
T
Then sum for all the discs, etc.

8x
|——— 10 cm
Finish it off.

Y
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36 Iy =256mp ; k=219 cm

Solution.
4
For elementary disc: Iy = 712’._;5_’&9
10 4
Total Iy= 2 my~oxp
x=0 2
10 4 10
If 6x -0, Iy = Y 4y =P y*dx
0 2 2 Jp
Now, from the figure, the slope of the generating line is 4/10
=&
YT

_7p 0-0256[115:,
2 5.
=1p0-0256. 10* = 256 mp
Now we proceed to find k.

_160mp

Total mass—M——-n4210 3

Mk? =1

. 1601rp i = ’2561rp

3.256. 3.256.mp
16070

_3.64
40

=48

-' kz

L k=+/48=219cm
Turn now to frame 37.
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5. Second moments of area

In the theory of bending of beams, the expression ar?, relating to the

cross-section of the beam, has to be evaluated. This expression is called

the second moment of area of the section and although it has nothing

to do with kinetic energy of rotation, the mathematics involved is

clearly very much akin to that for moments of inertia, i.e. Tmr?.
Indeed, all the results we have obtained for thin plates, could apply to

plane figures, provided always that ‘mass’ is replaced by ‘area’. In fact,

the mathematical processes are so nearly alike that the same symbol (I)

is used in practice both for moment of inertia and for second moment

of area.

Moments of inertia Second moments of area

I=Zmr? 1=2ar?
Mk2 =1 Ak?=1
Rectangular plate Rectangle
I~ = bd3p I~= 2?.3
G 12 ¢ 12
12 12
Circular plate Circle
_1rip _art
lz="3 2=
= M'rz = ..[}—rz
2 2
L= L=mrt
X 4 X"
_Mr? _Ar?
4 4

Parallel axes theorem — apphes to both.

Iap =1g + M2 Iy =10 +A?

Perpendicular axes theorem — applies to thin plates and plane figures only.

Turn on. Iz=lx*ly

37

38
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39 There is really nothing new about this: all we do is replace ‘mass’ by
‘area’.

Example 1. Find the second moment of area of a rectangle about an axis
through one corner perpendicular to the plane of the figure.

4

bd® 6.4 .
IPQ_12 = 12 =32 cm

By the parallel axes theorem, Iy = ..o

40 Ix =128 cm?

for Iy =32+24.22=32+244
=32+96=128 cm*

3
Also Ioo =24 _
RS =75 = R
41 Igg =72 cm®
3
for - 4___ 4

42 I, =288 cm?

For, again by the parallel axes theorem,
Iy =72 +24.3* =72 + 216 = 288 cm*
So we have therefore: Iy =128 cm*

and Iy =288 cm*
~ 1z (which is perpendicular to both Iy and Iy) =
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I; =416 cm* 43

Cho0poo0oOooOoOO0oogonoo0gocoooocoooooooooooooan

When the plane figure is bounded by an analytical curve, we proceed in
much the same way.

Example 2. Find the second moment of area of the plane figure bounded
by the curve y = x2 + 3, the x-axis, and the ordinates at x = 1 and x = 3,
about the y-axis.

Y
y=x2+3

PE/ Area of strip PQ = y.6x
C
)
¥
2
¥

.. 2nd mt. of strip about QY = y.5x.x?
y 0l
1

=x2y.6x
1 3 X Alys T xy bx
-4——-1:——-!811- Y x=1
x

3

If 8x = 0, IY:S D 7 »
1

Finish it off.

-

O

| Iy = 744 units* 44

= 2~‘5EZ +26 = 48-4 + 26 = 74-4 units*

Note: Had we been asked to find Iy, we should take second moment of

yy: x23y°
the strip about OX, ie. yéx (.5) ; sum for all strips 21 2 8x;and then
x=

evaluate the integral.
Now, one further example, so turn on to the next frame.

}:‘
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4 Example 3. For the triangle PQR shown, find the second moment of area
and k about an axis AB through the vertex and parallel to the base.
P

Ajy T B

SyL“ ZIZZIN, E
—— x ——

£ :

8cm

First consider an elementary strip. Area of strip =x.0y
2 2nd mt. of strip about AB = x.8y.3* =xy%.8y
.. Total 2nd mt.about AB for all such strips

y=5
2% xy28y
y=0

5
If 8§y > 0, IAB:S xy? dy
0

We must now write x in terms of y — and we can obtain this from the
figure by similar triangles.

Finish the work off, so that Iop = i

46 |1=250 em® ; k=23-536 cm

2_x =8
For we have <73 . X S
5 5 8 475
_ 2 5 28\ 3 5 04 )
1IN Soxy dy SSOy dy 5[4}0
-8 (sa_g =3 - a
=% [5%-0] 20(625) 250 cm
_ 58 2
Also, total area,A—7=20 cm
LAKT=1 L 20k*=250
k*=12-5
S k=3.536cm
Next frame.
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Composite figures 47

If a figure is made up of a number of standard figures whose individual
second moments about a given axis are Iy, I,, I3, etc., then the second
moment of the composite figure about the same axis is simply the sum
of I, 1,, I3, etc.

Similarly, if a figure whose second moment about a given axis is I,
is removed from a larger figure with second moment I, about the same
axis, the second moment of the remaining figure isI =1; —I,.

Now for something new.

48

6. Centres of pressure
Pressure at a point P depth z below the surface of a liquid.

S S

If we have a perfect liquid, the
1 pressure at P, i.e. the thrust on unit
area at P, is due to the weight of the
—1 column of liquid of height z above it.

Pressure at P = p = wz, where w = weight of unit volume of the liquid.

Also, the pressure at P operates equally in all directions.

S S
|
| T Note that, in our considerations, we
' shall ignore the atmospheric pressure
| : which is also acting on the surface of
\{'/ l the liquid.
B o Y el

TN e

The pressure, then, at any point in a liquid is proportional to
the .o of the point below the surface.
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49 depth

Total thrust on a vertical plate immersed in liquid.

i{ Consider a thin strip at a depth z
z ‘ﬂ_ T below the surface of the liquid.
L p Q a2 Pressure at P =wz,
32 ALzl L .. Thrust on strip PQ=wz (area of strip)
=w.z.a.82
a
Then the total thrust on the whole plate
V4 =d2
= X awzdz
z =d1
d,
If 6z - 0, total thrust =S awzdz= ..o
dy
aw
5 0 —2— [d22 — dl 2:{
z792 _aw
for: total thrust =aw|=| ~=— [a722 —d,?
24q, 2

This can be written

Total thrust =£2£ (d,—dy) (ds +dy)

d2;dl)

+
Now,(d2 5 d’) is the depth half way down the plate, i.e. it indicates

=wa(a’2—d1)(

the depth of the centre of gravity of the plate. Denote this by Z.
Then, total thrust =wa(d, —d;)z =a(d, —d;)WZ.
Also a(d, —d,) is the total area of the plate.
So we finally obtain the fact that

total thrust = area of plate X pressure at the c.g. of the plate.

In fact, this result applies whatever the shape of the plate, so copy the
result down for future use.

On to the next frame.
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Total thrust = area of plate X pressure at the c.g. of plate 51

So, if w is the weight per unit volume of liquid, determine the total
thrust on the following plates, immersed as shown.

@ s s @) s s

}
4cm
f |-<———\0cm ——;——‘

-
T |
B——

So, thrust (i) = ..ccoeceviiiiinnns and thrust (i) = ....ccovenrinee

thrust (i) = 336 w : thrust (ii))= 180w 52

For, in each case,
total thrust = area of surface X pressure at the c.g.

Area =6 X 8 = 48 cm?

T’ —l Pressure at G=7w
G :

6cm . Total thrust = 48.7w
=336w
Area = 10X6 _ 30 cm?

Pressure at G=6w

. Total thrust = 30.6w
=180w

On to the next frame.
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53

If the plate is not vertical, but inclined at an angle 4 to the horizontal,
the rule still holds good.

Example:

Depth of G =d, +§sin 30°=d, +%

Pressure at G = (dl +%)w

Total area=ab

Total thrust = ......oeevivvveneeennnns

54

( ab(d1+%)w

Remember this general rule enables us to calculate the total thrust on
an immersed surface in almost any set of circumstances.

So make a note of it:

total thrust = area of surface X pressure at the c.g.

Then on to frame 55.
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Depth of centre of pressure 5 5
S

n The pressure on an immersed plate

increases with depth and we have seen
how to find the total thrust T on the
plate.

-
Nil——]

e

The resultant of these forces is a single force equal to the total thrust,
T, in magnitude and acting at a point Z called the centre of pressure of
the plate. Let Z denote the depth of the centre of pressure.

To find 7 we take moments of forces about the axis where the plane of
the plate cuts the surface of the liquid. Let us consider our same rectangu-
lar plate again.

] S

8z

— e N —
QU
nN

The area of the strip PQ =

a.bz

The pressure at the level of PQ =

So the thrust on the strip PQ =
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58

adzwz ie. awzbz

The moment of this thrust about the axis in the surface is therefore
=qwzdz. z
=awz? 6z

So that the sum of the moments of thrusts on all such strips

59

Now, if 6z ~> 0,

d,
the sum of the moments of thrusts = S awz? dz

Also, the total thrust on the whole plate = .......................

ds
g awzdz
dy

Right. Now the total thrust X Z = sum of moments of all individual thrusts.

d2 - d2
S awzdeE=S awz?dz
d, d,

_ d
. Total thrust X z = wS 2 dz
dy
=wl
Therefore, we have
_ wl  _wAk?
total thrust A w?z

1]

Nl
I
|
(3

Make a note of that and then turn on. i
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So we have these two important results: 61

(i) The total thrust on a submerged surface
= total area of face X pressure at its centroid (depth z)

(ii) The resultant thrust acts at the centre of pressure, the depth of
2

which, 7, is given by z = =

Now for an example on this.

Example 1. For a vertical rectangular dam, 40m X 20m, the top edge
of the dam coincides with the surface level. Find the depth of the centre 62

of pressure.
A 40m s
1T I
z & ___ ¥ _|E
S |
T
W

In this case, Z = 10m.

To find k% about AB
| _Ad’_40.20.400 80000 .,
¢ 12 12 3

80 000

QU
B
o

+800.100

4 80 000 _ 400

2= 2:.—- — T —

Ak=1 k 37 800 3
=_kz_ 400 _ 40 _

z—Z_ 3——’1 =3 =13-33m

Note that, in this case,

(i) the centroid is half-way down the rectangle,
but (i) the centre of pressure is two-thirds of the way down the
| rectangle.

J— - J— - p—
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63 Here is one for you.

Example 2. An outlet from a storage tank is closed by a circular cover
hung vertically. The diameter of the cover = 1 m and the top of the cover

s S is 2-5 m below the surface of the
T liquid. Determine the depth of the
centre of pressure of the cover.
2:5m
O
AN
Work completely through it: then check your working with the next
frame. - B
6 4 z=3.02m
We have:
(i) Depth of centroid =z =3m
s s (ii) To find k* about AB
A B

T AP @@
3m C 4 4 64

' _m

IAB - a + A.32
=7 112
64 + TT(T) .9
_m  9r_ 1457
64 4 64
I
2 lap _ 1457 4_ 145
For AB k A 54 716
s _k'_1451_145 _
277 Tl6 3 ag 2%m

CO0Do00O0O00O000O0CO0O000O0C0CoO0Do00D0D0O0ooDOOQoaa

And that brings us to the end of this piece of work. Before you work
through the Test Exercise, check down the revision sheet that follows in
frame 65 and brush up any part of the programme about which you may
not be absolutely clear.

Then, when you are ready, turn on to the Test Exercise.
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Revision Sheet 6 5

1. SECOND MOMENTS
Mts. of Inertia

2nd Mts. of Area
@ I[=Zmr? (@) I=Zar?
Mk?=1 Ak*=1

(i) Rectangular plate:

(i) Rectangle:

_bd’p M L bd Al
G712 12 ¢ 12 12
(iii) Circular disc: (iii) Circle:
L =T Mo =T AT
Z 2 2 Z° 2 2
[ =T _M.r? [ =T AL
X 4 4 X 4 4

(iv) Parallel axes theorem:

Lyg =lg +MI? Iag =Ic +AL
(v) Perpendicular axes theorem (thin plates and plane figures only):

I =1y +1y
2. CENTRES OF PRESSURE
(i) Pressure at depth z = wz (w = weight of unit volume of liquid)
(ii) Total thrust on plane surface
= area of surface X pressure at the centroid.

(iii) Depth of centre of pressure (Z):

Total thrust X Z = sum of moments of distributed thrust

where k = radius of gyration of figure about axis in surface of
liquid,
z = depth of centroid.
Note: The magnitude of the total thrust

= (area X pressure at the centroid)
but it acts through the centre of pressure.
DODODODODO0ODRDODO0DCOoO0OOO0O0O0O00QUOOoocoOnnUoooog
Now for the Test Exerczse on to frame 66.
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66

Work through all the questions in theTest Exercise. They are very
much like those we have been doing, so will cause you no difficulty:
there are no tricks. Take your time and work carefully.

Test Exercise — XVIII

1. (i) Find the moment of inertia of a rectangular plate, of sides a and b,
about an axis through the mid-point of the plate and perpendicular to
the plane of the plate. (ii) Hence find also the moment of inertia
about an axis parallel to the first axis and passing through one corner
of the plate. (iii) Find the radius of gyration about the second axis.

2. Show that the radius of gyration of a thin rod of length / about an axis
through its centre and perpendicular to the rod is r\l/3 .

An equilateral triangle ABC is made of three identical thin rods
each of length I. Find the radius of gyration of the triangle about an
axis through A, perpendicular to the plane of ABC.

3. A plane figure is bounded by the curve xy = 4, the x-axis, and the
ordinates at x = 2 and x = 4. Calculate the square of the radius of

gyration of the figure (i) about OX, and (ii) about OY.

4. Prove that the radius of gyration of a uniform solid cone with base

2
. . .. r
radius r about its natural axis is \/;—0 .

5. An equilateral triangular plate is immersed in water vertically with
one edge in the surface. If the length of each side is 4, find the total
thrust on the plate and the depth of the centre of pressure.
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Further Problems — XVIII

1.

10.

A plane figure is enclosed by the curve y = sin x and the x-axis
between x = 0 and x = 7. Show that the radius of gyration of the

a2

figure about the x-axis is 5 -

A length of thin uniform wire of mass M is made into a circle of
radius 4. Find the moment of inertia of the wire about a diameter
as axis.

A solid cylinder of mass M has a length / and radius 7. Show that its

2 2
. . . . r )
moment of inertia about a diameter of the base is M[z +§—:]

Show that the moment of inertia of a solid sphere of radius r and

. L. 2
mass M, about a diameter as axis, is —S—Mr2.

Prove that, if k is the radius of gyration of an object about an axis
through its centre of gravity, and k, is the radius of gyration about
another axis parallel to the first and at a distance [ from it, then

ky =K% + ).

A plane figure is bounded by the parabola y? = 4ax, the x-axis and
the ordinate x = ¢. Find the radius of gyration of the figure
(i) about the x-axis, and (ii) about the y-axis.

Prove that the moment of inertia of a hollow cylinder of length I,
with inner and outer radii 7 and R respectively, and total mass M,
about its natural axis, is given by I =+M (R? + r?).

Show that the depth of the centre of pressure of a vertical triangle
with one side in the surface is--4, if /4 is the perpendicular height
of the triangle.

Calculate the second moment of area of a square of side 4 about a
diagonal as axis.

Find the moment of inertia of a solid cone of mass M and base
radius 7 and height h, about a diameter of the base as axis. Find also
the radius of gyration.
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11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

A thin plate in the form of a trapezium with parallel sides of length
a and b, distance d apart, is immersed vertically in water with the
side of length @ in the surface. Prove that the depth of the centre of
pressure (Z) is given by

d(a + 3b)

T

Find the second moment of area of an ellipse about its major axis.

A square plate of side a is immersed vertically in water with its upper

side horizontal and at a depth d below the surface. Prove that the
2

a

centre of pressure is at a distance ————— below the centre of the
P &(a + 2d)

square.

Find the total thrust and the depth of the centre of pressure when a
semicircle of radius a is immersed vertically in liquid with its diameter
in the surface.

A plane figure is bounded by the curve y = e* the x-axis, the y-axis
and the ordinate at x = 1. Calculate the radius of gyration of the
figure (i) about OX as axis, and (ii) about QY as axis.

A vertical dam is a parabolic segment of width 12 m and maximum
depth 4 mat the centre. If the water reaches the top of the dam,
find the total thrust on the face.

A circle of diameter 6 cm is removed from the centre of a rectangle
measuring 10 cm by 16 ¢cm. For the figure that remains, calculate
the radius of gyration about one 10-cm side as axis.

Prove that the moment of inertia of a thin hollow spherical shell of

. . .. 2
mass M and radius r, about a diameter as axis is 3 Mr2,

A semicircular plate of radius 4 is immersed vertically in water, with
its diameter horizontal and the centre of the arc just touching the
surface. Find the depth of the centre of pressure.

A thin plate of uniform thickness and total mass M, is bounded by

the curve y = ¢ coshi, the x-axis, the y-axis, and the ordinate x = a.
(4

Show that the moment of inertia of the plate about the y-axis is

M{a2 -2ca coth‘l(%) + 26‘2}.
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Introduction

In previous programmes, we have seen how to deal with various types of
integral, but there are still some integrals that look simple enough, but
which cannot be determined by any of the standard methods we have
studied.
1
z
For instance ,J‘ x e* dx can be evaluated by the method of integration
0

by parts. ;

1
=e? (-3 -1 =1-4+e

That was easy enough, and this method depends, of course, on the fact

that on each application of the routine, the power of x decreases by 1,

until it disappears, leaving jex dx to be completed without difficulty.
)]

.

z
But suppose we try to evaluatej‘ x? eX dx by the same method. The
0

process now breaks down. Work through it and see if you can decide why.

When you have come to a concluszon move on to the next frame.

3 Reducing the power of x by 1 at each application of the
method, will never give x°, i.e. the power of x will never
disappear and so the resulting integral will always be a product.

For we get: .

7 4 3 7% -1
j. x*e¥ dx = [x (ex)] —ir e* x % dx
0 0 0

and in the process, we have hopped over x°.
So here is a complication. The present programme will show you how

to deal with this and similar integrals that do not fit in to our normal

patterns. So on, then o frame 4.
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Approximate integration

* First of all, the results we shall get will be approximate in value, but like
many other ‘approximate’ methods in mathematics, this does not imply
that they are ‘rough and ready’ and of little significance.

The word ‘approximate’ in this context simply means that the
numerical value cannot be completely defined, but that we can state the
value to as many decimal places as we wish.

e.g. To say x =+/3 is exact, but to say

x =1.732 is an approximate result since, in fact, /3 has a
value 1-7321 ... with an infinite number of decimal places.

Let us not be worried, then, by approximate values: we use them
whenever we quote a result correct to a stated number of decimal places,
or significant figures.

n=3% 7=3.142 : 7=3.14159

areall .......oocoeriinnnnenn values

approximate

We note, of course, that an approximate value can be made nearer and
nearer to the real value by taking a larger number of decimal places — and
that usually means more work!

Evaluation of definite integrals is often required in science and engineer-
ing problems: a numerical approximation of the result is then quite
satisfactory.

Let us see two methods that we can apply when the standard routines
fail.

On to frame 6.
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6 Method 1. By series

L

K3 .

Consider the integralj x2 e* dx, which we have already seen cannot be
0

evaluated by the normal means. We have to convert this into some other

form that we can deal with.

Now we know that feys +2£2 +£3 +3£4+
R T TR
1 1 2 3 4
2 X = 2 Xy XX
Lxte x{1+x+2!+3!+4!+...

5 1 é— 1 x2 X3

LT xTeXdx = x7{1+x+-—-'+—;+... dx
0 0 2! 3!

! s)2 ,7)2

A OV I T IS e

0 2! 3!

Now these are simply powers of x, so, on the next line, we have

+...}dx

7 I=[2x3/2+2x5/2+2x7/2+2x9/2+ j]jlf
3 ) 7.2 9.6 T
=l:2 ¥32 2xS/2 72 y9l2 N }-5

3 T T T

1
To ease the calculation, take out the factor x2
Lf2x 2x? x® x* X% T
I = 2 —— — — — —
[x{ =t +27+132+..,}O
+—1—+ 1 +}

= 1414 (0-2269)

=0-3207
All we do is to express the function as a series and integrate the powers
of x one at a time.
Let us see another example, so turn on to frame 8.

519



Approximate Integration

Here is another.

1
To evaluatej : M) ax
0 Vx

In(1 +x)zx—x

X X X
PASUTR AN

> 3 Td s e

.ln(1+x)=x_%{x—£+x—3’)f+£_ }
T 2 3 4 5
1/2_2&[2 x_s/l_xﬂz xg/z_
=X + - t%
2 3 4 S
Sln(Hx)dx ........................

x 3

In(l+x) . _2 s X2 2x77 x02
f o BT 5 721 I8

First we expand In(1 + x) as a power series. Do you remember what it is?

So that, applying the limits, we get

l —
2 In(1 +x) _L 1/2{_2_5—_
——dx=|x +
So Vx

3

_o i1
V213 20
=0-7o71{

= 07071 (0-2924)

=0-2067

x? 2% x*

5 21 18"

I S U
84 288

880 2496
0-3333 - 0-0500 + 0-0119 — 0-0035

Here is one for you to do in very much the same way.

1
Evaluate S
0

Vx.cos x dx

+0-0011~0-0004 . ..

}
}

Complete the working and then check your result with that given in the
next frame.

10
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11 0-531 to 3 decimal places
Solution: _ 2 x4 x6 8
COSX—I—'z—! +I—a +§-!'—...

xs/z x9/2 x13/2

y = 1/2—__ —_
LaXcosx=x 7t 57 "0

) 1 2x3/2 x7/2 xu/z x15/2 1
..Sox/xcosxdx-[ 3 —7—*‘—13—2—5400‘*...]0

21,1 1

'{3 713 54oo+"'}

= 0.6667 — 0-1429 + 0.007576 — 0-000185 + . . .
= 0-531 to 3 dec. pl,

Check carefully if you made a slip. Then on to frame 12.

The method, then, is really very simple, providing the function can
readily be expressed in the form of a series.

But we must use this method with caution. Remember that we are
dealing with infinite series which are valid only for values of x for which
the series converges. In many cases, if the limits are less than 1 we are
safe, but with limits greater than 1 we must be extra careful. For instance,

4
the inte‘gralS dx would give a divergent series when the limits

3
21+x

were substituted. So what tricks can we employ in a case such as this?

On to the next frame, and we will find out.
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4

To evaluatej‘ L 3 dx 13
2 1 +x

We first of all take out the factor x> from the denominator

1 1 1)1 1)
1+x3 " %31 _;3—1+F
5+l

This is better, for if x® is going to be greater than 1 when we substitute

the limits, )—1;3 WL DE wovvieeecieierericns

less than 1 1 4

Right. So in this form we can expand without further trouble.

r4 1 1 1
= -3 ——— - —
I X {1 x3+x6 x9+...}dx

=| x3 {1 -x3 +x"6—x‘9+...}dx

0-088 to 3 decimal places 15

- {_ Ly 1
8 160 2048 "
=—0:03125 + 0-00020 — 6-00000 + 0-12500 — 0-00625 + 0-00049
=0.12569 — 0-03750
=0-08819
= 0.088 to 3 dec. pl.
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16 Method 2. By Simpson’s rule

Integration by series is rather tedious and cannot always be applied, so
let us start afresh and try to discover some other method of obtaining the
approximate value of a definite integral.
We know, of course, that integration can be used to calculate the area
under a curve y = f(x) between two given points x =2 and x = b.
Y

y=flx)

b b
a A=S ydx=f fx)dx

X

ol a b
So, if only we could find the area A by some other means, this would
give us the numerical value of the integral we have to evaluate. There are
various practical ways of doing this and the one we shall choose is to
apply Simpson’s rule.

So on to frame 17.

Simpson’s rule
17 To find the area under the curve y = f(x) between x =z and x = b.

Y 4 5
2 2 8
1
i Y3
ol o Py b X
(a) Divide the figure into any even number (n) of equal-width strips
(width 5)
(b) Number and measure each ordinate: y,, v, ¥3, .- -, Vi +1-

The number of ordinates will be one more than the number of strips.
(c) The area A of the figure is then given by:

A ﬂé{(F +L)+4E + 2R]

Where s = width of each strip,
F + L = sum of the first and last ordinates,
4E = 4 X the sum of the even-numbered ordinates,
2R =2 X the sum of the remaining odd-numbered ordinates.

Note that each ordinate is used once — and only once.

Make a note of this result in your record book for future reference. N
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Aﬂg[(F+L)+4E+2R:l

The symbols themselves remind you of what they represent.

6
Example: To evaluate S y dx for the function y = f(x), the graph of
which is shown. 2

Y 123456789y=f(x) 6
To ﬁndj ydx
2
ol 2 s 6 X
If we take 8 strips, then s =—;—2 = % = % =%

Suppose we find the lengths of the ordinates to be as follows:

Ord.No.| 1 2 3 4 S 6 7 8 9
Length 7.5 82 103 11.5 12.4 128 123 11.7 115

Then we have
F+L=75+11.5=19
4E=4(82+11-5+12-8+11.7)=4(44-2)=176-8
2R=2(103+124+12:3)=2(35)=70

L2
3

So that
[19 + 176-8 + 70]

= -é—[265-8]= 443 . A =443 units?

6
5 , [(x) dx =443

The accuracy of the result depends on the number of strips into which
we divide the figure. A larger number of thinner strips gives a more
accurate result.

Simpson’s rule is important: it is well worth remembering.

Here it is again: write it out, but replace the query marks with the
appropriate coefficients.

A ﬂ—;[(F +L)+2E+ ?R:l

18
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19

A‘—‘%[(F+L) +4E+2RL

In practice, we do not have to plot the curve in order to measure the
ordinates. We calculate them at regular intervals. Here is an example,

n/3
Example: To evaluate j \/sin x dx, using six intervals.
0

(a) Find the value of s:
S0 e
§= 1% (= 107 intervals)
(b) Calculate the values of y(i.e. /sin x) at intervals of /18 between
x =0 (lower limit) and x = #/3 (upper limit), and set your work out
in the form of the table below.

x sinx | +/sinx

0 (0°) | 0-0000 | 0-0000
7/18 (10°) | 0-1736 | 0-4166

/9 (20°) | 03420 | ... Leave the right-hand side of
7/6 (30°) | 0-5000 | ... your page blank for the
21/9 (40°) | cveeeee | e moment.
S1/18(50%) | oo
A3 (60%) | oo | o

Copy and complete the table as shown on the left-hand side above.

20 Here it is: check your results so far.

() (i) (iii)

x sinx | +/sinx F+L E R
0 (0°) | 0-0000 | 0-0000 +——~-.__
7/18 (10°) | 0-1736 | 0-4166 —
7/9 (20°) | 0-3420 | 0-5848 ALY
7/6 (30°) { 0-5000 | 0-7071 >
2m/9 (40°) | 0-6428 | 0-8016 s
57/18 (50°) | 0.7660 | 0-8752 —————
7/3 (60°) | 0-8660 | 09306 4+—>--"""

Now form three more columns on the right-hand side, headed as shown,
and transfer the final results across as indicated. This will automatically
sort out the ordinates into their correct groups.

Then on to frame 21.
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® (if) (ii)) 21

F+L E R
Note that 00000.. o
(a) Youstart in column 1 \0-4166\
(b) You then zig-zag down the 7705848
two right-hand columns 07071 .
(c) You finish back in column]l. ‘,\-‘-"0-8016
08753
09306"

Now total up each of the three columns.

@) (i) (iii) 2 2
Your results should be: F+L E R
0-9306 1.9989 1-3864

Now (a) Multiply column (ii) by 4 so as to give 4E,
(b) Multiply column (iii) by 2 so as to give 2R,
(c) Transfer the result in columns (ii) and (iii) to column (i) and
total column (i) to obtain (F + L) + 4E + 2R.
Now do that.

F+L E R 23

F+L—> 09306 19989 1-3864
4E — 79956 4 2
2R—>  2.7728 79956 2-7728

(F+L)+4E+2R —— 11.6990

This gives:

The formula is A f—‘% [(F + L) + 4E + 2R] so to find A we simply need
to multiply our last result by%. Remember s = 7/18.

So now you can finish it off.
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24 0681

For: A&% [(F + L) + 4E + 2R]
—3L [11-6990]
= /54 [11-6990]
=0:6806
/3
j V/sin x dx =0-681
0
Before we do another example, let us see the last solution complete.
n/3
To evaluate J‘ V/sin x dx by Simpson’s rule, using 6 intervals.
0
= Z_/%_Q =7/18 (= 10°intervals)
x sinx | +/sinx F+L E R
0 (0% | 0-0000 | 0-0000 | 0-0000
n/18 (10°) | 01736 | 0-4166 0-4166
/9 (20°) | 0-3420 | 0-5848 0-5848
n/6 (30°) | 0-5000 | 0-7071 0-7071
27/9 (40°) | 0-6428 | 0-8016 0-8016
57/18 (50°) | 0.7660 | 0-8752 0-8752
K (60°) | 0-8660 | 09306 | 0-9306
F+L —— | 09306 | 19989 | 1-3864
4 ——> | 79956 4 2
2R ———> | 27728 | 79956 | 2.7728

(F+L)+4E+2R —> |11.6990

125 [(F+1)+4E+2R]
3’% [11-6990]

= (0-6806

m/3
j Vsin x dx = 0-681
0

Now we will tackle example 2 and set it out in much the same way.

Turn to frame 25.
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1-0
Example 2. To evaluatej V(1 +x*)dx, using 8 intervals. Z 5
02

First of all, find the value of s in this case.

