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PEARSON

e

Addison
Wesley Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley




TABLE 2.1 Average speeds over short time intervals

Ay 16(ty + h)* — 161°

Average speed:

Ar h
Length of Average speed over Average speed over
time interval interval of length A interval of length A
h starting at ) = 1 starting at 7y = 2
1 48 80
0.1 33.6 65.6
0.01 32.16 064.16
0.001 32.016 64.016
0.0001 32.0016 64.0016
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DEFINITION  Average Rate of Change over an Interval
The average rate of change of y = f(x) with respect to x over the interval [x;, x;] is

Ay _ f(w) = fO) _ fOa + R) = flx)

Ax X2 T X1 h ’

h#0.
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y
1 y = f(x)
Q(xy, f(x7))
|
|
|
|
IAy
P(xy, f(x1)) |
__________ 3
= h :
| .
0 X1 X9

FIGURE 2.1 A secant to the graph
y = f(x). Its slope is Ay/Ax, the
average rate of change of f over the
interval [x, x2].
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FIGURE 2.2 Growth of a fruit fly population in a controlled
experiment. The average rate of change over 22 days is the slope
Ap/ At of the secant line.
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FIGURE 2.3 The positions and slopes of four secants through the point P on the fruit fly graph (Example 4).
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seems to get to 2

TABLE 2.2 The closer x gets to 1, the closer f(x) = (x2 — 1)/(x — 1)

Values of x below and above 1 f(x) = ";2__11 =x+1, x#F1
0.9 1.9
1.1 2.1
0.99 1.99
1.01 2.01
0.999 1.999
1.001 2.001
0.999999 1.999999
1.000001 2.000001
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 2- 9



-1
— 1
FIGURE 2.4 The graph of f 1s
identical with the line y = x + 1
except at x = 1, where f is not
Z<I " > X defined (Example 5).

Slide 2- 10

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



x2—1
’ x:/:].
@ foy = £ =1 0 g@=1 ¥ ] (© he) =x+ 1
1, x=1

FIGURE 2.5 The limits of f(x), g(x), and /(x) all equal 2 as x approaches 1. However,
only 4 (x) has the same function value as its limit at x = 1 (Example 6).
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(a) Identity function
y
A
=k
k ! ° Y
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(b) Constant function

FIGURE 2.6 The functions in Example 8.
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Yy y
0, x<0
y= li=
1, x=0 F
1
> > X > X
0 0
0, x=0
Y=1.1
sin ¢, x> 0
i
(a) Unit step function U(x) (b) g(x) (©) f(x)

FIGURE 2.7 None of these functions has a limit as x approaches 0 (Example 9).
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THEOREM 1 Limit Laws

If L, M, ¢ and k are real numbers and

lim f(x) = L and lim g(x) = M, then

1. Sum Rule: 1i_)m(f(x) +gx) =L+ M
The limit of the sum of two functionsxis tche sum of their limits.
2. Difference Rule: li_)m(f(x) —gx)=L—-M
The limit of the difference of two fun;tiocns is the difference of their limits.
3. Product Rule: li_)m( f(x)-gx))=L-M
The limit of a product of two ﬁmctionxs isc the product of their limits.
4. Constant Multiple Rule: li_r)n(k' f(x)) =k-L
The limit of a constant times a flll’lCJf[iOI?I is the constant times the limit of the
function.
X
5. Quotient Rule: ;1_133 ;;t((x; = %, M#0

The limit of a quotient of two functions is the quotient of their limits, provided
the limit of the denominator is not zero.

6. Power Rule: If r and s are integers with no common factor and s # 0, then
lim (f(x))”* = L'
Xx—>c

provided that L'/ is a real number. (If s is even, we assume that L > 0.)

