

ZZZZ

مدونة المناهج السعودية https://eduschool40.blog الموقع التعليمي لجميع المراحل الدراسية في المملكة العربية السعودية

PHYS 101

Ch. 5

Applying Newton's Laws

Chapter 5

Chapter Fife Applying Newton's Laws

- Using Newton's First Law: Particles in Equilibrium
- Using Newton's Second Law: Dynamics of Particles
- Friction Forces
- Dynamics of Circular Motion

Using Newton's 1st Law: Par. in Equ.

Example 1:

A cable hold a ball of weight 250 N in static equilibrium. The tension in the cord is:

Solution:

(C)

(A) zero
(B) 9.8 N
(C) 250 N
(D) 500 N

Example 2:

In the figure, M=2.5 kg is on a horizontal frictionless surface and m=1.5 kg is hanging. The acceleration of the blocks is:

(B)

Solution:

(A) 36.75 m/s²
(B) 3.675 m/s²
(C) 0.367 m/s²
(D) Zero

Example 3:

Refer to Example 2, the tension in the cord is:

Solution:

(A) Zero
(B) 91.9 N
(C) 9.19 N
(D) 0.91 N

(C)

Example 4:

In the figure, two blocks connected together with cord over a pulley where $m_1=2$ kg and $m_2=3$ kg. The acceleration of the blocks is:

University of Jeddah

Example 5:

Refer to Example 4, the tension in the cord is:

Solution:

(A) 23.52 N
(B) 2.352 N
(C) 0.235 N
(D) 0.023 N

(A)

Example 6:

In the figure a 10 kg box is pushed at a constant speed up the frictionless ramp by a horizontal force F. the magnitude of F is:

(C)

Example 7:

Refer to Example 6, the normal force on the box is:

Solution:

(B)

(A) 49 N
(B) 84.87 N
(C) Zero N
(D) 98 N

Example 8:

A 1000 kg elevator is moving up with acceleration 3 m/s². The tension in the cable is:

(D)

Solution:

(A) 9800 N
(B) 6800 N
(C) zero N
(D) 12800 N

Example 9:

Two blocks (A and B) are in contact on a horizontal frictionless surface. A 50 N constant force is applied to B as shown. The tension in the cord is:

Solution:

(D) 5 N

University of Jeddah

Friction

• When a force *F* tends to slide a body along a surface, a fractional force from the surface acts on the body.

• The fractional force is parallel to the surface and directed so as to oppose the sliding.

University of Jeddah

• If the body does not slide, the fractional force is a static fractional force f_s .

• If the body does sliding, the fractional force is a kinetic fractional force f_k .

Properties of Friction

• If the body does not move, the static fractional force f_s and the component of F parallel to the surface are equal in magnitude, and f_s directed opposite that component.

• The magnitude of f_s has a maximum value given by:

$$f_{s,\max}=\mu_s F_N,$$

where μ_s is the coefficient of static friction and F_N is the magnitude of the normal force.

• If the component of F parallel to the surface exceeds $f_{s,max}$, the body slide on the surface.

• If the body begins to slide on the surface, the magnitude of the fractional force rapidly decreases to a constant value f_k given by:

$$f_k = \mu_k F_N,$$

where μ_k is the coefficient of kinetic friction.

Example 10:

The fractional force on a moving body is proportional to the:

Solution:

(D)

(A) force casing the motion(B) weight of the body(C) acceleration of the body(D) normal force on the body

Example 11:

A boy pulls a wooden box along a rough horizontal floor at constant speed. Which of the following must be true?

Solution: (D) (A) $F \cos\theta > f_k \text{ and } N=W$ (B) $F = f_k \text{ and } N>W$ (C) $F > f_k \text{ and } N<W$ (D) $F \cos\theta = f_k \text{ and } N=W-F \sin\theta$

Example 12:

A block slide on a rough surface (see figure). The block start to slide when a parallel force of 30 N is applied. The coefficient of static friction μ_s is:

Uniform Circular Motion

• If a particle moves in a circle with constant radius at constant speed, it is in uniform circular motion.

$$=\frac{v^2}{R}$$
 (centripetal acceleration)

Physics Department

a

• The acceleration is due to a net centripetal force on the particle, with magnitude given by:

 $F = m \frac{v^2}{R}$ (magnitude of centripetal force).

where m is the particle mass.

• The vector quantities of acceleration and force are directed toward the centre of curvature of the particle's path.

University of Jeddah

Tension

Static Fractional Force

Normal force

Example 13:

A car has mass of 1700 kg is moving with a constant speed of 25 m/s in a circular track of a radius 200 m. The car tires static friction coefficient with the road is:

Solution:

(A) 0.67 (B) 0.4 (C) 0.32University of Jeddah

(C)

