
  EXERCISES  
 

 

1. We consider a fair coin tossing two times, and let X be a random variable on the probability 

space of this experiment defined by: 
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This random variable is called Bernoulli random variable with parameter 0.75p   (in this 

case one say that 0.75p   is the possibility of success). Required: 
 

a.  Determine the probability mass function for this random variable and draw its 

representation. 
 

Answer: The probability mass function for the random variable X is: 
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The representation of the random variable X as follow: 
 

 

The representation of the probability mass function  P X    
 

b. Determine the distribution function for this random variable and draw its graph. 

Answer: To determine the distribution function for this random variable we must determine 

the following event: 
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Therefore, we get: 
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The graph of the distribution function
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c. Then calculate the mean, variance and standard deviation of this random variable 

Answer: The mean for the random variable X given by: 
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The second moment of the random variable X is: 
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Therefore, the variance equal to: 
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2. Assume that, the probability that a baby born is a girl in a maternity hospital, is 0.51, 

and let X be a random variable observe the number births up to a boy is born. Then: 
 

a.  Derive the probability mass function and the distribution function of X. 

Answer: Assuming that the probability of the birth of a boy is p , then we have the probability 

that born a boy at the first time after k birth equal to: 
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The distribution function of this random variable X is called geometric distribution with 

parameter 0.49p  . 

The distribution function of X given by 
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b. What is the probability that third born is the first boy in the maternity hospital? 

Answer: The probability that third born is the first boy in the maternity hospital equal to: 
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3. Let X be a continuous random variable with probability density function. 
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Then:

 a.  Draw the graph of this probability density function. 

Answer: The graph of this probability density function as follow: 

 
 

b. Determine the distribution function of X. 

Answer: The distribution function of X is: 
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For 3 5x   we have: 
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For 5x   we have: 
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Therefore, we get: 
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The graph of distribution function of X as follow: 

     
 

4. Let the time for a student to finish the aptitude test of NCAHE (in hours) is a continuous 

random variable X with: 
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Then: 

a. Calculate the value of the constant k. 

Answer: We have: 
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So we get that 6k  . 
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5. Determine which of the following is a distribution function: 
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Decreasing at 0 