The limit of a rational power of a function is that power of the limit of the func-
tion, provided the latter is a real number.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sllde 2- 15



THEOREM 2 Limits of Polynomials Can Be Found by Substitution
If P(x) = a,x" + a,—1x" ' + -+ + ay, then

lim P(x) = P(c) = a,c" + ay—i1c" '+ -+ + ay.

xX—>c
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THEOREM 3

Limits of Rational Functions Can Be Found by Substitution

If the Limit of the Denominator Is Not Zero

If P(x) and O(x) are polynomials and O(c) # 0, then

" P(x)  P(c)
e 0(x) Q)

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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Identifying Common Factors

It can be shown that if O(x) 1s a
polynomial and Q(c) = 0, then

(x — c¢) is a factor of Q(x). Thus, if

the numerator and denominator of a
rational function of x are both zero at

x = c, they have (x — ¢) as a common
factor.
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FIGURE 2.8 The graph of

flx) = (x* + x — 2)/(x* — x)in
part (a) 1s the same as the graph of
g(x) = (x + 2)/x in part (b) except
atx = 1, where f 1s undefined. The
functions have the same limit as x — 1

(Example 3).

Slide 2- 19

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



THEOREM 4 The Sandwich Theorem
Suppose that g(x) = f(x) = h(x) for all x in some open interval containing c,
except possibly at x = ¢ itself. Suppose also that

lim g(x) = lim A(x) = L.

X—>C xX—>c¢

Then lim,—,. f(x) = L.
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FIGURE 2.9 The graph of f is
sandwiched between the graphs of g and A.
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>

—1 0 |

FIGURE 2.10 Any function u(x)

whose graph lies in the region between
y=1+ (x*/2)and y = 1 — (x*/4) has
limit 1 as x — 0 (Example 5).
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>0

(a)

FIGURE 2.11 The Sandwich Theorem confirms that (a) limg—( sin & = 0 and
(b) limg—o (1 — cos @) = 0 (Example 6).
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THEOREM 5

If f(x) = g(x) for all x in some open interval containing c, except

possibly at x = ¢ itself, and the limits of f and g both exist as x approaches c,

then

lim f(x) = lim g(x).
X—>C X—c
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To satisfy
this

y
1 y=2x-1
Upper bound:
y=9
9 !
I |
L S
I |
5 |
: : Lower bound:
| | y=235
| |
L
é > X
of 345
N
Restrict
to this

FIGURE 2.12 Keeping x within 1 unit
of xo = 4 will keep y within 2 units of
vo = 7 (Example 1).
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A
I 1
-+ mf’"‘\ h
¢ f(x) _
f(x) lies
L e ( in here
L %\./ J
for all x # X
in here
r 6 8 {"I
- oo X
0 xo — 6 .IO JCO + 6

FIGURE 2.13 How should we define
0 > 0 so that keeping x within the
interval (xo — 6, xo + &) will keep f(x)

- - - 1 l
_ = = 19
within the interval (L 10’ L + 0 0).
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DEFINITION

Limit of a Function

Let f(x) be defined on an open interval about x(, except possibly at x; itself. We
say that the limit of f(x) as x approaches x; is the number L, and write

lim f(x) = L,

XXy

if, for every number € > 0, there exists a corresponding number & > 0 such that

for all x,

0 < |x—xo <6 = |f(x) — L| <e.
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y
L+ eT
f(x) lies
L o_f(x) [ in here
L — € L
for all x # x
in here
r 6 8 A ]
X
5 {—e—o ) > X

JCO—(S X0 .x0+3

FIGURE 2.14 The relation of 6 and € in
the definition of limit.
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How to Find Algebraically a 6 for a Given f, L, xo, and e > 0
The process of finding a 6 > 0 such that for all x

0 <|x—x0 <0 = | f(x) — L| <€
can be accomplished in two steps.

1. Solve the inequality | f(x) — L| < € to find an open interval (a, b) contain-
ing xo on which the inequality holds for all x # xy.