For s=————=—=0-1 s=0-1

Now write the column headings required to build up the function
values. What will they be on this occasion?

x x3 1+x3 |W(+x3)| F+L E R 27

Right. So your table will look like this, with x ranging from 0-2 to 1-0.

x x3 1+x3 W(1+x%)| F+L E R

0.2 | 0008 | 1008 | 1-0039
03 0027 | 1027 | 1.0134

04 | 0064

0-5 | 0125

06 |0-216

0-7 |0-343

0-8

09

1-0
F+L—
4E — 4 2
2R—

(F+L)+4E + 2R——

Copy down and complete the table above and finish off the working to

1-0
evaluatej V(1 +x3)dx.
0-2

Check with the next frame.
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1:0
28 V(1 +x3)dx=0911
0-2
x x3 1+x® [V/(1+x3)] F+L E R
02 | 0.008 } 1-008 | 1.0039 | 1-0039
03 | 0-027 | 1-027 | 1-0134 10134
0-4 | 0064 | 1.064 | 1.0316 1-0316
0-5 | 0-125 | 1-125 | 1.0607 1-0607
0-6 | 0216 | 1-216 | 1.1027 1-1027
0-7 | 0343 | 1343 | 11589 1-1589
0-8 | 0512 | 1-512 | 1.2296 12296
09 | 0729 | 1.729 | 1.3149 1-3149
1.0 | 1-000 } 2000 | 1-4142 | 1-4142
F+L —> | 24181 | 4.5479 } 3.3639
4E ——> 181916 4 2
2R ——> | 67278 |18-1916 | 67278
(F+L)+4E +2R ——— {27-3375

I=§ [(F + L) + 4E + 2R]

=01 127.33751 =1 [2.73375] = 09113
3 3

There it is. Next frame.

1-0
V(1 +x3)dx 20911

0-2

29 Here is another one: let us work through it together.

Example 3. Using Simpson’s rule with 8 intervals, evaluate
the values of y at regular intervals of x are given.

3
S ydx, where
1

X

Y

1-0 125

1.50

1-75 2.00 225 250 2.75 3.00
245 2-80 344 420 433 397 312 238 1.80

If these function values are to be used as they stand, they must satisfy the

requirements for Simpson’s rule, which are:

(i) the function values must be spaced at

(ii) there must be an
number of ordinates.

and

intervals of x,

............... number of strips and therefore an
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ljgular; even; odd 30

These conditions are satisfied in this case, so we can go ahead and
evaluate the integral. In fact, the working will be a good deal easier for
we are told the function values and there is no need to build them up as
we had to do before.

In this example, $= ..cccvvreevenrenne

Off you go, then. Set out your table and evaluate the integral defined
by the values given in frame 29. When you have finished, move on to
frame 32 to check your working,

6-62 32

x y | F+L | E R
10 | 245 | 245
125 | 2-80 2-80
150 | 3-44 3-44
1.75 | 4-20 4-20
200 | 433 4-33
225 | 397 3.97
2:50 | 312 312
2.75 | 238 238
300 | 1-80 | 1-80
F+L—>| 425 [1335 | 10-89
4E—| 53.40 4 2
2R—>| 2178 | 5340 | 21.78
(F+1)+4B + 2R—>| 7943

[=5 [(F +L)+4E + 2R] =0’—§5 [79-43]

[

i3 [79-43] = 6-62

|3

3
j ydx =662
1
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3 Here is one further example.

Example 4. A pin moves along a straight guide so that its velocity
v (cm/s) when it is a distance x (cm) from the beginning of the guide at
time £ (s), is as given in the table below.

ts) 005 1.0 1.5 20 25 30 35 40
v(cm/s)| 0 400 794 11-68 1497 1739 1825 1608 0

Apply Simpson’s rule, using 8 intervals, to find the approximate total
distance travelled by the pin between =0 and ¢ = 4,
We must first interpret the problem, thus:

4
v=gi€ .'.x=g vdt
dt 0

and since we are given values of the function v at regular intervals of ¢,
and there is an even number of intervals, then we are all set to apply
Simpson’s rule.

Complete the problem, then, entirely on your own.

When you have finished it, check with frame 34.

34 46-5 cm

t y F+L E R
0 0-00 0-00
0-5 4.00 4.00
1-0 7-94 7-94
1-5 | 1168 11-68
2:0 | 1497 14.97
25 | 17-39 17-39
3-0 | 18.25 1825
3.5 | 1608 16.08
4-0 0.00 0-00
F+L —} 000 49.15 | 41-16
4E —| 196-60 4 2
2R—| 82.32 | 196.60 | 8232
(F+L)+4E + 2R —| 27892

x=3 [(F+1)+4E+2R] and s=0:5

SLox==[27892] =46-49 . Total distance = 46.5 cm

[N
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Proof of Simpson’s rule 3 5
So far, we have been using Simpson’s rule, but we have not seen how it is
established. You are not likely to be asked to prove it, but in case you are
interested here is one proof.

Divide into an even number of strips
(2n) of equal width (s). Let the
¥ ordinates be ¥4,¥4,¥3,...YVap+1-
Take OX and QY as axes in the
position shown.
Then A=(-s,y,);

Y
C
a B
Ye
Ya ¥s
¥a y3
14
o] -.{5}1—

X B=(0,y,); C=(s,y3)

Let the curve through A, B, C be represented by y =a + bx + cx?

yi=a+b(=s)+cs? @)

Ya=a (i)

y3=a+bs+cs? (iii)
1

(iii) — (i) y3 —y1 =2bs b=2—s(y3—y,)

oy s . 1
(@) + (i) = 2(i) yy+y3—22=20c5” =52 1 — 2y, ty3)
Let A, = area of the first pair of strips.

‘ On to frame 36.

s s
A1=S ydxﬁs
-5

N 2es% . 1 _
—2as+°——3- =25y, +—3- 2 1 =2y, i)

—s
25 1

2% (6y2 +y1 = 2y, +y3) 2% O + 4y, +y3)

So A, ﬂ% (1 t4y, tys3)
Similarly A, 3% (yatdyatys)
Az Q% (rs +4ye ty7)
Ay ﬂ% Vana1 t4Van T YVan+)
Totalarea A=A + A, + A+ ... + A,

Y
A *3[0’1 tYane) T4t yat .ty ) F2(pat st .. +}’zn-x)]

A=%[(F+L)+4E+2R]
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We have almost reached the end of the programme, except for the
usual Test Exercise that awaits you. Before we turn to that, let us revise
once again the requirements for applying Simpson’s rule.

(a) The figure is divided into an even number of strips of equal
width s. There will therefore be an odd number of ordinates or
function values, including both boundary values.

b
(b) The value of the definite integralg f(x)dx is given by the
a

numerical value of the area under the curve y = f(x) between
x=gandx=bh

I=A=% [(F+L)+4E + 2R]
where s = width of strip (or interval),
F + L = sum of the first and last ordinates,
4E =4 X sum of the even-numbered ordinates,

2R =2 X sum of remaining odd-numbered ordinates.

(c) A practical hint to finish with:

Always set your work out in the form of a table, as we have
done in the examples. It prevents your making slips in method
and calculation, and enables you to check without difficulty.

Now for the Test Exercise. The problems are similar to those we have
been considering in the programme, so you will find them quite straight-
forward.

On then to frame 37.
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Test Exercise — XIX 3 7

Work through all the questions in the exercise. Set the solutions out

neatly. Take your time: it is very easy to make numerical slips with work
of this kind.

1. Express sin x as a power series and hence evaluate
1 .
sin x .
S — dx to 3 places of decimals.
0

0-2
2. Evaluate S X1 e* dx correct to 3 decimal places.
0-1

3. The values of a function y = f(x) at stated values of x are given below.

x{20 25 30 35 40 45 50 535 6-0
yi| 350 620 7.22 6-80 574 5.03 621 872 11-10

Using Simpson’s rule, with 8 intervals, find an approximate value

6
ofg ydx.
2

w2
4. Evaluate S Vcos 8 df, using 6 intervals.
0

m/2
5. Find an approximate value ofS V(1 —0-5 sin%0)d6 using Simpson’s
rule with 6 intervals. 0

Now you are ready for the next programme.




Programme 19

Further Problems — XIX

1
7z
1. Evaluateg V(1 =x%)dx (i) by direct integration,
0 (i) by expanding as a power series,
(iii) by Simpson’s rule (8 intervals).

2. State the series for In(1 + x) and for In(1 ~ x) and hence obtain a

series for ln{ L+ x}.
1—x

03
Evaluate S ln{ I+
0 1=

by ,
}dx, correct to 3 decimal places.

3. In each of the following cases, apply Simpson’s rule (6 intervals) to
obtain an approximate value of the integral.

‘rr/2 dx kid _%
(a)go 1+3cosx (b)SO(S 4 cos 0)2do

n/2 df
), vt

4. The coordinates of a point on a curve are given below.

x| 0 1 2 3 4 5 6 7 8
yi 4 59 70 64 48 34 25 17 1

The plane figure bounded by the curve, the x-axis and the ordinates
at x = 0 and x = 8, rotates through a complete revolution about the
x-axis. Use Simpson’s rule (8 intervals) to obtain an approximate value
of the volume generated.

5. The perimeter of an ellipse with parametric equations x = 3 cos 8,
w2 1
y=2sin0,is 2\/28 (13— 5 cos 20)? df . Evaluate this integral
0

using.Simpson’s rule with 6 intervals.

2
6. Calculate the area bounded by the curve y = ¢ | the x-axis, and the
ordinates at x =0 and x = 1. Use Simpson’s rule with 6 intervals. !
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10.

11.

12.

13.

14.

The voltage of a supply at regular intervals of 0-01 s, over a half-
cycle, is found to be: 0, 19.5, 35, 45, 40-5, 25, 20-5, 29, 27,
12-5, 0. By Simpson’s rule (10 intervals) find the r.m.s. value of the
voltage over the half-cycle.

Show that the length of arc of the curve x = 30 —4sin 0,
y=3—4cos @, between 6 = 0 and § = 27, is given by the integral

27
S V(25 — 24 cos 0)d0. Evaluate the integral, using Simpson’s rule
0

with 8 intervals.

1
Obtain the first four terms of the expansion of (1 + x*)? and use
1

2
them to determine the approximate value ofg V(1 +x%)dx, correct
0

to three decimal places.

Establish the integral in its simplest form representing the length of
the curve y =4 sin 6 between § = 0 and § = n/2. Apply Simpson’s
rule, using 6 intervals, to find an approximate value of this integral.

Determine the first four non-zero terms of the series for tan 'x and
%

hence evaluateg Vx.tan 'x dx correct to 3 decimal places.
0

Evaluate, correct to three decimal places,

@) S 1 Vx.cos x dx, (ii) Sl Vx. sin x dx.
0 0

n/2
Evaluate S V(25 =15 cos 20)d8 by Simpson’s rule, using 6
0
intervals.
1 1
Determine the approximate value ofS (4+xMH2dx
0

(1) by first expanding the expression in powers of x,
(ii) by applying Simpson’s rule, using 4 intervals.

In each case, give the result to 2 places of decimals.
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POLAR CO-ORDINATES SYSTEM




Programme 20

1 Introduction to polar co-ordinates

We already know that there are two main ways in which the position of
a point in a plane can be represented.

(i) by Cartesian co-ordinates,i.e. (x,y)
(ii) by polar co-ordinates, i.e. (r, ).
v _The relationship between the two systems can be seen from a diagram.

/)\P For instance, x and y can be expressed
. )

in terms of r and 6.
Ly (r,8)
|
d ]
e X
X = iiiiiereenenn 3 VT e

O 3

2 x=rcosf; y=rsinf

Or, working in the reverse direction, the co-ordinates r and ¢ can be found
if we know the values of x and y.

3 F=\/(x2+y2); 6= tan_l(%l\ ‘;

This is just by way of revision. We first met polar co-ordinates in an
earlier programme on complex numbers. In this programme, we are going
to direct a little more attention to the polar co-ordinates system and its
applications.

First of all, an easy example or two to warm up.

Example 1. Express in polar co-ordinates the position (=5, 2).

Important hint: always draw a diagram; it will enable you to see

which quadrant you are dealing with and prevent your making an initial

slip.
Y

_ﬂ ; Remember that 6 is measured from

| \9 the positive OX direction.
I
0

X

In this case, the polar co-ordinates of P are ....................
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(5-385, 158°12") 4
For:
v () r*=22+52=4+25=29
L r=+/29=5385 .
(i) tanE=2=04 . E=21°%8
Xy

X . 0=158°12
Position of P is (5-385, 158°12")
A sketch diagram will help you to check that 0 is in the correct quadrant.

Example 2. Express (4, —3) in polar co-ordinates. Draw a sketch and you
cannot go wrong!

When you are ready, move to frame 5.

(5,’323°8’) 5

(i) r?=3%+4*=25 . r=5

X (§) tanB=3=075 . E=36°5
.6 =323%%
(4,-3)=(5,323°8")
Example 3. Express in polar co-ordinates (=2, -3).
Finish it off and then move to frame 6.

3-606, 236°19’

Check your result. 5 &7\ (i r*=22+3*=4+9=13
X £ X r=+/13=3.606 6

i

: .
| r (ii) tanE =5= 1.5 = E=56"19
!

' .. 6=23619'

Y (-2,-3) =(3-606, 236°19")
Of course, conversion in the opposite direction is just a matter of evaluat-
ing x =r cos § and y =r sin 6. Here is an example.

Example 4. Express (5, 124°) in Cartesian co-ordinates.

Do thatM on to frame 7.
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(—2-796, 4:145)

Working Y
A (i) x=5cos 124° ==5 cos 56°
| =-5(0-5592) =—2-7960
y! S5
:r (i) y =5sin 124° = 5 sin 56°
} {24 = 5(0-8290) = 41450
X, x 0 X

5 (5,124°%) = (-2-796, 4.145)

That was all very easy.
Now, on to the next frame.

Polar curves

In Cartesian co-ordinates, the equation of a curve is given as the general
relationship between x and y,i.e. y = f(x).

Similarly, in the polar co-ordinate system, the equation of a curve is
given in the form r = f(#). We can then take spot values for 8, calculate
the corresponding values of r, plot r against 8, and join the points up with
a smooth curve to obtain the graph of r = f(6).

Example 1. To plot the polar graph of ¥ = 2 sin 8 between § = 0 and
0 =2m.

We take values of 8 at convenient intervals and build up a table of
values giving the corresponding values of r.

6° 0 30 60 90 120 150 180
sin @ 0 0-5 0-866 1 0-866 05 0
7=72sin 6 0 1.0 1.732 2 1-732 10 0

6° | 210 240 270 300 330 360
sin 6

r=2sind

Complete the table, being careful of signs.

When you have finished, turn on to frame 9.
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Here is the complete table. 9

6° 0 30 60 90 120 150 180
sin 8 0 05 086 1 0866 05 0
r=2sinf 0 10 1732 2 1.732 10 0

6° 210 240 270 300 330 360
sing | 05 -0-866 -1 ~0-866 —0-5 0
r=2sing | -1.0 -1.732 -2 -1.732 -1.0 0

120° 90° 60°
\ ’
/
NV 30°
B/ \:\\ /”
NV
2N
P
A
[ 0°
, T
~
AN
i .
' ~
i 330°
]
7

\
240° 270° 300°

(i) We choose a linear scale for r and indicate it along the initial line.

(ii) The value of r is then laid off along each direction in turn, points

plotted, and finally joined up with a smooth curve. The resulting graph is
as shown above. '

Note that when we are dealing with the 210° direction, the value of 7 is
negative (—1) and this distance is therefore laid off in the reverse direc-
tion which once again brings us to the point A. So for values of § between
# =180°and 6 = 360°, r is negative and the first circle is retraced exactly.
The graph, therefore, looks like one circle, but consists, in fact, of two
circles, one on top of the other.

Now, in the same way, you can plot the graph of » = 2 sin6.

Compile a table of values at 30° intervals between 0 = 0° and 6 = 360°
and proceed as we did above.

Take a little time over it.

When you have finished, move on to frame 10.
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10 Here is the result in detail.

0 30 60 90 120 150 180

0
0 05 086 1 086 0.5 0
sin20 |0 025 075 1 075 0-25 0
0

sin 6

r=2sin%@ 0-5 1.5 22 15 05 0

0 | 210 240 270 300 330 360
sinf | -0.5 -0.866 -1 —0-866 —0.5 0
sin%8 | 0.25 0-75 1 0-75 0.25 0

r=2sin?%8 0-5 1-5 2 1-5 0-5 0
120°
\
1502 \\
\\
\\\
~
\\
8 N 0°
3 360°
”~
~
s
//
// ~ |
210° / 330°

/ | \\
240° 270° 300°

This time, r is always positive and so there are, in fact, two distinct
loops.

Now on to the next frame.

1 Standard polar curves

Polar curves can always be plotted from sample points as we have done
above. However, it is often useful to know something of the shape of the
curve without the rather tedious task of plotting points in detail.

In the next few frames, we will look at some of the more common
polar curves.

So on to frame 12.
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1. r=qasinf

5. r=asin 20
!
]
1
I
i
|

|
|
i
|
{
'

7 Y °
215° 35
7. r=a cos 20
90°
)
[
270°

4.

8.

a
|

r=a cos?f

|
|
1
|
|

e'
|

r=a cos
120°
\

1270°
30

i
1
1
|
|
!
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13 9. r=a(l +.cos9) 10.| r=a(l + 2 cosf)

IO a 2a
]
q
i
!
11. r*=qa%cos 26 12. r=ab
1367 | ,745°
N\ 1 7/
N ’ \
\ 1 / !
N\ ] 7/
- e‘ —_— QE
a { - a
O
P BN !
V] 1 N |
V4 | \ |
Id AY
/7 I \ I

Sketch these 12 standard curves in your record book. They are quite
common in use and worth remembering.

Then on to the next frame.

The graphs of r = 2 + b cos 8 give three interesting results, according
1 4 to the relative values of @ and b.
{

(i) fa=b,weget -— (cardioid)

ii) Ifa<b,weget ——- (re-entrant loo
p

(no cusp or re-entrant

(i) Ifa>b, we get —- 10op)

1

So sketch the graphs of the following. Do not compile tables of values.
(i) r=2+2cosf@ (i) r=1+2cosh
(i) r=5+3cosf (iv) r=2+cosf

i
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Here they are. See how closely you agree. 15

(i) r=2+2cosf (a=b) (i) r=5+3cosb (@a>b)

1
2‘ 5,
Y
i
) | a -7z 8
j
2 5

(iv) r=2+cosd(@>b)

(i) r=1+2cosf (a<b)
|

If you have slipped up with any of them, it would be worth while to plot
a few points to confirm how the curve goes.

On to frame 16.

\m_

\ To find the area of the plane figure bounded by the polar curve 16
r = f(8) and the radius vectorsat 8 =6, and 6§ = 0,.
6=9‘2/r=f(0)
Q(r*&r,9+89)
AP(r, )
38 ///
/’ =6,
)’ °)
0 1
Area of sector OPQ = 8A = 4r(r + &r) sin 80
. 8A sin 86
" g TN T
6A dA sin &6
If 66 - 0, 50 *>d0, §r >0, 50 P e

Next frame.

[
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17 sin 66
-1

L dA
T do

92
: A=§ 1r2de

=3r(r+0)1 =37

03

Example 1. To find the area enclosed by the curve » = 5 sin 8 and the
radius vectors at = 0 and 0 = 7/3.

/3
A=J 1r?d8
0

/3
A =J~ﬂ %isnﬁe do

R L
e e
]
8 25[7_V/3 |
1 A 4[3 4]—384 ‘
25 (/3 25[ . sin 20]'”/3
: =— - 2 = = =
For: A n (1 —cos 26) d 4[0 2
___2_5[17_sin 21r/3:l
413 2
_25[7 37
= 4[3 4:!—3-8388

A = 3.84 to 2 decimal places

Now this one:

Example 2. Find the area enclosed by the curve r =1 + cos 0 and the
radius vectors at @ = 0 and 8 = 71/2.

First of all, what does the curve look like?
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i treoss
=1+
m/, cos
|
—_ 'o
1
|
1

Right. So now calculate the value of A between § =0 and § = 7f2.

n/2 w2
For: A= %J rido = %J (1 +2 cos 6 + cos*0) db
0 (]

; w2
=Jz[0 +2sin @ +%+ S-m—4—2§]

H{(Ep2v0)-(o)

LA =3—; +1=2178

0

So the area of a polar sector is easy enough to obtain. It is simply

02, ,
A=f gk do
01

Make a note of this general result in your record book, if you have not
already done so.

Next frame,
Example 3. Find the total area enclosed by the curve r = 2 cos 30. 21
; Notice that no limits are given, so we had better sketch the curve to see

what is implied.

This was in fact one of the standard polar curves that we listed earlier

in this programme. Do you remember how it goes? If not, refer to your
notes: it should be there.

i Then on to frame 22.
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22 ,
3 r=2cos 36

Since we are dealing with r = 2 cos 368, r will become zero when
cos 30 =0,1i.e. when 30 =7/2,i.e. when 8 = 7/6.
We see that the figure consists of 3 equal loops, so that the total area,

A,isgiven b
) given by A = 3 (area of one loop)
= 6 (area between § =0 and 6 = 1/6.)
/6 /6
A= 6J 1r2de = 3j 4 cos?30 df
0 0

23 7 units?
/6
since A= le 3(1 + cos 60) do
0
sin 60]"/6
6 g

Now here is one for you to do on your own,
Example 4. Find the area enclosed by one loop of the curve r =g sin 26.

=6[0+ = 7 units? ‘1
|

Arguing as before, r =0 when ¢ sin 20 = 0, i.e. sin 260 = 0,j.e. 20 =0,
so that 20 =0, 7, 2m, etc.
L 0=0,7/2,n, etc.

So the integral denoting the area of the loop in the first quadrant will be
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A =%§"/2 r?do 25

0

Correct. Now go ahead and calculate the area.

A = ma?/8 units? 26
Here is the working: check yours.

n/2 2pom/2
j rrde =% 5 sin?20 d6
0 20

I
-

(8

2

w/2
j (1 —cos 46) df
0

T
4 4 1, B

ENE

f

Now on to frame 27.

r = f(8) and the radius vectors at 6 = 0, and 8 = 8, rotates about the

To find the volume generated when the plane figure bounded by 27
initial line.

0 D X
If we regard the elementary sector OPQ as approximately equal to the

A OPQ, then the centroid C is distance 2?rfrom 0.

We have: Area OPQ ﬂl5r(r +67) sin 66
Volume generated when OPQ rotates about OX =6V
- 8V =area OPQ X distance travelled by its centroid (Pappus)

=2r(r +87) sin 80.27 CD
= %lr(r + &r) sin 66 .27[.‘%'7 sin 6

=%7rr2 (r + 6r) sin 66.sin 0
L8V _2 sin 50

_— = 2 —
“sp 3™ (r +6r) 50 .sin 6
Then when 86 - 0, %;—/= .........................




28 I

29 ;
v—f *2 3in6 do

013

Correct. This is another standard result, so add it to your notes.
Then move to the next frame for an example.

3 Example 1. Find the volume of the solid formed when the plane figure

bounded by 7 = 2 sin 8 and the
about the initial line.

w/2

radius vectors at 8 =0 and 8 = /2, rotates

Well now, V =J -2-7rr3 sin 6 do

o 3

/2 /2
=J‘ %.‘ﬂ.(2 sin 8)%.sin 8 do =j l;n sin?f df
0

0

Since the limits are between 0 and /2, we can use Wallis’s formula for

this. (Remember?)
So \%

31

For V=

Example 2. Find the volume of the solid formed when the plane figure
bounded by r = 2q cos & and the radius vectors at § =0 and 0 = 7/2,

rotates about the initial line.

Do that one entirely on your own.

When you have finished it, move on to the next frame.

S s A S— |
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n/2 9
For v f S a.risinfdd and r=2acosf

o 3

w29 an
= = 7.8a%cos%0. sin 8 d6
g 3

3rn/2
=~ légm 5 cos®8 (—sin 6) dO
0

__lend® 00546]”/2 ai
e EREt

3
V= dma units®
3

So far, then, we have had

02
@ A=S 4r2do
01

Check that you have noted

6 th Itsi book.
i Vv =j. Z%ﬂra sin 0 do J ese results in your boo
01

To find the length of arc of the polar curve r = f(8), between 8 =0, 3 3
and 8 = 62.

\ With the usual figure 552 =2 80% +&r% & . P2 +§-'l-
T80 T T s6*

\ 552
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34 7 (o

Example 1. Find the length of arc of the spiral r =g e3® from 6 = 0 to
6 =2m.

dr
N — 36 o
ow, r=qge '——6 =3ge

360

-y +(§;) = 2250 495260 = (2 o6F

s :ﬁ”\/{ﬁ +(g—;)2}d¢9 =jz” V10.2e% do

27
Since S V10.a.e%% a6 = \/IOa[:l =E%1—0{e6"—1} |
0

0

As you can see, the method is very much the same every time. It is merely i

a question of substituting in the standard result, and, as usual, a knowledge {

of the shape of the polar curves is a very great help.
Here is our last result again.

[ b e

Make a note of it: add it to the list.

|
|

3 6 Now here is an example for you to do.

Example 2. Find the length of the cardioid r =a(1 + cos §) between
06=0and 6 =n.
Finish it completely, and then check with the next frame.
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s = 4q units 37

Here is the working:

L2 +(%)z =a2{l +2cos 8 + cos?0 + sin20}
=a2{2 +2 cos 0}= 2a*(1 + cos 9)

Now cos 6 can be re-written as (2 cos? % - 1)

m 6 . 6 m
LS =j 2a cosjdﬂ =2a [2 sin Ej\
0 0

=4a[1 - 0] = 4a units
Next frame.

Let us pause a moment and think back. So far we have established 3 8
three useful results relating to polar curves. Without looking back in this
programme, or at your notes, complete the following.

If r=£(9), i) A=

\ 554
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9
v=f " 257 sin g do

o (

If you were uncertain of any of them, be sure to revise that particular
result now. When you are ready, move on to the next section of the

programme.

Finally, we come to this topic.
40 To find the area of the surface generated when the arc of the curve
r=f(8) between 6 =80, and 0 = 8, rotates about the initial line.

Once again, we refer to our usual figure.

If the elementary arc PQ rotates
about OX, then, by the theorem of

58 gs Pappus, the surface generated, 88, is
! given by (length of arc) X (distance
// 7 | travelled by its centroid).
6 1
/ !
(o] L X
S 86S=8s. 2nPL =8s.2nrsin 0
88 | .
50 2mr sin 0 30

From our previous work, we know that ‘2‘% ’—‘\/{"2 +(%r9)2}
so that %—3 2~ 2y sin \/{rz +(§Z6)2}

And now, if 66 =0, S%= 27rsin @ /(72 +(%)2 }

S =j:: 27y sin 8 \/{rz +(-§§)2'}d9

This is also an important result, so add it to your list. ‘
o i -
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S =J : 27y sin 6\/{r2 +(g—;)2}d6

This looks a little more involved, but the method of attack is much
the same. An example will show.

Example 1. Find the surface area generated when the arc of the curve

r=5(1 + cos §) between 6 = 0 and 8 = 7, rotates completely about the
initial line.

Now, r=5(+cos®) '..%:_5 s
dr\?
2 - =
G A S ——

50(1 +cos 6)

2

for r? +(-§—;) =25(1+2cosf + cos®f + sin20)
=25(2+2cos8)
= 50(1 +cos 8)

We would like to express this as a square, since we have to take its root,
so we now write cos 8 in terms of its half angle.

2

: dr 8
7 +('2179)' =50(1 +2cos? 5 - 1)

0
= 27
100 cos 5

" dry\? 0
. 2, (4 - v
\/{r +(d6)} 10cos2
‘ So the formula in this case now becomes
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™ -
43 S=J~ 27.5(1 + cos 8)sin 6.10 cos% -do
0

™
S S= IOOnf (1 +cos0)sin 6 cos%d@
0

We can make this more convenient if we express (1 + cos 0) and sin 8

also in terms of%.

What do we get?

- o408 .8
S =400n cos” = sin—=d#
0 2 2

w
1007 S (1 +cos 8)sin g cos—g do
Q

y
°©
o]
w
ii

1
—
(]

m 6 . 0 0 0
2— — — —
Onjo 2 cos 2.231112 cos2.c052d6

kig
= 4OOnJ0 cos? g sin%d@.

0 Sln%
Now the differential coefficient of cosa is {— 5" }
4

e Y *—_"—%_‘
45 {i= 1607 units l }
T 6 Sin’2'
Since S=-8007| cos?*=!- ——} dé
0 2 2
w05’ 5175000
=—-8007r[ - }0= =" [0-1]

S = 1607 units
And finally, here is one for you to do.

Example 2. Find the area of the surface generated when the arc of the }
curve r = g % between 6§ = 0 and 8 = n/2 rotates about the initial line. (

Finish it completely and then check with the next frame.

_ - —
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S=-2—;£.Traz(26” +1)
For, we have:
/2 ar\?
- : 2 (4
S—§0 27rrs1n0\/{r +(d6) }d@
And, in this case, d
r=ae® = =qef
dae
2
ot +(L;f6) =g220 1+ 4220 = 742 29

So

\/[ 2 +(Z—;)2}= V2.a.6°

2
. S:jﬂ/ 2 e® sin0/2aeb do
0 nf2
=2+/2 7ra2j~ e sin 0 db
0
Let 1=§e20 sin 8 d@ = 2% (—cos 0) + 2jcose e?% do
=—¢2% cos 6 + 2{e29 sin 6 — 2Ssin g 0 de}

I1=—¢e?% cos 8 +2e%? sin § — 41

I 29{2sin6—c030

{2 sin 8 — cos 0}

20 n/2
L S=2V2mal |:e—-{2 sin § — cos GH
0

L 5l=e
e

I=

5
2
- 2*/2'5”"’ {e”(?, -0)-1(0- 1)}

_2\2m.a?
5

S (2€" + 1) units?

