2.6 Higher-Order Derivatives

Exercise:

Find fourth derivatives ($f^{(4)}$) of $f(x) = 2x^3 - 4x^2 + 7x - 8$.

Solution

$$f'(x) = 6x^{2} - 8x + 7$$

$$f''(x) = 12x - 8$$

$$f'''(x) = 12$$

$$f^{4}(x) = 0$$

Example 1: If $y = \sin 2x$, find $\frac{d^3y}{dx^3}$, $\frac{d^4y}{dx^4}$ and $\frac{d^{12}y}{dx^{12}}$

Solution

$$\frac{dy}{dx} = 2\cos 2x$$

$$\frac{d^2y}{dx^2} = -4\sin 2x = -2^2\sin 2x$$

$$\frac{d^3y}{dx^3} = -2^3\cos 2x$$

$$\frac{d^4y}{dx^4} = 2^4\sin 2x$$

$$\frac{d^5y}{dx^5} = 2^5\cos 2x$$

$$\vdots$$

$$\frac{d^{12}y}{dx^{12}} = 2^{12}\sin 2x$$

Mathematics 1

ENG. Mahdi Alsiddig 0563938879

السرعة و التسارع Velocity and Acceleration

Example 2: An object moves along a coordinate line so that its position s satisfies $s = 2t^2 - 12t + 8$, where s is measured in centimeters and t in seconds.

- (a) Determine the velocity of the object when t = 1 and when t = 6.
- (b) when is the velocity 0?
- (c) when is it positive?

Solution

(a)
$$v = 4t - 12$$
,

$$v(1) = 4(1) - 12 = 4 - 12 = -8 \text{ cm/s}$$

 $v(6) = 4(6) - 12 = 24 - 12 = 12 \text{ cm/s}$

(b)
$$v = 0$$

$$4t - 12 = 0$$
$$4t = 12$$
$$t = 3 s$$

(c)
$$v > 0$$

$$4t - 12 > 0$$

 $4t > 12$
 $t > 3 s$