Elasticity and Fluid Mechanics

Prepared by Dr. Ahmed Abdelbaset

Chapter 6: Elasticity and Fluid Mechanics

1. Elasticity

- 2. Density
- 3. Pressure
- 4. Fluid flow

Solution Example: 6.1 A force of 2500 N affected a metal wire 10 m long $Stress = \frac{F}{A}$ and 3.5 mm in diameter, extending by 0.5 cm find: $=\frac{2500}{\pi\times(1.75\times10^{-3})^2}=2.6\times10^8\frac{N}{m^2}$ a. Stress. b. Strain. $Strain = \frac{\Delta L}{I}$ c. Young modulus $=\frac{0.5\times10^{-2}}{10}=5\times10^{-4}$ $Y = \frac{Stress}{Strain}$ $=\frac{2.6\times10^8}{5\times10^{-4}}=5.2\times10^{11}\ \frac{N}{m^2}$

- Bulk modulus: Elasticity of volume

Example: 6.2

A copper cube with a side length of 5×10^{-2} *cm*, if we affect on it with a vertical force of 1.5×10^3 *N*, its volume reduced by 5×10^{-6} *cm*³. Calculate the Bulk modulus for this cube?

-x

 $\frac{F}{A} = S\frac{x}{L}$

 \overrightarrow{F}

 $\theta \cong \frac{x}{1}$

- Shear modulus: Elasticity of shape

Example: 6.3

Cube 10 cm long, affected by a tangential force of its upper surface of 10⁶ N,

causing a displacement of 0.03 cm for the upper side related to the lower side.

Calculate the value of the shear modulus.

2. Density

Density ρ is defined as mass per unit volume.

Example: 6.4

Calculate the density of Glycerol if the size of 100 gm of it is equal to 79.3 cm^3 .

3. Pressure

The pressure is the force per unit area.

$$P = \frac{F}{A}$$

The SI unit of the pressure is Pascal $P_a = \frac{N}{m^2}$

- The pressure of the column of liquid

$$P = \frac{F}{A} = \rho g h$$

3. Pressure

Example: 6.5

Submarine at a depth of 30 *m* below sea level. Find the amount of force that seawater pressure affects on a cover at the top of the submarine with area 2 m^2 . The density of seawater is 1025 kg/m^3 .

Solution

$$F = A P$$
, $P = h \rho g + P_0$

$$F = A (h \rho g + P_0)$$

 $= 2 \times [(30 \times 1025 \times 9.8) + 10^5] = 802700 N$

3. Pressure

Pascal's Law: A change in pressure at any point in an enclosed fluid at rest is transmitted undiminished to all points in the fluid.

Example: 6.6

In the hydraulic piston, the radius of the small and large piston is 2 cm, 20 cm respectively. A force of 2000 N is generated on the large piston. Calculate the force acting on the small piston.

Solution

3. Pressure gauges

- The Barometer

$$P_0 = \rho g h$$

- The Manometer

 $P = P_0 + \rho g h$

3. Pressure gauges

Example: 6.7

How long is the tube that we need to make a water barometer?

Note: (Atmospheric pressure is $1 \times 10^5 Pa$ - gravitational acceleration $g = 9.8 \frac{m}{s^2}$ - water density 1000 $\frac{kg}{m3}$) **Solution** $P_a = \rho g h$ $h = \frac{P_a}{\rho g}$ $=\frac{1\times 10^5}{1000\times 9.8}=10.2 \ m$

3. Pressure gauges

Example: 6.8

The height of mercury in open branch of the manometer relative to the surface

of mercury in container branch is 40 cm, the mercury density is 13600 $\frac{kg}{m^3}$, atmospheric pressure 1 × 10⁵*Pa* and the gravitational acceleration g= 9.8 $\frac{m}{s^2}$.

Calculate the pressure of the trapped gas in the container.

Solution

 $P = P_a + \rho g h$ = 1 × 10⁵ + (13600 × 9.8 × 0.4) = 153312 Pa

4. Fluid flow

- Equation of Continuity

Fluid flow rate R = Av: Defined as the size of the fluid that crosses the fluid stream section area in the unit of time, measured in a unit $\frac{m^3}{r}$.

Example: 6.9

The water flows by pressure $3 \times 10^5 P_a$ into a horizontal tube with velocity

1 $\frac{m}{s}$. The radius of tube is narrows from 0.2 m to 0.1 m. Calculate the flow speed

in the narrow part of the tube.

Solution

 $\begin{array}{rcl}
\overline{A_1 \ v_1} &=& A_2 \ v_2 \\
\overline{v_2} &=& \frac{A_1}{A_2} \ v_1 \\
&=& \frac{\pi \ r_1^2}{\pi \ r_2^2} \ v_1 \\
&=& \frac{0.2^2}{0.1^2} \ \times \ 1 \ = \ 4 \ m/s
\end{array}$

 $A_1 v_1 = A_2 v_2$

4. Fluid flow

Bernoulli's Equation

This relationship is known as the Bernoulli equation, which can be formulated that at all points on the flow line, the amount $P + h \rho g + \frac{1}{2} \rho v^2$ remains constant.

4. Fluid flow

Example: 6.10

An irregular horizontal tube in which the water flows, so if the pressure 1332.8 P_a is in the part where the speed of the water is $0.5 \frac{m}{s}$. Calculate the pressure in the part where the speed is $0.8 \frac{m}{s}$.

