

Chapter 2

Limits and Continuity

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

2.1

Rates of Change and Limits

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

TABLE 2.1 Average speeds over short time intervalsAverage speed: $\frac{\Delta y}{\Delta t} = \frac{16(t_0 + h)^2 - 16{t_0}^2}{h}$			
Length of time interval <i>h</i>	Average speed over interval of length h starting at $t_0 = 1$	Average speed over interval of length h starting at $t_0 = 2$	
1	48	80	
0.1	33.6	65.6	
0.01	32.16	64.16	
0.001	32.016	64.016	
0.0001	32.0016	64.0016	

DEFINITION Average Rate of Change over an Interval

The average rate of change of y = f(x) with respect to x over the interval $[x_1, x_2]$ is

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}, \qquad h \neq 0.$$

FIGURE 2.1 A secant to the graph y = f(x). Its slope is $\Delta y / \Delta x$, the average rate of change of f over the interval $[x_1, x_2]$.

FIGURE 2.2 Growth of a fruit fly population in a controlled experiment. The average rate of change over 22 days is the slope $\Delta p/\Delta t$ of the secant line.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.3 The positions and slopes of four secants through the point *P* on the fruit fly graph (Example 4).

TABLE 2.2The closer x gets to 1, the closer $f(x) = (x^2 - 1)/(x - 1)$ seems to get to 2		
Values of x below and above 1	$f(x) = \frac{x^2 - 1}{x - 1} = x + 1, \qquad x \neq 1$	
0.9	1.9	
1.1	2.1	
0.99	1.99	
1.01	2.01	
0.999	1.999	
1.001	2.001	
0.999999	1.999999	
1.000001	2.000001	

FIGURE 2.4 The graph of f is identical with the line y = x + 1except at x = 1, where f is not defined (Example 5).

FIGURE 2.5 The limits of f(x), g(x), and h(x) all equal 2 as x approaches 1. However, only h(x) has the same function value as its limit at x = 1 (Example 6).

FIGURE 2.6 The functions in Example 8.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.7 None of these functions has a limit as *x* approaches 0 (Example 9).

2.2

Calculating Limits Using the Limits Laws

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

THEOREM 1 Limit Laws

If L, M, c and k are real numbers and

$$\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = M, \text{ then}$$

1. Sum Rule:
$$\lim_{x \to c} (f(x) + g(x)) = L + M$$

The limit of the sum of two functions is the sum of their limits.

2. Difference Rule: $\lim_{x \to c} (f(x) - g(x)) = L - M$

The limit of the difference of two functions is the difference of their limits.

3. Product Rule: $\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$

The limit of a product of two functions is the product of their limits.

4. Constant Multiple Rule: $\lim_{x \to c} (k \cdot f(x)) = k \cdot L$

The limit of a constant times a function is the constant times the limit of the function.

5. Quotient Rule: $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$

The limit of a quotient of two functions is the quotient of their limits, provided the limit of the denominator is not zero.

6. *Power Rule*: If *r* and *s* are integers with no common factor and $s \neq 0$, then

$$\lim_{x \to c} (f(x))^{r/s} = L^{r/s}$$

provided that $L^{r/s}$ is a real number. (If s is even, we assume that L > 0.)

The limit of a rational power of a function is that power of the limit of the function, provided the latter is a real number. **THEOREM 2** Limits of Polynomials Can Be Found by Substitution If $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$, then $\lim_{x \to c} P(x) = P(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_0.$

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution If the Limit of the Denominator Is Not Zero

If P(x) and Q(x) are polynomials and $Q(c) \neq 0$, then

$$\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}.$$

Identifying Common Factors

It can be shown that if Q(x) is a polynomial and Q(c) = 0, then (x - c) is a factor of Q(x). Thus, if the numerator and denominator of a rational function of x are both zero at x = c, they have (x - c) as a common factor.

FIGURE 2.8 The graph of $f(x) = (x^2 + x - 2)/(x^2 - x)$ in part (a) is the same as the graph of g(x) = (x + 2)/x in part (b) except at x = 1, where f is undefined. The functions have the same limit as $x \rightarrow 1$ (Example 3).

THEOREM 4 The Sandwich Theorem

Suppose that $g(x) \le f(x) \le h(x)$ for all x in some open interval containing c, except possibly at x = c itself. Suppose also that

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L.$$

Then $\lim_{x\to c} f(x) = L$.

FIGURE 2.9 The graph of f is sandwiched between the graphs of g and h.

FIGURE 2.10 Any function u(x)whose graph lies in the region between $y = 1 + (x^2/2)$ and $y = 1 - (x^2/4)$ has limit 1 as $x \rightarrow 0$ (Example 5).