2. Find a value of & > 0 that places the open interval (xo — 8, xo + &) centered
at xo inside the interval (a, b). The inequality | f(x) — L| < € will hold for all
X # Xxgp 1n this é-interval.
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-3
/ NOT TO SCALE

FIGURE 2.15 If f(x) = 5x — 3, then
0 < |x — 1| < €/5 guarantees that
| f(x) — 2| < e (Example 2).
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0 xﬂ—ﬁxﬂ 0+6

FIGURE 2.16 For the function f(x) = x,
we find that 0 < |x — xo| < & will
guarantee | f(x) — xo| < € whenever

0 = e (Example 3a).
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k — € —
| | I
| | |
| I |
| | |
I I |
I I I
I > X
0 IO—S IU JCO‘I‘(S

FIGURE 2.17 For the function f(x) = k,
we find that | f(x) — k| < e for any

positive 6 (Example 3b).
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FIGURE 2.18 An open interval of

radius 3 about xo = 5 will lie inside the
open interval (2, 10).
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NOT TO SCALE

FIGURE 2.19 The function and intervals
in Example 4.
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FIGURE 2.20 An interval containing
x = 2 so that the function in Example 5
satisfies | f(x) — 4| < €.
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y
M
X
y =17
x|
10
> X
0
O-—1

FIGURE 2.21 Different right-hand and
left-hand limits at the origin.
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™ )
L1 /) 1)+ M
0 C = X > 0 X o C =
(a) lim f(x) =L (b) lim f(x)=M
X—C xX—=c

FIGURE 2.22 (a) Right-hand limit as x approaches c. (b) Left-hand limit as x
approaches c.
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> <

> X

-2 0 2

FIGURE 2.23 lim V4 — x% = 0 and

x—2

lim V4 — x* = 0 (Example 1).

x— =27
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THEOREM 6

A function f(x) has a limit as x approaches c if and only if it has left-hand and
right-hand limits there and these one-sided limits are equal:

lim f(x) = L = lim f(x) =L and lim f(x) = L.

X—c xX—>c Xx—c¢
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y =fx)

1
\ o
| | | > x

FIGURE 2.24 Graph of the function
in Example 2.
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DEFINITIONS Right-Hand, Left-Hand Limits
We say that f(x) has right-hand limit L at x,, and write

lim_f(x) =L (See Figure 2.25)

X—>X
if for every number € > 0 there exists a corresponding number 6 > 0 such that
for all x
Xo <x<xg+ 6 = 1 f(x) — L| <e.

We say that f has left-hand limit L at x,, and write
lim f(x) =L (See Figure 2.26)

X—>Xq
if for every number € > 0 there exists a corresponding number & > 0 such that
for all x
X0 — 6 <x<xp = f(x) — L| <e.
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FIGURE 2.25 Intervals associated with
the definition of right-hand limit.
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FIGURE 2.26 Intervals associated with
the definition of left-hand limit.
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S

J(x)

> X

L=20

FIGURE 2.27  lim_Vx = 0in Example 3.

x—0*
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y = sin

\ H"H iR

FIGURE 2.28 The function y = sin (1/x) has neither a
right-hand nor a left-hand limit as x approaches zero
(Example 4).
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1 .
XY # (radians)
lf,-—'_'--\_] | | 3
-3 2~~~ ~—"21 3 0
NOT TO SCALE
FIGURE 2.29 The graph of f(#) = (sin6)/#.
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THEOREM 7

sin 6
g—0 0O

=1

(0 in radians)

(1)
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y
.
T
tan 6
[ >
A(l,0)
1

FIGURE 2.30 The figure for the proof of
Theorem 7. TA/OA = tan@,but O4 = 1,
so TA = tan 9.
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DEFINITIONS Limit as x approaches o0 or — o0
1. We say that f(x) has the limit L as x approaches infinity and write

lim f(x) =L

x—>00

if, for every number € > 0, there exists a corresponding number M such that
for all x

x> M = | f(x) — L| <e.

