
Kenneth H. Rosen

SEVENTH EDITION

Discrete
Mathematics
and Its

Applications

Discrete
Mathematics
and Its
Applications
Seventh Edition

Kenneth H. Rosen
Monmouth University

(and formerly AT&T Laboratories)

DISCRETE MATHEMATICS AND ITS APPLICATIONS, SEVENTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the

Americas, New York, NY 10020. Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.

Previous editions © 2007, 2003, and 1999. No part of this publication may be reproduced or distributed

in any form or by any means, or stored in a database or retrieval system, without the prior written consent of

The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic storage

or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the

United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOW/DOW 1 0 9 8 7 6 5 4 3 2 1

ISBN 978-0-07-338309-5

MHID 0-07-338309-0

Vice President & Editor-in-Chief: Marty Lange

Editorial Director: Michael Lange

Global Publisher: Raghothaman Srinivasan

Executive Editor: Bill Stenquist

Development Editors: Lorraine K. Buczek/Rose Kernan

Senior Marketing Manager: Curt Reynolds

Project Manager: Robin A. Reed

Buyer: Sandy Ludovissy

Design Coordinator: Brenda A. Rolwes

Cover painting: Jasper Johns, Between the Clock and the Bed, 1981. Oil on Canvas (72 × 126 1/4 inches)

Collection of the artist. Photograph by Glenn Stiegelman. Cover Art © Jasper Johns/Licensed by VAGA, New York, NY

Cover Designer: Studio Montage, St. Louis, Missouri

Lead Photo Research Coordinator: Carrie K. Burger

Media Project Manager: Tammy Juran

Production Services/Compositor: RPK Editorial Services/PreTeX, Inc.

Typeface: 10.5/12 Times Roman

Printer: R.R. Donnelley

All credits appearing on this page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Rosen, Kenneth H.

Discrete mathematics and its applications / Kenneth H. Rosen. — 7th ed.

p. cm.

Includes index.

ISBN 0–07–338309–0

1. Mathematics. 2. Computer science—Mathematics. I. Title.

QA39.3.R67 2012

511–dc22

2011011060

www.mhhe.com

Contents

About the Author vi
Preface vii
The Companion Website xvi
To the Student xvii

1 The Foundations: Logic and Proofs . 1

1.1 Propositional Logic . 1

1.2 Applications of Propositional Logic . 16

1.3 Propositional Equivalences . 25

1.4 Predicates and Quantifiers . 36

1.5 Nested Quantifiers . 57

1.6 Rules of Inference . 69

1.7 Introduction to Proofs . 80

1.8 Proof Methods and Strategy . 92

End-of-Chapter Material . 109

2 Basic Structures: Sets, Functions, Sequences, Sums, and Matrices . 115

2.1 Sets . 115

2.2 Set Operations . 127

2.3 Functions . 138

2.4 Sequences and Summations . 156

2.5 Cardinality of Sets . 170

2.6 Matrices . 177

End-of-Chapter Material . 185

3 Algorithms . 191

3.1 Algorithms . 191

3.2 The Growth of Functions . 204

3.3 Complexity of Algorithms . 218

End-of-Chapter Material . 232

4 Number Theory and Cryptography . 237

4.1 Divisibility and Modular Arithmetic . 237

4.2 Integer Representations and Algorithms . 245

4.3 Primes and Greatest Common Divisors . 257

4.4 Solving Congruences .274

4.5 Applications of Congruences . 287

4.6 Cryptography . 294

End-of-Chapter Material . 306

iii

iv Contents

5 Induction and Recursion . 311

5.1 Mathematical Induction . 311

5.2 Strong Induction and Well-Ordering . 333

5.3 Recursive Definitions and Structural Induction . 344

5.4 Recursive Algorithms . 360

5.5 Program Correctness . 372

End-of-Chapter Material . 377

6 Counting . 385

6.1 The Basics of Counting .385

6.2 The Pigeonhole Principle . 399

6.3 Permutations and Combinations . 407

6.4 Binomial Coefficients and Identities . 415

6.5 Generalized Permutations and Combinations . 423

6.6 Generating Permutations and Combinations . 434

End-of-Chapter Material . 439

7 Discrete Probability . 445

7.1 An Introduction to Discrete Probability . 445

7.2 Probability Theory . 452

7.3 Bayes’ Theorem . 468

7.4 Expected Value and Variance . 477

End-of-Chapter Material . 494

8 Advanced Counting Techniques . 501

8.1 Applications of Recurrence Relations . 501

8.2 Solving Linear Recurrence Relations . 514

8.3 Divide-and-Conquer Algorithms and Recurrence Relations .527

8.4 Generating Functions . 537

8.5 Inclusion–Exclusion . 552

8.6 Applications of Inclusion–Exclusion . 558

End-of-Chapter Material . 565

9 Relations . 573

9.1 Relations and Their Properties . 573

9.2 n-ary Relations and Their Applications . 583

9.3 Representing Relations . 591

9.4 Closures of Relations . 597

9.5 Equivalence Relations . 607

9.6 Partial Orderings . 618

End-of-Chapter Material . 633

Contents v

10 Graphs . 641

10.1 Graphs and Graph Models . 641

10.2 Graph Terminology and Special Types of Graphs. .651

10.3 Representing Graphs and Graph Isomorphism . 668

10.4 Connectivity . 678

10.5 Euler and Hamilton Paths . 693

10.6 Shortest-Path Problems . 707

10.7 Planar Graphs . 718

10.8 Graph Coloring . 727

End-of-Chapter Material . 735

11 Trees . 745

11.1 Introduction to Trees . 745

11.2 Applications of Trees . 757

11.3 Tree Traversal . 772

11.4 Spanning Trees . 785

11.5 Minimum Spanning Trees . 797

End-of-Chapter Material . 803

12 Boolean Algebra . 811

12.1 Boolean Functions . 811

12.2 Representing Boolean Functions . 819

12.3 Logic Gates . 822

12.4 Minimization of Circuits . 828

End-of-Chapter Material . 843

13 Modeling Computation . 847

13.1 Languages and Grammars . 847

13.2 Finite-State Machines with Output .858

13.3 Finite-State Machines with No Output . 865

13.4 Language Recognition . 878

13.5 Turing Machines . 888

End-of-Chapter Material . 899

Appendixes . A-1

1 Axioms for the Real Numbers and the Positive Integers . 1

2 Exponential and Logarithmic Functions . 7

3 Pseudocode . 11

Suggested Readings B-1
Answers to Odd-Numbered Exercises S-1
Photo Credits C-1
Index of Biographies I-1
Index I-2

About the Author

Kenneth H. Rosen has had a long career as a Distinguished Member of the Technical Staff

at AT&T Laboratories in Monmouth County, New Jersey. He currently holds the position

of Visiting Research Professor at Monmouth University, where he teaches graduate courses in

computer science.

Dr. Rosen received his B.S. in Mathematics from the University of Michigan, Ann Arbor

(1972), and his Ph.D. in Mathematics from M.I.T. (1976), where he wrote his thesis in the area

of number theory under the direction of Harold Stark. Before joining Bell Laboratories in 1982,

he held positions at the University of Colorado, Boulder; The Ohio State University, Columbus;

and the University of Maine, Orono, where he was an associate professor of mathematics.

While working at AT&T Labs, he taught at Monmouth University, teaching courses in discrete

mathematics, coding theory, and data security. He currently teaches courses in algorithm design

and in computer security and cryptography.

Dr. Rosen has published numerous articles in professional journals in number theory and

in mathematical modeling. He is the author of the widely used Elementary Number Theory and

Its Applications, published by Pearson, currently in its sixth edition, which has been translated

into Chinese. He is also the author of Discrete Mathematics and Its Applications, published by

McGraw-Hill, currently in its seventh edition. Discrete Mathematics and Its Applications has

sold more than 350,000 copies in North America during its lifetime, and hundreds of thousands

of copies throughout the rest of the world. This book has also been translated into Spanish,

French, Greek, Chinese, Vietnamese, and Korean. He is also co-author of UNIX: The Complete

Reference; UNIX SystemV Release 4: An Introduction; and Best UNIX Tips Ever, all published by

Osborne McGraw-Hill. These books have sold more than 150,000 copies, with translations into

Chinese, German, Spanish, and Italian. Dr. Rosen is also the editor of the Handbook of Discrete

and Combinatorial Mathematics, published by CRC Press, and he is the advisory editor of the

CRC series of books in discrete mathematics, consisting of more than 55 volumes on different

aspects of discrete mathematics, most of which are introduced in this book. Dr. Rosen serves as an

Associate Editor for the journal Discrete Mathematics, where he works with submitted papers in

several areas of discrete mathematics, including graph theory, enumeration, and number theory.

He is also interested in integrating mathematical software into the educational and professional

environments, and worked on several projects with Waterloo Maple Inc.’s MapleTM software

in both these areas. Dr. Rosen has also worked with several publishing companies on their

homework delivery platforms.

At Bell Laboratories andAT&T Laboratories, Dr. Rosen worked on a wide range of projects,

including operations research studies, product line planning for computers and data communi-

cations equipment, and technology assessment. He helped plan AT&T’s products and services in

the area of multimedia, including video communications, speech recognition, speech synthesis,

and image networking. He evaluated new technology for use by AT&T and did standards work

in the area of image networking. He also invented many new services, and holds more than 55

patents. One of his more interesting projects involved helping evaluate technology for the AT&T

attraction that was part of EPCOT Center.

vi

Preface

In writing this book, I was guided by my long-standing experience and interest in teaching

discrete mathematics. For the student, my purpose was to present material in a precise,

readable manner, with the concepts and techniques of discrete mathematics clearly presented

and demonstrated. My goal was to show the relevance and practicality of discrete mathematics

to students, who are often skeptical. I wanted to give students studying computer science all of

the mathematical foundations they need for their future studies. I wanted to give mathematics

students an understanding of important mathematical concepts together with a sense of why

these concepts are important for applications. And most importantly, I wanted to accomplish

these goals without watering down the material.

For the instructor, my purpose was to design a flexible, comprehensive teaching tool using

proven pedagogical techniques in mathematics. I wanted to provide instructors with a package

of materials that they could use to teach discrete mathematics effectively and efficiently in the

most appropriate manner for their particular set of students. I hope that I have achieved these

goals.

I have been extremely gratified by the tremendous success of this text. The many improve-

ments in the seventh edition have been made possible by the feedback and suggestions of a large

number of instructors and students at many of the more than 600 North American schools, and

at any many universities in parts of the world, where this book has been successfully used.

This text is designed for a one- or two-term introductory discrete mathematics course taken

by students in a wide variety of majors, including mathematics, computer science, and engineer-

ing. College algebra is the only explicit prerequisite, although a certain degree of mathematical

maturity is needed to study discrete mathematics in a meaningful way. This book has been de-

signed to meet the needs of almost all types of introductory discrete mathematics courses. It is

highly flexible and extremely comprehensive. The book is designed not only to be a successful

textbook, but also to serve as valuable resource students can consult throughout their studies

and professional life.

Goals of a Discrete Mathematics Course

A discrete mathematics course has more than one purpose. Students should learn a particular

set of mathematical facts and how to apply them; more importantly, such a course should teach

students how to think logically and mathematically. To achieve these goals, this text stresses

mathematical reasoning and the different ways problems are solved. Five important themes

are interwoven in this text: mathematical reasoning, combinatorial analysis, discrete structures,

algorithmic thinking, and applications and modeling. A successful discrete mathematics course

should carefully blend and balance all five themes.

1. Mathematical Reasoning: Students must understand mathematical reasoning in order to

read, comprehend, and construct mathematical arguments. This text starts with a discussion

of mathematical logic, which serves as the foundation for the subsequent discussions of

methods of proof. Both the science and the art of constructing proofs are addressed. The

technique of mathematical induction is stressed through many different types of examples

of such proofs and a careful explanation of why mathematical induction is a valid proof

technique.

vii

viii Preface

2. Combinatorial Analysis: An important problem-solving skill is the ability to count or enu-

merate objects. The discussion of enumeration in this book begins with the basic techniques

of counting. The stress is on performing combinatorial analysis to solve counting problems

and analyze algorithms, not on applying formulae.

3. Discrete Structures: A course in discrete mathematics should teach students how to work

with discrete structures, which are the abstract mathematical structures used to represent

discrete objects and relationships between these objects. These discrete structures include

sets, permutations, relations, graphs, trees, and finite-state machines.

4. Algorithmic Thinking: Certain classes of problems are solved by the specification of an

algorithm. After an algorithm has been described, a computer program can be constructed

implementing it. The mathematical portions of this activity, which include the specification

of the algorithm, the verification that it works properly, and the analysis of the computer

memory and time required to perform it, are all covered in this text. Algorithms are described

using both English and an easily understood form of pseudocode.

5. Applications and Modeling: Discrete mathematics has applications to almost every conceiv-

able area of study. There are many applications to computer science and data networking

in this text, as well as applications to such diverse areas as chemistry, biology, linguistics,

geography, business, and the Internet. These applications are natural and important uses of

discrete mathematics and are not contrived. Modeling with discrete mathematics is an ex-

tremely important problem-solving skill, which students have the opportunity to develop by

constructing their own models in some of the exercises.

Changes in the Seventh Edition

Although the sixth edition has been an extremely effective text, many instructors, including

longtime users, have requested changes designed to make this book more effective. I have

devoted a significant amount of time and energy to satisfy their requests and I have worked hard

to find my own ways to make the book more effective and more compelling to students.

The seventh edition is a major revision, with changes based on input from more than 40

formal reviewers, feedback from students and instructors, and author insights. The result is a

new edition that offers an improved organization of topics making the book a more effective

teaching tool. Substantial enhancements to the material devoted to logic, algorithms, number

theory, and graph theory make this book more flexible and comprehensive. Numerous changes

in the seventh edition have been designed to help students more easily learn the material.

Additional explanations and examples have been added to clarify material where students often

have difficulty. New exercises, both routine and challenging, have been added. Highly relevant

applications, including many related to the Internet, to computer science, and to mathematical

biology, have been added. The companion website has benefited from extensive development

activity and now provides tools students can use to master key concepts and explore the world

of discrete mathematics, and many new tools under development will be released in the year

following publication of this book.

I hope that instructors will closely examine this new edition to discover how it might meet

their needs. Although it is impractical to list all the changes in this edition, a brief list that

highlights some key changes, listed by the benefits they provide, may be useful.

More Flexible Organization

! Applications of propositional logic are found in a new dedicated section, which briefly

introduces logic circuits.

! Recurrence relations are now covered in Chapter 2.

! Expanded coverage of countability is now found in a dedicated section in Chapter 2.

Preface ix

! Separate chapters now provide expanded coverage of algorithms (Chapter 3) and number

theory and cryptography (Chapter 4).

! More second and third level heads have been used to break sections into smaller coherent

parts.

Tools for Easier Learning

! Difficult discussions and proofs have been marked with the famous Bourbaki “dangerous

bend” symbol in the margin.

! New marginal notes make connections, add interesting notes, and provide advice to

students.

! More details and added explanations, in both proofs and exposition, make it easier for

students to read the book.

! Many new exercises, both routine and challenging, have been added, while many ex-

isting exercises have been improved.

Enhanced Coverage of Logic, Sets, and Proof

! The satisfiability problem is addressed in greater depth, with Sudoku modeled in terms

of satisfiability.

! Hilbert’s Grand Hotel is used to help explain uncountability.

! Proofs throughout the book have been made more accessible by adding steps and reasons

behind these steps.

! A template for proofs by mathematical induction has been added.

! The step that applies the inductive hypothesis in mathematical induction proof is now

explicitly noted.

Algorithms

! The pseudocode used in the book has been updated.

! Explicit coverage of algorithmic paradigms, including brute force, greedy algorithms,

and dynamic programing, is now provided.

! Useful rules for big-O estimates of logarithms, powers, and exponential functions have

been added.

Number Theory and Cryptography

! Expanded coverage allows instructors to include just a little or a lot of number theory

in their courses.

! The relationship between the mod function and congruences has been explained more

fully.

! The sieve of Eratosthenes is now introduced earlier in the book.

! Linear congruences and modular inverses are now covered in more detail.

! Applications of number theory, including check digits and hash functions, are covered

in great depth.

! A new section on cryptography integrates previous coverage, and the notion of a cryp-

tosystem has been introduced.

! Cryptographic protocols, including digital signatures and key sharing, are now covered.

x Preface

Graph Theory

! A structured introduction to graph theory applications has been added.

! More coverage has been devoted to the notion of social networks.

! Applications to the biological sciences and motivating applications for graph isomor-

phism and planarity have been added.

! Matchings in bipartite graphs are now covered, including Hall’s theorem and its proof.

! Coverage of vertex connectivity, edge connectivity, and n-connectedness has been

added, providing more insight into the connectedness of graphs.

Enrichment Material

! Many biographies have been expanded and updated, and new biographies of Bellman,

Bézout Bienyamé, Cardano, Catalan, Cocks, Cook, Dirac, Hall, Hilbert, Ore, and Tao

have been added.

! Historical information has been added throughout the text.

! Numerous updates for latest discoveries have been made.

Expanded Media

! Extensive effort has been devoted to producing valuable web resources for this book.

! Extra examples in key parts of the text have been provided on companion website.

! Interactive algorithms have been developed, with tools for using them to explore topics

and for classroom use.

! A new online ancillary, The Virtual Discrete Mathematics Tutor, available in fall 2012,

will help students overcome problems learning discrete mathematics.

! A new homework delivery system, available in fall 2012, will provide automated home-

work for both numerical and conceptual exercises.

! Student assessment modules are available for key concepts.

! Powerpoint transparencies for instructor use have been developed.

! A supplement Exploring Discrete Mathematics has been developed, providing extensive

support for using MapleTM or MathematicaTM in conjunction with the book.

! An extensive collection of external web links is provided.

Features of the Book

ACCESSIBILITY This text has proved to be easily read and understood by beginning

students. There are no mathematical prerequisites beyond college algebra for almost all the

content of the text. Students needing extra help will find tools on the companion website for

bringing their mathematical maturity up to the level of the text. The few places in the book

where calculus is referred to are explicitly noted. Most students should easily understand the

pseudocode used in the text to express algorithms, regardless of whether they have formally

studied programming languages. There is no formal computer science prerequisite.

Each chapter begins at an easily understood and accessible level. Once basic mathematical

concepts have been carefully developed, more difficult material and applications to other areas

of study are presented.

Preface xi

FLEXIBILITY This text has been carefully designed for flexible use. The dependence

of chapters on previous material has been minimized. Each chapter is divided into sections of

approximately the same length, and each section is divided into subsections that form natural

blocks of material for teaching. Instructors can easily pace their lectures using these blocks.

WRITING STYLE The writing style in this book is direct and pragmatic. Precise mathe-

matical language is used without excessive formalism and abstraction. Care has been taken to

balance the mix of notation and words in mathematical statements.

MATHEMATICAL RIGOR AND PRECISION All definitions and theorems in this text

are stated extremely carefully so that students will appreciate the precision of language and

rigor needed in mathematics. Proofs are motivated and developed slowly; their steps are all

carefully justified. The axioms used in proofs and the basic properties that follow from them

are explicitly described in an appendix, giving students a clear idea of what they can assume in

a proof. Recursive definitions are explained and used extensively.

WORKED EXAMPLES Over 800 examples are used to illustrate concepts, relate different

topics, and introduce applications. In most examples, a question is first posed, then its solution

is presented with the appropriate amount of detail.

APPLICATIONS The applications included in this text demonstrate the utility of discrete

mathematics in the solution of real-world problems. This text includes applications to a wide va-

riety of areas, including computer science, data networking, psychology, chemistry, engineering,

linguistics, biology, business, and the Internet.

ALGORITHMS Results in discrete mathematics are often expressed in terms of algo-

rithms; hence, key algorithms are introduced in each chapter of the book. These algorithms

are expressed in words and in an easily understood form of structured pseudocode, which is

described and specified in Appendix 3. The computational complexity of the algorithms in the

text is also analyzed at an elementary level.

HISTORICAL INFORMATION The background of many topics is succinctly described

in the text. Brief biographies of 83 mathematicians and computer scientists are included as foot-

notes. These biographies include information about the lives, careers, and accomplishments of

these important contributors to discrete mathematics and images, when available, are displayed.

In addition, numerous historical footnotes are included that supplement the historical in-

formation in the main body of the text. Efforts have been made to keep the book up-to-date by

reflecting the latest discoveries.

KEY TERMS AND RESULTS A list of key terms and results follows each chapter. The

key terms include only the most important that students should learn, and not every term defined

in the chapter.

EXERCISES There are over 4000 exercises in the text, with many different types of

questions posed. There is an ample supply of straightforward exercises that develop basic skills,

a large number of intermediate exercises, and many challenging exercises. Exercises are stated

clearly and unambiguously, and all are carefully graded for level of difficulty. Exercise sets

contain special discussions that develop new concepts not covered in the text, enabling students

to discover new ideas through their own work.

Exercises that are somewhat more difficult than average are marked with a single star ∗;

those that are much more challenging are marked with two stars ∗∗. Exercises whose solutions

require calculus are explicitly noted. Exercises that develop results used in the text are clearly

identified with the right pointing hand symbol . Answers or outlined solutions to all odd-

xii Preface

numbered exercises are provided at the back of the text. The solutions include proofs in which

most of the steps are clearly spelled out.

REVIEW QUESTIONS A set of review questions is provided at the end of each chapter.

These questions are designed to help students focus their study on the most important concepts

and techniques of that chapter. To answer these questions students need to write long answers,

rather than just perform calculations or give short replies.

SUPPLEMENTARY EXERCISE SETS Each chapter is followed by a rich and varied

set of supplementary exercises. These exercises are generally more difficult than those in the

exercise sets following the sections. The supplementary exercises reinforce the concepts of the

chapter and integrate different topics more effectively.

COMPUTER PROJECTS Each chapter is followed by a set of computer projects. The

approximately 150 computer projects tie together what students may have learned in computing

and in discrete mathematics. Computer projects that are more difficult than average, from both

a mathematical and a programming point of view, are marked with a star, and those that are

extremely challenging are marked with two stars.

COMPUTATIONS AND EXPLORATIONS A set of computations and explorations is

included at the conclusion of each chapter. These exercises (approximately 120 in total) are de-

signed to be completed using existing software tools, such as programs that students or instruc-

tors have written or mathematical computation packages such as MapleTM or MathematicaTM.

Many of these exercises give students the opportunity to uncover new facts and ideas through

computation. (Some of these exercises are discussed in the Exploring Discrete Mathematics

companion workbooks available online.)

WRITING PROJECTS Each chapter is followed by a set of writing projects. To do these

projects students need to consult the mathematical literature. Some of these projects are historical

in nature and may involve looking up original sources. Others are designed to serve as gateways

to new topics and ideas. All are designed to expose students to ideas not covered in depth in

the text. These projects tie mathematical concepts together with the writing process and help

expose students to possible areas for future study. (Suggested references for these projects can

be found online or in the printed Student’s Solutions Guide.)

APPENDIXES There are three appendixes to the text. The first introduces axioms for real

numbers and the positive integers, and illustrates how facts are proved directly from these axioms.

The second covers exponential and logarithmic functions, reviewing some basic material used

heavily in the course. The third specifies the pseudocode used to describe algorithms in this text.

SUGGESTED READINGS A list of suggested readings for the overall book and for each

chapter is provided after the appendices. These suggested readings include books at or below

the level of this text, more difficult books, expository articles, and articles in which discoveries

in discrete mathematics were originally published. Some of these publications are classics,

published many years ago, while others have been published in the last few years.

How to Use This Book

This text has been carefully written and constructed to support discrete mathematics courses

at several levels and with differing foci. The following table identifies the core and optional

sections. An introductory one-term course in discrete mathematics at the sophomore level can

be based on the core sections of the text, with other sections covered at the discretion of the

Preface xiii

instructor. A two-term introductory course can include all the optional mathematics sections in

addition to the core sections. A course with a strong computer science emphasis can be taught

by covering some or all of the optional computer science sections. Instructors can find sample

syllabi for a wide range of discrete mathematics courses and teaching suggestions for using each

section of the text can be found in the Instructor’s Resource Guide available on the website for

this book.

Chapter Core Optional CS Optional Math

1 1.1–1.8 (as needed)

2 2.1–2.4, 2.6 (as needed) 2.5

3 3.1–3.3 (as needed)

4 4.1–4.4 (as needed) 4.5, 4.6

5 5.1–5.3 5.4, 5.5

6 6.1–6.3 6.6 6.4, 6.5

7 7.1 7.4 7.2, 7.3

8 8.1, 8.5 8.3 8.2, 8.4, 8.6

9 9.1, 9.3, 9.5 9.2 9.4, 9.6

10 10.1–10.5 10.6–10.8

11 11.1 11.2, 11.3 11.4, 11.5

12 12.1–12.4

13 13.1–13.5

Instructors using this book can adjust the level of difficulty of their course by choosing

either to cover or to omit the more challenging examples at the end of sections, as well as

the more challenging exercises. The chapter dependency chart shown here displays the strong

dependencies. A star indicates that only relevant sections of the chapter are needed for study of a

later chapter. Weak dependencies have been ignored. More details can be found in the Instructor

Resource Guide.

Chapter 9*

Chapter 10*

Chapter 11

Chapter 13

Chapter 12
Chapter 2*

Chapter 7 Chapter 8

Chapter 6*

Chapter 3*

Chapter 1

Chapter 4*

Chapter 5*

Ancillaries

STUDENT’S SOLUTIONS GUIDE This student manual, available separately, contains

full solutions to all odd-numbered problems in the exercise sets. These solutions explain why

a particular method is used and why it works. For some exercises, one or two other possible

approaches are described to show that a problem can be solved in several different ways. Sug-

gested references for the writing projects found at the end of each chapter are also included in

this volume. Also included are a guide to writing proofs and an extensive description of common

xiv Preface

mistakes students make in discrete mathematics, plus sample tests and a sample crib sheet for

each chapter designed to help students prepare for exams.

(ISBN-10: 0-07-735350-1) (ISBN-13: 978-0-07-735350-6)

INSTRUCTOR’S RESOURCE GUIDE This manual, available on the website and in

printed form by request for instructors, contains full solutions to even-numbered exercises in

the text. Suggestions on how to teach the material in each chapter of the book are provided,

including the points to stress in each section and how to put the material into perspective. It

also offers sample tests for each chapter and a test bank containing over 1500 exam questions to

choose from. Answers to all sample tests and test bank questions are included. Finally, several

sample syllabi are presented for courses with differing emphases and student ability levels.

(ISBN-10: 0-07-735349-8) (ISBN-13: 978-0-07-735349-0)

Acknowledgments

I would like to thank the many instructors and students at a variety of schools who have used

this book and provided me with their valuable feedback and helpful suggestions. Their input

has made this a much better book than it would have been otherwise. I especially want to thank

Jerrold Grossman, Jean-Claude Evard, and Georgia Mederer for their technical reviews of the

seventh edition and their “eagle eyes,” which have helped ensure the accuracy of this book. I

also appreciate the help provided by all those who have submitted comments via the website.

I thank the reviewers of this seventh and the six previous editions. These reviewers have

provided much helpful criticism and encouragement to me. I hope this edition lives up to their

high expectations.

Reviewers for the Seventh Edition

Philip Barry
University of Minnesota, Minneapolis

Miklos Bona
University of Florida

Kirby Brown
Queens College

John Carter
University of Toronto

Narendra Chaudhari
Nanyang Technological University

Allan Cochran
University of Arkansas

Daniel Cunningham
Buffalo State College

George Davis
Georgia State University

Andrzej Derdzinski
The Ohio State University

Ronald Dotzel
University of Missouri-St. Louis

T.J. Duda
Columbus State Community College

Bruce Elenbogen
University of Michigan, Dearborn

Norma Elias
Purdue University,
Calumet-Hammond

Herbert Enderton
University of California, Los Angeles

Anthony Evans
Wright State University

Kim Factor
Marquette University

Margaret Fleck
University of Illinois, Champaign

Peter Gillespie
Fayetteville State University

Johannes Hattingh
Georgia State University

Ken Holladay
University of New Orleans

Jerry Ianni
LaGuardia Community College

Ravi Janardan
University of Minnesota, Minneapolis

Norliza Katuk
University of Utara Malaysia

William Klostermeyer
University of North Florida

Przemo Kranz
University of Mississippi

Jaromy Kuhl
University of West Florida

Loredana Lanzani
University of Arkansas, Fayetteville

Steven Leonhardi
Winona State University

Xu Liutong
Beijing University of Posts and
Telecommunications

Vladimir Logvinenko
De Anza Community College

Preface xv

Darrell Minor
Columbus State Community College

Keith Olson
Utah Valley University

Yongyuth Permpoontanalarp
King Mongkut’s University of
Technology, Thonburi

Galin Piatniskaia
University of Missouri, St. Louis

Stefan Robila
Montclair State University

Chris Rodger
Auburn University

Sukhit Singh
Texas State University, San Marcos

David Snyder
Texas State University, San Marcos

Wasin So
San Jose State University

Bogdan Suceava
California State University, Fullerton

Christopher Swanson
Ashland University

Bon Sy
Queens College

Matthew Walsh
Indiana-Purdue University, Fort
Wayne

Gideon Weinstein
Western Governors University

David Wilczynski
University of Southern California

I would like to thank Bill Stenquist, Executive Editor, for his advocacy, enthusiasm, and

support. His assistance with this edition has been essential. I would also like to thank the original

editor, Wayne Yuhasz, whose insights and skills helped ensure the book’s success, as well as all

the many other previous editors of this book.

I want to express my appreciation to the staff of RPK Editorial Services for their valuable

work on this edition, including Rose Kernan, who served as both the developmental editor and

the production editor, and the other members of the RPK team, Fred Dahl, Martha McMaster,

Erin Wagner, Harlan James, and Shelly Gerger-Knecthl. I thank Paul Mailhot of PreTeX, Inc.,

the compositor, for the tremendous amount to work he devoted to producing this edition, and

for his intimate knowledge of LaTeX. Thanks also to Danny Meldung of Photo Affairs, Inc.,

who was resourceful obtaining images for the new biographical footnotes.

The accuracy and quality of this new edition owe much to Jerry Grossman and Jean-Claude

Evard, who checked the entire manuscript for technical accuracy and Georgia Mederer, who

checked the accuracy of the answers at the end of the book and the solutions in the Student’s

Solutions Guide and Instructor’s Resource Guide. As usual, I cannot thank Jerry Grossman

enough for all his work authoring these two essential ancillaries.

I would also express my appreciation the Science, Engineering, and Mathematics (SEM)

Division of McGraw-Hill Higher Education for their valuable support for this new edition and

the associated media content. In particular, thanks go to Kurt Strand: President, SEM, McGraw-

Hill Higher Education, Marty Lange: Editor-in-Chief, SEM, Michael Lange: Editorial Director,

Raghothaman Srinivasan: Global Publisher, Bill Stenquist: Executive Editor, Curt Reynolds:

Executive Marketing Manager, Robin A. Reed: Project Manager, Sandy Ludovissey: Buyer,

Lorraine Buczek: In-house Developmental Editor, Brenda Rowles: Design Coordinator, Carrie

K. Burger: Lead Photo Research Coordinator, and Tammy Juran: Media Project Manager.

Kenneth H. Rosen

The Companion Website

The extensive companion website accompanying this text has been substantially enhanced

for the seventh edition This website is accessible at www.mhhe.com/rosen. The homepage

shows the Information Center, and contains login links for the site’s Student Site and Instructor

Site. Key features of each area are described below:

THE INFORMATION CENTER

The Information Center contains basic information about the book including the expanded

table of contents (including subsection heads), the preface, descriptions of the ancillaries, and

a sample chapter. It also provides a link that can be used to submit errata reports and other

feedback about the book.

STUDENT SITE

The Student site contains a wealth of resources available for student use, including the

following, tied into the text wherever the special icons displayed below are found in the text:

! Extra Examples You can find a large number of additional examples on the site, covering

all chapters of the book. These examples are concentrated in areas where students often

ask for additional material. Although most of these examples amplify the basic concepts,

more-challenging examples can also be found here.

! Interactive Demonstration Applets These applets enable you to interactively explore

how important algorithms work, and are tied directly to material in the text with linkages to

examples and exercises. Additional resources are provided on how to use and apply these

applets.

! Self Assessments These interactive guides help you assess your understanding of 14 key

concepts, providing a question bank where each question includes a brief tutorial followed

by a multiple-choice question. If you select an incorrect answer, advice is provided to help

you understand your error. Using these Self Assessments, you should be able to diagnose

your problems and find appropriate help.

! Web Resources Guide This guide provides annotated links to hundreds of external websites

containing relevant material such as historical and biographical information, puzzles and

problems, discussions, applets, programs, and more. These links are keyed to the text by page

number.

Additional resources in the Student site include:

! Exploring Discrete Mathematics This ancillary provides help for using a computer alge-

bra system to do a wide range of computations in discrete mathematics. Each chapter provides

a description of relevant functions in the computer algebra system and how they are used, pro-

grams to carry out computations in discrete mathematics, examples, and exercises that can be

worked using this computer algebra system. Two versions, Exploring Discrete Mathematics

with MapleTM and Exploring Discrete Mathematics with MathematicaTM will be available.

! Applications of Discrete Mathematics This ancillary contains 24 chapters—each with

its own set of exercises—presenting a wide variety of interesting and important applications

xvi

The Companion Website xvii

covering three general areas in discrete mathematics: discrete structures, combinatorics, and

graph theory. These applications are ideal for supplementing the text or for independent study.

! A Guide to Proof-Writing This guide provides additional help for writing proofs, a skill

that many students find difficult to master. By reading this guide at the beginning of the

course and periodically thereafter when proof writing is required, you will be rewarded as

your proof-writing ability grows. (Also available in the Student’s Solutions Guide.)

! Common Mistakes in Discrete Mathematics This guide includes a detailed list of com-

mon misconceptions that students of discrete mathematics often have and the kinds of errors

they tend to make.You are encouraged to review this list from time to time to help avoid these

common traps. (Also available in the Student’s Solutions Guide.)

! Advice on Writing Projects This guide offers helpful hints and suggestions for the Writing

Projects in the text, including an extensive bibliography of helpful books and articles for

research; discussion of various resources available in print and online; tips on doing library

research; and suggestions on how to write well. (Also available in the Student’s Solutions

Guide.)

! The Virtual Discrete Mathematics Tutor This extensive ancillary provides students with

valuable assistance as they make the transition from lower-level courses to discrete mathemat-

ics. The errors students have made when studying discrete mathematics using this text has been

analyzed to design this resource. Students will be able to get many of their questions answered

and can overcome many obstacles via this ancillaries. The Virtual Discrete Mathematics Tutor

is expected to be available in the fall of 2012.

INSTRUCTOR SITE

This part of the website provides access to all of the resources on the Student Site, as well as

these resources for instructors:

! Suggested Syllabi Detailed course outlines are shown, offering suggestions for courses

with different emphases and different student backgrounds and ability levels.

! Teaching Suggestions This guide contains detailed teaching suggestions for instructors,

including chapter overviews for the entire text, detailed remarks on each section, and comments

on the exercise sets.

! Printable Tests Printable tests are offered in TeX and Word format for every chapter, and

can be customized by instructors.

! PowerPoints Lecture Slides and PowerPoint Figures and Tables An extensive collection

of PowerPoint slides for all chapters of the text are provided for instructor use. In addition,

images of all figures and tables from the text are provided as PowerPoint slides.

! Homework Delivery System An extensive homework delivery system, under development

for availability in fall 2012, will provide questions tied directly to the text, so that students

will be able to do assignments on-line. Moreover, they will be able to use this system in a

tutorial mode. This system will be able to automatically grade assignments, and deliver free-

form student input to instructors for their own analysis. Course management capabilities will

be provided that will allow instructors to create assignments, automatically assign and grade

homework, quiz, and test questions from a bank of questions tied directly to the text, create

and edit their own questions, manage course announcements and due dates, and track student

progress.

To the Student

What is discrete mathematics? Discrete mathematics is the part of mathematics devoted to

the study of discrete objects. (Here discrete means consisting of distinct or unconnected

elements.) The kinds of problems solved using discrete mathematics include:

! How many ways are there to choose a valid password on a computer system?

! What is the probability of winning a lottery?

! Is there a link between two computers in a network?

! How can I identify spam e-mail messages?

! How can I encrypt a message so that no unintended recipient can read it?

! What is the shortest path between two cities using a transportation system?

! How can a list of integers be sorted so that the integers are in increasing order?

! How many steps are required to do such a sorting?

! How can it be proved that a sorting algorithm correctly sorts a list?

! How can a circuit that adds two integers be designed?

! How many valid Internet addresses are there?

You will learn the discrete structures and techniques needed to solve problems such as these.

More generally, discrete mathematics is used whenever objects are counted, when relation-

ships between finite (or countable) sets are studied, and when processes involving a finite number

of steps are analyzed. A key reason for the growth in the importance of discrete mathematics is

that information is stored and manipulated by computing machines in a discrete fashion.

WHY STUDY DISCRETE MATHEMATICS? There are several important reasons for

studying discrete mathematics. First, through this course you can develop your mathematical

maturity: that is, your ability to understand and create mathematical arguments.You will not get

very far in your studies in the mathematical sciences without these skills.

Second, discrete mathematics is the gateway to more advanced courses in all parts of

the mathematical sciences. Discrete mathematics provides the mathematical foundations for

many computer science courses including data structures, algorithms, database theory, automata

theory, formal languages, compiler theory, computer security, and operating systems. Students

find these courses much more difficult when they have not had the appropriate mathematical

foundations from discrete math. One student has sent me an e-mail message saying that she

used the contents of this book in every computer science course she took!

Math courses based on the material studied in discrete mathematics include logic, set theory,

number theory, linear algebra, abstract algebra, combinatorics, graph theory, and probability

theory (the discrete part of the subject).

Also, discrete mathematics contains the necessary mathematical background for solving

problems in operations research (including many discrete optimization techniques), chemistry,

engineering, biology, and so on. In the text, we will study applications to some of these areas.

Many students find their introductory discrete mathematics course to be significantly more

challenging than courses they have previously taken. One reason for this is that one of the

primary goals of this course is to teach mathematical reasoning and problem solving, rather

than a discrete set of skills. The exercises in this book are designed to reflect this goal. Although

there are plenty of exercises in this text similar to those addressed in the examples, a large

xviii

To the Student xix

percentage of the exercises require original thought. This is intentional. The material discussed

in the text provides the tools needed to solve these exercises, but your job is to successfully

apply these tools using your own creativity. One of the primary goals of this course is to learn

how to attack problems that may be somewhat different from any you may have previously

seen. Unfortunately, learning how to solve only particular types of exercises is not sufficient for

success in developing the problem-solving skills needed in subsequent courses and professional

work. This text addresses many different topics, but discrete mathematics is an extremely diverse

and large area of study. One of my goals as an author is to help you develop the skills needed

to master the additional material you will need in your own future pursuits.

THE EXERCISES I would like to offer some advice about how you can best learn discrete

mathematics (and other subjects in the mathematical and computing sciences).You will learn the

most by actively working exercises. I suggest that you solve as many as you possibly can. After

working the exercises your instructor has assigned, I encourage you to solve additional exercises

such as those in the exercise sets following each section of the text and in the supplementary

exercises at the end of each chapter. (Note the key explaining the markings preceding exercises.)

Key to the Exercises

no marking A routine exercise
∗ A difficult exercise
∗∗ An extremely challenging exercise

An exercise containing a result used in the book (Table 1 on the

following page shows where these exercises are used.)

(Requires calculus) An exercise whose solution requires the use of limits or concepts

from differential or integral calculus

The best approach is to try exercises yourself before you consult the answer section at the

end of this book. Note that the odd-numbered exercise answers provided in the text are answers

only and not full solutions; in particular, the reasoning required to obtain answers is omitted in

these answers. The Student’s Solutions Guide, available separately, provides complete, worked

solutions to all odd-numbered exercises in this text. When you hit an impasse trying to solve an

odd-numbered exercise, I suggest you consult the Student’s Solutions Guide and look for some

guidance as to how to solve the problem. The more work you do yourself rather than passively

reading or copying solutions, the more you will learn. The answers and solutions to the even-

numbered exercises are intentionally not available from the publisher; ask your instructor if you

have trouble with these.

WEB RESOURCES You are strongly encouraged to take advantage of additional re-

sources available on the Web, especially those on the companion website for this book found

at www.mhhe.com/rosen. You will find many Extra Examples designed to clarify key concepts;

Self Assessments for gauging how well you understand core topics; Interactive Demonstration

Applets exploring key algorithms and other concepts; a Web Resources Guide containing an

extensive selection of links to external sites relevant to the world of discrete mathematics; extra

explanations and practice to help you master core concepts; added instruction on writing proofs

and on avoiding common mistakes in discrete mathematics; in-depth discussions of important

applications; and guidance on utilizing MapleTM software to explore the computational aspects

of discrete mathematics. Places in the text where these additional online resources are available

are identified in the margins by special icons. You will also find (after fall 2012) the Virtual

Discrete Mathematics Tutor, an on-line resource that provides extra support to help you make

the transition from lower level courses to discrete mathematics. This tutorial should help answer

many of your questions and correct errors that you may make, based on errors other students

using this book, have made. For more details on these and other online resources, see the

description of the companion website immediately preceding this “To the Student” message.

xx To the Student

TABLE 1 Hand-Icon Exercises and Where They Are Used

Section Exercise Section Where Used Pages Where Used

1.1 40 1.3 31

1.1 41 1.3 31

1.3 9 1.6 71

1.3 10 1.6 70, 71

1.3 15 1.6 71

1.3 30 1.6 71, 74

1.3 42 12.2 820

1.7 16 1.7 86

2.3 72 2.3 144

2.3 79 2.5 170

2.5 15 2.5 174

2.5 16 2.5 173

3.1 43 3.1 197

3.2 72 11.2 761

4.2 36 4.2 270

4.3 37 4.1 239

4.4 2 4.6 301

4.4 44 7.2 464

6.4 17 7.2 466

6.4 21 7.4 480

7.2 15 7.2 466

9.1 26 9.4 598

10.4 59 11.1 747

11.1 15 11.1 750

11.1 30 11.1 755

11.1 48 11.2 762

12.1 12 12.3 825

A.2 4 8.3 531

THE VALUE OF THIS BOOK My intention is to make your substantial investment in

this text an excellent value. The book, the associated ancillaries, and companion website have

taken many years of effort to develop and refine. I am confident that most of you will find that

the text and associated materials will help you master discrete mathematics, just as so many

previous students have. Even though it is likely that you will not cover some chapters in your

current course, you should find it helpful—as many other students have—to read the relevant

sections of the book as you take additional courses. Most of you will return to this book as a

useful tool throughout your future studies, especially for those of you who continue in computer

science, mathematics, and engineering. I have designed this book to be a gateway for future

studies and explorations, and to be comprehensive reference, and I wish you luck as you begin

your journey.

Kenneth H. Rosen

1
C H A P T E R

The Foundations:
Logic and Proofs

1.1 Propositional
Logic

1.2 Applications of
Propositional
Logic

1.3 Propositional
Equivalences

1.4 Predicates and
Quantifiers

1.5 Nested
Quantifiers

1.6 Rules of
Inference

1.7 Introduction to
Proofs

1.8 Proof Methods
and Strategy

The rules of logic specify the meaning of mathematical statements. For instance, these rules
help us understand and reason with statements such as “There exists an integer that is

not the sum of two squares” and “For every positive integer n, the sum of the positive integers
not exceeding n is n(n + 1)/2.” Logic is the basis of all mathematical reasoning, and of all
automated reasoning. It has practical applications to the design of computing machines, to the
specification of systems, to artificial intelligence, to computer programming, to programming
languages, and to other areas of computer science, as well as to many other fields of study.

To understand mathematics, we must understand what makes up a correct mathematical
argument, that is, a proof. Once we prove a mathematical statement is true, we call it a theorem.A
collection of theorems on a topic organize what we know about this topic. To learn a mathematical
topic, a person needs to actively construct mathematical arguments on this topic, and not just
read exposition. Moreover, knowing the proof of a theorem often makes it possible to modify
the result to fit new situations.

Everyone knows that proofs are important throughout mathematics, but many people find
it surprising how important proofs are in computer science. In fact, proofs are used to verify
that computer programs produce the correct output for all possible input values, to show that
algorithms always produce the correct result, to establish the security of a system, and to create
artificial intelligence. Furthermore, automated reasoning systems have been created to allow
computers to construct their own proofs.

In this chapter, we will explain what makes up a correct mathematical argument and intro-
duce tools to construct these arguments. We will develop an arsenal of different proof methods
that will enable us to prove many different types of results. After introducing many different
methods of proof, we will introduce several strategies for constructing proofs. We will intro-
duce the notion of a conjecture and explain the process of developing mathematics by studying
conjectures.

1.1 Propositional Logic

Introduction

The rules of logic give precise meaning to mathematical statements. These rules are used to
distinguish between valid and invalid mathematical arguments. Because a major goal of this book
is to teach the reader how to understand and how to construct correct mathematical arguments,
we begin our study of discrete mathematics with an introduction to logic.

Besides the importance of logic in understanding mathematical reasoning, logic has numer-
ous applications to computer science. These rules are used in the design of computer circuits,
the construction of computer programs, the verification of the correctness of programs, and in
many other ways. Furthermore, software systems have been developed for constructing some,
but not all, types of proofs automatically. We will discuss these applications of logic in this and
later chapters.

1

2 1 / The Foundations: Logic and Proofs

Propositions

Our discussion begins with an introduction to the basic building blocks of logic—propositions.
A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true
or false, but not both.

EXAMPLE 1 All the following declarative sentences are propositions.

1. Washington, D.C., is the capital of the United States of America.

2. Toronto is the capital of Canada.

3. 1 + 1 = 2.

4. 2 + 2 = 3.

Propositions 1 and 3 are true, whereas 2 and 4 are false. ▲

Some sentences that are not propositions are given in Example 2.

EXAMPLE 2 Consider the following sentences.

1. What time is it?

2. Read this carefully.

3. x + 1 = 2.

4. x + y = z.

Sentences 1 and 2 are not propositions because they are not declarative sentences. Sentences 3
and 4 are not propositions because they are neither true nor false. Note that each of sentences 3
and 4 can be turned into a proposition if we assign values to the variables. We will also discuss
other ways to turn sentences such as these into propositions in Section 1.4. ▲

We use letters to denote propositional variables (or statement variables), that is, vari-
ables that represent propositions, just as letters are used to denote numerical variables. The

ARISTOTLE (384 b.c.e.–322 b.c.e.) Aristotle was born in Stagirus (Stagira) in northern Greece. His father was
the personal physician of the King of Macedonia. Because his father died when Aristotle was young, Aristotle
could not follow the custom of following his father’s profession. Aristotle became an orphan at a young age
when his mother also died. His guardian who raised him taught him poetry, rhetoric, and Greek. At the age of
17, his guardian sent him to Athens to further his education. Aristotle joined Plato’s Academy, where for 20
years he attended Plato’s lectures, later presenting his own lectures on rhetoric. When Plato died in 347 B.C.E.,
Aristotle was not chosen to succeed him because his views differed too much from those of Plato. Instead,
Aristotle joined the court of King Hermeas where he remained for three years, and married the niece of the
King. When the Persians defeated Hermeas, Aristotle moved to Mytilene and, at the invitation of King Philip

of Macedonia, he tutored Alexander, Philip’s son, who later became Alexander the Great. Aristotle tutored Alexander for five years
and after the death of King Philip, he returned to Athens and set up his own school, called the Lyceum.

Aristotle’s followers were called the peripatetics, which means “to walk about,” because Aristotle often walked around as he
discussed philosophical questions. Aristotle taught at the Lyceum for 13 years where he lectured to his advanced students in the
morning and gave popular lectures to a broad audience in the evening. When Alexander the Great died in 323 B.C.E., a backlash against
anything related to Alexander led to trumped-up charges of impiety against Aristotle. Aristotle fled to Chalcis to avoid prosecution.
He only lived one year in Chalcis, dying of a stomach ailment in 322 B.C.E.

Aristotle wrote three types of works: those written for a popular audience, compilations of scientific facts, and systematic
treatises. The systematic treatises included works on logic, philosophy, psychology, physics, and natural history. Aristotle’s writings
were preserved by a student and were hidden in a vault where a wealthy book collector discovered them about 200 years later. They
were taken to Rome, where they were studied by scholars and issued in new editions, preserving them for posterity.

1.1 Propositional Logic 3

conventional letters used for propositional variables are p, q, r, s, The truth value of a
proposition is true, denoted by T, if it is a true proposition, and the truth value of a proposition
is false, denoted by F, if it is a false proposition.

The area of logic that deals with propositions is called the propositional calculus or propo-

sitional logic. It was first developed systematically by the Greek philosopher Aristotle more
than 2300 years ago.

We now turn our attention to methods for producing new propositions from those that
we already have. These methods were discussed by the English mathematician George Boole
in 1854 in his book The Laws of Thought. Many mathematical statements are constructed by
combining one or more propositions. New propositions, called compound propositions, are
formed from existing propositions using logical operators.

DEFINITION 1 Let p be a proposition. The negation of p, denoted by ¬p (also denoted by p), is the statement

“It is not the case that p.”

The proposition ¬p is read “not p.” The truth value of the negation of p, ¬p, is the opposite
of the truth value of p.

EXAMPLE 3 Find the negation of the proposition

“Michael’s PC runs Linux”

and express this in simple English.

Solution: The negation is

“It is not the case that Michael’s PC runs Linux.”

This negation can be more simply expressed as

“Michael’s PC does not run Linux.”

▲

EXAMPLE 4 Find the negation of the proposition

“Vandana’s smartphone has at least 32GB of memory”

and express this in simple English.

Solution: The negation is

“It is not the case that Vandana’s smartphone has at least 32GB of memory.”

This negation can also be expressed as

“Vandana’s smartphone does not have at least 32GB of memory”

or even more simply as

“Vandana’s smartphone has less than 32GB of memory.”

▲

4 1 / The Foundations: Logic and Proofs

TABLE 1 The
Truth Table for
the Negation of a
Proposition.

p ¬p

T F

F T

Table 1 displays the truth table for the negation of a proposition p. This table has a row
for each of the two possible truth values of a proposition p. Each row shows the truth value of
¬p corresponding to the truth value of p for this row.

The negation of a proposition can also be considered the result of the operation of the
negation operator on a proposition. The negation operator constructs a new proposition from
a single existing proposition. We will now introduce the logical operators that are used to form
new propositions from two or more existing propositions. These logical operators are also called
connectives.

DEFINITION 2 Let p and q be propositions. The conjunction of p and q, denoted by p ∧ q, is the proposition
“p and q.” The conjunction p ∧ q is true when both p and q are true and is false otherwise.

Table 2 displays the truth table of p ∧ q. This table has a row for each of the four possible
combinations of truth values of p and q. The four rows correspond to the pairs of truth values
TT, TF, FT, and FF, where the first truth value in the pair is the truth value of p and the second
truth value is the truth value of q.

Note that in logic the word “but” sometimes is used instead of “and” in a conjunction. For
example, the statement “The sun is shining, but it is raining” is another way of saying “The sun
is shining and it is raining.” (In natural language, there is a subtle difference in meaning between
“and” and “but”; we will not be concerned with this nuance here.)

EXAMPLE 5 Find the conjunction of the propositions p and q where p is the proposition “Rebecca’s PC has
more than 16 GB free hard disk space” and q is the proposition “The processor in Rebecca’s
PC runs faster than 1 GHz.”

Solution: The conjunction of these propositions, p ∧ q, is the proposition “Rebecca’s PC has
more than 16 GB free hard disk space, and the processor in Rebecca’s PC runs faster than 1
GHz.” This conjunction can be expressed more simply as “Rebecca’s PC has more than 16 GB
free hard disk space, and its processor runs faster than 1 GHz.” For this conjunction to be true,
both conditions given must be true. It is false, when one or both of these conditions are false. ▲

DEFINITION 3 Let p and q be propositions. The disjunction of p and q, denoted by p ∨ q, is the proposition
“p or q.” The disjunction p ∨ q is false when both p and q are false and is true otherwise.

Table 3 displays the truth table for p ∨ q.

TABLE 2 The Truth Table for
the Conjunction of Two
Propositions.

p q p ∧ q

T T T

T F F

F T F

F F F

TABLE 3 The Truth Table for
the Disjunction of Two
Propositions.

p q p ∨ q

T T T

T F T

F T T

F F F

1.1 Propositional Logic 5

The use of the connective or in a disjunction corresponds to one of the two ways the word
or is used in English, namely, as an inclusive or. A disjunction is true when at least one of the
two propositions is true. For instance, the inclusive or is being used in the statement

“Students who have taken calculus or computer science can take this class.”

Here, we mean that students who have taken both calculus and computer science can take the
class, as well as the students who have taken only one of the two subjects. On the other hand,
we are using the exclusive or when we say

“Students who have taken calculus or computer science, but not both, can enroll in this
class.”

Here, we mean that students who have taken both calculus and a computer science course cannot
take the class. Only those who have taken exactly one of the two courses can take the class.

