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f(xw,b) = sign(w x + D)
° denotes +1

Define the margin
of a linear

- classifier as the
width that the
boundary could be
increased by
before hitting a
datapoint.

° denotes -1




Maximum Margin
X

° denotes +1

° denotes -1

Support Vectors
are those
datapoints that
the margin
pushes up
against

1

»
)

f

> vESt

1. Maximizing the margin is good
according to intuition and PAC theory
(Probably Approximately Correct )

: . 1. Implies that only support vectors are
° important; other training examples
1« o ° are ignorable.
| . - 2. Empirically it works very very well.

Linear SVM

with the, um,
maximum margin.

This is the
simplest kind of
SVM (Called an




‘ Linear SVM Mathematlcally
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What we know: N
= W.Xt+b=+1 M = = —

= W.X +b=-1 ‘W‘ ‘W‘

=W, (Xt-x) =2




Linear SVM Mathematically

Goal: 1) Correctly classify all training data
WX, +b>1  ify,=+1
wx. +b <1 ify=-1

yi(Wx; +b) =1 foralli,

M =2

1, W
same as minimize —WW

D

2) Maximize the Margin

We can formulate a Quadratic Optimization Problem and solve for w and b

1
Minimize P(W) = EWtW

y. (Wx. +b) >1 Vi

subject to




Solving the Optimization Problem

Find w and b such that

d(w) =% wTw is minimized,;

and for all {(%; ,Yi)}: vy, (WTx, +b)>1
Need to optimize a quadratic function subject to linear
constraints.
Quadratic optimization problems are a well-known class of
mathematical programming problems, and many (rather
Intricate) algorithms exist for solving them.
The solution involves constructing a dual problem where a

Lagrange multiplier a;is associated with every constraint in the
primary problem:

Find a;...ay such that
(1) Zay;=0
(2) a; = 0 for all g;




The Optimization Problem Solution

The solution has the form:

W =2a;YiXi b=y, - wTx, for any x, such that ¢, =0

Each non-zero qa; indicates that corresponding Xx; Is a
support vector.

Then the classifying function will have the form:
f(X) = Zazyx;"™X + b

Notice that it relies on an inner product between the test
point x and the support vectors x; — we will return to this
later.

Also keep in mind that solving the optimization problem
involved computing the inner products x;'x; between all
pairs of training points.




Dataset with noise

* denotes +1 Hard Margin: So far we require
all data points be classified correctly

° denotes -1

- No training error
What if the training set is
noisy?

- Solution 1: use very powerful
kernels

OVERFITTING!




Soft Margin Classification

Slack variables él can be added to allow
misclassification of difficult or noisy examples.

What should our quadratic
optimization criterion be?

Minimize
o 1 R
° “ww+C) g
2 1




Hard Margin v.s. Soft Margin

The old formulation:

Find w and b such that
®(w) =% wTw is minimized and for all {(X; ,y;)}
yi (WX +b) =1

The new formulation incorporating slack variables:

Find w and b such that
®(w) =% wTw + CX&  is minimized and for all {(X; ,Y;)}
Vi (Wixi+b)>1-& and &>Oforalli

Parameter C can be viewed as a way to control
overfitting.



Linear SVMs: Overview

The classifier is a separating hyperplane.

Most “important” training points are support vectors; they
define the hyperplane.

Quadratic optimization algorithms can identify which training
points x; are support vectors with non-zero Lagrangian
multipliers a,.

Both in the dual formulation of the problem and in the solution
training points appear only inside dot products:

Find a;...aysuch that

Qo) =Xa; - LXXaiay;y % X; iimized and
(1) Zay;=0

(2) 0<a;<Cforall g

f(X) = Xayx[x +|p




Non-linear SVMs

Datasets that are linearly separable with some noise
work out great:
9 —o | @—o gt

But what are we going to do if the dataset is just too hard?

*—o —0—

0 X
How about... mapping data to a higher-dimensional
space:




Non-linear SVMs: Feature spaces

General idea: the original input space can always be
mapped to some higher-dimensional feature space
where the training set is separable:

. . ."
R .
' . B
. . *,




The “Kernel Trick”

The linear classifier relies on dot product between vectors K(x;,X;)=x;"X;

If every data point is mapped into high-dimensional space via some
transformation ®: x — @(x), the dot product becomes:

K(Xi,%;)= o(x;) To(X;)
A kernel function is some function that corresponds to an inner product in
some expanded feature space.