2. We say that f(x) has the limit L as x approaches minus infinity and write

lim f(x) =L

x—>—00

if, for every number € > 0, there exists a corresponding number N such that
for all x

x <N = | f(x) — L| <e.
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FIGURE 2.31 The graph of y = 1/x.
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No matter what
A positive number € is,
the graph enters

1 this band atx = 2
YT x and stays.
-
€
N
— !\ | EO I 1 X > X
—_ : M= g
y=—€ .

No matter what
positive number € is,
the graph enters
this band at x = —
and stays.

€

FIGURE 2.32 The geometry behind the
argument in Example 6.
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THEOREM 8 Limit Laws as x — £ o©
If L, M, and k, are real numbers and

lim f(x) =1L and lim g(x) = M, then

X—>100 x—>+00

1. Sum Rule: lim (f(x) + glx)) =L+ M
x—>400

2. Difference Rule: lirjl;loo( fx) —gx)=L—-—M
xXx—

3. Product Rule: liToo( fx)glx)) =L-M

4. Constant Multiple Rule: lirf (k- f(x)) = k- L
x—> 400

5. Quotient Rule: im I 2L e

o0 g(x) M

6. Power Rule: If r and s are integers with no common factors, s # 0, then
lim (f(x))” = L™
X—>1+00

provided that L'/* is a real number. (If s is even, we assume that L > 0.)
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y y:5x2+8x—3
7 3x% + 2
L2
' Liney:§
\ 1H 3
I 1 1 1 [ 1 1 1 I 1 I 1 1 I}x
-5 0 5 10
1

—2  NOTTO SCALE

FIGURE 2.33 The graph of the function
in Example 8. The graph approaches the
line y = 5/3 as|x|increases.
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_1lx+2
2x3 — 1

FIGURE 2.34 The graph of the
function in Example 9. The graph
approaches the x-axis as | x| increases.
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DEFINITION  Horizontal Asymptote
A line y = b is a horizontal asymptote of the graph of a function y = f(x) if
either

lim f(x) =5 or lim f(x) = b.

x—00 x——00

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 2 - 57




Y
A

| | | | | | >X

=37 27 -7 O w 2w 3w
FIGURE 2.35 A curve may cross one of

its asymptotes infinitely often (Example
11).
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FIGURE 2.36 The function in Example
12 has an oblique asymptote.
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b
>

You can get as high
as you want by
taking x close enough
to 0. No matter how
high B is, the graph
B ¢ |\ goes higher.

_1
Y&I
|

® > X
X

0
\f No matter how
low =B is, the

graph goes lower.

You can get as low as| @ —B
you want by taking
x close enough to 0.

FIGURE 2.37 One-sided infinite limits:

1 o1
Iim — = and Iim - = —©
x—0" X x—0" X
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FIGURE 2.38 Near x = 1, the function
y = 1/(x — 1) behaves the way the
function y = 1/x behaves near x = 0. Its
graph is the graph of y = 1/x shifted 1
unit to the right (Example 1).
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y
L3
No matter how
Be—— high B is, the graph
goes higher.
|
|
|
|
» > X
X
(@)
) =
g(x) G+ )
5 -
4 -
3 -
2 —
1 —
L ' > X
-5 -4 -3 -2 -1 0

(b)

FIGURE 2.39 The graphs of the
functions in Example 2. (a) f(x)
approaches infinity as x — 0. (b) g(x)
approaches infinity as x — —3.
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DEFINITIONS Infinity, Negative Infinity as Limits

1. We say that f(x) approaches infinity as x approaches x,, and write

lim f(x) = oo,

X—Xp

if for every positive real number B there exists a corresponding 6 > 0 such
that for all x

0 < |x— x| <0 = f(x) > B.

2. We say that f(x) approaches negative infinity as x approaches x;, and write

lim f(x) = —o0,
XX

if for every negative real number — B there exists a corresponding 6 > 0 such
that for all x

0 < |x— x| <6 = f(x) < —B.
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y =f(x)

/ p 4 XO

/0 XO—6

FIGURE 2.40 Forxy — o0 <x <xp + 6,
the graph of f(x) lies above the line y = B.