FIGURE 2.11 The Sandwich Theorem confirms that (a) $\lim_{\theta \to 0} \sin \theta = 0$ and (b) $\lim_{\theta \to 0} (1 - \cos \theta) = 0$ (Example 6).

THEOREM 5 If $f(x) \le g(x)$ for all x in some open interval containing c, except possibly at x = c itself, and the limits of f and g both exist as x approaches c, then

$$\lim_{x \to c} f(x) \le \lim_{x \to c} g(x).$$

2.3

The Precise Definition of a Limit

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.12 Keeping x within 1 unit of $x_0 = 4$ will keep y within 2 units of $y_0 = 7$ (Example 1).

FIGURE 2.13 How should we define $\delta > 0$ so that keeping *x* within the interval $(x_0 - \delta, x_0 + \delta)$ will keep f(x) within the interval $\left(L - \frac{1}{10}, L + \frac{1}{10}\right)$?

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DEFINITION Limit of a Function

Let f(x) be defined on an open interval about x_0 , except possibly at x_0 itself. We say that the **limit of** f(x) as x approaches x_0 is the number L, and write

$$\lim_{x \to x_0} f(x) = L,$$

if, for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all *x*,

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon.$$

FIGURE 2.14 The relation of δ and ϵ in the definition of limit.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

How to Find Algebraically a δ for a Given *f*, *L*, x_0 , and $\epsilon > 0$

The process of finding a $\delta > 0$ such that for all x

 $0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon$

can be accomplished in two steps.

- **1.** Solve the inequality $|f(x) L| < \epsilon$ to find an open interval (a, b) containing x_0 on which the inequality holds for all $x \neq x_0$.
- 2. Find a value of $\delta > 0$ that places the open interval $(x_0 \delta, x_0 + \delta)$ centered at x_0 inside the interval (a, b). The inequality $|f(x) L| < \epsilon$ will hold for all $x \neq x_0$ in this δ -interval.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.16 For the function f(x) = x, we find that $0 < |x - x_0| < \delta$ will guarantee $|f(x) - x_0| < \epsilon$ whenever $\delta \le \epsilon$ (Example 3a).

FIGURE 2.17 For the function f(x) = k, we find that $|f(x) - k| < \epsilon$ for any positive δ (Example 3b).

FIGURE 2.18 An open interval of radius 3 about $x_0 = 5$ will lie inside the open interval (2, 10).

FIGURE 2.20 An interval containing x = 2 so that the function in Example 5 satisfies $|f(x) - 4| < \epsilon$.

2.4

One-Sided Limits and Limits at Infinity

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.21 Different right-hand and left-hand limits at the origin.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.22 (a) Right-hand limit as x approaches c. (b) Left-hand limit as x approaches c.

THEOREM 6

A function f(x) has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$\lim_{x \to c} f(x) = L \quad \Leftrightarrow \quad \lim_{x \to c^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to c^{+}} f(x) = L.$$

DEFINITIONS Right-Hand, Left-Hand Limits

We say that f(x) has **right-hand limit** L at x_0 , and write

$$\lim_{x \to x_0^+} f(x) = L \qquad \text{(See Figure 2.25)}$$

if for every number $\epsilon > 0$ there exists a corresponding number $\delta > 0$ such that for all *x*

$$x_0 < x < x_0 + \delta \qquad \Rightarrow \qquad |f(x) - L| < \epsilon.$$

We say that f has left-hand limit L at x_0 , and write

$$\lim_{x \to x_0^-} f(x) = L \qquad \text{(See Figure 2.26)}$$

if for every number $\epsilon > 0$ there exists a corresponding number $\delta > 0$ such that for all x

$$x_0 - \delta < x < x_0 \qquad \Rightarrow \qquad |f(x) - L| < \epsilon.$$

FIGURE 2.25 Intervals associated with the definition of right-hand limit.

FIGURE 2.26 Intervals associated with the definition of left-hand limit.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.28 The function $y = \sin(1/x)$ has neither a right-hand nor a left-hand limit as x approaches zero (Example 4).

FIGURE 2.29 The graph of $f(\theta) = (\sin \theta)/\theta$.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

THEOREM 7

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \qquad (\theta \text{ in radians}) \tag{1}$$

FIGURE 2.30 The figure for the proof of Theorem 7. $TA/OA = \tan \theta$, but OA = 1, so $TA = \tan \theta$.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DEFINITIONS Limit as x approaches ∞ or $-\infty$

1. We say that f(x) has the limit L as x approaches infinity and write

$$\lim_{x \to \infty} f(x) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number M such that for all x

$$x > M \implies |f(x) - L| < \epsilon.$$

2. We say that f(x) has the limit L as x approaches minus infinity and write

$$\lim_{x \to -\infty} f(x) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number N such that for all x

$$x < N \implies |f(x) - L| < \epsilon.$$

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.32 The geometry behind the argument in Example 6.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

