Elasticity and Fluid Mechanics

Chapter 6 :
 Elasticity and Fluid Mechanics

1. Elasticity

Prepared by
Dr. Ahmed Abdelbaset
2. Density
3. Pressure
4. Fluid flow

1. Elasticity

- Young's modulus Y : Elasticity of length

$$
Y=\frac{\text { stress }}{\text { strain }}
$$

Stress is the force affecting on the unit of areas from the wire.

$$
\text { stress }=\frac{F}{A} \quad \text { measured by } \frac{N}{m^{2}}
$$

Strain is the amount of expansion of the wire relative to its original length.

$$
\operatorname{strain}=\frac{\Delta L}{L} \quad \text { which is unitless }
$$

$$
\frac{F}{A}=Y \frac{\Delta L}{L}
$$

1. Elasticity

Example: 6.1

A force of 2500 N affected a metal wire 10 m long and 3.5 mm in diameter, extending by 0.5 cm find:
a. Stress.
b. Strain.
c. Young modulus

$$
\begin{aligned}
& \text { Strain }=\frac{\Delta L}{L} \\
& \quad=\frac{0.5 \times 10^{-2}}{10}=5 \times 10^{-4} \\
& \begin{aligned}
Y & =\frac{\text { Stress }}{\text { Strain }} \\
& =\frac{2.6 \times 10^{8}}{5 \times 10^{-4}}=5.2 \times 10^{11} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\text { Stress } & =\frac{F}{A} \\
& =\frac{2500}{\pi \times\left(1.75 \times 10^{-3}\right)^{2}}=2.6 \times 10^{8} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
\end{aligned}
$$

1. Elasticity

- Bulk modulus: Elasticity of volume

Example: 6.2

$$
\frac{F}{A}=-B \frac{\Delta V}{V}
$$

A copper cube with a side length of $5 \times 10^{-2} \mathrm{~cm}$, if we affect on it with a vertical force of $1.5 \times 10^{3} \mathrm{~N}$, its volume reduced by $5 \times 10^{-6} \mathrm{~cm}^{3}$. Calculate the Bulk modulus for this cube?

Solution

$\frac{F}{A}=B \frac{\Delta V}{V}$

$$
\begin{aligned}
B & =\frac{F V}{A \Delta V} \\
& =\frac{1.5 \times 10^{3} \times 125 \times 10^{-6}}{25 \times 10^{-4} \times 5 \times 10^{-6}}=1.5 \times 10^{7} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
\end{aligned}
$$

1. Elasticity

- Shear modulus: Elasticity of shape

Example: 6.3

Cube 10 cm long, affected by a tangential force of its upper surface of $10^{6} \mathrm{~N}$, causing a displacement of 0.03 cm for the upper side related to the lower side. Calculate the value of the shear modulus.

Solution

$\frac{F}{A}=S \frac{x}{L}$

$$
\begin{aligned}
S & =\frac{F L}{A x} \\
& =\frac{10^{6} \times\left(10 \times 10^{-2}\right)}{\left(10 \times 10^{-2}\right)^{2} \times\left(0.03 \times 10^{-2}\right)}=3.3 \times 10^{10} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
\end{aligned}
$$

2. Density

Density ρ is defined as mass per unit volume.

$$
\rho=\frac{m}{V} \quad \text { The SI unit of the density is } \frac{\mathrm{kg}}{\mathrm{~m}^{3}}
$$

Example: 6.4

Calculate the density of Glycerol if the size of 100 gm of it is equal to $79.3 \mathrm{~cm}^{3}$.

Solution

$$
\begin{aligned}
\rho & =\frac{m}{V} \\
& =\frac{100 \times 10^{-3}}{79.3 \times 10^{-6}}=1261 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{aligned}
$$

3. Pressure

The pressure is the force per unit area.

$$
P=\frac{F}{A}
$$

The SI unit of the pressure is Pascal $P_{a}=\frac{N}{m^{2}}$

- The pressure of the column of liquid

$$
P=\frac{F}{A}=\rho g h
$$

3. Pressure

Example: 6.5

Submarine at a depth of 30 m below sea level. Find the amount of force that seawater pressure affects on a cover at the top of the submarine with area $2 \mathrm{~m}^{2}$. The density of seawater is $1025 \mathrm{~kg} / \mathrm{m}^{3}$.