We are almost at the end, but before we finish the programme, let us

collect our results together.

turn on to frame 47.

46




47 Revision Sheet

Polar curves — applications.

1. Area
2. Volume
3. Lengthof arc

4. Surface of revolution

-
‘::—32-7”3 sin 6 df

[ /1o
o o

It is important to know these. The detailed working will depend on
the particular form of the function r = f(8), but, as you have seen, the
method of approach is mainly consistent,

The Test Exercise now remains to be worked. First brush up any
points on which you are not perfectly clear; then, when you are ready,

turn on to the next frame.
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Test Exercise — XX

Answer all the questions. They are quite straightforward: there are no
tricks. But take your time and work carefully.

[. Calculate the area enclosed by the curve 6% = 4 and the radius
vectorsat 8 =n/2and 8 = 7.

2. Sketch the polar curves:
(i) r=2sin 6 (i) r=15 cos? . (i) r=sin 26
(iv) r=1+cos§ (v) r=1+3cosd (vi) r=3+cos b

3. The plane figure bounded by the curve r = 2 + cos f and the radius
vectors at 8 = 0 and 6 = &, rotates about the initial line through a
complete revolution. Determine the volume of the solid generated.

4. Find the length of the polar curve r = 4 sin? % between 6 = 0 and
6=m.

| 5. Find the area of the surface generated when the arc of the curve
| r=a(l —cos 0) between § =0 and § = r, rotates about the initial
line.

That completes the work on polar curves. You are now ready for the
next programme.
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Further Problems — XX

1

10.

Sketch the curve r = cos®6. Find (i) the area of one loop and
(ii) the volume of the solid formed by rotating it about the initial
line.

. 3 1
Show that sin®§ = g 7o 26 +i800s 46 . Hence find the area

bounded by the curve 7 = 4 sin®§ and the radius vectors at § = 0
and 6 = 7.

Find the area of the plane figure enclosed by the curve r=a sec2(%)

and the radius vectorsat 6 =0 and § = 7/2.

Determine the area bounded by the curve r = 2 sin § + 3 cos § and
the radius vectors at § =0 and 6 = n/2.

Find the area enclosed by the curve r = —2 and the radius
1+ cos 28
vectorsat 8 =0 and § = /4.

Plot the graph of r = 1 + 2 cos 8 at intervals of 30° and show that it
consists of a small loop within a larger loop. The area between the
two loops is rotated about the initial line through two right-angles.
Find the volume generated.

Find the volume generated when the plane figure enclosed by the

curve r = 2a sinz(—g-) between 8 = 0 and 8 = 7, rotates around the

initial line.

The plane figure bounded by the cardioid » = 2a(1 + cos §) and the
parabola r(1 + cos §) = 2a rotates around the initial line. Show that
the volume generated is 187a°.

Find the length of the arc of the curve r =a coss(%) between 8 =0
and 8 = 3.

Find the length of the arc of the curve » = 3 sin 6 + 4 cos 6 between
8 =0and 8 =n/2.
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11.
12.

13.

14.

15.

Find the length of the spiral r = a8 between 8 =0 and § = 27.

Sketch the curve r =a sinz(%) and calculate its total length.

Show that the length of arc of the curve ¥ =a cos?0 between 6 =0
and 0 = /2 is a[2+/3 + In(2 +/3)1/(2V/3).

Find the length of the spiral = a2 eP® between § =0 and 0 =6, , and
the area swept out by the radius vector between these two limits.

Find the area of the surface generated when the arc of the curve
r? = 4% cos 28 between 8 = 0 and § = n/4, rotates about the initial
line.
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MULTIPLE INTEGRALS
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Summation in two directions

Let us consider the rectangle bounded by the straight lines, x =r,
x=5§,y=k,y=m, as shown.

M P
mp-—-~-~- r——r
[} |
_____________ |
& [T %_____
|
: | 8a
y ) :
| t
i i Q)

[¢) r s X
‘q—x—————haxL—

Then the area of the shaded element, §a = ....................

”

If we add together all the elements of area, like 84, to form the
vertical strip PQ, then § A, the area of the strip, can be expressed as

y=k

Did you remember to include the limits?
Note that during this summation in the y-direction, 8x is constant. |

P
e
‘ ’ ’ ] If we now sum all the strips across
the figure fromx =rto x =s,
% we shall obtain the total area of
the rectangle, A.
kb-—~—-— -
1 Q 1
[¢] r . s X
A= xE (all vertical strips like PQ)
X=r
=xzs {yzm By.éx}
x=r (y=k

Removing the brackets, this becomes
X=s y=m \

A= X X dy.bx.
x=r y=k

If now §y ~ 0 and 8x — 0, the finite summations become integrals, ‘
so the expression becomes A = ‘

565



Multiple Integrals

xX=s y=m 4
A=S j dy .dx
xX=r

y=k

To evaluate this expression, we start from the inside and work
outwards.

xX=s py=m i x=5 y=m
A=§ ;S dy | dx=g \:y] dx

x=r Wy=k x=r y=k
O ex=s
=S (m—k)dx
xX=r
and since m and k are constants, this gives A = ...................
A=(m=-k).(s—r) 5
X =5 X =S5
for A=[(m—k)x:| =(m—k) [x]
X=r xX=r

A=(m—-k).(s~r)

which we know is correct, for it is merely A =length X breadth.

That may seem a tedious way to find the area of a rectangle, but we
have done it to introduce the method we are going to use.

First we define an element of area §y.8x.
Then we sum in the y-direction to obtain the area of a ....................
Finally, we sum the result in the x-direction to obtain the area of

' area 6A; of the horizontal strip.CD

the .o,
‘ vertical strip; whole figure—l 6

We could have worked slightly differently:

I
L BN IO V]
& | ____. % __________ As before 8a = 6x.8y.
I ¢ ; Nag D If we sum the elements in the
j_k _______ (ol x-direction this time, we get the

| I
)
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X=S5
7 5A; = % 8x.8y
xX=r

Now sum the strips vertically and

c zz D we obtain once again the area of
the whole rectangle.
k _____ -
Y X
yom . . . y=m (x=S
A, = % (all horizontal stripslike CD) =" 3 { > éx. 5y}
y=k y=k lx=r

As before, if we now remove the brackets and consider what this
becomes when §x — 0 and §y - 0, we get

y=m "rx=s i .
Al‘“‘j :§ dx ! dy

y=k X=r |
SR I
Complete the working to find A, and then move on to frame 9. J
9 AL =(s—r).(m—k)

»

R I E R KR

" A; = (s —r).(m— k) which is the same result as before.

So the order in which we carry out our two summations appears not to

matter.
Remember

: (i) We work from the inside integral.

(ii) We integrate w.r.t, x when the limits are values of x.

(iii) We integrate w.r.t. y when the limits are values of y. |
Turn to the next frame.




Double integrals 10
X

Y2 2
The expressionj J fx, y) dx dy is called a double integral
Y1 J x

(for obvious reasons!) and indicates that
(i) flx, y) is first integrated with respect to x (regarding y as being
constant) between the limits x =x; and x = x,,
(ii) the result is then integrated with respect to y between the limits
y=yrandy=y,.
Example 1

2 4
Evaluate I = § f (x +2p)dx dy
1 2

So (x + 2p) is first integrated w.r.t. x between x =2 and x =4, withy
regarded as constant for the time being.

2 T .
=j :S (x +2)dx | dy.
T ;

________________

2 2 4
=§ [%— + 2xy] . dy
1 2

=Sj{(8+8y)— (2+4y)} d

2
=j (6+BVAY = e
Finish it off

2 2
For I=j (6 +4y) dy={6y + 2})2]1
1

=(12+8)~(6+2)=20-8=12
Here is another.

Example 2 2 a3
Evaluate I =S j x%y dx dy
170
) 3
Do this one on your own. Remember to start with f x?y dx with
\ ¥ constant. 0

Finish the double integral complez‘ely and then turn on to Sframe 1 2

iyt el st ok
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Check your working: R
20,3777
J nydxdy J- f x*ydx ' dy
J oo ;
X x=3
(B
1 x=0
2 2
9 2
SRR
1 2 I

=18-4.5=135

Now do this one in just the same way.
Example 3
2 pm
Evaluate 1 =J j‘ (3 +sin ) df dr
1J0

When you have finished, check with the next frame.

13

Here it is:

ki
{3 ~cos 0} dr

=Br+2)(2-1)=3n+2

On to the next frame.
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Triple integrals. Sometimes we have to deal with expressions such as

bpdpef
I=J. f f fx,y,2)dx.dy.dz
a vJe Je

but the rules are as before. Start with the innermost integral and work
outwards

..............

All symbols are regarded as constant for the time being, except the one
variable with respect to which the stage of integration is taking place.
So try this one on your own straight away.

Example 1.  Evaluate I = g j J {(x +2y~z)dx dy. dz

Did you manage it first time? Here is the working in detail.

3,1 p2
I=5J f {(x +2y—z)dx.dy.dz
1J-140
3p1 2 2
= = +2&y-—xz| dydz
1J-1 2 0
31 3 )
=j J (Q+4y-2z)dy. dz =j [2y+2y2—2yz} dz
14 -1 i -1
3 3
=§ {(2+2—2z)—(—2+2+2z)}dz =j (4~4z2)dz
1 1
3
=[4z—222] l=(12—18)—(4-2) =-8

213 p1
Example 2. Evaluate j ‘f J ®*+q*~r*)dp.dq.dr
0J0

When you have finished it, turn on to frame 16.

570



=3
2,301
For I=j J f (P2 +q*=r*)dpdqdr
1Y 0490
P2 #31 .3 1
= 14 2 2
= - tpq “PF] dq dr
u1jo[3 0
r2 3[1 , 2}
= ztq* —r* dgar
~1j~0 3
r2 3 3
= 9.9 _ 2]
= >t= —qr dr
.11[3 3 0

2
=j (1+9-3rt)ar
1

= [IOr—r;J f =(20-8)~-(10-1)

= [2-9=3
It is all very easy if you take it steadily, step by step.

Now two quickies for revision:
2 ¢S 4
Evaluate (i) f j. dy dx, (i) f J 2y dy dx.
143 0J1

Finish them both and then move on to the next frame.

17 Here they are.
@ I=jjfzdydx=jj{{ﬁ~dx=jj(5—3)dx=fj2dx=[bﬁj

() 1=2; (i) 1=188

=4-2=2
- 4 (3x 4 3x 4
(ii) I=f J 2y dy dx =f [y"] dx=j (9x% - 1) dx
0J 1 0 1 0
4
=[3x3 —x:l =192-4=1838
4}

And finally, do this one.

S

5 2
1=f f (353 = 4)dX AV = oo
0J1
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e e T T

SRS

I[=15 18
2
1

j-sj‘ (3x? —4)dx dy
0

[e-elo
|

{(8~8)—(1~4)}dy

Check the working.
I

it i} [{}
w O

o

3 5
0 0

Now let us see a few applications of multiple integrals.
Move on then to the next frame.

Applications
Example 1. Find the area bounded by y = i;-c , the x-axis and the 19
vy ordinate atx =35, )
=%
P A
s
% _?_’ Area of element = 8y. §x
+;: L YEIN
S Areaofstrip” 7 Sy.6x
o . ——lst— 5 X »=0
The sum of all such strips across the figure gives us
PN RS
A= 2 Z 8y.éx
x=01ly=90
x=5 y=y
227 Tz sy.ex
x=0 y=0
Now, if §y > 0 and 6x > 0, th S
i oy and o6x en A=J‘j‘ dv dx
0/ 0
5 5
¥y
=J~ [y] b dx =J Y1 dx
0
But y, =% 0 0 ‘
5
SoA= ...
Finish it off.
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20 A = 10 units?

5 275
For A=f 4—5x-dx=[%x-J =10
0 Sy T
Right. Now what about this one?
Example 2. Find the area under the curve y = 4 sin-g- between x = %

and x = 7, by double integral method.

Y
y=4asn%
i
, ; Steps as before.
Ly ; Area of element = §y.8x
/ %, TSy | Area of vertical strip
A : YEN
e ' = sy 6x
1 ol { y= 0
0 KA L_ K X
e
3x

Total area of figure: x=n [y=y,
A= 2 T by.6x
x=af3ly=0
If 6y - 0 and éx — 0, then

a3 At
A=J § dydx = oo,
#/3J0

. X
Complete it, remembering that y; =4 sinz

A = 4/3 units®

For you get

y d m
A:fﬂJ ldydx=f [y}yl dx=f yi dx
n/ 0 a/3 0 /3

kg k(s
=j 4sin;x-dx=[—8 cos%]
/3 2 nf3

= (-8 cos 7/2) —(~8 cos 7/6)

=0~8.\/—%=4\/3 units® ;I

Now for a rather more worthwhile example — on to frame 22.
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T

e T e

Example 3. Find the area enclosed by the curves 22
2

X
y12=9xand y, =3
First we must find the points of intersection. For that,y; =ya2.

x* .
L Ox=%= - x=0orx®=729,ie.x=9

81
So we have a diagram like this:
2
Y y2 = 59—
Vieox As usual,
J2 R P el Area of element = 8y. §x
Dsy : " Area of strip PQ
1 1 =
Q! ' yaon
CV 7 : ' 5y.bx
[ L y=x2
)
e ‘J “_ 9 X

3
Summing all stﬁps betweenx =0 andx =9,

=9 = =9 =
A="% {yz:y‘ay.5x}=x>: T sy 6x

x=0 \y=y; x=0 y=y;
9
If6y > 0and 6x > 0, A=j S dy dx
0Jy,
2
Now finish it off, remembering that y;? = 9x and y, =§9~

A =27 units? 23
y

Here it is.

=54 ~ 27 = 27 units®
Now for a different one. So turn on to the next frame.
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2 4 Double integrals can conveniently be used for finding other values
besides areas.

Example 4. Find the second moment of area of a rectangle 6 cm X 4 cm
about an axis through one corner perpendicular to the plane of the figure.

Second moment of element P about OZ = 8a (0P
2 §y.6x. (x* +y*)
Total second moment about OZ

:6 =4
1275° 75 (2 4yt dydx
x=0 y=0

If §x - 0 and 6y = O, this becomes
6 4
1 1=j j (2 +7) dy dx
]

0

}; For: 6 4 6 y3 4
‘ 1= § (x2+y2)dydx=§ [ny +-§] dx
0J0 0 0

i 6
“( =j‘ {4x2+§:?}dx

0

‘ 3 6

! (48 6% <988 + 128 =416 cm”

3 3

Now here is one for you to do on your own.

Example 5. Find the second moment of area of a rectangle 5 cm X 3 cm
about one 5 cm side as axis.

Complete it and then turn on to frame 26.

- —
0

I

|
i SRR S et
:ﬁﬂﬂw’:,w,,_,l,_,,ﬁ)ﬁ/ e T T e
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|1=45cm4[

Here it is: check through the working.

Y

3 ——r
_Li i Area of element = §a = 8y. bx
8 B sa Second moment of area of §a
LR about OX = 82 y?
Yo =y% §y 8x

=}

Y
L—x——»J ‘*‘ 5 X
Sx
y=3
Second moment of strip=" L y%.8y.8x
y=0

x=
Second moment of whole figure = X

If6y—~>0and 6x—~0

the next frame. Here they are.

Revision

Evaluate the following:

() S;Sj(yz-xy)dydx

3 02
(ii) j S (2 + y?) dy dx.
0J1

When you have finished both, turn on.

Now a short revision exercise. Finish both integrals, before turning on to
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28

(i) 1=9%: (i) 1=16

Here they are in detail.

23 21,3 273

. = 2 _ = Yy Xy

(i) I Sojl(y xy)dy dx j0[3 2] dx
2

Jo[6-3) G5
=§z (%§—4x()dx=':-2—36—)£—2x2]2

0
1 1
—175 8—95
302 3 ya 2
(ii) I=S S (x* +y2)dydx=S [x2y+—3—} dx
0J1 0 1
3

[l 3t )
o33,

0
=9+7=16

Now on to frame 29.

29

Move on then to frame 30.

Alternative notation

Sometimes, double integrals are written in a slightly different way.

3.2
For example, the last double integral | =j S (x? +y?) dy dx could
0J1

have been written

3 2
j dx| (x*+y*)ady
0 1

The key now is that we start working from the right-hand side integral
and gradually work back towards the front. Of course, we get the same
result and the working is identical.

Let us have an example or two, to get used to this notation.
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It is all very easy, once you have seen the method.
You try this one.

6 /2
Example 2. Evaluate 1 =5 dyj. 4 sin 3x dx
3 0

Here it is.

4 sin 3x dx

Lol
ol

6 4
(" [0- } ["o3
v 3 3
4y 6
=12 =®-@=4
L343 —
Now do these two.
3 1
Example 3. f dxf (x—x¥)dy
2 0
2 2y
Example 4. f dyj (x—y)dx
1 y

(Take care with the second one)

When you have finished them both, turn on to the next frame.
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32

=

Ex 3. 1=-4.5, Ex. 4. 1=

Results:

3 1
Example 3. 1 =j_ dxf (x-x*)dy
0 0

3 1
=J dx ':xy -x2y:|

0

3

w o

dx (x —x¥) =

I,

x? x 9

A A —~9 =-4.5
[2 3}0 77°

m
=
|
x
S
—
&

2 2y
Example 4 I =j dyS (x-y)dx
1 y
2 2 x=2y
ol
1 xX=y
2 y? 2
[ o -2 -5 )]
1
2 2 2 .2
- Yo_(°y
= dy—-f = dy
Sl 2 1 2
(228 17
6 ; 6 6 é_
Next frame.

33 Now, by way of revision, evaluate these.
6] j J (2x + 3y) dx dy

(ii) j 1 de . (2y — 5x) dy.

When you have completed both of them, turn on to frame 34. |

- —_
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() 128, (i) —54'5 34

Working

1}

4 r2y
f S (2x + 3y)dx dy
Yy

@I

» O

o
—

x =12y
x2+3xy} . dy
x=y

al
f {(4y2 6y - 0 +3y2)}dy
I

4
lOy2 ~ 4y2} dy =S 6y* dy
0

F -l

dx * 2y — 5x) dy
J ool

0

_[ dxl 2_5X y=/
Y Y
y=0

dx{x* 5x3/2}

<

IN wl@
W

1}

(i) I

1] 1
2o

P

2 4
j (x- 5x3/2) dx =[-x§ - ZxS/ZJ .

(8-64)-(3-2)
=56+ 1.5=-54.5

So it is just a question of being able to recognize and to interpret the
two notations.

Now let us look at one or two further examples of the use of
multiple integrals.

Turn on then to frame 35.
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Example
To find the area of the plane figure bounded by the polar curve r = £(6),
and the radius vectorsat § =6, and 8 = ¢,.

A

B¢

\r/

-

Small arc of a circle of radiusr,
subtending an angle 86 at the
centre.

Loarc=r.80

We proceed very much as before.
Area of element = §7.r80

=7
Area of thin sector = ik or.r86

r=0
0=92
Totalarea= 2 ° (all such thin sectors)
0=01
9=92 r=ry
= 3 { z r.5r.66}
6=61 {r=0
0=60 r=n
= X 2z r.ér.60
6=8; r=0
Then if 66 » 0 and 67— 0,
6y pr1
=f r.dr.df
91 0
- - T VFriinish it off.

\ -2} 2—]}‘1
A=f [’— do
81 2'J0

1 ’ : (%22
, ‘f o ()0

2
- 1
i.e. in general, A_Jo '2"2 do
1

Which is the result we have met before.

Let us work an actual example of this, so turn on to frame 37.
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Example. By the use of double integrals, find the area enclosed by the 37
polar curve r = 4(1 + cos 9) and the radius vectorsat @ =0 and 0 = . '

r=4(1+cos8)

[’—122] a6 But r, = £(0)
0 =4(1 + cos 6)

kit
.\ =j 8(1 + cos §)* db
0

m
=J 8(1 +2 cos 6 + cos?8) do

A = 127 units® 38

™
A=8J‘ (1+2cos@+cos?6)db
0

For

=8[6+2sin6+£+sm20}"
0

2" 4
=8(r+3)-©

= 87 + 47 = 127 units®

| Now let us deal with volumes by the same method, so move on to the
“ next frame.
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3 9 Determination of volumes by multiple integrals

z Surface z; = f{x, y)

Element of volume 6y =éx.6y.5z.
Summing the elements up the column, we have

z2=24
8V.= Z ~6x.6y.6z
z=0
If we now sum the columns between y =y, and y =y, , we obtain
the volume of the slice.

s§v,="2"% "5 sx.6y.62
y=yy z=0
Then, summing all slices between x = x; and x =x,, we have the
total volume.

= = z=12
v="5" 757 "3 sx 5y.52

x=x; x=xy z=0

Then, as usual, if 6x ~ 0,8y > 0 and 6z - 0

X2 pV2 p21
V=f f J‘ dx.dy.dz
x1d yiv 0

The result this time is a triple integral, but the development is very
much the same as in our previous examples.
Let us see this in operation in the following examples.

Next frame.
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Example 1. A solid is enclosed by the plane z = 0, the planesx =1,x = 4, 40
y =2,y =5 and the surface z = x +y. Find the volume of the solid.

First of all, what does the figure look like?
The plane z = 0 is the x-y plane and the plane x = 1 is positioned thus:

Working on the same lines, draw a sketch of the vertical sides.

The figure so far now looks like this:

41

If we now mark in the calculated heights at each point of intersection
(z=x ty), we get

X
This is just preparing the problem, so that we can see how to develop
the integral. For the calculation stage, turn on to the next frame.
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5
Volume of element = §x.8y. 8z
zz(x+y)
Volume of column 2 §x.6y X 5z
z=0
=5 =x+
Volume of slice 2 8x” 28y 3~ bz
y=2 z=90
z=x+y

Volumeoftotalsohd" 2 ox E §y X ¥4
x=1 y=2 z=0

Then, as usual, if §x = 0,8y — 0, §z - 0, this becomes
4 N x+y
v ='( dxf dyf dz

And this you can now finish off without any trouble. (With this form
of notation, start at the right-hand end. Remember?)

S 4 5

df dz=j dxf dy (x +y)
2 1 2
5

g
4 4 yz S
=j de‘ (x+y)dy J dx [xy + -5]
1 2 1 2
[ 1

[}
| —
lw
»
I\)
3?
l____l
—
l\)v—n
w
M)
+
[\
ot
*
— +»
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Example 2. Find the volume of the solid bounded by the planes, 44
z=0,x=1,x=2,y=—1,y =1 and the surface z = x? + y?.

In the light of the last example, can you conjure up a mental picture
of what this solid looks like? As before it will give rise to a triple integral.

2 1 x2+ y2
\% =j‘ dxf dyJ. dz
1 -1 0

Evaluate thisand so find V. V=_..............

= 45

V= 3 units?

v =fj de._l1 dyJ‘z2 e dz

=j‘ ’ dxfil dy (x* +y?)
Jufrg]

=j {(x2 +%)—(—x2 —%)} dx
Sl

2% +%}dx

For we have:

N -

N

1]
C
2
=
<,

Next frame.
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46

That brings us almost to the end of this programme.

In our work on multiple integrals, we have been developing a form of
approach rather than compiling a catalogue of formulae. There is little
therefore that we can list by way of revision on this occasion, except
perhaps to remind you, once again, of the two forms of notation.

Remember:

d pb
(i) For integrals written f f f(x,¥) dx.dy, work from the centre
cv a

outwards.
d b
(ii) For integrals written f dy| f(x,y)dx work from the right-hand
4 a
side.

Now there is the Test Exercise to follow. Before working through it,
turn back into the programme and revise any points on which you are not
perfectly clear. If you have followed all the directions you will have no
trouble with the test.

So when you are ready, move on to the Test Exercise.
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Test Exercise— XXI

Answer all questions. They are all quite straightforward and should
cause you no trouble.

362
1. Evaluate () j j‘ (® —xy)dy dx
1J0
.\ a Y1 2 2
(ii) J~ dxf (x —y) dy, where y, =~/(a® —x*)
0 0

2. Determine

3420 /3
(i) j. j (2 cos 8 —3sin 30)dé.dr
0 0

(i) S4j2j4 xy(z +2)dxdydz

27 140
1 2 X

(m)f dzj dxj (x +y +2)dy
0 1 0

3. The line y = 2x and the parabola y* = 16x intersect at x = 4, Find by
a double integral, the area enclosed by ¥ = 2x, ¥ = 16x and the
ordinate at x = 1.

4. A triangle is bounded by the x-axis, the line y = 2x and the ordinate
at x = 4. Build up a double integral representing the second moment
of area of this triangle about the x-axis and evaluate the integral.

5. Form a double integral to represent the area of the plane figure
bounded by the polar curve r =3 + 2 cos § and the radius vectors at
6 =0 and 0 = 7/2, and evaluate it.

6. A solid is enclosed by the planesz=0,y =1,y =3,x=0,x =3, and
the surface z = x* + xy. Calculate the volume of the solid.

That’s it!
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Further Problems—XXI

T MCOS 6

1. Evaluate f j rsin 6 drdf

2 . 273

: _[ j *(9—-r*) dras

0J0
1 p3x+2

3. ” j J- dy dx

x? +4x

4, » j JJ. (* +y*)dx dy dz
w2

5. - f j f x* sin 0 dx dO d¢
0J0 JO

6. Find the area bounded by the curve y =x? and the line y = x + 2.

10.

11.

12.

13.

4.

Find the area of the polar figure enclosed by the circle r = 2 and the
cardioid r = 2(1 + cos §).

2 3 2
. Evaluate f dxj dyf xytzdz

0 1 1
2 2

» j dxj (x* +y*)ay
0 1
1 /4

”» I dr J‘ r cos*0 do
0 0

Determine the area bounded by the curves x = »2 and x = 2y — y2.

Express as a double integral, the area contained by one loop of the
curve r = 2 cos 30 and evaluate the integral.

7/2 stan (2)
Evaluate J. f J xsinydxdydz

4cosz pf(16—32)
Evaluate f J f ydxdydz
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15. A plane figure is bounded by the polar curve r = 2(1 + cos §) between
6 =0 and 0 = 7, and the initial line OA. Express as a double integral
the first moment of area of the figure about OA and evaluate the

3na?

4
distance (h) of the centroid of the figure from QA.

integral. If the area of the figure is known to be units?, find the

16. Using double integrals, find (i) the area and (ii) the second moment
about OX of the plane figure bounded by the x-axis and that part of
2 2

the ellipse fy +i—2 = | which lies above OX. Find also the position of

the centroid.

17. The base of a solid is the plane figure in the xy-plane bounded by
x=0,x=2,y =x,and y = x% + 1. The sides are vertical and the top
is the surface z = x% + 2. Calculate the volume of the solid so
formed.

18. A solid consists of vertical sides standing on the plane figure enclosed
by x=0,x=b, y =qandy =c. The top is the surface z = xy. Find
the volume of the solid so defined.

19. Show that the area outside the circle 7 = g and inside the circle
r = 2a cos @ is given by

/3 p2a cos 0
A= 2f f rdrdg
0 va

Evaluate the integral.

20. A rectangular block is bounded by the co-ordinate planes of reference
and by the planesx = 3,y = 4,z = 2. Its density at any point is
numerically equal to the square of its distance from the origin. Find
the total mass of the solid.
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DIFFERENTIAL EQUATIONS
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1 Introduction

A differential equation is a relationship between an independent
variable, x, a dependent variable, y, and one or more differential
coefficients of y with respect to x.

eg. x2—2+y sinx =0

2

Differential equations represent dynamic relationships, i.e. quantities
that change, and are thus frequently occurring in scientific and engineering
problems.

The order of a differential equation is given by the highest derivative
involved in the equation.

;l_y -y?=0 is an equation of the 1st order
2
xy%_-;) —y2 sinx=0» » 2 EERE T 2nd I
3
%;%} Z-Jx}-{—e“x —0 EEEE T} 2 EE ] 3rd L]
So thatZ 4 2 + 10 y = sin 2x is an equation of the .......... order
- e ‘4:‘
9
d2
Since in the equation Ex_z + 2 dx Y 10 y = sin 2x, the highest
2
derivative involved is -d—%; .
dx
Similarly,
(i) x =y? +1 isa.... order equation
.. dy ; . .
(ii) cos? x5 H¥y=1 isa.... order equation
N 2
: (iid) -‘LX - 3 ay 2v=x%isa ... order equation
(iv) (y3 + 1) = —xy =xisa... order equation
On to frame 3.
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First Order Differential Equations

(i) first, (ii) first, (iii) second, (iv) first.

Formation of differential equations

Differential equations may be formed in practice from a consideration
of the physical problems to which they refer. Mathematically, they can
occur when arbitrary constants are eliminated from a given function.
Here are a few examples:

Example 1. Consider y = A sin x + B cos x, where A and B are two
arbitrary constants.
If we differentiate, we get

Z“z‘Acosx B sin x

d2
and W =—Asinx —Bcosx
which is identical to the original equation, but with the sign changed.
d’y _ d’y

ie. L2y 'd2+y 0

This is a differential equation of the ...... order.

second

Example 2. Form a differential equation from the functiony =x + }A—

We have y=x +%=x+Ax"1
LAy a2, _A
iy 1-Ax 1 P

From the given equation, %= y~x L A=x(y—x)

LAy _x(y =x)

T dx ! x

yox _x—ytx _2x—y
x x x

-
=2x—
dx Y

=]-

This is an equation of the ...... order.