Similarly, when a menu at a restaurant states, “Soup or salad comes with an entrée,” the
restaurant almost always means that customers can have either soup or salad, but not both.
Hence, this is an exclusive, rather than an inclusive, or.

EXAMPLE 6 What is the disjunction of the propositions p and q where p and q are the same propositions as
in Example 5?

Solution: The disjunction of p and q, p ∨ q, is the proposition

“Rebecca’s PC has at least 16 GB free hard disk space, or the processor in Rebecca’s PC
runs faster than 1 GHz.”

This proposition is true when Rebecca’s PC has at least 16 GB free hard disk space, when the
PC’s processor runs faster than 1 GHz, and when both conditions are true. It is false when both
of these conditions are false, that is, when Rebecca’s PC has less than 16 GB free hard disk
space and the processor in her PC runs at 1 GHz or slower. ▲

As was previously remarked, the use of the connective or in a disjunction corresponds
to one of the two ways the word or is used in English, namely, in an inclusive way. Thus, a
disjunction is true when at least one of the two propositions in it is true. Sometimes, we use or

in an exclusive sense. When the exclusive or is used to connect the propositions p and q, the
proposition “p or q (but not both)” is obtained. This proposition is true when p is true and q is
false, and when p is false and q is true. It is false when both p and q are false and when both
are true.

GEORGE BOOLE (1815–1864) George Boole, the son of a cobbler, was born in Lincoln, England, in
November 1815. Because of his family’s difficult financial situation, Boole struggled to educate himself while
supporting his family. Nevertheless, he became one of the most important mathematicians of the 1800s.Although
he considered a career as a clergyman, he decided instead to go into teaching, and soon afterward opened a
school of his own. In his preparation for teaching mathematics, Boole—unsatisfied with textbooks of his day—
decided to read the works of the great mathematicians. While reading papers of the great French mathematician
Lagrange, Boole made discoveries in the calculus of variations, the branch of analysis dealing with finding
curves and surfaces by optimizing certain parameters.

In 1848 Boole published The Mathematical Analysis of Logic, the first of his contributions to symbolic logic.
In 1849 he was appointed professor of mathematics at Queen’s College in Cork, Ireland. In 1854 he published The Laws of Thought,
his most famous work. In this book, Boole introduced what is now called Boolean algebra in his honor. Boole wrote textbooks
on differential equations and on difference equations that were used in Great Britain until the end of the nineteenth century. Boole
married in 1855; his wife was the niece of the professor of Greek at Queen’s College. In 1864 Boole died from pneumonia, which
he contracted as a result of keeping a lecture engagement even though he was soaking wet from a rainstorm.

6 1 / The Foundations: Logic and Proofs

TABLE 4 The Truth Table for
the Exclusive Or of Two
Propositions.

p q p ⊕ q

T T F

T F T

F T T

F F F

TABLE 5 The Truth Table for
the Conditional Statement
p → q.

p q p → q

T T T

T F F

F T T

F F T

DEFINITION 4 Let p and q be propositions. The exclusive or of p and q, denoted by p ⊕ q, is the proposition
that is true when exactly one of p and q is true and is false otherwise.

The truth table for the exclusive or of two propositions is displayed in Table 4.

Conditional Statements

We will discuss several other important ways in which propositions can be combined.

DEFINITION 5 Let p and q be propositions. The conditional statement p → q is the proposition “if p, then
q.” The conditional statement p → q is false when p is true and q is false, and true otherwise.
In the conditional statement p → q, p is called the hypothesis (or antecedent or premise)
and q is called the conclusion (or consequence).

The statement p → q is called a conditional statement because p → q asserts that q is true
on the condition that p holds. A conditional statement is also called an implication.

The truth table for the conditional statement p → q is shown in Table 5. Note that the
statement p → q is true when both p and q are true and when p is false (no matter what truth
value q has).

Because conditional statements play such an essential role in mathematical reasoning, a
variety of terminology is used to express p → q. You will encounter most if not all of the
following ways to express this conditional statement:

“if p, then q” “p implies q”
“if p, q” “p only if q”
“p is sufficient for q” “a sufficient condition for q is p”
“q if p” “q whenever p”
“q when p” “q is necessary for p”
“a necessary condition for p is q” “q follows from p”
“q unless ¬p”

A useful way to understand the truth value of a conditional statement is to think of an
obligation or a contract. For example, the pledge many politicians make when running for office
is

“If I am elected, then I will lower taxes.”

1.1 Propositional Logic 7

If the politician is elected, voters would expect this politician to lower taxes. Furthermore, if the
politician is not elected, then voters will not have any expectation that this person will lower
taxes, although the person may have sufficient influence to cause those in power to lower taxes.
It is only when the politician is elected but does not lower taxes that voters can say that the
politician has broken the campaign pledge. This last scenario corresponds to the case when p

is true but q is false in p → q.
Similarly, consider a statement that a professor might make:

“If you get 100% on the final, then you will get an A.”

If you manage to get a 100% on the final, then you would expect to receive an A. If you do not
get 100% you may or may not receive an A depending on other factors. However, if you do get
100%, but the professor does not give you an A, you will feel cheated.

Of the various ways to express the conditional statement p → q, the two that seem to cause
the most confusion are “p only if q” and “q unless ¬p.” Consequently, we will provide some
guidance for clearing up this confusion.

To remember that “p only if q” expresses the same thing as “if p, then q,” note that “p only
if q” says that p cannot be true when q is not true. That is, the statement is false if p is true,
but q is false. When p is false, q may be either true or false, because the statement says nothing
about the truth value of q. Be careful not to use “q only if p” to express p → q because this is
incorrect. To see this, note that the true values of “q only if p” and p → q are different when
p and q have different truth values.

You might have trouble

understanding how

“unless” is used in

conditional statements

unless you read this

paragraph carefully.

To remember that “q unless ¬p” expresses the same conditional statement as “if p, then
q,” note that “q unless ¬p” means that if ¬p is false, then q must be true. That is, the statement
“q unless ¬p” is false when p is true but q is false, but it is true otherwise. Consequently,
“q unless ¬p” and p → q always have the same truth value.

We illustrate the translation between conditional statements and English statements in Ex-
ample 7.

EXAMPLE 7 Let p be the statement “Maria learns discrete mathematics” and q the statement “Maria will
find a good job.” Express the statement p → q as a statement in English.

Solution: From the definition of conditional statements, we see that when p is the statement
“Maria learns discrete mathematics” and q is the statement “Maria will find a good job,” p → q

represents the statement

“If Maria learns discrete mathematics, then she will find a good job.”

There are many other ways to express this conditional statement in English. Among the most
natural of these are:

“Maria will find a good job when she learns discrete mathematics.”

“For Maria to get a good job, it is sufficient for her to learn discrete mathematics.”

and

“Maria will find a good job unless she does not learn discrete mathematics.”

▲

Note that the way we have defined conditional statements is more general than the meaning
attached to such statements in the English language. For instance, the conditional statement in
Example 7 and the statement

“If it is sunny, then we will go to the beach.”

are statements used in normal language where there is a relationship between the hypothesis
and the conclusion. Further, the first of these statements is true unless Maria learns discrete
mathematics, but she does not get a good job, and the second is true unless it is indeed sunny,
but we do not go to the beach. On the other hand, the statement

8 1 / The Foundations: Logic and Proofs

“If Juan has a smartphone, then 2 + 3 = 5”

is true from the definition of a conditional statement, because its conclusion is true. (The truth
value of the hypothesis does not matter then.) The conditional statement

“If Juan has a smartphone, then 2 + 3 = 6”

is true if Juan does not have a smartphone, even though 2 + 3 = 6 is false. We would not use
these last two conditional statements in natural language (except perhaps in sarcasm), because
there is no relationship between the hypothesis and the conclusion in either statement. In math-
ematical reasoning, we consider conditional statements of a more general sort than we use in
English. The mathematical concept of a conditional statement is independent of a cause-and-
effect relationship between hypothesis and conclusion. Our definition of a conditional statement
specifies its truth values; it is not based on English usage. Propositional language is an artificial
language; we only parallel English usage to make it easy to use and remember.

The if-then construction used in many programming languages is different from that used
in logic. Most programming languages contain statements such as if p then S, where p is a
proposition and S is a program segment (one or more statements to be executed). When execution
of a program encounters such a statement, S is executed if p is true, but S is not executed if p

is false, as illustrated in Example 8.

EXAMPLE 8 What is the value of the variable x after the statement

if 2 + 2 = 4 then x := x + 1

if x = 0 before this statement is encountered? (The symbol := stands for assignment. The
statement x := x + 1 means the assignment of the value of x + 1 to x.)

Solution: Because 2 + 2 = 4 is true, the assignment statement x := x + 1 is executed. Hence,
x has the value 0 + 1 = 1 after this statement is encountered. ▲

CONVERSE, CONTRAPOSITIVE, AND INVERSE We can form some new conditional
statements starting with a conditional statement p → q. In particular, there are three related
conditional statements that occur so often that they have special names. The proposition q → p

is called the converse of p → q. The contrapositive of p → q is the proposition ¬q → ¬p.
The proposition ¬p → ¬q is called the inverse of p → q. We will see that of these three
conditional statements formed from p → q, only the contrapositive always has the same truth
value as p → q.

We first show that the contrapositive, ¬q → ¬p, of a conditional statement p → q always
has the same truth value as p → q. To see this, note that the contrapositive is false only when
¬p is false and ¬q is true, that is, only when p is true and q is false. We now show that neither
the converse, q → p, nor the inverse, ¬p → ¬q, has the same truth value as p → q for all
possible truth values of p and q. Note that when p is true and q is false, the original conditional
statement is false, but the converse and the inverse are both true.

Remember that the

contrapositive, but neither

the converse or inverse, of

a conditional statement is

equivalent to it.

When two compound propositions always have the same truth value we call them equiv-

alent, so that a conditional statement and its contrapositive are equivalent. The converse and
the inverse of a conditional statement are also equivalent, as the reader can verify, but neither is
equivalent to the original conditional statement. (We will study equivalent propositions in Sec-
tion 1.3.) Take note that one of the most common logical errors is to assume that the converse
or the inverse of a conditional statement is equivalent to this conditional statement.

We illustrate the use of conditional statements in Example 9.

1.1 Propositional Logic 9

EXAMPLE 9 What are the contrapositive, the converse, and the inverse of the conditional statement

“The home team wins whenever it is raining?”

Solution: Because “q whenever p” is one of the ways to express the conditional statement
p → q, the original statement can be rewritten as

“If it is raining, then the home team wins.”

Consequently, the contrapositive of this conditional statement is

“If the home team does not win, then it is not raining.”

The converse is

“If the home team wins, then it is raining.”

The inverse is

“If it is not raining, then the home team does not win.”

Only the contrapositive is equivalent to the original statement. ▲

BICONDITIONALS We now introduce another way to combine propositions that expresses
that two propositions have the same truth value.

DEFINITION 6 Let p and q be propositions. The biconditional statement p ↔ q is the proposition “p if
and only if q.” The biconditional statement p ↔ q is true when p and q have the same truth
values, and is false otherwise. Biconditional statements are also called bi-implications.

The truth table for p ↔ q is shown in Table 6. Note that the statement p ↔ q is true when both
the conditional statements p → q and q → p are true and is false otherwise. That is why we use
the words “if and only if” to express this logical connective and why it is symbolically written
by combining the symbols → and ←. There are some other common ways to express p ↔ q:

“p is necessary and sufficient for q”
“if p then q, and conversely”
“p iff q.”

The last way of expressing the biconditional statement p ↔ q uses the abbreviation “iff” for
“if and only if.” Note that p ↔ q has exactly the same truth value as (p → q) ∧ (q → p).

TABLE 6 The Truth Table for the
Biconditional p ↔ q.

p q p ↔ q

T T T

T F F

F T F

F F T

10 1 / The Foundations: Logic and Proofs

EXAMPLE 10 Let p be the statement “You can take the flight,” and let q be the statement “You buy a ticket.”
Then p ↔ q is the statement

“You can take the flight if and only if you buy a ticket.”

This statement is true if p and q are either both true or both false, that is, if you buy a ticket and
can take the flight or if you do not buy a ticket and you cannot take the flight. It is false when
p and q have opposite truth values, that is, when you do not buy a ticket, but you can take the
flight (such as when you get a free trip) and when you buy a ticket but you cannot take the flight
(such as when the airline bumps you). ▲

IMPLICIT USE OF BICONDITIONALS You should be aware that biconditionals are not
always explicit in natural language. In particular, the “if and only if” construction used in
biconditionals is rarely used in common language. Instead, biconditionals are often expressed
using an “if, then” or an “only if” construction. The other part of the “if and only if” is implicit.
That is, the converse is implied, but not stated. For example, consider the statement in English
“If you finish your meal, then you can have dessert.” What is really meant is “You can have
dessert if and only if you finish your meal.” This last statement is logically equivalent to the
two statements “If you finish your meal, then you can have dessert” and “You can have dessert
only if you finish your meal.” Because of this imprecision in natural language, we need to
make an assumption whether a conditional statement in natural language implicitly includes its
converse. Because precision is essential in mathematics and in logic, we will always distinguish
between the conditional statement p → q and the biconditional statement p ↔ q.

Truth Tables of Compound Propositions

We have now introduced four important logical connectives—conjunctions, disjunctions, con-
ditional statements, and biconditional statements—as well as negations. We can use these con-
nectives to build up complicated compound propositions involving any number of propositional
variables. We can use truth tables to determine the truth values of these compound propositions,
as Example 11 illustrates. We use a separate column to find the truth value of each compound
expression that occurs in the compound proposition as it is built up. The truth values of the
compound proposition for each combination of truth values of the propositional variables in it
is found in the final column of the table.

EXAMPLE 11 Construct the truth table of the compound proposition

(p ∨ ¬q) → (p ∧ q).

Solution: Because this truth table involves two propositional variables p and q, there are four
rows in this truth table, one for each of the pairs of truth values TT, TF, FT, and FF. The first
two columns are used for the truth values of p and q, respectively. In the third column we find
the truth value of ¬q, needed to find the truth value of p ∨ ¬q, found in the fourth column. The
fifth column gives the truth value of p ∧ q. Finally, the truth value of (p ∨ ¬q) → (p ∧ q) is
found in the last column. The resulting truth table is shown in Table 7. ▲

TABLE 7 The Truth Table of (p ∨ ¬ q) → (p ∧ q).

p q ¬q p ∨ ¬q p ∧ q (p ∨ ¬q) → (p ∧ q)

T T F T T T

T F T T F F

F T F F F T

F F T T F F

1.1 Propositional Logic 11

Precedence of Logical Operators

We can construct compound propositions using the negation operator and the logical operators
defined so far. We will generally use parentheses to specify the order in which logical operators
in a compound proposition are to be applied. For instance, (p ∨ q) ∧ (¬r) is the conjunction
of p ∨ q and ¬r . However, to reduce the number of parentheses, we specify that the negation
operator is applied before all other logical operators. This means that ¬p ∧ q is the conjunction
of ¬p and q, namely, (¬p) ∧ q, not the negation of the conjunction of p and q, namely ¬(p ∧ q).

Another general rule of precedence is that the conjunction operator takes precedence over
the disjunction operator, so that p ∧ q ∨ r means (p ∧ q) ∨ r rather than p ∧ (q ∨ r). Because
this rule may be difficult to remember, we will continue to use parentheses so that the order of
the disjunction and conjunction operators is clear.

TABLE 8
Precedence of
Logical Operators.

Operator Precedence

¬ 1

∧ 2

∨ 3

→ 4

↔ 5 Finally, it is an accepted rule that the conditional and biconditional operators → and ↔
have lower precedence than the conjunction and disjunction operators, ∧ and ∨. Consequently,
p ∨ q → r is the same as (p ∨ q) → r . We will use parentheses when the order of the con-
ditional operator and biconditional operator is at issue, although the conditional operator has
precedence over the biconditional operator. Table 8 displays the precedence levels of the logical
operators, ¬, ∧, ∨, →, and ↔.

Logic and Bit Operations

Computers represent information using bits. A bit is a symbol with two possible values, namely,
0 (zero) and 1 (one). This meaning of the word bit comes from binary digit, because zeros and
ones are the digits used in binary representations of numbers. The well-known statistician John
Tukey introduced this terminology in 1946. A bit can be used to represent a truth value, because
there are two truth values, namely, true and false. As is customarily done, we will use a 1 bit to
represent true and a 0 bit to represent false. That is, 1 represents T (true), 0 represents F (false). A
variable is called a Boolean variable if its value is either true or false. Consequently, a Boolean
variable can be represented using a bit.

Truth Value Bit

T 1

F 0

Computer bit operations correspond to the logical connectives. By replacing true by a one
and false by a zero in the truth tables for the operators ∧, ∨, and ⊕, the tables shown in Table 9
for the corresponding bit operations are obtained. We will also use the notation OR, AND, and
XOR for the operators ∨, ∧, and ⊕, as is done in various programming languages.

JOHN WILDER TUKEY (1915–2000) Tukey, born in New Bedford, Massachusetts, was an only child. His
parents, both teachers, decided home schooling would best develop his potential. His formal education began
at Brown University, where he studied mathematics and chemistry. He received a master’s degree in chemistry
from Brown and continued his studies at Princeton University, changing his field of study from chemistry to
mathematics. He received his Ph.D. from Princeton in 1939 for work in topology, when he was appointed an
instructor in mathematics at Princeton. With the start of World War II, he joined the Fire Control Research Office,
where he began working in statistics. Tukey found statistical research to his liking and impressed several leading
statisticians with his skills. In 1945, at the conclusion of the war, Tukey returned to the mathematics department
at Princeton as a professor of statistics, and he also took a position at AT&T Bell Laboratories. Tukey founded

the Statistics Department at Princeton in 1966 and was its first chairman. Tukey made significant contributions to many areas of
statistics, including the analysis of variance, the estimation of spectra of time series, inferences about the values of a set of parameters
from a single experiment, and the philosophy of statistics. However, he is best known for his invention, with J. W. Cooley, of the fast
Fourier transform. In addition to his contributions to statistics, Tukey was noted as a skilled wordsmith; he is credited with coining
the terms bit and software.

Tukey contributed his insight and expertise by serving on the President’s Science Advisory Committee. He chaired several
important committees dealing with the environment, education, and chemicals and health. He also served on committees working
on nuclear disarmament. Tukey received many awards, including the National Medal of Science.

HISTORICAL NOTE There were several other suggested words for a binary digit, including binit and bigit, that never were widely
accepted. The adoption of the word bit may be due to its meaning as a common English word. For an account of Tukey’s coining
of the word bit, see the April 1984 issue of Annals of the History of Computing.

12 1 / The Foundations: Logic and Proofs

TABLE 9 Table for the Bit Operators OR,
AND, and XOR.

x y x ∨ y x ∧ y x ⊕ y

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 0

Information is often represented using bit strings, which are lists of zeros and ones. When
this is done, operations on the bit strings can be used to manipulate this information.

DEFINITION 7 A bit string is a sequence of zero or more bits. The length of this string is the number of bits
in the string.

EXAMPLE 12 101010011 is a bit string of length nine. ▲

We can extend bit operations to bit strings. We define the bitwise OR, bitwise AND, and
bitwise XOR of two strings of the same length to be the strings that have as their bits the OR,
AND, and XOR of the corresponding bits in the two strings, respectively. We use the symbols
∨, ∧, and ⊕ to represent the bitwise OR, bitwise AND, and bitwise XOR operations, respectively.
We illustrate bitwise operations on bit strings with Example 13.

EXAMPLE 13 Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 01 1011 0110 and
11 0001 1101. (Here, and throughout this book, bit strings will be split into blocks of four
bits to make them easier to read.)

Solution: The bitwise OR, bitwise AND, and bitwise XOR of these strings are obtained by taking
the OR, AND, and XOR of the corresponding bits, respectively. This gives us

01 1011 0110
11 0001 1101

11 1011 1111 bitwise OR

01 0001 0100 bitwise AND

10 1010 1011 bitwise XOR

▲
Exercises

1. Which of these sentences are propositions? What are the
truth values of those that are propositions?

a) Boston is the capital of Massachusetts.

b) Miami is the capital of Florida.

c) 2 + 3 = 5.

d) 5 + 7 = 10.

e) x + 2 = 11.

f) Answer this question.

2. Which of these are propositions?What are the truth values
of those that are propositions?

a) Do not pass go.

b) What time is it?

c) There are no black flies in Maine.

d) 4 + x = 5.

e) The moon is made of green cheese.

f) 2n ≥ 100.

3. What is the negation of each of these propositions?

a) Mei has an MP3 player.

b) There is no pollution in New Jersey.

c) 2 + 1 = 3.

d) The summer in Maine is hot and sunny.

4. What is the negation of each of these propositions?

a) Jennifer and Teja are friends.

b) There are 13 items in a baker’s dozen.

c) Abby sent more than 100 text messages every day.

d) 121 is a perfect square.

1.1 Propositional Logic 13

5. What is the negation of each of these propositions?

a) Steve has more than 100 GB free disk space on his
laptop.

b) Zach blocks e-mails and texts from Jennifer.
c) 7 · 11 · 13 = 999.
d) Diane rode her bicycle 100 miles on Sunday.

6. Suppose that SmartphoneA has 256 MB RAM and 32 GB
ROM, and the resolution of its camera is 8 MP; Smart-
phone B has 288 MB RAM and 64 GB ROM, and the
resolution of its camera is 4 MP; and Smartphone C has
128 MB RAM and 32 GB ROM, and the resolution of
its camera is 5 MP. Determine the truth value of each of
these propositions.

a) Smartphone B has the most RAM of these three smart-
phones.

b) Smartphone C has more ROM or a higher resolution
camera than Smartphone B.

c) Smartphone B has more RAM, more ROM, and a
higher resolution camera than Smartphone A.

d) If Smartphone B has more RAM and more ROM than
Smartphone C, then it also has a higher resolution
camera.

e) Smartphone A has more RAM than Smartphone B if
and only if Smartphone B has more RAM than Smart-
phone A.

7. Suppose that during the most recent fiscal year, the an-
nual revenue of Acme Computer was 138 billion dollars
and its net profit was 8 billion dollars, the annual revenue
of Nadir Software was 87 billion dollars and its net profit
was 5 billion dollars, and the annual revenue of Quixote
Media was 111 billion dollars and its net profit was
13 billion dollars. Determine the truth value of each of
these propositions for the most recent fiscal year.

a) Quixote Media had the largest annual revenue.
b) Nadir Software had the lowest net profit and Acme

Computer had the largest annual revenue.
c) Acme Computer had the largest net profit or Quixote

Media had the largest net profit.
d) If Quixote Media had the smallest net profit, then

Acme Computer had the largest annual revenue.
e) Nadir Software had the smallest net profit if and only

if Acme Computer had the largest annual revenue.

8. Let p and q be the propositions

p : I bought a lottery ticket this week.
q : I won the million dollar jackpot.

Express each of these propositions as an English sen-
tence.

a) ¬p b) p ∨ q c) p → q

d) p ∧ q e) p ↔ q f) ¬p → ¬q

g) ¬p ∧ ¬q h) ¬p ∨ (p ∧ q)

9. Let p and q be the propositions “Swimming at the New
Jersey shore is allowed” and “Sharks have been spotted
near the shore,” respectively. Express each of these com-
pound propositions as an English sentence.

a) ¬q b) p ∧ q c) ¬p ∨ q

d) p → ¬q e) ¬q → p f) ¬p → ¬q

g) p ↔ ¬q h) ¬p ∧ (p ∨ ¬q)

10. Let p and q be the propositions “The election is decided”
and “The votes have been counted,” respectively. Express
each of these compound propositions as an English sen-
tence.

a) ¬p b) p ∨ q

c) ¬p ∧ q d) q → p

e) ¬q → ¬p f) ¬p → ¬q

g) p ↔ q h) ¬q ∨ (¬p ∧ q)

11. Let p and q be the propositions

p : It is below freezing.
q : It is snowing.

Write these propositions using p and q and logical con-
nectives (including negations).

a) It is below freezing and snowing.
b) It is below freezing but not snowing.
c) It is not below freezing and it is not snowing.
d) It is either snowing or below freezing (or both).
e) If it is below freezing, it is also snowing.
f) Either it is below freezing or it is snowing, but it is

not snowing if it is below freezing.
g) That it is below freezing is necessary and sufficient

for it to be snowing.

12. Let p, q, and r be the propositions

p : You have the flu.
q : You miss the final examination.
r : You pass the course.

Express each of these propositions as an English sen-
tence.

a) p → q b) ¬q ↔ r

c) q → ¬r d) p ∨ q ∨ r

e) (p → ¬r) ∨ (q → ¬r)

f) (p ∧ q) ∨ (¬q ∧ r)

13. Let p and q be the propositions

p : You drive over 65 miles per hour.
q : You get a speeding ticket.

Write these propositions using p and q and logical con-
nectives (including negations).

a) You do not drive over 65 miles per hour.
b) You drive over 65 miles per hour, but you do not get

a speeding ticket.
c) You will get a speeding ticket if you drive over

65 miles per hour.
d) If you do not drive over 65 miles per hour, then you

will not get a speeding ticket.
e) Driving over 65 miles per hour is sufficient for getting

a speeding ticket.
f) You get a speeding ticket, but you do not drive over

65 miles per hour.
g) Whenever you get a speeding ticket, you are driving

over 65 miles per hour.

14. Let p, q, and r be the propositions

p : You get an A on the final exam.
q : You do every exercise in this book.
r : You get an A in this class.

Write these propositions using p, q, and r and logical
connectives (including negations).

14 1 / The Foundations: Logic and Proofs

a) You get an A in this class, but you do not do every
exercise in this book.

b) You get an A on the final, you do every exercise in this
book, and you get an A in this class.

c) To get an A in this class, it is necessary for you to get
an A on the final.

d) You get an A on the final, but you don’t do every ex-
ercise in this book; nevertheless, you get an A in this
class.

e) Getting an A on the final and doing every exercise in
this book is sufficient for getting an A in this class.

f) You will get an A in this class if and only if you either
do every exercise in this book or you get an A on the
final.

15. Let p, q, and r be the propositions

p : Grizzly bears have been seen in the area.
q : Hiking is safe on the trail.
r : Berries are ripe along the trail.

Write these propositions using p, q, and r and logical
connectives (including negations).

a) Berries are ripe along the trail, but grizzly bears have
not been seen in the area.

b) Grizzly bears have not been seen in the area and hik-
ing on the trail is safe, but berries are ripe along the
trail.

c) If berries are ripe along the trail, hiking is safe if and
only if grizzly bears have not been seen in the area.

d) It is not safe to hike on the trail, but grizzly bears have
not been seen in the area and the berries along the trail
are ripe.

e) For hiking on the trail to be safe, it is necessary but not
sufficient that berries not be ripe along the trail and
for grizzly bears not to have been seen in the area.

f) Hiking is not safe on the trail whenever grizzly bears
have been seen in the area and berries are ripe along
the trail.

16. Determine whether these biconditionals are true or
false.

a) 2 + 2 = 4 if and only if 1 + 1 = 2.
b) 1 + 1 = 2 if and only if 2 + 3 = 4.
c) 1 + 1 = 3 if and only if monkeys can fly.
d) 0 > 1 if and only if 2 > 1.

17. Determine whether each of these conditional statements
is true or false.

a) If 1 + 1 = 2, then 2 + 2 = 5.
b) If 1 + 1 = 3, then 2 + 2 = 4.
c) If 1 + 1 = 3, then 2 + 2 = 5.
d) If monkeys can fly, then 1 + 1 = 3.

18. Determine whether each of these conditional statements
is true or false.

a) If 1 + 1 = 3, then unicorns exist.
b) If 1 + 1 = 3, then dogs can fly.
c) If 1 + 1 = 2, then dogs can fly.
d) If 2 + 2 = 4, then 1 + 2 = 3.

19. For each of these sentences, determine whether an in-
clusive or, or an exclusive or, is intended. Explain your
answer.

a) Coffee or tea comes with dinner.

b) A password must have at least three digits or be at
least eight characters long.

c) The prerequisite for the course is a course in number
theory or a course in cryptography.

d) You can pay using U.S. dollars or euros.

20. For each of these sentences, determine whether an in-
clusive or, or an exclusive or, is intended. Explain your
answer.

a) Experience with C++ or Java is required.

b) Lunch includes soup or salad.

c) To enter the country you need a passport or a voter
registration card.

d) Publish or perish.

21. For each of these sentences, state what the sentence means
if the logical connective or is an inclusive or (that is, a dis-
junction) versus an exclusive or. Which of these meanings
of or do you think is intended?

a) To take discrete mathematics, you must have taken
calculus or a course in computer science.

b) When you buy a new car fromAcme Motor Company,
you get $2000 back in cash or a 2% car loan.

c) Dinner for two includes two items from column A or
three items from column B.

d) School is closed if more than 2 feet of snow falls or if
the wind chill is below −100.

22. Write each of these statements in the form “if p, then q”
in English. [Hint: Refer to the list of common ways to ex-
press conditional statements provided in this section.]

a) It is necessary to wash the boss’s car to get promoted.

b) Winds from the south imply a spring thaw.

c) A sufficient condition for the warranty to be good is
that you bought the computer less than a year ago.

d) Willy gets caught whenever he cheats.

e) You can access the website only if you pay a subscrip-
tion fee.

f) Getting elected follows from knowing the right peo-
ple.

g) Carol gets seasick whenever she is on a boat.

23. Write each of these statements in the form “if p, then q”
in English. [Hint: Refer to the list of common ways to
express conditional statements.]

a) It snows whenever the wind blows from the northeast.

b) The apple trees will bloom if it stays warm for a week.

c) That the Pistons win the championship implies that
they beat the Lakers.

d) It is necessary to walk 8 miles to get to the top of
Long’s Peak.

e) To get tenure as a professor, it is sufficient to be world-
famous.

f) If you drive more than 400 miles, you will need to buy
gasoline.

g) Your guarantee is good only if you bought your CD
player less than 90 days ago.

h) Jan will go swimming unless the water is too cold.

1.1 Propositional Logic 15

24. Write each of these statements in the form “if p, then q”
in English. [Hint: Refer to the list of common ways to ex-
press conditional statements provided in this section.]

a) I will remember to send you the address only if you
send me an e-mail message.

b) To be a citizen of this country, it is sufficient that you
were born in the United States.

c) If you keep your textbook, it will be a useful reference
in your future courses.

d) The Red Wings will win the Stanley Cup if their goalie
plays well.

e) That you get the job implies that you had the best
credentials.

f) The beach erodes whenever there is a storm.
g) It is necessary to have a valid password to log on to

the server.
h) You will reach the summit unless you begin your climb

too late.

25. Write each of these propositions in the form “p if and
only if q” in English.

a) If it is hot outside you buy an ice cream cone, and if
you buy an ice cream cone it is hot outside.

b) For you to win the contest it is necessary and sufficient
that you have the only winning ticket.

c) You get promoted only if you have connections, and
you have connections only if you get promoted.

d) If you watch television your mind will decay, and con-
versely.

e) The trains run late on exactly those days when I take
it.

26. Write each of these propositions in the form “p if and
only if q” in English.

a) For you to get an A in this course, it is necessary and
sufficient that you learn how to solve discrete mathe-
matics problems.

b) If you read the newspaper every day, you will be in-
formed, and conversely.

c) It rains if it is a weekend day, and it is a weekend day
if it rains.

d) You can see the wizard only if the wizard is not in,
and the wizard is not in only if you can see him.

27. State the converse, contrapositive, and inverse of each of
these conditional statements.

a) If it snows today, I will ski tomorrow.
b) I come to class whenever there is going to be a quiz.
c) A positive integer is a prime only if it has no divisors

other than 1 and itself.

28. State the converse, contrapositive, and inverse of each of
these conditional statements.

a) If it snows tonight, then I will stay at home.
b) I go to the beach whenever it is a sunny summer day.
c) When I stay up late, it is necessary that I sleep until

noon.

29. How many rows appear in a truth table for each of these
compound propositions?

a) p → ¬p

b) (p ∨ ¬r) ∧ (q ∨ ¬s)

c) q ∨ p ∨ ¬s ∨ ¬r ∨ ¬t ∨ u

d) (p ∧ r ∧ t) ↔ (q ∧ t)

30. How many rows appear in a truth table for each of these
compound propositions?

a) (q → ¬p) ∨ (¬p → ¬q)

b) (p ∨ ¬t) ∧ (p ∨ ¬s)

c) (p → r) ∨ (¬s → ¬t) ∨ (¬u → v)

d) (p ∧ r ∧ s) ∨ (q ∧ t) ∨ (r ∧ ¬t)

31. Construct a truth table for each of these compound propo-
sitions.

a) p ∧ ¬p b) p ∨ ¬p

c) (p ∨ ¬q) → q d) (p ∨ q) → (p ∧ q)

e) (p → q) ↔ (¬q → ¬p)

f) (p → q) → (q → p)

32. Construct a truth table for each of these compound propo-
sitions.

a) p → ¬p b) p ↔ ¬p

c) p ⊕ (p ∨ q) d) (p ∧ q) → (p ∨ q)

e) (q → ¬p) ↔ (p ↔ q)

f) (p ↔ q) ⊕ (p ↔ ¬q)

33. Construct a truth table for each of these compound propo-
sitions.

a) (p ∨ q) → (p ⊕ q) b) (p ⊕ q) → (p ∧ q)

c) (p ∨ q) ⊕ (p ∧ q) d) (p ↔ q) ⊕ (¬p ↔ q)

e) (p ↔ q) ⊕ (¬p ↔ ¬r)

f) (p ⊕ q) → (p ⊕ ¬q)

34. Construct a truth table for each of these compound propo-
sitions.

a) p ⊕ p b) p ⊕ ¬p

c) p ⊕ ¬q d) ¬p ⊕ ¬q

e) (p ⊕ q) ∨ (p ⊕ ¬q) f) (p ⊕ q) ∧ (p ⊕ ¬q)

35. Construct a truth table for each of these compound propo-
sitions.

a) p → ¬q b) ¬p ↔ q

c) (p → q) ∨ (¬p → q) d) (p → q) ∧ (¬p → q)

e) (p ↔ q) ∨ (¬p ↔ q)

f) (¬p ↔ ¬q) ↔ (p ↔ q)

36. Construct a truth table for each of these compound propo-
sitions.

a) (p ∨ q) ∨ r b) (p ∨ q) ∧ r

c) (p ∧ q) ∨ r d) (p ∧ q) ∧ r

e) (p ∨ q) ∧ ¬r f) (p ∧ q) ∨ ¬r

37. Construct a truth table for each of these compound propo-
sitions.

a) p → (¬q ∨ r)

b) ¬p → (q → r)

c) (p → q) ∨ (¬p → r)

d) (p → q) ∧ (¬p → r)

e) (p ↔ q) ∨ (¬q ↔ r)

f) (¬p ↔ ¬q) ↔ (q ↔ r)

38. Construct a truth table for ((p → q) → r) → s.

39. Construct a truth table for (p ↔ q) ↔ (r ↔ s).

16 1 / The Foundations: Logic and Proofs

40. Explain, without using a truth table, why (p ∨ ¬q) ∧
(q ∨ ¬r) ∧ (r ∨ ¬p) is true when p, q, and r have the
same truth value and it is false otherwise.

41. Explain, without using a truth table, why (p ∨ q ∨ r) ∧
(¬p ∨ ¬q ∨ ¬r) is true when at least one of p, q, and r

is true and at least one is false, but is false when all three
variables have the same truth value.

42. What is the value of x after each of these statements is
encountered in a computer program, if x = 1 before the
statement is reached?

a) if x + 2 = 3 then x := x + 1
b) if (x + 1 = 3) OR (2x + 2 = 3) then x := x + 1
c) if (2x + 3 = 5) AND (3x + 4 = 7) then x := x + 1
d) if (x + 1 = 2) XOR (x + 2 = 3) then x := x + 1
e) if x < 2 then x := x + 1

43. Find the bitwise OR, bitwise AND, and bitwise XOR of
each of these pairs of bit strings.

a) 101 1110, 010 0001
b) 1111 0000, 1010 1010
c) 00 0111 0001, 10 0100 1000
d) 11 1111 1111, 00 0000 0000

44. Evaluate each of these expressions.

a) 1 1000 ∧ (0 1011 ∨ 1 1011)

b) (0 1111 ∧ 1 0101) ∨ 0 1000
c) (0 1010 ⊕ 1 1011) ⊕ 0 1000
d) (1 1011 ∨ 0 1010) ∧ (1 0001 ∨ 1 1011)

Fuzzy logic is used in artificial intelligence. In fuzzy logic, a
proposition has a truth value that is a number between 0 and 1,
inclusive.A proposition with a truth value of 0 is false and one
with a truth value of 1 is true. Truth values that are between 0
and 1 indicate varying degrees of truth. For instance, the truth
value 0.8 can be assigned to the statement “Fred is happy,”

because Fred is happy most of the time, and the truth value
0.4 can be assigned to the statement “John is happy,” because
John is happy slightly less than half the time. Use these truth
values to solve Exercises 45–47.

45. The truth value of the negation of a proposition in fuzzy
logic is 1 minus the truth value of the proposition. What
are the truth values of the statements “Fred is not happy”
and “John is not happy?”

46. The truth value of the conjunction of two propositions in
fuzzy logic is the minimum of the truth values of the two
propositions. What are the truth values of the statements
“Fred and John are happy” and “Neither Fred nor John is
happy?”

47. The truth value of the disjunction of two propositions in
fuzzy logic is the maximum of the truth values of the two
propositions. What are the truth values of the statements
“Fred is happy, or John is happy” and “Fred is not happy,
or John is not happy?”

∗48. Is the assertion “This statement is false” a proposition?
∗49. The nth statement in a list of 100 statements is “Exactly

n of the statements in this list are false.”

a) What conclusions can you draw from these state-
ments?

b) Answer part (a) if the nth statement is “At least n of
the statements in this list are false.”

c) Answer part (b) assuming that the list contains 99
statements.

50. An ancient Sicilian legend says that the barber in a remote
town who can be reached only by traveling a dangerous
mountain road shaves those people, and only those peo-
ple, who do not shave themselves. Can there be such a
barber?

1.2 Applications of Propositional Logic

Introduction

Logic has many important applications to mathematics, computer science, and numerous other
disciplines. Statements in mathematics and the sciences and in natural language often are im-
precise or ambiguous. To make such statements precise, they can be translated into the language
of logic. For example, logic is used in the specification of software and hardware, because these
specifications need to be precise before development begins. Furthermore, propositional logic
and its rules can be used to design computer circuits, to construct computer programs, to verify
the correctness of programs, and to build expert systems. Logic can be used to analyze and
solve many familiar puzzles. Software systems based on the rules of logic have been developed
for constructing some, but not all, types of proofs automatically. We will discuss some of these
applications of propositional logic in this section and in later chapters.

Translating English Sentences

There are many reasons to translate English sentences into expressions involving propositional
variables and logical connectives. In particular, English (and every other human language) is

1.3 Propositional Equivalences 25

1.3 Propositional Equivalences

Introduction

An important type of step used in a mathematical argument is the replacement of a statement
with another statement with the same truth value. Because of this, methods that produce propo-
sitions with the same truth value as a given compound proposition are used extensively in the
construction of mathematical arguments. Note that we will use the term “compound proposi-
tion” to refer to an expression formed from propositional variables using logical operators, such
as p ∧ q.

We begin our discussion with a classification of compound propositions according to their
possible truth values.

DEFINITION 1 A compound proposition that is always true, no matter what the truth values of the proposi-
tional variables that occur in it, is called a tautology. A compound proposition that is always
false is called a contradiction. A compound proposition that is neither a tautology nor a
contradiction is called a contingency.

Tautologies and contradictions are often important in mathematical reasoning. Example 1 illus-
trates these types of compound propositions.

EXAMPLE 1 We can construct examples of tautologies and contradictions using just one propositional vari-
able. Consider the truth tables of p ∨ ¬p and p ∧ ¬p, shown in Table 1. Because p ∨ ¬p is
always true, it is a tautology. Because p ∧ ¬p is always false, it is a contradiction. ▲

Logical Equivalences

Compound propositions that have the same truth values in all possible cases are called logically

equivalent. We can also define this notion as follows.

DEFINITION 2 The compound propositions p and q are called logically equivalent if p ↔ q is a tautology.
The notation p ≡ q denotes that p and q are logically equivalent.

Remark: The symbol ≡ is not a logical connective, and p ≡ q is not a compound proposition
but rather is the statement that p ↔ q is a tautology. The symbol ⇔ is sometimes used instead
of ≡ to denote logical equivalence.

One way to determine whether two compound propositions are equivalent is to use a truth
table. In particular, the compound propositions p and q are equivalent if and only if the columns

TABLE 1 Examples of a Tautology
and a Contradiction.

p ¬p p ∨ ¬p p ∧ ¬p

T F T F

F T T F

26 1 / The Foundations: Logic and Proofs

TABLE 2 De
Morgan’s Laws.

¬(p ∧ q) ≡ ¬p ∨ ¬q

¬(p ∨ q) ≡ ¬p ∧ ¬q

giving their truth values agree. Example 2 illustrates this method to establish an extremely
important and useful logical equivalence, namely, that of ¬(p ∨ q) with ¬p ∧ ¬q. This logical
equivalence is one of the two De Morgan laws, shown in Table 2, named after the English
mathematician Augustus De Morgan, of the mid-nineteenth century.

EXAMPLE 2 Show that ¬(p ∨ q) and ¬p ∧ ¬q are logically equivalent.

Solution: The truth tables for these compound propositions are displayed in Table 3. Because
the truth values of the compound propositions ¬(p ∨ q) and ¬p ∧ ¬q agree for all possible
combinations of the truth values of p and q, it follows that ¬(p ∨ q) ↔ (¬p ∧ ¬q) is a tautology
and that these compound propositions are logically equivalent. ▲

TABLE 3 Truth Tables for ¬(p ∨ q) and ¬p ∧ ¬q.

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q

T T T F F F F

T F T F F T F

F T T F T F F

F F F T T T T

EXAMPLE 3 Show that p → q and ¬p ∨ q are logically equivalent.

Solution: We construct the truth table for these compound propositions in Table 4. Because the
truth values of ¬p ∨ q and p → q agree, they are logically equivalent. ▲

TABLE 4 Truth Tables for ¬p ∨ q and
p → q.

p q ¬p ¬p ∨ q p → q

T T F T T

T F F F F

F T T T T

F F T T T

We will now establish a logical equivalence of two compound propositions involving three
different propositional variables p, q, and r . To use a truth table to establish such a logical
equivalence, we need eight rows, one for each possible combination of truth values of these
three variables. We symbolically represent these combinations by listing the truth values of p,
q, and r , respectively. These eight combinations of truth values are TTT, TTF, TFT, TFF, FTT,
FTF, FFT, and FFF; we use this order when we display the rows of the truth table. Note that we
need to double the number of rows in the truth tables we use to show that compound propositions
are equivalent for each additional propositional variable, so that 16 rows are needed to establish
the logical equivalence of two compound propositions involving four propositional variables,
and so on. In general, 2n rows are required if a compound proposition involves n propositional
variables.

1.3 Propositional Equivalences 27

TABLE 5 A Demonstration That p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) Are Logically
Equivalent.

p q r q ∧ r p ∨ (q ∧ r) p ∨ q p ∨ r (p ∨ q) ∧ (p ∨ r)

T T T T T T T T

T T F F T T T T

T F T F T T T T

T F F F T T T T

F T T T T T T T

F T F F F T F F

F F T F F F T F

F F F F F F F F

EXAMPLE 4 Show that p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) are logically equivalent. This is the distributive

law of disjunction over conjunction.

Solution: We construct the truth table for these compound propositions in Table 5. Because
the truth values of p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) agree, these compound propositions are
logically equivalent. ▲

The identities in Table 6

are a special case of

Boolean algebra identities

found in Table 5 of

Section 12.1. See Table 1

in Section 2.2 for

analogous set identities.

Table 6 contains some important equivalences. In these equivalences, T denotes the com-
pound proposition that is always true and F denotes the compound proposition that is always

TABLE 6 Logical Equivalences.

Equivalence Name

p ∧ T ≡ p Identity laws

p ∨ F ≡ p

p ∨ T ≡ T Domination laws

p ∧ F ≡ F

p ∨ p ≡ p Idempotent laws

p ∧ p ≡ p

¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p Commutative laws

p ∧ q ≡ q ∧ p

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative laws

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive laws

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s laws

¬(p ∨ q) ≡ ¬p ∧ ¬q

p ∨ (p ∧ q) ≡ p Absorption laws

p ∧ (p ∨ q) ≡ p

p ∨ ¬p ≡ T Negation laws

p ∧ ¬p ≡ F

28 1 / The Foundations: Logic and Proofs

TABLE 7 Logical Equivalences
Involving Conditional Statements.

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p

p ∨ q ≡ ¬p → q

p ∧ q ≡ ¬(p → ¬q)

¬(p → q) ≡ p ∧ ¬q

(p → q) ∧ (p → r) ≡ p → (q ∧ r)

(p → r) ∧ (q → r) ≡ (p ∨ q) → r

(p → q) ∨ (p → r) ≡ p → (q ∨ r)

(p → r) ∨ (q → r) ≡ (p ∧ q) → r

TABLE 8 Logical
Equivalences Involving
Biconditional Statements.

p ↔ q ≡ (p → q) ∧ (q → p)

p ↔ q ≡ ¬p ↔ ¬q

p ↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)

¬(p ↔ q) ≡ p ↔ ¬q

false. We also display some useful equivalences for compound propositions involving condi-
tional statements and biconditional statements in Tables 7 and 8, respectively. The reader is
asked to verify the equivalences in Tables 6–8 in the exercises.

The associative law for disjunction shows that the expression p ∨ q ∨ r is well defined,
in the sense that it does not matter whether we first take the disjunction of p with q and then
the disjunction of p ∨ q with r , or if we first take the disjunction of q and r and then take the
disjunction of p with q ∨ r . Similarly, the expression p ∧ q ∧ r is well defined. By extending this
reasoning, it follows that p1 ∨ p2 ∨ · · · ∨ pn and p1 ∧ p2 ∧ · · · ∧ pn are well defined whenever
p1, p2, . . . , pn are propositions.

Furthermore, note that De Morgan’s laws extend to

¬(p1 ∨ p2 ∨ · · · ∨ pn) ≡ (¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn)

and

¬(p1 ∧ p2 ∧ · · · ∧ pn) ≡ (¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn).

We will sometimes use the notation
∨n

j=1 pj for p1 ∨ p2 ∨ · · · ∨ pn and
∧n

j=1 pj for
p1 ∧ p2 ∧ · · · ∧ pn. Using this notation, the extended version of De Morgan’s laws can be
written concisely as ¬

(
∨n

j=1 pj

)

≡
∧n

j=1 ¬pj and ¬
(
∧n

j=1 pj

)

≡
∨n

j=1 ¬pj . (Methods for
proving these identities will be given in Section 5.1.)

Using De Morgan’s Laws

The two logical equivalences known as De Morgan’s laws are particularly important. They tell
When using De Morgan’s

laws, remember to change

the logical connective

after you negate.

us how to negate conjunctions and how to negate disjunctions. In particular, the equivalence
¬(p ∨ q) ≡ ¬p ∧ ¬q tells us that the negation of a disjunction is formed by taking the con-
junction of the negations of the component propositions. Similarly, the equivalence ¬(p ∧ q) ≡
¬p ∨ ¬q tells us that the negation of a conjunction is formed by taking the disjunction of the
negations of the component propositions. Example 5 illustrates the use of De Morgan’s laws.

1.3 Propositional Equivalences 29

EXAMPLE 5 Use De Morgan’s laws to express the negations of “Miguel has a cellphone and he has a laptop
computer” and “Heather will go to the concert or Steve will go to the concert.”

Solution: Let p be “Miguel has a cellphone” and q be “Miguel has a laptop computer.” Then
“Miguel has a cellphone and he has a laptop computer” can be represented by p ∧ q. By the
first of De Morgan’s laws, ¬(p ∧ q) is equivalent to ¬p ∨ ¬q. Consequently, we can express
the negation of our original statement as “Miguel does not have a cellphone or he does not have
a laptop computer.”

Let r be “Heather will go to the concert” and s be “Steve will go to the concert.” Then
“Heather will go to the concert or Steve will go to the concert” can be represented by r ∨ s.
By the second of De Morgan’s laws, ¬(r ∨ s) is equivalent to ¬r ∧ ¬s. Consequently, we can
express the negation of our original statement as “Heather will not go to the concert and Steve
will not go to the concert.” ▲

Constructing New Logical Equivalences

The logical equivalences in Table 6, as well as any others that have been established (such as
those shown in Tables 7 and 8), can be used to construct additional logical equivalences. The
reason for this is that a proposition in a compound proposition can be replaced by a compound
proposition that is logically equivalent to it without changing the truth value of the original
compound proposition. This technique is illustrated in Examples 6–8, where we also use the
fact that if p and q are logically equivalent and q and r are logically equivalent, then p and r

are logically equivalent (see Exercise 56).

EXAMPLE 6 Show that ¬(p → q) and p ∧ ¬q are logically equivalent.

Solution: We could use a truth table to show that these compound propositions are equivalent
(similar to what we did in Example 4). Indeed, it would not be hard to do so. However, we want
to illustrate how to use logical identities that we already know to establish new logical identities,
something that is of practical importance for establishing equivalences of compound propositions
with a large number of variables. So, we will establish this equivalence by developing a series of

AUGUSTUS DE MORGAN (1806–1871) Augustus De Morgan was born in India, where his father was a
colonel in the Indian army. De Morgan’s family moved to England when he was 7 months old. He attended
private schools, where in his early teens he developed a strong interest in mathematics. De Morgan studied
at Trinity College, Cambridge, graduating in 1827. Although he considered medicine or law, he decided on
mathematics for his career. He won a position at University College, London, in 1828, but resigned after the
college dismissed a fellow professor without giving reasons. However, he resumed this position in 1836 when
his successor died, remaining until 1866.

De Morgan was a noted teacher who stressed principles over techniques. His students included many famous
mathematicians, including Augusta Ada, Countess of Lovelace, who was Charles Babbage’s collaborator in his

work on computing machines (see page 31 for biographical notes on Augusta Ada). (De Morgan cautioned the countess against
studying too much mathematics, because it might interfere with her childbearing abilities!)

De Morgan was an extremely prolific writer, publishing more than 1000 articles in more than 15 periodicals. De Morgan also
wrote textbooks on many subjects, including logic, probability, calculus, and algebra. In 1838 he presented what was perhaps the first
clear explanation of an important proof technique known as mathematical induction (discussed in Section 5.1 of this text), a term
he coined. In the 1840s De Morgan made fundamental contributions to the development of symbolic logic. He invented notations
that helped him prove propositional equivalences, such as the laws that are named after him. In 1842 De Morgan presented what
is considered to be the first precise definition of a limit and developed new tests for convergence of infinite series. De Morgan was
also interested in the history of mathematics and wrote biographies of Newton and Halley.

In 1837 De Morgan married Sophia Frend, who wrote his biography in 1882. De Morgan’s research, writing, and teaching left
little time for his family or social life. Nevertheless, he was noted for his kindness, humor, and wide range of knowledge.

30 1 / The Foundations: Logic and Proofs

logical equivalences, using one of the equivalences in Table 6 at a time, starting with ¬(p → q)

and ending with p ∧ ¬q. We have the following equivalences.

¬(p → q) ≡ ¬(¬p ∨ q) by Example 3

≡ ¬(¬p) ∧ ¬q by the second De Morgan law

≡ p ∧ ¬q by the double negation law

▲

EXAMPLE 7 Show that ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent by developing a series of
logical equivalences.

Solution: We will use one of the equivalences in Table 6 at a time, starting with ¬(p ∨ (¬p ∧ q))

and ending with ¬p ∧ ¬q. (Note: we could also easily establish this equivalence using a truth
table.) We have the following equivalences.

¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬(¬p ∧ q) by the second De Morgan law

≡ ¬p ∧ [¬(¬p) ∨ ¬q] by the first De Morgan law

≡ ¬p ∧ (p ∨ ¬q) by the double negation law

≡ (¬p ∧ p) ∨ (¬p ∧ ¬q) by the second distributive law

≡ F ∨ (¬p ∧ ¬q) because ¬p ∧ p ≡ F

≡ (¬p ∧ ¬q) ∨ F by the commutative law for disjunction

≡ ¬p ∧ ¬q by the identity law for F

Consequently ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent. ▲

EXAMPLE 8 Show that (p ∧ q) → (p ∨ q) is a tautology.

Solution: To show that this statement is a tautology, we will use logical equivalences to demon-
strate that it is logically equivalent to T. (Note: This could also be done using a truth table.)