THEOREM 8 Limit Laws as $x \to \pm \infty$

If L, M, and k, are real numbers and

 $\lim_{x \to \pm \infty} f(x) = L \quad \text{and} \quad \lim_{x \to \pm \infty} g(x) = M, \text{ then}$ 1. Sum Rule: 2. Difference Rule: 3. Product Rule: 4. Constant Multiple Rule: 5. Quotient Rule: $\lim_{x \to \pm \infty} f(x) = L + M$ $\lim_{x \to \pm \infty} (f(x) - g(x)) = L - M$ $\lim_{x \to \pm \infty} (f(x) \cdot g(x)) = L \cdot M$ $\lim_{x \to \pm \infty} (f(x) \cdot g(x)) = k \cdot L$ $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$

6. Power Rule: If r and s are integers with no common factors, $s \neq 0$, then $\lim_{x \to \pm \infty} (f(x))^{r/s} = L^{r/s}$

provided that $L^{r/s}$ is a real number. (If s is even, we assume that L > 0.)

FIGURE 2.33 The graph of the function in Example 8. The graph approaches the line y = 5/3 as |x| increases.

FIGURE 2.34 The graph of the function in Example 9. The graph approaches the *x*-axis as |x| increases.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DEFINITION Horizontal Asymptote

A line y = b is a **horizontal asymptote** of the graph of a function y = f(x) if either

$$\lim_{x \to \infty} f(x) = b \quad \text{or} \quad \lim_{x \to -\infty} f(x) = b.$$

FIGURE 2.35 A curve may cross one of its asymptotes infinitely often (Example 11).

FIGURE 2.36 The function in Example 12 has an oblique asymptote.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

2.5

Infinite Limits and Vertical Asymptotes

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.37 One-sided infinite limits: $\lim_{x \to 0^+} \frac{1}{x} = \infty \quad \text{and} \quad \lim_{x \to 0^-} \frac{1}{x} = -\infty$

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.38 Near x = 1, the function y = 1/(x - 1) behaves the way the function y = 1/x behaves near x = 0. Its graph is the graph of y = 1/x shifted 1 unit to the right (Example 1).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.39 The graphs of the functions in Example 2. (a) f(x) approaches infinity as $x \rightarrow 0$. (b) g(x) approaches infinity as $x \rightarrow -3$.

DEFINITIONS Infinity, Negative Infinity as Limits

1. We say that f(x) approaches infinity as x approaches x_0 , and write

$$\lim_{x\to x_0}f(x)=\infty,$$

if for every positive real number *B* there exists a corresponding $\delta > 0$ such that for all *x*

$$0 < |x - x_0| < \delta \qquad \Rightarrow \qquad f(x) > B.$$

2. We say that f(x) approaches negative infinity as x approaches x_0 , and write

$$\lim_{x\to x_0}f(x)=-\infty,$$

if for every negative real number -B there exists a corresponding $\delta > 0$ such that for all x

$$0 < |x - x_0| < \delta \implies f(x) < -B.$$

FIGURE 2.40 For $x_0 - \delta < x < x_0 + \delta$, the graph of f(x) lies above the line y = B.

FIGURE 2.41 For $x_0 - \delta < x < x_0 + \delta$, the graph of f(x) lies below the line y = -B.

DEFINITION Vertical Asymptote A line x = a is a vertical asymptote of the graph of a function y = f(x) if either $\lim_{x \to a^+} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^-} f(x) = \pm \infty.$

FIGURE 2.42 The coordinate axes are asymptotes of both branches of the hyperbola y = 1/x.

FIGURE 2.43 The lines y = 1 and x = -2 are asymptotes of the curve y = (x + 3)/(x + 2) (Example 5).

Slide 2 - 69

FIGURE 2.44 Graph of $y = -8/(x^2 - 4)$. Notice that the curve approaches the *x*-axis from only one side. Asymptotes do not have to be two-sided (Example 6).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.45 The graphs of sec *x* and tan *x* have infinitely many vertical asymptotes (Example 7).

FIGURE 2.46 The graphs of $\csc x$ and $\cot x$ (Example 7).

FIGURE 2.47 The graph of $f(x) = (x^2 - 3)/(2x - 4)$ has a vertical asymptote and an oblique asymptote (Example 8).

FIGURE 2.48 The graphs of *f* and *g*, (a) are distinct for |x| small, and (b) nearly identical for |x| large (Example 9).

2.6

Continuity

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.49 Connecting plotted points by an unbroken curve from experimental data Q_1, Q_2, Q_3, \ldots for a falling object.

FIGURE 2.50 The function is continuous on [0, 4] except at x = 1, x = 2, and x = 4 (Example 1).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.51 Continuity at points *a*, *b*, and *c*.