Example:
2-dimensional vectors X=[x; X,]; let K(x;,x;)=(1 + x;7x;)?
Need to show that K(x;,X;)= @(X;) Te(X;):
KO:X)=(1 + %7%)?,
= 1+ Xi X2 2 Xi1Xj XipXjpt Xip™Xjo™ + 2Xig X4y + 2XiX,
= [1 X;,% V2 XXy Xig? V2% V2% T[L Xip? V2 XipXip Xip% V2%, V2X,)
= @(x;) To(x;), where @(x) = [1 X;2 V2 X;X, X2 V2x3 V2x,]



What Functions are Kernels?

For some functions K(x;,x;) checking that
K(Xi,»X;)= 9(X;) To(X;) can be cumbersome.

Mercer’s theorem:
Every semi-positive definite symmetric function is a kernel

Semi-positive definite symmetric functions correspond to a
semi-positive definite symmetric Gram matrix:

K(X1,Xq) | K(X1,X5) | K(X4,X3) K(X1,Xn)
K(X2,X1) | K(X5,X5) | K(X2:X3) K(X2,Xn)
K(Xn:X1) | K(XpnsX2) | KXy, X3) K(Xn:Xn)




Examples of Kernel Functions
Linear: K(x;,X;)= X; 'X;
Polynomial of power p: K(x;,x;)= (1+ X; 'x;)P
Gaussian (radial-basis function network):

2
i~

7 )

K(Xi’Xj) = exp(— G

Sigmoid: K(x;,x;)= tanh(Bx; 'x; + B,)



Non-linear SVMs Mathematically

Dual problem formulation:

Find a;,...aysuch that

Q(a) =Xa; - VXX aay;y;K(X;, X;) IS maximized and
(1) Zay;=0

(2) a; =0 for all g;

The solution is:

f(X) = Zaiy;K(X;, X;)+ b

Optimization techniques for finding a;’s remain the same!



Nonlinear SVM - Overview

SVM locates a separating hyperplane in the
feature space and classify points in that
space

It does not need to represent the space
explicitly, simply by defining a kernel
function

The kernel function plays the role of the dot
product in the feature space.



Properties of SVM

Flexibility in choosing a similarity function
Sparseness of solution when dealing with large data
sets

- only support vectors are used to specify the separating
hyperplane

Ability to handle large feature spaces

- complexity does not depend on the dimensionality of the
feature space

Overfitting can be controlled by soft margin
approach

Nice math property: a simple convex optimization problem
which is guaranteed to converge to a single global solution

Feature Selection



SVM Applications

SVM has been used successfully in many
real-world problems
- text (and hypertext) categorization
- Image classification
- bioinformatics (Protein classification,
Cancer classification)
- hand-written character recognition



Weakness of SVM

It IS sensitive to noise

- A relatively small number of mislabeled examples can
dramatically decrease the performance

It only considers two classes

- how to do multi-class classification with SVM?
- Answer:

1) with output arity m, learn m SVM’s

o SVM 1 learns “Output==1" vs “Output !'= 1"

o SVM 2 learns “Output==2" vs “Output != 2”

a .

o SVM m learns “Output==m” vs “Output I=m”

2)To predict the output for a new input, just predict with each
SVM and find out which one puts the prediction the furthest
Into the positive region.



Application 2: Text Categorization

Task: The classification of natural text (or
hypertext) documents into a fixed number of
predefined categories based on their content.
- emalill filtering, web searching, sorting documents by
topic, etc..

A document can be assigned to more than
one category, so this can be viewed as a
series of binary classification problems, one
for each category



Some Issues

Choice of kernel
- Gaussian or polynomial kernel is default
- If ineffective, more elaborate kernels are needed

- domain experts can give assistance in formulating appropriate
similarity measures

Choice of kernel parameters
- e.g. o in Gaussian kernel

- 0 is the distance between closest points with different
classifications

- In the absence of reliable criteria, applications rely on the use
of a validation set or cross-validation to set such parameters.

Optimization criterion — Hard margin v.s. Soft margin

- alengthy series of experiments in which various parameters
are tested
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