\
XO+6
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y = f(x)

f

FIGURE 2.41 Forxy — o0 <x <xg + &,
the graph of f(x) lies below the line
y = —B.
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DEFINITION Vertical Asymptote
A line x = a is a vertical asymptote of the graph of a function y = f(x) if either

lim_f(x) = £00 or lim f(x) = £00.

X—>a x—a
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Vertical asymptote

Horizontal 1
asymptote

Horizontal
asymptote,
y=20

Vertical asymptote,
x=0

FIGURE 2.42 The coordinate axes are
asymptotes of both branches of the
hyperbola y = 1/x.
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Vertical 0
asymptote, e
x=-2 5P _x+3
4 | y X + 2
— 1+ 1
Horizontal 3 x+2
asymptote, 7L
y = 1 —
| | | > X
1 2 3
3k
_41-

FIGURE 2.43 The lines y = 1 and
x = —2 are asymptotes of the curve
y = (x + 3)/(x + 2) (Example 5).
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y
A
] - _ 8
y ——
7+ x2— 4
6 -
S5+ Vertical
Vertical 4 asymptote, x = 2
asymptote, 31 Horizontal
x=-2

asymptote, y = 0

FIGURE 2.44 Graph of

y = —8/(x* — 4). Notice that the curve
approaches the x-axis from only one side.
Asymptotes do not have to be two-sided
(Example 6).
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A y =8€eCx y=tan.x

bol=1
™
;] L
by |9
E
2
k|
S

FIGURE 2.45 The graphs of sec x and tan x have infinitely many vertical
asymptotes (Example 7).
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FIGURE 2.46 The graphs of csc x and cot x (Example 7).

SIE

y =cotx
> X
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2
_x"—=3_x 1
Y=or—4 a2t 1lt33

\ i The vertical distance
between curve and
line goes to zero as x — oo

Oblique

x=2
- asymptote
1
/ y=35+1
-1 0] 1 2 3 "% FIGURE 2.47 The graph of
-1 | f(x) = (x* — 3)/(2x — 4) has a vertical
2t Vertical asymptote and an oblique asymptote
asymptote,

3k =2 (Example 8).
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FIGURE 2.48 The graphs of f and g, (a) are distinct for |x|small, and (b) nearly
identical for | x| large (Example 9).
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Continuity
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FIGURE 2.49 Connecting plotted points
by an unbroken curve from experimental

data Oy, O», O3, ... for a falling object.
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FIGURE 2.50 The function 1s continuous
on [0, 4] exceptatx = 1,x = 2, and
x = 4 (Example 1).
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Continuity Two-sided

from the right ~ continuity Continuity
— from the left
m
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| | L 5y
a c b

FIGURE 2.51 Continuity at points a, b,
and c.
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DEFINITION Continuous at a Point
Interior point: A function y = f(x) is continuous at an interior point c of its

domain if

lim f(x) = f(c).

Endpoint: A function y = f(x) is continuous at a left endpoint a or is
continuous at a right endpoint b of its domain if

l_i)m+ f(x) = f(a) or l_i)ng_ f(x) = f(b), respectively.
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FIGURE 2.52 A function
that 1s continuous at every
domain point (Example 2).
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y = UXx)

or

FIGURE 2.53 A function
that is right-continuous,
but not left-continuous, at
the origin. It has a jump
discontinuity there
(Example 3).
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Continuity Test

A function f(x) is continuous at x = c if and only if it meets the following three
conditions.

1. f(c) exists (c lies in the domain of f)

2. lim,— f(x) exists (f has a limit as x — ¢)

3. limy—. f(x) = f(c) (the limit equals the function value)
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FIGURE 2.54 The greatest integer
function is continuous at every
noninteger point. It is right-continuous,
but not left-continuous, at every integer
point (Example 4).
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FIGURE 2.55 The function in (a) is continuous at x = 0; the functions in (b) through (f)
are not.
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FIGURE 2.56 The function y = 1/xis
continuous at every value of x except

x = 0. It has a point of discontinuity at
x = 0 (Example 5).
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THEOREM 9 Properties of Continuous Functions
[f the functions f and g are continuous at x = ¢, then the following combinations

are continuous at x = c.