Solution

$$
\begin{aligned}
F & =A P, \quad P=h \rho g+P_{0} \\
F & =A\left(h \rho g+P_{0}\right) \\
& =2 \times\left[(30 \times 1025 \times 9.8)+10^{5}\right]=802700 \mathrm{~N}
\end{aligned}
$$

3. Pressure

Pascal's Law: A change in pressure at any point in an enclosed fluid at rest is transmitted undiminished to all points in the fluid.

Example: 6.6

$$
\frac{f}{a}=\frac{F}{A}
$$

In the hydraulic piston, the radius of the small and large piston is $2 \mathrm{~cm}, 20 \mathrm{~cm}$ respectively. A force of 2000 N is generated on the large piston. Calculate the force acting on the small piston.

$$
\begin{aligned}
& \text { Solution } \\
& \begin{array}{l}
\frac{f}{a}=\frac{F}{A} \\
f=F \frac{a}{A} \\
\quad=\frac{2000 \times \pi\left(2 \times 10^{-2}\right)^{2}}{\pi\left(20 \times 10^{-2}\right)^{2}}=20 \mathrm{~N}
\end{array}
\end{aligned}
$$

3. Pressure gauges

- The Barometer
- The Manometer

$$
P_{0}=\rho g h
$$

3. Pressure gauges

Example: 6.7

How long is the tube that we need to make a water barometer?

Note: (Atmospheric pressure is $1 \times 10^{5} \mathrm{~Pa}$ - gravitational acceleration $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ - water density $1000 \frac{\mathrm{~kg}}{\mathrm{~m}}$)

Solution

$$
\begin{aligned}
P_{a} & =\rho g h \\
h & =\frac{P_{a}}{\rho g} \\
& =\frac{1 \times 10^{5}}{1000 \times 9.8}=10.2 \mathrm{~m}
\end{aligned}
$$

3. Pressure gauges

Example: 6.8

The height of mercury in open branch of the manometer relative to the surface of mercury in container branch is 40 cm , the mercury density is $13600 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$, atmospheric pressure $1 \times 10^{5} \mathrm{~Pa}$ and the gravitational acceleration $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

Calculate the pressure of the trapped gas in the container.

Solution

$$
\begin{aligned}
P & =P_{a}+\rho g h \\
& =1 \times 10^{5}+(13600 \times 9.8 \times 0.4)=153312 P a
\end{aligned}
$$

4. Fluid flow
 - Equation of Continuity

Fluid flow rate $R=A v$: Defined as the size of the fluid that crosses the fluid stream section area in the unit of time, measured in a unit $\frac{\mathrm{m}^{3}}{\mathrm{~s}}$.

Example: 6.9

The water flows by pressure $3 \times 10^{5} P_{a}$ into a horizontal tube with velocity

$$
A_{1} v_{1}=A_{2} v_{2}
$$

$1 \frac{\mathrm{~m}}{\mathrm{~s}}$. The radius of tube is narrows from 0.2 m to 0.1 m . Calculate the flow speed in the narrow part of the tube.

$$
\begin{aligned}
& \text { Solution } \\
& \begin{array}{l}
A_{1} v_{1}=A_{2} v_{2} \\
v_{2}
\end{array}=\frac{A_{1}}{A_{2}} v_{1} \\
& \quad=\frac{\pi r_{1}^{2}}{\pi r_{2}^{2}} v_{1} \\
& \quad=\frac{0.2^{2}}{0.1^{2}} \times 1=4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

4. Fluid flow

Bernoulli's Equation

This relationship is known as the Bernoulli equation, which can be formulated that at all points on the flow line, the amount $P+h \rho g+\frac{1}{2} \rho v^{2}$ remains constant.

4. Fluid flow

Example: 6.10

An irregular horizontal tube in which the water flows, so if the pressure $1332.8 P_{a}$ is in the part where the speed of the water is $0.5 \frac{\mathrm{~m}}{\mathrm{~s}}$. Calculate the pressure in the part where the speed is $0.8 \frac{\mathrm{~m}}{\mathrm{~s}}$.

Solution

$$
\begin{aligned}
P_{1} & -P_{2}=\frac{1}{2} \rho\left(v_{2}^{2}-v_{1}^{2}\right) \\
P_{2} & =P_{1}-\frac{1}{2} \rho\left(v_{2}^{2}-v_{1}^{2}\right) \\
& =1332.8-\frac{1}{2} \times 10^{3} \times\left[(0.8)^{2}-(0.5)^{2}\right]=1137.8 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

