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Motion Estimation, cont...



Problem definition: optical flow
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How to estimate pixel motion from image H to image 1?

» Solve pixel correspondence problem
— given a pixel in H, look forjnearby|pixels of the|same colof in |

Key assumptions

« color constancy: a point in H looks the same in |
— For grayscale images, this is brightness constancy

« small motion: points do not move very far
This is called the optical flow problem



Optical flow constraints (grayscale images)

(z,y)
\Silsplacement = (u,v)
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Let’s look at these constraints more closely
« brightness constancy: Q: what’s the equation?

« small motion: (u and v are less than 1 pixel)
— suppose we take the Taylor series expansion of I:

I(x+4u, y+v) = I(x, y)—l—ﬂu alv—l—mgher order terms
~I(z,y) + ghu+ 9



Optical flow equation

Combining these two equations
O=I(z+u,y+v)— H(z,y)
~ I(z,y) + Leu + Iyv — H(z,y)
~ (I(z,y) — H(z,9)) + Leu + Iy
~ Iy + Lou + Iy
~ I+ VI-[u v]

shorthand: I, = %

In the limit as u and v go to zero, this becomes exact
0=1I+VI-[% Y



Optical flow equation

O=1;4+VI-[u v]
Q: how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?

« The component of the flow in the gradient direction is determined
« The component of the flow parallel to an edge is unknown



Aperture problem




Aperture problem




Solving the aperture problem

How to get more equations for a pixel?

« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25 equations per pixel!

0 = I1(p;) + VI(p;) - [u v]
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RGB version

How to get more equations for a pixel?
Basic idea: impose additional constraints

— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel's neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25*3 equations per pixel!
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Lukas-Kanade flow

Prob: we have more equations than unknowns

A d=b ———s minimize ||Ad—b|?
25x2 2x1 25x1

Solution: solve least squares problem
* minimum least squares solution given by solution (in d) of:

(AT A) d= Alh

2X2 2x1 2x1

Shle SLIy|[u] _ [ L
S Lly Sy, || v |~ | S

AT A Alp

« The summations are over all pixels in the K x K window

« This technique was first proposed by Lukas & Kanade (1981)
— described in Trucco & Verri reading



Conditions for solvability

« Optimal (u, v) satisfies Lucas-Kanade equation

> dxdy ) Ixdy w | | 2y
Do Ixly > Iyly v | > Iyly

AT A ATp

When is This Solvable?

« ATA should be invertible
« ATA should not be too small due to noise
— eigenvalues A, and A, of ATA should not be too small
« ATA should be well-conditioned
— M/ A, should not be too large (A, = larger eigenvalue)



Eigenvectors of ATA

Iple S I Iy
ATA = [%ley %Iy[z] =2 [ I, ] [ I,) = Y- vI(vD)"

Suppose (x,y) is on an edge. What is ATA?
« gradients along edge all point the same direction
« gradients away from edge have small magnitude

(S vivn") = kvivit
(> vI(vnT) VI =k|VI|VI
. VIis an eigenvector with eigenvalue k[|VI||

« What's the other eigenvector of ATA?
— let N be perpendicularto VI

(S vivn) N =0

— N is the second eigenvector with eigenvalue 0
The eigenvectors of ATA relate to edge direction and magnitude



S vi(vi?!
— large gradients, all the same
— large A, small A,




Low texture region
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— gradients have small magnitude
—small A, small A,




High textured region

AN >\°‘L:\ o

— gradients are different, large magnitudes " -~
— large A4, large A,



Observation

This Is a two image problem BUT
« Can measure sensitivity by just looking at one of the images!

« This tells us which pixels are easy to track, which are hard
— very useful later on when we do feature tracking...



Errors In Lukas-Kanade

What are the potential causes of errors in this procedure?
« Suppose ATA is easily invertible
« Suppose there is not much noise in the image

When our assumptions are violated
» Brightness constancy is not satisfied
* The motion is not small

« A point does not move like its neighbors
— window size is too large
— what is the ideal window size?



Improving accuracy

Recall our small motion assumption
0=1I(z+uy+v)— H(z,y)
~ I(z,y) + Izu+ Iyv — H(x,y)

This Is not exact
« To do better, we need to add higher order terms back in:

p ](337 y) —|— Ixu —|— va —|— higher order terms — H(:I}, y)

This is a polynomial root finding problem

« Can solve using Newton’s method
— Also known as Newton-Raphson method

 Lukas-Kanade method does one iteration of Newton’s method
— Better results are obtained via more iterations



lterative Refinement

lterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations

2. Warp H towards | using the estimated flow field
- use image warping techniques
3. Repeat until convergence



Revisiting the small motion assumption
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Is this motion small enough?
« Probably not—it's much larger than one pixel (2"? order terms dominate)
* How might we solve this problem?



Reduce the resolution!




Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels

u=5 pixels

Gaussian pyramid of image H Gaussian pyramid of image |



Coarse-to-fine optical flow estimation
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Gaussian pyramid of image H Gaussian pyramid of image |



Multi-resolution Lucas Kanade Algorithm

» Compute ‘simple” LK at highest level
« Atlevel i

* Take flow u, ,, v, from level i-1

bilinear interpolate it to create u.", v°
matrices of twice resolution for level §

multiply &, v,” by 2

compute /, from a block displaced by
i, (v, v, (X))

Apply LK to get u, (x, v). v, (x, v) (the
correction in tlow)

I

Add corrections u,’v,”, i.e.u, = u, + u,,

v, = vty



Optical Flow Results
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Optical Flow Results

[.ucas-Kanade with Pyramid
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