DEFINITION Continuous at a Point

Interior point: A function y = f(x) is **continuous at an interior point** c of its domain if

$$\lim_{x \to c} f(x) = f(c).$$

Endpoint: A function y = f(x) is continuous at a left endpoint *a* or is continuous at a right endpoint *b* of its domain if

$$\lim_{x \to a^+} f(x) = f(a) \quad \text{or} \quad \lim_{x \to b^-} f(x) = f(b), \text{ respectively.}$$

FIGURE 2.52 A function that is continuous at every domain point (Example 2).

FIGURE 2.53 A function that is right-continuous, but not left-continuous, at the origin. It has a jump discontinuity there (Example 3).

Continuity Test

A function f(x) is continuous at x = c if and only if it meets the following three conditions.

- 1. f(c) exists (c lies in the domain of f)
- 2. $\lim_{x\to c} f(x)$ exists (*f* has a limit as $x \to c$)
- 3. $\lim_{x\to c} f(x) = f(c)$ (the limit equals the function value)

FIGURE 2.54 The greatest integer function is continuous at every noninteger point. It is right-continuous, but not left-continuous, at every integer point (Example 4).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.55 The function in (a) is continuous at x = 0; the functions in (b) through (f) are not.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.56 The function y = 1/x is continuous at every value of x except x = 0. It has a point of discontinuity at x = 0 (Example 5).

THEOREM 9 Properties of Continuous Functions

If the functions f and g are continuous at x = c, then the following combinations are continuous at x = c.

1. Sums:f + g2. Differences:f - g3. Products: $f \cdot g$ 4. Constant multiples: $k \cdot f$, for any number k5. Quotients:f/g provided $g(c) \neq 0$ 6. Powers: $f^{r/s}$, provided it is defined on an open interval containing c, where r and s are integers

FIGURE 2.57 Composites of continuous functions are continuous.

THEOREM 10 Composite of Continuous Functions

If f is continuous at c and g is continuous at f(c), then the composite $g \circ f$ is continuous at c.

FIGURE 2.58 The graph suggests that $y = |(x \sin x)/(x^2 + 2)|$ is continuous (Example 8d).

FIGURE 2.59 The graph (a) of $f(x) = (\sin x)/x$ for $-\pi/2 \le x \le \pi/2$ does not include the point (0, 1) because the function is not defined at x = 0. (b) We can remove the discontinuity from the graph by defining the new function F(x) with F(0) = 1 and F(x) = f(x) everywhere else. Note that $F(0) = \lim_{x \to 0} f(x)$.

FIGURE 2.60 (a) The graph of f(x) and (b) the graph of its continuous extension F(x) (Example 9).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

THEOREM 11 The Intermediate Value Theorem for Continuous Functions A function y = f(x) that is continuous on a closed interval [a, b] takes on every value between f(a) and f(b). In other words, if y_0 is any value between f(a) and f(b), then $y_0 = f(c)$ for some c in [a, b].

FIGURE 2.62 Zooming in on a zero of the function $f(x) = x^3 - x - 1$. The zero is near x = 1.3247.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

2.7

Tangents and Derivatives

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 2.63 *L* is tangent to the circle at *P* if it passes through *P* perpendicular to radius OP.

FIGURE 2.64 Exploding myths about tangent lines.

FIGURE 2.65 The dynamic approach to tangency. The tangent to the curve at *P* is the line through *P* whose slope is the limit of the secant slopes as $Q \rightarrow P$ from either side.

FIGURE 2.66 Finding the slope of the parabola $y = x^2$ at the point P(2, 4) (Example 1).

DEFINITIONS Slope, Tangent Line

The slope of the curve y = f(x) at the point $P(x_0, f(x_0))$ is the number

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (provided the limit exists).

The **tangent line** to the curve at *P* is the line through *P* with this slope.

FIGURE 2.67 The slope of the tangent line at P is $\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$.

Finding the Tangent to the Curve y = f(x) at (x_0, y_0)

- **1.** Calculate $f(x_0)$ and $f(x_0 + h)$.
- 2. Calculate the slope

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

3. If the limit exists, find the tangent line as

$$y=y_0+m(x-x_0).$$

FIGURE 2.68 The two tangent lines to y = 1/x having slope -1/4 (Example 3).

- 1. The slope of y = f(x) at $x = x_0$
- 2. The slope of the tangent to the curve y = f(x) at $x = x_0$
- 3. The rate of change of f(x) with respect to x at $x = x_0$
- 4. The derivative of f at $x = x_0$
- 5. The limit of the difference quotient, $\lim_{h \to 0} \frac{f(x_0 + h) f(x_0)}{h}$

FIGURE 2.69 The tangent slopes, steep near the origin, become more gradual as the point of tangency moves away.