4
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5

Example 3. Form the diff. equation fory = Ax* + B x.
We have y=Ax? +Bx 6]

Zy =2Ax+B (i)

Now one more.

i d2y - _1d%y
T2 2A (1121) A o
. o dy__ dy +
Substitute for 2A in (ii) e X o B
~dy_ dy
B dx dx

Substituting for A and B in (i), we have
2
‘_i_.l’ x(_Z —x ‘Q’)

y=xt " 2dx? dx 7 dx?
x*dy . dy_ ., dy
=_— —<%< 4 —_ —
7 dx Tax T dx?
o dy Xt dy
Y TXax 2 dx?
and this is an equation of the .......... order

second

If we collect our last few results together we have:

y=Asinx + B cosx gives the equation ™ }; +y=0 (2nd order)
dy _x? d’y
= 2 k2] b2l b = —— e — _
y=Ax? +Bx YEX T (2nd order)
_A_ 2 » *y iy. =
y= x+x X 2x ~y (Lst order)
If we were to investigate the following, we should also find that
y = Axe* gives the diff. equation x-Z——y(l +x)=0 (lst order)
- - a: d
y=Ae?* +Be* » o > » dx); +10 di + 24y =0 (2nd order)

Some of the functions give 1st order equations: some give 2nd order
equations. Now look at these five results and see if you can find any
distinguishing features in the functions which decide whether we obtain
a 1st order equation or a 2nd order equation in any particular case.

When you have come to a conclusion, turn on to frame 7.
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A function with 1 arbitrary constant gives a 1st order equation.
» » » 2 arbitrary constants » » 2nd order

Correct, and in the same way,

A function with 3 arbitrary constants would give a 3rd order equation.

So, without working each out in detail, we can say that

iy y=e + Bx) would give a diff. equation of .......... order
i) "2X (A + Bx) 1d gi diff. equati f d
11 = X 1 39 ” ELRR T [T} ? ’
(i) y=A porra A
(iii) y =e** (A cos 3x + Bsin 3x) » » » P e »
(i) 2nd, (ii) 1st, (iii) 2nd
since (i) and (iii) each have 2 arbitrary constants,
while (ii) has only 1 arbitrary constant.
Similarly,
(i) x2 _;_i}_) +y =1 is derived from a function having ........ arbitrary
* constants.
(i) cos2xgZ =1-y » »  a function having ........ arbitrary
X constants.
2
(iii) Z—% +4 gZ +y =g » a function having ........ arbitrary
x x constants.
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(@) 1, (i) 1, (i) 2

So from all this, the following rule emerges:
A st order diff. equation is derived from a function having 1 arbitrary

constant.
A 2nd 3 53 53 33 3 3 33 > 3 2 arbitrary
constants.

An nth order differential equation is derived from a function having n

arbitrary constants.

Copy this last statement into your record book. It is important to
remember this rule and we shall make use of it at various times in the
future.

Then on to frame 10.

10

Solution of differential equations

To solve a differential equation, we have to find the function for which
the equation is true. This means that we have to manipulate the equation
s0 as to eliminate all the differential coefficients and leave a relationship
between y and x.

The rest of this particular programme is devoted to the various
methods of solving first order differential equations. Second order
equations will be dealt with in a subsequent programme.

So, for the first method, turn on to frame 11.
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Method 1 By direct integration 11
If the equation can be arranged in the form% = f(x), then the
equation can be solved by simple integration.
dy 2
E. 1 == —6x +
xample T 3x“—6x+5
Then y=g(3x2—6x+5)dx=x3—3x2+5x+C

ie. y=x*-3x*+5x+C

As always, of course, the constant of integration must be included. Here
it provides the one arbitrary constant which we always get when solving
a first order differential equation.

Example 2. Solve xﬂ =5x3+4
dx
In this case, Iy 3
dx X
SO, Y=
3
y= _5§x_ +4Inx+C 12

As you already know from your work on integration, the value of C
cannot be determined unless further information about the function is
given. In its present form, the function is called the general solution
(or primitive) of the given equation.

If we are told the value of y for a given value of x, C can be evaluated
and the result is then a particular solution of the equation.

Example 3. Find the particular solution of the equation &* % = 4, given
that y =3 whenx =0.

First re-write the equation in the form%=j—x =4e7*

Then y= 546_’“ dx=—4¢*+C

Knowing that when x = 0, y = 3, we can evaluate C in this case, so that
the required particular solution is
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13

e |

Method 2 By separating the variables

If the given equation is of the form% =f(x, ), the variable y on the

right-hand side, prevents solving by direct integration. We therefore have
to devise some other method of solution.

Let us consider equations of the formg—— =f(x) .F(») and of the form
a _Jx) (x) i.e. equations in which the right-hand side can be expressed as
ax EpY P
products or quotients of functions of x or of y.

A few examples will show how we proceed.

dy _ 2x
Example 1. Solve oy

We can re-write thisas  (y + 1) dy =

Now integrate both sides with respect tox

j(“ 1)%dx=jhdx ie. j(y+1)dy=f2xdx

2
and this gives % +ty=x2+C
dy _ )
14 Example 2. Solve v (T+x)(d +y)
1 dy _
—*1 +y d—x =] +x
Integrate both sides with respect to x
j1+ydxdx J.(1+x)dx fl+y dy =f(1+x)dx

In(l+y)= x+-2—+C

The method depends on our being able to express the given equation in

the form F(y) = —f(x). If this can be done, the rest is then easy, for

we have JF(y) dx Jf(x) dx . j Fo)dy = ff(x) dx

and we then continue as in the examples.

Let us see another example, so turn on to frame 15.
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L

dy _ 1+y .
Example 3. Solve ik (i)
This can be written as @ = —
l+ydx 2+x

Integrate both sides with reSpect tox
1
1+3 y dx f dx

fl Ty fm dx (ii)

S In(l+y)=In(2+x)+C
It is convenient to write the constant C as the logarithm of some other

constant A In(l+y)=In(2+x+nA
L l+ty=AQ+x)

Note: We can, in practice, get from the given equation (i) to the form
of the equation in (ii) by a simple routine, thus:

dy _1+y

dx 2+x
First, multiply across by the dx L4y

dy = 2+x ax
Now collect the ‘p-factor’ with the dy on the left, i.e. divide by (1 +y)
1 1

14y dy = 2+x
Finally, add the integral signs

f1+y dy f—-—~2+xdx

and then continue as before.

This is purely a routine which enables us to sort out the equation
algebraically, the whole of the work being done in one line. Notice, how-
ever, that the R.H.S. of the given equation must first be expressed as
‘x-factors’ and ‘y-factors’.

Now for another example, using this routine
dy _ J’ + XJ’
dx x*y-x?
First express the R H.S. in ‘x- factorg and ‘y-factors’
dy _y-(1+x)
dx x*(@-1)
Now re-arrange the equation so that we have the ‘y-factors’ and dy on

the L.H.S. and the °x-factors’ and dx on the R.H.S.
Soweget i

Example 4.  Solve
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We now add the integral signs

-1 1+x
j yy2 o =f &

and complete the solution

[ e

Slny+yt=hx-x'+C

. 1 1
LI LS
s lny+y Inx " C

Here is another.

2
Example 5.  Solve %=y = 1
yi-
Re-arranging, we have dy = dx
1_ dy =—dx

Which gives .....ccoeiciiiieiieieiceeecee e
1 y—-1_
17 2lrl}H_l—lrlx+C
N Sl o
.ln/_H 2lnx+Iln A
Dl g 2
ST Ax

y=1=Ax*(+1)

You see they are all done in the same way. Now here is one for you to do:

dy _x*+1
4 dx y+1
First of all, re-arrange the equation into the form
F)dy =f(x) dx

Example 6. Solve

i.e. arrange the ‘y-factors’ and dy on the L.H.S. and the ‘x-factors’ and

dx on the R.H.S.
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, 2+ 18
y(y+1)dy=xx dx
dy _x*+1
for ya IS
) _x*+1l
..xydy—y+ldx
2+
f-y(v+1)dy=xx Lax

So we now have
S(y2 +y)dy=|\(x +l) dx
x

Now finish it off, then move on to the next frame.

19

3 2 2
l-{-L =_£_
375 2+1nx+C

DO0n00oO0O0O0pDCcCcO000O0C0U000oCcoO00no0ooOoo0ooCoDo0on

Provided that the R.H.S. of the equation Z—J): = f(x, y) can be separated

into ‘x-factors’ and ‘y-factors’, the equation can be solved by the method
of separating the variables.

Now do this one entirely on your own.

Exagmple 6. Solve x% =y +xy

When you have finished it completely, turn to frame 20 and check your
solution.
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20 Here is the result. Follow it through carefully, even if your own answer

is correct. dy . dy \
—— =y + Lox—=—=yp(l+
Xx—r=ytxy Loxm=y(1tx)

xdy=y(l+x)dx

Ay _1Ex
y X

j i-dy = ﬂ%+ 1) dx

Slny=lnx+x+C

At this stage, we have eliminated the differential coefficients and so we
have solved the equation. However, we can express the result in a neater

form, thus:
Iny-lnx=x+C
g ln{Z} =x+C
x
%ci =8t e =X f Now €€ is a constant; call it A.
-i}-= Ae¥ Ly=Axer
Next frame.

21 This final example looks more complicated, but it is solved in just the
same way.We go through the same steps as before. Here it is.

Example 7. Solve 1y tan x%ﬁ (4+3?) sec?x

First separate the variables, i.e. arrange the ‘y-factors’ and dy on one
side and the ‘x-factors’ and dx on the other.

Sowe get oooceiieriiine,
22 Y _ 4 =seczxd
4+y? Y “tanx ¥

Adding the integral signs, we get

2
y [ sec’x
j4 +y? dy S tanx &
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23

%ln(4+y2)=lntanx+C

This result can now be simplified into:

In(4+y*)=21Intanx +1In A (expressing the

. 2 2 constant 2C as In A)
L 4+y° =Atan‘x

Ly? =Atan’x—4

So there we are. Provided we can factorize the equation in the way we
have indicated, solution by separating the variables is not at all difficult.
So now for a short revision exercise to wind up this part of the programme.

Move on to frame 24.

24

Revision Exercise

Work all the exercise before checking your results.
Find the general solutions of the following equations:

1 @y

' dx x
2. Do+ (x+1)
3 cos2x%=y+3
4 %=xy—y
5 Slill);.gl=cosx

When you have finished them all, turn to frame 25 and check your
solutions.
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2 5 Solutions
' d
1. )

__=_»X . Ld =_1dx
X X "J‘y 4 fx
Llny=lnx+C
=lnx+InA
Ly = Ax
2. dy"(y+2)(x+l)

. fy+2 dy=f(x+l)dx

. x2
Sl +2)=T rx+C

3. cosx‘—b—}=y+3

dx

A1 b1
..Jy 3 dy _jc—_oszx dx

=|sec?x dx

In(y +3) =tanx+C

dy . ay

4. —SExy -y == -

P A A o (C Rl )
1
—dy=\(x—1)dx
Sy y 2( )

=X _

lny—2 x+C

5 sinx dy _
T+y dx cosx

1 _| cosx
flw“y dynjsinx dx
“In(l+y)=Ilnsinx+C

=lnsinx+1n A
1+y =Asinx

Ly =Asinx—1
NoDOooOoOO0OoOOO00CcO0000O0OOO000OnooooUooooan |

If you are quite happy about those, we can start the next part of the
programme, so turn on now to frame 26. |
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' Method 3 Homogeneous equations — by substituting y = vx 2 6
dy _x+3y
dx 2x
This looks simple enough, but we find that we cannot express the R.H.S.
in the form of ‘x-factors’ and ‘y-factors’, so we cannot solve by the
method of separating the variables.
In this case we make the substitution y = vx, where v is a function of x.

Here is an equation:

So y=vx
Differentiate with respect to x (using the product rule).
.y dv dv
L=yl tx =y tx o=
ax L+x dx © Vdx
x+3y x+3vx _1+3y
A = =
Iso o % 5
dv _1+3y
Th 1 + x— =
e equation now becomes ¥ +x 2
. xﬂ) _1t3v
T Tdx 2
1+3v-2 14y
2 2
. x_d_v 1ty
T hdx 2

The given equation is now expressed in terms of ¥ and x, and in this
form we find that we can solve by separating the variables. Here goes:

2 . [1
j1+vdv —S‘;dx

L 2In(l+y)=lnx+C=lnx+InA
(1+v)> =Ax

But y=vx v={);)} (l +}—Q2 =Ax

which gives (x+y): =Ax®
Note. % :%EZ is an example of a homogeneous diff. equation.
X
This is determined by the fact that the total degree in x and y for each
of the terms involved is the same (in this case, of degree 1). The key to
solving every homogeneous equation is to substitute y = yx where v is a
function of x. This converts the equation into a form in which we can
solve by separating the variables.
L Let us work another example, so turn on to frame 27.
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= — _
27 Example 2. Solve %:x_t}_’_ '

Xy
Here, all terms on the R.H.S. are of degree 2, i.c. the equation is
homogeneous. .. We substitute y = vx (where v is a function of x)

. dy dv
o= =y + x—
ax "
and X1yt x2+vix? 142
Xy VX v
The equation now becomes
dv_1+p*
+ x—=
YT x v
dv_ 149" _
dx 12
1+v2—y? 1
v v
&L
dx v

Now you can separate the variables and get the result in terms of v and x.

Off you go: when you have finished, move to frame 28.

2
28 12=1nx+C
1
for fvdv= —dx
X

All that now remains is to express v back in terms of x and y. The
substitution we used wasy =vx .. v =%

A e

y2=2x*(Inx+C)

Now, what about this one?

dy_ 2xy +3y*

Example 3. Solve dx ?Txy

Is this a homogeneous equation? If you think so, what are your reasons?

When you have decided, turn on to frame 29.
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Yes, because the degree of each term is the same

Correct. They are all, of course, of degree 2.
So we now make the substitution, y =

y = vx, where v is a function of x

Right. That is the key to the whole process.
dy_ 2y + 3yF
dx x* +2xy
So express each side of the equation in terms of v and x.

and

dy av
—= + _—
ax U Y ax
2xy + 3y _2ox? +307x7 _ 20+ 3y’
x? + 2xy x2 + 2vx? 1+2v
dv _2v+3v?

So that v+

*ax 1+

Now take the single » over to the R.H.S. and simplify, giving

x.d_v.z
dx ....................

31
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32 dv _2v+3?

Yo 1w Y
=2v+31/‘"—v—2v2
1+2v

33 Jl+2v f%dx

dv
v+v?

Integrating both sides, we can now obtain the solution in terms of v and
x. What do you get?

34 Wln(v+v2)=lnx+C

=lnx+InA
Lvt+v? = Ax

We have almost finished the solution. All that remains is to express » back

in terms of x and y.
Remember the substitution was y = vx, so that v = y
So finish it off.
Ther move on.
35 (o
for v+v? = Ax and v=%:—
L2V A
x x*
Xy +y? = Ax?
And that is all there is to it.
Turn to frame 36. :‘
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Here is the solution of the last equation, all in one piece. Follow it
through again.

To solve

dy_2xy+3y7
dx  x* +2xy

This is homogeneous, all terms of degree 2. Put y =vx

Example 4.

When you have completely finished it, turn to frame 37 and check your

solution.

But

. dy dv
L=yt x—
dx v xdx

2xy +3p? _ 2ux? +3vx® 20+ 3p?

xX+2xy  x*+2mx* 1+

_d_v=2v+3v2
dx 1+2v
dv _2w+3y*

Yax 1+

_w+3? -y =27

LytXx

1+ 2
* .C_il)_=__v+vz
“Xax 1+

N A
j N dv—dex

S In(r+y?)=lnx+C=lnx+inA

Solve

y+v? =Ax

y=vx Lv=

%=

&

<+

® .I‘<

%~
1]
>

X

Lxy+tyr=Ax®

Now, in the same way, you do this one. Take your time and be sure that
you understand each step.

d
(x* + yz)-d—i =xy

36
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37 Here is the solution in full.

d X
@y Lexy L=

Vo ax x4y
dy _ dv
ax ¥ ax

xy vx? v
x2‘+y x +];T_2 1+172—
dy v

LYVt Xx—=
dx 1+y?

dv v
dx I+?

xdv v-v-v _ =®
dx 1+v° 1+v

" j‘l+v dv—-fldx
v X

J(V"3 +—i—) dv=-Inx+C

2

Put y=vx ..

and

-y

.o—v? _

.—-—2~+1nv——lnx+lnA
1
lnv+lnx+an=§7

1

In Kv. ='2?
2

:.).) g =X
But 14 PR any 272-

2% In Ky = x?

This is one form of the solution: there are of course other ways of
expressing it.

Now for a short revision exercise on this part of the work, move on to

frame 38.
3 8 Revision Exercise
Solve the following: 1. x-y) % =x+y
dy dy
24V _ 2, .2 2 4 )8 =y — 32
, 2. 2x ot 3. (x* +xy) ST

When you have finished all three, turn on and check your results.
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The solution of equation 1 Ayl ! »? 3 9
can be written as tan {} =lnA+lnx +§ln ! R

Did you get that? If so, move straight on to frame 40. If not, check your
working with the following.

N Ldy _xty

1. (x y)a Xty L& =5

= 'ﬂ: C_l_z x+y=1+v
Put I TV gy x-y 1-v
- _l+y .xﬂ:1+1»_V=1+v—v+v2=1+v2
R ™l g T ldx 1-v 1—» 1-v»
o (S S 1 L A P
..f1+v2dv—jxdx o _H1+v2 1+Vz}dv Inx+C

S tan! v—-lz-ln(l +y)=lnx+InA

2
But y=L - tar! {Z;=IHA+lnx+—lln(l +5)
x x ) o

This result can, in fact, be sifnplified further.

L Now on to frame 40.

Equation 2 gives the solution

x:)_‘xy=lnx+C 40

If you agree, move straight on to frame 41. Otherwise, follow through
the working. Here it is.

2.4.:2: 2 2 Q:ﬁiy_z
2 2x ax XY T T2xe
. dy dv . x2+y? xP4vix® 1402
Put = L =y 2, Yo _ -
I A A A A 2xt 257 2
. dv_1+v? . _dv_1+v2 1=+ (v—1)?
vtx = LoX— == v 3 =
2

J‘(-V_——l_)"’ dv=f31;dx —2V—i—1=lnx+C

But 1% =Z and
X

2 =lnx+C —21— =inx+C
-~y X—y

On to frame 41.
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41 One form of the result for equation 3is | xy = A & | Follow
through the working and check yours.
dy LAy _xy -y
Trx)E=xy—yp? L X=
3 "+ xy) ax Y dx x* +xy
. ady dv xy—yr _wxt—-vix? _v—?
= o= =Vt X — = =
Put y=wx TV x2+xy  xPHwx® 1ty
dv _v—y?
Vtx—=
Yax Ty
xdv v—p? _ v—v —v—yr 2y?
dx 1+v 1+v )

e
I3

Ly j—dx
+— dv = —f—-dx
v x

. lnv—%=—2lnx+C‘ LetC=1n A

lnv+21nx=1nA+%

ln{l. x2} =lnA+~
X Yy

Now move to the next frame

L oxy=A e

4 2 Method 4 Llnear equations — use of mtegratmg factor

.,

Consider the equation
q dx

Sy =e?*

This is clearly an equation of the first order, but different from those we
have dealt with so far. In fact, none of our previous methods could be
used to solve this one, so we have to find a further method of attack.

In this case, we begin by multiplying both sides by e**

SXZy+ySe

We now find that the L. H.S. is, in fact, the differential coefficient of

y eSX

A

5X — 2X

.€

=X

5xX

. This gives

=X

Now, of course, the rest is easy. Integrate both sides w.r.t. x.

e7x
NSTA e3* =|e™ dx = 7—+ C
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e?* ~5x 43
==+
Y= Ce

Did you forget to divide the C by the ¢>*? It is a common error so watch
out for it.

0oooConO00NCcCoCO0ODNOoDoOoO000Noodoo0ooooanaooon

The equation we have just solved is an example of a set of equations

of the form% + Py = Q, where P and Q are functions of x (or constants).

This equation is called a linear equation of the first order and to solve any
such equation, we multiply both sides by an integrating factor which is

always eJP 4% This converts the LH.S. into a complete differential
coefficient.

In our last example,d—i +5y =™ P=5. f P dx = 5x and the
integrating factor was therefore e>* . Note that in determining jP dx,

we do not include a constant of integration. This omission is purely for
convenience, for a constant of integration here would in fact give a
constant factor on both sides of the equation, which would subsequently
cancel. This is one of the rare occasions when we do not write down the
constant of integration.

So: To solve a differential equation of the form

dy
-+ =
Py=Q
where P and Q are constants or functions Of x, multiply both sides by

. . Pd
the integrating factor ef ¥
This is important, so copy this rule down into your record book.

Then move on to frame 44.

Example 1. To solve %- y=x 4 4
If we compare this with% + Py = Q, we see that in this case
P=-1andQ=x

fP dx

The integrating factor is always e and here P=—1.
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a5

We therefore multiply both sides by e™.

LeX %—y eX=xe

g(i— {e’x y} =xe* Lye* =fx e* dx
The R.H.S. integral can now be determined by integrating by parts.

—X

Ly =x-1+Cé Ly =Cef—x-1
The whole method really depends on

(1) being able to find the integrating factor,
(ii) being able to deal with the integral that emerges on the R H.S.
Let us consider the general case.

46 Consider @ + Py = Q where P and Q are functions of x. Integrating

dx
JPdx . %.edex dex= edex

Q

You will now see that the L.H.S. is the differential coefficient of y e
Pd
d {y e.f x}= Qedex

..'E‘X'

factor, IF = ¢ +Pye

dex

Integrate both sides with respect to x
Pd
ye'[ x=erdex. dx

This result looks far more complicated than it really is. If we indicate
the integrating factor by IF, this result becomes

y.IF =fQ.IF dx

and, in fact, we remember it in that way.
So, the solution of an equation of the form
—;% + Py = Q(where P and Q are functions of x)

is given by y.IF=SQ.IFdx,where IF=eIde

Copy this into your record book.  Then turn to frame 47.
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So if we have the equation 47
d_y+ 3y =sinx
dx
Y. o=
[dx thy Q}

then in this case

() P=3; (ii)dex=3x; (iii) IF = 3% 48

D00000O0O0O0OO0OU0OoOO0D000QODODO00O00000CcO0O0OO00oOOoon

Before we work through any further examples, let us establish a very
useful piece of simplification, which we can make good use of when we
are finding integrating factors. We want to simplify el® F, where F is a
function of x.

Let y=elnF
Then, by the very definition of a logarithm, Iny =In F
Ly=F . F=elnF je elnF=F
This means that el (function) = function. Always!
elnx =x
eln sinX = gin x

eln tanhx = ¢anh x

Similarly, what about eX In F? If the log in the index is multiplied by
any external coefficient, this coefficient must be taken inside the log as
a power.

eg. e2lnx=gln(x”) =x2

e3Insinx = gln (sinsx) =gin3x
‘ ) elnx=pln(x1) =41 =L
X
w and etlnx= ...
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1 _
50 2 for e2nx =pln(x7?) = y-2 =£z
So here is the rule once again: el F = F
Make a note of this rule in your record book.

Then on to f”’,’,”f,ﬂ . o

51 Example 2. Solve x% +y=x3
First we divide through by x to reduce the first term to a single %
ie. % + )1? y=x2
. d .
Compare with ,:—EZ%+Py=Q:| & =% and Q=x?

IF=edex dex=j%dx=lnx

L IF=elnx=x :[F=x
The solution is y.IF= (Q.IF dax
=1 42 =1,3 _x* . _x4
so yx=|lx‘xdx=\|x dx—-Z+C O xy_I+C

Move to frame 52.

dy
= 4+ =
dx ycotx =cosx

5 2 Example 3. Solve

. d P=cotx
Compare with ’:%+Py=()} {Q=cosx

IF = ¢JP ax Jde=Scotxdx=jc9sx dx=Insinx
sin x

L IF =elnsinx =gjp

y.IF=fQ.IFdx .'.ysinx=jsinxcosxdx =%)£+C
=512x+Ccosecx

Now here is another.
Example4. Solve  (x+ 1)% +y=(x+1)?

The first thing iS t0 ......cccooveiieiiiiii e,
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Divide through by (x + 1) 53
Correct, since we must reduce the coefficient of g}i to L.
: 92)+ ! =x+1 y
Cdx x+10 7
. dy
=+ =
Compare with ax Py=Q
. __1 -

In this case P_x+1 and Q=x+1

{1 _
for J‘de—j\x+1 dx=In(x+1)
LIF=eln@*D=(x+1)
The solution is always y.IF =5Q. IF dx

and we know that, in this case, [F=x+1and Q=x + 1.

So finish off the solution and then move on to frame 535.

| Here is the solution in detail:

| y.(x+1)=j(x+1)(x+l)dx

| =j(x +1)% dx
| _(xt1)?
| T3 +C
i 2
| N 1) N C
3 x+1
Now let us do another one.
| Example 5.  Solve x% -Sy=x"
| In this case, P= ... Q= e
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56 S RPN
P= x’Q x

. dy _ =47

for if xdx Sy=x

LAy S 6

AR ]

So the integrating factor, IF= .........................

b7 T
IF=x7° =—z

X

{Pdx 5
for IF=e¢ dex=—f;dx=—51nx
S [F=eShxo ne®) _ s 1
xS
So the solution is

Did you remember to multiply the C by x°?
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDGDDDDDDDD
Fine. Now you do this one entirely on your own.
Example 6. Solve ¢! —xﬂ% -xy=1. |

When you have finished it, turn to frame 59. |
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»V(A —xH=sin'x + C '

Here is the working in detail. Follow it through.
\dy
— 2 —— — =
(I —-x*) T 1

. dy X L

Tax -2V T Iex?
IF = /P dx dex=fﬁ2 dx =iln(1 -x?)
L IF=eiind-x?) =eln{(1 -xz)é}z(l _xz)%

Now y.IF=fQ.IF dx

_x2

SV —x?) =g1 1 V(1 ~x?).dx

ZJ\_(—I-—LXT) dx=sinlx +C

V(1 -x¥)=sintx +C
Now on to frame 60.

In practically all the examples so far, we have been concerned with
finding the general solutions. If further information is available, of

course, particular solutions can be obtained. Here is one final example
for you to do.

[ Example 7. Solve the equation
WD 3
| (x 2)27; y=(x-2)
given that y = 10 when x = 4.
Off you go then. It is quite straightforward

When you have finished it, turn on to frame 61 and check your solution.

59
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61 2y=(x—2)° +6(x - 2)

Here it is:

-2y = -2y

dy _1 = (v _ 22
dx x—2'y x=2)

_1 _ _
Jde—Jx_z dx=-In(x—2)

LJF=eglx-2 < eln.{(x" 2)-1} =(x-2)!

— 3
LYE x > 2 + C(x — 2) ... General solution.

Whenx =4, y=10
10=8§+c.2 . 2C=6 - C=3

L2y=(x—2)° +6(x~-2)

62 Revision Exercise

Solve the following:

1. %+3y=e4"

dy .

— =
2. xdx y=Xxsinx
3. tanx-—(iJi ty=secx

dx ‘

Work through them all: then check your results with those given in
frame 63.
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Results: 6 3

e4x
1. yEt Ce3 (IF = &%)
2. xy=sinx—xcosx+C (IF = x)
3. ysinx=x+C (IF = sin x)

NONo0O0NOoOoO0000Oo000O0Q0000O00DO00000000CcOoOooO

There is just one other type of equation that we must consider. Here

is an example: let us see how it differs from those we have already dealt
with.

dy 1 __ 3
L -y =
To solve 7 LY =Xy
Note that if it were not for the factor y? on the right-hand side, this

equation would be of the form Z—i + Py = Q that we know of old.

To see how we deal with this new kind of equation, we will consider
the general form, so move on to frame 64.

64

Bernoulli’s equation. Equations of the form
dy n
—+ =
dx Ry =Qy

where, as before, P and Q are functions of x (or constants).

., [d

R Y A
dy 1y FOL D
(2R3

The trick is the same every time:
(i) Divide both sides by " . This gives

y_n _Ed.'.y_

+ 1-n _
Ix Py Q

(ii) Now put z=y'"

so that, differentiating,-z—i =
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dz=(l~n) -ndy

65

So we have dx dx
dy .
+
e TEY = Q" 6
y'”dy+ Pyin"=Q (ii)
Putz=p"" so that-d— =(1-n)yy™ Zy
If we now multiply (ii) by (1 —n) we shall convert the first term into
_di_ nay i-n
iy A =my " (1 =m Py =(1-m)Q
. —.1-n dz _ ., _ _n dy . .
Remembering that z = y*~" and that T (1-n)y rrE this last line
can now be written %+ P, z=0Q,

with P, and Q; functions of x.

This we can now solve by use of an integrating factor in the normal
way.

Finally, having found z, we convert back to y using z = y!™#
Let us see this routine in operation — so on to frame 66.

1
66 Example 1. Solve %’ V= xy?
(i) Divide through by y2, giving .......coveeereeiorrercnenn
2 dy +1_ -1 —
Yoax Tx x
67 (i) Now putz =p'™" ie.inthiscase z=y!"2 =y}
=yl LAy
2=yt L =
(iii) Multiply through the equation by (—=1), to make the first
term dz dy 1
4z o .
dx Y ax xy x
dz 1 o dz
L 4  p,=
s0 that o x which is of the form ™ Pz =Q so that you can
now solve the equation by the normal integrating factor method. What
do you get?

