

Sound

MAIN TOPICS

CHAPTER

- Sound Waves
- Reflection
- Refraction
- Interference
- Beats
- Doppler Effect
- Musical Sounds

SOUND

- Sound travels in longitudinal waves
- Sound waves can only travel in a medium.
- vibrating compressions and rarefactions through air

PHYSICS-ANIMATIONS.COM

The two waves collide and cancel eachother.

This is a third example of superposition.

11

SOUND

Compression:

Area where molecules are closer than the normal

Rarefaction:

Area where molecules are farther than the normal

Sound

Wavelength:

Distance from one compression to the next compression, or from one rarefaction to the next rarefaction.

SPEED AND FREQUENCY

• Speed of sound in the air is 340 m/s at 20°C

CHAPTER

 For each increase of 1°C above 0°C, speed of sound increases by 0.6 m/s.

Example:

- Speed of sound in the air at 0°C is 328 m/s
- Speed of sound in the air at 50°C is 358 m/s

SPEED IN DIFFERENT MEDIA

CHAPTER

- in air (≈ 340 m/s)
- in warm air (>340 m/s)
- in water (≈ four times speed in air)
- in steel (≈ 15 times speed in air)

LOUDNESS

The amplitude determines the loudness of the sound.

- If the amplitude is large, then the sound is loud.
- If the amplitude is small then the sound is soft.

unit:

The unit of the loudness is decibels

AUDIBLE SOUND

Audible Frequency:

Human ear can hear the sound having frequency between 20-20000 Hz.

Audible Loudness:

- Human ear can hear from 1 to 120 dB.
- Sounds louder than 120 dB are painful and dangerous.
- Normal speech is at the level of 20-30 dB.

REFLECTION

Process in which sound encountering a surface is returned

Angle of Incidence = Angle of Reflection

ECHO AND REVERBERATIONS

Echo:

A single reflection is often called an echo

Reverberations:

When multiple reflections occur, the process is called reverberations

TYPES OF REFLECTION

Specular Reflection:

When sound is incident on a smooth surface, it is reflected in single directions

CHAPTER

Specular reflection (smooth surfaces)

Diffuse Reflection:

When sound is incident on a rough surface, it is reflected in many directions

REFRACTION

The bending of a wave due to a change in the medium and/or speed of the wave

REFRACTION

Sound waves refract when parts of the wave fronts

- Travel at different speeds.
- Are affected by uneven winds
- When air near the ground is warmer than air above

INTERFERENCE

At certain distance, stereo speakers produce constructive interference, and we hear loud sound.

Sound interference in stereo speakers out of phase sending a monoaural signal (one speaker sending compressions of sound and other sending rarefactions)

As speakers are brought closer to each other, sound is diminished

BEATS

- periodic variations in the loudness of sound due to interference
- occur with any kind of wave
- provide a comparison of frequencies

DOPPLER EFFECT

The change in frequency as measured by an observer due to the motion of the

- source or
- Listener

When the distance between source and listener is decreasing, frequency increases and vice versa

© 2014 Pearson Education, Inc.

DOPPLER EFFECT

Example of Doppler Effect:

- Frequency of waves received by an observer increases as a sound source approaches.
- Wave frequency decreases as the source recedes.

ANSWER CHECK

When a fire engine approaches you, the

- A. speed of its sound increases.
- B. frequency of sound increases.
- C. wavelength of its sound increases.
- D. All increase.

ANSWER CHECK

When a fire engine approaches you, the

- A. speed of its sound increases.
- B. frequency of sound increases.
- C. wavelength of its sound increases.
- D. All increase.

Explanation:

Be sure you distinguish between sound, speed, and sound frequency.

MUSICAL SOUND

Graphical representations of noise and music.

(a) Noise has no clear repeatable pattern.

(b) Music has a frequency (repeatable wave), wavelength, and speed.