(p ∧ q) → (p ∨ q) ≡ ¬(p ∧ q) ∨ (p ∨ q) by Example 3

≡ (¬p ∨ ¬q) ∨ (p ∨ q) by the first De Morgan law

≡ (¬p ∨ p) ∨ (¬q ∨ q) by the associative and commutative

laws for disjunction

≡ T ∨ T by Example 1 and the commutative

law for disjunction

≡ T by the domination law

▲

Propositional Satisfiability

A compound proposition is satisfiable if there is an assignment of truth values to its variables that
makes it true. When no such assignments exists, that is, when the compound proposition is false
for all assignments of truth values to its variables, the compound proposition is unsatisfiable.
Note that a compound proposition is unsatisfiable if and only if its negation is true for all

assignments of truth values to the variables, that is, if and only if its negation is a tautology.
When we find a particular assignment of truth values that makes a compound proposition

true, we have shown that it is satisfiable; such an assignment is called a solution of this particular

1.3 Propositional Equivalences 31

satisfiability problem. However, to show that a compound proposition is unsatisfiable, we need
to show that every assignment of truth values to its variables makes it false. Although we can
always use a truth table to determine whether a compound proposition is satisfiable, it is often
more efficient not to, as Example 9 demonstrates.

EXAMPLE 9 Determine whether each of the compound propositions (p ∨ ¬q) ∧ (q ∨ ¬r) ∧
(r ∨ ¬p), (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r), and (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) ∧
(p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) is satisfiable.

Solution: Instead of using truth table to solve this problem, we will reason about truth values.
Note that (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) is true when the three variable p, q, and r have
the same truth value (see Exercise 40 of Section 1.1). Hence, it is satisfiable as there is at
least one assignment of truth values for p, q, and r that makes it true. Similarly, note that
(p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) is true when at least one of p, q, and r is true and at least one
is false (see Exercise 41 of Section 1.1). Hence, (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) is satisfiable,
as there is at least one assignment of truth values for p, q, and r that makes it true.

Finally, note that for (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) ∧ (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r)

to be true, (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) and (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) must both
be true. For the first to be true, the three variables must have the same truth values, and
for the second to be true, at least one of three variables must be true and at least one must
be false. However, these conditions are contradictory. From these observations we conclude
that no assignment of truth values to p, q, and r makes (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) ∧
(p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) true. Hence, it is unsatisfiable. ▲

AUGUSTA ADA, COUNTESS OF LOVELACE (1815–1852) Augusta Ada was the only child from the
marriage of the famous poet Lord Byron and Lady Byron, Annabella Millbanke, who separated when Ada
was 1 month old, because of Lord Byron’s scandalous affair with his half sister. The Lord Byron had quite a
reputation, being described by one of his lovers as “mad, bad, and dangerous to know.” Lady Byron was noted for
her intellect and had a passion for mathematics; she was called by Lord Byron “The Princess of Parallelograms.”
Augusta was raised by her mother, who encouraged her intellectual talents especially in music and mathematics,
to counter what Lady Byron considered dangerous poetic tendencies. At this time, women were not allowed to
attend universities and could not join learned societies. Nevertheless, Augusta pursued her mathematical studies
independently and with mathematicians, including William Frend. She was also encouraged by another female

mathematician, Mary Somerville, and in 1834 at a dinner party hosted by Mary Somerville, she learned about Charles Babbage’s
ideas for a calculating machine, called the Analytic Engine. In 1838 Augusta Ada married Lord King, later elevated to Earl of
Lovelace. Together they had three children.

Augusta Ada continued her mathematical studies after her marriage. Charles Babbage had continued work on his Analytic
Engine and lectured on this in Europe. In 1842 Babbage asked Augusta Ada to translate an article in French describing Babbage’s
invention. When Babbage saw her translation, he suggested she add her own notes, and the resulting work was three times the
length of the original. The most complete accounts of the Analytic Engine are found in Augusta Ada’s notes. In her notes, she
compared the working of the Analytic Engine to that of the Jacquard loom, with Babbage’s punch cards analogous to the cards used
to create patterns on the loom. Furthermore, she recognized the promise of the machine as a general purpose computer much better
than Babbage did. She stated that the “engine is the material expression of any indefinite function of any degree of generality and
complexity.” Her notes on the Analytic Engine anticipate many future developments, including computer-generated music. Augusta
Ada published her writings under her initials A.A.L. concealing her identity as a woman as did many women at a time when women
were not considered to be the intellectual equals of men. After 1845 she and Babbage worked toward the development of a system
to predict horse races. Unfortunately, their system did not work well, leaving Augusta Ada heavily in debt at the time of her death
at an unfortunately young age from uterine cancer.

In 1953 Augusta Ada’s notes on the Analytic Engine were republished more than 100 years after they were written, and after
they had been long forgotten. In his work in the 1950s on the capacity of computers to think (and his famous Turing Test), Alan
Turing responded to Augusta Ada’s statement that “The Analytic Engine has no pretensions whatever to originate anything. It can do
whatever we know how to order it to perform.” This “dialogue” between Turing and Augusta Ada is still the subject of controversy.
Because of her fundamental contributions to computing, the programming language Ada is named in honor of the Countess of
Lovelace.

32 1 / The Foundations: Logic and Proofs

2 9 4

5 1

4

4 2

6 7

5

7 3 5

1 9

6

FIGURE 1 A 9 × 9 Sudoku puzzle.

Applications of Satisfiability

Many problems, in diverse areas such as robotics, software testing, computer-aided design,
machine vision, integrated circuit design, computer networking, and genetics, can be modeled
in terms of propositional satisfiability. Although most of these applications are beyond the
scope of this book, we will study one application here. In particular, we will show how to use
propositional satisfiability to model Sudoku puzzles.

SUDOKU A Sudoku puzzle is represented by a 9 × 9 grid made up of nine 3 × 3 subgrids,
known as blocks, as shown in Figure 1. For each puzzle, some of the 81 cells, called givens,
are assigned one of the numbers 1, 2, . . . , 9, and the other cells are blank. The puzzle is solved
by assigning a number to each blank cell so that every row, every column, and every one of the
nine 3 × 3 blocks contains each of the nine possible numbers. Note that instead of using a 9 × 9
grid, Sudoku puzzles can be based on n2 × n2 grids, for any positive integer n, with the n2 × n2

grid made up of n2 n × n subgrids.
The popularity of Sudoku dates back to the 1980s when it was introduced in Japan. It

took 20 years for Sudoku to spread to rest of the world, but by 2005, Sudoku puzzles were a
worldwide craze. The name Sudoku is short for the Japanese suuji wa dokushin ni kagiru, which
means “the digits must remain single.” The modern game of Sudoku was apparently designed
in the late 1970s by an American puzzle designer. The basic ideas of Sudoku date back even
further; puzzles printed in French newspapers in the 1890s were quite similar, but not identical,
to modern Sudoku.

Sudoku puzzles designed for entertainment have two additional important properties. First,
they have exactly one solution. Second, they can be solved using reasoning alone, that is, without
resorting to searching all possible assignments of numbers to the cells. As a Sudoku puzzle is
solved, entries in blank cells are successively determined by already known values. For instance,
in the grid in Figure 1, the number 4 must appear in exactly one cell in the second row. How
can we determine which of the seven blank cells it must appear? First, we observe that 4 cannot
appear in one of the first three cells or in one of the last three cells of this row, because it already
appears in another cell in the block each of these cells is in. We can also see that 4 cannot appear
in the fifth cell in this row, as it already appears in the fifth column in the fourth row. This means
that 4 must appear in the sixth cell of the second row.

Many strategies based on logic and mathematics have been devised for solving Sudoku
puzzles (see [Da10], for example). Here, we discuss one of the ways that have been developed
for solving Sudoku puzzles with the aid of a computer, which depends on modeling the puzzle as
a propositional satisfiability problem. Using the model we describe, particular Sudoku puzzles
can be solved using software developed to solve satisfiability problems. Currently, Sudoku
puzzles can be solved in less than 10 milliseconds this way. It should be noted that there are
many other approaches for solving Sudoku puzzles via computers using other techniques.

1.3 Propositional Equivalences 33

To encode a Sudoku puzzle, let p(i, j, n) denote the proposition that is true when the number
n is in the cell in the ith row and j th column. There are 9 × 9 × 9 = 729 such propositions, as
i, j , and n all range from 1 to 9. For example, for the puzzle in Figure 1, the number 6 is given
as the value in the fifth row and first column. Hence, we see that p(5, 1, 6) is true, but p(5, j, 6)

is false for j = 2, 3, . . . , 9.
Given a particular Sudoku puzzle, we begin by encoding each of the given values. Then,

we construct compound propositions that assert that every row contains every number, every
column contains every number, every 3 × 3 block contains every number, and each cell contains
no more than one number. It follows, as the reader should verify, that the Sudoku puzzle is solved
by finding an assignment of truth values to the 729 propositions p(i, j, n) with i, j , and n each
ranging from 1 to 9 that makes the conjunction of all these compound propositions true. After
listing these assertions, we will explain how to construct the assertion that every row contains
every integer from 1 to 9. We will leave the construction of the other assertions that every column
contains every number and each of the nine 3 × 3 blocks contains every number to the exercises.

! For each cell with a given value, we assert p(i, j, n) when the cell in row i and column
j has the given value n.

! We assert that every row contains every number:

9
∧

i=1

9
∧

n=1

9
∨

j=1

p(i, j, n)

! We assert that every column contains every number:

9
∧

j=1

9
∧

n=1

9
∨

i=1

p(i, j, n)

It is tricky setting up the

two inner indices so that

all nine cells in each

square block are

examined.

! We assert that each of the nine 3 × 3 blocks contains every number:

2
∧

r=0

2
∧

s=0

9
∧

n=1

3
∨

i=1

3
∨

j=1

p(3r + i, 3s + j, n)

! To assert that no cell contains more than one number, we take the conjunction over all
values of n, n′, i, and j where each variable ranges from 1 to 9 and n ̸= n′ of p(i, j, n) →
¬p(i, j, n′).

We now explain how to construct the assertion that every row contains every number.

First, to assert that row i contains the number n, we form
∨9

j=1 p(i, j, n). To assert that
row i contains all n numbers, we form the conjunction of these disjunctions over all nine

possible values of n, giving us
∧9

n=1

∨9
j=1 p(i, j, n). Finally, to assert that every row contains

every number, we take the conjunction of
∧9

n=1

∨9
j=1 p(i, j, n) over all nine rows. This gives

us
∧9

i=1

∧9
n=1

∨9
j=1 p(i, j, n). (Exercises 65 and 66 ask for explanations of the assertions that

every column contains every number and that each of the nine 3 × 3 blocks contains every
number.)

Given a particular Sudoku puzzle, to solve this puzzle we can find a solution to the satisfia-
bility problems that asks for a set of truth values for the 729 variables p(i, j, n) that makes the
conjunction of all the listed assertions true.

34 1 / The Foundations: Logic and Proofs

Solving Satisfiability Problems

A truth table can be used to determine whether a compound proposition is satisfiable, or equiv-
alently, whether its negation is a tautology (see Exercise 60). This can be done by hand for
a compound proposition with a small number of variables, but when the number of variables
grows, this becomes impractical. For instance, there are 220 = 1,048,576 rows in the truth ta-
ble for a compound proposition with 20 variables. Clearly, you need a computer to help you
determine, in this way, whether a compound proposition in 20 variables is satisfiable.

When many applications are modeled, questions concerning the satisfiability of compound
propositions with hundreds, thousands, or millions of variables arise. Note, for example, that
when there are 1000 variables, checking every one of the 21000 (a number with more than 300
decimal digits) possible combinations of truth values of the variables in a compound proposition
cannot be done by a computer in even trillions of years. No procedure is known that a com-
puter can follow to determine in a reasonable amount of time whether an arbitrary compound
proposition in such a large number of variables is satisfiable. However, progress has been made
developing methods for solving the satisfiability problem for the particular types of compound
propositions that arise in practical applications, such as for the solution of Sudoku puzzles.
Many computer programs have been developed for solving satisfiability problems which have
practical use. In our discussion of the subject of algorithms in Chapter 3, we will discuss this
question further. In particular, we will explain the important role the propositional satisfiability
problem plays in the study of the complexity of algorithms.

Exercises

1. Use truth tables to verify these equivalences.

a) p ∧ T ≡ p b) p ∨ F ≡ p

c) p ∧ F ≡ F d) p ∨ T ≡ T

e) p ∨ p ≡ p f) p ∧ p ≡ p

2. Show that ¬(¬p) and p are logically equivalent.

3. Use truth tables to verify the commutative laws

a) p ∨ q ≡ q ∨ p. b) p ∧ q ≡ q ∧ p.

4. Use truth tables to verify the associative laws

a) (p ∨ q) ∨ r ≡ p ∨ (q ∨ r).

b) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r).

5. Use a truth table to verify the distributive law

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).

6. Use a truth table to verify the first De Morgan law

¬(p ∧ q) ≡ ¬p ∨ ¬q.

7. Use De Morgan’s laws to find the negation of each of the
following statements.

a) Jan is rich and happy.

b) Carlos will bicycle or run tomorrow.

HENRY MAURICE SHEFFER (1883–1964) Henry Maurice Sheffer, born to Jewish parents in the western
Ukraine, emigrated to the United States in 1892 with his parents and six siblings. He studied at the Boston Latin
School before entering Harvard, where he completed his undergraduate degree in 1905, his master’s in 1907,
and his Ph.D. in philosophy in 1908. After holding a postdoctoral position at Harvard, Henry traveled to Europe
on a fellowship. Upon returning to the United States, he became an academic nomad, spending one year each
at the University of Washington, Cornell, the University of Minnesota, the University of Missouri, and City
College in New York. In 1916 he returned to Harvard as a faculty member in the philosophy department. He
remained at Harvard until his retirement in 1952.

Sheffer introduced what is now known as the Sheffer stroke in 1913; it became well known only after its use
in the 1925 edition of Whitehead and Russell’s Principia Mathematica. In this same edition Russell wrote that Sheffer had invented
a powerful method that could be used to simplify the Principia. Because of this comment, Sheffer was something of a mystery man
to logicians, especially because Sheffer, who published little in his career, never published the details of this method, only describing
it in mimeographed notes and in a brief published abstract.

Sheffer was a dedicated teacher of mathematical logic. He liked his classes to be small and did not like auditors. When strangers
appeared in his classroom, Sheffer would order them to leave, even his colleagues or distinguished guests visiting Harvard. Sheffer
was barely five feet tall; he was noted for his wit and vigor, as well as for his nervousness and irritability. Although widely liked, he
was quite lonely. He is noted for a quip he spoke at his retirement: “Old professors never die, they just become emeriti.” Sheffer is
also credited with coining the term “Boolean algebra” (the subject of Chapter 12 of this text). Sheffer was briefly married and lived
most of his later life in small rooms at a hotel packed with his logic books and vast files of slips of paper he used to jot down his
ideas. Unfortunately, Sheffer suffered from severe depression during the last two decades of his life.

1.3 Propositional Equivalences 35

c) Mei walks or takes the bus to class.
d) Ibrahim is smart and hard working.

8. Use De Morgan’s laws to find the negation of each of the
following statements.

a) Kwame will take a job in industry or go to graduate
school.

b) Yoshiko knows Java and calculus.
c) James is young and strong.
d) Rita will move to Oregon or Washington.

9. Show that each of these conditional statements is a tau-
tology by using truth tables.

a) (p ∧ q) → p b) p → (p ∨ q)
c) ¬p → (p → q) d) (p ∧ q) → (p → q)
e) ¬(p → q) → p f) ¬(p → q) → ¬q

10. Show that each of these conditional statements is a tau-
tology by using truth tables.

a) [¬p ∧ (p ∨ q)] → q
b) [(p → q) ∧ (q → r)] → (p → r)
c) [p ∧ (p → q)] → q
d) [(p ∨ q) ∧ (p → r) ∧ (q → r)] → r

11. Show that each conditional statement in Exercise 9 is a
tautology without using truth tables.

12. Show that each conditional statement in Exercise 10 is a
tautology without using truth tables.

13. Use truth tables to verify the absorption laws.

a) p ∨ (p ∧ q) ≡ p b) p ∧ (p ∨ q) ≡ p

14. Determine whether (¬p ∧ (p → q)) → ¬q is a tautol-
ogy.

15. Determine whether (¬q ∧ (p → q)) → ¬p is a tautol-
ogy.

Each of Exercises 16–28 asks you to show that two compound
propositions are logically equivalent. To do this, either show
that both sides are true, or that both sides are false, for exactly
the same combinations of truth values of the propositional
variables in these expressions (whichever is easier).

16. Show that p ↔ q and (p ∧ q) ∨ (¬p ∧ ¬q) are logically
equivalent.

17. Show that ¬(p ↔ q) and p ↔ ¬q are logically equiva-
lent.

18. Show that p → q and ¬q → ¬p are logically equivalent.

19. Show that ¬p ↔ q and p ↔ ¬q are logically equivalent.

20. Show that ¬(p ⊕ q) and p ↔ q are logically equivalent.

21. Show that ¬(p ↔ q) and ¬p ↔ q are logically equiva-
lent.

22. Show that (p → q) ∧ (p → r) and p → (q ∧ r) are log-
ically equivalent.

23. Show that (p → r) ∧ (q → r) and (p ∨ q) → r are log-
ically equivalent.

24. Show that (p → q) ∨ (p → r) and p → (q ∨ r) are log-
ically equivalent.

25. Show that (p → r) ∨ (q → r) and (p ∧ q) → r are log-
ically equivalent.

26. Show that ¬p → (q → r) and q → (p ∨ r) are logically
equivalent.

27. Show that p ↔ q and (p → q) ∧ (q → p) are logically
equivalent.

28. Show that p ↔ q and ¬p ↔ ¬q are logically equivalent.

29. Show that (p → q) ∧ (q → r) → (p → r) is a tautol-
ogy.

30. Show that (p ∨ q) ∧ (¬p ∨ r) → (q ∨ r) is a tautology.

31. Show that (p → q) → r and p → (q → r) are not log-
ically equivalent.

32. Show that (p ∧ q) → r and (p → r) ∧ (q → r) are not
logically equivalent.

33. Show that (p → q) → (r → s) and (p → r) →
(q → s) are not logically equivalent.

The dual of a compound proposition that contains only the
logical operators ∨, ∧, and ¬ is the compound proposition
obtained by replacing each ∨ by ∧, each ∧ by ∨, each T

by F, and each F by T. The dual of s is denoted by s∗.

34. Find the dual of each of these compound propositions.

a) p ∨ ¬q b) p ∧ (q ∨ (r ∧ T))

c) (p ∧ ¬q) ∨ (q ∧ F)

35. Find the dual of each of these compound propositions.

a) p ∧ ¬q ∧ ¬r b) (p ∧ q ∧ r) ∨ s

c) (p ∨ F) ∧ (q ∨ T)

36. When does s∗ = s, where s is a compound proposition?

37. Show that (s∗)∗ = s when s is a compound proposition.

38. Show that the logical equivalences in Table 6, except for
the double negation law, come in pairs, where each pair
contains compound propositions that are duals of each
other.

∗∗39. Why are the duals of two equivalent compound proposi-
tions also equivalent, where these compound propositions
contain only the operators ∧, ∨, and ¬?

40. Find a compound proposition involving the propositional
variables p, q, and r that is true when p and q are true
and r is false, but is false otherwise. [Hint: Use a con-
junction of each propositional variable or its negation.]

41. Find a compound proposition involving the propositional
variables p, q, and r that is true when exactly two of p, q,
and r are true and is false otherwise. [Hint: Form a dis-
junction of conjunctions. Include a conjunction for each
combination of values for which the compound proposi-
tion is true. Each conjunction should include each of the
three propositional variables or its negations.]

42. Suppose that a truth table in n propositional variables is
specified. Show that a compound proposition with this
truth table can be formed by taking the disjunction of
conjunctions of the variables or their negations, with one
conjunction included for each combination of values for
which the compound proposition is true. The resulting
compound proposition is said to be in disjunctive nor-

mal form.

A collection of logical operators is called functionally com-

plete if every compound proposition is logically equivalent to
a compound proposition involving only these logical opera-
tors.

43. Show that ¬, ∧, and ∨ form a functionally complete col-
lection of logical operators. [Hint: Use the fact that every
compound proposition is logically equivalent to one in
disjunctive normal form, as shown in Exercise 42.]

36 1 / The Foundations: Logic and Proofs

∗44. Show that ¬ and ∧ form a functionally complete col-
lection of logical operators. [Hint: First use a De Mor-
gan law to show that p ∨ q is logically equivalent to
¬(¬p ∧ ¬q).]

∗45. Show that ¬ and ∨ form a functionally complete collec-
tion of logical operators.

The following exercises involve the logical operators NAND

and NOR. The proposition p NAND q is true when either p

or q, or both, are false; and it is false when both p and q are
true. The proposition p NOR q is true when both p and q are
false, and it is false otherwise. The propositions p NAND q

and p NOR q are denoted by p | q and p ↓ q, respectively.
(The operators | and ↓ are called the Sheffer stroke and the
Peirce arrow after H. M. Sheffer and C. S. Peirce, respec-
tively.)

46. Construct a truth table for the logical operator NAND.

47. Show that p | q is logically equivalent to ¬(p ∧ q).

48. Construct a truth table for the logical operator NOR.

49. Show that p ↓ q is logically equivalent to ¬(p ∨ q).

50. In this exercise we will show that {↓} is a functionally
complete collection of logical operators.

a) Show that p ↓ p is logically equivalent to ¬p.
b) Show that (p ↓ q) ↓ (p ↓ q) is logically equivalent

to p ∨ q.
c) Conclude from parts (a) and (b), and Exercise 49, that

{↓} is a functionally complete collection of logical
operators.

∗51. Find a compound proposition logically equivalent to
p → q using only the logical operator ↓.

52. Show that {|} is a functionally complete collection of log-
ical operators.

53. Show that p | q and q | p are equivalent.

54. Show that p | (q | r) and (p | q) | r are not equivalent,
so that the logical operator | is not associative.

∗55. How many different truth tables of compound proposi-
tions are there that involve the propositional variables p

and q?

56. Show that if p, q, and r are compound propositions such
that p and q are logically equivalent and q and r are log-
ically equivalent, then p and r are logically equivalent.

57. The following sentence is taken from the specification of
a telephone system: “If the directory database is opened,
then the monitor is put in a closed state, if the system is
not in its initial state.” This specification is hard to under-

stand because it involves two conditional statements. Find
an equivalent, easier-to-understand specification that in-
volves disjunctions and negations but not conditional
statements.

58. How many of the disjunctions p ∨ ¬q, ¬p ∨ q, q ∨ r ,
q ∨ ¬r , and ¬q ∨ ¬r can be made simultaneously true
by an assignment of truth values to p, q, and r?

59. How many of the disjunctions p ∨ ¬q ∨ s, ¬p ∨
¬r ∨ s, ¬p ∨ ¬r ∨ ¬s, ¬p ∨ q ∨ ¬s, q ∨ r ∨ ¬s,
q ∨ ¬r ∨ ¬s, ¬p ∨ ¬q ∨ ¬s, p ∨ r ∨ s, and p ∨ r ∨¬s

can be made simultaneously true by an assignment of
truth values to p, q, r , and s?

60. Show that the negation of an unsatisfiable compound
proposition is a tautology and the negation of a compound
proposition that is a tautology is unsatisfiable.

61. Determine whether each of these compound propositions
is satisfiable.

a) (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q)

b) (p → q) ∧ (p → ¬q) ∧ (¬p → q) ∧ (¬p → ¬q)

c) (p ↔ q) ∧ (¬p ↔ q)

62. Determine whether each of these compound propositions
is satisfiable.

a) (p ∨ q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬s) ∧ (p ∨ ¬r ∨ ¬s) ∧
(¬p ∨ ¬q ∨ ¬s) ∧ (p ∨ q ∨ ¬s)

b) (¬p ∨ ¬q ∨ r) ∧ (¬p ∨ q ∨ ¬s) ∧ (p ∨ ¬q ∨
¬s) ∧ (¬p ∨ ¬r ∨ ¬s) ∧ (p ∨ q ∨ ¬r) ∧ (p ∨
¬r ∨ ¬s)

c) (p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ ¬s) ∧ (q ∨ ¬r ∨ s) ∧
(¬p ∨ r ∨ s) ∧ (¬p ∨ q ∨ ¬s) ∧ (p ∨ ¬q ∨ ¬r) ∧
(¬p ∨ ¬q ∨ s) ∧ (¬p ∨ ¬r ∨ ¬s)

63. Show how the solution of a given 4 × 4 Sudoku puzzle
can be found by solving a satisfiability problem.

64. Construct a compound proposition that asserts that ev-
ery cell of a 9 × 9 Sudoku puzzle contains at least one
number.

65. Explain the steps in the construction of the compound
proposition given in the text that asserts that every col-
umn of a 9 × 9 Sudoku puzzle contains every number.

∗66. Explain the steps in the construction of the compound
proposition given in the text that asserts that each of the
nine 3 × 3 blocks of a 9 × 9 Sudoku puzzle contains ev-
ery number.

1.4 Predicates and Quantifiers

Introduction

Propositional logic, studied in Sections 1.1–1.3, cannot adequately express the meaning of all
statements in mathematics and in natural language. For example, suppose that we know that

“Every computer connected to the university network is functioning properly.”

1.4 Predicates and Quantifiers 37

No rules of propositional logic allow us to conclude the truth of the statement

“MATH3 is functioning properly,”

where MATH3 is one of the computers connected to the university network. Likewise, we cannot
use the rules of propositional logic to conclude from the statement

“CS2 is under attack by an intruder,”

where CS2 is a computer on the university network, to conclude the truth of

“There is a computer on the university network that is under attack by an intruder.”

In this section we will introduce a more powerful type of logic called predicate logic. We
will see how predicate logic can be used to express the meaning of a wide range of statements
in mathematics and computer science in ways that permit us to reason and explore relationships
between objects. To understand predicate logic, we first need to introduce the concept of a
predicate. Afterward, we will introduce the notion of quantifiers, which enable us to reason with
statements that assert that a certain property holds for all objects of a certain type and with
statements that assert the existence of an object with a particular property.

Predicates

Statements involving variables, such as

“x > 3,” “x = y + 3,” “x + y = z,”

and

“computer x is under attack by an intruder,”

and

“computer x is functioning properly,”

are often found in mathematical assertions, in computer programs, and in system specifications.
These statements are neither true nor false when the values of the variables are not specified. In
this section, we will discuss the ways that propositions can be produced from such statements.

The statement “x is greater than 3” has two parts. The first part, the variable x, is the subject
of the statement. The second part—the predicate, “is greater than 3”—refers to a property that
the subject of the statement can have. We can denote the statement “x is greater than 3” by P(x),
where P denotes the predicate “is greater than 3” and x is the variable. The statement P(x) is
also said to be the value of the propositional function P at x. Once a value has been assigned
to the variable x, the statement P(x) becomes a proposition and has a truth value. Consider
Examples 1 and 2.

EXAMPLE 1 Let P(x) denote the statement “x > 3.” What are the truth values of P(4) and P(2)?

Solution: We obtain the statement P(4) by setting x = 4 in the statement “x > 3.” Hence,
P(4), which is the statement “4 > 3,” is true. However, P(2), which is the statement “2 > 3,”
is false. ▲

38 1 / The Foundations: Logic and Proofs

EXAMPLE 2 Let A(x) denote the statement “Computer x is under attack by an intruder.” Suppose that of the
computers on campus, only CS2 and MATH1 are currently under attack by intruders. What are
truth values of A(CS1), A(CS2), and A(MATH1)?

Solution: We obtain the statement A(CS1) by setting x = CS1 in the statement “Computer x

is under attack by an intruder.” Because CS1 is not on the list of computers currently under
attack, we conclude that A(CS1) is false. Similarly, because CS2 and MATH1 are on the list of
computers under attack, we know that A(CS2) and A(MATH1) are true. ▲

We can also have statements that involve more than one variable. For instance, consider the
statement “x = y + 3.” We can denote this statement by Q(x, y), where x and y are variables
and Q is the predicate. When values are assigned to the variables x and y, the statement Q(x, y)

has a truth value.

EXAMPLE 3 Let Q(x, y) denote the statement “x = y + 3.” What are the truth values of the propositions
Q(1, 2) and Q(3, 0)?

Solution: To obtain Q(1, 2), set x = 1 and y = 2 in the statement Q(x, y). Hence, Q(1, 2) is
the statement “1 = 2 + 3,” which is false. The statement Q(3, 0) is the proposition “3 = 0 + 3,”
which is true. ▲

CHARLES SANDERS PEIRCE (1839–1914) Many consider Charles Peirce, born in Cambridge, Mas-
sachusetts, to be the most original and versatile American intellect. He made important contributions to an
amazing number of disciplines, including mathematics, astronomy, chemistry, geodesy, metrology, engineer-
ing, psychology, philology, the history of science, and economics. Peirce was also an inventor, a lifelong student
of medicine, a book reviewer, a dramatist and an actor, a short story writer, a phenomenologist, a logician, and a
metaphysician. He is noted as the preeminent system-building philosopher competent and productive in logic,
mathematics, and a wide range of sciences. He was encouraged by his father, Benjamin Peirce, a professor of
mathematics and natural philosophy at Harvard, to pursue a career in science. Instead, he decided to study logic
and scientific methodology. Peirce attended Harvard (1855–1859) and received a Harvard master of arts degree
(1862) and an advanced degree in chemistry from the Lawrence Scientific School (1863).

In 1861, Peirce became an aide in the U.S. Coast Survey, with the goal of better understanding scientific methodology. His service
for the Survey exempted him from military service during the Civil War. While working for the Survey, Peirce did astronomical and
geodesic work. He made fundamental contributions to the design of pendulums and to map projections, applying new mathematical
developments in the theory of elliptic functions. He was the first person to use the wavelength of light as a unit of measurement.
Peirce rose to the position of Assistant for the Survey, a position he held until forced to resign in 1891 when he disagreed with the
direction taken by the Survey’s new administration.

While making his living from work in the physical sciences, Peirce developed a hierarchy of sciences, with mathematics at the
top rung, in which the methods of one science could be adapted for use by those sciences under it in the hierarchy. During this time,
he also founded the American philosophical theory of pragmatism.

The only academic position Peirce ever held was lecturer in logic at Johns Hopkins University in Baltimore (1879–1884). His
mathematical work during this time included contributions to logic, set theory, abstract algebra, and the philosophy of mathematics.
His work is still relevant today, with recent applications of this work on logic to artificial intelligence. Peirce believed that the study
of mathematics could develop the mind’s powers of imagination, abstraction, and generalization. His diverse activities after retiring
from the Survey included writing for periodicals, contributing to scholarly dictionaries, translating scientific papers, guest lecturing,
and textbook writing. Unfortunately, his income from these pursuits was insufficient to protect him and his second wife from abject
poverty. He was supported in his later years by a fund created by his many admirers and administered by the philosopher William
James, his lifelong friend. Although Peirce wrote and published voluminously in a vast range of subjects, he left more than 100,000
pages of unpublished manuscripts. Because of the difficulty of studying his unpublished writings, scholars have only recently started
to understand some of his varied contributions. A group of people is devoted to making his work available over the Internet to bring
a better appreciation of Peirce’s accomplishments to the world.

1.4 Predicates and Quantifiers 39

EXAMPLE 4 Let A(c, n) denote the statement “Computer c is connected to network n,” where c is a variable
representing a computer and n is a variable representing a network. Suppose that the computer
MATH1 is connected to network CAMPUS2, but not to network CAMPUS1. What are the
values of A(MATH1, CAMPUS1) and A(MATH1, CAMPUS2)?

Solution: Because MATH1 is not connected to the CAMPUS1 network, we see that A(MATH1,
CAMPUS1) is false. However, because MATH1 is connected to the CAMPUS2 network, we
see that A(MATH1, CAMPUS2) is true. ▲

Similarly, we can let R(x, y, z) denote the statement ‘̀x + y = z.” When values are assigned
to the variables x, y, and z, this statement has a truth value.

EXAMPLE 5 What are the truth values of the propositions R(1, 2, 3) and R(0, 0, 1)?

Solution: The proposition R(1, 2, 3) is obtained by setting x = 1, y = 2, and z = 3 in the
statement R(x, y, z). We see that R(1, 2, 3) is the statement “1 + 2 = 3,” which is true. Also
note that R(0, 0, 1), which is the statement “0 + 0 = 1,” is false. ▲

In general, a statement involving the n variables x1, x2, . . . , xn can be denoted by

P(x1, x2, . . . , xn).

A statement of the form P(x1, x2, . . . , xn) is the value of the propositional function P at the
n-tuple (x1, x2, . . . , xn), and P is also called an n-place predicate or a n-ary predicate.

Propositional functions occur in computer programs, as Example 6 demonstrates.

EXAMPLE 6 Consider the statement

if x > 0 then x := x + 1.

When this statement is encountered in a program, the value of the variable x at that point in the
execution of the program is inserted into P(x), which is “x > 0.” If P(x) is true for this value
of x, the assignment statement x := x + 1 is executed, so the value of x is increased by 1. If
P(x) is false for this value of x, the assignment statement is not executed, so the value of x is
not changed. ▲

PRECONDITIONS AND POSTCONDITIONS Predicates are also used to establish the
correctness of computer programs, that is, to show that computer programs always produce the
desired output when given valid input. (Note that unless the correctness of a computer program
is established, no amount of testing can show that it produces the desired output for all input
values, unless every input value is tested.) The statements that describe valid input are known
as preconditions and the conditions that the output should satisfy when the program has run
are known as postconditions. As Example 7 illustrates, we use predicates to describe both
preconditions and postconditions. We will study this process in greater detail in Section 5.5.

EXAMPLE 7 Consider the following program, designed to interchange the values of two variables x and y.

temp := x

x := y

y := temp

Find predicates that we can use as the precondition and the postcondition to verify the correctness
of this program. Then explain how to use them to verify that for all valid input the program does
what is intended.

40 1 / The Foundations: Logic and Proofs

Solution: For the precondition, we need to express that x and y have particular values before
we run the program. So, for this precondition we can use the predicate P(x, y), where P(x, y)

is the statement “x = a and y = b,” where a and b are the values of x and y before we run the
program. Because we want to verify that the program swaps the values of x and y for all input
values, for the postcondition we can use Q(x, y), where Q(x, y) is the statement “x = b and
y = a.”

To verify that the program always does what it is supposed to do, suppose that the precon-
dition P(x, y) holds. That is, we suppose that the statement “x = a and y = b” is true. This
means that x = a and y = b. The first step of the program, temp := x, assigns the value of x to
the variable temp, so after this step we know that x = a, temp = a, and y = b. After the second
step of the program, x := y, we know that x = b, temp = a, and y = b. Finally, after the third
step, we know that x = b, temp = a, and y = a. Consequently, after this program is run, the
postcondition Q(x, y) holds, that is, the statement “x = b and y = a” is true. ▲

Quantifiers

When the variables in a propositional function are assigned values, the resulting statement
becomes a proposition with a certain truth value. However, there is another important way, called
quantification, to create a proposition from a propositional function. Quantification expresses
the extent to which a predicate is true over a range of elements. In English, the words all, some,
many, none, and few are used in quantifications. We will focus on two types of quantification
here: universal quantification, which tells us that a predicate is true for every element under
consideration, and existential quantification, which tells us that there is one or more element
under consideration for which the predicate is true. The area of logic that deals with predicates
and quantifiers is called the predicate calculus.

THE UNIVERSAL QUANTIFIER Many mathematical statements assert that a property is
true for all values of a variable in a particular domain, called the domain of discourse (or
the universe of discourse), often just referred to as the domain. Such a statement is expressed
using universal quantification. The universal quantification of P(x) for a particular domain is the
proposition that asserts that P(x) is true for all values of x in this domain. Note that the domain
specifies the possible values of the variable x. The meaning of the universal quantification
of P(x) changes when we change the domain. The domain must always be specified when a
universal quantifier is used; without it, the universal quantification of a statement is not defined.

DEFINITION 1 The universal quantification of P(x) is the statement

“P(x) for all values of x in the domain.”

The notation ∀xP (x) denotes the universal quantification of P(x). Here ∀ is called the
universal quantifier. We read ∀xP (x) as “for all xP (x)” or “for every xP (x).” An element
for which P(x) is false is called a counterexample of ∀xP (x).

The meaning of the universal quantifier is summarized in the first row of Table 1. We
illustrate the use of the universal quantifier in Examples 8–13.

1.4 Predicates and Quantifiers 41

TABLE 1 Quantifiers.

Statement When True? When False?

∀xP (x) P (x) is true for every x. There is an x for which P(x) is false.

∃xP (x) There is an x for which P(x) is true. P(x) is false for every x.

EXAMPLE 8 Let P(x) be the statement “x + 1 > x.” What is the truth value of the quantification ∀xP (x),
where the domain consists of all real numbers?

Solution: Because P(x) is true for all real numbers x, the quantification

∀xP (x)

is true. ▲

Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers
are nonempty. Note that if the domain is empty, then ∀xP (x) is true for any propositional
function P(x) because there are no elements x in the domain for which P(x) is false.

Remember that the truth

value of ∀xP (x) depends

on the domain!

Besides “for all” and “for every,” universal quantification can be expressed in many other
ways, including “all of,” “for each,” “given any,” “for arbitrary,” “for each,” and “for any.”

Remark: It is best to avoid using “for any x” because it is often ambiguous as to whether “any”
means “every” or “some.” In some cases, “any” is unambiguous, such as when it is used in
negatives, for example, “there is not any reason to avoid studying.”

A statement ∀xP (x) is false, where P(x) is a propositional function, if and only if P(x) is not
always true when x is in the domain. One way to show that P(x) is not always true when x is in the
domain is to find a counterexample to the statement ∀xP (x). Note that a single counterexample is
all we need to establish that∀xP (x) is false. Example 9 illustrates how counterexamples are used.

EXAMPLE 9 Let Q(x) be the statement “x < 2.” What is the truth value of the quantification ∀xQ(x), where
the domain consists of all real numbers?

Solution: Q(x) is not true for every real number x, because, for instance, Q(3) is false. That is,
x = 3 is a counterexample for the statement ∀xQ(x). Thus

∀xQ(x)

is false. ▲

EXAMPLE 10 Suppose that P(x) is “x2 > 0.” To show that the statement ∀xP (x) is false where the uni-
verse of discourse consists of all integers, we give a counterexample. We see that x = 0 is a
counterexample because x2 = 0 when x = 0, so that x2 is not greater than 0 when x = 0. ▲

Looking for counterexamples to universally quantified statements is an important activity
in the study of mathematics, as we will see in subsequent sections of this book.

When all the elements in the domain can be listed—say, x1, x2, . . ., xn—it follows that the
universal quantification ∀xP (x) is the same as the conjunction

P(x1) ∧ P(x2) ∧ · · · ∧ P(xn),

because this conjunction is true if and only if P(x1), P (x2), . . . , P (xn) are all true.

42 1 / The Foundations: Logic and Proofs

EXAMPLE 11 What is the truth value of ∀xP (x), where P(x) is the statement “x2 < 10” and the domain
consists of the positive integers not exceeding 4?

Solution: The statement ∀xP (x) is the same as the conjunction

P(1) ∧ P(2) ∧ P(3) ∧ P(4),

because the domain consists of the integers 1, 2, 3, and 4. Because P(4), which is the statement
“42 < 10,” is false, it follows that ∀xP (x) is false. ▲

EXAMPLE 12 What does the statement ∀xN(x) mean if N(x) is “Computer x is connected to the network”
and the domain consists of all computers on campus?

Solution: The statement ∀xN(x) means that for every computer x on campus, that computer x

is connected to the network. This statement can be expressed in English as “Every computer on
campus is connected to the network.” ▲

As we have pointed out, specifying the domain is mandatory when quantifiers are used. The
truth value of a quantified statement often depends on which elements are in this domain, as
Example 13 shows.

EXAMPLE 13 What is the truth value of ∀x(x2 ≥ x) if the domain consists of all real numbers? What is the
truth value of this statement if the domain consists of all integers?

Solution: The universal quantification ∀x(x2 ≥ x), where the domain consists of all real num-
bers, is false. For example, (1

2)2 ̸≥ 1
2 . Note that x2 ≥ x if and only if x2 − x = x(x − 1) ≥ 0.

Consequently, x2 ≥ x if and only if x ≤ 0 or x ≥ 1. It follows that ∀x(x2 ≥ x) is false if the
domain consists of all real numbers (because the inequality is false for all real numbers x with
0 < x < 1). However, if the domain consists of the integers, ∀x(x2 ≥ x) is true, because there
are no integers x with 0 < x < 1. ▲

THE EXISTENTIAL QUANTIFIER Many mathematical statements assert that there is an
element with a certain property. Such statements are expressed using existential quantification.
With existential quantification, we form a proposition that is true if and only if P(x) is true for
at least one value of x in the domain.

DEFINITION 2 The existential quantification of P(x) is the proposition

“There exists an element x in the domain such that P(x).”

We use the notation ∃xP (x) for the existential quantification of P(x). Here ∃ is called the
existential quantifier.

A domain must always be specified when a statement ∃xP (x) is used. Furthermore, the
meaning of ∃xP (x) changes when the domain changes. Without specifying the domain, the
statement ∃xP (x) has no meaning.

Besides the phrase “there exists,” we can also express existential quantification in many other
ways, such as by using the words “for some,” “for at least one,” or “there is.” The existential
quantification ∃xP (x) is read as

“There is an x such that P(x),”
“There is at least one x such that P(x),”

or

“For some xP (x).”

1.4 Predicates and Quantifiers 43

The meaning of the existential quantifier is summarized in the second row of Table 1. We
illustrate the use of the existential quantifier in Examples 14–16.

EXAMPLE 14 Let P(x) denote the statement “x > 3.” What is the truth value of the quantification ∃xP (x),
where the domain consists of all real numbers?

Solution: Because “x > 3” is sometimes true—for instance, when x = 4—the existential quan-
tification of P(x), which is ∃xP (x), is true. ▲

Observe that the statement ∃xP (x) is false if and only if there is no element x in the domain
for which P(x) is true. That is, ∃xP (x) is false if and only if P(x) is false for every element of
the domain. We illustrate this observation in Example 15.

EXAMPLE 15 Let Q(x) denote the statement “x = x + 1.” What is the truth value of the quantification ∃xQ(x),
where the domain consists of all real numbers?

Solution: Because Q(x) is false for every real number x, the existential quantification of Q(x),
which is ∃xQ(x), is false. ▲

Remember that the truth

value of ∃xP (x) depends

on the domain! Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers
are nonempty. If the domain is empty, then ∃xQ(x) is false whenever Q(x) is a propositional
function because when the domain is empty, there can be no element x in the domain for which
Q(x) is true.

When all elements in the domain can be listed—say, x1, x2, . . . , xn— the existential quan-
tification ∃xP (x) is the same as the disjunction

P(x1) ∨ P(x2) ∨ · · · ∨ P(xn),

because this disjunction is true if and only if at least one of P(x1), P (x2), . . . , P (xn) is true.

EXAMPLE 16 What is the truth value of ∃xP (x), where P(x) is the statement “x2 > 10” and the universe of
discourse consists of the positive integers not exceeding 4?

Solution: Because the domain is {1, 2, 3, 4}, the proposition ∃xP (x) is the same as the disjunc-
tion

P(1) ∨ P(2) ∨ P(3) ∨ P(4).

Because P(4), which is the statement “42 > 10,” is true, it follows that ∃xP (x) is true. ▲

It is sometimes helpful to think in terms of looping and searching when determining the
truth value of a quantification. Suppose that there are n objects in the domain for the variable x.
To determine whether ∀xP (x) is true, we can loop through all n values of x to see whether
P(x) is always true. If we encounter a value x for which P(x) is false, then we have shown that
∀xP (x) is false. Otherwise, ∀xP (x) is true. To see whether ∃xP (x) is true, we loop through
the n values of x searching for a value for which P(x) is true. If we find one, then ∃xP (x) is
true. If we never find such an x, then we have determined that ∃xP (x) is false. (Note that this
searching procedure does not apply if there are infinitely many values in the domain. However,
it is still a useful way of thinking about the truth values of quantifications.)

44 1 / The Foundations: Logic and Proofs

THE UNIQUENESS QUANTIFIER We have now introduced universal and existential quan-
tifiers. These are the most important quantifiers in mathematics and computer science. However,
there is no limitation on the number of different quantifiers we can define, such as “there are
exactly two,” “there are no more than three,” “there are at least 100,” and so on. Of these other
quantifiers, the one that is most often seen is the uniqueness quantifier, denoted by ∃! or ∃1.
The notation ∃!xP (x) [or ∃1xP (x)] states “There exists a unique x such that P(x) is true.”
(Other phrases for uniqueness quantification include “there is exactly one” and “there is one and
only one.”) For instance, ∃!x(x − 1 = 0), where the domain is the set of real numbers, states
that there is a unique real number x such that x − 1 = 0. This is a true statement, as x = 1 is the
unique real number such that x − 1 = 0. Observe that we can use quantifiers and propositional
logic to express uniqueness (see Exercise 52 in Section 1.5), so the uniqueness quantifier can
be avoided. Generally, it is best to stick with existential and universal quantifiers so that rules
of inference for these quantifiers can be used.

Quantifiers with Restricted Domains

An abbreviated notation is often used to restrict the domain of a quantifier. In this nota-
tion, a condition a variable must satisfy is included after the quantifier. This is illustrated in
Example 17. We will also describe other forms of this notation involving set membership in
Section 2.1.

EXAMPLE 17 What do the statements ∀x < 0 (x2 > 0), ∀y ̸= 0 (y3 ̸= 0), and ∃z > 0 (z2 = 2) mean, where
the domain in each case consists of the real numbers?

Solution: The statement ∀x < 0 (x2 > 0) states that for every real number x with x < 0, x2 > 0.
That is, it states “The square of a negative real number is positive.” This statement is the same
as ∀x(x < 0 → x2 > 0).

The statement ∀y ̸= 0 (y3 ̸= 0) states that for every real number y with y ̸= 0, we have
y3 ̸= 0. That is, it states “The cube of every nonzero real number is nonzero.” Note that this
statement is equivalent to ∀y(y ̸= 0 → y3 ̸= 0).

Finally, the statement ∃z > 0 (z2 = 2) states that there exists a real number z with z > 0
such that z2 = 2. That is, it states “There is a positive square root of 2.” This statement is
equivalent to ∃z(z > 0 ∧ z2 = 2). ▲

Note that the restriction of a universal quantification is the same as the universal quantifi-
cation of a conditional statement. For instance, ∀x < 0 (x2 > 0) is another way of expressing
∀x(x < 0 → x2 > 0). On the other hand, the restriction of an existential quantification is the
same as the existential quantification of a conjunction. For instance, ∃z > 0 (z2 = 2) is another
way of expressing ∃z(z > 0 ∧ z2 = 2).

Precedence of Quantifiers

The quantifiers ∀ and ∃ have higher precedence than all logical operators from propositional
calculus. For example, ∀xP (x) ∨ Q(x) is the disjunction of ∀xP (x) and Q(x). In other words,
it means (∀xP (x)) ∨ Q(x) rather than ∀x(P (x) ∨ Q(x)).

Binding Variables

When a quantifier is used on the variable x, we say that this occurrence of the variable is bound.
An occurrence of a variable that is not bound by a quantifier or set equal to a particular value
is said to be free. All the variables that occur in a propositional function must be bound or set
equal to a particular value to turn it into a proposition. This can be done using a combination of
universal quantifiers, existential quantifiers, and value assignments.

1.4 Predicates and Quantifiers 45

The part of a logical expression to which a quantifier is applied is called the scope of this
quantifier. Consequently, a variable is free if it is outside the scope of all quantifiers in the
formula that specify this variable.

EXAMPLE 18 In the statement ∃x(x + y = 1), the variable x is bound by the existential quantification ∃x, but
the variable y is free because it is not bound by a quantifier and no value is assigned to this
variable. This illustrates that in the statement ∃x(x + y = 1), x is bound, but y is free.

In the statement ∃x(P (x) ∧ Q(x)) ∨ ∀xR(x), all variables are bound. The scope of the first
quantifier, ∃x, is the expression P(x) ∧ Q(x) because ∃x is applied only to P(x) ∧ Q(x), and
not to the rest of the statement. Similarly, the scope of the second quantifier, ∀x, is the expression
R(x). That is, the existential quantifier binds the variable x in P(x) ∧ Q(x) and the universal
quantifier ∀x binds the variable x in R(x). Observe that we could have written our statement
using two different variables x and y, as ∃x(P (x) ∧ Q(x)) ∨ ∀yR(y), because the scopes of
the two quantifiers do not overlap. The reader should be aware that in common usage, the same
letter is often used to represent variables bound by different quantifiers with scopes that do not
overlap. ▲

Logical Equivalences Involving Quantifiers

In Section 1.3 we introduced the notion of logical equivalences of compound propositions. We
can extend this notion to expressions involving predicates and quantifiers.

DEFINITION 3 Statements involving predicates and quantifiers are logically equivalent if and only if they
have the same truth value no matter which predicates are substituted into these statements
and which domain of discourse is used for the variables in these propositional functions.
We use the notation S ≡ T to indicate that two statements S and T involving predicates and
quantifiers are logically equivalent.

Example 19 illustrates how to show that two statements involving predicates and quantifiers
are logically equivalent.

EXAMPLE 19 Show that ∀x(P (x) ∧ Q(x)) and ∀xP (x) ∧ ∀xQ(x) are logically equivalent (where the same
domain is used throughout). This logical equivalence shows that we can distribute a universal
quantifier over a conjunction. Furthermore, we can also distribute an existential quantifier over
a disjunction. However, we cannot distribute a universal quantifier over a disjunction, nor can
we distribute an existential quantifier over a conjunction. (See Exercises 50 and 51.)

Solution: To show that these statements are logically equivalent, we must show that they always
take the same truth value, no matter what the predicates P and Q are, and no matter which
domain of discourse is used. Suppose we have particular predicates P and Q, with a common
domain. We can show that ∀x(P (x) ∧ Q(x)) and ∀xP (x) ∧ ∀xQ(x) are logically equivalent
by doing two things. First, we show that if ∀x(P (x) ∧ Q(x)) is true, then ∀xP (x) ∧ ∀xQ(x)

is true. Second, we show that if ∀xP (x) ∧ ∀xQ(x) is true, then ∀x(P (x) ∧ Q(x)) is true.
So, suppose that ∀x(P (x) ∧ Q(x)) is true. This means that if a is in the domain, then

P(a) ∧ Q(a) is true. Hence, P(a) is true and Q(a) is true. Because P(a) is true and Q(a) is
true for every element in the domain, we can conclude that ∀xP (x) and ∀xQ(x) are both true.
This means that ∀xP (x) ∧ ∀xQ(x) is true.

Next, suppose that ∀xP (x) ∧ ∀xQ(x) is true. It follows that ∀xP (x) is true and ∀xQ(x) is
true. Hence, if a is in the domain, then P(a) is true and Q(a) is true [because P(x) and Q(x)

are both true for all elements in the domain, there is no conflict using the same value of a here].

46 1 / The Foundations: Logic and Proofs

It follows that for all a, P(a) ∧ Q(a) is true. It follows that ∀x(P (x) ∧ Q(x)) is true. We can
now conclude that

∀x(P (x) ∧ Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x). ▲

Negating Quantified Expressions

We will often want to consider the negation of a quantified expression. For instance, consider
the negation of the statement

“Every student in your class has taken a course in calculus.”

This statement is a universal quantification, namely,

∀xP (x),

where P(x) is the statement “x has taken a course in calculus” and the domain consists of the
students in your class. The negation of this statement is “It is not the case that every student in
your class has taken a course in calculus.” This is equivalent to “There is a student in your class
who has not taken a course in calculus.” And this is simply the existential quantification of the
negation of the original propositional function, namely,

∃x ¬P(x).

This example illustrates the following logical equivalence:

¬∀xP (x) ≡ ∃x ¬P(x).

To show that ¬∀xP (x) and ∃xP (x) are logically equivalent no matter what the propositional
function P(x) is and what the domain is, first note that ¬∀xP (x) is true if and only if ∀xP (x) is
false. Next, note that ∀xP (x) is false if and only if there is an element x in the domain for which
P(x) is false. This holds if and only if there is an element x in the domain for which ¬P(x) is
true. Finally, note that there is an element x in the domain for which ¬P(x) is true if and only
if ∃x ¬P(x) is true. Putting these steps together, we can conclude that ¬∀xP (x) is true if and
only if ∃x ¬P(x) is true. It follows that ¬∀xP (x) and ∃x ¬P(x) are logically equivalent.

Suppose we wish to negate an existential quantification. For instance, consider the propo-
sition “There is a student in this class who has taken a course in calculus.” This is the existential
quantification

∃xQ(x),

where Q(x) is the statement “x has taken a course in calculus.” The negation of this statement
is the proposition “It is not the case that there is a student in this class who has taken a course in
calculus.” This is equivalent to “Every student in this class has not taken calculus,” which is just
the universal quantification of the negation of the original propositional function, or, phrased in
the language of quantifiers,

∀x ¬Q(x).

This example illustrates the equivalence

¬∃xQ(x) ≡ ∀x ¬Q(x).

To show that ¬∃xQ(x) and ∀x ¬Q(x) are logically equivalent no matter what Q(x) is and what
the domain is, first note that ¬∃xQ(x) is true if and only if ∃xQ(x) is false. This is true if and

1.4 Predicates and Quantifiers 47

TABLE 2 De Morgan’s Laws for Quantifiers.

Negation Equivalent Statement When Is Negation True? When False?