When you have done it, move on to the next frame.
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: y=(Cx-x*y} 68

Check the working:
dz_ 1 __
dx x
IF = ¢l P dx Sde=S~;l-c-dx=—lnx

CQF =X 2 () 2 =%—

zIF = S Q.IFdx .. 2—1=S—x.—1dx
x x
-.i=g—1 dx=-x+C
X
Lz=Cx—x?
But z=y 1t o —}1)-= Cx—x* o y=(Cx—x?)!
Right! Here is another.

Example 2. Solve  x%*y —x° dy =% cosx

First of all, we must re-write this in the form—}i +Py=Qy"

So, what do we do?

Divide both sides by (—x3) 6 9
| . dy 1 4 cosx
| giving R -

Now divide by the power of y on the RH.S., giving

e —

| .

| ady 1 3 _ cosx 70
\ Y dx xy x>

! Next we make the substitution z = y*~™ which, in this example, is

‘ z= i-4 = -3

‘ y'h=y

‘ dz

| nz=y3 and ==
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n

If we now multiply the equation by (=3) to make the first term into

dz
a},wehave
a4 dy 1 _5 _3cosx
RN A S
3V ax 3y x3
ie g+_3iz=3cosx
Sdx o x x3

Finish it off and then check with the next frame.

This you can now solve to find z and so back to y.

3 X

For:

Y =3sinx+C
dz 3 3 cosx
St =
dx Xx x
1F=edex dex=f%dx=3lnx
- IF = & 1nx___eln(x3)=x3
zIF =f Q.IF dx
Lzx® =J‘£C3)’Si x3 dx
x
=f3cosxdx

Lzx® =3sinxtC

But, in this example, z =y~
3

—xT =3sinx+C
y

.3 = x*

-y 3sinx +C

Let us look at the complete solution as a whole, so on 1o frame 73.
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Here it is: 73

To solve x*y—-x3 % =y* cosx
dy 1 _ y*cosx
ax x° x*
ady 1 5 cos x
Yoax x? x3
- _ - dz _a4 dy
Y R R AP v £
Put z=y y y e 3y T

+
3y dx x x3
e Q+3 z_3cosx
1. dx x 3
IF = fPax dex j—dx 3lnx

L IF =X = nx )=y

. 3cosx
L zx3 =J—3x3 dx

X

=f3cosxdx

zx? = 3sinx+C

I
But z=y X
L= =3sinx+C
y
* 3 ::v__L
¥ 3sinx +C

They are all done in the same way. Once you know the trick, the rest is
very straightforward .

On to the next frame.

Here is one for you to do entirely on your own. 74
Example 3.  Solve 2y -3 Zy =% &

Work through the same steps as before. When you have finished, check
your working with the solution in frame 75.
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3 _ 562x
y —e5X+A
_ LAY _ a 3x
2y 33; yre
dy 2 et
Tdx 3 3
_42——.2. _3_-:—-.83_x
dx 3 3
Put z=yl* =73 _'_.ﬁzi:_ 44y
Y Y dx 3 dx

Multiplying through by (—3), the equation becomes

—3 dx

_4_d_y+2y—3=e3x

. dz
ie.— +2z=e>*

IF = ¢?¥

dx
IF = ¢ JP dx '[de=f2dx=2x
Lzer =j 3% e®* dx =f e>* dx
5x
=g+ C
2X 5x
_ .3 ._e _¢€ + A
Butz=y S s
3 SeZX
y eSx+A

On to frame 76.

76 Example 4. Solve  y-— h% =x(x+1)y3

dy

Finally, one further example for you, just to be sure.

First re-write the equation in standard form-&; +Py=Q)y"
This GIVES «..ooviiiiiiei e
dy 1 x+1)y°
dx  2x 2

i Now off you go and complete the solution. When you have finished,
! check with the working in frame 78.
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2 _ 6x
Y TP 3T HA
Solution:
dy_1 _ x+Dy>
*x =Y T
sdy 1, (xt])
& Y 3
_ 13 _ -2 .dz -3 dy
= = L =—===-2 -
Put z=y y » y o
Equation becomes
3 dy _
2 3 % + 2 —
e A Gy
dz
= t—z=x+
ie o z=x+t1
IF =efPdx J.de=J%dx=lnx
L IF=el* =y

z.IF =J.Q.IF dx . zx =J'(x + 1) xdx

zx=—3 +7 +C
23 +3x2 + A
Butz =y* —;—2 = G
2 — ox
Y 2¢* +3x2 + A

0000000000000 ND00000000000DCO00000000000

There we are. You have now reached the end of this programme,
except for the Test Exercise that follows. Before you tackle it, however,
read down the Revision Sheet presented in the next frame. It will
remind you of the main points that we have covered in this programme
on first order differential equations.

Turn on then to frame 79.
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79 Revision Sheet

1. The order of a differential equation is given by the highest derivative

present.
An equation of order n is derived from a function containing

n arbitrary constants.

2. Solution of first order differential equations.

(a) By direct integration: % = f(x)

gives y =ff(x) dx
(b) By separating the variables: F(y). % =f(x)

givesJ“F(y) dy = f f(x)dx

(c) Homogeneous equations: Substitute y =vx

gives v + x Z—:= F(v)

(d) Linear equations: % +Py=Q
Integrating factor, IF = gJP dx

and remember that " ¥ = F

gives y IF =fQ. IF dx

(¢) Bernoulli’s equation:% +Py=Qy"

Divide by y™: then put z = y'™"
Reduces to type (d) above.

00000000000 oooOo0DOo0o0o0ooOooooooonooaoaa

If there is any section of the work about which you are not perfectly
clear, turn back to that part of the programme and go through it again.
Otherwise, turn on now to the Test Exercise in frame 80.
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The questions in the test exercise are similar to the equations you 80
have been solving in the programme. They cover all the methods, but are
quite straightforward.

Do not hurry: take your time and work carefully and you will find
no difficulty with them.

Test Exercise—XXII

Solve the following differential equations:

1. xd—y=x2+2x—3
dx

2.+ ey

dy = ,3x
3. Ec+2y e
dy _ =12
4, X TyEx
5. 2D 3 in3x 4
dx
_
6. x cosy———siny 0

7. =3 +xy2)%=2y3

8. (x2—1)%+2xy=x

9. %+ytanhx=2sinhx

10. x%—2y =x3 cosx
D Yo

11. dx+; y

dy = y3,2
12. xa+3y x%y

630



Programme 22

Further Problems—XX1I
Solve the following equations.

1. Separating the variables

3P

3 dy: 2 i = =
2. (1+x )E x?y giventhatx=1wheny =2.
3. P+ Z=0
' dx

dy

4. cosyt(l+e™) sinya

=(, given that y = n/4 whenx =0.
5. XXyt )+yi(x-— 1)d—y= 0
dx
1. Homogeneous equations
6. (2y —x)% =2x +y, given that y =3 when x = 2.

7. Gy 6 ) =0

dy
3 3y = 2
8. (x*+y°)=3xy r

d
—_— + =
9. y—-3x+(4y+ 3x)—l
10. (3 + 3xy2)—dy =y% +3x%y

1Il. Integrating factor
dy

e — = 3 + 2 _
11. XToTYEX 3x° — 2x
dy .
— =
12. T tanx =sinx
13 xP =y : = -
. x-d?— =x3 cosx, giventhaty =0 when x=7.

14. (1 +x2)%+ 3xy = 5x, given that y =2 when x = L.

5. Y

F R4 cot x = 5 e%°% % given that y = —4 when x = /2.
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Iv.

VL

Transformations. Make the given substitutions and work in much

the same way as for first order homogeneous equations.

16.

17.

18.

19.

20.

(Bx+3y - 4)dy“*(x+y) Putxty=vy
@-xﬁ)=&+x50@1 PMy=%

x-y-D+@+tx-1)—= y=0 Puty=x-1
@y—1x+n+(w—3x+®3§=o Putv=x-1

dy v
+xy +x2y?)== =
ylxy +1) +x(1 +xy +x2y )dx 0 Put y o

Bernoulli’s equation

21.

22.

23.

24.

25.

dy 3
Z 4=
dx y=xy

dy
dx

2)’

ty=yte

ty=y3(x-1)

@
I -2y tanx =y? tan’x

dy 3 capd
— + =
] ytanx =y~ sec'x

Miscellaneous. Choose the appropriate method in each case.

26.

27.

28.

29.

30.

Q1 —xz)gz =1+xy
Xyd —(1+x)/(*-1)=0

(8 =2y + 5p7) = (6 + 2y 1)

dy

71_)2_)) cot x =y*? sec2x, given y =—1 when x = 7/4.

2 _ dy =
y+(x 4x)a
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VIL. Further examples

31.

32.

33.

34,

3s.

36.

37.

38.

39.

40.

41.

42,

43.

. d . .
Solve the equation d—ic} =~y tan x = cos x — 2x sin x, given

that y = 0 when x = /6.

Find the general solution of the equation

A _ 2y 4yt
ax x° +2xy

Find the general solution of (1 + x2) dy =x(1 +y?).

Solve the equation x ) 4 2y =3x—1,giventhaty = 1

dx
when x = 2.

Solve x? Zy =y? —xyzi, giventhat y =1 whenx = 1.

Solve % =¢3* =% given that y = 0 when x = 0.

Find the particular solution of% + i— ¥ =sin 2x, such

that y =2 when x = n/4.

dy dy
24y _

I P ax

Obtain the general solution of the equation

Find the general solution of y2 + x

Qxy—- =x% —y?

By substituting z = x — 2y, solve the equation
iv x—2y+1
dx  2x -4y

given that y =1 whenx =1,

Find the general solution of (1 — x3 )%+ x%y =x%(1-x%).

Solve Zy Y =sin X, given that y =0 at x = /2.

Solve% +x+xy?=0,giveny =0 whenx = 1.
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44.

45.

46.

47.

48.

49.

50.

Determine the general solution of the equation

dy (1 2 } 1
BuC A S =
dx {x 1-x2 Y 12

Solve (1 +x2)%+xy = (] +x2)3/2

Solve x(1 +y?)—y(1 +x2)%= 0,giveny =2atx =0Q.

rtanf dr _ . . - _
Solve Z-72d- 1, givenr =0 when 6 = n1/4.

Solve % +y cotx = cos x, given that y = 0 when x = 0.

Use the substitution y =%, where v is a function of x only,

to transform the equation

dy y__
4L =
dx x xy

into a differential equation in » and x. Hence find y in terms
of x.

The rate of decay of a radio-active substance is proportional
to the amount A remaining at any instant. If A= A, at 1 =0,
prove that, if the time taken for the amount of the substance

to become%Ao isT,then A= Aq €™ @In /T prove also
that the time taken for the amount remaining to be reduced

to 715 Ao is 4327,
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1

Many practical problems in engineering give rise to second order
differential equations of the form

N J
adx +bd +cy—f(x)

where a, b, ¢ are constant coefficients and f(x) is a given function of x.
By the end of this programme you will have no difficulty with equations

of this type.
Let us first take the case where f(x) = 0, so that the equation becomes
a’ y dy
-4
a5z +b T cy=0

Let y =u and y = v (where « and v are functions of x) be two solutions

of the equation.
o Lty iy =0
Caxr ax ¢
d>v _dv

a7 b-g)—c-+cv—0

Adding these two lines together, we get

2 2
o282 ) <§: gv>+c<u+v> :

d du  dv 2u
Now—— (u+v)=~—+dx (u v) = axl

and

Z , therefore the

equation can be written

d* d
7(u+v)+bd—;(u+v)+c(u+v)=0

which is our original equation with y replaced by (u +v).

ie. If y =u and y = v are solutions of the equation a—'Z +b—‘z+ cy =0,

soalsoisy =u+v.

This is an important result and we shall be referring to it later, so make a
note of it in your record book.

Turn on to frame 2.
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Our equation was aa—x— +b Zy +cy =0.Ifa =0, we get the first order

equation of the same family

b%+cy=0 ie. d—y+ky=0 where k=%

dx b
Solving this by the method of separating the variables, we have
dy _ _ a _
ar ky = 3 jk dx

which gives

2

Iny=—kx+c

Ly=ekxre=gkx o0 = A kX (gince e is a constant)
ie. y=Aek>
If we write the symbol m for —k, the solution is y = A €™~
In the same way, y = A e™* will be a solution of the second order
. d%y dy o o . .
equation ”F +b— dx +cy =0, if it satisfies this equation.
Now, if y=Ae™*

- mx
Tx Ame
2

—sz = Am?* e™*

and substituting these expressions for the differential coefficients in the
left-hand side of the equation, we get

On to frame 4.
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4 aAm?e™ +h Ame™* + cAMX =

Right. So dividing both sides by A e™*  we obtain
am*+bm+c=0
which is a quadratic equation giving two values for m. Let us call these
m=m; and m=m,

ie. y=Ae™1¥ and y = Be™2* are two solutions of the given equation.
Now we have already seen that if y = 4 and y = v are two solutions so
alsoisy=u+v,
w If y = Ae™¥ and y = Be™2* are solutions, so also is

y =A™ 4 BM2¥

Note that this contains the necessary two arbitrary constants for a second
order differential equation, so there can be no further solution.

Move to frame 5.

dr ., dy :
5 The solution, then, of ¢ e + ba—+ cy =0isseen to be

y =A™ + BeM2¥

where A and B are two arbitrary constants and m,; and m, are the roots
of the quadratic equation am? + bm + ¢ = 0.
This quadratic equation is called the auxiliary equation and is obtained

. ) d*  dy 2 d¥y
directly from the equation a—% e Y 4 b + ¢y =0, by writing m? for e
dy
m fordx, 1 for y.
d?y dy
Example: For the equation 2d—— +5— Tx + 6y = 0, the auxiliary equation
is2m? +5m+6=0.
d’  .dy ‘

In the same way, for the equatlon—dx— + 3= e + 2y =0, the auxiliary
equation is .....c..ccoeeeeieeriennnnnnn.

Then on to frame 6.
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mi+3m+2=0 6

Since the auxiliary equation is always a quadratic equation, the values
of m can be determined in the usual way.
eg. ifm>+3m+2=0

m+1)(m+2)=0 " m=-1 and m=-2
. onof L Ay
. the solution Ofdxz +3dx+2y—015

y=AeX +B¢2¥

In the same way, if the auxiliary equation were m? + 4m — § = 0, this
factorizes into (m + 5) (m— 1) = O givingm = 1 or —35, and in this case the
solution would be ......................

Ly =Ae" +B e‘sﬂ 7

The type of solution we get, depends on the roots of the auxiliary
equation.

(i) Real and different roots

d’  .dv _ _
Example 1. g +5 ax +6y=0

Auxiliary equation: m?+Sm+6=0

Lm+2)(m+3)=0 . m=-2 or m=-3

.. Solution is y=Ae>™ +Be ¥
d’ _dy -
Example 2. P 7 dx +12y=0 |

Auxiliary equation:  m2—7x +12=0 |
m=3)(m—-—4=0 "~ m=3o0orm=4
So the solution is ........................ |

Turn to frame 8.
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8 y=Ae** +Be**

Here you are. Do this one.

. d? d
Solve the equation c_b?}; +3 %~ 10y =0

When you have finished, move on to frame 9.

Now consider the next case.

(ii) Real and equal roofts to the auxiliary equation.

d’ Ay o _
Let us take %2 +6 I +9y=0.

The auxiliary equationis: m?+6m+9=0
L(mt3)y(m+3)=0 . m=-3 (twice)

If m; = =3 and m, =—3 then these would give the solution
y=A€> +Be3X and their two terms would combine to give
» = Ce>*. But every second order differential equation has two
arbitrary constants, so there must be another term containing a
second constant. In fact, it can be shown that y = Kx e 3* also
satisfies the equation, so that the complete general solution is of

the formy = Aé3¥ + Bxe>*

ie. y =€ (A +Bx)

In general, if the auxiliary equation has real and equal roots, giving
m =my (twice), the solution of the differential equation is

y=e™*(A + Bx)

Make a note of this general statement and then turn on to frame 10.
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Here is an example: 10
Example 1. Solve— +4 Zy +4y =0
Auxiliary equation: m*+dm+4=0
(m+2)y(m+2)=0 . m=-2/(twice)
The solution is: y=€*(A +Bx)

Here is another:

Example 2. Solve + 10 Zy +25y=0

Auxiliary equation: m?+10m+25=0

(m+5)*=0 .. m=-5(twice)

y = €°*(A + Bx)
Now here is one for you to do:
Solve g +sgy+16y 0
When you have done it, move on to frame 11.
=& **(A+ Bx) 11
L d? d
Since if Ec—g)+83£-+16y=0

the auxiliary equation is
m*+8m+16=0

L (m+ 4?2 =0 . om=—4(twice)

L y=€**(A +Bx)
So, for real and different roots m=m, and m = m, the solution is

y=Ae™MX* 1 geM2¥
and for real and equal roots m = m, (twice) the solution is
y=e™*(A + Bx)

Just find the values of m from the auxiliary equation and then substitute
these values in the appropriate form of the result.

Move to frame 12.
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12 (iii) Complex roots to the auxiliary equation.

Now let us see what we get when the roots of the auxiliary equation
are complex.

Suppose m = a +jB, i.e.m; =a+jfand m, =a—jB. Then the
solution would be of the form

y=C latifx 4 pla—if)x
= (e eI 4 Do ¢ifx
= e {Celf* + D Ifx;
Now from our previous work on complex numbers, we know that
e =cosx +jsinx
e =cosx—jsinx
and that ejéx = cos fx +j sin Bx
¢IP*  cos Bx —j sin fx
Our solution above can therefore be written
y = e®{C(cos Bx +j sin fx) + D(cos fx —j sin x)}
| =¢% {(C + D) cos fx +j(C— D) sin fx}
y=e**{A cos fx + Bsin fx}
where A=C+D
B =j(C—-D)
! .. 1f m = a % jB, the solution can be written in the form

vy =e%* {A cos fx + B sin fx}

Example: If m=-22%j3,
then y=eé2*{A cos3x +Bsin 3x}
Similarly, if m =5 +j2,
then Py = i
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y=e>* [Acos2x + Bsin 2xﬂ

Here is one of the same kind:

dy

Solve d— 4d— +9y =0
Auxiliary equation: m:+4m+9=0
_—443/(16-36) _~4+/-20
2 2

—4 +
=TIV 5”/5 —2£j/5

In this case a =—2 and =+/5
Solution is: =€ (A cosv/5x + B sin/5x)

Now you can solve this one:

iy _,dy

dx? dx t10y=0

When you have finished it, move on to frame 14.

»y =e* (A cos 3x + B sin 3x)

Just check your working:

d*y __dy _
2510y =0

Auxiliary equation: m*=2m+10=0
2£4/(4 - 40)
2

_2%-36
| B 2 -

m:
1+i3

¥ =e" (A cos 3x + B sin 3x)

Turn to frame 15.

13
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|
15 Here is a summary of the work so far.

2y
Equations of the form ag,—f +b Cdi +cy=0

Aucxiliary equation: am?+bm+c=0

(i) Roots realand different ~m=m; and m=m,

Solution is y=Ae™M* + Be™2¥

(ii) Real and equal roots m = m, (twice)
Solution is y=em1*(A + Bx)

(iii)y Complex roots m=az*jf
Solution is y=e** (A cos Bx + B sin fx)

In each case, we simply solve the auxiliary equation to establish the
values of m and substitute in the appropriate form of the result.

On to frame 16.

16 Equations of the form Z Yy =0

d%y ,dy
Let us now consider the special case of the equation a———+ pE+ cy=0

2
when b = 0. 2 2 dx dx
ie ai—}:+cy=0 ie ij—y+£y=0
e dx2 B .dx2 a
d?

and this can be written as—‘af +n%y =0 to cover the two cases when the

coefficient of y is positive or negative.

6] If%;—%)+n2y=0, mi+ni=0 . mi=-n* m=%tijn
(This is like m = a £ j8, whena = Oand f=n)

‘ S y=A cosnx +Bsinnx

d%y .
| (i) If?d—x—z—nly=0, m:—-n?=0 . mi=n* . m=zxn
\ © y=Ce™* +Demx

This last result can be written in another form which is sometimes
more convenient, so turn on to the next frame and we will see what it is.
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You will remember from your work on hyperbolic functions that 17
nx nX
e +¢ N
cosh nx = e +e™* =2 cosh nx
nx _ e—nx
sinh nx = " — " = 7 sinh nx
Adding these two results: 2¢"* =2 cosh nx + 2 sinh nx
w € = coshnx + sinh nx

nx _

Similarly, by subtracting: & cosh nx — sinh nx

Therefore, the solution of our equation, y = Ce™ + Dé”*  can be
written
¥ = C(cosh nx + sinh nx) + D(cosh nx — sinh nx)

={(C + D) cosh nx + (C — D) sinh nx
ie. y=A coshnx + B sinh nx

Note. In this form the two results are very much alike:
. dzy 2. _ - :
(1)a?+ny—0 ¥ =A cosnx + Bsin nx

d*y
(ii) W—n2y20 ¥ = A cosh nx + B sinh nx

Make a note of these results in your record book.
Then, next frame.

Here are some examples: 1 8
2
Example 1. = 4P 16y=0 Lmi=-16 . m=+i4

Sy = A cos dx + Bsin 4x

2
sz 3y=0 L m?=3 Lom=1./3

¥ = A cosh v/3x + B sinh /3x

Example 2.

Similarly
d2
Example 3. P +5y=0

Then turn on to frame 19.
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19 ¥ = A cos+/5x + B sin v/5x
And now this one:
2
Example 4. 1—32)—4y=0 LmP=4 L om=12
dx
V= e,

¥ = A cosh 2x + Bsinh 2x

Now before we go on to the next section of the programme, here is a
revision exercise on what we have covered so far, The questions are set
out in the next frame. Work them all before checking your results.

So on you go to frame 21.

21 Revision Exercise

Solve the following:

%—12?%3@:0
2. g;—)z}+7y=0
3. iyz%f3 =0 |
4. Z; 4? 3y=0 l
dx?

s, 42 g,.9 l

For the answers, turn to frame 22.

647 /



’ Second Order Differential Equations

Results 2 2

1. y=e*(A+Bx)
2. y=Acosy/7x+ Bsin/7x
3. y=Ae*+Be¥

4. y=e* (A cos \/%+ B sin \/—;-)

S. y=Acosh3x +Bsinh 3x

By now, we are ready for the next section of the programme, so turn on

to frame 23.
So far we have considered equations of the form 23
d’ ., dy
i —t = =
a7 b prRR f(x) for the case where f(x) =0

If f(x) = 0, then am?® + bm + ¢ = 0 giving m = m; and m = m, and the
solution is in general y = A ¢™1* + Be”"2%.
2
In the equation aj—;;—+ b%—ﬂ- ¢y = f(x), the substitution

y = Ae™* + Be™?* would make the left-hand side zero. Therefore, there
must be a further term in the solution which will make the L.H.S. equal to
f(x) and not zero. The complete solution will therefore be of the form

y=Ae™M* 4+ Be™M2¥ + X where Xis the extra function yet to be found.

y=Ae™X + Be™2 is called the complementary function (C.F.)
y = X(a functionof xy” 7 » particular integral (P.1.)

Note that the complete general solution is given by

general solution = complementary function + particular integral

Our main problem at this stage is how are we to find the particuiar
integral for any given equation? This is what we are now going to deal
with.

So on then to frame 24.
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2
24 To solve an equation a% + b%+ cy = f(x)

(i) The complementary function is obtained by solving the equation
with f(x) = 0, as in the previous part of this programme. This will
give one of the following types of solution:

() y=Ae™M* +BeM2* (i) y =e™* (A +Bx)
(iii) ¥ = e (A cos fx +Bsin fx) (iv) y = A cos nx + Bsin nx
(v) y = A cosh nx + B sinh nx

(ii) The particular integral is found by assuming the general form of the
function on the right-hand side of the given equation, substituting
this in the equation, and equating coefficients. An example will make
this clear:

Example: Solv d 2)’ dy
N — -— + 6 = x2
le bve dx? 3 dx Y

(i) To find the C.F. solve LH.S.=0,ie.m*~ Sm+6=0
Lm-2)(m=-3)=0 . m=2o0rm=3
.. Complementary functionis y = A e?* + Be3* (i)

(ii) To find the P.I. we assume the general form of the R.H.S. which
is a second degree function. Lety =Cx? + Dx +E.

2
dx dx
Substituting these in the given equation, we get

2C—5(2Cx + D)+ 6(Cx? + Dx + E) =x?
2C—10Cx = 5D + 6Cx? + 6Dx + 6E = x?
6Cx? + (6D - 10C)x + (2C — 5D + 6E) = x?
Equating coefficients of powers of x, we have

Then Q=2Cx+D and d—J;=2C

[x2] 6C=1 c=1
= * = lg = §. N = i
[x] 6D—-10C=0 . 6D—6—3 . D 18
_o0 - gpo25_2.19 . p_19
[CT} 2C-5D+6E=0 6E =13 c=18 E 108
2
.. Particular integral is y =—)é—- +% + 11_98 (ii)
Complete general solution= C.F. +P.1.
i i = 2x 3x -'.xﬁz- i‘x_. ﬁ
General solutionis y =Ae** +Be te t13* 108
This frame is quite important, since all equations of this type are
solved in this way. On to frame 25.
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—

We have seen that to find the particular integral, we assume the general 2 5
form of the function on the R.H.S. of the equation and determine the
values of the constants by substitution in the whole equation and equat-
ing coefficients. These will be useful:

If fx)=k Assume y=C
) =kx ... »  y=Cx+D
) =kx* ... »  y=Cx?+Dx+E
f(x)=ksinx or kcosx »  y=Ccosx+Dsinx
f(x) =ksinhx or k coshx ”  yp=Ccoshx +Dsinhx
o) =ek* . " y=Cel

This list will cover all the cases you are likely to meet at this stage.
So if the function on the R.H.S. of the equation is f(x) = 2x% + 5, you
would take as the assumed P.1.,

26

y=Cx2+Dx+]ﬂ

Correct, since the assumed P.I. will be the general form of the second
| degree function.

What would you take as the assumed P.I. in each of the following cases:

‘ 1. f(x)=2x-3

| 2. f(x)=e*

‘\ 3. f(x)=sin 4x

‘ 4. f(x)=3—5x*

| 5. f(x)=27

| 6. f(x)=>5 cosh 4x

1 When you have decided all six, check your answers with those in frame 27.
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2 7 Answers

1. f(x)=2x—-3 P1I.is of the formy =Cx + D

2. fx)=e>* A VN Ot

3. f(x)=sin 4x 2 ” y=Ccos4x+Dsin 4x
4. f(x)=3-5x2 o ” y=Cx*+Dx +E

5. flx)=27 B L

6. f(x)=5cosh4x 7”7 » ” 3 =Ccosh4x+D sinh4x

All correct? If you have made a slip with any one of them, be sure that
you understand where and why your result was incorrect before moving on.

Next frame.

28 Let us work through a few examples. Here is the first.

2
Example 1. Solve — = 5= dy

g Tx +6y=24
(i) CF. Solve LHS.=0 . m?*-5m+6=0
. (m—2)(m—3)=0 Lm=2 and m=3
Ly=Ae? +Be¥ ()
(ii)) P.I. f(x) =24, ie.a constant. Assume y=C
dy _ 4y
Then —~=0a nd & d =0

Substituting in the given equation
0-5(00)+6C=24 (C=4
“Plis y=4 (ii)
General solution is ¥y = CF.+ P.I. -
ie. y=Ae? +Be’* +4

_______ v

Now another: 22 4
Y
Example 2. Solve —dx—J; - 5= Tx
(i) C.F. This will be the same as in the last example, since the L.H.S.
of this equation is the same.
ie. y=Ae*™ +Be?*

(ii) P.I. The general form of the P.I. in this case will be ......................

T 6y =2sin 4x
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y=Ccos 4x + Dsin 4x 29

Note: Although the R.H.S. is f(x) = 2 sin 4x, it is necessary to include
the full general function y = C cos 4x + D sin 4x since in finding the
differential coefficients the cosine term will also give rise to sin 4x.

So we have

¥ =Ccos 4x + Dsin 4x

E’Z_: ~4Csin 4x + 4D cos 4x
dx
2
DY - _16C cos 4x — 16D sin 4x
dx

We now substitute these expressions in the L.H.S. of the equation and
by equating coefficients, find the values of C and D.
Away you go then.

Complete the job and then move on to frame 30.

2.

: 4
25° 25°

33 (2 cos 4x —sin 4x)

w
I
!
I)—d
=
i

Here is the working:

=~16C cos 4x — 16D sin 4x + 20C sin 4x — 20D cos 4x
+6C cos 4x + 6D sin 4x = 2 sin 4x

(20C —10D) sin 4x — (10C + 20D) cos 4x = 2 sin 4x

20C-10D=2 40C-20D=4 )
50C=4 .'.C=2—5
10C+20D=0 10C+20D=0

ped
1 ~D=-5%
In this case the P1.is y =57 (2 cos 4x ~sin 4x)

The C.F.was y = Ae?™ + Be3*

The general solution is

y=Ae** + Be3* +-2—15—(2 cos 4x — sin 4x)
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31 Here is an example we can work through together.

Solve

d*y

P +14

+ 49y = 4¢>*

First we have to find the C.F. To do this we solve the equation ................

32

dx*

d

+49y =

0

Correct. So start off by writing down the auxiliary equation, which

33

This gives (n + 7) (m +7) = 0,

m2+14m+49=0

~ The CF.is y =

ie.m=

=7 (twice).