1. Sums:
2. Differences:
. Products:

3
4. Constant multiples:
5. Quotients:

6

. Powers:

ft+g

f—g

f-g

k- f, for any number &
f/g provided g(c) # 0

£, provided it is defined on an open interval
containing ¢, where r and s are integers
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FIGURE 2.57 Composites of continuous functions are continuous.
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THEOREM 10 Composite of Continuous Functions

If f is continuous at ¢ and g is continuous at f(c), then the composite g © f is
continuous at c.
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FIGURE 2.58 The graph suggests that
y = |(xsinx)/(x* + 2)| is continuous
(Example 8d).
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(a) (b)

FIGURE 2.59 The graph (a) of f(x) = (sinx)/x for —7/2 = x = 7/2 does not include
the point (0, 1) because the function is not defined at x = 0. (b) We can remove the
discontinuity from the graph by defining the new function F(x) with #(0) = 1 and

F(x) = f(x) everywhere else. Note that F(0) = 31_13}) f(x).
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FIGURE 2.60 (a) The graph of
f(x) and (b) the graph of its
continuous extension F(x)
(Example 9).
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THEOREM 11 The Intermediate Value Theorem for Continuous Functions

A function y = f(x) that is continuous on a closed interval [a, b] takes on every
value between f(a) and f(b). In other words, if yy 1s any value between f(a) and
f(b), then yy = f(c) for some ¢ in [a, b].

L
-~

y =fx)

f(®)

Yo

f(a)
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FIGURE 2.61 The function

2x — 2, 1 =x<2
ﬂ”_{a 2 =x=4
does not take on all values between
f(1) = 0and f(4) = 3; it misses all the
values between 2 and 3.
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FIGURE 2.62 Zooming in on a zero of the function f(x) = x> — x — 1. The zero is near
x = 1.3247.
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Tangents and Derivatives
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FIGURE 2.63 L 1s tangent to the
circle at P if it passes through P
perpendicular to radius OP.
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N A .
L C L C
C L P
P
P
L meets C only at P L is tangent to C at P but L is tangent to C at P but lies on
but is not tangent to C. meets C at several points. two sides of C, crossing C at P.

FIGURE 2.64 Exploding myths about tangent lines.
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Secants

—

Secants

Tangent

Tangent

FIGURE 2.65 The dynamic approach to tangency. The tangent to the curve at P is the line
through P whose slope is the limit of the secant slopes as Q — P from either side.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 2 - 98



2+ h)? -4

=h+4.
h

Secant slope is

NOT TO SCALE

FIGURE 2.66 Finding the slope of the parabola y = x? at the point P(2, 4) (Example 1).
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DEFINITIONS Slope, Tangent Line
The slope of the curve y = f(x) at the point P(xy, f(xg)) is the number

. flxo + 1) = f(xo)
m = lim
h—0 h

(provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.
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FIGURE 2.67 The slope of the tangent

+ h) —
line at Pis lim fxo ; flxo)
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Finding the Tangent to the Curve y = f(x) at (xo, Vo)
1. Calculate f(xo) and f(xo + h).

2. Calculate the slope
. f(xo + h) — f(xo)
m = lim )
h—0 h

3. If the limit exists, find the tangent line as

y =y + m(x — xp).
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FIGURE 2.68 The two tangent lines to
y = 1/x having slope —1/4 (Example 3).
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The slope of y = f(x) at x = x
The slope of the tangent to the curve y = f(x) atx = xo
The rate of change of f(x) with respect to x at x = xy
The derivative of f at x = xg

xo+ h) — flx
The limit of the difference quotient, }}in‘b fxo i)z f(xo)
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FIGURE 2.69 The tangent slopes, steep
near the origin, become more gradual as
the point of tangency moves away.
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