¬∃xP (x) ∀x¬P(x) For every x, P(x) is false. There is an x for which

P(x) is true.

¬∀xP (x) ∃x¬P(x) There is an x for which P(x) is true for every x.

P(x) is false.

only if no x exists in the domain for which Q(x) is true. Next, note that no x exists in the domain
for which Q(x) is true if and only if Q(x) is false for every x in the domain. Finally, note that
Q(x) is false for every x in the domain if and only if ¬Q(x) is true for all x in the domain,
which holds if and only if ∀x¬Q(x) is true. Putting these steps together, we see that ¬∃xQ(x)

is true if and only if ∀x¬Q(x) is true. We conclude that ¬∃xQ(x) and ∀x ¬Q(x) are logically
equivalent.

The rules for negations for quantifiers are called De Morgan’s laws for quantifiers. These
rules are summarized in Table 2.

Remark: When the domain of a predicate P(x) consists of n elements, where n is a positive
integer greater than one, the rules for negating quantified statements are exactly the same as
De Morgan’s laws discussed in Section 1.3. This is why these rules are called De Morgan’s
laws for quantifiers. When the domain has n elements x1, x2, . . . , xn, it follows that ¬∀xP (x)

is the same as ¬(P (x1) ∧ P(x2) ∧ · · · ∧ P(xn)), which is equivalent to ¬P(x1) ∨ ¬P(x2) ∨
· · · ∨ ¬P(xn) by De Morgan’s laws, and this is the same as ∃x¬P(x). Similarly, ¬∃xP (x)

is the same as ¬(P (x1) ∨ P(x2) ∨ · · · ∨ P(xn)), which by De Morgan’s laws is equivalent to
¬P(x1) ∧ ¬P(x2) ∧ · · · ∧ ¬P(xn), and this is the same as ∀x¬P(x).

We illustrate the negation of quantified statements in Examples 20 and 21.

EXAMPLE 20 What are the negations of the statements “There is an honest politician” and “All Americans eat
cheeseburgers”?

Solution: Let H(x) denote “x is honest.” Then the statement “There is an honest politician”
is represented by ∃xH(x), where the domain consists of all politicians. The negation of this
statement is ¬∃xH(x), which is equivalent to ∀x¬H(x). This negation can be expressed as
“Every politician is dishonest.” (Note: In English, the statement “All politicians are not honest”
is ambiguous. In common usage, this statement often means “Not all politicians are honest.”
Consequently, we do not use this statement to express this negation.)

Let C(x) denote “x eats cheeseburgers.” Then the statement “All Americans eat cheese-
burgers” is represented by ∀xC(x), where the domain consists of all Americans. The negation
of this statement is ¬∀xC(x), which is equivalent to ∃x¬C(x). This negation can be expressed
in several different ways, including “Some American does not eat cheeseburgers” and “There
is an American who does not eat cheeseburgers.” ▲

EXAMPLE 21 What are the negations of the statements ∀x(x2 > x) and ∃x(x2 = 2)?

Solution: The negation of ∀x(x2 > x) is the statement ¬∀x(x2 > x), which is equivalent to
∃x¬(x2 > x). This can be rewritten as ∃x(x2 ≤ x). The negation of ∃x(x2 = 2) is the statement
¬∃x(x2 = 2), which is equivalent to ∀x¬(x2 = 2). This can be rewritten as ∀x(x2 ̸= 2). The
truth values of these statements depend on the domain. ▲

We use De Morgan’s laws for quantifiers in Example 22.

48 1 / The Foundations: Logic and Proofs

EXAMPLE 22 Show that ¬∀x(P (x) → Q(x)) and ∃x(P (x) ∧ ¬Q(x)) are logically equivalent.

Solution: By De Morgan’s law for universal quantifiers, we know that ¬∀x(P (x) → Q(x))

and ∃x(¬(P (x) → Q(x))) are logically equivalent. By the fifth logical equivalence in Table 7
in Section 1.3, we know that ¬(P (x) → Q(x)) and P(x) ∧ ¬Q(x) are logically equivalent
for every x. Because we can substitute one logically equivalent expression for another in a
logical equivalence, it follows that ¬∀x(P (x) → Q(x)) and ∃x(P (x) ∧ ¬Q(x)) are logically
equivalent. ▲

Translating from English into Logical Expressions

Translating sentences in English (or other natural languages) into logical expressions is a crucial
task in mathematics, logic programming, artificial intelligence, software engineering, and many
other disciplines. We began studying this topic in Section 1.1, where we used propositions to
express sentences in logical expressions. In that discussion, we purposely avoided sentences
whose translations required predicates and quantifiers. Translating from English to logical ex-
pressions becomes even more complex when quantifiers are needed. Furthermore, there can
be many ways to translate a particular sentence. (As a consequence, there is no “cookbook”
approach that can be followed step by step.) We will use some examples to illustrate how to
translate sentences from English into logical expressions. The goal in this translation is to pro-
duce simple and useful logical expressions. In this section, we restrict ourselves to sentences
that can be translated into logical expressions using a single quantifier; in the next section, we
will look at more complicated sentences that require multiple quantifiers.

EXAMPLE 23 Express the statement “Every student in this class has studied calculus” using predicates and
quantifiers.

Solution: First, we rewrite the statement so that we can clearly identify the appropriate quantifiers
to use. Doing so, we obtain:

“For every student in this class, that student has studied calculus.”

Next, we introduce a variable x so that our statement becomes

“For every student x in this class, x has studied calculus.”

Continuing, we introduce C(x), which is the statement “x has studied calculus.” Consequently,
if the domain for x consists of the students in the class, we can translate our statement as ∀xC(x).

However, there are other correct approaches; different domains of discourse and other
predicates can be used. The approach we select depends on the subsequent reasoning we want
to carry out. For example, we may be interested in a wider group of people than only those in
this class. If we change the domain to consist of all people, we will need to express our statement
as

“For every person x, if person x is a student in this class then x has studied calculus.”

If S(x) represents the statement that person x is in this class, we see that our statement can be
expressed as ∀x(S(x) → C(x)). [Caution! Our statement cannot be expressed as ∀x(S(x) ∧
C(x)) because this statement says that all people are students in this class and have studied
calculus!]

Finally, when we are interested in the background of people in subjects besides calculus,
we may prefer to use the two-variable quantifier Q(x, y) for the statement “student x has
studied subject y.” Then we would replace C(x) by Q(x, calculus) in both approaches to obtain
∀xQ(x, calculus) or ∀x(S(x) → Q(x, calculus)). ▲

1.4 Predicates and Quantifiers 49

In Example 23 we displayed different approaches for expressing the same statement using
predicates and quantifiers. However, we should always adopt the simplest approach that is
adequate for use in subsequent reasoning.

EXAMPLE 24 Express the statements “Some student in this class has visited Mexico” and “Every student in
this class has visited either Canada or Mexico” using predicates and quantifiers.

Solution: The statement “Some student in this class has visited Mexico” means that

“There is a student in this class with the property that the student has visited Mexico.”

We can introduce a variable x, so that our statement becomes

“There is a student x in this class having the property that x has visited Mexico.”

We introduce M(x), which is the statement “x has visited Mexico.” If the domain for x consists
of the students in this class, we can translate this first statement as ∃xM(x).

However, if we are interested in people other than those in this class, we look at the statement
a little differently. Our statement can be expressed as

“There is a person x having the properties that x is a student in this class and x has visited
Mexico.”

In this case, the domain for the variable x consists of all people. We introduce S(x) to represent
“x is a student in this class.” Our solution becomes ∃x(S(x) ∧ M(x)) because the statement is
that there is a person x who is a student in this class and who has visited Mexico. [Caution! Our
statement cannot be expressed as ∃x(S(x) → M(x)), which is true when there is someone not
in the class because, in that case, for such a person x, S(x) → M(x) becomes either F → T or
F → F, both of which are true.]

Similarly, the second statement can be expressed as

“For every x in this class, x has the property that x has visited Mexico or x has visited
Canada.”

(Note that we are assuming the inclusive, rather than the exclusive, or here.) We let C(x) be “x
has visited Canada.” Following our earlier reasoning, we see that if the domain for x consists of
the students in this class, this second statement can be expressed as ∀x(C(x) ∨ M(x)). However,
if the domain for x consists of all people, our statement can be expressed as

“For every person x, if x is a student in this class, then x has visited Mexico or x has visited
Canada.”

In this case, the statement can be expressed as ∀x(S(x) → (C(x) ∨ M(x))).

Instead of using M(x) and C(x) to represent that x has visited Mexico and x has visited
Canada, respectively, we could use a two-place predicate V (x, y) to represent “x has visited
country y.” In this case, V (x, Mexico) and V (x, Canada) would have the same meaning as M(x)

and C(x) and could replace them in our answers. If we are working with many statements that
involve people visiting different countries, we might prefer to use this two-variable approach.
Otherwise, for simplicity, we would stick with the one-variable predicates M(x) and C(x). ▲

50 1 / The Foundations: Logic and Proofs

Using Quantifiers in System Specifications

In Section 1.2 we used propositions to represent system specifications. However, many system
specifications involve predicates and quantifications. This is illustrated in Example 25.

EXAMPLE 25 Use predicates and quantifiers to express the system specifications “Every mail message larger
than one megabyte will be compressed” and “If a user is active, at least one network link will
be available.”

Solution: Let S(m, y) be “Mail message m is larger than y megabytes,” where the variable x has
the domain of all mail messages and the variable y is a positive real number, and let C(m) denote
“Mail message m will be compressed.” Then the specification “Every mail message larger than
one megabyte will be compressed” can be represented as ∀m(S(m, 1) → C(m)).

Remember the rules of

precedence for quantifiers

and logical connectives!

Let A(u) represent “User u is active,” where the variable u has the domain of all users,
let S(n, x) denote “Network link n is in state x,” where n has the domain of all network
links and x has the domain of all possible states for a network link. Then the specifica-
tion “If a user is active, at least one network link will be available” can be represented by
∃uA(u) → ∃nS(n, available). ▲

Examples from Lewis Carroll

Lewis Carroll (really C. L. Dodgson writing under a pseudonym), the author of Alice in Wonder-

land, is also the author of several works on symbolic logic. His books contain many examples
of reasoning using quantifiers. Examples 26 and 27 come from his book Symbolic Logic; other
examples from that book are given in the exercises at the end of this section. These examples
illustrate how quantifiers are used to express various types of statements.

EXAMPLE 26 Consider these statements. The first two are called premises and the third is called the conclusion.
The entire set is called an argument.

“All lions are fierce.”
“Some lions do not drink coffee.”
“Some fierce creatures do not drink coffee.”

(In Section 1.6 we will discuss the issue of determining whether the conclusion is a valid conse-
quence of the premises. In this example, it is.) Let P(x), Q(x), and R(x) be the statements “x is
a lion,” “x is fierce,” and “x drinks coffee,” respectively.Assuming that the domain consists of all
creatures, express the statements in the argument using quantifiers and P(x), Q(x), and R(x).

CHARLES LUTWIDGE DODGSON (1832–1898) We know Charles Dodgson as Lewis Carroll—the
pseudonym he used in his literary works. Dodgson, the son of a clergyman, was the third of 11 children,
all of whom stuttered. He was uncomfortable in the company of adults and is said to have spoken without
stuttering only to young girls, many of whom he entertained, corresponded with, and photographed (sometimes
in poses that today would be considered inappropriate). Although attracted to young girls, he was extremely
puritanical and religious. His friendship with the three young daughters of Dean Liddell led to his writing Alice
in Wonderland, which brought him money and fame.

Dodgson graduated from Oxford in 1854 and obtained his master of arts degree in 1857. He was appointed
lecturer in mathematics at Christ Church College, Oxford, in 1855. He was ordained in the Church of England

in 1861 but never practiced his ministry. His writings published under this real name include articles and books on geometry,
determinants, and the mathematics of tournaments and elections. (He also used the pseudonym Lewis Carroll for his many works
on recreational logic.)

1.4 Predicates and Quantifiers 51

Solution: We can express these statements as:

∀x(P (x) → Q(x)).

∃x(P (x) ∧ ¬R(x)).

∃x(Q(x) ∧ ¬R(x)).

Notice that the second statement cannot be written as ∃x(P (x) → ¬R(x)). The reason is that
P(x) → ¬R(x) is true whenever x is not a lion, so that ∃x(P (x) → ¬R(x)) is true as long as
there is at least one creature that is not a lion, even if every lion drinks coffee. Similarly, the
third statement cannot be written as

∃x(Q(x) → ¬R(x)). ▲

EXAMPLE 27 Consider these statements, of which the first three are premises and the fourth is a valid conclu-
sion.

“All hummingbirds are richly colored.”
“No large birds live on honey.”
“Birds that do not live on honey are dull in color.”
“Hummingbirds are small.”

Let P(x), Q(x), R(x), and S(x) be the statements “x is a hummingbird,” “x is large,” “x lives on
honey,” and “x is richly colored,” respectively. Assuming that the domain consists of all birds,
express the statements in the argument using quantifiers and P(x), Q(x), R(x), and S(x).

Solution: We can express the statements in the argument as

∀x(P (x) → S(x)).

¬∃x(Q(x) ∧ R(x)).

∀x(¬R(x) → ¬S(x)).

∀x(P (x) → ¬Q(x)).

(Note we have assumed that “small” is the same as “not large” and that “dull in color” is the
same as “not richly colored.” To show that the fourth statement is a valid conclusion of the first
three, we need to use rules of inference that will be discussed in Section 1.6.) ▲
Logic Programming

An important type of programming language is designed to reason using the rules of predicate
logic. Prolog (from Programming in Logic), developed in the 1970s by computer scientists
working in the area of artificial intelligence, is an example of such a language. Prolog programs
include a set of declarations consisting of two types of statements, Prolog facts and Prolog

rules. Prolog facts define predicates by specifying the elements that satisfy these predicates.
Prolog rules are used to define new predicates using those already defined by Prolog facts.
Example 28 illustrates these notions.

EXAMPLE 28 Consider a Prolog program given facts telling it the instructor of each class and in which classes
students are enrolled. The program uses these facts to answer queries concerning the professors
who teach particular students. Such a program could use the predicates instructor(p, c) and

52 1 / The Foundations: Logic and Proofs

enrolled(s, c) to represent that professor p is the instructor of course c and that student s

is enrolled in course c, respectively. For example, the Prolog facts in such a program might
include:

instructor(chan,math273)

instructor(patel,ee222)

instructor(grossman,cs301)

enrolled(kevin,math273)

enrolled(juana,ee222)

enrolled(juana,cs301)

enrolled(kiko,math273)

enrolled(kiko,cs301)

(Lowercase letters have been used for entries because Prolog considers names beginning with
an uppercase letter to be variables.)

A new predicate teaches(p, s), representing that professor p teaches student s, can be
defined using the Prolog rule

teaches(P,S) :- instructor(P,C), enrolled(S,C)

which means that teaches(p, s) is true if there exists a class c such that professor p is the
instructor of class c and student s is enrolled in class c. (Note that a comma is used to represent
a conjunction of predicates in Prolog. Similarly, a semicolon is used to represent a disjunction
of predicates.)

Prolog answers queries using the facts and rules it is given. For example, using the facts
and rules listed, the query

?enrolled(kevin,math273)

produces the response

yes

because the fact enrolled(kevin, math273) was provided as input. The query

?enrolled(X,math273)

produces the response

kevin

kiko

To produce this response, Prolog determines all possible values of X for which
enrolled(X, math273) has been included as a Prolog fact. Similarly, to find all the professors
who are instructors in classes being taken by Juana, we use the query

?teaches(X,juana)

This query returns

patel

grossman

▲

1.4 Predicates and Quantifiers 53

Exercises

1. Let P(x) denote the statement “x ≤ 4.” What are these
truth values?

a) P(0) b) P(4) c) P(6)

2. Let P(x) be the statement “the word x contains the
letter a.” What are these truth values?

a) P (orange) b) P (lemon)

c) P (true) d) P (false)

3. Let Q(x, y) denote the statement “x is the capital of y.”
What are these truth values?

a) Q(Denver, Colorado)

b) Q(Detroit, Michigan)

c) Q(Massachusetts, Boston)

d) Q(New York, New York)

4. State the value of x after the statement if P(x) then x := 1
is executed, where P(x) is the statement “x > 1,” if the
value of x when this statement is reached is

a) x = 0. b) x = 1.

c) x = 2.

5. Let P(x) be the statement “x spends more than five hours
every weekday in class,” where the domain for x consists
of all students. Express each of these quantifications in
English.

a) ∃xP (x) b) ∀xP (x)

c) ∃x ¬P(x) d) ∀x ¬P(x)

6. Let N(x) be the statement “x has visited North Dakota,”
where the domain consists of the students in your school.
Express each of these quantifications in English.

a) ∃xN(x) b) ∀xN(x) c) ¬∃xN(x)

d) ∃x¬N(x) e) ¬∀xN(x) f) ∀x¬N(x)

7. Translate these statements into English, where C(x) is “x
is a comedian” and F(x) is “x is funny” and the domain
consists of all people.

a) ∀x(C(x) → F(x)) b) ∀x(C(x) ∧ F(x))

c) ∃x(C(x) → F(x)) d) ∃x(C(x) ∧ F(x))

8. Translate these statements into English, where R(x) is “x
is a rabbit” and H(x) is “x hops” and the domain consists
of all animals.

a) ∀x(R(x) → H(x)) b) ∀x(R(x) ∧ H(x))

c) ∃x(R(x) → H(x)) d) ∃x(R(x) ∧ H(x))

9. Let P(x) be the statement “x can speak Russian” and let
Q(x) be the statement “x knows the computer language
C++.” Express each of these sentences in terms of P(x),
Q(x), quantifiers, and logical connectives. The domain
for quantifiers consists of all students at your school.

a) There is a student at your school who can speak Rus-
sian and who knows C++.

b) There is a student at your school who can speak Rus-
sian but who doesn’t know C++.

c) Every student at your school either can speak Russian
or knows C++.

d) No student at your school can speak Russian or knows
C++.

10. Let C(x) be the statement “x has a cat,” let D(x) be the
statement “x has a dog,” and let F(x) be the statement “x
has a ferret.” Express each of these statements in terms of
C(x), D(x), F(x), quantifiers, and logical connectives.
Let the domain consist of all students in your class.

a) A student in your class has a cat, a dog, and a ferret.

b) All students in your class have a cat, a dog, or a ferret.

c) Some student in your class has a cat and a ferret, but
not a dog.

d) No student in your class has a cat, a dog, and a ferret.

e) For each of the three animals, cats, dogs, and ferrets,
there is a student in your class who has this animal as
a pet.

11. Let P(x) be the statement “x = x2.” If the domain con-
sists of the integers, what are these truth values?

a) P(0) b) P(1) c) P(2)

d) P(−1) e) ∃xP (x) f) ∀xP (x)

12. Let Q(x) be the statement “x + 1 > 2x.” If the domain
consists of all integers, what are these truth values?

a) Q(0) b) Q(−1) c) Q(1)

d) ∃xQ(x) e) ∀xQ(x) f) ∃x¬Q(x)

g) ∀x¬Q(x)

13. Determine the truth value of each of these statements if
the domain consists of all integers.

a) ∀n(n + 1 > n) b) ∃n(2n = 3n)

c) ∃n(n = −n) d) ∀n(3n ≤ 4n)

14. Determine the truth value of each of these statements if
the domain consists of all real numbers.

a) ∃x(x3 = −1) b) ∃x(x4 < x2)

c) ∀x((−x)2 = x2) d) ∀x(2x > x)

15. Determine the truth value of each of these statements if
the domain for all variables consists of all integers.

a) ∀n(n2 ≥ 0) b) ∃n(n2 = 2)

c) ∀n(n2 ≥ n) d) ∃n(n2 < 0)

16. Determine the truth value of each of these statements if
the domain of each variable consists of all real numbers.

a) ∃x(x2 = 2) b) ∃x(x2 = −1)

c) ∀x(x2 + 2 ≥ 1) d) ∀x(x2 ̸= x)

17. Suppose that the domain of the propositional function
P(x) consists of the integers 0, 1, 2, 3, and 4. Write out
each of these propositions using disjunctions, conjunc-
tions, and negations.

a) ∃xP (x) b) ∀xP (x) c) ∃x¬P(x)

d) ∀x¬P(x) e) ¬∃xP (x) f) ¬∀xP (x)

18. Suppose that the domain of the propositional function
P(x) consists of the integers −2, −1, 0, 1, and 2. Write
out each of these propositions using disjunctions, con-
junctions, and negations.

a) ∃xP (x) b) ∀xP (x) c) ∃x¬P(x)

d) ∀x¬P(x) e) ¬∃xP (x) f) ¬∀xP (x)

54 1 / The Foundations: Logic and Proofs

19. Suppose that the domain of the propositional function
P(x) consists of the integers 1, 2, 3, 4, and 5. Express
these statements without using quantifiers, instead using
only negations, disjunctions, and conjunctions.

a) ∃xP (x) b) ∀xP (x)

c) ¬∃xP (x) d) ¬∀xP (x)

e) ∀x((x ̸= 3) → P(x)) ∨ ∃x¬P(x)

20. Suppose that the domain of the propositional function
P(x) consists of −5, −3, −1, 1, 3, and 5. Express these
statements without using quantifiers, instead using only
negations, disjunctions, and conjunctions.

a) ∃xP (x) b) ∀xP (x)

c) ∀x((x ̸= 1) → P(x))

d) ∃x((x ≥ 0) ∧ P(x))

e) ∃x(¬P(x)) ∧ ∀x((x < 0) → P(x))

21. For each of these statements find a domain for which the
statement is true and a domain for which the statement is
false.

a) Everyone is studying discrete mathematics.
b) Everyone is older than 21 years.
c) Every two people have the same mother.
d) No two different people have the same grandmother.

22. For each of these statements find a domain for which the
statement is true and a domain for which the statement is
false.

a) Everyone speaks Hindi.
b) There is someone older than 21 years.
c) Every two people have the same first name.
d) Someone knows more than two other people.

23. Translate in two ways each of these statements into logi-
cal expressions using predicates, quantifiers, and logical
connectives. First, let the domain consist of the students
in your class and second, let it consist of all people.

a) Someone in your class can speak Hindi.
b) Everyone in your class is friendly.
c) There is a person in your class who was not born in

California.
d) A student in your class has been in a movie.
e) No student in your class has taken a course in logic

programming.

24. Translate in two ways each of these statements into logi-
cal expressions using predicates, quantifiers, and logical
connectives. First, let the domain consist of the students
in your class and second, let it consist of all people.

a) Everyone in your class has a cellular phone.
b) Somebody in your class has seen a foreign movie.
c) There is a person in your class who cannot swim.
d) All students in your class can solve quadratic equa-

tions.
e) Some student in your class does not want to be rich.

25. Translate each of these statements into logical expres-
sions using predicates, quantifiers, and logical connec-
tives.

a) No one is perfect.
b) Not everyone is perfect.
c) All your friends are perfect.
d) At least one of your friends is perfect.

e) Everyone is your friend and is perfect.

f) Not everybody is your friend or someone is not per-
fect.

26. Translate each of these statements into logical expres-
sions in three different ways by varying the domain and
by using predicates with one and with two variables.

a) Someone in your school has visited Uzbekistan.

b) Everyone in your class has studied calculus and C++.

c) No one in your school owns both a bicycle and a mo-
torcycle.

d) There is a person in your school who is not happy.

e) Everyone in your school was born in the twentieth
century.

27. Translate each of these statements into logical expres-
sions in three different ways by varying the domain and
by using predicates with one and with two variables.

a) A student in your school has lived in Vietnam.

b) There is a student in your school who cannot speak
Hindi.

c) A student in your school knows Java, Prolog, and
C++.

d) Everyone in your class enjoys Thai food.

e) Someone in your class does not play hockey.

28. Translate each of these statements into logical expres-
sions using predicates, quantifiers, and logical connec-
tives.

a) Something is not in the correct place.

b) All tools are in the correct place and are in excellent
condition.

c) Everything is in the correct place and in excellent con-
dition.

d) Nothing is in the correct place and is in excellent con-
dition.

e) One of your tools is not in the correct place, but it is
in excellent condition.

29. Express each of these statements using logical operators,
predicates, and quantifiers.

a) Some propositions are tautologies.

b) The negation of a contradiction is a tautology.

c) The disjunction of two contingencies can be a tautol-
ogy.

d) The conjunction of two tautologies is a tautology.

30. Suppose the domain of the propositional function P(x, y)

consists of pairs x and y, where x is 1, 2, or 3 and y is
1, 2, or 3. Write out these propositions using disjunctions
and conjunctions.

a) ∃x P (x, 3) b) ∀y P (1, y)

c) ∃y¬P(2, y) d) ∀x ¬P(x, 2)

31. Suppose that the domain of Q(x, y, z) consists of triples
x, y, z, where x = 0, 1, or 2, y = 0 or 1, and z = 0 or 1.
Write out these propositions using disjunctions and con-
junctions.

a) ∀yQ(0, y, 0) b) ∃xQ(x, 1, 1)

c) ∃z¬Q(0, 0, z) d) ∃x¬Q(x, 0, 1)

1.4 Predicates and Quantifiers 55

32. Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) All dogs have fleas.

b) There is a horse that can add.

c) Every koala can climb.

d) No monkey can speak French.

e) There exists a pig that can swim and catch fish.

33. Express each of these statements using quantifiers. Then
form the negation of the statement, so that no negation
is to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) Some old dogs can learn new tricks.

b) No rabbit knows calculus.

c) Every bird can fly.

d) There is no dog that can talk.

e) There is no one in this class who knows French and
Russian.

34. Express the negation of these propositions using quanti-
fiers, and then express the negation in English.

a) Some drivers do not obey the speed limit.

b) All Swedish movies are serious.

c) No one can keep a secret.

d) There is someone in this class who does not have a
good attitude.

35. Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all integers.

a) ∀x(x2 ≥ x)

b) ∀x(x > 0 ∨ x < 0)

c) ∀x(x = 1)

36. Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all real numbers.

a) ∀x(x2 ̸= x) b) ∀x(x2 ̸= 2)

c) ∀x(|x| > 0)

37. Express each of these statements using predicates and
quantifiers.

a) A passenger on an airline qualifies as an elite flyer if
the passenger flies more than 25,000 miles in a year
or takes more than 25 flights during that year.

b) A man qualifies for the marathon if his best previ-
ous time is less than 3 hours and a woman qualifies
for the marathon if her best previous time is less than
3.5 hours.

c) A student must take at least 60 course hours, or at least
45 course hours and write a master’s thesis, and re-
ceive a grade no lower than a B in all required courses,
to receive a master’s degree.

d) There is a student who has taken more than 21 credit
hours in a semester and received all A’s.

Exercises 38–42 deal with the translation between system
specification and logical expressions involving quantifiers.

38. Translate these system specifications into English where
the predicate S(x, y) is “x is in state y” and where the
domain for x and y consists of all systems and all possible
states, respectively.

a) ∃xS(x, open)

b) ∀x(S(x, malfunctioning) ∨ S(x, diagnostic))

c) ∃xS(x, open) ∨ ∃xS(x, diagnostic)

d) ∃x¬S(x, available)

e) ∀x¬S(x, working)

39. Translate these specifications into English where F(p) is
“Printer p is out of service,” B(p) is “Printer p is busy,”
L(j) is “Print job j is lost,” and Q(j) is “Print job j is
queued.”

a) ∃p(F(p) ∧ B(p)) → ∃jL(j)

b) ∀pB(p) → ∃jQ(j)

c) ∃j (Q(j) ∧ L(j)) → ∃pF(p)

d) (∀pB(p) ∧ ∀jQ(j)) → ∃jL(j)

40. Express each of these system specifications using predi-
cates, quantifiers, and logical connectives.

a) When there is less than 30 megabytes free on the hard
disk, a warning message is sent to all users.

b) No directories in the file system can be opened and
no files can be closed when system errors have been
detected.

c) The file system cannot be backed up if there is a user
currently logged on.

d) Video on demand can be delivered when there are at
least 8 megabytes of memory available and the con-
nection speed is at least 56 kilobits per second.

41. Express each of these system specifications using predi-
cates, quantifiers, and logical connectives.

a) At least one mail message, among the nonempty set
of messages, can be saved if there is a disk with more
than 10 kilobytes of free space.

b) Whenever there is an active alert, all queued messages
are transmitted.

c) The diagnostic monitor tracks the status of all systems
except the main console.

d) Each participant on the conference call whom the host
of the call did not put on a special list was billed.

42. Express each of these system specifications using predi-
cates, quantifiers, and logical connectives.

a) Every user has access to an electronic mailbox.

b) The system mailbox can be accessed by everyone in
the group if the file system is locked.

c) The firewall is in a diagnostic state only if the proxy
server is in a diagnostic state.

d) At least one router is functioning normally if the
throughput is between 100 kbps and 500 kbps and
the proxy server is not in diagnostic mode.

56 1 / The Foundations: Logic and Proofs

43. Determine whether ∀x(P (x) → Q(x)) and ∀xP (x) →
∀xQ(x) are logically equivalent. Justify your answer.

44. Determine whether ∀x(P (x) ↔ Q(x)) and ∀x P (x) ↔
∀xQ(x) are logically equivalent. Justify your answer.

45. Show that ∃x(P (x) ∨ Q(x)) and ∃xP (x) ∨ ∃xQ(x) are
logically equivalent.

Exercises 46–49 establish rules for null quantification that
we can use when a quantified variable does not appear in part
of a statement.

46. Establish these logical equivalences, where x does not
occur as a free variable in A. Assume that the domain is
nonempty.

a) (∀xP (x)) ∨ A ≡ ∀x(P (x) ∨ A)

b) (∃xP (x)) ∨ A ≡ ∃x(P (x) ∨ A)

47. Establish these logical equivalences, where x does not
occur as a free variable in A. Assume that the domain is
nonempty.

a) (∀xP (x)) ∧ A ≡ ∀x(P (x) ∧ A)

b) (∃xP (x)) ∧ A ≡ ∃x(P (x) ∧ A)

48. Establish these logical equivalences, where x does not
occur as a free variable in A. Assume that the domain is
nonempty.

a) ∀x(A → P(x)) ≡ A → ∀xP (x)

b) ∃x(A → P(x)) ≡ A → ∃xP (x)

49. Establish these logical equivalences, where x does not
occur as a free variable in A. Assume that the domain is
nonempty.

a) ∀x(P (x) → A) ≡ ∃xP (x) → A

b) ∃x(P (x) → A) ≡ ∀xP (x) → A

50. Show that ∀xP (x) ∨ ∀xQ(x) and ∀x(P (x) ∨ Q(x)) are
not logically equivalent.

51. Show that ∃xP (x) ∧ ∃xQ(x) and ∃x(P (x) ∧ Q(x)) are
not logically equivalent.

52. As mentioned in the text, the notation ∃!xP (x) denotes

“There exists a unique x such that P(x) is true.”

If the domain consists of all integers, what are the truth
values of these statements?

a) ∃!x(x > 1) b) ∃!x(x2 = 1)

c) ∃!x(x + 3 = 2x) d) ∃!x(x = x + 1)

53. What are the truth values of these statements?

a) ∃!xP (x) → ∃xP (x)

b) ∀xP (x) → ∃!xP (x)

c) ∃!x¬P(x) → ¬∀xP (x)

54. Write out ∃!xP (x), where the domain consists of the in-
tegers 1, 2, and 3, in terms of negations, conjunctions,
and disjunctions.

55. Given the Prolog facts in Example 28, what would Prolog
return given these queries?

a) ?instructor(chan,math273)

b) ?instructor(patel,cs301)

c) ?enrolled(X,cs301)

d) ?enrolled(kiko,Y)

e) ?teaches(grossman,Y)

56. Given the Prolog facts in Example 28, what would Prolog
return when given these queries?

a) ?enrolled(kevin,ee222)

b) ?enrolled(kiko,math273)

c) ?instructor(grossman,X)

d) ?instructor(X,cs301)

e) ?teaches(X,kevin)

57. Suppose that Prolog facts are used to define the predicates
mother(M, Y) and father(F, X), which represent that M

is the mother of Y and F is the father of X, respectively.
Give a Prolog rule to define the predicate sibling(X, Y),
which represents that X and Y are siblings (that is, have
the same mother and the same father).

58. Suppose that Prolog facts are used to define the predi-
cates mother(M, Y) and father(F, X), which represent
that M is the mother of Y and F is the father of X,
respectively. Give a Prolog rule to define the predicate
grandfather(X, Y), which represents that X is the grand-
father of Y . [Hint: You can write a disjunction in Prolog
either by using a semicolon to separate predicates or by
putting these predicates on separate lines.]

Exercises 59–62 are based on questions found in the book
Symbolic Logic by Lewis Carroll.

59. Let P(x), Q(x), and R(x) be the statements “x is a
professor,” “x is ignorant,” and “x is vain,” respectively.
Express each of these statements using quantifiers; log-
ical connectives; and P(x), Q(x), and R(x), where the
domain consists of all people.

a) No professors are ignorant.

b) All ignorant people are vain.

c) No professors are vain.

d) Does (c) follow from (a) and (b)?

60. Let P(x), Q(x), and R(x) be the statements “x is a clear
explanation,” “x is satisfactory,” and “x is an excuse,”
respectively. Suppose that the domain for x consists of all
English text. Express each of these statements using quan-
tifiers, logical connectives, and P(x), Q(x), and R(x).

a) All clear explanations are satisfactory.

b) Some excuses are unsatisfactory.

c) Some excuses are not clear explanations.

∗d) Does (c) follow from (a) and (b)?

61. Let P(x), Q(x), R(x), and S(x) be the statements “x is
a baby,” “x is logical,” “x is able to manage a crocodile,”
and “x is despised,” respectively. Suppose that the domain
consists of all people. Express each of these statements
using quantifiers; logical connectives; and P(x), Q(x),
R(x), and S(x).

a) Babies are illogical.

b) Nobody is despised who can manage a crocodile.

c) Illogical persons are despised.

d) Babies cannot manage crocodiles.

∗e) Does (d) follow from (a), (b), and (c)? If not, is there
a correct conclusion?

1.5 Nested Quantifiers 57

62. Let P(x), Q(x), R(x), and S(x) be the statements “x
is a duck,” “x is one of my poultry,” “x is an officer,”
and “x is willing to waltz,” respectively. Express each of
these statements using quantifiers; logical connectives;
and P(x), Q(x), R(x), and S(x).

a) No ducks are willing to waltz.

b) No officers ever decline to waltz.

c) All my poultry are ducks.

d) My poultry are not officers.

∗e) Does (d) follow from (a), (b), and (c)? If not, is there
a correct conclusion?

1.5 Nested Quantifiers

Introduction

In Section 1.4 we defined the existential and universal quantifiers and showed how they can
be used to represent mathematical statements. We also explained how they can be used to
translate English sentences into logical expressions. However, in Section 1.4 we avoided nested

quantifiers, where one quantifier is within the scope of another, such as

∀x∃y(x + y = 0).

Note that everything within the scope of a quantifier can be thought of as a propositional function.
For example,

∀x∃y(x + y = 0)

is the same thing as ∀xQ(x), where Q(x) is ∃yP (x, y), where P(x, y) is x + y = 0.
Nested quantifiers commonly occur in mathematics and computer science. Although nested

quantifiers can sometimes be difficult to understand, the rules we have already studied in
Section 1.4 can help us use them. In this section we will gain experience working with nested
quantifiers. We will see how to use nested quantifiers to express mathematical statements such
as “The sum of two positive integers is always positive.” We will show how nested quantifiers
can be used to translate English sentences such as “Everyone has exactly one best friend” into
logical statements. Moreover, we will gain experience working with the negations of statements
involving nested quantifiers.

Understanding Statements Involving Nested Quantifiers

To understand statements involving nested quantifiers, we need to unravel what the quantifiers
and predicates that appear mean. This is illustrated in Examples 1 and 2.

EXAMPLE 1 Assume that the domain for the variables x and y consists of all real numbers. The statement

∀x∀y(x + y = y + x)

says that x + y = y + x for all real numbers x and y. This is the commutative law for addition
of real numbers. Likewise, the statement

∀x∃y(x + y = 0)

says that for every real number x there is a real number y such that x + y = 0. This states that
every real number has an additive inverse. Similarly, the statement

∀x∀y∀z(x + (y + z) = (x + y) + z)

is the associative law for addition of real numbers. ▲

80 1 / The Foundations: Logic and Proofs

20. Determine whether these are valid arguments.

a) If x is a positive real number, then x2 is a positive real
number. Therefore, if a2 is positive, where a is a real
number, then a is a positive real number.

b) If x2 ̸= 0, where x is a real number, then x ̸= 0. Let
a be a real number with a2 ̸= 0; then a ̸= 0.

21. Which rules of inference are used to establish the
conclusion of Lewis Carroll’s argument described in
Example 26 of Section 1.4?

22. Which rules of inference are used to establish the
conclusion of Lewis Carroll’s argument described in
Example 27 of Section 1.4?

23. Identify the error or errors in this argument that sup-
posedly shows that if ∃xP (x) ∧ ∃xQ(x) is true then
∃x(P (x) ∧ Q(x)) is true.

1. ∃xP (x) ∨ ∃xQ(x) Premise
2. ∃xP (x) Simplification from (1)
3. P(c) Existential instantiation from (2)
4. ∃xQ(x) Simplification from (1)
5. Q(c) Existential instantiation from (4)
6. P(c) ∧ Q(c) Conjunction from (3) and (5)
7. ∃x(P (x) ∧ Q(x)) Existential generalization

24. Identify the error or errors in this argument that sup-
posedly shows that if ∀x(P (x) ∨ Q(x)) is true then
∀xP (x) ∨ ∀xQ(x) is true.

1. ∀x(P (x) ∨ Q(x)) Premise
2. P(c) ∨ Q(c) Universal instantiation from (1)
3. P(c) Simplification from (2)
4. ∀xP (x) Universal generalization from (3)
5. Q(c) Simplification from (2)
6. ∀xQ(x) Universal generalization from (5)
7. ∀x(P (x) ∨ ∀xQ(x)) Conjunction from (4) and (6)

25. Justify the rule of universal modus tollens by showing
that the premises ∀x(P (x) → Q(x)) and ¬Q(a) for a
particular element a in the domain, imply ¬P(a).

26. Justify the rule of universal transitivity, which states that
if ∀x(P (x) → Q(x)) and ∀x(Q(x) → R(x)) are true,
then ∀x(P (x) → R(x)) is true, where the domains of all
quantifiers are the same.

27. Use rules of inference to show that if ∀x(P (x) →
(Q(x) ∧ S(x))) and ∀x(P (x) ∧ R(x)) are true, then
∀x(R(x) ∧ S(x)) is true.

28. Use rules of inference to show that if ∀x(P (x) ∨
Q(x)) and ∀x((¬P(x) ∧ Q(x)) → R(x)) are true, then
∀x(¬R(x) → P(x)) is also true, where the domains of
all quantifiers are the same.

29. Use rules of inference to show that if ∀x(P (x) ∨ Q(x)),
∀x(¬Q(x) ∨ S(x)), ∀x(R(x) → ¬S(x)), and ∃x¬P(x)

are true, then ∃x¬R(x) is true.

30. Use resolution to show the hypotheses “Allen is a bad
boy or Hillary is a good girl” and “Allen is a good boy or
David is happy” imply the conclusion “Hillary is a good
girl or David is happy.”

31. Use resolution to show that the hypotheses “It is not rain-
ing or Yvette has her umbrella,” “Yvette does not have
her umbrella or she does not get wet,” and “It is raining
or Yvette does not get wet” imply that “Yvette does not
get wet.”

32. Show that the equivalence p ∧ ¬p ≡ F can be derived
using resolution together with the fact that a condi-
tional statement with a false hypothesis is true. [Hint: Let
q = r = F in resolution.]

33. Use resolution to show that the compound propo-
sition (p ∨ q) ∧ (¬p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ ¬q) is
not satisfiable.

∗34. The Logic Problem, taken from WFF’N PROOF, The

Game of Logic, has these two assumptions:
1. “Logic is difficult or not many students like logic.”
2. “If mathematics is easy, then logic is not difficult.”
By translating these assumptions into statements involv-
ing propositional variables and logical connectives, deter-
mine whether each of the following are valid conclusions
of these assumptions:

a) That mathematics is not easy, if many students like
logic.

b) That not many students like logic, if mathematics is
not easy.

c) That mathematics is not easy or logic is difficult.

d) That logic is not difficult or mathematics is not easy.

e) That if not many students like logic, then either math-
ematics is not easy or logic is not difficult.

∗35. Determine whether this argument, taken from Kalish and
Montague [KaMo64], is valid.

If Superman were able and willing to prevent evil,
he would do so. If Superman were unable to prevent
evil, he would be impotent; if he were unwilling
to prevent evil, he would be malevolent. Superman
does not prevent evil. If Superman exists, he is nei-
ther impotent nor malevolent. Therefore, Superman
does not exist.

1.7 Introduction to Proofs

Introduction

In this section we introduce the notion of a proof and describe methods for constructing proofs.
A proof is a valid argument that establishes the truth of a mathematical statement. A proof can
use the hypotheses of the theorem, if any, axioms assumed to be true, and previously proven

1.7 Introduction to Proofs 81

theorems. Using these ingredients and rules of inference, the final step of the proof establishes
the truth of the statement being proved.

In our discussion we move from formal proofs of theorems toward more informal proofs.
The arguments we introduced in Section 1.6 to show that statements involving propositions
and quantified statements are true were formal proofs, where all steps were supplied, and the
rules for each step in the argument were given. However, formal proofs of useful theorems can
be extremely long and hard to follow. In practice, the proofs of theorems designed for human
consumption are almost always informal proofs, where more than one rule of inference may
be used in each step, where steps may be skipped, where the axioms being assumed and the
rules of inference used are not explicitly stated. Informal proofs can often explain to humans
why theorems are true, while computers are perfectly happy producing formal proofs using
automated reasoning systems.

The methods of proof discussed in this chapter are important not only because they are used
to prove mathematical theorems, but also for their many applications to computer science. These
applications include verifying that computer programs are correct, establishing that operating
systems are secure, making inferences in artificial intelligence, showing that system specifica-
tions are consistent, and so on. Consequently, understanding the techniques used in proofs is
essential both in mathematics and in computer science.

Some Terminology

Formally, a theorem is a statement that can be shown to be true. In mathematical writing, the
term theorem is usually reserved for a statement that is considered at least somewhat important.
Less important theorems sometimes are called propositions. (Theorems can also be referred to
as facts or results.) A theorem may be the universal quantification of a conditional statement
with one or more premises and a conclusion. However, it may be some other type of logical
statement, as the examples later in this chapter will show. We demonstrate that a theorem is true
with a proof. A proof is a valid argument that establishes the truth of a theorem. The statements
used in a proof can include axioms (or postulates), which are statements we assume to be true
(for example, the axioms for the real numbers, given in Appendix 1, and the axioms of plane
geometry), the premises, if any, of the theorem, and previously proven theorems. Axioms may
be stated using primitive terms that do not require definition, but all other terms used in theorems
and their proofs must be defined. Rules of inference, together with definitions of terms, are used
to draw conclusions from other assertions, tying together the steps of a proof. In practice, the
final step of a proof is usually just the conclusion of the theorem. However, for clarity, we will
often recap the statement of the theorem as the final step of a proof.

A less important theorem that is helpful in the proof of other results is called a lemma

(plural lemmas or lemmata). Complicated proofs are usually easier to understand when they are
proved using a series of lemmas, where each lemma is proved individually. A corollary is a
theorem that can be established directly from a theorem that has been proved. A conjecture is
a statement that is being proposed to be a true statement, usually on the basis of some partial
evidence, a heuristic argument, or the intuition of an expert. When a proof of a conjecture is
found, the conjecture becomes a theorem. Many times conjectures are shown to be false, so they
are not theorems.

Understanding How Theorems Are Stated

Before we introduce methods for proving theorems, we need to understand how many math-
ematical theorems are stated. Many theorems assert that a property holds for all elements in
a domain, such as the integers or the real numbers. Although the precise statement of such

82 1 / The Foundations: Logic and Proofs

theorems needs to include a universal quantifier, the standard convention in mathematics is to
omit it. For example, the statement

“If x > y, where x and y are positive real numbers, then x2 > y2.”

really means

“For all positive real numbers x and y, if x > y, then x2 > y2.”

Furthermore, when theorems of this type are proved, the first step of the proof usually involves
selecting a general element of the domain. Subsequent steps show that this element has the
property in question. Finally, universal generalization implies that the theorem holds for all
members of the domain.

Methods of Proving Theorems

Proving mathematical theorems can be difficult. To construct proofs we need all available am-
munition, including a powerful battery of different proof methods. These methods provide the
overall approach and strategy of proofs. Understanding these methods is a key component of
learning how to read and construct mathematical proofs. One we have chosen a proof method,
we use axioms, definitions of terms, previously proved results, and rules of inference to com-
plete the proof. Note that in this book we will always assume the axioms for real numbers
found in Appendix 1. We will also assume the usual axioms whenever we prove a result about
geometry. When you construct your own proofs, be careful not to use anything but these axioms,
definitions, and previously proved results as facts!

To prove a theorem of the form ∀x(P (x) → Q(x)), our goal is to show that P(c) → Q(c)

is true, where c is an arbitrary element of the domain, and then apply universal generalization.
In this proof, we need to show that a conditional statement is true. Because of this, we now focus
on methods that show that conditional statements are true. Recall that p → q is true unless p is
true but q is false. Note that to prove the statement p → q, we need only show that q is true if p

is true. The following discussion will give the most common techniques for proving conditional
statements. Later we will discuss methods for proving other types of statements. In this section,
and in Section 1.8, we will develop a large arsenal of proof techniques that can be used to prove
a wide variety of theorems.

When you read proofs, you will often find the words “obviously” or “clearly.” These words
indicate that steps have been omitted that the author expects the reader to be able to fill in.
Unfortunately, this assumption is often not warranted and readers are not at all sure how to fill in
the gaps. We will assiduously try to avoid using these words and try not to omit too many steps.
However, if we included all steps in proofs, our proofs would often be excruciatingly long.

Direct Proofs

A direct proof of a conditional statement p → q is constructed when the first step is the
assumption that p is true; subsequent steps are constructed using rules of inference, with the
final step showing that q must also be true. A direct proof shows that a conditional statement
p → q is true by showing that if p is true, then q must also be true, so that the combination
p true and q false never occurs. In a direct proof, we assume that p is true and use axioms,
definitions, and previously proven theorems, together with rules of inference, to show that q

must also be true.You will find that direct proofs of many results are quite straightforward, with a
fairly obvious sequence of steps leading from the hypothesis to the conclusion. However, direct
proofs sometimes require particular insights and can be quite tricky. The first direct proofs we
present here are quite straightforward; later in the text you will see some that are less obvious.

We will provide examples of several different direct proofs. Before we give the first example,
we need to define some terminology.

1.7 Introduction to Proofs 83

DEFINITION 1 The integer n is even if there exists an integer k such that n = 2k, and n is odd if there exists
an integer k such that n = 2k + 1. (Note that every integer is either even or odd, and no
integer is both even and odd.) Two integers have the same parity when both are even or both
are odd; they have opposite parity when one is even and the other is odd.

EXAMPLE 1 Give a direct proof of the theorem “If n is an odd integer, then n2 is odd.”

Solution: Note that this theorem states ∀nP ((n) → Q(n)), where P(n) is “n is an odd integer”
and Q(n) is “n2 is odd.” As we have said, we will follow the usual convention in mathematical
proofs by showing that P(n) implies Q(n), and not explicitly using universal instantiation. To
begin a direct proof of this theorem, we assume that the hypothesis of this conditional statement
is true, namely, we assume that n is odd. By the definition of an odd integer, it follows that
n = 2k + 1, where k is some integer. We want to show that n2 is also odd. We can square
both sides of the equation n = 2k + 1 to obtain a new equation that expresses n2. When we do
this, we find that n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. By the definition of an
odd integer, we can conclude that n2 is an odd integer (it is one more than twice an integer).
Consequently, we have proved that if n is an odd integer, then n2 is an odd integer. ▲

EXAMPLE 2 Give a direct proof that if m and n are both perfect squares, then nm is also a perfect square.
(An integer a is a perfect square if there is an integer b such that a = b2.)

Solution: To produce a direct proof of this theorem, we assume that the hypothesis of this
conditional statement is true, namely, we assume that m and n are both perfect squares. By the
definition of a perfect square, it follows that there are integers s and t such that m = s2 and
n = t2. The goal of the proof is to show that mn must also be a perfect square when m and n are;
looking ahead we see how we can show this by substituting s2 for m and t2 for n into mn. This
tells us that mn = s2t2. Hence, mn = s2t2 = (ss)(tt) = (st)(st) = (st)2, using commutativity
and associativity of multiplication. By the definition of perfect square, it follows that mn is also
a perfect square, because it is the square of st , which is an integer. We have proved that if m

and n are both perfect squares, then mn is also a perfect square. ▲

Proof by Contraposition

Direct proofs lead from the premises of a theorem to the conclusion. They begin with the
premises, continue with a sequence of deductions, and end with the conclusion. However, we
will see that attempts at direct proofs often reach dead ends. We need other methods of proving
theorems of the form ∀x(P (x) → Q(x)). Proofs of theorems of this type that are not direct
proofs, that is, that do not start with the premises and end with the conclusion, are called
indirect proofs.

An extremely useful type of indirect proof is known as proof by contraposition. Proofs
by contraposition make use of the fact that the conditional statement p → q is equivalent to its
contrapositive, ¬q → ¬p. This means that the conditional statement p → q can be proved by
showing that its contrapositive, ¬q → ¬p, is true. In a proof by contraposition of p → q, we
take ¬q as a premise, and using axioms, definitions, and previously proven theorems, together
with rules of inference, we show that ¬p must follow. We will illustrate proof by contraposition
with two examples. These examples show that proof by contraposition can succeed when we
cannot easily find a direct proof.

EXAMPLE 3 Prove that if n is an integer and 3n + 2 is odd, then n is odd.

Solution: We first attempt a direct proof. To construct a direct proof, we first assume that 3n + 2
is an odd integer. This means that 3n + 2 = 2k + 1 for some integer k. Can we use this fact

84 1 / The Foundations: Logic and Proofs

to show that n is odd? We see that 3n + 1 = 2k, but there does not seem to be any direct way
to conclude that n is odd. Because our attempt at a direct proof failed, we next try a proof by
contraposition.

The first step in a proof by contraposition is to assume that the conclusion of the conditional
statement “If 3n + 2 is odd, then n is odd” is false; namely, assume that n is even. Then, by
the definition of an even integer, n = 2k for some integer k. Substituting 2k for n, we find
that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). This tells us that 3n + 2 is even (because it
is a multiple of 2), and therefore not odd. This is the negation of the premise of the theorem.
Because the negation of the conclusion of the conditional statement implies that the hypothesis
is false, the original conditional statement is true. Our proof by contraposition succeeded; we
have proved the theorem “If 3n + 2 is odd, then n is odd.” ▲

EXAMPLE 4 Prove that if n = ab, where a and b are positive integers, then a ≤
√

n or b ≤
√

n.

Solution: Because there is no obvious way of showing that a ≤
√

n or b ≤
√

n directly from
the equation n = ab, where a and b are positive integers, we attempt a proof by contraposition.

The first step in a proof by contraposition is to assume that the conclusion of the conditional
statement “If n = ab, where a and b are positive integers, then a ≤

√
n or b ≤

√
n” is false. That

is, we assume that the statement (a ≤
√

n) ∨ (b ≤
√

n) is false. Using the meaning of disjunction
together with De Morgan’s law, we see that this implies that both a ≤

√
n and b ≤

√
n are false.

This implies that a >
√

n and b >
√

n. We can multiply these inequalities together (using the
fact that if 0 < s < t and 0 < u < v, then su < tv) to obtain ab >

√
n ·

√
n = n. This shows

that ab ̸= n, which contradicts the statement n = ab.
Because the negation of the conclusion of the conditional statement implies that the hypoth-

esis is false, the original conditional statement is true. Our proof by contraposition succeeded;
we have proved that if n = ab, where a and b are positive integers, then a ≤

√
n or b ≤

√
n. ▲

VACUOUS AND TRIVIAL PROOFS We can quickly prove that a conditional statement
p → q is true when we know that p is false, because p → q must be true when p is false.
Consequently, if we can show that p is false, then we have a proof, called a vacuous proof, of
the conditional statement p → q. Vacuous proofs are often used to establish special cases of
theorems that state that a conditional statement is true for all positive integers [i.e., a theorem
of the kind ∀nP (n), where P(n) is a propositional function]. Proof techniques for theorems of
this kind will be discussed in Section 5.1.

EXAMPLE 5 Show that the proposition P(0) is true, where P(n) is “If n > 1, then n2 > n” and the domain
consists of all integers.

Solution: Note that P(0) is “If 0 > 1, then 02 > 0.” We can show P(0) using a vacuous
proof. Indeed, the hypothesis 0 > 1 is false. This tells us that P(0) is automatically true. ▲

Remark: The fact that the conclusion of this conditional statement, 02 > 0, is false is irrelevant
to the truth value of the conditional statement, because a conditional statement with a false
hypothesis is guaranteed to be true.