é™ (A +Bx)

0

Now for the P1. To find this we take the general form of the R.H.S. of
the given equation, i.c. we assume y =

34

y=Ce>*

Right. So we now differentiate twice, which gives us

v

dx
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35

dy__ 5X. dy 5x
Tx 5Ce DT =25Ce

The equation now becomes
25Ce>* +14.5Ce5* +49C e’ = 4¢5*
Dividing through by e3*: 25C + 70C + 49C = 4

144C=4 - C==

36
. e .
The Pl.is y = 35 (i)
So there we are. The C.F.is y =€ " (A + Bx)
‘ 5%
and the P1. is y = 35

and the complete general solution is therefore

36

y=¢e™*(A+ Bx)+§-5-x—
36

Correct, for in every case, the general solution is the sum of the
complementary function and the particular integral.
Here is another.

d’y dy
ax? T Oax
() To find C.F. solve LHS.=0 . m*+6m+10=0

_—6+/(36-40) —6 ++/-4
- 22

Solve =—+ 10y = 2 sin 2x

y =€ (A cos x + B sin x) @

(i) To find P.I. assume the general form of the R.H.S.

18, V= s
On to frame 37.
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37

y=Ccos2x+Dsin2x

Do not forget that we have to include the cosine term as well as the
sine term, since that will also give sin 2x when the differential coefficients

are found.
As usual, we now differentiate twice and substitute in the given
d3y
equation d_ 6 + 10y = 2 sin 2x and equate coefficients of sin 2x

and of cos 2x.
Off you go then. Find the P.I. on your own.

When you have finished, check your result with that in frame 38

38

y= 15 (sin 2x — 2 cos 2x)

For if y=Ccos2x +Dsin 2x
ay =—2Csin 2x + 2D cos 2x
dx
2
" —d—); ==4C cos 2x — 4D sin 2x
dx

Substituting in the equation gives
—4C cos 2x— 4D sin 2x— 12Csin 2x + 12D cos 2x
+ 10Ccos2x + 10D sin 2x =2 sin 2x

(6C+ 12D ) cos 2x + (6D — 12C) sin 2x = 2 sin 2x

6C+12D=0 .. C=-2D
6D—12C=2 .. 6D+24D=2 . 30D=2 .'.D=%

2
.C——B' }

Plis y= L (sin 2x — 2 cos 2x) (ii)

So the C.F.is y = ¢ 3* (A cos x + B sin x)
and the P.I. is y = Tg(sin 2x — 2 cos 2x) (

The complete general solution is therefore
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39

y=€3 (A cosx + Bsinx) +T1—5- (sin 2x — 2 cos 2x)

Before we do another example, list what you would assume for the P.I.
in an equation when the R.H.S. function was

(1) f(x)=3cos4x
(2) flx)=2e™
(3) f(x)=3sinhx
4 fx)=2x*-7
B) fx)=x+2&

Jot down all five results before turning to frame 40 to check your answers.

40

(%)

(1) y=Ccos4x +Dsin4x
(2) y=Ce™

(3) y=Ccoshx +Dsinhx
(4) y=Cx*+Dx+E

y=Cx+D+E¢&*

Note that in (5) we use the general form of both the terms.

General form forx isCx +D
bR} ER] ER] ex iS Eex

*. The general formof x +&* isy =Cx + D + E&*

Now do this one all on your own.

2
Solve %—3%+ 2y =x?

Do not forget: find (i) the C.F. and (ii) the P.I. Then the general solution
isy=CF.+PlL
Off you go.

When you have finished completely, turn to frame 41.
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41 y=Aex+Be2x+%(2x2>+6x+7)

Here is the solution in detail.

d _.dy . _ ;
R R
(i) CF. m*-3m+2=0 . (m-1)(m=-2)=0 ..m=1or2
Ly=Aée +Be? 0]
(i) P.I. y=Cx*+Dx+E
%=2Cx+D
. d?
..a%=2c

2C-3(2Cx +D)+2(Cx2+Dx +E) = x?
2Cx? + (2D - 6C)x + (2C — 3D + 2E) = x?

_ B |
2C=1 .. C-—2
2D-6C=0 . D=3C .. D=%
—_ = y = _— :2—- =.z. * :l
2C-3D+2E=0 .. 2E=3D-2C > 1 5 L E 7
. . x2 .3 7_1 .
L PLis y=—2—+3x-+z=z(2x2+6x+7) (ii)

General solution:
y=A& +Be® +Lax? +6x+7)
Next frame. 4

Particular solutions. The last result was y = Ae* + Be®™ + %(2x2 +6x+7)
42 and as with all second order differential equations, this contains two

arbitrary constants A and B. These can be evaluated when the appropriate
extra information is provided.
e.g. In this example, we might have been told that at x =0, y = % and

ay_5

dx 27

It is important to note that the values of A and B can be found only

from the complete general solution and not from the C.F. as soon as you
obtain it. This is a common error so do not be caught by it. Get the com-
plete general solution before substituting to find A and B.

In this case, we are told that when x =0,y = %, so inserting these values

EIVES i Turn on to frame 43.
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A+B=-1

. i: l y = -
For: 7 A+B+4 L A+B=-1

We are also told that when x =0,

&l&

the general solution,

y=Aex+Be2x+}T(2x2+6x+7)

43

=%, so we must first differentiate

to obtain an expression for -dl
dx
dy _
So, T s
dy x 1
— + -
= A +2Be +2(2x+3)
Now we are given that whenx =0 3
“dx 2
* 5 = i 3 =
-5 A+QB+2 L A+2B=1
So we have A+ B=-1
and A+2B= 1

and these simultaneous equations give:

Then on to frame 45.
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45

A=-3;B=2

Substituting these values in the general solution
y=Aée +Be2"+%(2x2 +6x +7)
gives the particular solution
y =26 =365 4+ 1 (2x7 4 6x+7)

And here is one for you, all on your own.

. d 2)’ dy 3x
Solve the equation + 4— + 5y = 13e”” given that when

dx 2
x=0, y=-52- and Z—i=% Remember:
(i) Find the C.F.; (i) Find the P.I;

(iii) The general solution isy = C.F. + P.L;
(iv) Finally insert the given conditions to obtain the particular solution.

When you have finished, check with the solution in frame 46.

46

Coax . o3%
y=e€ (2cosx+3smx)+—2——

For: (‘11 J 4?’ +5y =133
(i) CF. m?+4m+5=0 =_4i\/(216_20)=_4§j2
Sm==2%j L y=e? (Acosx +Bsinx) Q)
(i) PI y=Ce¥* . Zy 3Ce, Zy—9Ce3x
L9Ce3 +12Ce3X + 5Ce> = 1363
26C=13 .. =% P.I.isy=%3£ (ii)

3x
General solution y = ¢ ** (A cos x + B sin x) +52——; x=0,y =%

g §=A+—1 LA=2 =¢>* (2 cos x + B sin x) +'———63x
) > y 3 ,
X
4 gax (—2sinx + B cos x) —2¢ ** (2 cos x + B sin x)+
dy _1 .1 3 . -
= —_— == == — + = =3
x =0, 7 3 5 B-4 5 B

3x
- Particular solutionis y =€ ** (2 cos x + 3 sin x) +%—

S
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Since the C.F. makes the L.H.S. = 0, it is pointless touse asa P.I. a 47
term already contained in the C.F. If this occurs, multiply the assumed
P.I. by x and proceed as before. If this too is already included in the
C.F., multiply by a further x and proceed as usual.

: d’ J_ a
Example: Solve—=5 2 I 8y =3¢ 2
() CF. m*-2m—-8=0 .. (m+2)(m-4)=0 .. m=-2o0r4
y=Ae** +Be** )

(ii) P.I. The general form of the R.H.S. is Ce ?¥ but this term in € 2* is
already contained in the C.F. Assume y = Cx¢ 2¥_ and continue as usual.

y=Cxe?
a _ 52X 2X _ (o g2X
i Cx(2e*)+Ce* =Ce**(1 —2x)
d*y _ o ax ~2X - (52X
vk Ce*(-2)-2Ce** (1 -2x)=Ce “*(4x—4)
Substituting in the gtven equation, we get

Ce¥(4x—4)—2.Ce¥ (1 —2x) —8Cxeé ™ = 3¢2¥

(4C +4C—8C)x—4C—2C=3
~6C=3 . C=-1

2
PlLis y= —%xe_”‘ (i)
22X
General solution y=Ae* + Be?¥ _?_CeT_

So remember, if the general form of the R.H.S. is already included in

the C.F., multiply the assumed general form of the P.I. by x and continue
as before.

Here is one final example for you to work.

d’ 2, a
Solve 2 d -2y =

Finish it off and then turn to frame 48.
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48

y=Ae +Be?* +x§x

Here is the working:

To solve g—fy Zy 2y=¢&*

(i) CF. m*+m—-2=0
m-1)(m+2)=0 . m=1or =2
L y=Ae* +Be¥ @)

(ii) P.I. Take y = C&*. But this is already included in the C.F. Therefore,
assume y = Cxe¥,

Then %= Cxe* +Ce*=Cf(x+1)

ZK*C&+CxH+C& Ce'(x +2)

L CeF(x+2)+Ce¥(x +1)—2CxeX =¢¥
Cx+2)+Cx+1)-2Cx=1

o1 el
3C=1 .. C 3

P.IL 1sy—x§x (ii)

and so the general solution is

y=Ae* + B> +XE-

You are now almost at the end of this programme. Before you work
through the Test Exercise, however, look down the revision sheet given
in frame 49. It lists the main points that we have established during this
programme, and you may find it very useful.

So on now to frame 49,
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Revision Sheet 49

1. Solution of equations of the form aZ }2} b §—+ ¢y =f(x)

2. Auxiliary equation: am? +bm+c=0

3. Types of solutions:

(a) Real and different roots m=my; and m =m,
y = Ae™* + BeM2¥

(b) Real and equal roots m =m; (twice)
y=e™% (A +Bx)

(c) Complex roots m=atjf

y =€%* (A cos Bx + B sin x)

2
4. Equations of the form Z—;;—.,. n?y=0

y = A cosnx + Bsin nx
d?y
5. Equations of the form E-Z——nzy =0

y = A cosh nx + B sinh nx

6. General solution

y = complementary function + particular integral

7. (i) To find C.F. solve a(; > +bc—1—+cy 0

(ii) To find P.I. assume the general form of the R.H.S.
Note: If the general form of the R.H.S. is already included in the
C.F., multiply by x and proceed as before, etc. Determine the

complete general solution before substituting to find the values
of the arbitrary constants A and B.

Now all that remains is the Test Exercise, so on to frame 50.
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50 The Test Exercise contains eight differential equations for you to solve,
similar to those we have dealt with in the programme. They are quite
straightforward, so you should have no difficulty with them.

Set your work out neatly and take your time: this will help you to
avoid making unnecessary slips.

Test Exercise — XXIII

Solve the following:

d dy ., _
L g »=8
2
2. 5;7—4y=1063x
d*y day = ;2%
3. dx2+2dx+y e
d?y
4. a—?+25y=5x2+x
dzy— d_y+ = 1
5. el =T 4 sin x
Y 4B sy o e g —0.y=1and@=-—
6. ;,;2-+4E+Sy—2e ,given thatatx =0,y 1anddx 2.
dl dy_ . _
7 3d2 2dx y=2x-3
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Further Problems — XXIII

Solve the following equations:

dzy_ dJ’_ _ _3x
1. 2dx2 7dx 4y =e

2.33 6;4%;5%+w
3. -Z% dy+6y— 100 sin 4x
4, Z; +2Z—y+y 4 sinh x

5. g—%+%—2y=2cosh2x
6.$h67+Mzm e
7. Zx);+4ZTy+4y 2 cos®x
8. %}%}—4%}-+3y x + e

9. %—2?%3)) =x2-1

10. %—9)/:63" +sin 3x

1. For a horizontal cantilever of length /, with load w per unit length,
the equation of bending is

Edy Wznz

where E, I, w and I are constants. If y =0 and% =0atx=0,findy

in terms of x. Hence find the value of y when x = /.
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12.

13.

14.

15.

16.

17.

18.

Solve the equation
d X dx 3t
+4—+3x=
T 4 ar 3x=¢e

- =0 x=Yand®-_
given that at r =0, x 2anddt 2.

Obtain the general solution of the equation
d’y . dy
+
a v
and determine the amplitude and frequency of the steady-state
function.

+5y=6sint

Solve the equation
d*x dx
. -3 ar +2x =sint

given thatat r=0,x =0 and%= 1.

Solve’z—g +3 Zy + 2y = 3 sin x, given that when x =0,y =—0.9

ay _
anddx 0-7.

Obtain the general solution of the equation

Z )2) 6 ar s 10y = 50x
Solve the equation
dx .
— + =
o + 2 ar 2x = 85 sin 3¢

given that when t=0,x=0 and%’t—c =-20. Show that the values of

t for stationary values of the steady-state solution are the roots of
6tan 3r=7.

2
Solve the equation% =3 sin x — 4y, given that y =0 at x = 0 and

that% =1 at x = n/2. Find the maximum value of y in the interval

0<x<m.
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19. A mass suspended from a spring performs vertical oscillations and

20.

the displacement x (cm) of the mass at time # (s) is given by

2

Ifx= 6 and -&? =0 when ¢ = 0, determine the period and amplitude

of the oscillations.

The equation of motion of a body performing damped forced vibra-

. d.
tions 1s ar? X+5 d—x + 6x = cos t. Solve this equation, given that x = 0-1

and% = 0 when ¢ = 0. Write the steady-state solution in the form
K sin (¢ + a).
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1 Qperator D
Zx ") =nx""!

7% (sin x) = cos x

d du dv
FrACRR o

These resulté, and others like them, you have seen and used many times
in the past in your work on differentiation.

The symbol e of course, can have no numerical value of its own, nor
can it exist alone. It merely indicates the process or operation of finding
the differential coefficient of the function to which it is attached, and as

such it is called an operator.
For example, ix(esx ) denotes that we are carrying out the operation
of finding the differential coefficient of e%* with respect to x, which in

1 .i 5x =
fact gives us o €)= e,

2 %(esx)= Sesx

d\? L .
Also, { E} , or el as it is written, denotes that the same operation is

to be carried out twice — so obtaining the second differential coefficient
of the function that follows.

Of course, there is nothing magic about the symbol d—‘)ic We could use

any symbol to denote the same process and, for convenience, we do, in
fact, often use the letter D to indicate the same operation,

4 ie. D =d%
So that%can be written Dy.
and D(sin x) = cos x
D(ek*) =fekx
D(x? +6x —~5)=2x + 6 etc., etc.
So that D(sinhx) = ....................

Turn to frame 3.
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D(sinh x) = cosh x

Similarly, D(tan x) =sec’x, D(Inx)= %,
D(cosh 5x) = 5 sinh 5x.
Naturally, all the rules of differentiation still hold good.

e.g. D(x%sinx) =x? cosx + 2x sinx (product rule)

and similarly, by the quotient rule,

D{S—irﬁ}= ....................

x+1

D sin Sx| _ (¢ +1)5 cos 5x —sin 5x
x+1 (x+1)?

In the same way, D?{x*} =D{D (x*)} =D{3x?} = 6x.

So:  The symbol D denotes the first differential coefficient,
D2 b2 ] 3 Second 29 bR
D3 2 i) thlrd 39 29

and, if # is a positive integer, D" denotes

the nth differential coefficient

Correct.
(i) D2(3sinx + cos 4x) = D(3 cos x — 4 sin 4x)

=-3sinx — 16 cos 4x
(i) D*(5x*—7x? +3)=D(20x> - 14x)
=60x*— 14

All very easy: it just means that we are using a different symbol to repre-

sent the same operators of old.
D (e* +5sin 3x) = 2¢** + 15 cos 3x
D2(e** + 5 sin 3x) = 4¢** — 45 sin 3x

D3(e** + 5 sin 3x) = 8¢** — 135 cos 3x etc.
Here are some for you to do.

Find () D (4e —2¢c083X) = v

(ii) D2(sinh 5x + cosh 3x) = ...ccvevrrnnnes

(iii) D3(5x* —3x> + Tx2 + 2x — 1) = .o
When you have finished, turn to frame 6.
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6 (i) 20e%* + 6 sin 3x
(ii) 25 sinh 5x +9 cosh 3x
(iil) 120x—18

The special advantage of using a single letter as an operator is that it
can be manipulated algebraically.
Example 1. (D +4){sin x} = D{sin x} + 4 sin x
=cosx +4sinx
i.e. we just multiply out in the usual way.
Example 2. (D +3)2{sin x} = (D* + 6D + 9){sin x}
=D*{sinx} +6D{sin x} + 9 sin x
D (sin x) =cosx
D?(sin x) = —sin x
=—sinx+6cosx+9sinx

7 : -2 sin 2x — 3 cos 2x

For (D = 3){cos 2x} = D{cos 2x} — 3 cos 2x
==2sin 2x — 3 cos 2x

Similarly,
() (D H{e} = D{e™*} +4e™
=33 + 4¢3 =73
(i) (D*~5D+4){x2+4x—1} D (x*+4x—1)=2x+4
=2-502x+4)+4(x*+4x—-1) D¥x?+4x—-1)=2
=2-10x —20 +4x% + 16x — 4
=4x? + 6x - 22

Now you determine this one:
(D>~ 7D +3){sin 3x + 2 cos 3x} = ..oovvrrrrnn,

When you are satisfied with your result, turn on to frame 8.
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36 sin 3x — 33 cos 3x

Since D (sin 3x + 2 cos 3x) = 3 cos 3x — 6 sin 3x
and D?(sin 3x + 2 cos 3x) = —9 sin 3x — 18 cos 3x
~. (D*=7D + 3){sin 3x + 2 cos 3x}
=-9 sin 3x — 18 cos 3x — 21 cos 3x + 42 sin 3x

+ 3 sin 3x + 6 cos 3x
= 36 sin 3x — 33 cos 3x

Remember that the operator can be manipulated algebraically if required.
Here is one more:

(D% + 5D +4){5e**} =

e (D* + 5D + 4){5e?*} = D2 {5e>*} + SD{5e*} +4{5¢"*}
Now D {5¢*} = 10e?* and D?{5e?*} = 20e*
(D? + 5D + 4){5e**} = 20e? + 50e** +20e**
=90e%*

or we could have said:

(D2 + 5D +4){5¢*%} = (D + 4) (D + 1){5¢*"}
=(D+4){10e¥ + 502}
=(D +4){15e*}
=30e? + 60>

=90e**

On now to the next frame.
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10 The inverse operator %

We define the inverse operator % as being one, the effect of which is

cancelled out when operated upon by the operator D. That is, the inverse

1. . o
operator pis the reverse of the operator D, and since D indicates the pro-

. L . .
cess of differentiation, then D indicates the process of ....................

11 integration

Right, though our definition ome a little more precise than that.
Here it is: |
Definition: The inverse operator D denotes integration with respect to x,

omitting the arbitrary constant of integration.

e.g. —lls{sin x}=-cosx

Liery -2

1
B {x“} T U
12 1oy o2’
p =%
Similarly,

1. _cosh 3x | sinh 2x

D{smh 3x +cosh 2x} = T T

1 1) _x?

and B{x+;}—2—+lnx i

Therefore, we have that

(1) the operator D indicates the operation of ................. ‘

iy ” Il)— ” ” ” e, ‘
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D denotes differentiation 13
-113 ”  integration
1 _[{1y 1 o
Of course, D \D and -D—z{f(x)} therefore indicates the result of

integrating the function f(x) twice with respect to x, the arbitrary con-
stants of integration being omitted.

1 3 2
e.g. -D—2~{x2 +5x — 4} =%{3£-—+5L—4x}

3 2
_xt 5% 4x?
12 6 2
_x* o sx? )
AN

Note that the constant of integration is omitted at each stage of
integration.

2cosx—s—l%3ﬁ 14

Since —é;{sin3x—2cosx}=%{—C—OS33—x—2smx}
= sm;x+2cosx
1 . _ sin 3x
..B-i{sm3x—2cosx}—2cosx— 5

Here is a short exercise. Work all the following and then check your
results with those in frame 15.

(i) D(Sin5x +cos 2X) = .iiiininnne
(i) DE?e*) =

(iii) -113(2x2 +5 +%) ....................

I

[t}

i

@iv) 1% (cosh 3x) S e

) # (Bx? +8in 2X) = e,

When you have completed all five, move on to frame 15.
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15 Here are the results in detail.
(i) D (sin 5x + cos 2x) = 5 cos Sx — 2 sin 2x
(i) D (x?e*) =x23e>* +2x ¥
=3 (3x? + 2x)

P N 2 _2x®
(iii) D-(2x +5+;) =5t Sx+21Inx
. 1 _ sinh 3x

(iv) o (cosh 3x) R

1 2, _ 1/ 5 _cos2x
v) D? (3x* +sin 2x) = ) (x ) )
_x* _sin2x
4 4

You must have got those right, so on now to frame 16.

16 Before we can really enjoy the benefits of using the operator D, we
have to note three very important theorems, which we shall find most
useful a little later when we come to solve differential equations by
operator D methods. Let us look at the first.

Theorem I FD){e™}= e® F(a) ... 0
where a is a constant, real or complex.
D{e™} =4e%
D2 {eax} :az Pl
L (D* + DMe®} =a? ™ +qe™ =e® (g% +4)
Note that the result is the original expression with D replaced by a. This ‘
applies to any function of D operating on e%* ‘

Example 1. (D* +2D - 3) {e®} = ¢™ (a® +2a - 3) |

This sort of thing works every time: the e®* comes through to the front w
and the function of D becomes the same function ofa,i.e. D is replaced by a.

So (D*=5){e*} = v, |
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(Dz_s){ezx}z_ezx 17

Similarly, (2D? +5D—2) {e¥*} =¥ (2.9 +53-2)=€>(18 +15-2)

=31 e
The rule applies whatever function of D is operating on e
1 sxv - sx _ 1 _ e’
e.g. D—2{e }=e T5°73
2 e3X
3xY - 3% =&
e.g. D2+3{e }=e 5T
1 ~2xY) — 2x 1
T R e oy T
=g 1 - e
4+8—1 11

So  (D*-5D+4) {e*} =

[ o | 18

for (D?*-5D +4) {e¥} =™ (42 -54 +4)

= e (16-20+4)=0

Right, and in the same way,
1
STreD=2 (e} = i
19
25
| for D2+6D—2{e b=e 9+18-2
3Xx
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20 Just for practice, work the following:

(i) (D*+4D=3) {e®*} = .o

@ s (™ =

(i) (D*=7D+2) {2} = o,

(iv) 57:3—;_*2{85)(} S

fl

1 XY -
(V) m{e }— .....................

When you have finished, check your results with those in the next frame.

21 Results

(@

(i)

(iii)

(iv)

™)

(D* +4D = 3) {e™*} =e*¥ (4 + 8 —3) = 9e>*

57 1+ 3 {e-3x} = g3%

9+4 1

4
1 X1 = 5% 1
D2—3D—2{e f=e 25-15-2
eSx
EE
1 v 1
(D—3)(D+4){e } CE-HE+d
L1
=53
e—x
D)

All correct?

Turn on now then to the next part of the programme that starts in
frame 22.
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Theorem II 2 2

F(D){e® V) =e®FD +a){V} .iieons an
where a is a constant, real or complex,
and V is a function of x.
Consider (D> +D +5) {e™V}
D{e® V}=e®D{V} +ae®V
= e [D{V} +aV]
D?{e® V} =e*[D*{V} +aD{V}] +ae®™[D{V} +aV]

=e®[D*{V}+2aD{V}+a?V]

Therefore
(D? + D + 5){e®™ V} =™ [D*{V} + 2aD{V} +a?V] +e®[D{V} +a V]
+5e™V
= 8% [(D? + 2Da + a?){V} + (D + a){V} + 5V]
=e®™[(D+a)’ +(D+a)+ 5] {V}
which is the original function of D with D replaced by (D +a).
So, for a function of D operating on {e®™ V}, where V is a function of

x, the % comes through to the front and the function of D becomes the
same function of (D + a) operating on V.

F(D){e™ V} = e™ B(D +a){V}
An example or two will make this clear.

(1) (D+4){e3*x*} In this case,a =3 and V=x?
=¥ {(D+3)+4}{x*}
=¥ (D +7){x*} =& (2x + Tx?)
= (7x? + 2x)e>*

(2) (D*+2D-3){e** sinx}
=eX[(D+2)+2(D+2)—3] . {sinx}
= (D> +4D + 4+ 2D + 4~ 3) {sinx}

| =e?(D? + 6D + 5) {sin x} D(sin x) = cos x

= [4sinx + 6 cos x] D?(sin x) = —sin x

And, in much the same way,
(3) (D> =5){e% cos 2x} = oo,
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23

for:

4e%* (4 cos 2x ~ 5 sin 2x)

(D*—-5){e** cos 2x}

=e*[(D +5)*= 5] .{cos 2x}
=e**[D?+ 10D + 25 - 5] {cos 2x}

D(cos2x)=—2sin2x

=% [D? + 10D + 20] {cos 2x}

D?(cos2x)=—4cos2x

= e"¥ (—4 cos 2x — 20 sin 2x + 20 cos 2x)
=4¢°* (4 cos 2x — 5 sin 2x)

Now here is another:

2

e e A
AT —8(1D EaTL
~<“rrEpe 16—18D—32+ 6 %
~er L) Lan-%
B 64:2X4 ‘ ’11)—2 =33

Now this one: they are all done the same way.

(D*>-3D +4){ € cos 3x}

(i) bring the €* through to the front
(ii) replace Dby (D—1)

Right, so we get

(D*

—~3D +4) {e* cos 3x}
=¥ [(D—1)*=3(D— 1) + 4] .{cos 3x}
=e*(D?*-2D+1-3D +3+4).{cos 3x}
=¢e*(D? - 5D + 8){cos 3x}

D(cos 3x)=—3sin 3x

D?(cos 3x)=-9 cos 3x
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€*(15 sin 3x — cos 3x) 25

Now let us look at this one.

b‘iﬂlm{x3 i Herea=-2 and V=x>

— 52X 1
—€ (D—2)2+4(D—2)+5{x3}

- X 1 3
¢ S _ap+va+aD-8r5 S

- 1
:esz2+1{x3}

and we are now faced with the problem of how to deal with ———

{x3} .

D2 +1
Remember that operators behave algebraically.
e D2 i {x3} - -2x(1 + Dz)— {x3}
and (1 + D?)"! can be expanded by the binomial theorem.
(LD = i,
(1+D*'=1-D?+D*~D +. .. 26
(1 + DY) {x*} D(x%) = 3x2
=¢?(1-D*+D*- {xX*} D) =6x
D3(x*) =6

D*x%) =0 etc.
=¥ (x*-6x+0-0...)
=¢ 2 (x3 - 6x)
Here is another.

2 2} _1 {x2} Note we take out the
D*+3 3 1+ 22 factor 3 to reduce the
“ 3 , denominator to the form
_1 DY1 g2 1+u
= § (1 + 3 ) {x } ( )
_1(,_D*,D*_D¢ 2
| =3(1-%+ )&

On to frame 27.
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2] =-3)

Similarly

1 4 _____l
D2_2{x}~ 2

Finish it off. Then move on to frame 28.

28 —%(x4+6x2+6)

Right. So far we have seen the use of the first two theorems.
Theorem I F(D){e®} = oo,

Theorem II FD){e®™V}= .

Check your results with the next frame.

2 9 F(D){e% } = e® F(a)
F(D){e™ V} = e™ F(D + a){V}

Now for Theorem III

Theorem III 2y |sinax | _ ., [sinax
F(D ):Cosax}—F( a ){Cosax} .............. (11

If a function of D? is operating on sin ax or on cos ax (or both) the
sin ax or the cos ax is unchanged and D? is everywhere replaced by (—a?).
Note that this applies only to D? and not to D.

Example 1. (D? + 5){sin 4x} = (16 + 5) sin 4x = —11 sin 4x
Just as easy as that!

1 1 __1
Example 2. gz {cos 2x}'= 33 €08 2x =—3 cos 2x
1 . _ 1 .
Example 3. &5— {sin 3x + cos 3x} = =57 (sin 3x + cos 3x)

= —% (sin 3x + cos 3x)
Example 4. (2D*>~1){sinx}= .....cecovvrrvrrnnc.
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—3sinx 30
for (2D? - 1){sin x} = [2(-1)— 1] {sin x} = -3 sin x

If the value of a differs in two terms, each term is operated on
separately.

{sin 2x + cos 3x}

1
& DT +2

1 .
=~62——{sm 2x}+ 2—12—{003 3x}

4 > {sin 2x} t=53 {cos 3x}
__sin2x _cos3x
2 7

So therefore z {sin x + cos 4x}

_sinx_cos4x 31
6 21

Here it is:
D2—l_§ {sin x + cos 4x}

1 . 1

“Di-s {sinx} + D3 {cos 4x}

__ 1 . 1

=9 {sin x} * g 5 {cos 4x}

- sin X _ cos 4x

6 21
Here are those three theorems again:
TheoremI  F(D){e®} = e F(@) «-vrorevereirrmsemsnisinenns o
Theorem Il F(D){e™ V}=e™F(D +a) {V} i (1D
Theorem Il F(D?) {S‘“ ax } = F(-a?) {S‘“ w } ............. (1)
cos ax cos ax

Be sure to copy these down into your record book. You will certainly
be using them quite a lot from now on.

We have now reached the stage where we can use this operator D to our
advantage, so turn now to frame 32.
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3 2 Solution of differential equations by operator D methods

The reason why we have studied the operator D is mainly that we can
now use these methods to help us solve differential equations.

You will remember from your previous programme that the general
solution of a second order differential equation with constant coeffi-
cients, consists of two distinct parts.

general solution = complementary function + particular integral.
(i) The C.F. was easily found by solving the auxiliary equation, obtained
d* dy
from the given equation by writing m? for o )2), m for — T and 1 for y.

This gave a quadratic equation, the type of roots determining the shape

of the C.F.
(a) Rootsreal and different  y = Ae™1* + Be2¥
(b) Roots real and equal y=e"™*(A +Bx)
(c) Roots complex vy =e%(A cos Bx + B sin fx)

(if) The P.I. has up to now been found by .........cccooevrni..

