

PHYS 101

Ch. 5

Applying Newton's Laws

Chapter 5

Chapter Fife
 Applying Newton's Laws

- Using Newton's First Law: Particles in Equilibrium
- Using Newton's Second Law: Dynamics of Particles
- Friction Forces
- Dynamics of Circular Motion

Using Newton's $1^{\text {st }}$ Law: Par. in Equ.

Example 1:

A cable hold a ball of weight 250 N in static equilibrium. The tension in the cord is:

Solution:

(C)
(A) zero
(B) 9.8 N
(C) 250 N
(D) 500 N

Using Newton's 2 ${ }^{\text {nd }}$ Law: Dy. of Par.

Example 2:

In the figure, $\mathrm{M}=2.5 \mathrm{~kg}$ is on a horizontal frictionless surface and $\mathrm{m}=1.5 \mathrm{~kg}$ is hanging. The acceleration of the blocks is:

Solution:

(A) $36.75 \mathrm{~m} / \mathrm{s}^{2}$
(B) $3.675 \mathrm{~m} / \mathrm{s}^{2}$
(C) $0.367 \mathrm{~m} / \mathrm{s}^{2}$
(D) Zero
(B)

Using Newton's 2 ${ }^{\text {nd }}$ Law: Dy. of Par.

Example 3:

Refer to Example 2, the tension in the cord is:

Solution:

(C)
(A) Zero
(B) 91.9 N
(C) 9.19 N
(D) 0.91 N

Using Newton's $2^{\text {nd }}$ Law: Dy. of Par.

Example 4:

In the figure, two blocks connected together with cord over a pulley where $m_{1}=2 \mathrm{~kg}$ and $\mathrm{m}_{2}=3 \mathrm{~kg}$. The acceleration of the blocks is:

Solution:

(B)

(A) $19.6 \mathrm{~m} / \mathrm{s}^{2}$
(B) $1.96 \mathrm{~m} / \mathrm{s}^{2}$
(C) $0.19 \mathrm{~m} / \mathrm{s}^{2}$
(D) zero

Using Newton's 2 ${ }^{\text {nd }}$ Law: Dy. of Par.

Example 5:

Refer to Example 4, the tension in the cord is:
Solution:
(A)
(A) 23.52 N
(B) 2.352 N
(C) 0.235 N
(D) 0.023 N

Using Newton's 2 ${ }^{\text {nd }}$ Law: Dy. of Par.

Example 6:

In the figure a 10 kg box is pushed at a constant speed up the frictionless ramp by a horizontal force F. the magnitude of F is:

Solution:

(C)
(A) 24.5 N
(B) 98 N
(C) 49 N
(D) 28.3 N

Using Newton's 2 ${ }^{\text {nd }}$ Law: Dy. of Par.

Example 7:

Refer to Example 6, the normal force on the box is:
Solution:
(B)
(A) 49 N
(B) 84.87 N
(C) Zero N
(D) 98 N

Using Newton's 2 ${ }^{\text {nd }}$ Law: Dy. of Par.

Example 8:

A 1000 kg elevator is moving up with acceleration $3 \mathrm{~m} / \mathrm{s}^{2}$. The tension in the cable is:

Solution:

(D)

(A) 9800 N
(B) 6800 N
(C) zero N
(D) 12800 N

Using Newton's 2 ${ }^{\text {nd }}$ Law: Dy. of Par.

Example 9:

Two blocks (A and B) are in contact on a horizontal frictionless surface. A 50 N constant force is applied to B as shown. The tension in the cord is:

Solution:

(C)
(A) 25 N
(B) 20 N
(C) 10 N
(D) 5 N

Friction Forces

Friction

- When a force \boldsymbol{F} tends to slide a body along a surface, a fractional force from the surface acts on the body.

- The fractional force is parallel to the surface and directed so as to oppose the sliding.

(a)
- It is due to bonding between the body and the surface.

Friction Forces

- If the body does not slide, the fractional force is a static fractional force f_{s}.

- If the body does sliding, the fractional force is a kinetic fractional force f_{k}.

Friction Forces

Properties of Friction

- If the body does not move, the static fractional force f_{s} and the component of \boldsymbol{F} parallel to the surface are equal in magnitude, and f_{s} directed opposite that component.
- The magnitude of f_{s} has a maximum value given by:

$$
f_{s \max }=\mu_{s} F_{N}
$$

where μ_{s} is the coefficient of static friction and F_{N} is the magnitude of the normal force.

Friction Forces

- If the component of \boldsymbol{F} parallel to the surface exceeds $f_{s, m a x}$, the body slide on the surface.
- If the body begins to slide on the surface, the magnitude of the fractional force rapidly decreases to a constant value f_{k} given by:

$$
f_{k}=\mu_{k} F_{N},
$$

where μ_{k} is the coefficient of kinetic friction.

Friction Forces

Example 10:

The fractional force on a moving body is proportional to the:

Solution:

(D)
(A) force casing the motion
(B) weight of the body
(C) acceleration of the body
(D) normal force on the body

Friction Forces

Example 11:

A boy pulls a wooden box along a rough horizontal floor at constant speed. Which of the following must be true?

Solution:

(A) $\mathrm{F} \cos \theta>\mathrm{f}_{\mathrm{k}}$ and $\mathrm{N}=\mathrm{W}$
(D)

(B) $\mathrm{F}=\mathrm{f}_{\mathrm{k}}$ and $\mathrm{N}>\mathrm{W}$
(C) $\mathrm{F}>\mathrm{f}_{\mathrm{k}}$ and $\mathrm{N}<\mathrm{W}$
(D) $\mathrm{F} \cos \theta=\mathrm{f}_{\mathrm{k}}$ and $\mathrm{N}=\mathrm{W}-\mathrm{F} \sin \theta$

Friction Forces

Example 12:

A block slide on a rough surface (see figure). The block start to slide when a parallel force of 30 N is applied. The coefficient of static friction μ_{s} is:

Solution:

(A)
(A) 0.67
(B) 0.33
(C) 0.4
(D) 1

Dynamics of Circular Motion

Uniform Circular Motion

- If a particle moves in a circle with constant radius at constant speed, it is in uniform circular motion.
- Its centripetal acceleration magnitude is given by:

$$
a=\frac{v^{2}}{R} \quad \text { (centripetal acceleration) }
$$

Dynamics of Circular Motion

- The acceleration is due to a net centripetal force on the particle, with magnitude given by:

$$
F=m \frac{v^{2}}{R} \quad \text { (magnitude of centripetal force) }
$$

where m is the particle mass.

- The vector quantities of acceleration and force are directed toward the centre of curvature of the particle's path.

Dynamics of Circular Motion

- Static Fractional Force
- Tension

Dynamics of Circular Motion

Example 13:

A car has mass of 1700 kg is moving with a constant speed of $25 \mathrm{~m} / \mathrm{s}$ in a circular track of a radius 200 m . The car tires static friction coefficient with the road is:

Solution:
(C)
(A) 0.67
(B) 0.4
(C) 0.32
(D) 1