We can also quickly prove a conditional statement p → q if we know that the conclusion
q is true. By showing that q is true, it follows that p → q must also be true. A proof of p → q

that uses the fact that q is true is called a trivial proof. Trivial proofs are often important when
special cases of theorems are proved (see the discussion of proof by cases in Section 1.8) and
in mathematical induction, which is a proof technique discussed in Section 5.1.

1.7 Introduction to Proofs 85

EXAMPLE 6 Let P(n) be “If a and b are positive integers with a ≥ b, then an ≥ bn,” where the domain
consists of all nonnegative integers. Show that P(0) is true.

Solution:The propositionP(0) is “Ifa ≥ b, thena0 ≥ b0.” Becausea0 = b0 = 1, the conclusion
of the conditional statement “If a ≥ b, then a0 ≥ b0” is true. Hence, this conditional statement,
which is P(0), is true. This is an example of a trivial proof. Note that the hypothesis, which is
the statement “a ≥ b,” was not needed in this proof. ▲

A LITTLE PROOF STRATEGY We have described two important approaches for proving
theorems of the form ∀x(P (x) → Q(x)): direct proof and proof by contraposition. We have
also given examples that show how each is used. However, when you are presented with a
theorem of the form ∀x(P (x) → Q(x)), which method should you use to attempt to prove it?
We will provide a few rules of thumb here; in Section 1.8 we will discuss proof strategy at greater
length. When you want to prove a statement of the form ∀x(P (x) → Q(x)), first evaluate
whether a direct proof looks promising. Begin by expanding the definitions in the hypotheses.
Start to reason using these hypotheses, together with axioms and available theorems. If a direct
proof does not seem to go anywhere, try the same thing with a proof by contraposition. Recall
that in a proof by contraposition you assume that the conclusion of the conditional statement is
false and use a direct proof to show this implies that the hypothesis must be false. We illustrate
this strategy in Examples 7 and 8. Before we present our next example, we need a definition.

DEFINITION 2 The real number r is rational if there exist integers p and q with q ̸= 0 such that r = p/q.
A real number that is not rational is called irrational.

EXAMPLE 7 Prove that the sum of two rational numbers is rational. (Note that if we include the implicit
quantifiers here, the theorem we want to prove is “For every real number r and every real
number s, if r and s are rational numbers, then r + s is rational.)

Solution:We first attempt a direct proof.To begin, suppose that r and s are rational numbers. From
the definition of a rational number, it follows that there are integers p and q, with q ̸= 0, such
that r = p/q, and integers t and u, with u ̸= 0, such that s = t/u. Can we use this information
to show that r + s is rational? The obvious next step is to add r = p/q and s = t/u, to obtain

r + s =
p

q
+

t

u
=

pu + qt

qu
.

Because q ̸= 0 and u ̸= 0, it follows that qu ̸= 0. Consequently, we have expressed r + s as
the ratio of two integers, pu + qt and qu, where qu ̸= 0. This means that r + s is rational. We
have proved that the sum of two rational numbers is rational; our attempt to find a direct proof
succeeded. ▲

EXAMPLE 8 Prove that if n is an integer and n2 is odd, then n is odd.

Solution: We first attempt a direct proof. Suppose that n is an integer and n2 is odd. Then, there
exists an integer k such that n2 = 2k + 1. Can we use this information to show that n is odd?
There seems to be no obvious approach to show that n is odd because solving for n produces
the equation n = ±

√
2k + 1, which is not terribly useful.

Because this attempt to use a direct proof did not bear fruit, we next attempt a proof by
contraposition. We take as our hypothesis the statement that n is not odd. Because every integer
is odd or even, this means that n is even. This implies that there exists an integer k such that
n = 2k. To prove the theorem, we need to show that this hypothesis implies the conclusion
that n2 is not odd, that is, that n2 is even. Can we use the equation n = 2k to achieve this? By

86 1 / The Foundations: Logic and Proofs

squaring both sides of this equation, we obtain n2 = 4k2 = 2(2k2), which implies that n2 is
also even because n2 = 2t , where t = 2k2. We have proved that if n is an integer and n2 is odd,
then n is odd. Our attempt to find a proof by contraposition succeeded. ▲

Proofs by Contradiction

Suppose we want to prove that a statement p is true. Furthermore, suppose that we can find
a contradiction q such that ¬p → q is true. Because q is false, but ¬p → q is true, we can
conclude that ¬p is false, which means that p is true. How can we find a contradiction q that
might help us prove that p is true in this way?

Because the statement r ∧ ¬r is a contradiction whenever r is a proposition, we can prove
that p is true if we can show that ¬p → (r ∧ ¬r) is true for some proposition r . Proofs of this
type are called proofs by contradiction. Because a proof by contradiction does not prove a result
directly, it is another type of indirect proof. We provide three examples of proof by contradiction.
The first is an example of an application of the pigeonhole principle, a combinatorial technique
that we will cover in depth in Section 6.2.

EXAMPLE 9 Show that at least four of any 22 days must fall on the same day of the week.

Solution: Let p be the proposition “At least four of 22 chosen days fall on the same day of the
week.” Suppose that ¬p is true. This means that at most three of the 22 days fall on the same
day of the week. Because there are seven days of the week, this implies that at most 21 days
could have been chosen, as for each of the days of the week, at most three of the chosen days
could fall on that day. This contradicts the premise that we have 22 days under consideration.
That is, if r is the statement that 22 days are chosen, then we have shown that ¬p → (r ∧ ¬r).
Consequently, we know that p is true. We have proved that at least four of 22 chosen days fall
on the same day of the week. ▲

EXAMPLE 10 Prove that
√

2 is irrational by giving a proof by contradiction.

Solution: Let p be the proposition “
√

2 is irrational.” To start a proof by contradiction, we suppose

that ¬p is true. Note that ¬p is the statement “It is not the case that
√

2 is irrational,” which
says that

√
2 is rational. We will show that assuming that ¬p is true leads to a contradiction.

If
√

2 is rational, there exist integers a and b with
√

2 = a/b, where b ̸= 0 and a and b

have no common factors (so that the fraction a/b is in lowest terms.) (Here, we are using the

fact that every rational number can be written in lowest terms.) Because
√

2 = a/b, when both
sides of this equation are squared, it follows that

2 =
a2

b2
.

Hence,

2b2 = a2.

By the definition of an even integer it follows that a2 is even. We next use the fact that if a2 is
even, a must also be even, which follows by Exercise 16. Furthermore, because a is even, by
the definition of an even integer, a = 2c for some integer c. Thus,

2b2 = 4c2.

Dividing both sides of this equation by 2 gives

b2 = 2c2.

By the definition of even, this means that b2 is even. Again using the fact that if the square of an
integer is even, then the integer itself must be even, we conclude that b must be even as well.

1.7 Introduction to Proofs 87

We have now shown that the assumption of ¬p leads to the equation
√

2 = a/b, where a

and b have no common factors, but both a and b are even, that is, 2 divides both a and b. Note
that the statement that

√
2 = a/b, where a and b have no common factors, means, in particular,

that 2 does not divide both a and b. Because our assumption of ¬p leads to the contradiction
that 2 divides both a and b and 2 does not divide both a and b, ¬p must be false. That is, the
statement p, “

√
2 is irrational,” is true. We have proved that

√
2 is irrational. ▲

Proof by contradiction can be used to prove conditional statements. In such proofs, we first
assume the negation of the conclusion. We then use the premises of the theorem and the negation
of the conclusion to arrive at a contradiction. (The reason that such proofs are valid rests on the
logical equivalence of p → q and (p ∧ ¬q) → F. To see that these statements are equivalent,
simply note that each is false in exactly one case, namely when p is true and q is false.)

Note that we can rewrite a proof by contraposition of a conditional statement as a proof
by contradiction. In a proof of p → q by contraposition, we assume that ¬q is true. We then
show that ¬p must also be true. To rewrite a proof by contraposition of p → q as a proof by
contradiction, we suppose that both p and ¬q are true. Then, we use the steps from the proof
of ¬q → ¬p to show that ¬p is true. This leads to the contradiction p ∧ ¬p, completing the
proof. Example 11 illustrates how a proof by contraposition of a conditional statement can be
rewritten as a proof by contradiction.

EXAMPLE 11 Give a proof by contradiction of the theorem “If 3n + 2 is odd, then n is odd.”

Solution: Let p be “3n + 2 is odd” and q be “n is odd.” To construct a proof by contradiction,
assume that both p and ¬q are true. That is, assume that 3n + 2 is odd and that n is not odd.
Because n is not odd, we know that it is even. Because n is even, there is an integer k such
that n = 2k. This implies that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). Because 3n + 2 is
2t , where t = 3k + 1, 3n + 2 is even. Note that the statement “3n + 2 is even” is equivalent to
the statement ¬p, because an integer is even if and only if it is not odd. Because both p and
¬p are true, we have a contradiction. This completes the proof by contradiction, proving that if
3n + 2 is odd, then n is odd. ▲

Note that we can also prove by contradiction that p → q is true by assuming that p and
¬q are true, and showing that q must be also be true. This implies that ¬q and q are both
true, a contradiction. This observation tells us that we can turn a direct proof into a proof by
contradiction.

PROOFS OF EQUIVALENCE To prove a theorem that is a biconditional statement, that is,
a statement of the form p ↔ q, we show that p → q and q → p are both true. The validity of
this approach is based on the tautology

(p ↔ q) ↔ (p → q) ∧ (q → p).

EXAMPLE 12 Prove the theorem “If n is an integer, then n is odd if and only if n2 is odd.”

Solution: This theorem has the form “p if and only if q,” where p is “n is odd” and q is “n2

is odd.” (As usual, we do not explicitly deal with the universal quantification.) To prove this
theorem, we need to show that p → q and q → p are true.

We have already shown (in Example 1) that p → q is true and (in Example 8) that q → p

is true.
Because we have shown that both p → q and q → p are true, we have shown that the

theorem is true. ▲

88 1 / The Foundations: Logic and Proofs

Sometimes a theorem states that several propositions are equivalent. Such a theorem states
that propositions p1, p2, p3, . . . , pn are equivalent. This can be written as

p1 ↔ p2 ↔ · · · ↔ pn,

which states that all n propositions have the same truth values, and consequently, that for all i

and j with 1 ≤ i ≤ n and 1 ≤ j ≤ n, pi and pj are equivalent. One way to prove these mutually
equivalent is to use the tautology

p1 ↔ p2 ↔ · · · ↔ pn ↔ (p1 → p2) ∧ (p2 → p3) ∧ · · · ∧ (pn → p1).

This shows that if the n conditional statements p1 → p2, p2 → p3, . . . , pn → p1 can be shown
to be true, then the propositions p1, p2, . . . , pn are all equivalent.

This is much more efficient than proving that pi → pj for all i ̸= j with 1 ≤ i ≤ n and

1 ≤ j ≤ n. (Note that there are n2 − n such conditional statements.)
When we prove that a group of statements are equivalent, we can establish any chain of

conditional statements we choose as long as it is possible to work through the chain to go from
any one of these statements to any other statement. For example, we can show that p1, p2, and
p3 are equivalent by showing that p1 → p3, p3 → p2, and p2 → p1.

EXAMPLE 13 Show that these statements about the integer n are equivalent:

p1: n is even.

p2: n − 1 is odd.

p3: n2 is even.

Solution: We will show that these three statements are equivalent by showing that the conditional
statements p1 → p2, p2 → p3, and p3 → p1 are true.

We use a direct proof to show that p1 → p2. Suppose that n is even. Then n = 2k for some
integer k. Consequently, n − 1 = 2k − 1 = 2(k − 1) + 1. This means that n − 1 is odd because
it is of the form 2m + 1, where m is the integer k − 1.

We also use a direct proof to show that p2 → p3. Now suppose n − 1 is odd. Then n −
1 = 2k + 1 for some integer k. Hence, n = 2k + 2 so that n2 = (2k + 2)2 = 4k2 + 8k + 4 =

2(2k2 + 4k + 2). This means that n2 is twice the integer 2k2 + 4k + 2, and hence is even.
To prove p3 → p1, we use a proof by contraposition. That is, we prove that if n is not even,

then n2 is not even. This is the same as proving that if n is odd, then n2 is odd, which we have
already done in Example 1. This completes the proof. ▲
COUNTEREXAMPLES In Section 1.4 we stated that to show that a statement of the form
∀xP (x) is false, we need only find a counterexample, that is, an example x for which P(x)

is false. When presented with a statement of the form ∀xP (x), which we believe to be false or
which has resisted all proof attempts, we look for a counterexample. We illustrate the use of
counterexamples in Example 14.

EXAMPLE 14 Show that the statement “Every positive integer is the sum of the squares of two integers” is
false.

Solution: To show that this statement is false, we look for a counterexample, which is a particular
integer that is not the sum of the squares of two integers. It does not take long to find a counterex-
ample, because 3 cannot be written as the sum of the squares of two integers. To show this is the
case, note that the only perfect squares not exceeding 3 are 02 = 0 and 12 = 1. Furthermore,
there is no way to get 3 as the sum of two terms each of which is 0 or 1. Consequently, we have
shown that “Every positive integer is the sum of the squares of two integers” is false. ▲

1.7 Introduction to Proofs 89

Mistakes in Proofs

There are many common errors made in constructing mathematical proofs. We will briefly
describe some of these here.Among the most common errors are mistakes in arithmetic and basic
algebra. Even professional mathematicians make such errors, especially when working with
complicated formulae. Whenever you use such computations you should check them as carefully
as possible. (You should also review any troublesome aspects of basic algebra, especially before
you study Section 5.1.)

Each step of a mathematical proof needs to be correct and the conclusion needs to follow
logically from the steps that precede it. Many mistakes result from the introduction of steps that
do not logically follow from those that precede it. This is illustrated in Examples 15–17.

EXAMPLE 15 What is wrong with this famous supposed “proof” that 1 = 2?

“Proof:" We use these steps, where a and b are two equal positive integers.

Step Reason

1. a = b Given

2. a2 = ab Multiply both sides of (1) by a

3. a2 − b2 = ab − b2 Subtract b2 from both sides of (2)
4. (a − b)(a + b) = b(a − b) Factor both sides of (3)
5. a + b = b Divide both sides of (4) by a − b

6. 2b = b Replace a by b in (5) because a = b

and simplify
7. 2 = 1 Divide both sides of (6) by b

Solution: Every step is valid except for one, step 5 where we divided both sides by a − b. The
error is that a − b equals zero; division of both sides of an equation by the same quantity is
valid as long as this quantity is not zero. ▲

EXAMPLE 16 What is wrong with this “proof?”

“Theorem:” If n2 is positive, then n is positive.

“Proof:" Suppose that n2 is positive. Because the conditional statement “If n is positive, then
n2 is positive” is true, we can conclude that n is positive.

Solution: Let P(n) be “n is positive” and Q(n) be “n2 is positive.” Then our hypothesis is Q(n).
The statement “If n is positive, then n2 is positive” is the statement ∀n(P (n) → Q(n)). From
the hypothesis Q(n) and the statement ∀n(P (n) → Q(n)) we cannot conclude P(n), because
we are not using a valid rule of inference. Instead, this is an example of the fallacy of affirming
the conclusion. A counterexample is supplied by n = −1 for which n2 = 1 is positive, but n is
negative. ▲

EXAMPLE 17 What is wrong with this “proof?”

“Theorem:” If n is not positive, then n2 is not positive. (This is the contrapositive of the
“theorem” in Example 16.)

90 1 / The Foundations: Logic and Proofs

“Proof:" Suppose that n is not positive. Because the conditional statement “If n is positive, then
n2 is positive” is true, we can conclude that n2 is not positive.

Solution: Let P(n) and Q(n) be as in the solution of Example 16. Then our hypothesis is ¬P(n)

and the statement “If n is positive, then n2 is positive” is the statement ∀n(P (n) → Q(n)).
From the hypothesis ¬P(n) and the statement ∀n(P (n) → Q(n)) we cannot conclude ¬Q(n),
because we are not using a valid rule of inference. Instead, this is an example of the fallacy of
denying the hypothesis. A counterexample is supplied by n = −1, as in Example 16. ▲

Finally, we briefly discuss a particularly nasty type of error. Many incorrect arguments are
based on a fallacy called begging the question. This fallacy occurs when one or more steps of
a proof are based on the truth of the statement being proved. In other words, this fallacy arises
when a statement is proved using itself, or a statement equivalent to it. That is why this fallacy
is also called circular reasoning.

EXAMPLE 18 Is the following argument correct? It supposedly shows that n is an even integer whenever n2 is
an even integer.

Suppose that n2 is even. Then n2 = 2k for some integer k. Let n = 2l for some integer l.
This shows that n is even.

Solution: This argument is incorrect. The statement “let n = 2l for some integer l” occurs in
the proof. No argument has been given to show that n can be written as 2l for some integer l.
This is circular reasoning because this statement is equivalent to the statement being proved,
namely, “n is even.” Of course, the result itself is correct; only the method of proof is wrong. ▲

Making mistakes in proofs is part of the learning process. When you make a mistake that
someone else finds, you should carefully analyze where you went wrong and make sure that
you do not make the same mistake again. Even professional mathematicians make mistakes in
proofs. More than a few incorrect proofs of important results have fooled people for many years
before subtle errors in them were found.

Just a Beginning

We have now developed a basic arsenal of proof methods. In the next section we will introduce
other important proof methods. We will also introduce several important proof techniques in
Chapter 5, including mathematical induction, which can be used to prove results that hold for
all positive integers. In Chapter 6 we will introduce the notion of combinatorial proofs.

In this section we introduced several methods for proving theorems of the form ∀x(P (x) →
Q(x)), including direct proofs and proofs by contraposition. There are many theorems of this
type whose proofs are easy to construct by directly working through the hypotheses and def-
initions of the terms of the theorem. However, it is often difficult to prove a theorem without
resorting to a clever use of a proof by contraposition or a proof by contradiction, or some
other proof technique. In Section 1.8 we will address proof strategy. We will describe various
approaches that can be used to find proofs when straightforward approaches do not work. Con-
structing proofs is an art that can be learned only through experience, including writing proofs,
having your proofs critiqued, and reading and analyzing other proofs.

1.7 Introduction to Proofs 91

Exercises

1. Use a direct proof to show that the sum of two odd integers
is even.

2. Use a direct proof to show that the sum of two even inte-
gers is even.

3. Show that the square of an even number is an even number
using a direct proof.

4. Show that the additive inverse, or negative, of an even
number is an even number using a direct proof.

5. Prove that if m + n and n + p are even integers, where
m, n, and p are integers, then m + p is even. What kind
of proof did you use?

6. Use a direct proof to show that the product of two odd
numbers is odd.

7. Use a direct proof to show that every odd integer is the
difference of two squares.

8. Prove that if n is a perfect square, then n + 2 is not a
perfect square.

9. Use a proof by contradiction to prove that the sum of an
irrational number and a rational number is irrational.

10. Use a direct proof to show that the product of two rational
numbers is rational.

11. Prove or disprove that the product of two irrational num-
bers is irrational.

12. Prove or disprove that the product of a nonzero rational
number and an irrational number is irrational.

13. Prove that if x is irrational, then 1/x is irrational.

14. Prove that if x is rational and x ̸= 0, then 1/x is rational.

15. Use a proof by contraposition to show that if x + y ≥ 2,
where x and y are real numbers, then x ≥ 1 or y ≥ 1.

16. Prove that if m and n are integers and mn is even, then m

is even or n is even.

17. Show that if n is an integer and n3 + 5 is odd, then n is
even using

a) a proof by contraposition.

b) a proof by contradiction.

18. Prove that if n is an integer and 3n + 2 is even, then n is
even using

a) a proof by contraposition.

b) a proof by contradiction.

19. Prove the proposition P(0), where P(n) is the proposi-
tion “If n is a positive integer greater than 1, then n2 > n.”
What kind of proof did you use?

20. Prove the proposition P(1), where P(n) is the proposi-
tion “If n is a positive integer, then n2 ≥ n.” What kind
of proof did you use?

21. Let P(n) be the proposition “If a and b are positive real
numbers, then (a + b)n ≥ an + bn.” Prove that P(1) is
true. What kind of proof did you use?

22. Show that if you pick three socks from a drawer contain-
ing just blue socks and black socks, you must get either
a pair of blue socks or a pair of black socks.

23. Show that at least ten of any 64 days chosen must fall on
the same day of the week.

24. Show that at least three of any 25 days chosen must fall
in the same month of the year.

25. Use a proof by contradiction to show that there is no ratio-
nal number r for which r3 + r + 1 = 0. [Hint: Assume
that r = a/b is a root, where a and b are integers and a/b

is in lowest terms. Obtain an equation involving integers
by multiplying by b3. Then look at whether a and b are
each odd or even.]

26. Prove that if n is a positive integer, then n is even if and
only if 7n + 4 is even.

27. Prove that if n is a positive integer, then n is odd if and
only if 5n + 6 is odd.

28. Prove that m2 = n2 if and only if m = n or m = −n.

29. Prove or disprove that if m and n are integers such that
mn = 1, then either m = 1 and n = 1, or else m = −1
and n = −1.

30. Show that these three statements are equivalent, where a

and b are real numbers: (i) a is less than b, (ii) the average
of a and b is greater than a, and (iii) the average of a and
b is less than b.

31. Show that these statements about the integer x are equiv-
alent: (i) 3x + 2 is even, (ii) x + 5 is odd, (iii) x2 is even.

32. Show that these statements about the real number x are
equivalent: (i) x is rational, (ii) x/2 is rational, (iii) 3x − 1
is rational.

33. Show that these statements about the real number x are
equivalent: (i) x is irrational, (ii) 3x + 2 is irrational,
(iii) x/2 is irrational.

34. Is this reasoning for finding the solutions of the equa-

tion
√

2x2 − 1 = x correct? (1)
√

2x2 − 1 = x is given;
(2) 2x2 − 1 = x2, obtained by squaring both sides of (1);
(3) x2 − 1 = 0, obtained by subtracting x2 from both
sides of (2); (4) (x − 1)(x + 1) = 0, obtained by factor-
ing the left-hand side of x2 − 1; (5) x = 1 or x = −1,
which follows because ab = 0 implies that a = 0 or
b = 0.

35. Are these steps for finding the solutions of
√

x + 3 =

3 − x correct? (1)
√

x + 3 = 3 − x is given; (2) x + 3 =

x2 − 6x + 9, obtained by squaring both sides of (1); (3)
0 = x2 − 7x + 6, obtained by subtracting x + 3 from
both sides of (2); (4) 0 = (x − 1)(x − 6), obtained by
factoring the right-hand side of (3); (5) x = 1 or x = 6,
which follows from (4) because ab = 0 implies that
a = 0 or b = 0.

36. Show that the propositions p1, p2, p3, and p4 can be
shown to be equivalent by showing that p1 ↔ p4, p2 ↔
p3, and p1 ↔ p3.

37. Show that the propositions p1, p2, p3, p4, and p5 can
be shown to be equivalent by proving that the conditional
statements p1 → p4, p3 → p1, p4 → p2, p2 → p5, and
p5 → p3 are true.

92 1 / The Foundations: Logic and Proofs

38. Find a counterexample to the statement that every posi-
tive integer can be written as the sum of the squares of
three integers.

39. Prove that at least one of the real numbers a1, a2, . . . , an

is greater than or equal to the average of these numbers.
What kind of proof did you use?

40. Use Exercise 39 to show that if the first 10 positive inte-
gers are placed around a circle, in any order, there exist

three integers in consecutive locations around the circle
that have a sum greater than or equal to 17.

41. Prove that if n is an integer, these four statements are
equivalent: (i) n is even, (ii) n + 1 is odd, (iii) 3n + 1 is
odd, (iv) 3n is even.

42. Prove that these four statements about the integer n are
equivalent: (i) n2 is odd, (ii) 1 − n is even, (iii) n3 is odd,
(iv) n2 + 1 is even.

1.8 Proof Methods and Strategy

Introduction

In Section 1.7 we introduced many methods of proof and illustrated how each method can be
used. In this section we continue this effort.We will introduce several other commonly used proof
methods, including the method of proving a theorem by considering different cases separately.
We will also discuss proofs where we prove the existence of objects with desired properties.

In Section 1.7 we briefly discussed the strategy behind constructing proofs. This strategy
includes selecting a proof method and then successfully constructing an argument step by step,
based on this method. In this section, after we have developed a versatile arsenal of proof
methods, we will study some aspects of the art and science of proofs. We will provide advice
on how to find a proof of a theorem. We will describe some tricks of the trade, including how
proofs can be found by working backward and by adapting existing proofs.

When mathematicians work, they formulate conjectures and attempt to prove or disprove
them. We will briefly describe this process here by proving results about tiling checkerboards
with dominoes and other types of pieces. Looking at tilings of this kind, we will be able to
quickly formulate conjectures and prove theorems without first developing a theory.

We will conclude the section by discussing the role of open questions. In particular, we
will discuss some interesting problems either that have been solved after remaining open for
hundreds of years or that still remain open.

Exhaustive Proof and Proof by Cases

Sometimes we cannot prove a theorem using a single argument that holds for all possible cases.
We now introduce a method that can be used to prove a theorem, by considering different cases
separately. This method is based on a rule of inference that we will now introduce. To prove a
conditional statement of the form

(p1 ∨ p2 ∨ · · · ∨ pn) → q

the tautology

[(p1 ∨ p2 ∨ · · · ∨ pn) → q] ↔ [(p1 → q) ∧ (p2 → q) ∧ · · · ∧ (pn → q)]

can be used as a rule of inference. This shows that the original conditional statement with
a hypothesis made up of a disjunction of the propositions p1, p2, . . . , pn can be proved by
proving each of the n conditional statements pi → q, i = 1, 2, . . . , n, individually. Such an
argument is called a proof by cases. Sometimes to prove that a conditional statement p → q is
true, it is convenient to use a disjunction p1 ∨ p2 ∨ · · · ∨ pn instead of p as the hypothesis of
the conditional statement, where p and p1 ∨ p2 ∨ · · · ∨ pn are equivalent.

1.8 Proof Methods and Strategy 93

EXHAUSTIVE PROOF Some theorems can be proved by examining a relatively small number
of examples. Such proofs are called exhaustive proofs, or proofs by exhaustion because these
proofs proceed by exhausting all possibilities. An exhaustive proof is a special type of proof by
cases where each case involves checking a single example. We now provide some illustrations
of exhaustive proofs.

EXAMPLE 1 Prove that (n + 1)3 ≥ 3n if n is a positive integer with n ≤ 4.

Solution: We use a proof by exhaustion. We only need verify the inequality (n + 1)3 ≥ 3n

when n = 1, 2, 3, and 4. For n = 1, we have (n + 1)3 = 23 = 8 and 3n = 31 = 3; for n = 2,
we have (n + 1)3 = 33 = 27 and 3n = 32 = 9; for n = 3, we have (n + 1)3 = 43 = 64 and
3n = 33 = 27; and for n = 4, we have (n + 1)3 = 53 = 125 and 3n = 34 = 81. In each of
these four cases, we see that (n + 1)3 ≥ 3n. We have used the method of exhaustion to prove
that (n + 1)3 ≥ 3n if n is a positive integer with n ≤ 4. ▲

EXAMPLE 2 Prove that the only consecutive positive integers not exceeding 100 that are perfect powers are
8 and 9. (An integer is a perfect power if it equals na , where a is an integer greater than 1.)

Solution: We use a proof by exhaustion. In particular, we can prove this fact by examining
positive integers n not exceeding 100, first checking whether n is a perfect power, and if it is,
checking whether n + 1 is also a perfect power. A quicker way to do this is simply to look at all
perfect powers not exceeding 100 and checking whether the next largest integer is also a perfect
power. The squares of positive integers not exceeding 100 are 1, 4, 9, 16, 25, 36, 49, 64, 81, and
100. The cubes of positive integers not exceeding 100 are 1, 8, 27, and 64. The fourth powers
of positive integers not exceeding 100 are 1, 16, and 81. The fifth powers of positive integers
not exceeding 100 are 1 and 32. The sixth powers of positive integers not exceeding 100 are 1
and 64. There are no powers of positive integers higher than the sixth power not exceeding 100,
other than 1. Looking at this list of perfect powers not exceeding 100, we see that n = 8 is the
only perfect power n for which n + 1 is also a perfect power. That is, 23 = 8 and 32 = 9 are the
only two consecutive perfect powers not exceeding 100. ▲

Proofs by exhaustion can

tire out people and

computers when the

number of cases

challenges the available

processing power!

People can carry out exhaustive proofs when it is necessary to check only a relatively small
number of instances of a statement. Computers do not complain when they are asked to check
a much larger number of instances of a statement, but they still have limitations. Note that not
even a computer can check all instances when it is impossible to list all instances to check.

PROOF BY CASES A proof by cases must cover all possible cases that arise in a theorem.
We illustrate proof by cases with a couple of examples. In each example, you should check that
all possible cases are covered.

EXAMPLE 3 Prove that if n is an integer, then n2 ≥ n.

Solution: We can prove that n2 ≥ n for every integer by considering three cases, when n = 0,
when n ≥ 1, and when n ≤ −1. We split the proof into three cases because it is straightforward
to prove the result by considering zero, positive integers, and negative integers separately.

Case (i): When n = 0, because 02 = 0, we see that 02 ≥ 0. It follows that n2 ≥ n is true in
this case.

Case (ii): When n ≥ 1, when we multiply both sides of the inequality n ≥ 1 by the positive
integer n, we obtain n · n ≥ n · 1. This implies that n2 ≥ n for n ≥ 1.

Case (iii): In this case n ≤ −1. However, n2 ≥ 0. It follows that n2 ≥ n.

Because the inequality n2 ≥ n holds in all three cases, we can conclude that if n is an integer,
then n2 ≥ n. ▲

94 1 / The Foundations: Logic and Proofs

EXAMPLE 4 Use a proof by cases to show that |xy| = |x||y|, where x and y are real numbers. (Recall that
|a|, the absolute value of a, equals a when a ≥ 0 and equals −a when a ≤ 0.)

Solution: In our proof of this theorem, we remove absolute values using the fact that |a| = a

when a ≥ 0 and |a| = −a when a < 0. Because both |x| and |y| occur in our formula, we will
need four cases: (i) x and y both nonnegative, (ii) x nonnegative and y is negative, (iii) x negative
and y nonnegative, and (iv) x negative and y negative. We denote by p1, p2, p3, and p4, the
proposition stating the assumption for each of these four cases, respectively.

(Note that we can remove the absolute value signs by making the appropriate choice of
signs within each case.)

Case (i): We see that p1 → q because xy ≥ 0 when x ≥ 0 and y ≥ 0, so that |xy| = xy =

|x||y|.

Case (ii): To see that p2 → q, note that if x ≥ 0 and y < 0, then xy ≤ 0, so that |xy| =

−xy = x(−y) = |x||y|. (Here, because y < 0, we have |y| = −y.)

Case (iii): To see that p3 → q, we follow the same reasoning as the previous case with the
roles of x and y reversed.

Case (iv): To see that p4 → q, note that when x < 0 and y < 0, it follows that xy > 0.
Hence, |xy| = xy = (−x)(−y) = |x||y|.

Because |xy| = |x||y| holds in each of the four cases and these cases exhaust all possibilities,
we can conclude that |xy| = |x||y|, whenever x and y are real numbers. ▲

LEVERAGING PROOF BY CASES The examples we have presented illustrating proof by
cases provide some insight into when to use this method of proof. In particular, when it is not
possible to consider all cases of a proof at the same time, a proof by cases should be considered.
When should you use such a proof ? Generally, look for a proof by cases when there is no
obvious way to begin a proof, but when extra information in each case helps move the proof
forward. Example 5 illustrates how the method of proof by cases can be used effectively.

EXAMPLE 5 Formulate a conjecture about the final decimal digit of the square of an integer and prove your
result.

Solution: The smallest perfect squares are 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169,

196, 225, and so on. We notice that the digits that occur as the final digit of a square are
0, 1, 4, 5, 6, and 9, with 2, 3, 7, and 8 never appearing as the final digit of a square. We conjecture
this theorem: The final decimal digit of a perfect square is 0, 1, 4, 5, 6 or 9. How can we prove
this theorem?

We first note that we can express an integer n as 10a + b, where a and b are pos-
itive integers and b is 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. Here a is the integer obtained by
subtracting the final decimal digit of n from n and dividing by 10. Next, note that
(10a + b)2 = 100a2 + 20ab + b2 = 10(10a2 + 2b) + b2, so that the final decimal digit of n2

is the same as the final decimal digit of b2. Furthermore, note that the final decimal digit of b2

is the same as the final decimal digit of (10 − b)2 = 100 − 20b + b2. Consequently, we can
reduce our proof to the consideration of six cases.

Case (i): The final digit of n is 1 or 9. Then the final decimal digit of n2 is the final decimal
digit of 12 = 1 or 92 = 81, namely 1.

Case (ii): The final digit of n is 2 or 8. Then the final decimal digit of n2 is the final decimal
digit of 22 = 4 or 82 = 64, namely 4.

Case (iii): The final digit of n is 3 or 7. Then the final decimal digit of n2 is the final decimal
digit of 32 = 9 or 72 = 49, namely 9.

Case (iv): The final digit of n is 4 or 6. Then the final decimal digit of n2 is the final decimal
digit of 42 = 16 or 62 = 36, namely 6.

Case (v): The final decimal digit of n is 5. Then the final decimal digit of n2 is the final
decimal digit of 52 = 25, namely 5.

1.8 Proof Methods and Strategy 95

Case (vi): The final decimal digit of n is 0. Then the final decimal digit of n2 is the final
decimal digit of 02 = 0, namely 0.

Because we have considered all six cases, we can conclude that the final decimal digit of n2,
where n is an integer is either 0, 1, 2, 4, 5, 6, or 9. ▲

Sometimes we can eliminate all but a few examples in a proof by cases, as Example 6
illustrates.

EXAMPLE 6 Show that there are no solutions in integers x and y of x2 + 3y2 = 8.

Solution: We can quickly reduce a proof to checking just a few simple cases because x2 > 8
when |x| ≥ 3 and 3y2 > 8 when |y| ≥ 2. This leaves the cases when x equals −2, −1, 0, 1,

or 2 and y equals −1, 0, or 1. We can finish using an exhaustive proof. To dispense with the
remaining cases, we note that possible values for x2 are 0, 1, and 4, and possible values for 3y2

are 0 and 3, and the largest sum of possible values for x2 and 3y2 is 7. Consequently, it is
impossible for x2 + 3y2 = 8 to hold when x and y are integers. ▲

WITHOUT LOSS OF GENERALITY In the proof in Example 4, we dismissed case (iii),
where x < 0 and y ≥ 0, because it is the same as case (ii), where x ≥ 0 and y < 0, with the
roles of x and y reversed. To shorten the proof, we could have proved cases (ii) and (iii) together
by assuming, without loss of generality, that x ≥ 0 and y < 0. Implicit in this statement is that
we can complete the case with x < 0 and y ≥ 0 using the same argument as we used for the
case with x ≥ 0 and y < 0, but with the obvious changes.

In general, when the phrase “without loss of generality” is used in a proof (often abbreviated
as WLOG), we assert that by proving one case of a theorem, no additional argument is required
to prove other specified cases. That is, other cases follow by making straightforward changes
to the argument, or by filling in some straightforward initial step. Proofs by cases can often be

In a proof by cases be

sure not to omit any cases

and check that you have

proved all cases correctly!

made much more efficient when the notion of without loss of generality is employed. Of course,
incorrect use of this principle can lead to unfortunate errors. Sometimes assumptions are made
that lead to a loss in generality. Such assumptions can be made that do not take into account
that one case may be substantially different from others. This can lead to an incomplete, and
possibly unsalvageable, proof. In fact, many incorrect proofs of famous theorems turned out
to rely on arguments that used the idea of “without loss of generality” to establish cases that
could not be quickly proved from simpler cases.

We now illustrate a proof where without loss of generality is used effectively together with
other proof techniques.

EXAMPLE 7 Show that if x and y are integers and both xy and x + y are even, then both x and y are even.

Solution: We will use proof by contraposition, the notion of without loss of generality, and proof
by cases. First, suppose that x and y are not both even. That is, assume that x is odd or that y is
odd (or both). Without loss of generality, we assume that x is odd, so that x = 2m + 1 for some
integer k.

To complete the proof, we need to show that xy is odd or x + y is odd. Consider
two cases: (i) y even, and (ii) y odd. In (i), y = 2n for some integer n, so that x + y =

(2m + 1) + 2n = 2(m + n) + 1 is odd. In (ii), y = 2n + 1 for some integer n, so that xy =

(2m + 1)(2n + 1) = 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1 is odd. This completes the
proof by contraposition. (Note that our use of without loss of generality within the proof is
justified because the proof when y is odd can be obtained by simply interchanging the roles of
x and y in the proof we have given.) ▲

COMMON ERRORS WITH EXHAUSTIVE PROOF AND PROOF BY CASES A common
error of reasoning is to draw incorrect conclusions from examples. No matter how many separate
examples are considered, a theorem is not proved by considering examples unless every possible

96 1 / The Foundations: Logic and Proofs

case is covered. The problem of proving a theorem is analogous to showing that a computer
program always produces the output desired. No matter how many input values are tested, unless
all input values are tested, we cannot conclude that the program always produces the correct
output.

EXAMPLE 8 Is it true that every positive integer is the sum of 18 fourth powers of integers?

Solution: To determine whether a positive integer n can be written as the sum of 18 fourth powers
of integers, we might begin by examining whether n is the sum of 18 fourth powers of integers
for the smallest positive integers. Because the fourth powers of integers are 0, 1, 16, 81, . . . ,

if we can select 18 terms from these numbers that add up to n, then n is the sum of 18 fourth
powers. We can show that all positive integers up to 78 can be written as the sum of 18 fourth
powers. (The details are left to the reader.) However, if we decided this was enough checking,
we would come to the wrong conclusion. It is not true that every positive integer is the sum of
18 fourth powers because 79 is not the sum of 18 fourth powers (as the reader can verify). ▲

Another common error involves making unwarranted assumptions that lead to incorrect
proofs by cases where not all cases are considered. This is illustrated in Example 9.

EXAMPLE 9 What is wrong with this “proof?”

“Theorem:” If x is a real number, then x2 is a positive real number.

“Proof:" Let p1 be “x is positive,” let p2 be “x is negative,” and let q be “x2 is positive.” To
show that p1 → q is true, note that when x is positive, x2 is positive because it is the product
of two positive numbers, x and x. To show that p2 → q, note that when x is negative, x2 is
positive because it is the product of two negative numbers, x and x. This completes the proof.

Solution: The problem with this “proof” is that we missed the case of x = 0. When x = 0,
x2 = 0 is not positive, so the supposed theorem is false. If p is “x is a real number,” then
we can prove results where p is the hypothesis with three cases, p1, p2, and p3, where
p1 is “x is positive,” p2 is “x is negative,” and p3 is “x = 0” because of the equivalence
p ↔ p1 ∨ p2 ∨ p3. ▲

Existence Proofs

Many theorems are assertions that objects of a particular type exist. A theorem of this type is a
proposition of the form ∃xP (x), where P is a predicate. A proof of a proposition of the form
∃xP (x) is called an existence proof. There are several ways to prove a theorem of this type.
Sometimes an existence proof of ∃xP (x) can be given by finding an element a, called a witness,
such that P(a) is true. This type of existence proof is called constructive. It is also possible
to give an existence proof that is nonconstructive; that is, we do not find an element a such
that P(a) is true, but rather prove that ∃xP (x) is true in some other way. One common method
of giving a nonconstructive existence proof is to use proof by contradiction and show that the
negation of the existential quantification implies a contradiction. The concept of a constructive
existence proof is illustrated by Example 10 and the concept of a nonconstructive existence
proof is illustrated by Example 11.

EXAMPLE 10 A Constructive Existence Proof Show that there is a positive integer that can be written as
the sum of cubes of positive integers in two different ways.

Solution: After considerable computation (such as a computer search) we find that

1729 = 103 + 93 = 123 + 13.

1.8 Proof Methods and Strategy 97

Because we have displayed a positive integer that can be written as the sum of cubes in two
different ways, we are done.

There is an interesting story pertaining to this example. The English mathematician G. H.
Hardy, when visiting the ailing Indian prodigy Ramanujan in the hospital, remarked that 1729,
the number of the cab he took, was rather dull. Ramanujan replied “No, it is a very interesting
number; it is the smallest number expressible as the sum of cubes in two different ways.” ▲

EXAMPLE 11 A Nonconstructive Existence Proof Show that there exist irrational numbers x and y such
that xy is rational.

Solution: By Example 10 in Section 1.7 we know that
√

2 is irrational. Consider the number
√

2

√
2
. If it is rational, we have two irrational numbers x and y with xy rational, namely, x =

√
2

and y =
√

2. On the other hand if
√

2

√
2

is irrational, then we can let x =
√

2

√
2

and y =
√

2

so that xy = (
√

2

√
2
)
√

2 =
√

2
(
√

2·
√

2)
=

√
2

2
= 2.

This proof is an example of a nonconstructive existence proof because we have not found
irrational numbers x and y such that xy is rational. Rather, we have shown that either the pair

x =
√

2, y =
√

2 or the pair x =
√

2

√
2
, y =

√
2 have the desired property, but we do not know

which of these two pairs works! ▲

GODFREY HAROLD HARDY (1877–1947) Hardy, born in Cranleigh, Surrey, England, was the older of
two children of Isaac Hardy and Sophia Hall Hardy. His father was the geography and drawing master at the
Cranleigh School and also gave singing lessons and played soccer. His mother gave piano lessons and helped
run a boardinghouse for young students. Hardy’s parents were devoted to their children’s education. Hardy
demonstrated his numerical ability at the early age of two when he began writing down numbers into the
millions. He had a private mathematics tutor rather than attending regular classes at the Cranleigh School. He
moved to Winchester College, a private high school, when he was 13 and was awarded a scholarship. He excelled
in his studies and demonstrated a strong interest in mathematics. He entered Trinity College, Cambridge, in
1896 on a scholarship and won several prizes during his time there, graduating in 1899.

Hardy held the position of lecturer in mathematics at Trinity College at Cambridge University from 1906 to 1919, when he was
appointed to the Sullivan chair of geometry at Oxford. He had become unhappy with Cambridge over the dismissal of the famous
philosopher and mathematician Bertrand Russell from Trinity for antiwar activities and did not like a heavy load of administrative
duties. In 1931 he returned to Cambridge as the Sadleirian professor of pure mathematics, where he remained until his retirement
in 1942. He was a pure mathematician and held an elitist view of mathematics, hoping that his research could never be applied.
Ironically, he is perhaps best known as one of the developers of the Hardy–Weinberg law, which predicts patterns of inheritance.
His work in this area appeared as a letter to the journal Science in which he used simple algebraic ideas to demonstrate errors in
an article on genetics. Hardy worked primarily in number theory and function theory, exploring such topics as the Riemann zeta
function, Fourier series, and the distribution of primes. He made many important contributions to many important problems, such
as Waring’s problem about representing positive integers as sums of kth powers and the problem of representing odd integers as
sums of three primes. Hardy is also remembered for his collaborations with John E. Littlewood, a colleague at Cambridge, with
whom he wrote more than 100 papers, and the famous Indian mathematical prodigy Srinivasa Ramanujan. His collaboration with
Littlewood led to the joke that there were only three important English mathematicians at that time, Hardy, Littlewood, and Hardy–
Littlewood, although some people thought that Hardy had invented a fictitious person, Littlewood, because Littlewood was seldom
seen outside Cambridge. Hardy had the wisdom of recognizing Ramanujan’s genius from unconventional but extremely creative
writings Ramanujan sent him, while other mathematicians failed to see the genius. Hardy brought Ramanujan to Cambridge and
collaborated on important joint papers, establishing new results on the number of partitions of an integer. Hardy was interested
in mathematics education, and his book A Course of Pure Mathematics had a profound effect on undergraduate instruction in
mathematics in the first half of the twentieth century. Hardy also wrote A Mathematician’s Apology, in which he gives his answer
to the question of whether it is worthwhile to devote one’s life to the study of mathematics. It presents Hardy’s view of what
mathematics is and what a mathematician does.

Hardy had a strong interest in sports. He was an avid cricket fan and followed scores closely. One peculiar trait he had was that
he did not like his picture taken (only five snapshots are known) and disliked mirrors, covering them with towels immediately upon
entering a hotel room.

98 1 / The Foundations: Logic and Proofs

Nonconstructive existence proofs often are quite subtle, as Example 12 illustrates.

EXAMPLE 12 Chomp is a game played by two players. In this game, cookies are laid out on a rectangular grid.
The cookie in the top left position is poisoned, as shown in Figure 1(a). The two players take
turns making moves; at each move, a player is required to eat a remaining cookie, together with
all cookies to the right and/or below it (see Figure 1(b), for example). The loser is the player
who has no choice but to eat the poisoned cookie. We ask whether one of the two players has a
winning strategy. That is, can one of the players always make moves that are guaranteed to lead
to a win?

Solution: We will give a nonconstructive existence proof of a winning strategy for the first
player. That is, we will show that the first player always has a winning strategy without explicitly
describing the moves this player must follow.

First, note that the game ends and cannot finish in a draw because with each move at least
one cookie is eaten, so after no more than m × n moves the game ends, where the initial grid
is m × n. Now, suppose that the first player begins the game by eating just the cookie in the
bottom right corner. There are two possibilities, this is the first move of a winning strategy for
the first player, or the second player can make a move that is the first move of a winning strategy
for the second player. In this second case, instead of eating just the cookie in the bottom right
corner, the first player could have made the same move that the second player made as the first

SRINIVASA RAMANUJAN (1887–1920) The famous mathematical prodigy Ramanujan was born and raised
in southern India near the city of Madras (now called Chennai). His father was a clerk in a cloth shop. His mother
contributed to the family income by singing at a local temple. Ramanujan studied at the local English language
school, displaying his talent and interest for mathematics. At the age of 13 he mastered a textbook used by
college students. When he was 15, a university student lent him a copy of Synopsis of Pure Mathematics.
Ramanujan decided to work out the over 6000 results in this book, stated without proof or explanation, writing
on sheets later collected to form notebooks. He graduated from high school in 1904, winning a scholarship to the
University of Madras. Enrolling in a fine arts curriculum, he neglected his subjects other than mathematics and
lost his scholarship. He failed to pass examinations at the university four times from 1904 to 1907, doing well

only in mathematics. During this time he filled his notebooks with original writings, sometimes rediscovering already published
work and at other times making new discoveries.

Without a university degree, it was difficult for Ramanujan to find a decent job. To survive, he had to depend on the goodwill of
his friends. He tutored students in mathematics, but his unconventional ways of thinking and failure to stick to the syllabus caused
problems. He was married in 1909 in an arranged marriage to a young woman nine years his junior. Needing to support himself and
his wife, he moved to Madras and sought a job. He showed his notebooks of mathematical writings to his potential employers, but
the books bewildered them. However, a professor at the Presidency College recognized his genius and supported him, and in 1912
he found work as an accounts clerk, earning a small salary.

Ramanujan continued his mathematical work during this time and published his first paper in 1910 in an Indian journal. He
realized that his work was beyond that of Indian mathematicians and decided to write to leading English mathematicians. The first
mathematicians he wrote to turned down his request for help. But in January 1913 he wrote to G. H. Hardy, who was inclined
to turn Ramanujan down, but the mathematical statements in the letter, although stated without proof, puzzled Hardy. He decided
to examine them closely with the help of his colleague and collaborator J. E. Littlewood. They decided, after careful study, that
Ramanujan was probably a genius, because his statements “could only be written down by a mathematician of the highest class;
they must be true, because if they were not true, no one would have the imagination to invent them.”

Hardy arranged a scholarship for Ramanujan, bringing him to England in 1914. Hardy personally tutored him in mathematical
analysis, and they collaborated for five years, proving significant theorems about the number of partitions of integers. During this
time, Ramanujan made important contributions to number theory and also worked on continued fractions, infinite series, and elliptic
functions. Ramanujan had amazing insight involving certain types of functions and series, but his purported theorems on prime
numbers were often wrong, illustrating his vague idea of what constitutes a correct proof. He was one of the youngest members ever
appointed a Fellow of the Royal Society. Unfortunately, in 1917 Ramanujan became extremely ill. At the time, it was thought that he
had trouble with the English climate and had contracted tuberculosis. It is now thought that he suffered from a vitamin deficiency,
brought on by Ramanujan’s strict vegetarianism and shortages in wartime England. He returned to India in 1919, continuing to
do mathematics even when confined to his bed. He was religious and thought his mathematical talent came from his family deity,
Namagiri. He considered mathematics and religion to be linked. He said that “an equation for me has no meaning unless it expresses
a thought of God.” His short life came to an end in April 1920, when he was 32 years old. Ramanujan left several notebooks of
unpublished results. The writings in these notebooks illustrate Ramanujan’s insights but are quite sketchy. Several mathematicians
have devoted many years of study to explaining and justifying the results in these notebooks.

1.8 Proof Methods and Strategy 99

(a) (b)

FIGURE 1 (a) Chomp (Top Left Cookie Poisoned). (b) Three Possible Moves.

move of a winning strategy (and then continued to follow that winning strategy). This would
guarantee a win for the first player.

Note that we showed that a winning strategy exists, but we did not specify an actual winning
strategy. Consequently, the proof is a nonconstructive existence proof. In fact, no one has been
able to describe a winning strategy for that Chomp that applies for all rectangular grids by
describing the moves that the first player should follow. However, winning strategies can be
described for certain special cases, such as when the grid is square and when the grid only has
two rows of cookies (see Exercises 15 and 16 in Section 5.2). ▲

Uniqueness Proofs

Some theorems assert the existence of a unique element with a particular property. In other
words, these theorems assert that there is exactly one element with this property. To prove a
statement of this type we need to show that an element with this property exists and that no
other element has this property. The two parts of a uniqueness proof are:

Existence: We show that an element x with the desired property exists.

Uniqueness: We show that if y ̸= x, then y does not have the desired property.

Equivalently, we can show that if x and y both have the desired property, then x = y.

Remark: Showing that there is a unique element x such that P(x) is the same as proving the
statement ∃x(P (x) ∧ ∀y(y ̸= x → ¬P(y))).

We illustrate the elements of a uniqueness proof in Example 13.

EXAMPLE 13 Show that if a and b are real numbers and a ̸= 0, then there is a unique real number r such that
ar + b = 0.

Solution: First, note that the real number r = −b/a is a solution of ar + b = 0 because
a(−b/a) + b = −b + b = 0. Consequently, a real number r exists for which ar + b = 0. This
is the existence part of the proof.

Second, suppose that s is a real number such that as + b = 0. Then ar + b = as + b, where
r = −b/a. Subtracting b from both sides, we find that ar = as. Dividing both sides of this last
equation by a, which is nonzero, we see that r = s. This means that if s ̸= r , then as + b ̸= 0.
This establishes the uniqueness part of the proof. ▲

100 1 / The Foundations: Logic and Proofs

Proof Strategies

Finding proofs can be a challenging business. When you are confronted with a statement to
prove, you should first replace terms by their definitions and then carefully analyze what the
hypotheses and the conclusion mean. After doing so, you can attempt to prove the result using
one of the available methods of proof. Generally, if the statement is a conditional statement,
you should first try a direct proof; if this fails, you can try an indirect proof. If neither of these
approaches works, you might try a proof by contradiction.

FORWARD AND BACKWARD REASONING Whichever method you choose, you need
a starting point for your proof. To begin a direct proof of a conditional statement, you start
with the premises. Using these premises, together with axioms and known theorems, you can
construct a proof using a sequence of steps that leads to the conclusion. This type of reasoning,
called forward reasoning, is the most common type of reasoning used to prove relatively simple
results. Similarly, with indirect reasoning you can start with the negation of the conclusion and,
using a sequence of steps, obtain the negation of the premises.

Unfortunately, forward reasoning is often difficult to use to prove more complicated results,
because the reasoning needed to reach the desired conclusion may be far from obvious. In such
cases it may be helpful to use backward reasoning. To reason backward to prove a statement q,
we find a statement p that we can prove with the property that p → q. (Note that it is not helpful
to find a statement r that you can prove such that q → r , because it is the fallacy of begging
the question to conclude from q → r and r that q is true.) Backward reasoning is illustrated in
Examples 14 and 15.

EXAMPLE 14 Given two positive real numbers x and y, their arithmetic mean is (x + y)/2 and their geo-

metric mean is
√

xy. When we compare the arithmetic and geometric means of pairs of distinct
positive real numbers, we find that the arithmetic mean is always greater than the geometric

mean. [For example, when x = 4 and y = 6, we have 5 = (4 + 6)/2 >
√

4 · 6 =
√

24.] Can
we prove that this inequality is always true?

Solution: To prove that (x + y)/2 >
√

xy when x and y are distinct positive real numbers,
we can work backward. We construct a sequence of equivalent inequalities. The equivalent
inequalities are

(x + y)/2 >
√

xy,

(x + y)2/4 > xy,

(x + y)2 > 4xy,

x2 + 2xy + y2 > 4xy,

x2 − 2xy + y2 > 0,

(x − y)2 > 0.