33 .. . assuming the general form of the function f(x) on the
R.H.S., substituting in the given equation and determining the
constants involved by equating coefficients.

In using operator D methods, the C.F. is found from the auxiliary
equation as before, but we now have a useful way of finding the P.I. A few
examples will show how we go about it.

d*y dy
d 2+4g—+3y

(i CE. m*+4m+3=0 .. (m+1)(m+3)=0 .. m=-1or-3.
y=Ae* +Be3*
(ii) P.1. First write the equation in terms of the operator D
D2y + 4Dy + 3y = *
(D? +4D + 3)y =e**

Example 1.

1 (e}

Y DTraD+3
and, applying theorem I, we get
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34

Y715
1 eZX
—p2X - =
for YU A8 +3 1
So C.F.is y=Ae*+Be?
2X
and Pl is y=1z

So the complete general solution is

2x
= A gX -3x 4 €
y=Ae* +Be’* + T3 35

Correct. Notice how automatic it all is when using the operator D. Here
is another.

dy
dx?

(i) First find the C.F. which is

Solve +6 +9y—e

y=¢3*(A +Bx) 36

sincem?+6m+9=0 . (m+3)*=0 ..m=-3(twice)
=¢>*(A + Bx)
(ii) To find the P.I., write the equation in operator D form
D%y + 6Dy + 9y = >
(D*+6D +9)y =e>*

sx
r= D2+6D+9{ }
1 e

25+30+9 64
CF.is y=¢**(A+Bx)

5x

PLis y =€6—4

and by theorem [ y=e~*

". General solution is
B T On toframe 37
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317

5X

= 53X ¢
e (A+Bx)+64

Now that you see how it works, solve this one in the same way.

LR NP
Solve i 4 ol Sy=e
(i) CF. m2+4m+5=0 :3554;t22
—4v—4
2

38

{i= € **(A cos x + B sin x)

(ii) Now for the P.I.
D% +4Dy + Sy =€~
L (D2 +4D +5)y =6~

Now finish it off and obtain the complete general solution..

When you have it, move on to frame 39.

39

X
y=e"2x(Acosx+Bsinx)+€2-

for the P.I. is

1

= —rrr— X = —
Y D2+4D+5{e } a=-1

L1
— X
© T-4+5

X
.. General solution is y =& 2*(A cos x + B sin x) + ‘32—

:e—_ 1 “?_
) 1.e. y= )

Now here is one for you to do all on your own.

dy+7dy

Solve s

+ 12y = Se**

When you have finished it, turn on to frame 40 and check your result.
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40

22X
y=Ae* +Be* +e_6_

Since (i) C.F. m®>+Tm+12=0 . (m+3)(m+4)=0 ..m=-3or—4
y=Ae¥ +Be¥
(i) PI. D% +7Dy + 12y =5¢*
(D2 +7D +12)y =5e*
_ 1 2x
Y=preipan 0¢

1 _5e¥* e

= £ ,2X £
Y= AT 30 6

2x
General solution: y=Aée>* +Be** +£6_

Now if we were told that at x =0,y =% and—g—i) = —%, we could differen-
tiate and substitute, and find the values of A and B. So off you go and

find the particular solution for these given conditions.
Then on to frame 41.

-y e Wy T R

=263 —¢g% &5 41
Y 6

forx =0,y =4 .‘.%=A+B+é— w A+B=1

~3

Ay _ oy rax _gpax 262
T 3Ae 4Be ™t + 3

LAy 5 5 _ 1 . _
x—O,E——g Lox=T3A 4B+3 . 3A+4B=2
3A+4B=2
L B=-1,A=2
3A+3B=3
.. Particular solution is 2x

y=2e_3x—e'4x+e6—

So (i) the C.F. is found from the auxiliary equation as before,
(ii) the P.I.is found by applying operator D methods to the original
equation.

Now turn on to frame 42.
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42 Now what about this one?

Solve _.Z+3(_il.+ 2y =sin 2x

() CF. m*+3m+2=0 .. (m+1D)(m+2)=0 . m=-lor—2
y=Ae*+Be?¥
(i) P.I. (D?+ 3D+ 2)y =sin 2x
- 1 -
Y=pryapraiin 2}
By theorem III we can replace D? by —a?, i.e. in this case by —4, but
the rule says nothing about replacing D by anything.

- 1 -
y ‘m{ sin 2x}
Y=5p=7 2{sm 2x}

Now comes the trick! If we multiply top and bottom of the function of
Dby 3D+ 2)weget y = ...ovevennnne...

43

_3D+2 .
y—9D2_4{sm 2x}

Correct, and we can now apply theorem III again to the D? in the
denominator, giving:

_3D+2,. D+2
—_36_4{s1n 2x}= {sin 2x}

Now the rest is easy, for D(sin 2x) = 2 cos 2x

———-—(6 cos 2x + 2 sin 2x)

ie. y= -——-2-6 (3 cos 2x + sin 2x)
So CF.is y=Ae* +Be?*
PL is » == 35 (3 cos 2x +sin 2x)

. General solution is _ _ 1
y=Ae¥ +Be2x—ﬁ(3 cos 2x + sin 2x)

. 1
Note that when we were faced with 3p=3 {sin 2x}, we multiplied top

and bottom by (3D+Z) to give the difference of two squares on the bottom.
so that we could then apply theorem 1II again. Remember that move: it
is very useful.

Now on to frame 44.

i

. Ty
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Here is another example. 44

sx“2v+ IOdy + 25y =3 cos 4x

(i) Find the C.F. You do that.

Solve

=é3%(A +Bx)

Since m?>+10m+25=0 .. (m+5)?*=0 .. m=-5(twice)
’ y=¢°*(A+Bx)
(ii) Now for the P.I.
(D? + 10D + 25)y = 3 cos 4x

_ 1
Y= DTy ToD T35 13 cos 4x}

Now apply theorem III, which gives us on the next line

46

1

Y =16+ 10D + 25

{3 cos4x}

since, in this case,a =4 .. —a?=-16 .. D?isteplaced by —16.
Simplifying the result gives

y=———{3cosdx} -

10D 9

Now then, what do we do next?

When you have decided, turn on to frame 47.
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47 We multiply top and bottom by (10D — 9)

Correct — in order to give D? in the denominator,

So we have 10D = 9

~ (10D +9) (10D - 9)

__1loD— 9
100D? -

{3 cos 4x}

{3 cos 4x}

We can now apply theorem I, giving

48

y= FISSI (120 sin 4x + 27 cos 4x)

Here it is:

__ 10D~ 9
100D? -
10D -9

=—__—1600—81 {3 cos 4x}

{3 cos 4x}

=— 1681 (10D - 9) {3 cos 4x}
D(3 cos 4x) = —12 sin 4x

== 1681 —<7 (120 sin 4x — 27 cos 4x)

y= .1—65 (120 sin 4x + 27 cos 4x)

So CF.: y= e'sx(A + Bx)

PI.: Y = === (120sin 4x + 27 cos 4x)

1681

Therefore, the general solution is

Now turn on to frame 49.
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=¢ ¥ (A+Bx) + —— i ——— (120 sin 4x + 27 cos 4x)

168

Let us look at the complete solution. Here it is:

el RPN AP
To solve e + 10 dx + 25y =3 cos 4x

() CF. m*+10m+25=0 . (m+5?*=0 . m=-5 (twice)
L y=€>*(A+Bx)
(i) P.I.  (D*+10D +25)y =3 cos 4x
y= -])2—+—1(1)—D;—2?{3 cos 4x}
—
=16 + 10D + 25

B 1
T 10D +9

__10D- 9
100D% —

__10D-9
~1600 — 81

1

= — e——— - -
1681 120 sin 4x — 27 cos 4x)

y = {3 cos 4x}

{3 cos 4x}
{3 cos 4x}

{3 cos 4x}

y= (120 sin 4x + 27 cos 4x)

1681

Therefore, the general solution is

y=e¥(A+Bx)+-— 1 (120 sin 4x + 27 cos 4x)

168

That is it. Now you can do this one in very much the same way.

Solve dJ;—4dy+l3y 2 sin 3x

dx dx
Find the complete general solution and then check your solution with
that given in the next frame.

49




Programme 24

50 Here is the solution in detail.

d?y dy
—5 4=+ 3
Tn2 4d 13y =2 sin 3x

:41\/(16—52)
2
J4EVT36
2
Sy =e*(A cos 3x + B sin 3x)
(i) PI (D?*-4D+13)y =2 sin 3x

~ 1
Y D?=4D + 13

_ 1
T-9-4D+13

(i) CF. m*—4m+13=0

253

{2 sin 3x }
{2 sin 3x}

= 4(—113)—{2 sin 3x}

1l

= -PIN

{sm 3x}

)_‘;,_‘

{sin 3x}

+
D2

—

e

._.
|
T
\O
-~

5 (1 +D){sin3x}

(sin 3x + 3 cos 3x)

<
1l

General solution is

» =€**(A cos 3x + B sin 3x) + i%(sin 3x + 3 cos 3x)

Now let us consider the following example.

dy_ dy
dx* ldx
(i) First find the C.F. in the usual way. This comes to

Solve + 5y = e sin 3x

On to frame 51.
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y=Aef +Be™* 51

Since m*—6m+5=0 . (m-1)(m-5)=0 . m=1or$
L y=AeX +Be™

Now for the P.1.
(D* = 6D + S)y = e?* sin 3x
:‘1‘ 2x
Y BD"=6D7S {e?* sin 3x}

This requires an application of theorem II

F(D){e®V}=e®FD +a){V} Here a=2

V =sin 3x

So the e** comes through to the front and the function of D becomes the
same function of (D +4), i.e. (D + 2), and operates on V, i.e. sin 3x

= 2% )
y-e (D+2)2—6(D+2)+5{Sm3X}
1
= 2 .
¢ DPrabr4-eD-12+5 (N3]
1
= 2% :
e D2_2D_3{sm3x}
Now, applying theorem II1, gives
V=
y=e2"'~——1—{sin3x} 52 ‘
‘ ~9-2D-3 |
s = p2X
Ly=e ———_2D {sin 3x} = 2 D+6{sm3x}
e2x
yE-5 D+6{sm3x}

D-6 53
Right. X p-

e TS {sm 3x}
e D-6_
T2 9-36 36 {sin 3x}
22X
=950 (D-6) {sin 3x}
So the P.I. is finally y= ‘\
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54
30 (cos 3x — 2 sin 3x)

So C.F.: y=Ae* +Be>*
2Xx

Pl.: y= g_ (cos 3x — 2 sin 3x)

. General solution:
y=Ae +Be™* + —(cos 3x — 2 sin 3x)

This is an example of the use of theorem II. Usually, we hope to be
able to solve the given equation by using theorems I or III, but where this
is not possible, we have to make use of theorem II.

Let us work through another example.
%y

Solve i i x*e*
(i) Find the C.F. What do you make it?
V= e
55 y=Ae +Be*
since m*—1=0 .~ m?=1 . m=1or—1

Now for the P.I.
D?*-1y =x2e*

_ 1
y=pr 1{_x2 e*}
Applying theorem II, the e* comes through to the front, giving

y= (D+ 1)21 {x }

" prraparoTt )
Dk
='€2_'Bl'1 +1D/2{x2}
=& L Dyt {x)
Now expand (1 + D/2)! as a binomial series, and we get
y=%{.%.( ................... ){xz}

On to frame 56.
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(- e b6

But D{x?*}=2x; D*x%* =2; D*x3} =0 etc.

. _ex 1 2 _ _l_
S y—T.-ﬁ{x x+2}

and since % denotes integration, omitting the constant of integration,

then ' C ( .................... )

_e*/x® x* x
y=5(F-5+3) 51
So the general solution is

y=Ae* +Be™ +—-x-;(x—3—12-+5)

2,.\3 2 2
Now here is one for you to do on your own. Tackle it in the same way.
Solve gxy 6—+ 9y = x3 &3

Find the complete general solutzon and then check with the next frame,

y=e*(a+Bx+Xg) 58

(i) CF. ¥ =e**(A + Bx)
. _ 1 3 ,3x
(ii)) P.I Y DT=éD 19 g{x e}

= 3 1
=e’ D+37 6D

= ,3X 1 3
¢ D TeD+9-eD-1839 X

= e3x%2_{x3}

o

= p3X x5 . y= xs e3x
[4 _2—0 . 20
5 ,3x

. General solution is » =e¥(A +Bx) +X€

y= e”‘(A +Bx +%(f)—)

Now move on to frame 57.
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5

Special cases

By now, we have covered the general methods that enable us to solve
the vast majority of second order differential equations with constant
coefficients. There are still, however, a few tricks that are useful when
the normal methods break down. Let us see one or two in the following
examples.

d% Ay, .
Example 1. g +4 T +3y=5

(i CF. m*+4m+3=0 .(m+1)(m+3)=0 .m=—lor—3
Ly=Ae* +Be
(i) PI. (D*+4D+3)y=5

L___(s)

Y D*+4aD+3

This poses a problem, for none of the three theorems specifically applies
to the case when f(x) is a constant.
Have you any ideas as to how we can make progress?

When you have thought about it, turn on to frame 60.

1
We have =15
Y prrapes O
The trick is to introduce a factor e®* with the constant 5 and since
€% =% = 1, 1ais will not alter its value. So we have:

a1 gs0x
Yprrapss 0

We can now apply theorem I to the function. The €% comes through to
the front, the function of D becoming the same function of ¢ which, in
this case, is 0.

5 .
=0, 3 and since ¢** =1,

So the general solution is:

y=Ae¥ +Be> +%

Now for another. Turn on to frame 61.
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Here is another example 61
dy _
+
Example 2. d -—5+2—= P

@ CF. m*+2m=0 . mm+2)=0 . m=0 or -2
Ly=Ae® +Be? L y=A+Be¥
(i) PL (D*+2D)y=5
_ 1
y=p7r3p O

If we try the same trick again, i.e. introduce a factor ®* and apply
theorem I, we get

. 62

0Xx
————{5} becomes y= D2+2D{Se }

{5} which is infinite!

for

y= D2+2D

= o0X

Y 0+0

So our first trick breaks down in this case.
However, let us try another approach.

_ 1
y—D2+2D{S}

S S
B D(D + 2) {s}
(D AR
Now introduce the ¢®* factor and apply only the operator ) i 3
-1 0x
or 2 Drpe
=1,
=5’ 0 oAl
= .-1— -l— i 0x —
) (5) sincee |
=13
" D\2
whichis Y= i,

i
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63 5
Y=

since = denotes integration (with the constant of integration omitted).

D
Note that we can apply the operators one at a time if we so wish.
The C.F. was y=A+Be?
The P.I. was found thus: look at it again.
(D2 +2D)y =5
Y= priap 15

21 1

S rTAS

11 0x

=553 e

-1 jox_1

D¢ 12 {5} by theorem 1

General solution is 5y
y=A+Be* >

Now here is another one. Let us work through it together.
On to frame 64.

64 Example 3. 372{— 16y = ¢%*
@) CF. m*-16=0 . m*=16 . m=%4
y=Ae** + B
(i) PIL. (D*—-16)y=e*
y= Dz_l_ 16 {€4x}
Theorem lapplied to this breaks down, giving é again.

~ Introduce a factor 1 with the e**

___ 1 ax
y=pr—ig ¢ 1

We now apply theorem II and on the next line we get

Turn to frame 65.
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y=e4xm)12—_—16—{1} 65

ie. the e** comes through to the front and the function of D becomes
the same function of (D + 4).

Then

1
4x
D2+8D+16—16{1}
ax 1 _1
D'D+8{1}

y=e

=e

The function 1 can now be replaced by ¢®* and we can apply theorem I

to the second operator which then gives us

1
D+8

ox 66
Drste

p=et* 2 67

8
since Il) denotes integration.
So we have: CF. y=Ae*+Be?
_xe™
P.I. y==3

. General solution ax
y=Ae** +Be** + X6
8

Notice this trick then of introducing a factor 1 or €% as required, so
that we can use theorem I or II as appropriate.

There remains one further piece of work that can be very useful in the
solution of differential equations, so turn on to frame 68 and we will see
what it is all about.

—
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2
Consider %+ 4y = 3 sin 2x

i) CF. m*+4=0 . m?*=- Lom=E§2
Yy =Acos2x +Bsin 2x
@) PI (D*+4)y=3 sin 2x
y= D2+4 ———{3 sin 2x}
The constant factor 3 can be brought to the front to simplify the work.

y=3. D2+4{sm2x}

If we now apply theorem III (since we are operating on a sine term)
we get

y=3.

4+4{sm2x} 3.5 {sian}

and theorem III breaks down since it produces the factor%.

Our immediate problem therefore is what to do in a case like this. Let
us think back to some previous work.
From an earlier programme on complex numbers, you will remember

that , o
€19 =cos @ +jsin 6

so that cos 0 = the real part of el® written# {e10}
and sin 6 = the imaginary part of eJ® written #{ei¢}.

In our example, we could write

sin 2x=5{. ... .. }
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sin 2x =4 {ei2X} 70

" {ej2x} .

So we can work this way:

y= 3D {sm2x} 14]{ei2x} =34

Theorem I now gives

y= 39 el?x, 6:-2—)5%{.—4= 3‘/¢ej2x

=3 fei2x % so this does not get us very far.

“4+4

Since this does not work, we now introduce a factor 1 and try theorem II.

1 .
y= 3fm{ellx.l} Ee PPN

y=3el® (T)sz—l)z—ﬁ{l} 71

L3

-y, = jox
fy=3JeT priap—4+a

=3fe mD D+J4{e°x} putting e® for 1.

iayx 1 1
= jox L
3de D % 0

i 1 1 ; X

=3 ejzx_{'__}_ =3 fel2x X

J D\ Je o

= J—-(cos 2x +jsin 2x) writing ¢)2* back into
its trig. form.

=Z~ﬂ(————x COJ.S 2x +x sin 2x)

=§-.¢(xsin2x-—jxcos2x) ;_y=_3x0(:132x
That seems rather lengthy, but we have set it out in detail to show every

step. It is really quite straightforward and a very useful method. So finally

we have CF. y=Acos2x+Bsin2x P.IL _3xcosdx
4
3x cos 2x
4

Look through the last example again and then solve this following
equation in much the same way.

dy

theorem I on second
operator.

General solution y = A cos 2x + Bsin 2x —

Solve ==+ 9y = cos 3x.

When you have finished, turn on to frame 72 and check your result.
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72 Solution: y = A cos 3x + B sin 3x + - _3123"

Here are the steps in detail:
() You will have had no trouble with the complementary function
¥ = A cos 3x + B sin 3x

(if) Now for the particular integral:-
2 = =
(D* +9)y = cos 3x Ly = D2+9 {cos 3x}

Theorem III breaks down. Therefore use cos 3x +j sin 3x = ei3*
ie. cos 3x = {ei3%}

1 .
=% 13x
y D2 + 9 {e }
Theorem I breaks down. Therefore introduce a factor 1 and use theorem II.
=R 1, isx
y D219 {eidx 1}

=R i3 .—1__{1}

(D+i3)2+9
; 1
SR L
¢ D2+j6D grotl}
1 -
_92 JaxIS (D+J6) {eox} e%% =1
Operate on e®* with the second operator (_1—)_;]_63 using theorem 1.
iax 1 1
= 3x L ox L
y e 5e 6
1 iax X
=R, jax 1[ 1 @ i3x X
D { j6} Ae i6
=R 56— (cos 3x + j sin 3x) writing e)?* back in
J trig. form.

=%{—% (cos 3x + sin 3x)}

P —jx cos 3x WX sin 3x
6 6
_ X sin 3x

Then, combining the C.F. and the P.I. we have the general solution
X sin 3x

6
Note. These special methods come to your aid when the usual ones break

down, so remember them for future reference.
Turn to frame 73.

Y=Acos3x + Bsin 3x +
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You have now completed this programme on the use of operator D 73
methods for solving second order differential equations. All that remains
is the Test Exercise, but before you tackle that, here is a brief summary
of the items we have covered.

Summary Sheet

1. Operator D D=

D
3. TheoremI F(D){e® } = e** F(a)

1 s . )
2. Inverse operator = ES. .. dx, omitting the constant of integration.

4. TheoremII  F(D){e®™V}=e®FD +a){V}

s w10 (5] ()

6. General solution

y = complementary function + particular integral
7. Other useful items (where appropriate)

(i) Introduction of a factor 1 or e®
(i) Use of &% = cos +jsin@
ie. cos =R {el?}
sing =4 {9}

Revise any part of the programme that you feel needs brushing up
before working through the Test Exercise.

When you are ready, turn on to the next frame and solve the equations
given in the exercise. They are all straightforward and similar to those you
have been doing in the programme, so you will have no difficulty with
them.

On to frame 74.
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74 Work through the whole of the exercise below. Take your time and
work carefully. The equations are just like those we have been dealing
with in the programme: there are no tricks to catch you out.

So off you go.

Test Exercise — XXIV

Solve the following equations:

2
1. ‘-i—z+3%+2y=e‘”‘

dx* “d
2. %%+4%+4y=5e’3x
3. %+4%+By=cos3x
4. %—4%+ Sy = sin 4x
5. g—;)zi+ 2%+ 2y =e* sin 2x
6. %+4%+ 4y = x3 ¥
d%

7. 'c-l,xj-+y=3ex+5€2x

2
8. Z—x¥+6%+8y=2sinx+sin3x

2
9, g—x{—+25y=sin5x
d’y _Jdy ., _ . s
g 10. o ax 3y =2e”*.
Well done,
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Further Problems — XXIV

Note: Where hyperbolic functions occur, replace them by their
corresponding exponential expressions.

Employ operator-D methods throughout.

NO00oO0D0DODO0DOCDOO0O0O0DDO0O0DONO0O00DO0C0O0CcOoOooOnoOn
Solve the following equations by the use of the operator D.
1. D% +2Dy-3y=4e*

2. D*»+3Dy+2y=xe*

3. D)y +y=sinx

4. D*y-2Dy+y=sinx+x? . 0

2 A% i e given at x = 0,

5. D»—-3Dy+2y 4e” sinh x {y=2andDy=O.
6. D*y—5Dy+6y=e*

7. D2*y—5Dy + 6y =e** sin 3x

8. D?y+4Dy+ 5y =x +cos 2x

9. D%’y +2Dy+5y=17cos 2x

10. D?*»+4Dy+5y=8cosx

11. D%y +2aDy +a’y=x*e®

12. D’y +Dy+y=xe* +esinx

13. D¥y—-6Dp+9y=e>*+e&3*

14. D2y +4Dy +4y = cosh 2x

15. D%y + 6Dy +9y =€ 3* cosh 3x

16. D*y—Dy—6y =xe&>*

17. D2y +4Dy + Sy = 8 cos’x

18. D2y +2Dy + Sy = 34 sinx cos x

19. 2D?% +Dy—y =e* sin 2x

20. D%y +2Dy+5y=x+€* cos 3x

21. D*y»—2Dy+4y=e"sin3x
22. D% —4Dy +4y=¢e**

23. D2y -9y = cosh 3x +x?

24. D% +3Dy+2y=¢€* cosx

25. Diy+2Dy+2p=xte”
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Answers

ANSWERS

Test Exercise I (page 32)

1.

NS AL

@ —j, () j, (i) 1, Gv) -1

() 29-32, (i) —j2, (i) 111 +j56, (iv) 1+j2

(i) 5-831 [59°3, (i) 6:708 [153°26', (iii) 6-403 [231°24'
(i) —3-5355(1 +j), (ii) 3-464—j2

x=105, y=4.3

(i) 10650, (ii) 10¢3%650; 2.303 +0-650, 2-303 - j0-650

je

Further Problems I (page 33)

[N I T T o T G Sy
S ® ok WO

VP v p W~

(i) 115 +j133, (ii) 2-52+j0-64, (iii) cos 2x +j sin 2x
(22-j75)/41

0-35 +j0-17

0.7,09

—24.4 +i22.8

1-2+j1-6

x=18,y=1

a=2,b=-20

x=%2,y=%3/2

a=15,b=-2.5

\/2 ej'2-3562

26

R=(R;C3 ~R;C4)/Cs; L=R,R4C;
E = (1811 +j1124)/34

2+33,-2+j3
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Test Exercise II (page 67)

1.

2
3.
4
5

5831 |210°58'

(i) —1-827 +j0-813, (i) 3993 —j3-009
(i) 36 |197°, (ii) 4 [53°

8 [75°
2 [88°, 2 [208°, 2 {328°; pr.=2 |328°

Y

2|88

j

Xy Z X
2|208° 2(328°
Y

sin 40 = 4 sin 0 cos @ — 8 sin®6 cos 0
cos*d =il6_ [cos 46 + 4 cos 20 + 6]
() x2+y* -8x+7=0

x+2

(i) ¥ =73

Further Problems II (page 68)

1
2
3.
4

x=0-27, y=0:53

-3+j/3; —i2/3

3.606 [56°19', 2-236 |296°34"; 121-3~358-4; 378 1244
1:336 (]27°, [99°, [171°, [243°, |315°)

1336 (eJ0'4712’ 17279 j2:9845  p-j2:0420 gi0-7854)
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2173 +§0-899, 2351 £/0392

V2(1+J), V21 +§), V2(-1-)), V2(1 )

1[36°, 1[108°, 1[180°, 1[252°, 1]324°; efo-6283

x=-4and x =2 *+j3.464

1]102°18', 1]222°18', 1]342°18'; 0953 —j0-304

1. 1-401([58°22',|130°22', |202°22, [274°22, |346°22");
pr.=1:36-j0-33 = 1.401 102379

12, =036 +0-55, —1-64 ~j2.55

13, =je,ie. —j2718

14 sin 70 =75~ 565° + 11255 ~ 6857 (s =sin )

© P N o w»

15. 312—[10— 15 cos 2x + 6 cos 4x — cos 6x]

16. x%2+y%+ %—Qx + 4 = 0; centre (— '13Q, O), radius 8/3

17. X2 +p? = (1 +4/3)x - (1 +v/3)y +/3=0,

1 ;\/3, 1 ;\/3),radius\/2

18. x2+y?=16

19. () x2+292—x—1=0, (i) x* +y?>+2x+2y=0
20. (i) x*+y?—4x=0, (i) x> +y2+x-2=0

22. (i) y=3, (i) x* +y% =4k?

centre (

Test Exercise III (page 97)

1. 6725
2. 19440
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2
3
4.
5

o =N oo R

10.

12.
14.
18.

_____ o o= =""7
X 0 X
e e e R T ——T _______
%
—coth A
(i) 1-2125, (ii) *0-6931
x =0-3466

@) y =224, (ii) x==48-12

sin x coshy —j cosx sinh y

Further Problems III (page 98)
2.
5.
7.

x=0, x =0-549

(i) 09731, (i) 1-317

(i) 09895 +j0-2498, (ii) 0-3210 +j0-3455
x=0, x=%ln2

x =0-3677 or —1-0986

1.528 +j0-427

1-007

Test Exercise IV (page 135)
1.

(a) 4, (b) 18

Equations not independent
x=3,y=-2,z=-1
k=3o0r-25

x =3, 1-654, —6-654
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Further Problems IV (page 136)

1. (i) 144, (i) 0

(i) 0, (i) 666

x=5,y=4,z=-2

x=25y=32=-4

x=2,y=15,2=-35

4o01r—14

Sor—2.7

(a) Oor+y/2, (b) (a=b)(b—c)(c—a)(a+b+c)
x=1lorx=-51+/34

A AN S R

.__.
o

x=-1.5
~2a-b)(b—c)(c—a)(@+b+c)
in =52

@+b+c) @~b)(b-c)(c—a)
20r—16/3
x-0-2)z-x)(x+y+2)
x=-30r++/3

_ (M, + M)W
M;(M; +2M,)

18. i, =0, i2=2,i3=3

LT o, U
1227 12

Pt e e e e s
N S

17. x

20. 6

Test Exercise V (page 167)
1. 20=5j,~4i +],2i + 4j; AB=+/29, BC=+/17, CA =+/20
2. (i) -8, (i) —21—7/—18k
3. (0-2308, 0-3077, 0-9230)
4. (i) 6, 6 =82°44"; (ii) 47-05, 6§ =19°31"

"
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Further Problems V (page 168)
r 1. 0G=1(10i+2)
2. \/50 3, 4, 5); \/14(1 2,-3); 6=80°5

3. Moduli: /74, 310, 2+/46; D.Cs: \/—;2(3, 7, -4),

37116(1’ -8), \/46(6 ~2,12); Sum= 10

4. 8, 17i—7j+ 2k, 6=66°36

5. () -7, Gi) 7G—j—k), (iii) cosf=-0-5

6. cosf=-04768

7. () 7,5i—3—k; (i) 8, 11i+ 18/ — 1%
r 8. - 3 > jt k; sin @ = 0-997
/ \/155 \/155 \/155

9 2 = 5 1 -2

‘ \/13’\/13’ * /307 1/30° /30

10.  65; 3:\/2—5 3—35—, 3753—
11. (i) 0, =90% (i) 6853, (-0-1459, —0-5982, —0-7879)
d 12. 4i-5j+11k; L@, -5, 11)
N2}
13. (i) i+3j—7k, (i) —4i+j+2k Qi) 13(+2+k),
(iv) \/%(i +2j+K)

Test Exercise VI (page 191)
1. () 2sec?2x, (i) 30(5x +3)°, (iii) sinh 2x,

2x—3
(iv) -3 -Dhi0’ (v) —3tan 3x,
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(vi) 12 sin®4x cos 4x, (vii) €>*(3 cos 3x + 2 sin 3x),

23 (x+2) * sin x

(viii) NCTIEE ¢ ) oS 2xli4+cotx—%+2tan2x:|

25

64

_3x? +4y?
3y% + 8xy

3
2. T

4. tan%, 1/(12 sin% cos® %)

Further Problems VI (page 192)

1. (i) secx, (iii) 4 cos*x sin®x— 3 cos?x sin®x

. 2
@ cos 2x’

xsinx |1 sin x . —4x
20 l+cosx[ Cowc+1+c0sxi,’ () 7=

4 L=X
Yy -y

. . snZ5x i 2 L X =
5. () Ssin2xe , (i) b % (iii) 4

X

6. (i) 2x cos’x —2x? sinx cosx, (i %— =

-x
.. X lnx 1 3
(i) (x-1)° [2+xlnx x—ljl

8. -4, -42

12. _\/;—’_8-)9@;)‘2 +y2-2y=0
1

14. —tan#;

> 3q sin § cos*0

15. —cot®8; —cot?8 cosec®d

713




Answers

Test Exercise VII (page 217)
1. 6=37°46
16y +5x =94, Sy =16x—176
y=x
y =2.598x —3-849
R =477, C: (470, 50-2)
R =5-59; C: (-3:5,2.75)

A O i

Further Problems VII (page 218)
1. 20y=125x—363; y=2x
2. y+2x=2; y=x+t4;,x=1,y=0

© xcosf ysm0

3 3 =1; 5y =13tanf.x— 144 sin §; ON.OT = 144

3x+y
4. T 3y +5x=14

5. R=y%c
6. Sy+8x=43
7. a® cos®tsint
2a2 _b2
a
9. () y=x;y=—x, (i) R=—~/2, (iii) (1,-1)
10. (i) R=-6-25; C:(0,—-2-25)
(i) R=1; C:(2,0)
(iii) R=-11-68; C: (12-26, —6-5)
11. R=-0-177
14, R=2.744
17. p=t; (h, k)=(cost,sint)
18. R=-10-54,C: (11,-3-33)

20, (Hy=+= \—/— (i) R=0-5

i b
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Test Exercise VIII (page 246)

1.