Because (x − y)2 > 0 when x ̸= y, it follows that the final inequality is true. Because all these
inequalities are equivalent, it follows that (x + y)/2 >

√
xy when x ̸= y. Once we have carried

out this backward reasoning, we can easily reverse the steps to construct a proof using forward
reasoning. We now give this proof.

Suppose that x and y are distinct positive real numbers. Then (x − y)2 > 0 because
the square of a nonzero real number is positive (see Appendix 1). Because (x − y)2 =

x2 − 2xy + y2, this implies that x2 − 2xy + y2 > 0. Adding 4xy to both sides, we obtain
x2 + 2xy + y2 > 4xy. Because x2 + 2xy + y2 = (x + y)2, this means that (x + y)2 ≥ 4xy.
Dividing both sides of this equation by 4, we see that (x + y)2/4 > xy. Finally, taking square
roots of both sides (which preserves the inequality because both sides are positive) yields

1.8 Proof Methods and Strategy 101

(x + y)/2 >
√

xy. We conclude that if x and y are distinct positive real numbers, then their
arithmetic mean (x + y)/2 is greater than their geometric mean

√
xy. ▲

EXAMPLE 15 Suppose that two people play a game taking turns removing one, two, or three stones at a time
from a pile that begins with 15 stones. The person who removes the last stone wins the game.
Show that the first player can win the game no matter what the second player does.

Solution: To prove that the first player can always win the game, we work backward. At the
last step, the first player can win if this player is left with a pile containing one, two, or three
stones. The second player will be forced to leave one, two, or three stones if this player has to
remove stones from a pile containing four stones. Consequently, one way for the first person to
win is to leave four stones for the second player on the next-to-last move. The first person can
leave four stones when there are five, six, or seven stones left at the beginning of this player’s
move, which happens when the second player has to remove stones from a pile with eight stones.
Consequently, to force the second player to leave five, six, or seven stones, the first player should
leave eight stones for the second player at the second-to-last move for the first player. This means
that there are nine, ten, or eleven stones when the first player makes this move. Similarly, the
first player should leave twelve stones when this player makes the first move. We can reverse
this argument to show that the first player can always make moves so that this player wins the
game no matter what the second player does. These moves successively leave twelve, eight, and
four stones for the second player. ▲

ADAPTING EXISTING PROOFS An excellent way to look for possible approaches that can
be used to prove a statement is to take advantage of existing proofs of similar results. Often
an existing proof can be adapted to prove other facts. Even when this is not the case, some of
the ideas used in existing proofs may be helpful. Because existing proofs provide clues for new
proofs, you should read and understand the proofs you encounter in your studies. This process
is illustrated in Example 16.

EXAMPLE 16 In Example 10 of Section 1.7 we proved that
√

2 is irrational. We now conjecture that
√

3 is

irrational. Can we adapt the proof in Example 10 in Section 1.7 to show that
√

3 is irrational?

Solution: To adapt the proof in Example 10 in Section 1.7, we begin by mimicking the steps in

that proof, but with
√

2 replaced with
√

3. First, we suppose that
√

3 = d/c where the fraction
c/d is in lowest terms. Squaring both sides tells us that 3 = c2/d2, so that 3d2 = c2. Can we
use this equation to show that 3 must be a factor of both c and d , similar to how we used the
equation 2b2 = a2 in Example 10 in Section 1.7 to show that 2 must be a factor of both a

and b? (Recall that an integer s is a factor of the integer t if t/s is an integer. An integer n is even
if and only if 2 is a factor of n.) In turns out that we can, but we need some ammunition from
number theory, which we will develop in Chapter 4. We sketch out the remainder of the proof,
but leave the justification of these steps until Chapter 4. Because 3 is a factor of c2, it must also
be a factor of c. Furthermore, because 3 is a factor of c, 9 is a factor of c2, which means that 9
is a factor of 3d2. This implies that 3 is a factor of d2, which means that 3 is a factor of that d .
This makes 3 a factor of both c and d , which contradicts the assumption that c/d is in lowest

terms. After we have filled in the justification for these steps, we will have shown that
√

3 is

irrational by adapting the proof that
√

2 is irrational. Note that this proof can be extended to
show that

√
n is irrational whenever n is a positive integer that is not a perfect square. We leave

the details of this to Chapter 4. ▲

A good tip is to look for existing proofs that you might adapt when you are confronted
with proving a new theorem, particularly when the new theorem seems similar to one you have
already proved.

102 1 / The Foundations: Logic and Proofs

Looking for Counterexamples

In Section 1.7 we introduced the use of counterexamples to show that certain statements are
false. When confronted with a conjecture, you might first try to prove this conjecture, and if
your attempts are unsuccessful, you might try to find a counterexample, first by looking at
the simplest, smallest examples. If you cannot find a counterexample, you might again try to
prove the statement. In any case, looking for counterexamples is an extremely important pursuit,
which often provides insights into problems. We will illustrate the role of counterexamples in
Example 17.

EXAMPLE 17 In Example 14 in Section 1.7 we showed that the statement “Every positive integer is the sum of
two squares of integers” is false by finding a counterexample. That is, there are positive integers
that cannot be written as the sum of the squares of two integers. Although we cannot write every
positive integer as the sum of the squares of two integers, maybe we can write every positive
integer as the sum of the squares of three integers. That is, is the statement “Every positive
integer is the sum of the squares of three integers” true or false?

Solution: Because we know that not every positive integer can be written as the sum of two
squares of integers, we might initially be skeptical that every positive integer can be written as
the sum of three squares of integers. So, we first look for a counterexample. That is, we can
show that the statement “Every positive integer is the sum of three squares of integers” is false
if we can find a particular integer that is not the sum of the squares of three integers. To look
for a counterexample, we try to write successive positive integers as a sum of three squares.
We find that 1 = 02 + 02 + 12, 2 = 02 + 12 + 12, 3 = 12 + 12 + 12, 4 = 02 + 02 + 22, 5 =

02 + 12 + 22, 6 = 12 + 12 + 22, but we cannot find a way to write 7 as the sum of three
squares. To show that there are not three squares that add up to 7, we note that the only possible
squares we can use are those not exceeding 7, namely, 0, 1, and 4. Because no three terms where
each term is 0, 1, or 4 add up to 7, it follows that 7 is a counterexample. We conclude that the
statement “Every positive integer is the sum of the squares of three integers” is false.

We have shown that not every positive integer is the sum of the squares of three integers.
The next question to ask is whether every positive integer is the sum of the squares of four
positive integers. Some experimentation provides evidence that the answer is yes. For example,
7 = 12 + 12 + 12 + 22, 25 = 42 + 22 + 22 + 12, and 87 = 92 + 22 + 12 + 12. It turns out the
conjecture “Every positive integer is the sum of the squares of four integers” is true. For a proof,
see [Ro10]. ▲

Proof Strategy in Action

Mathematics is generally taught as if mathematical facts were carved in stone. Mathematics
texts (including the bulk of this book) formally present theorems and their proofs. Such presen-
tations do not convey the discovery process in mathematics. This process begins with exploring
concepts and examples, asking questions, formulating conjectures, and attempting to settle these
conjectures either by proof or by counterexample. These are the day-to-day activities of math-
ematicians. Believe it or not, the material taught in textbooks was originally developed in this
way.

People formulate conjectures on the basis of many types of possible evidence. The exam-
ination of special cases can lead to a conjecture, as can the identification of possible patterns.
Altering the hypotheses and conclusions of known theorems also can lead to plausible conjec-
tures. At other times, conjectures are made based on intuition or a belief that a result holds.
No matter how a conjecture was made, once it has been formulated, the goal is to prove or
disprove it. When mathematicians believe that a conjecture may be true, they try to find a proof.
If they cannot find a proof, they may look for a counterexample. When they cannot find a coun-
terexample, they may switch gears and once again try to prove the conjecture. Although many
conjectures are quickly settled, a few conjectures resist attack for hundreds of years and lead to

1.8 Proof Methods and Strategy 103

FIGURE 2 The Standard Checkerboard.

FIGURE 3

Two Dominoes.

the development of new parts of mathematics. We will mention a few famous conjectures later
in this section.

Tilings

We can illustrate aspects of proof strategy through a brief study of tilings of checkerboards.
Looking at tilings of checkerboards is a fruitful way to quickly discover many different results
and construct their proofs using a variety of proof methods. There are almost an endless number
of conjectures that can be made and studied in this area too. To begin, we need to define some
terms. A checkerboard is a rectangle divided into squares of the same size by horizontal and
vertical lines. The game of checkers is played on a board with 8 rows and 8 columns; this
board is called the standard checkerboard and is shown in Figure 2. In this section we use the
term board to refer to a checkerboard of any rectangular size as well as parts of checkerboards
obtained by removing one or more squares. A domino is a rectangular piece that is one square
by two squares, as shown in Figure 3. We say that a board is tiled by dominoes when all its
squares are covered with no overlapping dominoes and no dominoes overhanging the board. We
now develop some results about tiling boards using dominoes.

EXAMPLE 18 Can we tile the standard checkerboard using dominoes?

Solution: We can find many ways to tile the standard checkerboard using dominoes. For example,
we can tile it by placing 32 dominoes horizontally, as shown in Figure 4. The existence of one
such tiling completes a constructive existence proof. Of course, there are a large number of other
ways to do this tiling. We can place 32 dominoes vertically on the board or we can place some
tiles vertically and some horizontally. But for a constructive existence proof we needed to find
just one such tiling. ▲

EXAMPLE 19 Can we tile a board obtained by removing one of the four corner squares of a standard checker-
board?

Solution: To answer this question, note that a standard checkerboard has 64 squares, so removing
a square produces a board with 63 squares. Now suppose that we could tile a board obtained
from the standard checkerboard by removing a corner square. The board has an even number of

104 1 / The Foundations: Logic and Proofs

FIGURE 4 Tiling the Standard Checkerboard. FIGURE 5 The Standard Checkerboard

with the Upper Left and Lower Right

Squares Removed.

squares because each domino covers two squares and no two dominoes overlap and no dominoes
overhang the board. Consequently, we can prove by contradiction that a standard checkerboard
with one square removed cannot be tiled using dominoes because such a board has an odd
number of squares. ▲

We now consider a trickier situation.

EXAMPLE 20 Can we tile the board obtained by deleting the upper left and lower right corner squares of a
standard checkerboard, shown in Figure 5?

Solution: A board obtained by deleting two squares of a standard checkerboard contains
64 − 2 = 62 squares. Because 62 is even, we cannot quickly rule out the existence of a tiling of
the standard checkerboard with its upper left and lower right squares removed, unlike Example
19, where we ruled out the existence of a tiling of the standard checkerboard with one corner
square removed. Trying to construct a tiling of this board by successively placing dominoes
might be a first approach, as the reader should attempt. However, no matter how much we try,
we cannot find such a tiling. Because our efforts do not produce a tiling, we are led to conjecture
that no tiling exists.

We might try to prove that no tiling exists by showing that we reach a dead end however
we successively place dominoes on the board. To construct such a proof, we would have to
consider all possible cases that arise as we run through all possible choices of successively
placing dominoes. For example, we have two choices for covering the square in the second
column of the first row, next to the removed top left corner. We could cover it with a horizontally
placed tile or a vertically placed tile. Each of these two choices leads to further choices, and so
on. It does not take long to see that this is not a fruitful plan of attack for a person, although a
computer could be used to complete such a proof by exhaustion. (Exercise 45 asks you to supply
such a proof to show that a 4 × 4 checkerboard with opposite corners removed cannot be tiled.)

We need another approach. Perhaps there is an easier way to prove there is no tiling of a
standard checkerboard with two opposite corners removed. As with many proofs, a key obser-
vation can help. We color the squares of this checkerboard using alternating white and black
squares, as in Figure 2. Observe that a domino in a tiling of such a board covers one white square
and one black square. Next, note that this board has unequal numbers of white square and black

1.8 Proof Methods and Strategy 105

squares. We can use these observations to prove by contradiction that a standard checkerboard
with opposite corners removed cannot be tiled using dominoes. We now present such a proof.

Proof: Suppose we can use dominoes to tile a standard checkerboard with opposite corners
removed. Note that the standard checkerboard with opposite corners removed contains 64 − 2 =

62 squares. The tiling would use 62/2 = 31 dominoes. Note that each domino in this tiling covers
one white and one black square. Consequently, the tiling covers 31 white squares and 31 black
squares. However, when we remove two opposite corner squares, either 32 of the remaining
squares are white and 30 are black or else 30 are white and 32 are black. This contradicts the
assumption that we can use dominoes to cover a standard checkerboard with opposite corners
removed, completing the proof. ▲

FIGURE 6 A

Right Triomino

and a Straight

Triomino.

We can use other types of pieces besides dominoes in tilings. Instead of dominoes we can
study tilings that use identically shaped pieces constructed from congruent squares that are
connected along their edges. Such pieces are called polyominoes, a term coined in 1953 by the
mathematician Solomon Golomb, the author of an entertaining book about them [Go94]. We
will consider two polyominoes with the same number of squares the same if we can rotate and/or
flip one of the polyominoes to get the other one. For example, there are two types of triominoes
(see Figure 6), which are polyominoes made up of three squares connected by their sides. One
type of triomino, the straight triomino, has three horizontally connected squares; the other
type, right triominoes, resembles the letter L in shape, flipped and/or rotated, if necessary. We
will study the tilings of a checkerboard by straight triominoes here; we will study tilings by
right triominoes in Section 5.1.

EXAMPLE 21 Can you use straight triominoes to tile a standard checkerboard?

Solution: The standard checkerboard contains 64 squares and each triomino covers three
squares. Consequently, if triominoes tile a board, the number of squares of the board must be
a multiple of 3. Because 64 is not a multiple of 3, triominoes cannot be used to cover an 8 × 8
checkerboard. ▲

In Example 22, we consider the problem of using straight triominoes to tile a standard
checkerboard with one corner missing.

EXAMPLE 22 Can we use straight triominoes to tile a standard checkerboard with one of its four corners
removed? An 8 × 8 checkerboard with one corner removed contains 64 − 1 = 63 squares. Any
tiling by straight triominoes of one of these four boards uses 63/3 = 21 triominoes. However,
when we experiment, we cannot find a tiling of one of these boards using straight triominoes.
A proof by exhaustion does not appear promising. Can we adapt our proof from Example 20 to
prove that no such tiling exists?

Solution: We will color the squares of the checkerboard in an attempt to adapt the proof by
contradiction we gave in Example 20 of the impossibility of using dominoes to tile a standard
checkerboard with opposite corners removed. Because we are using straight triominoes rather
than dominoes, we color the squares using three colors rather than two colors, as shown in
Figure 7. Note that there are 21 blue squares, 21 black squares, and 22 white squares in this
coloring. Next, we make the crucial observation that when a straight triomino covers three
squares of the checkerboard, it covers one blue square, one black square, and one white square.
Next, note that each of the three colors appears in a corner square. Thus without loss of generality,
we may assume that we have rotated the coloring so that the missing square is colored blue.
Therefore, we assume that the remaining board contains 20 blue squares, 21 black squares, and
22 white squares.

If we could tile this board using straight triominoes, then we would use 63/3 = 21 straight
triominoes. These triominoes would cover 21 blue squares, 21 black squares, and 21 white

106 1 / The Foundations: Logic and Proofs

FIGURE 7 Coloring the Squares of the Standard Checkerboard

with Three Colors.

squares. This contradicts the fact that this board contains 20 blue squares, 21 black squares, and
22 white squares. Therefore we cannot tile this board using straight triominoes. ▲

The Role of Open Problems

Many advances in mathematics have been made by people trying to solve famous unsolved
problems. In the past 20 years, many unsolved problems have finally been resolved, such as the
proof of a conjecture in number theory made more than 300 years ago. This conjecture asserts
the truth of the statement known as Fermat’s last theorem.

THEOREM 1 FERMAT’S LAST THEOREM The equation

xn + yn = zn

has no solutions in integers x, y, and z with xyz ̸= 0 whenever n is an integer with n > 2.

Remark: The equation x2 + y2 = z2 has infinitely many solutions in integers x, y, and z; these
solutions are called Pythagorean triples and correspond to the lengths of the sides of right
triangles with integer lengths. See Exercise 32.

This problem has a fascinating history. In the seventeenth century, Fermat jotted in the
margin of his copy of the works of Diophantus that he had a “wondrous proof” that there are no
integer solutions of xn + yn = zn when n is an integer greater than 2 with xyz ̸= 0. However,
he never published a proof (Fermat published almost nothing), and no proof could be found in
the papers he left when he died. Mathematicians looked for a proof for three centuries without
success, although many people were convinced that a relatively simple proof could be found.
(Proofs of special cases were found, such as the proof of the case when n = 3 by Euler and the
proof of the n = 4 case by Fermat himself.) Over the years, several established mathematicians
thought that they had proved this theorem. In the nineteenth century, one of these failed attempts
led to the development of the part of number theory called algebraic number theory. A correct

1.8 Proof Methods and Strategy 107

proof, requiring hundreds of pages of advanced mathematics, was not found until the 1990s,
when Andrew Wiles used recently developed ideas from a sophisticated area of number theory
called the theory of elliptic curves to prove Fermat’s last theorem. Wiles’s quest to find a
proof of Fermat’s last theorem using this powerful theory, described in a program in the Nova

series on public television, took close to ten years! Moreover, his proof was based on major
contributions of many mathematicians. (The interested reader should consult [Ro10] for more
information about Fermat’s last theorem and for additional references concerning this problem
and its resolution.)

We now state an open problem that is simple to describe, but that seems quite difficult to
resolve.

EXAMPLE 23 The 3x + 1 Conjecture Let T be the transformation that sends an even integer x to x/2 and
an odd integer x to 3x + 1. A famous conjecture, sometimes known as the 3x + 1 conjec-

ture, states that for all positive integers x, when we repeatedly apply the transformation T ,
we will eventually reach the integer 1. For example, starting with x = 13, we find T (13) =

3 · 13 + 1 = 40, T (40) = 40/2 = 20, T (20) = 20/2 = 10, T (10) = 10/2 = 5, T (5) =

3 · 5 + 1 = 16, T (16) = 8, T (8) = 4, T (4) = 2, and T (2) = 1. The 3x + 1 conjecture has
been verified using computers for all integers x up to 5.6 · 1013.

The 3x + 1 conjecture has an interesting history and has attracted the attention of mathe-
maticians since the 1950s. The conjecture has been raised many times and goes by many other
names, including the Collatz problem, Hasse’s algorithm, Ulam’s problem, the Syracuse prob-
lem, and Kakutani’s problem. Many mathematicians have been diverted from their work to spend
time attacking this conjecture. This led to the joke that this problem was part of a conspiracy

Watch out! Working on

the 3x + 1 problem can

be addictive.

to slow down American mathematical research. See the article by Jeffrey Lagarias [La10] for a
fascinating discussion of this problem and the results that have been found by mathematicians
attacking it. ▲

In Chapter 4 we will describe additional open questions about prime numbers. Students
already familiar with the basic notions about primes might want to explore Section 4.3, where
these open questions are discussed. We will mention other important open questions throughout
the book.

Additional Proof Methods

In this chapter we introduced the basic methods used in proofs.We also described how to leverage
these methods to prove a variety of results. We will use these proof methods in all subsequent
chapters. In particular, we will use them in Chapters 2, 3, and 4 to prove results about sets,

Build up your arsenal of

proof methods as you

work through this book.

functions, algorithms, and number theory and in Chapters 9, 10, and 11 to prove results in graph
theory. Among the theorems we will prove is the famous halting theorem which states that there
is a problem that cannot be solved using any procedure. However, there are many important
proof methods besides those we have covered. We will introduce some of these methods later
in this book. In particular, in Section 5.1 we will discuss mathematical induction, which is an
extremely useful method for proving statements of the form ∀nP (n), where the domain consists
of all positive integers. In Section 5.3 we will introduce structural induction, which can be used
to prove results about recursively defined sets. We will use the Cantor diagonalization method,
which can be used to prove results about the size of infinite sets, in Section 2.5. In Chapter 6
we will introduce the notion of combinatorial proofs, which can be used to prove results by
counting arguments. The reader should note that entire books have been devoted to the activities
discussed in this section, including many excellent works by George Pólya ([Po61], [Po71],
[Po90]).

Finally, note that we have not given a procedure that can be used for proving theorems in
mathematics. It is a deep theorem of mathematical logic that there is no such procedure.

108 1 / The Foundations: Logic and Proofs

Exercises

1. Prove that n2 + 1 ≥ 2n when n is a positive integer with
1 ≤ n ≤ 4.

2. Prove that there are no positive perfect cubes less than
1000 that are the sum of the cubes of two positive integers.

3. Prove that if x and y are real numbers, then max(x, y) +

min(x, y) = x + y. [Hint: Use a proof by cases, with
the two cases corresponding to x ≥ y and x < y, respec-
tively.]

4. Use a proof by cases to show that min(a, min(b, c)) =

min(min(a, b), c) whenever a, b, and c are real numbers.

5. Prove using the notion of without loss of generality
that min(x, y) = (x + y − |x − y|)/2 and max(x, y) =

(x + y + |x − y|)/2 whenever x and y are real numbers.

6. Prove using the notion of without loss of generality that
5x + 5y is an odd integer when x and y are integers of
opposite parity.

7. Prove the triangle inequality, which states that if x and
y are real numbers, then |x| + |y| ≥ |x + y| (where |x|

represents the absolute value of x, which equals x if x ≥ 0
and equals −x if x < 0).

8. Prove that there is a positive integer that equals the sum
of the positive integers not exceeding it. Is your proof
constructive or nonconstructive?

9. Prove that there are 100 consecutive positive integers that
are not perfect squares. Is your proof constructive or non-
constructive?

10. Prove that either 2 · 10500 + 15 or 2 · 10500 + 16 is not a
perfect square. Is your proof constructive or nonconstruc-
tive?

11. Prove that there exists a pair of consecutive integers such
that one of these integers is a perfect square and the other
is a perfect cube.

12. Show that the product of two of the numbers 651000 −
82001 + 3177, 791212 − 92399 + 22001, and 244493 −
58192 + 71777 is nonnegative. Is your proof constructive
or nonconstructive? [Hint: Do not try to evaluate these
numbers!]

13. Prove or disprove that there is a rational number x and an
irrational number y such that xy is irrational.

14. Prove or disprove that if a and b are rational numbers,
then ab is also rational.

15. Show that each of these statements can be used to ex-
press the fact that there is a unique element x such that
P(x) is true. [Note that we can also write this statement
as ∃!xP (x).]

a) ∃x∀y(P (y) ↔ x = y)

b) ∃xP (x) ∧ ∀x∀y(P (x) ∧ P(y) → x = y)

c) ∃x(P (x) ∧ ∀y(P (y) → x = y))

16. Show that if a, b, and c are real numbers and a ̸= 0, then
there is a unique solution of the equation ax + b = c.

17. Suppose that a and b are odd integers with a ̸= b. Show
there is a unique integer c such that |a − c| = |b − c|.

18. Show that if r is an irrational number, there is a unique
integer n such that the distance between r and n is less
than 1/2.

19. Show that if n is an odd integer, then there is a unique
integer k such that n is the sum of k − 2 and k + 3.

20. Prove that given a real number x there exist unique num-
bers n and ǫ such that x = n + ǫ, n is an integer, and
0 ≤ ǫ < 1.

21. Prove that given a real number x there exist unique num-
bers n and ǫ such that x = n − ǫ, n is an integer, and
0 ≤ ǫ < 1.

22. Use forward reasoning to show that if x is a nonzero real
number, then x2 + 1/x2 ≥ 2. [Hint: Start with the in-
equality (x − 1/x)2 ≥ 0 which holds for all nonzero real
numbers x.]

23. The harmonic mean of two real numbers x and y equals
2xy/(x + y). By computing the harmonic and geometric
means of different pairs of positive real numbers, formu-
late a conjecture about their relative sizes and prove your
conjecture.

24. The quadratic mean of two real numbers x and y

equals
√

(x2 + y2)/2. By computing the arithmetic and
quadratic means of different pairs of positive real num-
bers, formulate a conjecture about their relative sizes and
prove your conjecture.

∗25. Write the numbers 1, 2, . . . , 2n on a blackboard, where
n is an odd integer. Pick any two of the numbers, j and
k, write |j − k| on the board and erase j and k. Continue
this process until only one integer is written on the board.
Prove that this integer must be odd.

∗26. Suppose that five ones and four zeros are arranged around
a circle. Between any two equal bits you insert a 0 and
between any two unequal bits you insert a 1 to produce
nine new bits. Then you erase the nine original bits. Show
that when you iterate this procedure, you can never get
nine zeros. [Hint: Work backward, assuming that you did
end up with nine zeros.]

27. Formulate a conjecture about the decimal digits that ap-
pear as the final decimal digit of the fourth power of an
integer. Prove your conjecture using a proof by cases.

28. Formulate a conjecture about the final two decimal digits
of the square of an integer. Prove your conjecture using a
proof by cases.

29. Prove that there is no positive integer n such that n2 +

n3 = 100.

30. Prove that there are no solutions in integers x and y to the
equation 2x2 + 5y2 = 14.

31. Prove that there are no solutions in positive integers x and
y to the equation x4 + y4 = 625.

32. Prove that there are infinitely many solutions in posi-
tive integers x, y, and z to the equation x2 + y2 = z2.
[Hint: Let x = m2 − n2, y = 2mn, and z = m2 + n2,
where m and n are integers.]

Key Terms and Results 109

33. Adapt the proof in Example 4 in Section 1.7 to prove that
if n = abc, where a, b, and c are positive integers, then
a ≤ 3

√
n, b ≤ 3

√
n, or c ≤ 3

√
n.

34. Prove that
3
√

2 is irrational.

35. Prove that between every two rational numbers there is
an irrational number.

36. Prove that between every rational number and every irra-
tional number there is an irrational number.

∗37. Let S = x1y1 + x2y2 + · · · + xnyn, where x1, x2, . . . ,

xn and y1, y2, . . . , yn are orderings of two different se-
quences of positive real numbers, each containing n ele-
ments.

a) Show that S takes its maximum value over all order-
ings of the two sequences when both sequences are
sorted (so that the elements in each sequence are in
nondecreasing order).

b) Show that S takes its minimum value over all order-
ings of the two sequences when one sequence is sorted
into nondecreasing order and the other is sorted into
nonincreasing order.

38. Prove or disprove that if you have an 8-gallon jug of wa-
ter and two empty jugs with capacities of 5 gallons and 3
gallons, respectively, then you can measure 4 gallons by
successively pouring some of or all of the water in a jug
into another jug.

39. Verify the 3x + 1 conjecture for these integers.

a) 6 b) 7 c) 17 d) 21

40. Verify the 3x + 1 conjecture for these integers.

a) 16 b) 11 c) 35 d) 113

41. Prove or disprove that you can use dominoes to tile
the standard checkerboard with two adjacent corners re-
moved (that is, corners that are not opposite).

42. Prove or disprove that you can use dominoes to tile a
standard checkerboard with all four corners removed.

43. Prove that you can use dominoes to tile a rectangular
checkerboard with an even number of squares.

44. Prove or disprove that you can use dominoes to tile a
5 × 5 checkerboard with three corners removed.

45. Use a proof by exhaustion to show that a tiling using
dominoes of a 4 × 4 checkerboard with opposite corners
removed does not exist. [Hint: First show that you can
assume that the squares in the upper left and lower right
corners are removed. Number the squares of the original

checkerboard from 1 to 16, starting in the first row, mov-
ing right in this row, then starting in the leftmost square
in the second row and moving right, and so on. Remove
squares 1 and 16. To begin the proof, note that square 2 is
covered either by a domino laid horizontally, which cov-
ers squares 2 and 3, or vertically, which covers squares 2
and 6. Consider each of these cases separately, and work
through all the subcases that arise.]

∗46. Prove that when a white square and a black square are
removed from an 8 × 8 checkerboard (colored as in the
text) you can tile the remaining squares of the checker-
board using dominoes. [Hint: Show that when one black
and one white square are removed, each part of the parti-
tion of the remaining cells formed by inserting the barriers
shown in the figure can be covered by dominoes.]

47. Show that by removing two white squares and two black
squares from an 8 × 8 checkerboard (colored as in the
text) you can make it impossible to tile the remaining
squares using dominoes.

∗48. Find all squares, if they exist, on an 8 × 8 checkerboard
such that the board obtained by removing one of these
square can be tiled using straight triominoes. [Hint: First
use arguments based on coloring and rotations to elimi-
nate as many squares as possible from consideration.]

∗49. a) Draw each of the five different tetrominoes, where a
tetromino is a polyomino consisting of four squares.

b) For each of the five different tetrominoes, prove or dis-
prove that you can tile a standard checkerboard using
these tetrominoes.

∗50. Prove or disprove that you can tile a 10 × 10 checker-
board using straight tetrominoes.

Key Terms and Results

TERMS

proposition: a statement that is true or false

propositional variable: a variable that represents a proposi-
tion

truth value: true or false

¬ p (negation of p): the proposition with truth value opposite
to the truth value of p

logical operators: operators used to combine propositions

compound proposition: a proposition constructed by combin-
ing propositions using logical operators

truth table: a table displaying all possible truth values of
propositions

p ∨ q (disjunction of p and q): the proposition “p or q,” which
is true if and only if at least one of p and q is true

110 1 / The Foundations: Logic and Proofs

p ∧ q (conjunction of p and q): the proposition “p and q,”
which is true if and only if both p and q are true

p ⊕ q (exclusive or of p and q): the proposition “p XOR q,”
which is true when exactly one of p and q is true

p → q (p implies q): the proposition “if p, then q,” which is
false if and only if p is true and q is false

converse of p → q: the conditional statement q → p

contrapositive of p → q: the conditional statement ¬q → ¬p

inverse of p → q: the conditional statement ¬p → ¬q

p ↔ q (biconditional): the proposition “p if and only if q,”
which is true if and only if p and q have the same truth
value

bit: either a 0 or a 1

Boolean variable: a variable that has a value of 0 or 1

bit operation: an operation on a bit or bits

bit string: a list of bits

bitwise operations: operations on bit strings that operate on
each bit in one string and the corresponding bit in the other
string

logic gate: a logic element that performs a logical operation
on one or more bits to produce an output bit

logic circuit: a switching circuit made up of logic gates that
produces one or more output bits

tautology: a compound proposition that is always true

contradiction: a compound proposition that is always false

contingency: a compound proposition that is sometimes true
and sometimes false

consistent compound propositions: compound propositions
for which there is an assignment of truth values to the vari-
ables that makes all these propositions true

satisfiable compound proposition: a compound proposition
for which there is an assignment of truth values to its vari-
ables that makes it true

logically equivalent compound propositions: compound
propositions that always have the same truth values

predicate: part of a sentence that attributes a property to the
subject

propositional function: a statement containing one or more
variables that becomes a proposition when each of its vari-
ables is assigned a value or is bound by a quantifier

domain (or universe) of discourse: the values a variable in a
propositional function may take

∃x P(x) (existential quantification of P(x)): the proposition
that is true if and only if there exists an x in the domain
such that P(x) is true

∀xP(x) (universal quantification of P(x)): the proposition
that is true if and only if P(x) is true for every x in the
domain

logically equivalent expressions: expressions that have the
same truth value no matter which propositional functions
and domains are used

free variable: a variable not bound in a propositional function

bound variable: a variable that is quantified

scope of a quantifier: portion of a statement where the quan-
tifier binds its variable

argument: a sequence of statements

argument form: a sequence of compound propositions involv-
ing propositional variables

premise: a statement, in an argument, or argument form, other
than the final one

conclusion: the final statement in an argument or argument
form

valid argument form: a sequence of compound propositions
involving propositional variables where the truth of all the
premises implies the truth of the conclusion

valid argument: an argument with a valid argument form

rule of inference: a valid argument form that can be used in
the demonstration that arguments are valid

fallacy: an invalid argument form often used incorrectly as a
rule of inference (or sometimes, more generally, an incor-
rect argument)

circular reasoning or begging the question: reasoning where
one or more steps are based on the truth of the statement
being proved

theorem: a mathematical assertion that can be shown to be
true

conjecture: a mathematical assertion proposed to be true, but
that has not been proved

proof: a demonstration that a theorem is true

axiom: a statement that is assumed to be true and that can be
used as a basis for proving theorems

lemma: a theorem used to prove other theorems

corollary: a proposition that can be proved as a consequence
of a theorem that has just been proved

vacuous proof: a proof that p → q is true based on the fact
that p is false

trivial proof: a proof that p → q is true based on the fact that
q is true

direct proof: a proof that p → q is true that proceeds by show-
ing that q must be true when p is true

proof by contraposition: a proof that p → q is true that pro-
ceeds by showing that p must be false when q is false

proof by contradiction: a proof that p is true based on the
truth of the conditional statement ¬p → q, where q is a
contradiction

exhaustive proof: a proof that establishes a result by checking
a list of all possible cases

proof by cases: a proof broken into separate cases, where these
cases cover all possibilities

without loss of generality: an assumption in a proof that makes
it possible to prove a theorem by reducing the number of
cases to consider in the proof

counterexample: an element x such that P(x) is false

constructive existence proof: a proof that an element with a
specified property exists that explicitly finds such an ele-
ment

nonconstructive existence proof: a proof that an element with
a specified property exists that does not explicitly find such
an element

rational number: a number that can be expressed as the ratio
of two integers p and q such that q ̸= 0

uniqueness proof: a proof that there is exactly one element
satisfying a specified property

Supplementary Exercises 111

RESULTS

The logical equivalences given in Tables 6, 7, and 8 in Sec-
tion 1.3.

De Morgan’s laws for quantifiers.

Rules of inference for propositional calculus.

Rules of inference for quantified statements.

Review Questions

1. a) Define the negation of a proposition.

b) What is the negation of “This is a boring course”?

2. a) Define (using truth tables) the disjunction, conjunc-
tion, exclusive or, conditional, and biconditional of
the propositions p and q.

b) What are the disjunction, conjunction, exclusive or,
conditional, and biconditional of the propositions “I’ll
go to the movies tonight” and “I’ll finish my discrete
mathematics homework”?

3. a) Describe at least five different ways to write the con-
ditional statement p → q in English.

b) Define the converse and contrapositive of a conditional
statement.

c) State the converse and the contrapositive of the con-
ditional statement “If it is sunny tomorrow, then I will
go for a walk in the woods.”

4. a) What does it mean for two propositions to be logically
equivalent?

b) Describe the different ways to show that two com-
pound propositions are logically equivalent.

c) Show in at least two different ways that the compound
propositions ¬p ∨ (r → ¬q) and ¬p ∨ ¬q ∨ ¬r are
equivalent.

5. (Depends on the Exercise Set in Section 1.3)

a) Given a truth table, explain how to use disjunctive nor-
mal form to construct a compound proposition with
this truth table.

b) Explain why part (a) shows that the operators ∧, ∨,
and ¬ are functionally complete.

c) Is there an operator such that the set containing just
this operator is functionally complete?

6. What are the universal and existential quantifications of
a predicate P(x)? What are their negations?

7. a) What is the difference between the quantification
∃x∀yP (x, y) and ∀y∃xP (x, y), where P(x, y) is a
predicate?

b) Give an example of a predicate P(x, y) such that
∃x∀yP (x, y) and ∀y∃xP (x, y) have different truth
values.

8. Describe what is meant by a valid argument in proposi-
tional logic and show that the argument “If the earth is
flat, then you can sail off the edge of the earth,” “You can-
not sail off the edge of the earth,” therefore, “The earth is
not flat” is a valid argument.

9. Use rules of inference to show that if the premises “All
zebras have stripes” and “Mark is a zebra” are true, then
the conclusion “Mark has stripes” is true.

10. a) Describe what is meant by a direct proof, a proof by
contraposition, and a proof by contradiction of a con-
ditional statement p → q.

b) Give a direct proof, a proof by contraposition and a
proof by contradiction of the statement: “If n is even,
then n + 4 is even.”

11. a) Describe a way to prove the biconditional p ↔ q.
b) Prove the statement: “The integer 3n + 2 is odd if and

only if the integer 9n + 5 is even, where n is an inte-
ger.”

12. To prove that the statements p1, p2, p3, and p4 are equiva-
lent, is it sufficient to show that the conditional statements
p4 → p2, p3 → p1, and p1 → p2 are valid? If not, pro-
vide another collection of conditional statements that can
be used to show that the four statements are equivalent.

13. a) Suppose that a statement of the form ∀xP (x) is false.
How can this be proved?

b) Show that the statement “For every positive integer n,
n2 ≥ 2n” is false.

14. What is the difference between a constructive and non-
constructive existence proof? Give an example of each.

15. What are the elements of a proof that there is a unique
element x such that P(x), where P(x) is a propositional
function?

16. Explain how a proof by cases can be used to prove a result
about absolute values, such as the fact that |xy| = |x||y|

for all real numbers x and y.

Supplementary Exercises

1. Let p be the proposition “I will do every exercise in
this book” and q be the proposition “I will get an “A”
in this course.” Express each of these as a combination of
p and q.

a) I will get an “A” in this course only if I do every exer-
cise in this book.

b) I will get an “A” in this course and I will do every
exercise in this book.

c) Either I will not get an “A” in this course or I will not
do every exercise in this book.

d) For me to get an “A” in this course it is necessary and
sufficient that I do every exercise in this book.

112 1 / The Foundations: Logic and Proofs

2. Find the truth table of the compound proposition (p ∨
q) → (p ∧ ¬r).

3. Show that these compound propositions are tautologies.

a) (¬q ∧ (p → q)) → ¬p

b) ((p ∨ q) ∧ ¬p) → q

4. Give the converse, the contrapositive, and the inverse of
these conditional statements.

a) If it rains today, then I will drive to work.

b) If |x| = x, then x ≥ 0.

c) If n is greater than 3, then n2 is greater than 9.

5. Given a conditional statement p → q, find the converse
of its inverse, the converse of its converse, and the con-
verse of its contrapositive.

6. Given a conditional statement p → q, find the inverse of
its inverse, the inverse of its converse, and the inverse of
its contrapositive.

7. Find a compound proposition involving the propositional
variables p, q, r , and s that is true when exactly three of
these propositional variables are true and is false other-
wise.

8. Show that these statements are inconsistent: “If Sergei
takes the job offer then he will get a signing bonus.” “If
Sergei takes the job offer, then he will receive a higher
salary.” “If Sergei gets a signing bonus, then he will not
receive a higher salary.” “Sergei takes the job offer.”

9. Show that these statements are inconsistent: “If Miranda
does not take a course in discrete mathematics, then she
will not graduate.” “If Miranda does not graduate, then
she is not qualified for the job.” “If Miranda reads this
book, then she is qualified for the job.” “Miranda does
not take a course in discrete mathematics but she reads
this book.”

Teachers in the Middle Ages supposedly tested the realtime
propositional logic ability of a student via a technique known
as an obligato game. In an obligato game, a number of rounds
is set and in each round the teacher gives the student succes-
sive assertions that the student must either accept or reject as
they are given. When the student accepts an assertion, it is
added as a commitment; when the student rejects an assertion
its negation is added as a commitment. The student passes
the test if the consistency of all commitments is maintained
throughout the test.

10. Suppose that in a three-round obligato game, the teacher
first gives the student the proposition p → q, then the
proposition ¬(p ∨ r) ∨ q, and finally the proposition q.
For which of the eight possible sequences of three answers
will the student pass the test?

11. Suppose that in a four-round obligato game, the teacher
first gives the student the proposition ¬(p → (q ∧ r)),
then the proposition p ∨ ¬q, then the proposition ¬r , and
finally, the proposition (p ∧ r) ∨ (q → p). For which of
the 16 possible sequences of four answers will the student
pass the test?

12. Explain why every obligato game has a winning strategy.

Exercises 13 and 14 are set on the island of knights and knaves
described in Example 7 in Section 1.2.

13. Suppose that you meet three people Aaron, Bohan, and
Crystal. Can you determine whatAaron, Bohan, and Crys-
tal are ifAaron says “All of us are knaves” and Bohan says
“Exactly one of us is a knave.”?

14. Suppose that you meet three people, Anita, Boris, and
Carmen. What are Anita, Boris, and Carmen if Anita says
“I am a knave and Boris is a knight” and Boris says “Ex-
actly one of the three of us is a knight”?

15. (Adapted from [Sm78]) Suppose that on an island there
are three types of people, knights, knaves, and normals
(also known as spies). Knights always tell the truth,
knaves always lie, and normals sometimes lie and some-
times tell the truth. Detectives questioned three inhabi-
tants of the island—Amy, Brenda, and Claire—as part
of the investigation of a crime. The detectives knew that
one of the three committed the crime, but not which one.
They also knew that the criminal was a knight, and that the
other two were not. Additionally, the detectives recorded
these statements: Amy: “I am innocent.” Brenda: “What
Amy says is true.” Claire: “Brenda is not a normal.” Af-
ter analyzing their information, the detectives positively
identified the guilty party. Who was it?

16. Show that if S is a proposition, where S is the conditional
statement “If S is true, then unicorns live,” then “Uni-
corns live” is true. Show that it follows that S cannot be a
proposition. (This paradox is known as Löb’s paradox.)

17. Show that the argument with premises “The tooth fairy is a
real person” and “The tooth fairy is not a real person” and
conclusion “You can find gold at the end of the rainbow”
is a valid argument. Does this show that the conclusion is
true?

18. Suppose that the truth value of the proposition pi is T

whenever i is an odd positive integer and is F when-
ever i is an even positive integer. Find the truth values

of
∨100

i=1(pi ∧ pi+1) and
∧100

i=1(pi ∨ pi+1).

∗19. Model 16 × 16 Sudoku puzzles (with 4 × 4 blocks) as
satisfiability problems.

20. Let P(x) be the statement “Student x knows calculus” and
let Q(y) be the statement “Class y contains a student who
knows calculus.” Express each of these as quantifications
of P(x) and Q(y).

a) Some students know calculus.

b) Not every student knows calculus.

c) Every class has a student in it who knows calculus.

d) Every student in every class knows calculus.

e) There is at least one class with no students who know
calculus.

21. Let P(m, n) be the statement “m divides n,” where the do-
main for both variables consists of all positive integers.
(By “m divides n” we mean that n = km for some integer
k.) Determine the truth values of each of these statements.

a) P(4, 5) b) P(2, 4)

c) ∀m ∀n P (m, n) d) ∃m ∀n P (m, n)

e) ∃n ∀m P(m, n) f) ∀n P (1, n)

22. Find a domain for the quantifiers in ∃x∃y(x ̸= y ∧
∀z((z = x) ∨ (z = y))) such that this statement is true.

Supplementary Exercises 113

23. Find a domain for the quantifiers in ∃x∃y(x ̸= y ∧
∀z((z = x) ∨ (z = y))) such that this statement is false.

24. Use existential and universal quantifiers to express the
statement “No one has more than three grandmothers” us-
ing the propositional function G(x, y), which represents
“x is the grandmother of y.”

25. Use existential and universal quantifiers to express the
statement “Everyone has exactly two biological parents”
using the propositional function P(x, y), which repre-
sents “x is the biological parent of y.”

26. The quantifier ∃n denotes “there exists exactly n,” so that
∃nxP (x) means there exist exactly n values in the do-
main such that P(x) is true. Determine the true value of
these statements where the domain consists of all real
numbers.

a) ∃0x(x2 = −1) b) ∃1x(|x| = 0)

c) ∃2x(x2 = 2) d) ∃3x(x = |x|)

27. Express each of these statements using existential and
universal quantifiers and propositional logic where ∃n is
defined in Exercise 26.

a) ∃0xP (x) b) ∃1xP (x)

c) ∃2xP (x) d) ∃3xP (x)

28. Let P(x, y) be a propositional function. Show that
∃x ∀y P (x, y) → ∀y ∃x P (x, y) is a tautology.

29. Let P(x) and Q(x) be propositional functions. Show
that∃x (P (x) → Q(x)) and∀x P (x) → ∃x Q(x) always
have the same truth value.

30. If ∀y ∃x P (x, y) is true, does it necessarily follow that
∃x ∀y P (x, y) is true?

31. If ∀x ∃y P (x, y) is true, does it necessarily follow that
∃x ∀y P (x, y) is true?

32. Find the negations of these statements.

a) If it snows today, then I will go skiing tomorrow.

b) Every person in this class understands mathematical
induction.

c) Some students in this class do not like discrete math-
ematics.

d) In every mathematics class there is some student who
falls asleep during lectures.

33. Express this statement using quantifiers: “Every student
in this class has taken some course in every department
in the school of mathematical sciences.”

34. Express this statement using quantifiers: “There is a build-
ing on the campus of some college in the United States in
which every room is painted white.”

35. Express the statement “There is exactly one student in this
class who has taken exactly one mathematics class at this
school” using the uniqueness quantifier. Then express this
statement using quantifiers, without using the uniqueness
quantifier.

36. Describe a rule of inference that can be used to prove that
there are exactly two elements x and y in a domain such
that P(x) and P(y) are true. Express this rule of inference
as a statement in English.

37. Use rules of inference to show that if the premises
∀x(P (x) → Q(x)), ∀x(Q(x) → R(x)), and ¬R(a),
where a is in the domain, are true, then the conclusion
¬P(a) is true.

38. Prove that if x3 is irrational, then x is irrational.

39. Prove that if x is irrational and x ≥ 0, then
√

x is irra-
tional.

40. Prove that given a nonnegative integer n, there is a unique
nonnegative integer m such that m2 ≤ n < (m + 1)2.

41. Prove that there exists an integer m such that m2 > 101000.
Is your proof constructive or nonconstructive?

42. Prove that there is a positive integer that can be written
as the sum of squares of positive integers in two differ-
ent ways. (Use a computer or calculator to speed up your
work.)

43. Disprove the statement that every positive integer is the
sum of the cubes of eight nonnegative integers.

44. Disprove the statement that every positive integer is the
sum of at most two squares and a cube of nonnegative
integers.

45. Disprove the statement that every positive integer is the
sum of 36 fifth powers of nonnegative integers.

46. Assuming the truth of the theorem that states that
√

n is
irrational whenever n is a positive integer that is not a
perfect square, prove that

√
2 +

√
3 is irrational.

Computer Projects

Write programs with the specified input and output.

1. Given the truth values of the propositions p and q, find the
truth values of the conjunction, disjunction, exclusive or,
conditional statement, and biconditional of these proposi-
tions.

2. Given two bit strings of length n, find the bitwise AND,
bitwise OR, and bitwise XOR of these strings.

∗3. Give a compound proposition, determine whether it is sat-
isfiable by checking its truth value for all positive assign-
ments of truth values to its propositional variables.

4. Given the truth values of the propositions p and q in
fuzzy logic, find the truth value of the disjunction and
the conjunction of p and q (see Exercises 46 and 47 of
Section 1.1).

∗5. Given positive integers m and n, interactively play the game
of Chomp.

∗6. Given a portion of a checkerboard, look for tilings of this
checkerboard with various types of polyominoes, including
dominoes, the two types of triominoes, and larger polyomi-
noes.

114 1 / The Foundations: Logic and Proofs

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Look for positive integers that are not the sum of the cubes
of nine different positive integers.

2. Look for positive integers greater than 79 that are not the
sum of the fourth powers of 18 positive integers.

3. Find as many positive integers as you can that can be writ-
ten as the sum of cubes of positive integers, in two different
ways, sharing this property with 1729.

∗4. Try to find winning strategies for the game of Chomp for
different initial configurations of cookies.

5. Construct the 12 different pentominoes, where a pentomino
is a polyomino consisting of five squares.

6. Find all the rectangles of 60 squares that can be tiled using
every one of the 12 different pentominoes.

Writing Projects

Respond to these with essays using outside sources.

1. Discuss logical paradoxes, including the paradox of Epi-
menides the Cretan, Jourdain’s card paradox, and the bar-
ber paradox, and how they are resolved.

2. Describe how fuzzy logic is being applied to practical ap-
plications. Consult one or more of the recent books on
fuzzy logic written for general audiences.

3. Describe some of the practical problems that can be mod-
eled as satisfiability problems.

4. Describe some of the techniques that have been devised
to help people solve Sudoku puzzles without the use of a
computer.

5. Describe the basic rules of WFF’N PROOF, The Game of

Modern Logic, developed by Layman Allen. Give exam-
ples of some of the games included in WFF’N PROOF.

6. Read some of the writings of Lewis Carroll on symbolic
logic. Describe in detail some of the models he used to
represent logical arguments and the rules of inference he
used in these arguments.

7. Extend the discussion of Prolog given in Section 1.4, ex-
plaining in more depth how Prolog employs resolution.

8. Discuss some of the techniques used in computational
logic, including Skolem’s rule.

9. “Automated theorem proving” is the task of using com-
puters to mechanically prove theorems. Discuss the goals
and applications of automated theorem proving and the
progress made in developing automated theorem provers.

10. Describe how DNA computing has been used to solve
instances of the satisfiability problem.

11. Look up some of the incorrect proofs of famous open
questions and open questions that were solved since 1970
and describe the type of error made in each proof.

12. Discuss what is known about winning strategies in the
game of Chomp.

13. Describe various aspects of proof strategy discussed by
George Pólya in his writings on reasoning, including
[Po62], [Po71], and [Po90].

14. Describe a few problems and results about tilings with
polyominoes, as described in [Go94] and [Ma91], for ex-
ample.

5

C H A P T E R

Induction and Recursion

5.1 Mathematical
Induction

5.2 Strong
Induction and
Well-Ordering

5.3 Recursive
Definitions and
Structural
Induction

5.4 Recursive
Algorithms

5.5 Program
Correctness

Many mathematical statements assert that a property is true for all positive integers.
Examples of such statements are that for every positive integer n: n! ≤ nn, n3 − n is

divisible by 3; a set with n elements has 2n subsets; and the sum of the first n positive integers
is n(n + 1)/2. A major goal of this chapter, and the book, is to give the student a thorough
understanding of mathematical induction, which is used to prove results of this kind.

Proofs using mathematical induction have two parts. First, they show that the statement
holds for the positive integer 1. Second, they show that if the statement holds for a positive
integer then it must also hold for the next larger integer. Mathematical induction is based on the
rule of inference that tells us that if P(1) and ∀k(P (k) → P(k + 1)) are true for the domain of
positive integers, then ∀nP (n) is true. Mathematical induction can be used to prove a tremendous
variety of results. Understanding how to read and construct proofs by mathematical induction
is a key goal of learning discrete mathematics.

In Chapter 2 we explicitly defined sets and functions. That is, we described sets by listing
their elements or by giving some property that characterizes these elements. We gave formulae
for the values of functions. There is another important way to define such objects, based on
mathematical induction. To define functions, some initial terms are specified, and a rule is
given for finding subsequent values from values already known. (We briefly touched on this
sort of definition in Chapter 2 when we showed how sequences can be defined using recurrence
relations.) Sets can be defined by listing some of their elements and giving rules for constructing
elements from those already known to be in the set. Such definitions, called recursive definitions,

are used throughout discrete mathematics and computer science. Once we have defined a set
recursively, we can use a proof method called structural induction to prove results about this set.

When a procedure is specified for solving a problem, this procedure must always solve
the problem correctly. Just testing to see that the correct result is obtained for a set of input
values does not show that the procedure always works correctly. The correctness of a procedure
can be guaranteed only by proving that it always yields the correct result. The final section of
this chapter contains an introduction to the techniques of program verification. This is a formal
technique to verify that procedures are correct. Program verification serves as the basis for
attempts under way to prove in a mechanical fashion that programs are correct.

5.1 Mathematical Induction

Introduction

Suppose that we have an infinite ladder, as shown in Figure 1, and we want to know whether
we can reach every step on this ladder. We know two things:

1. We can reach the first rung of the ladder.
2. If we can reach a particular rung of the ladder, then we can reach the next rung.

Can we conclude that we can reach every rung? By (1), we know that we can reach the first
rung of the ladder. Moreover, because we can reach the first rung, by (2), we can also reach the
second rung; it is the next rung after the first rung. Applying (2) again, because we can reach
the second rung, we can also reach the third rung. Continuing in this way, we can show that we

311

312 5 / Induction and Recursion

Step 1

Step 2

Step 3

Step 4

Step k + 1

... ...

Step k

We can reach

step 1

We can reach step k + 1 if

we can reach step k

FIGURE 1 Climbing an Infinite Ladder.

can reach the fourth rung, the fifth rung, and so on. For example, after 100 uses of (2), we know
that we can reach the 101st rung. But can we conclude that we are able to reach every rung
of this infinite ladder? The answer is yes, something we can verify using an important proof
technique called mathematical induction. That is, we can show that P(n) is true for every
positive integer n, where P(n) is the statement that we can reach the nth rung of the ladder.

Mathematical induction is an extremely important proof technique that can be used to prove
assertions of this type. As we will see in this section and in subsequent sections of this chapter
and later chapters, mathematical induction is used extensively to prove results about a large
variety of discrete objects. For example, it is used to prove results about the complexity of
algorithms, the correctness of certain types of computer programs, theorems about graphs and
trees, as well as a wide range of identities and inequalities.

In this section, we will describe how mathematical induction can be used and why it is a
valid proof technique. It is extremely important to note that mathematical induction can be used
only to prove results obtained in some other way. It is not a tool for discovering formulae or
theorems.

Mathematical Induction

In general, mathematical induction ∗ can be used to prove statements that assert that P(n) is
true for all positive integers n, where P(n) is a propositional function. A proof by mathematical

∗Unfortunately, using the terminology “mathematical induction” clashes with the terminology used to describe different types
of reasoning. In logic, deductive reasoning uses rules of inference to draw conclusions from premises, whereas inductive
reasoning makes conclusions only supported, but not ensured, by evidence. Mathematical proofs, including arguments that
use mathematical induction, are deductive, not inductive.

5.1 Mathematical Induction 313

induction has two parts, a basis step, where we show that P(1) is true, and an inductive step,
where we show that for all positive integers k, if P(k) is true, then P(k + 1) is true.

PRINCIPLE OF MATHEMATICAL INDUCTION To prove that P(n) is true for all
positive integers n, where P(n) is a propositional function, we complete two steps:

BASIS STEP: We verify that P(1) is true.

INDUCTIVE STEP: We show that the conditional statement P(k) → P(k + 1) is true for
all positive integers k.

To complete the inductive step of a proof using the principle of mathematical induction, we
assume that P(k) is true for an arbitrary positive integer k and show that under this assumption,
P(k + 1) must also be true. The assumption that P(k) is true is called the inductive hypothesis.
Once we complete both steps in a proof by mathematical induction, we have shown that P(n) is
true for all positive integers, that is, we have shown that ∀nP (n) is true where the quantification
is over the set of positive integers. In the inductive step, we show that ∀k(P (k) → P(k + 1))

is true, where again, the domain is the set of positive integers.
Expressed as a rule of inference, this proof technique can be stated as

(P (1) ∧ ∀ k(P (k) → P(k + 1))) → ∀ nP (n),

when the domain is the set of positive integers. Because mathematical induction is such an
important technique, it is worthwhile to explain in detail the steps of a proof using this technique.
The first thing we do to prove that P(n) is true for all positive integers n is to show that P(1) is
true. This amounts to showing that the particular statement obtained when n is replaced by 1 in
P(n) is true. Then we must show that P(k) → P(k + 1) is true for every positive integer k. To
prove that this conditional statement is true for every positive integer k, we need to show that
P(k + 1) cannot be false when P(k) is true. This can be accomplished by assuming that P(k)

is true and showing that under this hypothesis P(k + 1) must also be true.

Remark: In a proof by mathematical induction it is not assumed that P(k) is true for all positive
integers! It is only shown that if it is assumed that P(k) is true, then P(k + 1) is also true. Thus,
a proof by mathematical induction is not a case of begging the question, or circular reasoning.

When we use mathematical induction to prove a theorem, we first show that P(1) is true. Then
we know that P(2) is true, because P(1) implies P(2). Further, we know that P(3) is true,
because P(2) implies P(3). Continuing along these lines, we see that P(n) is true for every
positive integer n.

HISTORICAL NOTE The first known use of mathematical induction is in the work of the sixteenth-century
mathematician Francesco Maurolico (1494 –1575). Maurolico wrote extensively on the works of classical
mathematics and made many contributions to geometry and optics. In his book Arithmeticorum Libri Duo,
Maurolico presented a variety of properties of the integers together with proofs of these properties. To prove
some of these properties, he devised the method of mathematical induction. His first use of mathematical
induction in this book was to prove that the sum of the first n odd positive integers equals n2. Augustus De
Morgan is credited with the first presentation in 1838 of formal proofs using mathematical induction, as well
as introducing the terminology “mathematical induction.” Maurolico’s proofs were informal and he never used
the word “induction.” See [Gu11] to learn more about the history of the method of mathematical induction.

314 5 / Induction and Recursion

FIGURE 2 Illustrating How Mathematical Induction Works Using Dominoes.

WAYS TO REMEMBER HOW MATHEMATICAL INDUCTION WORKS Thinking of
the infinite ladder and the rules for reaching steps can help you remember how mathematical
induction works. Note that statements (1) and (2) for the infinite ladder are exactly the basis
step and inductive step, respectively, of the proof that P(n) is true for all positive integers n,
where P(n) is the statement that we can reach the nth rung of the ladder. Consequently, we can
invoke mathematical induction to conclude that we can reach every rung.

Another way to illustrate the principle of mathematical induction is to consider an infinite
row of dominoes, labeled 1, 2, 3, . . . , n, . . . , where each domino is standing up. Let P(n) be
the proposition that domino n is knocked over. If the first domino is knocked over—i.e., if P(1)

is true—and if, whenever the kth domino is knocked over, it also knocks the (k + 1)st domino
over—i.e., if P(k) → P(k + 1) is true for all positive integers k—then all the dominoes are
knocked over. This is illustrated in Figure 2.

Why Mathematical Induction is Valid

Why is mathematical induction a valid proof technique? The reason comes from the well-
ordering property, listed in Appendix 1, as an axiom for the set of positive integers, which
states that every nonempty subset of the set of positive integers has a least element. So, suppose
we know that P(1) is true and that the proposition P(k) → P(k + 1) is true for all positive
integers k. To show that P(n) must be true for all positive integers n, assume that there is at
least one positive integer for which P(n) is false. Then the set S of positive integers for which
P(n) is false is nonempty. Thus, by the well-ordering property, S has a least element, which
will be denoted by m. We know that m cannot be 1, because P(1) is true. Because m is positive
and greater than 1, m − 1 is a positive integer. Furthermore, because m − 1 is less than m, it is
not in S, so P(m − 1) must be true. Because the conditional statement P(m − 1) → P(m) is
also true, it must be the case that P(m) is true. This contradicts the choice of m. Hence, P(n)

must be true for every positive integer n.

The Good and the Bad of Mathematical Induction

An important point needs to be made about mathematical induction before we commence a
study of its use. The good thing about mathematical induction is that it can be used to prove

5.1 Mathematical Induction 315

a conjecture once it is has been made (and is true). The bad thing about it is that it cannotYou can prove
a theorem by
mathematical
induction
even if you do
not have the
slightest idea
why it is true!

be used to find new theorems. Mathematicians sometimes find proofs by mathematical in-
duction unsatisfying because they do not provide insights as to why theorems are true. Many
theorems can be proved in many ways, including by mathematical induction. Proofs of these the-
orems by methods other than mathematical induction are often preferred because of the insights
they bring.

Examples of Proofs by Mathematical Induction

Many theorems assert that P(n) is true for all positive integers n, where P(n) is a propositional
function. Mathematical induction is a technique for proving theorems of this kind. In other words,
mathematical induction can be used to prove statements of the form ∀n P (n), where the domain
is the set of positive integers. Mathematical induction can be used to prove an extremely wide
variety of theorems, each of which is a statement of this form. (Remember, many mathematical
assertions include an implicit universal quantifier. The statement “if n is a positive integer, then
n3 − n is divisible by 3” is an example of this. Making the implicit universal quantifier explicit
yields the statement “for every positive integer n, n3 − n is divisible by 3.)

We will use how theorems are proved using mathematical induction. The theorems we will
prove include summation formulae, inequalities, identities for combinations of sets, divisibility
results, theorems about algorithms, and some other creative results. In this section and in later
sections, we will employ mathematical induction to prove many other types of results, including
the correctness of computer programs and algorithms. Mathematical induction can be used to
prove a wide variety of theorems, not just summation formulae, inequalities, and other types of
examples we illustrate here. (For proofs by mathematical induction of many more interesting
and diverse results, see the Handbook of Mathematical Induction by David Gunderson [Gu11].
This book is part of the extensive CRC Series in Discrete Mathematics, many of which may be
of interest to readers. The author is the Series Editor of these books).

Note that there are many opportunities for errors in induction proofs. We will describe some
incorrect proofs by mathematical induction at the end of this section and in the exercises. To
avoid making errors in proofs by mathematical induction, try to follow the guidelines for such
proofs given at the end of this section.

SEEINGWHERETHE INDUCTIVE HYPOTHESIS IS USED To help the reader understand
each of the mathematical induction proofs in this section, we will note where the inductive

Look for the
IH
= symbol to

see where the inductive
hypothesis is used.

hypothesis is used. We indicate this use in three different ways: by explicit mention in the text,
by inserting the acronym IH (for inductive hypothesis) over an equals sign or a sign for an
inequality, or by specifying the inductive hypothesis as the reason for a step in a multi-line
display.

PROVING SUMMATION FORMULAE We begin by using mathematical induction to prove
several summation formulae. As we will see, mathematical induction is particularly well suited
for proving that such formulae are valid. However, summation formulae can be proven in other
ways. This is not surprising because there are often different ways to prove a theorem. The major
disadvantage of using mathematical induction to prove a summation formula is that you cannot
use it to derive this formula. That is, you must already have the formula before you attempt to
prove it by mathematical induction.

Examples 1–4 illustrate how to use mathematical induction to prove summation formulae.
The first summation formula we will prove by mathematical induction, in Example 1, is a closed
formula for the sum of the smallest n positive integers.

316 5 / Induction and Recursion

EXAMPLE 1 Show that if n is a positive integer, then

1 + 2 + · · · + n =
n(n + 1)

2
.

Solution: Let P(n) be the proposition that the sum of the first n positive integers, 1 + 2 + · · · n =
n(n+1)

2 , is n(n + 1)/2. We must do two things to prove that P(n) is true for n = 1, 2, 3,

Namely, we must show thatP(1) is true and that the conditional statement P(k) implies P(k + 1)

is true for k = 1, 2, 3,

BASIS STEP: P(1) is true, because 1 =
1(1 + 1)

2
. (The left-hand side of this equation is 1

because 1 is the sum of the first positive integer. The right-hand side is found by substituting 1
for n in n(n + 1)/2.)

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) holds for an arbitrary
positive integer k. That is, we assume that

If you are rusty
simplifying algebraic
expressions, this is the
time to do some
reviewing!

1 + 2 + · · · + k =
k(k + 1)

2
.

Under this assumption, it must be shown that P(k + 1) is true, namely, that

1 + 2 + · · · + k + (k + 1) =
(k + 1)[(k + 1) + 1]

2
=

(k + 1)(k + 2)

2

is also true. When we add k + 1 to both sides of the equation in P(k), we obtain

1 + 2 + · · · + k + (k + 1)
IH
=

k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
.

This last equation shows that P(k + 1) is true under the assumption that P(k) is true. This
completes the inductive step.

We have completed the basis step and the inductive step, so by mathematical induction we
know that P(n) is true for all positive integers n. That is, we have proven that 1 + 2 + · · · + n =

n(n + 1)/2 for all positive integers n. ▲

As we noted, mathematical induction is not a tool for finding theorems about all positive
integers. Rather, it is a proof method for proving such results once they are conjectured. In
Example 2, using mathematical induction to prove a summation formula, we will both formulate
and then prove a conjecture.

EXAMPLE 2 Conjecture a formula for the sum of the first n positive odd integers. Then prove your conjecture
using mathematical induction.

Solution: The sums of the first n positive odd integers for n = 1, 2, 3, 4, 5 are

1 = 1, 1 + 3 = 4, 1 + 3 + 5 = 9,

1 + 3 + 5 + 7 = 16, 1 + 3 + 5 + 7 + 9 = 25.

5.1 Mathematical Induction 317

From these values it is reasonable to conjecture that the sum of the first n positive odd integers
is n2, that is, 1 + 3 + 5 + · · · + (2n − 1) = n2. We need a method to prove that this conjecture

is correct, if in fact it is.
Let P(n) denote the proposition that the sum of the first n odd positive integers is n2. Our

conjecture is that P(n) is true for all positive integers. To use mathematical induction to prove
this conjecture, we must first complete the basis step; that is, we must show that P(1) is true.
Then we must carry out the inductive step; that is, we must show that P(k + 1) is true when
P(k) is assumed to be true. We now attempt to complete these two steps.

BASIS STEP: P(1) states that the sum of the first one odd positive integer is 12. This is true
because the sum of the first odd positive integer is 1. The basis step is complete.

INDUCTIVE STEP: To complete the inductive step we must show that the proposition
P(k) → P(k + 1) is true for every positive integer k. To do this, we first assume the inductive
hypothesis. The inductive hypothesis is the statement that P(k) is true for an arbitrary positive
integer k, that is,

1 + 3 + 5 + · · · + (2k − 1) = k2.

(Note that the kth odd positive integer is (2k − 1), because this integer is obtained by adding 2 a
total of k − 1 times to 1.) To show that ∀k(P (k) → P(k + 1)) is true, we must show that if P(k)

is true (the inductive hypothesis), then P(k + 1) is true. Note that P(k + 1) is the statement that

1 + 3 + 5 + · · · + (2k − 1) + (2k + 1) = (k + 1)2.

So, assuming that P(k) is true, it follows that

1 + 3 + 5 + · · · + (2k − 1) + (2k + 1) = [1 + 3 + · · · + (2k − 1)] + (2k + 1)

IH
= k2 + (2k + 1)

= k2 + 2k + 1

= (k + 1)2.

This shows that P(k + 1) follows from P(k). Note that we used the inductive hypothesis P(k)

in the second equality to replace the sum of the first k odd positive integers by k2.

We have now completed both the basis step and the inductive step. That is, we have shown
thatP(1) is true and the conditional statementP(k) → P(k + 1) is true for all positive integers k.
Consequently, by the principle of mathematical induction we can conclude that P(n) is true for
all positive integers n. That is, we know that 1 + 3 + 5 + · · · + (2n − 1) = n2 for all positive
integers n. ▲

Often, we will need to show that P(n) is true for n = b, b + 1, b + 2, . . . , where b is an
integer other than 1. We can use mathematical induction to accomplish this, as long as we change
the basis step by replacing P(1) with P(b). In other words, to use mathematical induction to
show that P(n) is true for n = b, b + 1, b + 2, . . . , where b is an integer other than 1, we show
that P(b) is true in the basis step. In the inductive step, we show that the conditional statement
P(k) → P(k + 1) is true for k = b, b + 1, b + 2, Note that b can be negative, zero, or
positive. Following the domino analogy we used earlier, imagine that we begin by knocking
down the bth domino (the basis step), and as each domino falls, it knocks down the next domino
(the inductive step). We leave it to the reader to show that this form of induction is valid (see
Exercise 83).

We illustrate this notion in Example 3, which states that a summation formula is valid for
all nonnegative integers. In this example, we need to prove that P(n) is true for n = 0, 1, 2,

So, the basis step in Example 3 shows that P(0) is true.

318 5 / Induction and Recursion

EXAMPLE 3 Use mathematical induction to show that

1 + 2 + 22 + · · · + 2n = 2n+1 − 1

for all nonnegative integers n.

Solution: Let P(n) be the proposition that 1 + 2 + 22 + · · · + 2n = 2n+1 − 1 for the integer n.

BASIS STEP: P(0) is true because 20 = 1 = 21 − 1. This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis, we assume that P(k) is true for an arbitrary
nonnegative integer k. That is, we assume that

1 + 2 + 22 + · · · + 2k = 2k+1 − 1.

To carry out the inductive step using this assumption, we must show that when we assume
that P(k) is true, then P(k + 1) is also true. That is, we must show that

1 + 2 + 22 + · · · + 2k + 2k+1 = 2(k+1)+1 − 1 = 2k+2 − 1

assuming the inductive hypothesis P(k). Under the assumption of P(k), we see that

1 + 2 + 22 + · · · + 2k + 2k+1 = (1 + 2 + 22 + · · · + 2k) + 2k+1

IH
= (2k+1 − 1) + 2k+1

= 2 · 2k+1 − 1

= 2k+2 − 1.

Note that we used the inductive hypothesis in the second equation in this string of equalities to
replace 1 + 2 + 22 + · · · + 2k by 2k+1 − 1. We have completed the inductive step.

Because we have completed the basis step and the inductive step, by mathematical induction
we know that P(n) is true for all nonnegative integers n. That is, 1 + 2 + · · · + 2n = 2n+1 − 1
for all nonnegative integers n. ▲

The formula given in Example 3 is a special case of a general result for the sum of terms
of a geometric progression (Theorem 1 in Section 2.4). We will use mathematical induction to
provide an alternative proof of this formula.

EXAMPLE 4 Sums of Geometric Progressions Use mathematical induction to prove this formula for the
sum of a finite number of terms of a geometric progression with initial term a and common
ratio r:

n
∑

j = 0

arj = a + ar + ar2 + · · · + arn =
arn+1 − a

r − 1
when r ̸= 1,

where n is a nonnegative integer.

Solution: To prove this formula using mathematical induction, let P(n) be the statement that
the sum of the first n + 1 terms of a geometric progression in this formula is correct.

BASIS STEP: P(0) is true, because

ar0+1 − a

r − 1
=

ar − a

r − 1
=

a(r − 1)

r − 1
= a.

5.1 Mathematical Induction 319

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, where k is an
arbitrary nonnegative integer. That is, P(k) is the statement that

a + ar + ar2 + · · · + ark =
ark+1 − a

r − 1
.

To complete the inductive step we must show that if P(k) is true, then P(k + 1) is also true. To
show that this is the case, we first add ark+1 to both sides of the equality asserted by P(k). We
find that

a + ar + ar2 + · · · + ark + ark+1 IH
=

ark+1 − a

r − 1
+ ark+1.

Rewriting the right-hand side of this equation shows that

ark+1 − a

r − 1
+ ark+1 =

ark+1 − a

r − 1
+

ark+2 − ark+1

r − 1

=
ark+2 − a

r − 1
.

Combining these last two equations gives

a + ar + ar2 + · · · + ark + ark+1 =
ark+2 − a

r − 1
.

This shows that if the inductive hypothesis P(k) is true, then P(k + 1) must also be true. This
completes the inductive argument.

We have completed the basis step and the inductive step, so by mathematical induction P(n)

is true for all nonnegative integers n. This shows that the formula for the sum of the terms of a
geometric series is correct. ▲

As previously mentioned, the formula in Example 3 is the case of the formula in
Example 4 with a = 1 and r = 2. The reader should verify that putting these values for a

and r into the general formula gives the same formula as in Example 3.

PROVING INEQUALITIES Mathematical induction can be used to prove a variety of
inequalities that hold for all positive integers greater than a particular positive integer, as
Examples 5–7 illustrate.

EXAMPLE 5 Use mathematical induction to prove the inequality

n < 2n

for all positive integers n.

Solution: Let P(n) be the proposition that n < 2n.

BASIS STEP: P(1) is true, because 1 < 21 = 2. This completes the basis step.

INDUCTIVE STEP: We first assume the inductive hypothesis that P(k) is true for anarbitrary
positive integer k. That is, the inductive hypothesis P(k) is the statement that k < 2k . To complete
the inductive step, we need to show that if P(k) is true, then P(k + 1), which is the statement
that k + 1 < 2k+1, is true. That is, we need to show that if k < 2k , then k + 1 < 2k+1. To show

320 5 / Induction and Recursion

that this conditional statement is true for the positive integer k, we first add 1 to both sides of
k < 2k , and then note that 1 ≤ 2k . This tells us that

k + 1
IH
< 2k + 1 ≤ 2k + 2k = 2 · 2k = 2k+1.

This shows that P(k + 1) is true, namely, that k + 1 < 2k+1, based on the assumption that P(k)

is true. The induction step is complete.

Therefore, because we have completed both the basis step and the inductive step, by
the principle of mathematical induction we have shown that n < 2n is true for all positive
integers n. ▲

EXAMPLE 6 Use mathematical induction to prove that 2n < n! for every integer n with n ≥ 4. (Note that this
inequality is false for n = 1, 2, and 3.)

Solution: Let P(n) be the proposition that 2n < n!.

BASIS STEP: To prove the inequality for n ≥ 4 requires that the basis step be P(4). Note that
P(4) is true, because 24 = 16 < 24 = 4!

INDUCTIVE STEP: For the inductive step, we assume that P(k) is true for an arbitrary integer k

with k ≥ 4. That is, we assume that 2k < k! for the positive integer k with k ≥ 4. We must show
that under this hypothesis, P(k + 1) is also true. That is, we must show that if 2k < k! for an
arbitrary positive integer k where k ≥ 4, then 2k+1 < (k + 1)!. We have

2k+1 = 2 · 2k by definition of exponent

< 2 · k! by the inductive hypothesis

< (k + 1)k! because 2 < k + 1

= (k + 1)! by definition of factorial function.

This shows that P(k + 1) is true when P(k) is true. This completes the inductive step of the
proof.

We have completed the basis step and the inductive step. Hence, by mathematical induction
P(n) is true for all integers n with n ≥ 4. That is, we have proved that 2n < n! is true for all
integers n with n ≥ 4. ▲

An important inequality for the sum of the reciprocals of a set of positive integers will be
proved in Example 7.

EXAMPLE 7 An Inequality for Harmonic Numbers The harmonic numbers Hj , j = 1, 2, 3, . . . , are
defined by

Hj = 1 +
1

2
+

1

3
+ · · · +

1

j
.

For instance,

H4 = 1 +
1

2
+

1

3
+

1

4
=

25

12
.

Use mathematical induction to show that

H2n ≥ 1 +
n

2
,

whenever n is a nonnegative integer.

5.1 Mathematical Induction 321

Solution: To carry out the proof, let P(n) be the proposition that H2n ≥ 1 +
n

2
.

BASIS STEP: P(0) is true, because H20 = H1 = 1 ≥ 1 +
0

2
.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, that is,

H2k ≥ 1 +
k

2
, where k is an arbitrary nonnegative integer. We must show that if P(k) is true,

then P(k + 1), which states that H2k+1 ≥ 1 +
k + 1

2
, is also true. So, assuming the inductive

hypothesis, it follows that

H2k+1 = 1 +
1

2
+

1

3
+ · · · +

1

2k
+

1

2k + 1
+ · · · +

1

2k+1
by the definition of harmonic

number

= H2k +
1

2k + 1
+ · · · +

1

2k+1 by the definition of 2k th harmonic
number

≥
(

1 +
k

2

)

+
1

2k + 1
+ · · · +

1

2k+1 by the inductive hypothesis

≥
(

1 +
k

2

)

+ 2k ·
1

2k+1 because there are 2k terms
each ≥ 1/2k+1

≥
(

1 +
k

2

)

+
1

2
canceling a common factor of

2k in second term

= 1 +
k + 1

2
.

This establishes the inductive step of the proof.

We have completed the basis step and the inductive step. Thus, by mathematical induction
P(n) is true for all nonnegative integers n. That is, the inequality H2n ≥ 1 + n

2 for the harmonic
numbers holds for all nonnegative integers n. ▲

Remark: The inequality established here shows that the harmonic series

1 +
1

2
+

1

3
+ · · · +

1

n
+ · · ·

is a divergent infinite series. This is an important example in the study of infinite series.

PROVING DIVISIBILITY RESULTS Mathematical induction can be used to prove divisibil-
ity results about integers. Although such results are often easier to prove using basic results in
number theory, it is instructive to see how to prove such results using mathematical induction,
as Examples 8 and 9 illustrate.

EXAMPLE 8 Use mathematical induction to prove that n3 − n is divisible by 3 whenever n is a posi-
tive integer. (Note that this is the statement with p = 3 of Fermat’s little theorem, which is
Theorem 3 of Section 4.4.)

Solution: To construct the proof, let P(n) denote the proposition: “n3 − n is divisible by 3.”

BASIS STEP: The statement P(1) is true because 13 − 1 = 0 is divisible by 3. This completes
the basis step.

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) is true; that is, we
assume that k3 − k is divisible by 3 for an arbitrary positive integer k. To complete the inductive

322 5 / Induction and Recursion

step, we must show that when we assume the inductive hypothesis, it follows that P(k + 1),
the statement that (k + 1)3 − (k + 1) is divisible by 3, is also true. That is, we must show that
(k + 1)3 − (k + 1) is divisible by 3. Note that

(k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1) − (k + 1)

= (k3 − k) + 3(k2 + k).

Using the inductive hypothesis, we conclude that the first term k3 − k is divisible by 3. The
second term is divisible by 3 because it is 3 times an integer. So, by part (i) of Theorem 1 in
Section 4.1, we know that (k + 1)3 − (k + 1) is also divisible by 3. This completes the inductive
step.

Because we have completed both the basis step and the inductive step, by the prin-
ciple of mathematical induction we know that n3 − n is divisible by 3 whenever n is a
positive integer. ▲

The next example presents a more challenging proof by mathematical induction of a divis-
ibility result.

EXAMPLE 9 Use mathematical induction to prove that 7n+2 + 82n+1 is divisible by 57 for every nonnegative
integer n.

Solution: To construct the proof, let P(n) denote the proposition: “7n+2 + 82n+1 is divisible by
57.”

BASIS STEP: To complete the basis step, we must show that P(0) is true, because we want
to prove that P(n) is true for every nonnegative integer. We see that P(0) is true because
70+2 + 82·0+1 = 72 + 81 = 57 is divisible by 57. This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) is true for an arbitrary
nonnegative integer k; that is, we assume that 7k+2 + 82k+1 is divisible by 57. To complete the
inductive step, we must show that when we assume that the inductive hypothesis P(k) is true,
then P(k + 1), the statement that 7(k+1)+2 + 82(k+1)+1 is divisible by 57, is also true.

The difficult part of the proof is to see how to use the inductive hypothesis. To take advantage
of the inductive hypothesis, we use these steps:

7(k+1)+2 + 82(k+1)+1 = 7k+3 + 82k+3

= 7 · 7k+2 + 82 · 82k+1

= 7 · 7k+2 + 64 · 82k+1

= 7(7k+2 + 82k+1) + 57 · 82k+1.

We can now use the inductive hypothesis, which states that 7k+2 + 82k+1 is divisible by
57. We will use parts (i) and (ii) of Theorem 1 in Section 4.1. By part (ii) of this theorem, and
the inductive hypothesis, we conclude that the first term in this last sum, 7(7k+2 + 82k+1), is
divisible by 57. By part (ii) of this theorem, the second term in this sum, 57 · 82k+1, is divisible
by 57. Hence, by part (i) of this theorem, we conclude that 7(7k+2 + 82k+1) + 57 · 82k+1 =

7k+3 + 82k+3 is divisible by 57. This completes the inductive step.

Because we have completed both the basis step and the inductive step, by the principle of
mathematical induction we know that 7n+2 + 82n+1 is divisible by 57 for every nonnegative
integer n. ▲

PROVING RESULTS ABOUT SETS Mathematical induction can be used to prove many
results about sets. In particular, in Example 10 we prove a formula for the number of subsets of
a finite set and in Example 11 we establish a set identity.

5.1 Mathematical Induction 323

X

S

X

T

a•

Ta•

X ! {a}

FIGURE 3 Generating Subsets of a Set with k + 1 Elements. Here T = S ∪ {a}.

EXAMPLE 10 The Number of Subsets of a Finite Set Use mathematical induction to show that if S is a
finite set with n elements, where n is a nonnegative integer, then S has 2n subsets. (We will
prove this result directly in several ways in Chapter 6.)

Solution: Let P(n) be the proposition that a set with n elements has 2n subsets.

BASIS STEP: P(0) is true, because a set with zero elements, the empty set, has exactly 20 = 1
subset, namely, itself.

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) is true for an arbitrary
nonnegative integer k, that is, we assume that every set with k elements has 2k subsets. It must
be shown that under this assumption, P(k + 1), which is the statement that every set with k + 1
elements has 2k+1 subsets, must also be true. To show this, let T be a set with k + 1 elements.
Then, it is possible to write T = S ∪ {a}, where a is one of the elements of T and S = T − {a}

(and hence |S| = k). The subsets of T can be obtained in the following way. For each subset X

of S there are exactly two subsets of T , namely, X and X ∪ {a}. (This is illustrated in Figure 3.)
These constitute all the subsets of T and are all distinct. We now use the inductive hypothesis
to conclude that S has 2k subsets, because it has k elements. We also know that there are two
subsets of T for each subset of S. Therefore, there are 2 · 2k = 2k+1 subsets of T . This finishes
the inductive argument.

Because we have completed the basis step and the inductive step, by mathematical induction
it follows that P(n) is true for all nonnegative integers n. That is, we have proved that a set
with n elements has 2n subsets whenever n is a nonnegative integer. ▲

EXAMPLE 11 Use mathematical induction to prove the following generalization of one of De Morgan’s laws:

n
⋂

j = 1

Aj =

n
⋃

j = 1

Aj

whenever A1, A2, . . . , An are subsets of a universal set U and n ≥ 2.

Solution: Let P(n) be the identity for n sets.

BASIS STEP: The statement P(2) asserts that A1 ∩ A2 = A1 ∪ A2. This is one of De Morgan’s
laws; it was proved in Example 11 of Section 2.2.

324 5 / Induction and Recursion

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, where k is an
arbitrary integer with k ≥ 2; that is, it is the statement that

k
⋂

j = 1

Aj =

k
⋃

j = 1

Aj

whenever A1, A2, . . . , Ak are subsets of the universal set U . To carry out the inductive step,
we need to show that this assumption implies that P(k + 1) is true. That is, we need to show
that if this equality holds for every collection of k subsets of U , then it must also hold for every
collection of k + 1 subsets of U . Suppose that A1, A2, . . . , Ak, Ak+1 are subsets of U . When
the inductive hypothesis is assumed to hold, it follows that

k+1
⋂

j = 1

Aj =

⎛

⎝

k
⋂

j = 1

Aj

⎞

⎠ ∩ Ak+1 by the definition of intersection

=

⎛

⎝

k
⋂

j = 1

Aj

⎞

⎠ ∪ Ak+1 by De Morgan’s law (where the two sets are
⋂k

j = 1 Aj and Ak+1)

=

⎛

⎝

k
⋃

j = 1

Aj

⎞

⎠ ∪ Ak+1 by the inductive hypothesis

=

k+1
⋃

j = 1

Aj by the definition of union.

This completes the inductive step.

Because we have completed both the basis step and the inductive step, by mathematical
induction we know that P(n) is true whenever n is a positive integer, n ≥ 2. That is, we know
that

n
⋂

j = 1

Aj =

n
⋃

j = 1

Aj

whenever A1, A2, . . . , An are subsets of a universal set U and n ≥ 2. ▲

PROVING RESULTS ABOUT ALGORITHMS Next, we provide an example (somewhat
more difficult than previous examples) that illustrates one of many ways mathematical induction
is used in the study of algorithms. We will show how mathematical induction can be used to
prove that a greedy algorithm we introduced in Section 3.1 always yields an optimal solution.

EXAMPLE 12 Recall the algorithm for scheduling talks discussed in Example 7 of Section 3.1. The input to
this algorithm is a group of m proposed talks with preset starting and ending times. The goal is
to schedule as many of these lectures as possible in the main lecture hall so that no two talks
overlap. Suppose that talk tj begins at time sj and ends at time ej . (No two lectures can proceed
in the main lecture hall at the same time, but a lecture in this hall can begin at the same time
another one ends.)

Without loss of generality, we assume that the talks are listed in order of nondecreasing
ending time, so that e1 ≤ e2 ≤ · · · ≤ em. The greedy algorithm proceeds by selecting at each
stage a talk with the earliest ending time among all those talks that begin no sooner than when

5.1 Mathematical Induction 325

the last talk scheduled in the main lecture hall has ended. Note that a talk with the earliest end
time is always selected first by the algorithm. We will show that this greedy algorithm is optimal
in the sense that it always schedules the most talks possible in the main lecture hall. To prove
the optimality of this algorithm we use mathematical induction on the variable n, the number
of talks scheduled by the algorithm. We let P(n) be the proposition that if the greedy algorithm
schedules n talks in the main lecture hall, then it is not possible to schedule more than n talks
in this hall.

BASIS STEP: Suppose that the greedy algorithm managed to schedule just one talk, t1, in
the main lecture hall. This means that no other talk can start at or after e1, the end time of t1.
Otherwise, the first such talk we come to as we go through the talks in order of nondecreasing
end times could be added. Hence, at time e1 each of the remaining talks needs to use the main
lecture hall because they all start before e1 and end after e1. It follows that no two talks can be
scheduled because both need to use the main lecture hall at time e1. This shows that P(1) is
true and completes the basis step.

INDUCTIVE STEP: The inductive hypothesis is that P(k) is true, where k is an arbitrary
positive integer, that is, that the greedy algorithm always schedules the most possible talks
when it selects k talks, where k is a positive integer, given any set of talks, no matter how
many. We must show that P(k + 1) follows from the assumption that P(k) is true, that is, we
must show that under the assumption of P(k), the greedy algorithm always schedules the most
possible talks when it selects k + 1 talks.

Now suppose that the greedy algorithm has selected k + 1 talks. Our first step in completing
the inductive step is to show there is a schedule including the most talks possible that contains
talk t1, a talk with the earliest end time. This is easy to see because a schedule that begins with
the talk ti in the list, where i > 1, can be changed so that talk t1 replaces talk ti . To see this, note
that because e1 ≤ ei , all talks that were scheduled to follow talk ti can still be scheduled.

Once we included talk t1, scheduling the talks so that as many as possible are scheduled
is reduced to scheduling as many talks as possible that begin at or after time e1. So, if we
have scheduled as many talks as possible, the schedule of talks other than talk t1 is an optimal
schedule of the original talks that begin once talk t1 has ended. Because the greedy algorithm
schedules k talks when it creates this schedule, we can apply the inductive hypothesis to conclude
that it has scheduled the most possible talks. It follows that the greedy algorithm has scheduled
the most possible talks, k + 1, when it produced a schedule with k + 1 talks, so P(k + 1) is
true. This completes the inductive step.

We have completed the basis step and the inductive step. So, by mathematical induction we
know that P(n) is true for all positive integers n. This completes the proof of optimality. That is,
we have proved that when the greedy algorithm schedules n talks, when n is a positive integer,
then it is not possible to schedule more than n talks. ▲

CREATIVE USES OF MATHEMATICAL INDUCTION Mathematical induction can often
be used in unexpected ways. We will illustrate two particularly clever uses of mathematical
induction here, the first relating to survivors in a pie fight and the second relating to tilings with
regular triominoes of checkerboards with one square missing.

EXAMPLE 13 Odd Pie Fights An odd number of people stand in a yard at mutually distinct distances.
At the same time each person throws a pie at their nearest neighbor, hitting this person. Use
mathematical induction to show that there is at least one survivor, that is, at least one person
who is not hit by a pie. (This problem was introduced by Carmony [Ca79]. Note that this result
is false when there are an even number of people; see Exercise 75.)

Solution: Let P(n) be the statement that there is a survivor whenever 2n + 1 people stand in
a yard at distinct mutual distances and each person throws a pie at their nearest neighbor. To
prove this result, we will show that P(n) is true for all positive integers n. This follows because
as n runs through all positive integers, 2n + 1 runs through all odd integers greater than or equal

326 5 / Induction and Recursion

to 3. Note that one person cannot engage in a pie fight because there is no one else to throw the
pie at.

BASIS STEP: When n = 1, there are 2n + 1 = 3 people in the pie fight. Of the three people,
suppose that the closest pair are A and B, and C is the third person. Because distances between
pairs of people are different, the distance between A and C and the distance between B and C are
both different from, and greater than, the distance between A and B. It follows that A and B throw
pies at each other, while C throws a pie at either A or B, whichever is closer. Hence, C is not hit by
a pie. This shows that at least one of the three people is not hit by a pie, completing the basis step.

INDUCTIVE STEP: For the inductive step, assume that P(k) is true for an arbitrary odd
integer k with k ≥ 3. That is, assume that there is at least one survivor whenever 2k + 1 people
stand in a yard at distinct mutual distances and each throws a pie at their nearest neighbor. We
must show that if the inductive hypothesis P(k) is true, then P(k + 1), the statement that there is
at least one survivor whenever 2(k + 1) + 1 = 2k + 3 people stand in a yard at distinct mutual
distances and each throws a pie at their nearest neighbor, is also true.

So suppose that we have 2(k + 1) + 1 = 2k + 3 people in a yard with distinct distances
between pairs of people. Let A and B be the closest pair of people in this group of 2k + 3 people.
When each person throws a pie at the nearest person, A and B throw pies at each other. We have
two cases to consider, (i) when someone else throws a pie at either A or B and (ii) when no one
else throws a pie at either A or B.

Case (i): Because A and B throw pies at each other and someone else throws a pie at either A

and B, at least three pies are thrown at A and B, and at most (2k + 3) − 3 = 2k pies are thrown
at the remaining 2k + 1 people. This guarantees that at least one person is a survivor, for if each
of these 2k + 1 people was hit by at least one pie, a total of at least 2k + 1 pies would have to be
thrown at them. (The reasoning used in this last step is an example of the pigeonhole principle
discussed further in Section 6.2.)

Case (ii): No one else throws a pie at either A and B. Besides A and B, there are 2k + 1 people.
Because the distances between pairs of these people are all different, we can use the inductive
hypothesis to conclude that there is at least one survivor S when these 2k + 1 people each
throws a pie at their nearest neighbor. Furthermore, S is also not hit by either the pie thrown
by A or the pie thrown by B because A and B throw their pies at each other, so S is a survivor
because S is not hit by any of the pies thrown by these 2k + 3 people.

We have completed both the basis step and the inductive step, using a proof by cases. So by
mathematical induction it follows that P(n) is true for all positive integers n. We conclude that
whenever an odd number of people located in a yard at distinct mutual distances each throws a
pie at their nearest neighbor, there is at least one survivor. ▲

FIGURE 4 A
Right Triomino.

In Section 1.8 we discussed the tiling of checkerboards by polyominoes. Example 14 illus-
trates how mathematical induction can be used to prove a result about covering checkerboards
with right triominoes, pieces shaped like the letter “L.”

EXAMPLE 14 Let n be a positive integer. Show that every 2n × 2n checkerboard with one square removed can
be tiled using right triominoes, where these pieces cover three squares at a time, as shown in
Figure 4.

Solution: Let P(n) be the proposition that every 2n × 2n checkerboard with one square removed
can be tiled using right triominoes. We can use mathematical induction to prove that P(n) is
true for all positive integers n.

BASIS STEP: P(1) is true, because each of the four 2 × 2 checkerboards with one square
removed can be tiled using one right triomino, as shown in Figure 5.

5.1 Mathematical Induction 327

FIGURE 5 Tiling 2 × 2 Checkerboards with One Square Removed.

INDUCTIVE STEP: The inductive hypothesis is the assumption thatP(k) is true for the positive
integer k; that is, it is the assumption that every 2k × 2k checkerboard with one square removed
can be tiled using right triominoes. It must be shown that under the assumption of the inductive
hypothesis, P(k + 1) must also be true; that is, any 2k+1 × 2k+1 checkerboard with one square
removed can be tiled using right triominoes.

To see this, consider a 2k+1 × 2k+1 checkerboard with one square removed. Split this
checkerboard into four checkerboards of size 2k × 2k , by dividing it in half in both directions.
This is illustrated in Figure 6. No square has been removed from three of these four checker-
boards. The fourth 2k × 2k checkerboard has one square removed, so we now use the inductive
hypothesis to conclude that it can be covered by right triominoes. Now temporarily remove the
square from each of the other three 2k × 2k checkerboards that has the center of the original,
larger checkerboard as one of its corners, as shown in Figure 7. By the inductive hypothesis,
each of these three 2k × 2k checkerboards with a square removed can be tiled by right triomi-
noes. Furthermore, the three squares that were temporarily removed can be covered by one right
triomino. Hence, the entire 2k+1 × 2k+1 checkerboard can be tiled with right triominoes.

We have completed the basis step and the inductive step. Therefore, by mathemati-
cal induction P(n) is true for all positive integers n. This shows that we can tile every
2n × 2n checkerboard, where n is a positive integer, with one square removed, using right
triominoes. ▲
FIGURE 6 Dividing a
2k+1

× 2k+1 Checkerboard into
Four 2k

× 2k Checkerboards.

FIGURE 7 Tiling the
2k+1

× 2k+1 Checkerboard
with One Square Removed.

Mistaken Proofs By Mathematical Induction

As with every proof method, there are many opportunities for making errors when using mathe-
matical induction. Many well-known mistaken, and often entertaining, proofs by mathematical

Consult Common Errors

in Discrete Mathematics

on this book’s website for
more basic mistakes.

induction of clearly false statements have been devised, as exemplified by Example 15 and
Exercises 49–51. Often, it is not easy to find where the error in reasoning occurs in such mis-
taken proofs.

328 5 / Induction and Recursion

To uncover errors in proofs by mathematical induction, remember that in every such proof,
both the basis step and the inductive step must be done correctly. Not completing the basis step
in a supposed proof by mathematical induction can lead to mistaken proofs of clearly ridiculous
statements such as “n = n + 1 whenever n is a positive integer.” (We leave it to the reader to
show that it is easy to construct a correct inductive step in an attempted proof of this statement.)
Locating the error in a faulty proof by mathematical induction, as Example 15 illustrates, can
be quite tricky, especially when the error is hidden in the basis step.

EXAMPLE 15 Find the error in this “proof” of the clearly false claim that every set of lines in the plane, no
two of which are parallel, meet in a common point.

“Proof:" Let P(n) be the statement that every set of n lines in the plane, no two of which are
parallel, meet in a common point. We will attempt to prove that P(n) is true for all positive
integers n ≥ 2.

BASIS STEP: The statement P(2) is true because any two lines in the plane that are not parallel
meet in a common point (by the definition of parallel lines).

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true for the positive
integer k, that is, it is the assumption that every set of k lines in the plane, no two of which are
parallel, meet in a common point. To complete the inductive step, we must show that if P(k) is
true, then P(k + 1) must also be true. That is, we must show that if every set of k lines in the
plane, no two of which are parallel, meet in a common point, then every set of k + 1 lines in the
plane, no two of which are parallel, meet in a common point. So, consider a set of k + 1 distinct
lines in the plane. By the inductive hypothesis, the first k of these lines meet in a common point
p1. Moreover, by the inductive hypothesis, the last k of these lines meet in a common point p2.
We will show that p1 and p2 must be the same point. If p1 and p2 were different points, all
lines containing both of them must be the same line because two points determine a line. This
contradicts our assumption that all these lines are distinct. Thus, p1 and p2 are the same point.
We conclude that the point p1 = p2 lies on all k + 1 lines. We have shown that P(k + 1) is
true assuming that P(k) is true. That is, we have shown that if we assume that every k, k ≥ 2,
distinct lines meet in a common point, then every k + 1 distinct lines meet in a common point.
This completes the inductive step.

We have completed the basis step and the inductive step, and supposedly we have a correct
proof by mathematical induction.

Solution: Examining this supposed proof by mathematical induction it appears that everything
is in order. However, there is an error, as there must be. The error is rather subtle. Carefully
looking at the inductive step shows that this step requires that k ≥ 3. We cannot show that P(2)

implies P(3). When k = 2, our goal is to show that every three distinct lines meet in a common
point. The first two lines must meet in a common point p1 and the last two lines must meet in
a common point p2. But in this case, p1 and p2 do not have to be the same, because only the
second line is common to both sets of lines. Here is where the inductive step fails. ▲

Guidelines for Proofs by Mathematical Induction

Examples 1–14 illustrate proofs by mathematical induction of a diverse collection of theorems.
Each of these examples includes all the elements needed in a proof by mathematical induction.
We have provided an example of an invalid proof by mathematical induction. Summarizing what
we have learned from these examples, we can provide some useful guidelines for constructing
correct proofs by mathematical induction. We now present these guidelines.

5.1 Mathematical Induction 329

Template for Proofs by Mathematical Induction

1. Express the statement that is to be proved in the form “for all n ≥ b, P(n)” for a fixed
integer b.

2. Write out the words “Basis Step.” Then show that P(b) is true, taking care that the correct
value of b is used. This completes the first part of the proof.

3. Write out the words “Inductive Step.”
4. State, and clearly identify, the inductive hypothesis, in the form “assume that P(k) is true

for an arbitrary fixed integer k ≥ b.”
5. State what needs to be proved under the assumption that the inductive hypothesis is true.

That is, write out what P(k + 1) says.
6. Prove the statement P(k + 1) making use the assumption P(k). Be sure that your proof

is valid for all integers k with k ≥ b, taking care that the proof works for small values
of k, including k = b.

7. Clearly identify the conclusion of the inductive step, such as by saying “this completes
the inductive step.”

8. After completing the basis step and the inductive step, state the conclusion, namely that
by mathematical induction, P(n) is true for all integers n with n ≥ b.

It is worthwhile to revisit each of the mathematical induction proofs in Examples 1–14 to see
how these steps are completed. It will be helpful to follow these guidelines in the solutions of the
exercises that ask for proofs by mathematical induction. The guidelines that we presented can
be adapted for each of the variants of mathematical induction that we introduce in the exercises
and later in this chapter.

Exercises

1. There are infinitely many stations on a train route. Sup-
pose that the train stops at the first station and suppose
that if the train stops at a station, then it stops at the next
station. Show that the train stops at all stations.

2. Suppose that you know that a golfer plays the first hole of
a golf course with an infinite number of holes and that if
this golfer plays one hole, then the golfer goes on to play
the next hole. Prove that this golfer plays every hole on
the course.

Use mathematical induction in Exercises 3–17 to prove sum-
mation formulae. Be sure to identify where you use the in-
ductive hypothesis.

3. Let P(n) be the statement that 12 + 22 + · · · + n2 =

n(n + 1)(2n + 1)/6 for the positive integer n.
a) What is the statement P(1)?

b) Show that P(1) is true, completing the basis step of
the proof.

c) What is the inductive hypothesis?

d) What do you need to prove in the inductive step?

e) Complete the inductive step, identifying where you
use the inductive hypothesis.

f) Explain why these steps show that this formula is true
whenever n is a positive integer.

4. Let P(n) be the statement that 13 + 23 + · · · + n3 =

(n(n + 1)/2)2 for the positive integer n.
a) What is the statement P(1)?

b) Show that P(1) is true, completing the basis step of
the proof.

c) What is the inductive hypothesis?

d) What do you need to prove in the inductive step?

e) Complete the inductive step, identifying where you
use the inductive hypothesis.

f) Explain why these steps show that this formula is true
whenever n is a positive integer.

5. Prove that 12 + 32 + 52 + · · · + (2n + 1)2 = (n + 1)

(2n + 1)(2n + 3)/3 whenever n is a nonnegative integer.

6. Prove that 1 · 1! + 2 · 2! + · · · + n · n! = (n + 1)! − 1
whenever n is a positive integer.

7. Prove that 3 + 3 · 5 + 3 · 52+ · · · + 3 · 5n=3(5n+1− 1)/4
whenever n is a nonnegative integer.

8. Prove that 2 − 2 · 7 + 2 · 72 − · · · + 2(−7)n = (1 −
(−7)n+1)/4 whenever n is a nonnegative integer.

330 5 / Induction and Recursion

9. a) Find a formula for the sum of the first n even positive
integers.

b) Prove the formula that you conjectured in part (a).

10. a) Find a formula for

1

1 · 2
+

1

2 · 3
+ · · · +

1

n(n + 1)

by examining the values of this expression for small
values of n.

b) Prove the formula you conjectured in part (a).

11. a) Find a formula for

1

2
+

1

4
+

1

8
+ · · · +

1

2n

by examining the values of this expression for small
values of n.

b) Prove the formula you conjectured in part (a).

12. Prove that
n

∑

j=0

(

−
1

2

)j

=
2n+1 + (−1)n

3 · 2n

whenever n is a nonnegative integer.

13. Prove that 12 − 22 + 32 − · · · + (−1)n−1n2 = (−1)n−1

n(n + 1)/2 whenever n is a positive integer.

14. Prove that for every positive integer n,
∑n

k = 1 k2k =

(n − 1)2n+1 + 2.

15. Prove that for every positive integer n,

1 · 2 + 2 · 3 + · · · + n(n + 1) = n(n + 1)(n + 2)/3.

16. Prove that for every positive integer n,

1 · 2 · 3 + 2 · 3 · 4 + · · · + n(n + 1)(n + 2)

= n(n + 1)(n + 2)(n + 3)/4.

17. Prove that
∑n

j = 1 j4 = n(n + 1)(2n + 1)(3n2 + 3n −1)/30
whenever n is a positive integer.

Use mathematical induction to prove the inequalities in Exer-
cises 18–30.

18. Let P(n) be the statement that n! < nn, where n is an
integer greater than 1.
a) What is the statement P(2)?
b) Show that P(2) is true, completing the basis step of

the proof.
c) What is the inductive hypothesis?
d) What do you need to prove in the inductive step?
e) Complete the inductive step.
f) Explain why these steps show that this inequality is

true whenever n is an integer greater than 1.
19. Let P(n) be the statement that

1 +
1

4
+

1

9
+ · · · +

1

n2 < 2 −
1

n
,

where n is an integer greater than 1.
a) What is the statement P(2)?
b) Show that P(2) is true, completing the basis step of

the proof.

c) What is the inductive hypothesis?
d) What do you need to prove in the inductive step?
e) Complete the inductive step.
f) Explain why these steps show that this inequality is

true whenever n is an integer greater than 1.
20. Prove that 3n< n! if n is an integer greater than 6.
21. Prove that 2n > n2 if n is an integer greater than 4.
22. For which nonnegative integers n is n2 ≤ n!? Prove your

answer.
23. For which nonnegative integers n is 2n + 3 ≤ 2n? Prove

your answer.
24. Prove that 1/(2n) ≤ [1 · 3 · 5 · · · · · (2n − 1)]/(2 · 4 ·

· · · · 2n) whenever n is a positive integer.
∗25. Prove that if h > −1, then 1 + nh ≤ (1 + h)n for all non-

negative integers n. This is called Bernoulli’s inequality.

∗26. Suppose that a and b are real numbers with 0 < b < a.
Prove that if n is a positive integer, then an − bn ≤
nan−1(a − b).

∗27. Prove that for every positive integer n,

1 +
1

√
2

+
1

√
3

+ · · · +
1

√
n

> 2(
√

n + 1 − 1).

28. Prove that n2 − 7n + 12 is nonnegative whenever n is an
integer with n ≥ 3.

In Exercises 29 and 30, Hn denotes the nth harmonic number.
∗29. Prove that H2n ≤ 1 + n whenever n is a nonnegative in-

teger.
∗30. Prove that

H1 + H2 + · · · + Hn = (n + 1)Hn − n.

Use mathematical induction in Exercises 31–37 to prove di-
visibility facts.
31. Prove that 2 divides n2 + n whenever n is a positive in-

teger.
32. Prove that 3 divides n3 + 2n whenever n is a positive

integer.
33. Prove that 5 divides n5 − n whenever n is a nonnegative

integer.
34. Prove that 6 divides n3 − n whenever n is a nonnegative

integer.
∗35. Prove that n2 − 1 is divisible by 8 whenever n is an odd

positive integer.
∗36. Prove that 21 divides 4n+1 + 52n−1 whenever n is a pos-

itive integer.
∗37. Prove that if n is a positive integer, then 133 divides

11n+1 + 122n−1.
Use mathematical induction in Exercises 38–46 to prove re-
sults about sets.
38. Prove that if A1, A2, . . . , An and B1, B2, . . . , Bn are sets

such that Aj ⊆ Bj for j = 1, 2, . . . , n, then

n
⋃

j = 1

Aj ⊆
n

⋃

j = 1

Bj .

5.1 Mathematical Induction 331

39. Prove that if A1, A2, . . . , An and B1, B2, . . . , Bn are sets
such that Aj ⊆ Bj for j = 1, 2, . . . , n, then

n
⋂

j = 1

Aj ⊆
n

⋂

j = 1

Bj .

40. Prove that if A1, A2, . . . , An and B are sets, then

(A1 ∩ A2 ∩ · · · ∩ An) ∪ B

= (A1 ∪ B) ∩ (A2 ∪ B) ∩ · · · ∩ (An ∪ B).

41. Prove that if A1, A2, . . . , An and B are sets, then

(A1 ∪ A2 ∪ · · · ∪ An) ∩ B

= (A1 ∩ B) ∪ (A2 ∩ B) ∪ · · · ∪ (An ∩ B).

42. Prove that if A1, A2, . . . , An and B are sets, then

(A1 − B) ∩ (A2 − B) ∩ · · · ∩ (An − B)

= (A1 ∩ A2 ∩ · · · ∩ An) − B.

43. Prove that if A1, A2, . . . , An are subsets of a universal
set U , then

n
⋃

k = 1

Ak =
⋂n

k = 1 Ak .

44. Prove that if A1, A2, . . . , An and B are sets, then

(A1 − B) ∪ (A2 − B) ∪ · · · ∪ (An − B)

= (A1 ∪ A2 ∪ · · · ∪ An) − B.

45. Prove that a set with n elements has n(n − 1)/2 subsets
containing exactly two elements whenever n is an integer
greater than or equal to 2.

∗46. Prove that a set with n elements has n(n − 1)(n − 2)/6
subsets containing exactly three elements whenever n is
an integer greater than or equal to 3.

In Exercises 47 and 48 we consider the problem of placing
towers along a straight road, so that every building on the
road receives cellular service. Assume that a building receives
cellular service if it is within one mile of a tower.

47. Devise a greedy algorithm that uses the minimum number
of towers possible to provide cell service to d buildings
located at positions x1, x2, . . . , xd from the start of the
road. [Hint: At each step, go as far as possible along the
road before adding a tower so as not to leave any buildings
without coverage.]