2.

(i) 130°, (i) -37°
cos ' x

, 3 Lo -1
® \/(~9x2—12x—3)’ ey s R

(iii) 4+ 3 + 2x tan” ( ) (iv) \/(9x —6x)

—sin __Tsinx

™) Vicosx + 1y (Vl) 25x

() ymax =10atx=1; y . =6atx=3; Poflat(2,8)
(i) Yoy =—2atx=-1;y . =2atx=1
(il]) Ymax =€ ' =03679 atx = 1; Pofl at (2, 0-271)

Further Problems VIII (page 247)

1.

3.

10.

11.

M 1, () 2v/(1 -

. 2 )
O Zivay: @7
O (3-22): G 025, ~4375)

1

ymax=0atx=§; Ymin=4atx =1

Vmax atx =2; yo.atx=3; Poflatx=+/6
16 11
Ymax =5 atx——-s—;ymin=0atx=1

x=1.5
%=\/2.e“x cos(x +1ZT->
() Y at(g 27) Ymin at (1,0); Poflat(6, 514)

(i) Fmax 3 (2~V/2, 3= 2v/2); P at 2 4/2, 3+ 2¢/2)
(iii) P of I at (nnm, nm)
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12. (i) £0-7071, (ii) 0, (ii)) + 1-29

13. 0-606

14, v= %
16, Ypax =0-514
17. 1746 cm
18. 6=77°

200 A=(C,B=0

Test Exercise 1X (page 272)

= =—10xy + 9?

dy xy + 2y

82
3y? =—10x + 18y

3%z __

0x.0y Y
g—;= —3 sin(2x + 3y)

2

a—— =—9 cos(2x + 3y)
5% y=*6 cos(2x + 3y)
9z _ 5, X%y

3y 2ye

3_7'Z=2ex -y (2 2_1)
ay? Y
9%z _ x2-y
oxay €

—5 =(2 —4x?) sin(2x + 3y) + 8x cos (2x + 3y)

LG 2 =12x2 —5y?
g—-—=24x
9y.0x
(i) a————2s1n(2x+3y)
92
a_f =—4 cos(2x + 3y)
2
ai}; =—6 cos (2x + 3y)
(iii) ?;C 2x 27
2
=t ew
8%z 2_,2
mx=—4xy€v Y
(iv) g—i=2xzcos(2x+3y)+2xsin(2x+3y)
82
ox
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2%z _
dy.0x

0z 2
—= +3
5y 3x* cos(2x + 3y)

azz_ 2 .
5? =-9x? sin(2x + 3y)

ox.0y
2. () 2v
P decreases 375 W
4. £2.59%

Further Problems IX (page 273)

10. +1.05E X 107° approx.

12. £+(x+y+2)%

13.  y decreases by 19% approx.

\Q +4.25%

16: \19%

18. Sy\_=y {8x. p cot (px +a) — 8t. q tan (gt + b)}

Test Exercise X (page 292)

L dxy-3x* e¥cosy—e cosx
L@ 3y —2x?’ (i) e siny +e¥sinx ’
(i) S cosx cosy — 2 sin x cos x
5 sin x sin y + sec’y

2.V decreases at 0-419 cm?/s
3.y decreases at 1-524 cm/s

= ~6x2 sin(2x + 3y) + 6x cos(2x + 3y)

—~@x? sin(2x + 3y) + 6x cos(2x + 3y)

R e M b S ek o B . K 0 ek Y Bl it fn
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—
d 4. %= (4x3 + 4xy) cos 0 + (2x? + 3y?) sin 6
%%=r{(2x2 +3y2) cos § — (4x> + 4xy) sin 0 }

Further Problems X (page 293)
% 2. 3x%*-3xy

2.

o 3. tanf=17/6=2-8333

1=y o 8y—3y* +dxy—3xiyr .y
9. (1) m5 (11) ZxTy_ZXZ +6Xy“8X’ (lll)-;

14. a=-2p=-3

cos x (5 cos y — 2 sin x)

2

16. - -
Ssinx siny + sec”y

ycosx—tany

X sec’y —sinx

. 2xy +y cosx; N xy t+tanx
20. @ _{ x2y+xycosxyy}’ (i) _{ > x2 y}

Test Exercise XI (page 322)
1. 230
2. 2488, 25945
3. 1812
4. (i) convergent, (ii) divergent, (iii} divergent, (iv) convergent
5. (i) convergent for all values of x.
(i) convergent for—1Lx K1

(iii) convergent for~1<x <1
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Further Problems XI (page 323)

1.

11.
12.
13.
16.
18.
19.

20.

%(4112 ~-1)

n(3n + 1)
Hn+1)(n+2)

T 1)t 4+ )

@ S0+ D (+5), () p(n® +3n)(n + 30 + 4)

(i) 0-6, (i) 0-5

(i) diverges, (ii) diverges, (iii) converges, (iv) converges
-1<xK1

-1<xL1

All values of x

-1<xg 1

(i) convergent, (ii) divergent, (iii) divergent, (iv) divergent
(i) convergent, (ii) convergent

1<xK3

%(n+1)(4n+5)+2"+2—4

Test Exercise XII (page 352)

1.

2.

16 = F0) + 27 ©) + 57" @)+ ..

4 6
2 X X
1x+3 45+...
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5x3  x*
x+xP+ 0+t
6 2

1.0247
. 1 2 ]
M -5 () Gi) —3

0-85719

Further Problems XII (page 353)

3.0 15, )5 @) 3 ) g

6.

10.
11.
13.
16.
17.

19.

wiro

G —%, (i) % (i) 2

(n—-r+2)x

R 1426

4

x?—x3 +111—;; max.atx =0

v) 2

T
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Test Exercise XIII (page 384)
1. =% +C
2. A/x(lnx-2)+C
3. tanx—-x+C

xsin 2x _ x? cos 2x L cos 2x

4. > > n C
2¢3* | 3
5. —1§—{sm2x 2cos?.x +C
2cos’x  cosix
. —eosx +T——=—
6 cos X 3 S +C
7 3x sm?.x+sm4x+C

R N
8 2In@x*+x+5+C

9. %(1 +x2)3/2 +C

9 5
10. —2—ln (x—5) —-i-ln x-3)+C

11. 2In(x—D+tan’!x+C

_(cos8x ;08 2x

N S T

) +c

Further Problems XIII (page 385)
. In{AGx-DE*+x+ D)} +C

1
2.2

3. —In(1+cos’x)+C

4. A1

V3 6
L.
4
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Answers

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

2
C_(x'*’+x+l)‘/2

%ln(x— 1)—':1)’-1n(x2 tx+1)+C

2
i—x+mu+n+c

2
2in(x —1)+tan! x+C
2
-2 pPt3

@P+DEP+2)@P+3)
300 (r=2) 3 + 1) =5 tan x+C
1
2

a1 2
(sm2 X) iC
4l(21n3-—1r)
n? —4
™ T

6 4
r_1
4 2
~=—tan'x +C
S0+ 0 4c
In(x+ )—lIn(x—-2)— —= +C
n (x e

%(e”— 1) = 5345

1

24
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Answers

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

i 1
71n(x—4)—mln(5x+2)+c

In(x+2)+C

é 2 _i —1{X
2In(x +5)+5In (32 +9) ~Ttan (3)+c

In (9x2 — 18x + 17)'/18 4 ¢
2x2 + In {2 -D/x*+D}+cC

—é—{bczln(l +x2)—2x> +6x — 6 tar ' x + C}

In (cos § +sin ) + C

tan g —secd + C

1 1 9
gnG-DH3lx-2)-55In(x+3)+C

3

ln2—18

L2 _1 o x
31r1x+21n(x +4) 2tan (2)+C

_ 1
- by —=+
Inx —tan “Xx p C
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Answers

Test Exercise XIV (page 416)

1. sin™! (i) +C

7
1 2x + 3 —+/29
2. — 1 +C
v29 " {2x+3+\/29}
1.
3. \/i-tan HEx+2)V/23+C

4, \/31- sinh™? (%@-) +C

10 1
6. %{sin’1 (Zx\/-l-s 1) + 2(2.;c+ D V(1 ~x-x2)}+C
7. \/—;—cosh"‘( \/é—;%> +C
8. \/—;’—tan_l (v/3tanx) +C
]
0. ),

Further Problems XIV (page 417)

L 2\/121 ‘“{iigiﬁll}*‘:

2 g e e

3. \/ll—ltan“1 (%%C

4. %ln (x? +4x + 16)—\—/%tan‘1 (2\;32) +C

R
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Answers

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

inht (X 6) o [X+6+V(x%+12x+48)
si (2\/3) In NE +C
1 x+7
sin (_—\/66)+C
1 (x+8
cosh (2\/7)+C

63/Ce? — 12x + 52) + 31 sink’! (ﬁ)+ C

4
M '1{ﬁtan (;)} +C

‘/5"—03511

1 2x+5—\/5}

—n {227V,

J5 n{2.x+5+\/5 ¢

32

—2‘—4x+4tan x+C
- 2)+2sm‘1(";1)+c

T

cosh-l(x"z)w

1. /2

6tan {3tanx}+C

1 2tanx —1

§1n{tanx+2}+c

T

51

3sin ' x~+/(1-x%)+C

\/gtan ! {\/3 tan%}—x +C
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Answers

3 _3 2 -1 X
21. 21n(x+2) 41n(x +4) + tan (2)+C

22. 3\}5 tan™ (@) +C

23, J(x2+9)+2In{x +/(x*+9)} +C

1 —1 4x_7
it
25. 5

26. \/2tan0—l}+c

1
—_— p ey -
20/2 n{\/2tan0+1‘

27. J(x* +2x + 10) + 2 sinhi! ( X+l )+c

8. g (54) + 2 Yas-2x-at) +C
29. L (x+2)
T 84
1 1 {_X 1 !x+a!2}
0. 7 tan' (=) +—1 { +
0. 3o (a\/2\) 6" e 22 TC

Test Exercise XV (page 430)

3 2
w X _3x° 3x 3
1. e {2 m +4 8}+C

2. B 558 256’ (’)Eﬁ

2(17
| e

‘ 4. I = ! tan! x — 1,2
n—1

256
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Further Problems XV (page 431)

Lo, 6 a4 8, 16 -
2. 7sc 35sc 35sc 35c+C, where{sismx}
, cC=cosx
2835
3. 8
32 7
5. I3=4_—6; I4=?_127T+24

6. L =x"e —nl,_; I =€ (x* —4x> + 12x? — 24x + 24)

7 1328+/3
' 2835
5 3
10. 16=—COt x+cot x—cotx-—x+C

5 3
11. I;=x{(Inx)* -3(nx)2+6lnx—-6}+C

4
12. 3

Test Exercise XVI (page 452)
1. 70-12

2. ZiT—O+21'r=31-75

3. 2ln 6 =2.688

2
4. 73.485
lep
5. FRI
6. 132.3
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Answers

Further Problems XVI (page 453)

1. 24
2.1
3. 3m
4 g
5. 0
7. 2

| I
8. TVyip cosa

2

2
S

1. In(2.3% -1

A

2. @ (ln2- %)

15. a(l-2¢")
16, 283

17. 3901

18. \/{%(1% +13 }

20. 1361

Test Exercise XVII (page 477)

1. (075, 1-6)
2. (31,0
3. 57%4d
et +7
4, 3
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Answers

5.

70357

5.72

er—12

Further Problems XVII (page 478)

1.

2.

10.

12.

13.
16.
17.

3 1
672
(i) 2:054, (i) 66-28

64ra3
15

@) (0-4, 1), (i) (0-5, 0)
24

In2

A=2457, V=4n+/3, 7 = 1409
. o 04 4
() 8, (i) 3 > (i) 3
1-175

V=254cm?, A=46.65cm?
S=15314%, y=1.0624
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Answers

Test Exercise XVIII (page 513)
. abp
. )L =T2—(b2 +a?),

2
(i) Lpp =22 @ +0%), k= /" +b

2. k=—to
k= \/2
1 .6
3.0 pr @ 7
3
5. M—;;f‘—,0.433a

Further Problems XVIII (page 514)
1

2. —2-Ma2

6. ()

0. &

o o) e 2 2)
12. T-T—le'a

14, 2‘3"“3,31—"5‘-

15. () 5 Ve

16. 512w

17. 946 cm

19. (157-32)a
4(3n—4)
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Answers

Test Exercise XIX (page 534)

1.

2
3.
4
5

0-946
0926
26-7

1-188
1-351

Further Problems XIX (page 535)

1.
2.

10.

11.

12.
13.
14.

NN T - VN

0-478
0-091

() 06, (i) 6-682, (iii) 1-854
560

15-86

0-747

28-4

28-92

0-508

) w2
\/25 VA9 + cos 20).d9; 499
0

3 5 7
Loy, X X7 X o
tan “x =x 3 + s "7 0.076

(i) 0-5314, (ii) 0-364
2422
2:05
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Answers

Test Exercise XX (page 560)

56

1. 3
2. (i) r=2sinb

2

(iii) r=sin 249

%

L]

'

)
N

N

(v) r=1+3cosf

407
3. 3
4, 8
32na?
5. 5

(ii) r=5cos? 9

(iv) r=1+cosf

WV

(vi) r=3+cosf

9
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Answers

Further Problems XX (page 561)

1. A=?—Z;V=§—7{
2. 37

4. 18ﬁ7+3

s 2

¢ 2

,,

o, 10

10. 52—‘”

11. 21254

12. 3;_11

14. %{\/(b2+1)}(eb91—1); %%(e’bel -1)

15. ma®(2—-/2)
Test Exercise XXI (page 588)
3
L@ o, (i) 3T

2. () -1, (i) 168, (i) %
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Answers

3. 13.67

4. 17067
19%;4

6. 54

Further Problems XXI (page 589)

3
2437
2. 5
3. 45

mr
5. I
6. 45
7. w+8
8. 26

2
9. =
10 l(l+ 1)

)

1

1. 3

/6 ¢ 2 cos 36 -
12. A=2§ S rdrd6=§
0 0

13. 471{\/%—\/%}
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Answers

14. 69—4 (3r—4)

7 pa(l+cos ) 443 16a
15. M=j j P sindrdo = 3 h= g
0J0
L1 1 ([ 4b
16. (i) Emb’ (i) 87Tab . centroid (0, 377)
17. 19-56

b: a2
18. 4(c a’)

ll2
19. Z(r+3v3)

20. 232

Test Exercise XXII (page 630)

%2
1. y=2—+2x—31nx+C

-1 - __ 1
2. tan'y=C T

3x

3. y=€5—+Ce“2x

4. y=x>+Cx

s y=_xcgs3x + sn;3x L

6. siny=Ax
7. y?—x?=Ax?y

2
8. y(x? —1)=x7+C

. oy= +
9. y=coshx osh x
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Answers

10. y=x*(sinx +C)
11, xp*(Cx+2)=1
12. y=1/(Cx® +x?)

Further Problems XXII (page 631)

—

x*y2=Ae

y3P=4(1+x%)

AP rap 1)’ =A

(1+e¥)secy =24/2

X242+ 2% -2 +2Inx-D+2In(p+1)=A

2

3

4

S

6. y2-xy—-x2+1=0
7 xy=Aey/x

8. x*-29°=Ax

9. Ax-2)°Bx+2)3=1
10. (x* —y*)* = Axy

11. 2y=x®+6x*—4xInx + Ax
12. y=cosx (A +Insecx)

13. y=x(1+xsinx+cosx)
14. Gy -51+x>)32=2/2
15. ysinx+5e“%% =1

16. x+3y+2Iln(x+y—2)=A

17. x=Aye”
18. In{4y? +(x—1)*} + tan"*{x—z_y—} =A

19, -x+1)P@+x—1)P=A
20. 2x%p? Iny —2xy — 1 = Ax%y?
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Answers

21.

22,

23.

24.

25.
26.
27.

28.

29.

30.

31.

32.
33.
34.

35.
36.
37.
38.
39,

41.

—2{=2.x+1+Ce2x

<

= Ce?*

\<w|,_

y2x+Ce)=1
2 3
sec” x =C_tan X
y 3
cos’x =y? (C -2 tanx)
V(1 =x%) = A +sinlx
x+InAx=/(y2-1)
% 4
ov-x)? y-x

In(x-y)=A+
_ V2 sin 2x
Y 2(cos x —~/2)

(x—4)y*= Ax
y=x COSX‘%SCCX

(x=y)’ —Axy=0
2tan'y=In(1+x%)+ A
Wty =2x3 —x2 -4

x-ry
y=e?

3¢ =23 + ]

4xy =sin 2x — 2x cos 2x + 27— 1
y=Aey/x

x¥=3xy?=A

x2—4xy +4y* +2x-3=0

YA -2 =2 (-2 P rC
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Answers

42.
43.

44.

45.

46.

47.

48.

49.

xytxcosx—sinx+1=0
2tan 'y =1-x?

- X *C_
YT 5 -x%)

x3
yV(L+x)=x+5+C
1+y? =A(1 +x?)

2020 (42 2 a?
sin®f (@ —r*) = 5
_1

y =5sinx

Y =x(A—x)

Test Exercise XXIII (page 663)

1.
2.

y=Ae*+Be** -4
y=Ae* +Be X +2¢%%
y=€*(A+Bx)+e

y=AcosSx+Bsin5x+T%5—
y=€" (A+Bx)+2cosx
y=e2* (2 cosx)

y=A& +Be* -2 +7

y=Ae* +Be** +4x e

Further Problems XXIII (page 664)

1.

ax
= A A% 4 -x/2 _ €
y=Ae¢€ Be =

2. y=e* (A+Bx)+6x+6

3. y=4cosdx—2sindx+Ae** +Be¥

(25%% + 5x —2)

738



Answers

10.

11.

12.
13.

14.

15,

16.

17.

18.

19.

20.

739

X
=¢* (Ax + B) +62—~x2 ex

x e 2

2x
- -2x ;€7 _X€ "~
y=Ac +Be 7 3
2x

y=e* (A cosx+Bsinx)+2—ez—

y=e**(A+Bx)+—- +£1;—sm2.x
y=Aex+Beax+§(3x+4)—ezx

. x* 4x 7
y—e"(Acos2x+Bsm2x)+?+9— 77

y=Ae’* +Be3* _1_18 sin 3x+%xe3x

_ 2 _wit
{x A+ 612} ; y SFL

- 24EI
x =—1—(1 —-1)e¥

2
y=e?(Acost+Bsini) —%(cost—sin D;

. a2 1
amplitude % frequency m
x=—Lety 1e'2’+ 1o (sinZ +3cos )

2 5
y=e?* —eX+ —(smx 3 cosx)
y=e>*(Acosx +Bsinx) + 5x -3

x=et(6cost+7sint)—6cos3t—7sin 3t

y=sinx—%sin 2% Ypax = 1-299 atx—23—7r

1
T=—==0641s, A=
2\/6 > A%
=Ly 3t _ a2 tain )
lO{e e +cosr+sint};

V2

Steady state: x = ——sm (t + g)




Answers

Test Exercise XXIV (page 703)

2x 4x
- -X - +__.
1. y=AeX+Be ”

2. y=e (A+Bx)+5¢3

3. y=Ae* +Be‘3x——(cos3x 2 sin 3x)

4, y=e¢*™ (Acosx+Bsinx)+-55 (16 cos 4x — 11 sin 4x)

377

5. y=e*(A cosx+Bsinx)—g;—(8 cos 2x — sin 2x)

2Xx 2
= 72X et 3 3x° 9% 3
6. y=e™ (A+BY)+ T (x* -+ g 5)

7. y=Acosx+Bsinx+32—ex+e2x

8. y=Ae +Be’4x—%{6 cosx—7sinx}

—— {18 cos 3x + sin 3x}
Xx cos 5x 325

9. y=Acos5x+BsinSx - 10

x esx

10. y=AeX+Be™ +——

Further Problems XXIV (page 704)
1. y=Af+Be ™ —xe ¥

2. y=AeX+BeF+e” (52—2—x)

3. y=Acosx+Bsinx—%cosx

4. y=e"(A+Bx)+%cosx+x2 +4x+6

y=1+e**(1-2x)
y=Ae** +Be** +x e

y=Ae* +Be3¥ —e* (9 cos 3x + 7 sin 3x)/130




Answers

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

y=€>*(Acosx+Bsmnx) +%— ;S_ + (8 sin 2x + cos 2x)/65

y =€ (A cos 2x + B sin 2x) + cos 2x + 4 sin 2x

y=¢e**(A cosx + Bsinx)+ cosx +sinx
4
= gax (X
y=e (12 +A+Bx)
V3 V3

X
—=x + Bsin — )+%(x—1)

y=exP (A cos = 5

e
- 1—3(3 cos x — 2 sin X)

2 . 3x ~3Xx
= p3X X e e "~
y=e*(A+Bx)+ 5 +36

2Xx 2 -2x

_oax e x’e
y=eT (At Bx) a5+

y=e (At Bx)+ 75 (1+€%)

y=Ae¥ +Be ™ +e3* (5x% — 2x)/50

y=¢€2* (A cosx + Bsin x) +%+ %(8 sin 2x + cos 2x)
y =€ (A cos 2x + B sin 2x) + sin 2x — 4 cos 2x

y=Ae"/2 +Be™ —e* (3 sin 2x + 5 cos 2x)/68

—X
¥ =€ (A cos 2x + B sin 2x) + = — 2 ¢ cosdx

5 25 s

_ , € sin 3x
¥y =€ (A cos+/3x + B sin/3x) — g

2
= p2X + x
y=e (A Bx+2)
=3 A+ X Ve (g-X) - Lo,
y=eT(asiS)re ( 35) - g7 +2)

- 1
y=e "(A +§sinx—-;—cosx)+Be“2x

y=¢e*(Acosx +Bsinx + x> — 6x)
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INDEX

(References given are page numbers)

Absolute convergence, 319
Angle between vectors, 163
Approximate integration, 517

by series, 519

by Simpson’s rule, 523
Approximate values, 341
Areas by double integrals, 581
Areas enclosed by polar curves, 546
Areas under curves, 435
Argand diagram, 19
Arithmetic means, 299
Arithmetic series, 298

Bernoulli’s equation, 622
Binomial series, 337

Centre of gravity, 465
Centre of pressure, 504
Centroid of a plane figure, 462
Complementary function, 648
Complex numbers, 4
addition and subtraction, 4
conjugate, 8
De Moivre’s theorem, 50
division, 12
equal, 14
exponential form, 27
graphical representation, 17
logarithm of, 29
multiplication, 6
polar form, 22, 37
principal root, 55
roots of, 51
Consistency of equations, 126
Convergence, 311
absolute, 319
tests for, 313
Curvature, 206
centre of, 208, 213
radius of, 207

743

D’Alembert’s ratio test, 317
Definite integrals, 438
De Moivre’s theorem, 50
Determinants, 101
evaluation, 110
properties, 130
solution of equations, 105, 114
third order, 109
Differentiation, 171
function of a function, 173
implicit functions, 185, 285
inverse hyperbolic functions, 229
inverse trig. functions, 226
logarithmic, 180
parametric equations, 187
products, 177
quotients, 178
Differentiation applications, 195
curvature, 206
tangents and normals, 200
Differential equations, 593
direct integration, 598
first order, separating the
variables, 599
homogeneous, 606
integrating factor, 613
Bernoulli’s equation, 622
second order linear, 637
solution by operator-D, 683
Differentiation, partial, 251, 277
Direction cosines, 156
Direction ratios, 165
Double integrals, 565

Equation of a straight line, 195

Expansion of sin nf and cos n0, 57

Expansion of sin”’8 and cos™8, 59

Exponential form of a complex
number, 27

First order differential equations, 593
Bernoulli’s equation, 622
by direct integration, 598




Index

homogeneous, 606

integrating factor, 613

variables separable, 599
Function of a function, 173

Geometric means, 303
Geometric series, 301

Homogeneous differential
equations, 606
Hyperbolic functions, 73
definitions, 74
evaluation, 83
graphs of, 77
inverse, 84
log. form of the inverse, 87
series for, 75
Hyperbolic identities, 89

Identities, trigonometric/hyperbolic, 89
Implicit functions, 185, 285
Indeterminate forms, 342
Inertia, moment of, 483
Infinite series, 308
Integrals, basic forms, 358
definite, 438
fx)
o) dx and
linear functions, 360
standard forms, 389
Integrating factor, 613
Integration, 357, 389
partial fractions, 373
by parts, 368
powers of sin x and of cos x, 379
products of sines and cosines, 381
reduction formulae, 419
substitutions, 389
as a summation, 450
by ¢ = tan x, 409

fx).f x)dx, 363

byt=tan§ ,413

Inverse hyperbolic functions, 84
log. form, 87

Inverse operator 1 ,673

Inverse trig. functions, 223

J, definition, 1
powers of, 2

Lengths of curves, 467, 552

Limiting values, 309, 342
PHopital’s rule, 345

Loci problems, 61

Logarithm of a complex number, 29

Logarithmic differentiation, 180

- Maclaurin’s series, 331
« Maximum and minimum values, 235

Mean values, 446
Moment of inertia, 483

Normal to a curve, 200

Operator-D methods, 669
inverse operator 1 ,673

in solution of differential
equations, 683

Theorem I, 675

Theorem II, 678

Theorem II1, 681

Pappus, theorem of, 475
Parallel axes theorem, 491
Parametric equations, 187, 211, 444,
468,473

Partial differentiation, 251

change of variables, 289

rates of change, 281

small finite increments, 266
Partial fractions, 373
Particular integral, 649
Perpendicular axes theorem, 495
Points of inflexion, 240
Polar co-ordinates, 539
Polar curves, 541

areas enclosed by, 546

lengths of arc, 552

surfaces generated, 555

volumes of revolution, 550
Polar form of a complex number, 22
Power series, 327
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Index

Powers of natural numbers, series Small finite increments, 266
of, 304 Standard integrals, 358
Properties of determinants, 130 Straight line, 195

Summation in two directions, 565
Surfaces of revolution, 471, 555
Radius of curvature, 207
Radius of gyration, 487

Rates of change, 281 Tangent to a curve, 200
Reduction formulae, 419 - Ta'ylor’s series, 350 )
R.M.S. values, 448 Trigonometric and hyperbolic

identities, 93
Triple integrals, 570
Turning points, 235

Roots of a complex number, 51

Scalar product of vectors, 157
Second moment of area, 500 Unit vectors, 152
Second order differential

equations, 637

Separating the variables, 599 Vectors, 141
Series, 297 addition and subtraction, 144
approximate values by, 341 angle between vectors, 163
arithmetic, 298 components, 147
binomial, 337 direction cosines, 156
convergence and divergence, 311 direction ratios, 165
geometrie, 301 equal, 143
infinite, 308 representation, 142
Maclaurin’s, 331 scalar product, 157
powers of natural numbers, 304 in space, 154
standard, 336 in terms of unit vectors, 152
. Taylor’s, 350 vector product, 159
+~ Simpson’s rule, 523 == Volumes of revolution, 457, 550
-~ proof of, 532 Volumes by triple integrals, 583

Simultaneous equations,
consistency, 126
solution by determinants, 105 . Wallis’s formula, 428
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STROUD: ENGINEERING MATHEMATICS

This hook provides 2 complete one-year course in
mathematics bv means of an i’ntag"rated series of -
and is designed for use by undergraduates durlng
the first year of engineering degree studies and
for Nationa! Diploma and Certificate courses.

The course consists of 24 programmes devised as
weekly assigrmeants of work. Each procgramme
contains a number of worked examples through
which the student is guided with a graduai
withdrawal of support as the topic is mastered,
and concludes with a criterion test relating to the
techniques covered in that programme. There are
also evercises for further practice and probiem
solving and a full range of answers is provided.
The work has been designed to be equally suitable
for ¢class use or individual study. Al the
wrogrammes have been subjected to rigorous
validation procedures and have been proven
highly successful.
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