∗48. Use mathematical induction to prove that the algorithm
you devised in Exercise 47 produces an optimal solution,
that is, that it uses the fewest towers possible to provide
cellular service to all buildings.

Exercises 49–51 present incorrect proofs using mathemati-
cal induction. You will need to identify an error in reasoning
in each exercise.

49. What is wrong with this “proof” that all horses are the
same color?
Let P(n) be the proposition that all the horses in a set
of n horses are the same color.

Basis Step: Clearly, P(1) is true.

Inductive Step: Assume that P(k) is true, so that all
the horses in any set of k horses are the same color.
Consider any k + 1 horses; number these as horses
1, 2, 3, . . . , k, k + 1. Now the first k of these horses all
must have the same color, and the last k of these must
also have the same color. Because the set of the first k

horses and the set of the last k horses overlap, all k + 1
must be the same color. This shows that P(k + 1) is true
and finishes the proof by induction.

50. What is wrong with this “proof”?
“Theorem” For every positive integer n,

∑n
i = 1 i =

(n + 1
2)2/2.

Basis Step: The formula is true for n = 1.

Inductive Step: Suppose that
∑n

i=1 i = (n + 1
2)2/2.

Then
∑n+1

i=1 i = (
∑n

i=1 i) + (n + 1). By the induc-
tive hypothesis,

∑n+1
i=1 i = (n + 1

2)2/2 + n + 1 =

(n2 + n + 1
4)/2 + n + 1 = (n2 + 3n + 9

4)/2 =

(n + 3
2)2/2 = [(n + 1) + 1

2]2/2, completing the induc-
tive step.

51. What is wrong with this “proof”?
“Theorem” For every positive integer n, if x and y are
positive integers with max(x, y) = n, then x = y.

Basis Step: Suppose that n = 1. If max(x, y) = 1 and x

and y are positive integers, we have x = 1 and y = 1.

Inductive Step: Let k be a positive integer. Assume that
whenever max(x, y) = k and x and y are positive inte-
gers, then x = y. Now let max(x, y) = k + 1, where x

and y are positive integers. Then max(x − 1, y − 1) = k,
so by the inductive hypothesis, x − 1 = y − 1. It follows
that x = y, completing the inductive step.

52. Suppose that m and n are positive integers with m > n

and f is a function from {1, 2, . . . , m} to {1, 2, . . . , n}.
Use mathematical induction on the variable n to show
that f is not one-to-one.

∗53. Use mathematical induction to show that n people can di-
vide a cake (where each person gets one or more separate
pieces of the cake) so that the cake is divided fairly, that
is, in the sense that each person thinks he or she got at
least (1/n)th of the cake. [Hint: For the inductive step,
take a fair division of the cake among the first k people,
have each person divide their share into what this per-
son thinks are k + 1 equal portions, and then have the
(k + 1)st person select a portion from each of the k peo-
ple. When showing this produces a fair division for k + 1
people, suppose that person k + 1 thinks that person i got
pi of the cake where

∑k
i=1 pi = 1.]

54. Use mathematical induction to show that given a set of
n + 1 positive integers, none exceeding 2n, there is at
least one integer in this set that divides another integer in
the set.

∗55. A knight on a chessboard can move one space horizon-
tally (in either direction) and two spaces vertically (in
either direction) or two spaces horizontally (in either di-
rection) and one space vertically (in either direction).
Suppose that we have an infinite chessboard, made up

332 5 / Induction and Recursion

of all squares (m, n) where m and n are nonnegative inte-
gers that denote the row number and the column number
of the square, respectively. Use mathematical induction to
show that a knight starting at (0, 0) can visit every square
using a finite sequence of moves. [Hint: Use induction
on the variable s = m + n.]

56. Suppose that

A =

[

a 0
0 b

]

,

where a and b are real numbers. Show that

An =

[

an 0
0 bn

]

for every positive integer n.

57. (Requires calculus) Use mathematical induction to prove
that the derivative of f (x) = xn equals nxn−1 whenever
n is a positive integer. (For the inductive step, use the
product rule for derivatives.)

58. Suppose that A and B are square matrices with the prop-
erty AB = BA. Show that ABn = BnA for every positive
integer n.

59. Suppose that m is a positive integer. Use mathematical
induction to prove that if a and b are integers with a ≡ b

(mod m), then ak ≡ bk (mod m) whenever k is a nonneg-
ative integer.

60. Use mathematical induction to show that ¬(p1 ∨ p2 ∨
· · · ∨ pn) is equivalent to ¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn

whenever p1, p2, . . . , pn are propositions.
∗61. Show that

[(p1 → p2) ∧ (p2 → p3) ∧ · · · ∧ (pn−1 → pn)]

→ [(p1 ∧ p2 ∧ · · · ∧ pn−1) → pn]

is a tautology whenever p1, p2, . . . , pn are propositions,
where n ≥ 2.

∗62. Show that n lines separate the plane into (n2 + n + 2)/2
regions if no two of these lines are parallel and no three
pass through a common point.

∗∗63. Let a1, a2, . . . , an be positive real numbers. The arith-
metic mean of these numbers is defined by

A = (a1 + a2 + · · · + an)/n,

and the geometric mean of these numbers is defined by

G = (a1a2 · · · an)
1/n.

Use mathematical induction to prove that A ≥ G.

64. Use mathematical induction to prove Lemma 3 of
Section 4.3, which states that if p is a prime
and p | a1a2 · · · an, where ai is an integer for
i = 1, 2, 3, . . . , n, then p | ai for some integer i.

65. Show that if n is a positive integer, then
∑

{a1,...,ak}⊆{1,2,...,n}

1

a1a2 · · · ak

= n.

(Here the sum is over all nonempty subsets of the set of
the n smallest positive integers.)

∗66. Use the well-ordering property to show that the follow-
ing form of mathematical induction is a valid method to
prove that P(n) is true for all positive integers n.

Basis Step: P(1) and P(2) are true.

Inductive Step: For each positive integer k, if P(k) and
P(k + 1) are both true, then P(k + 2) is true.

67. Show that if A1, A2, . . . , An are sets where n ≥ 2, and
for all pairs of integers i and j with 1 ≤ i < j ≤ n either
Ai is a subset of Aj or Aj is a subset of Ai , then there is
an integer i, 1 ≤ i ≤ n such that Ai is a subset of Aj for
all integers j with 1 ≤ j ≤ n.

∗68. A guest at a party is a celebrity if this person is known
by every other guest, but knows none of them. There is at
most one celebrity at a party, for if there were two, they
would know each other. A particular party may have no
celebrity. Your assignment is to find the celebrity, if one
exists, at a party, by asking only one type of question—
asking a guest whether they know a second guest. Ev-
eryone must answer your questions truthfully. That is, if
Alice and Bob are two people at the party, you can ask Al-
ice whether she knows Bob; she must answer correctly.
Use mathematical induction to show that if there are n

people at the party, then you can find the celebrity, if
there is one, with 3(n − 1) questions. [Hint: First ask a
question to eliminate one person as a celebrity. Then use
the inductive hypothesis to identify a potential celebrity.
Finally, ask two more questions to determine whether that
person is actually a celebrity.]

Suppose there are n people in a group, each aware of a scandal
no one else in the group knows about. These people commu-
nicate by telephone; when two people in the group talk, they
share information about all scandals each knows about. For
example, on the first call, two people share information, so
by the end of the call, each of these people knows about two
scandals. The gossip problem asks for G(n), the minimum
number of telephone calls that are needed for all n people to
learn about all the scandals. Exercises 69–71 deal with the
gossip problem.

69. Find G(1), G(2), G(3), and G(4).

70. Use mathematical induction to prove that G(n) ≤ 2n − 4
for n ≥ 4. [Hint: In the inductive step, have a new person
call a particular person at the start and at the end.]

∗∗71. Prove that G(n) = 2n − 4 for n ≥ 4.
∗72. Show that it is possible to arrange the numbers 1, 2, . . . , n

in a row so that the average of any two of these numbers
never appears between them. [Hint: Show that it suffices
to prove this fact when n is a power of 2. Then use math-
ematical induction to prove the result when n is a power
of 2.]

∗73. Show that if I1, I2, . . . , In is a collection of open in-
tervals on the real number line, n ≥ 2, and every pair
of these intervals has a nonempty intersection, that is,
Ii ∩ Ij ̸= ∅ whenever 1 ≤ i ≤ n and 1 ≤ j ≤ n, then
the intersection of all these sets is nonempty, that is,
I1 ∩ I2 ∩ · · · ∩ In ̸= ∅. (Recall that an open interval is

5.2 Strong Induction and Well-Ordering 333

the set of real numbers x with a < x < b, where a and b

are real numbers with a < b.)
Sometimes we cannot use mathematical induction to prove
a result we believe to be true, but we can use mathematical
induction to prove a stronger result. Because the inductive hy-
pothesis of the stronger result provides more to work with, this
process is called inductive loading. We use inductive loading
in Exercise 74.

74. Suppose that we want to prove that

1

2
·

3

4
· · ·

2n − 1

2n
<

1
√

3n

for all positive integers n.
a) Show that if we try to prove this inequality using math-

ematical induction, the basis step works, but the in-
ductive step fails.

b) Show that mathematical induction can be used to
prove the stronger inequality

1

2
·

3

4
· · ·

2n − 1

2n
<

1
√

3n + 1

for all integers greater than 1, which, together with a
verification for the case where n = 1, establishes the
weaker inequality we originally tried to prove using
mathematical induction.

75. Let n be an even positive integer. Show that when n peo-
ple stand in a yard at mutually distinct distances and each

person throws a pie at their nearest neighbor, it is possible
that everyone is hit by a pie.

76. Construct a tiling using right triominoes of the 4 × 4
checkerboard with the square in the upper left corner re-
moved.

77. Construct a tiling using right triominoes of the 8 × 8
checkerboard with the square in the upper left corner re-
moved.

78. Prove or disprove that all checkerboards of these shapes
can be completely covered using right triominoes when-
ever n is a positive integer.
a) 3 × 2n b) 6 × 2n

c) 3n × 3n d) 6n × 6n

∗79. Show that a three-dimensional 2n × 2n × 2n checker-
board with one 1 × 1 × 1 cube missing can be completely
covered by 2 × 2 × 2 cubes with one 1 × 1 × 1 cube re-
moved.

∗80. Show that an n × n checkerboard with one square re-
moved can be completely covered using right triominoes
if n > 5, n is odd, and 3 ̸ | n.

81. Show that a 5 × 5 checkerboard with a corner square re-
moved can be tiled using right triominoes.

∗82. Find a 5 × 5 checkerboard with a square removed that
cannot be tiled using right triominoes. Prove that such a
tiling does not exist for this board.

83. Use the principle of mathematical induction to show that
P(n) is true for n = b, b + 1, b + 2, . . . , where b is an
integer, if P(b) is true and the conditional statement
P(k) → P(k + 1) is true for all integers k with k ≥ b.

5.2 Strong Induction and Well-Ordering

Introduction

In Section 5.1 we introduced mathematical induction and we showed how to use it to prove a
variety of theorems. In this section we will introduce another form of mathematical induction,
called strong induction, which can often be used when we cannot easily prove a result using
mathematical induction. The basis step of a proof by strong induction is the same as a proof of
the same result using mathematical induction. That is, in a strong induction proof that P(n) is
true for all positive integers n, the basis step shows that P(1) is true. However, the inductive steps
in these two proof methods are different. In a proof by mathematical induction, the inductive
step shows that if the inductive hypothesis P(k) is true, then P(k + 1) is also true. In a proof
by strong induction, the inductive step shows that if P(j) is true for all positive integers not
exceeding k, then P(k + 1) is true. That is, for the inductive hypothesis we assume that P(j)

is true for j = 1, 2, . . . , k.
The validity of both mathematical induction and strong induction follow from the well-

ordering property in Appendix 1. In fact, mathematical induction, strong induction, and well-
ordering are all equivalent principles (as shown in Exercises 41, 42, and 43). That is, the validity
of each can be proved from either of the other two. This means that a proof using one of these
two principles can be rewritten as a proof using either of the other two principles. Just as it is
sometimes the case that it is much easier to see how to prove a result using strong induction
rather than mathematical induction, it is sometimes easier to use well-ordering than one of the

334 5 / Induction and Recursion

two forms of mathematical induction. In this section we will give some examples of how the
well-ordering property can be used to prove theorems.

Strong Induction

Before we illustrate how to use strong induction, we state this principle again.

STRONG INDUCTION To prove that P(n) is true for all positive integers n, where P(n)

is a propositional function, we complete two steps:

BASIS STEP: We verify that the proposition P(1) is true.

INDUCTIVE STEP: We show that the conditional statement [P(1) ∧ P(2) ∧ · · · ∧
P(k)] → P(k + 1) is true for all positive integers k.

Note that when we use strong induction to prove that P(n) is true for all positive integers n,
our inductive hypothesis is the assumption that P(j) is true for j = 1, 2, . . . , k. That is, the
inductive hypothesis includes all k statements P(1), P(2), . . . , P (k). Because we can use all k

statements P(1), P(2), . . . , P (k) to prove P(k + 1), rather than just the statement P(k) as in a
proof by mathematical induction, strong induction is a more flexible proof technique. Because
of this, some mathematicians prefer to always use strong induction instead of mathematical
induction, even when a proof by mathematical induction is easy to find.

You may be surprised that mathematical induction and strong induction are equivalent.
That is, each can be shown to be a valid proof technique assuming that the other is valid. In
particular, any proof using mathematical induction can also be considered to be a proof by strong
induction because the inductive hypothesis of a proof by mathematical induction is part of the
inductive hypothesis in a proof by strong induction. That is, if we can complete the inductive
step of a proof using mathematical induction by showing that P(k + 1) follows from P(k) for
every positive integer k, then it also follows that P(k + 1) follows from all the statements P(1),
P(2), . . . , P (k), because we are assuming that not only P(k) is true, but also more, namely, that
the k − 1 statements P(1), P (2), . . . , P (k − 1) are true. However, it is much more awkward to
convert a proof by strong induction into a proof using the principle of mathematical induction.
(See Exercise 42.)

Strong induction is sometimes called the second principle of mathematical induction
or complete induction. When the terminology “complete induction” is used, the principle of
mathematical induction is called incomplete induction, a technical term that is a somewhat
unfortunate choice because there is nothing incomplete about the principle of mathematical
induction; after all, it is a valid proof technique.

STRONG INDUCTION AND THE INFINITE LADDER To better understand strong in-
duction, consider the infinite ladder in Section 5.1. Strong induction tells us that we can reach
all rungs if

1. we can reach the first rung, and
2. for every integer k, if we can reach all the first k rungs, then we can reach the (k + 1)st rung.

That is, if P(n) is the statement that we can reach the nth rung of the ladder, by strong induction
we know that P(n) is true for all positive integers n, because (1) tells us P(1) is true, completing
the basis step and (2) tells us that P(1) ∧ P(2) ∧ · · · ∧ P(k) implies P(k + 1), completing the
inductive step.

Example 1 illustrates how strong induction can help us prove a result that cannot easily be
proved using the principle of mathematical induction.

5.2 Strong Induction and Well-Ordering 335

EXAMPLE 1 Suppose we can reach the first and second rungs of an infinite ladder, and we know that if we
can reach a rung, then we can reach two rungs higher. Can we prove that we can reach every
rung using the principle of mathematical induction? Can we prove that we can reach every rung
using strong induction?

Solution: We first try to prove this result using the principle of mathematical induction.

BASIS STEP: The basis step of such a proof holds; here it simply verifies that we can reach
the first rung.

ATTEMPTED INDUCTIVE STEP: The inductive hypothesis is the statement that we can
reach the kth rung of the ladder. To complete the inductive step, we need to show that if we
assume the inductive hypothesis for the positive integer k, namely, if we assume that we can
reach the kth rung of the ladder, then we can show that we can reach the (k + 1)st rung of the
ladder. However, there is no obvious way to complete this inductive step because we do not
know from the given information that we can reach the (k + 1)st rung from the kth rung. After
all, we only know that if we can reach a rung we can reach the rung two higher.

Now consider a proof using strong induction.

BASIS STEP: The basis step is the same as before; it simply verifies that we can reach the first
rung.

INDUCTIVE STEP: The inductive hypothesis states that we can reach each of the first k rungs.
To complete the inductive step, we need to show that if we assume that the inductive hypothesis
is true, that is, if we can reach each of the first k rungs, then we can reach the (k + 1)st rung.
We already know that we can reach the second rung. We can complete the inductive step by
noting that as long as k ≥ 2, we can reach the (k + 1)st rung from the (k − 1)st rung because
we know we can climb two rungs from a rung we can already reach, and because k − 1 ≤ k,
by the inductive hypothesis we can reach the (k − 1)st rung. This completes the inductive step
and finishes the proof by strong induction.

We have proved that if we can reach the first two rungs of an infinite ladder and for every
positive integer k if we can reach all the first k rungs then we can reach the (k + 1)st rung, then
we can reach all rungs of the ladder. ▲

Examples of Proofs Using Strong Induction

Now that we have both mathematical induction and strong induction, how do we decide which
method to apply in a particular situation? Although there is no cut-and-dried answer, we can
supply some useful pointers. In practice, you should use mathematical induction when it is
straightforward to prove that P(k) → P(k + 1) is true for all positive integers k. This is the
case for all the proofs in the examples in Section 5.1. In general, you should restrict your use of
the principle of mathematical induction to such scenarios. Unless you can clearly see that the
inductive step of a proof by mathematical induction goes through, you should attempt a proof
by strong induction. That is, use strong induction and not mathematical induction when you
see how to prove that P(k + 1) is true from the assumption that P(j) is true for all positive
integers j not exceeding k, but you cannot see how to prove that P(k + 1) follows from just
P(k). Keep this in mind as you examine the proofs in this section. For each of these proofs,
consider why strong induction works better than mathematical induction.

We will illustrate how strong induction is employed in Examples 2–4. In these examples,
we will prove a diverse collection of results. Pay particular attention to the inductive step in
each of these examples, where we show that a result P(k + 1) follows under the assumption that
P(j) holds for all positive integers j not exceeding k, where P(n) is a propositional function.

336 5 / Induction and Recursion

We begin with one of the most prominent uses of strong induction, the part of the fundamental
theorem of arithmetic that tells us that every positive integer can be written as the product of
primes.

EXAMPLE 2 Show that if n is an integer greater than 1, then n can be written as the product of primes.

Solution: Let P(n) be the proposition that n can be written as the product of primes.

BASIS STEP: P(2) is true, because 2 can be written as the product of one prime, itself. (Note
that P(2) is the first case we need to establish.)

INDUCTIVE STEP: The inductive hypothesis is the assumption that P(j) is true for all
integers j with 2 ≤ j ≤ k, that is, the assumption that j can be written as the product of primes
whenever j is a positive integer at least 2 and not exceeding k. To complete the inductive step,
it must be shown that P(k + 1) is true under this assumption, that is, that k + 1 is the product
of primes.

There are two cases to consider, namely, when k + 1 is prime and when k + 1 is composite.
If k + 1 is prime, we immediately see that P(k + 1) is true. Otherwise, k + 1 is composite and
can be written as the product of two positive integers a and b with 2 ≤ a ≤ b < k + 1. Because
both a and b are integers at least 2 and not exceeding k, we can use the inductive hypothesis to
write both a and b as the product of primes. Thus, if k + 1 is composite, it can be written as the
product of primes, namely, those primes in the factorization of a and those in the factorization
of b. ▲

Remark: Because 1 can be thought of as the empty product of no primes, we could have started
the proof in Example 2 with P(1) as the basis step. We chose not to do so because many people
find this confusing.

Example 2 completes the proof of the fundamental theorem of arithmetic, which asserts that
every nonnegative integer can be written uniquely as the product of primes in nondecreasing
order. We showed in Section 4.3 that an integer has at most one such factorization into primes.
Example 2 shows there is at least one such factorization.

Next, we show how strong induction can be used to prove that a player has a winning
strategy in a game.

EXAMPLE 3 Consider a game in which two players take turns removing any positive number of matches they
want from one of two piles of matches. The player who removes the last match wins the game.
Show that if the two piles contain the same number of matches initially, the second player can
always guarantee a win.

Solution: Let n be the number of matches in each pile. We will use strong induction to prove
P(n), the statement that the second player can win when there are initially n matches in each
pile.

BASIS STEP: When n = 1, the first player has only one choice, removing one match from one
of the piles, leaving a single pile with a single match, which the second player can remove to
win the game.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(j) is true for all j with
1 ≤ j ≤ k, that is, the assumption that the second player can always win whenever there are j

matches, where 1 ≤ j ≤ k in each of the two piles at the start of the game. We need to show that
P(k + 1) is true, that is, that the second player can win when there are initially k + 1 matches in
each pile, under the assumption that P(j) is true for j = 1, 2, . . . , k. So suppose that there are
k + 1 matches in each of the two piles at the start of the game and suppose that the first player
removes r matches (1 ≤ r ≤ k) from one of the piles, leaving k + 1 − r matches in this pile.
By removing the same number of matches from the other pile, the second player creates the

5.2 Strong Induction and Well-Ordering 337

situation where there are two piles each with k + 1 − r matches. Because 1 ≤ k + 1 − r ≤ k,
we can now use the inductive hypothesis to conclude that the second player can always win.
We complete the proof by noting that if the first player removes all k + 1 matches from one of
the piles, the second player can win by removing all the remaining matches. ▲

Using the principle of mathematical induction, instead of strong induction, to prove the
results in Examples 2 and 3 is difficult. However, as Example 4 shows, some results can be
readily proved using either the principle of mathematical induction or strong induction.

Before we present Example 4, note that we can slightly modify strong induction to handle
a wider variety of situations. In particular, we can adapt strong induction to handle cases where
the inductive step is valid only for integers greater than a particular integer. Let b be a fixed
integer and j a fixed positive integer. The form of strong induction we need tells us that P(n)

is true for all integers n with n ≥ b if we can complete these two steps:

BASIS STEP: We verify that the propositions P(b), P (b + 1), . . . , P (b + j) are true.

INDUCTIVE STEP: We show that [P(b) ∧ P(b + 1) ∧ · · · ∧ P(k)] → P(k + 1) is true for
every integer k ≥ b + j .

We will use this alternative form in the strong induction proof in Example 4. That this
alternative form is equivalent to strong induction is left as Exercise 28.

EXAMPLE 4 Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and
5-cent stamps.

Solution: We will prove this result using the principle of mathematical induction. Then we will
present a proof using strong induction. Let P(n) be the statement that postage of n cents can be
formed using 4-cent and 5-cent stamps.

We begin by using the principle of mathematical induction.

BASIS STEP: Postage of 12 cents can be formed using three 4-cent stamps.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true. That is, under
this hypothesis, postage of k cents can be formed using 4-cent and 5-cent stamps. To complete
the inductive step, we need to show that when we assume P(k) is true, then P(k + 1) is also
true where k ≥ 12. That is, we need to show that if we can form postage of k cents, then we can
form postage of k + 1 cents. So, assume the inductive hypothesis is true; that is, assume that
we can form postage of k cents using 4-cent and 5-cent stamps. We consider two cases, when at
least one 4-cent stamp has been used and when no 4-cent stamps have been used. First, suppose
that at least one 4-cent stamp was used to form postage of k cents. Then we can replace this
stamp with a 5-cent stamp to form postage of k + 1 cents. But if no 4-cent stamps were used,
we can form postage of k cents using only 5-cent stamps. Moreover, because k ≥ 12, we needed
at least three 5-cent stamps to form postage of k cents. So, we can replace three 5-cent stamps
with four 4-cent stamps to form postage of k + 1 cents. This completes the inductive step.

Because we have completed the basis step and the inductive step, we know that P(n) is
true for all n ≥ 12. That is, we can form postage of n cents, where n ≥ 12 using just 4-cent and
5-cent stamps. This completes the proof by mathematical induction.

Next, we will use strong induction to prove the same result. In this proof, in the basis step
we show that P(12), P(13), P(14), and P(15) are true, that is, that postage of 12, 13, 14,
or 15 cents can be formed using just 4-cent and 5-cent stamps. In the inductive step we show
how to get postage of k + 1 cents for k ≥ 15 from postage of k − 3 cents.

BASIS STEP: We can form postage of 12, 13, 14, and 15 cents using three 4-cent stamps, two
4-cent stamps and one 5-cent stamp, one 4-cent stamp and two 5-cent stamps, and three 5-cent
stamps, respectively. This shows that P(12), P(13), P(14), and P(15) are true. This completes
the basis step.

338 5 / Induction and Recursion

INDUCTIVE STEP: The inductive hypothesis is the statement that P(j) is true for 12 ≤ j ≤ k,
where k is an integer with k ≥ 15. To complete the inductive step, we assume that we can form
postage of j cents, where 12 ≤ j ≤ k. We need to show that under the assumption that P(k + 1)

is true, we can also form postage of k + 1 cents. Using the inductive hypothesis, we can assume
that P(k − 3) is true because k − 3 ≥ 12, that is, we can form postage of k − 3 cents using
just 4-cent and 5-cent stamps. To form postage of k + 1 cents, we need only add another 4-cent
stamp to the stamps we used to form postage of k − 3 cents. That is, we have shown that if the
inductive hypothesis is true, then P(k + 1) is also true. This completes the inductive step.

Because we have completed the basis step and the inductive step of a strong induction proof,
we know by strong induction that P(n) is true for all integers n with n ≥ 12. That is, we know
that every postage of n cents, where n is at least 12, can be formed using 4-cent and 5-cent
stamps. This finishes the proof by strong induction.

(There are other ways to approach this problem besides those described here. Can you find
a solution that does not use mathematical induction?) ▲

Using Strong Induction in Computational Geometry

Our next example of strong induction will come from computational geometry, the part of
discrete mathematics that studies computational problems involving geometric objects. Compu-
tational geometry is used extensively in computer graphics, computer games, robotics, scientific
calculations, and a vast array of other areas. Before we can present this result, we introduce
some terminology, possibly familiar from earlier studies in geometry.

A polygon is a closed geometric figure consisting of a sequence of line segments
s1, s2, . . . , sn, called sides. Each pair of consecutive sides, si and si+1, i = 1, 2, . . . , n − 1,
as well as the last side sn and the first side s1, of the polygon meet at a common endpoint,
called a vertex. A polygon is called simple if no two nonconsecutive sides intersect. Every sim-
ple polygon divides the plane into two regions: its interior, consisting of the points inside the
curve, and its exterior, consisting of the points outside the curve. This last fact is surprisingly
complicated to prove. It is a special case of the famous Jordan curve theorem, which tells us
that every simple curve divides the plane into two regions; see [Or00], for example.

A polygon is called convex if every line segment connecting two points in the interior of the
polygon lies entirely inside the polygon. (A polygon that is not convex is said to be nonconvex.)
Figure 1 displays some polygons; polygons (a) and (b) are convex, but polygons (c) and (d) are
not. A diagonal of a simple polygon is a line segment connecting two nonconsecutive vertices of
the polygon, and a diagonal is called an interior diagonal if it lies entirely inside the polygon, ex-
cept for its endpoints. For example, in polygon (d), the line segment connecting a and f is an inte-
rior diagonal, but the line segment connecting a and d is a diagonal that is not an interior diagonal.

One of the most basic operations of computational geometry involves dividing a simple
polygon into triangles by adding nonintersecting diagonals. This process is called triangulation.
Note that a simple polygon can have many different triangulations, as shown in Figure 2. Perhaps
the most basic fact in computational geometry is that it is possible to triangulate every simple

a
a g

f

e

d

c

b

a f

e

dc

b

b b d

a

c

c

(a) (c) (d)

af is an interior diagonal

ad is not an interior diagonal

(b)

d

FIGURE 1 Convex and Nonconvex Polygons.

5.2 Strong Induction and Well-Ordering 339

Two different triangulations of a simple polygon with seven sides into five triangles,

 shown with dotted lines and with dashed lines, respectively

FIGURE 2 Triangulations of a Polygon.

polygon, as we state in Theorem 1. Furthermore, this theorem tells us that every triangulation
of a simple polygon with n sides includes n − 2 triangles.

THEOREM 1 A simple polygon with n sides, where n is an integer with n ≥ 3, can be triangulated into
n − 2 triangles.

It seems obvious that we should be able to triangulate a simple polygon by successively
adding interior diagonals. Consequently, a proof by strong induction seems promising. However,
such a proof requires this crucial lemma.

LEMMA 1 Every simple polygon with at least four sides has an interior diagonal.

Although Lemma 1 seems particularly simple, it is surprisingly tricky to prove. In fact, as
recently as 30 years ago, a variety of incorrect proofs thought to be correct were commonly seen
in books and articles. We defer the proof of Lemma 1 until after we prove Theorem 1. It is not
uncommon to prove a theorem pending the later proof of an important lemma.

Proof (of Theorem 1): We will prove this result using strong induction. Let T (n) be the
statement that every simple polygon with n sides can be triangulated into n − 2 triangles.

BASIS STEP: T (3) is true because a simple polygon with three sides is a triangle.We do not need
to add any diagonals to triangulate a triangle; it is already triangulated into one triangle, itself.
Consequently, every simple polygon with n = 3 has can be triangulated into n − 2 = 3 − 2 = 1
triangle.

INDUCTIVE STEP: For the inductive hypothesis, we assume that T (j) is true for all
integers j with 3 ≤ j ≤ k. That is, we assume that we can triangulate a simple polygon
with j sides into j − 2 triangles whenever 3 ≤ j ≤ k. To complete the inductive step, we
must show that when we assume the inductive hypothesis, P(k + 1) is true, that is, that every
simple polygon with k + 1 sides can be triangulated into (k + 1) − 2 = k − 1 triangles.

So, suppose that we have a simple polygon P with k + 1 sides. Because k + 1 ≥ 4, Lemma 1
tells us that P has an interior diagonal ab. Now, ab splits P into two simple polygons Q, with
s sides, and R, with t sides. The sides of Q and R are the sides of P , together with the side
ab, which is a side of both Q and R. Note that 3 ≤ s ≤ k and 3 ≤ t ≤ k because both Q

and R have at least one fewer side than P does (after all, each of these is formed from P

by deleting at least two sides and replacing these sides by the diagonal ab). Furthermore, the
number of sides of P is two less than the sum of the numbers of sides of Q and the number of

340 5 / Induction and Recursion

c

d

e

a

b

p

q

T

P

g

f

T is the triangle abc

p is the vertex of P inside T such that the bap is smallest

bp must be an interior diagonal of P

FIGURE 3 Constructing an Interior Diagonal of a Simple Polygon.

sides of R, because each side of P is a side of either Q or of R, but not both, and the diagonal
ab is a side of both Q and R, but not P . That is, k + 1 = s + t − 2.

We now use the inductive hypothesis. Because both 3 ≤ s ≤ k and 3 ≤ t ≤ k, by the induc-
tive hypothesis we can triangulate Q and R into s − 2 and t − 2 triangles, respectively. Next,
note that these triangulations together produce a triangulation of P . (Each diagonal added to
triangulate one of these smaller polygons is also a diagonal of P .) Consequently, we can trian-
gulate P into a total of (s − 2) + (t − 2) = s + t − 4 = (k + 1) − 2 triangles. This completes
the proof by strong induction. That is, we have shown that every simple polygon with n sides,
where n ≥ 3, can be triangulated into n − 2 triangles.

We now return to our proof of Lemma 1. We present a proof published by Chung-Wu Ho
[Ho75]. Note that although this proof may be omitted without loss of continuity, it does provide
a correct proof of a result proved incorrectly by many mathematicians.

Proof: Suppose that P is a simple polygon drawn in the plane. Furthermore, suppose that b is
the point of P or in the interior of P with the least y-coordinate among the vertices with the
smallest x-coordinate. Then b must be a vertex of P , for if it is an interior point, there would
have to be a vertex of P with a smaller x-coordinate. Two other vertices each share an edge
with b, say a and c. It follows that the angle in the interior of P formed by ab and bc must be
less than 180 degrees (otherwise, there would be points of P with smaller x-coordinates than b).

Now let T be the triangle △abc. If there are no vertices of P on or inside T , we can
connect a and c to obtain an interior diagonal. On the other hand, if there are vertices of P

inside T , we will find a vertex p of P on or inside T such that bp is an interior diagonal. (This
is the tricky part. Ho noted that in many published proofs of this lemma a vertex p was found
such that bp was not necessarily an interior diagonal of P . See Exercise 21.) The key is to
select a vertex p such that the angle ∠bap is smallest. To see this, note that the ray starting
at a and passing through p hits the line segment bc at a point, say q. It then follows that the
triangle △baq cannot contain any vertices of P in its interior. Hence, we can connect b and p

to produce an interior diagonal of P . Locating this vertex p is illustrated in Figure 3.

Proofs Using the Well-Ordering Property

The validity of both the principle of mathematical induction and strong induction follows from
a fundamental axiom of the set of integers, the well-ordering property (see Appendix 1). The
well-ordering property states that every nonempty set of nonnegative integers has a least element.
We will show how the well-ordering property can be used directly in proofs. Furthermore, it
can be shown (see Exercises 41, 42, and 43) that the well-ordering property, the principle of
mathematical induction, and strong induction are all equivalent. That is, the validity of each of
these three proof techniques implies the validity of the other two techniques. In Section 5.1 we

5.2 Strong Induction and Well-Ordering 341

showed that the principle of mathematical induction follows from the well-ordering property.
The other parts of this equivalence are left as Exercises 31, 42, and 43.

THE WELL-ORDERING PROPERTY Every nonempty set of nonnegative integers has a
least element.

The well-ordering property can often be used directly in proofs.

EXAMPLE 5 Use the well-ordering property to prove the division algorithm. Recall that the division algorithm
states that if a is an integer and d is a positive integer, then there are unique integers q and r

with 0 ≤ r < d and a = dq + r .

Solution: Let S be the set of nonnegative integers of the form a − dq, where q is an integer. This
set is nonempty because −dq can be made as large as desired (taking q to be a negative integer
with large absolute value). By the well-ordering property, S has a least element r = a − dq0.

The integer r is nonnegative. It is also the case that r < d. If it were not, then there would
be a smaller nonnegative element in S, namely, a − d(q0 + 1). To see this, suppose that r ≥ d .
Because a = dq0 + r , it follows that a − d(q0 + 1) = (a − dq0) − d = r − d ≥ 0. Conse-
quently, there are integers q and r with 0 ≤ r < d. The proof that q and r are unique is left as
Exercise 37. ▲

EXAMPLE 6 In a round-robin tournament every player plays every other player exactly once and each match
has a winner and a loser. We say that the players p1, p2, . . . , pm form a cycle if p1 beats p2, p2
beats p3, . . . , pm−1 beats pm, and pm beats p1. Use the well-ordering principle to show that if
there is a cycle of length m (m ≥ 3) among the players in a round-robin tournament, there must
be a cycle of three of these players.

Solution: We assume that there is no cycle of three players. Because there is at least one cycle
in the round-robin tournament, the set of all positive integers n for which there is a cycle of
length n is nonempty. By the well-ordering property, this set of positive integers has a least
element k, which by assumption must be greater than three. Consequently, there exists a cycle
of players p1, p2, p3, . . . , pk and no shorter cycle exists.

Because there is no cycle of three players, we know that k > 3. Consider the first three
elements of this cycle, p1, p2, and p3. There are two possible outcomes of the match between
p1 and p3. If p3 beats p1, it follows that p1, p2, p3 is a cycle of length three, contradicting
our assumption that there is no cycle of three players. Consequently, it must be the case that
p1 beats p3. This means that we can omit p2 from the cycle p1, p2, p3, . . . , pk to obtain the
cycle p1, p3, p4, . . . , pk of length k − 1, contradicting the assumption that the smallest cycle
has length k. We conclude that there must be a cycle of length three. ▲

Exercises

1. Use strong induction to show that if you can run one mile
or two miles, and if you can always run two more miles
once you have run a specified number of miles, then you
can run any number of miles.

2. Use strong induction to show that all dominoes fall in an
infinite arrangement of dominoes if you know that the
first three dominoes fall, and that when a domino falls,
the domino three farther down in the arrangement also
falls.

3. Let P(n) be the statement that a postage of n cents can be
formed using just 3-cent stamps and 5-cent stamps. The

parts of this exercise outline a strong induction proof that
P(n) is true for n ≥ 8.
a) Show that the statements P(8), P(9), and P(10) are

true, completing the basis step of the proof.
b) What is the inductive hypothesis of the proof?
c) What do you need to prove in the inductive step?
d) Complete the inductive step for k ≥ 10.
e) Explain why these steps show that this statement is

true whenever n ≥ 8.
4. Let P(n) be the statement that a postage of n cents can be

formed using just 4-cent stamps and 7-cent stamps. The

342 5 / Induction and Recursion

parts of this exercise outline a strong induction proof that
P(n) is true for n ≥ 18.
a) Show statements P(18), P(19), P(20), and P(21)

are true, completing the basis step of the proof.

b) What is the inductive hypothesis of the proof?

c) What do you need to prove in the inductive step?

d) Complete the inductive step for k ≥ 21.

e) Explain why these steps show that this statement is
true whenever n ≥ 18.

5. a) Determine which amounts of postage can be formed
using just 4-cent and 11-cent stamps.

b) Prove your answer to (a) using the principle of math-
ematical induction. Be sure to state explicitly your
inductive hypothesis in the inductive step.

c) Prove your answer to (a) using strong induction. How
does the inductive hypothesis in this proof differ from
that in the inductive hypothesis for a proof using math-
ematical induction?

6. a) Determine which amounts of postage can be formed
using just 3-cent and 10-cent stamps.

b) Prove your answer to (a) using the principle of math-
ematical induction. Be sure to state explicitly your
inductive hypothesis in the inductive step.

c) Prove your answer to (a) using strong induction. How
does the inductive hypothesis in this proof differ from
that in the inductive hypothesis for a proof using math-
ematical induction?

7. Which amounts of money can be formed using just two-
dollar bills and five-dollar bills? Prove your answer using
strong induction.

8. Suppose that a store offers gift certificates in denomina-
tions of 25 dollars and 40 dollars. Determine the possible
total amounts you can form using these gift certificates.
Prove your answer using strong induction.

∗9. Use strong induction to prove that
√

2 is irrational. [Hint:

Let P(n) be the statement that
√

2 ̸= n/b for any positive
integer b.]

10. Assume that a chocolate bar consists of n squares ar-
ranged in a rectangular pattern. The entire bar, a smaller
rectangular piece of the bar, can be broken along a vertical
or a horizontal line separating the squares. Assuming that
only one piece can be broken at a time, determine how
many breaks you must successively make to break the bar
into n separate squares. Use strong induction to prove
your answer.

11. Consider this variation of the game of Nim. The game
begins with n matches. Two players take turns removing
matches, one, two, or three at a time. The player remov-
ing the last match loses. Use strong induction to show
that if each player plays the best strategy possible, the
first player wins if n = 4j , 4j + 2, or 4j + 3 for some
nonnegative integer j and the second player wins in the
remaining case when n = 4j + 1 for some nonnegative
integer j .

12. Use strong induction to show that every positive integer n

can be written as a sum of distinct powers of two, that is,
as a sum of a subset of the integers 20 = 1, 21 = 2, 22 = 4,
and so on. [Hint: For the inductive step, separately con-
sider the case where k + 1 is even and where it is odd.
When it is even, note that (k + 1)/2 is an integer.]

∗13. A jigsaw puzzle is put together by successively joining
pieces that fit together into blocks. A move is made each
time a piece is added to a block, or when two blocks
are joined. Use strong induction to prove that no matter
how the moves are carried out, exactly n − 1 moves are
required to assemble a puzzle with n pieces.

14. Suppose you begin with a pile of n stones and split this
pile into n piles of one stone each by successively split-
ting a pile of stones into two smaller piles. Each time you
split a pile you multiply the number of stones in each
of the two smaller piles you form, so that if these piles
have r and s stones in them, respectively, you compute
rs. Show that no matter how you split the piles, the sum
of the products computed at each step equals n(n − 1)/2.

15. Prove that the first player has a winning strategy for the
game of Chomp, introduced in Example 12 in Section 1.8,
if the initial board is square. [Hint: Use strong induction
to show that this strategy works. For the first move, the
first player chomps all cookies except those in the left and
top edges. On subsequent moves, after the second player
has chomped cookies on either the top or left edge, the
first player chomps cookies in the same relative positions
in the left or top edge, respectively.]

∗16. Prove that the first player has a winning strategy for the
game of Chomp, introduced in Example 12 in Section 1.8,
if the initial board is two squares wide, that is, a 2 × n

board. [Hint: Use strong induction. The first move of the
first player should be to chomp the cookie in the bottom
row at the far right.]

17. Use strong induction to show that if a simple polygon
with at least four sides is triangulated, then at least two
of the triangles in the triangulation have two sides that
border the exterior of the polygon.

∗18. Use strong induction to show that when a simple poly-
gon P with consecutive vertices v1, v2, . . . , vn is trian-
gulated into n − 2 triangles, the n − 2 triangles can be
numbered 1, 2, . . . , n − 2 so that vi is a vertex of triangle
i for i = 1, 2, . . . , n − 2.

∗19. Pick’s theorem says that the area of a simple poly-
gon P in the plane with vertices that are all lattice
points (that is, points with integer coordinates) equals
I (P) +B(P)/2 − 1, where I (P) and B(P) are the
number of lattice points in the interior of P and on the
boundary of P , respectively. Use strong induction on the
number of vertices of P to prove Pick’s theorem. [Hint:

For the basis step, first prove the theorem for rectangles,
then for right triangles, and finally for all triangles by
noting that the area of a triangle is the area of a larger
rectangle containing it with the areas of at most three tri-
angles subtracted. For the inductive step, take advantage
of Lemma 1.]

5.2 Strong Induction and Well-Ordering 343

∗∗20. Suppose that P is a simple polygon with vertices
v1, v2, . . . , vn listed so that consecutive vertices are con-
nected by an edge, and v1 and vn are connected by an edge.
A vertex vi is called an ear if the line segment connecting
the two vertices adjacent to vi is an interior diagonal of the
simple polygon. Two ears vi and vj are called nonover-
lapping if the interiors of the triangles with vertices vi

and its two adjacent vertices and vj and its two adjacent
vertices do not intersect. Prove that every simple polygon
with at least four vertices has at least two nonoverlapping
ears.

21. In the proof of Lemma 1 we mentioned that many in-
correct methods for finding a vertex p such that the
line segment bp is an interior diagonal of P have been
published. This exercise presents some of the incorrect
ways p has been chosen in these proofs. Show, by con-
sidering one of the polygons drawn here, that for each of
these choices of p, the line segment bp is not necessarily
an interior diagonal of P .
a) p is the vertex of P such that the angle ∠abp is small-

est.
b) p is the vertex of P with the least x-coordinate (other

than b).
c) p is the vertex of P that is closest to b.

b

a

p

q

r

c

s

b

a

d
c

f

g
p

e

h

Exercises 22 and 23 present examples that show inductive
loading can be used to prove results in computational geom-
etry.

∗22. Let P(n) be the statement that when nonintersecting di-
agonals are drawn inside a convex polygon with n sides,
at least two vertices of the polygon are not endpoints of
any of these diagonals.
a) Show that when we attempt to prove P(n) for all inte-

gersnwithn ≥ 3 using strong induction, the inductive
step does not go through.

b) Show that we can prove that P(n) is true for all inte-
gers n with n ≥ 3 by proving by strong induction the
stronger assertion Q(n), for n ≥ 4, where Q(n) states
that whenever nonintersecting diagonals are drawn in-
side a convex polygon with n sides, at least two non-

adjacent vertices are not endpoints of any of these
diagonals.

23. Let E(n) be the statement that in a triangulation of a sim-
ple polygon with n sides, at least one of the triangles in
the triangulation has two sides bordering the exterior of
the polygon.

a) Explain where a proof using strong induction that
E(n) is true for all integers n ≥ 4 runs into difficulties.

b) Show that we can prove that E(n) is true for all inte-
gers n ≥ 4 by proving by strong induction the stronger
statement T (n) for all integers n ≥ 4, which states that
in every triangulation of a simple polygon, at least two
of the triangles in the triangulation have two sides bor-
dering the exterior of the polygon.

∗24. A stable assignment, defined in the preamble to Exer-
cise 60 in Section 3.1, is called optimal for suitors if no
stable assignment exists in which a suitor is paired with
a suitee whom this suitor prefers to the person to whom
this suitor is paired in this stable assignment. Use strong
induction to show that the deferred acceptance algorithm
produces a stable assignment that is optimal for suitors.

25. Suppose that P(n) is a propositional function. Determine
for which positive integers n the statement P(n) must be
true, and justify your answer, if
a) P(1) is true; for all positive integers n, if P(n) is true,

then P(n + 2) is true.
b) P(1) and P(2) are true; for all positive integers n, if

P(n) and P(n + 1) are true, then P(n + 2) is true.
c) P(1) is true; for all positive integers n, if P(n) is true,

then P(2n) is true.
d) P(1) is true; for all positive integers n, if P(n) is true,

then P(n + 1) is true.
26. Suppose that P(n) is a propositional function. Determine

for which nonnegative integers n the statement P(n) must
be true if
a) P(0) is true; for all nonnegative integers n, if P(n) is

true, then P(n + 2) is true.
b) P(0) is true; for all nonnegative integers n, if P(n) is

true, then P(n + 3) is true.
c) P(0) and P(1) are true; for all nonnegative integers n,

if P(n) and P(n + 1) are true, then P(n + 2) is true.
d) P(0) is true; for all nonnegative integers n, if P(n) is

true, then P(n + 2) and P(n + 3) are true.
27. Show that if the statement P(n) is true for infinitely many

positive integers n and P(n + 1) → P(n) is true for all
positive integers n, then P(n) is true for all positive inte-
gers n.

28. Let b be a fixed integer and j a fixed positive inte-
ger. Show that if P(b), P (b + 1), . . . , P (b + j) are true
and [P(b) ∧ P(b + 1) ∧ · · · ∧ P(k)] → P(k + 1) is true
for every integer k ≥ b + j , then P(n) is true for all
integers n with n ≥ b.

29. What is wrong with this “proof” by strong induction?

“Theorem” For every nonnegative integer n, 5n = 0.

Basis Step: 5 · 0 = 0.

Inductive Step: Suppose that 5j = 0 for all nonneg-
ative integers j with 0 ≤ j ≤ k. Write k + 1 = i + j ,
where i and j are natural numbers less than k + 1. By the
inductive hypothesis, 5(k + 1) = 5(i + j) = 5i + 5j =

0 + 0 = 0.

344 5 / Induction and Recursion

∗30. Find the flaw with the following “proof” that an = 1 for
all nonnegative integers n, whenever a is a nonzero real
number.

Basis Step: a0 = 1 is true by the definition of a0.

Inductive Step: Assume that aj = 1 for all nonnegative
integers j with j ≤ k. Then note that

ak+1 =
ak · ak

ak−1 =
1 · 1

1
= 1.

∗31. Show that strong induction is a valid method of proof by
showing that it follows from the well-ordering property.

32. Find the flaw with the following “proof” that every
postage of three cents or more can be formed using just
three-cent and four-cent stamps.

Basis Step: We can form postage of three cents with a
single three-cent stamp and we can form postage of four
cents using a single four-cent stamp.

Inductive Step: Assume that we can form postage
of j cents for all nonnegative integers j with j ≤ k us-
ing just three-cent and four-cent stamps. We can then
form postage of k + 1 cents by replacing one three-cent
stamp with a four-cent stamp or by replacing two four-
cent stamps by three three-cent stamps.

33. Show that we can prove that P(n, k) is true for all pairs
of positive integers n and k if we show
a) P(1, 1) is true and P(n, k) → [P(n + 1, k) ∧

P(n, k + 1)] is true for all positive integers n and k.
b) P(1, k) is true for all positive integers k, and

P(n, k) → P(n + 1, k) is true for all positive inte-
gers n and k.

c) P(n, 1) is true for all positive integers n, and
P(n, k) → P(n, k + 1) is true for all positive inte-
gers n and k.

34. Prove that
∑n

j=1 j (j + 1)(j + 2) · · · (j + k − 1) =

n(n + 1)(n + 2) · · · (n + k)/(k + 1) for all positive inte-
gers k and n. [Hint: Use a technique from Exercise 33.]

∗35. Show that if a1, a2, . . . , an are n distinct real numbers, ex-
actly n − 1 multiplications are used to compute the prod-
uct of these n numbers no matter how parentheses are
inserted into their product. [Hint: Use strong induction
and consider the last multiplication.]

∗36. The well-ordering property can be used to show that there
is a unique greatest common divisor of two positive in-
tegers. Let a and b be positive integers, and let S be

the set of positive integers of the form as + bt , where s

and t are integers.
a) Show that S is nonempty.
b) Use the well-ordering property to show that S has a

smallest element c.
c) Show that if d is a common divisor of a and b, then d

is a divisor of c.
d) Show that c | a and c | b. [Hint: First, assume that

c ̸ | a. Then a = qc + r , where 0 < r < c. Show that
r ∈ S, contradicting the choice of c.]

e) Conclude from (c) and (d) that the greatest common
divisor of a and b exists. Finish the proof by showing
that this greatest common divisor is unique.

37. Let a be an integer and d be a positive integer. Show
that the integers q and r with a = dq + r and 0 ≤ r < d ,
which were shown to exist in Example 5, are unique.

38. Use mathematical induction to show that a rectangu-
lar checkerboard with an even number of cells and two
squares missing, one white and one black, can be covered
by dominoes.

∗∗39. Can you use the well-ordering property to prove the state-
ment: “Every positive integer can be described using no
more than fifteen English words”? Assume the words
come from a particular dictionary of English. [Hint: Sup-
pose that there are positive integers that cannot be de-
scribed using no more than fifteen English words. By
well ordering, the smallest positive integer that cannot

be described using no more than fifteen English words

would then exist.]
40. Use the well-ordering principle to show that if x and y

are real numbers with x < y, then there is a rational
number r with x < r < y. [Hint: Use the Archimedean
property, given in Appendix 1, to find a positive
integer A with A > 1/(y − x). Then show that there is
a rational number r with denominator A between x and
y by looking at the numbers ⌊x⌋ + j/A, where j is a
positive integer.]

∗41. Show that the well-ordering property can be proved when
the principle of mathematical induction is taken as an ax-
iom.

∗42. Show that the principle of mathematical induction and
strong induction are equivalent; that is, each can be shown
to be valid from the other.

∗43. Show that we can prove the well-ordering property when
we take strong induction as an axiom instead of taking
the well-ordering property as an axiom.

5.3 Recursive Definitions and Structural Induction

Introduction

Sometimes it is difficult to define an object explicitly. However, it may be easy to define this
object in terms of itself. This process is called recursion. For instance, the picture shown in
Figure 1 is produced recursively. First, an original picture is given. Then a process of successively
superimposing centered smaller pictures on top of the previous pictures is carried out.

5.3 Recursive Definitions and Structural Induction 345

FIGURE 1 A Recursively Defined Picture.

We can use recursion to define sequences, functions, and sets. In Section 2.4, and in most
beginning mathematics courses, the terms of a sequence are specified using an explicit formula.
For instance, the sequence of powers of 2 is given by an = 2n for n = 0, 1, 2, Recall from
Section 2.4 that we can also define a sequence recursively by specifying how terms of the
sequence are found from previous terms. The sequence of powers of 2 can also be defined
by giving the first term of the sequence, namely, a0 = 1, and a rule for finding a term of the
sequence from the previous one, namely, an+1 = 2an for n = 0, 1, 2, When we define a
sequence recursively by specifying how terms of the sequence are found from previous terms,
we can use induction to prove results about the sequence.

When we define a set recursively, we specify some initial elements in a basis step and
provide a rule for constructing new elements from those we already have in the recur-
sive step. To prove results about recursively defined sets we use a method called structural

induction.

Recursively Defined Functions

We use two steps to define a function with the set of nonnegative integers as its domain:

BASIS STEP: Specify the value of the function at zero.

RECURSIVE STEP: Give a rule for finding its value at an integer from its values at smaller
integers.

Such a definition is called a recursive or inductive definition. Note that a function f (n) from
the set of nonnegative integers to the set of a real numbers is the same as a sequence a0, a1, . . .

where ai is a real number for every nonnegative integer i. So, defining a real-valued sequence
a0, a1, . . . using a recurrence relation, as was done in Section 2.4, is the same as defining a
function from the set of nonnegative integers to the set of real numbers.

346 5 / Induction and Recursion

EXAMPLE 1 Suppose that f is defined recursively by

f (0) = 3,

f (n + 1) = 2f (n) + 3.

Find f (1), f (2), f (3), and f (4).

Solution: From the recursive definition it follows that

f (1) = 2f (0) + 3 = 2 · 3 + 3 = 9,

f (2) = 2f (1) + 3 = 2 · 9 + 3 = 21,

f (3) = 2f (2) + 3 = 2 · 21 + 3 = 45,

f (4) = 2f (3) + 3 = 2 · 45 + 3 = 93.

▲

Recursively defined functions are well defined. That is, for every positive integer, the
value of the function at this integer is determined in an unambiguous way. This means
that given any positive integer, we can use the two parts of the definition to find the value
of the function at that integer, and that we obtain the same value no matter how we ap-
ply the two parts of the definition. This is a consequence of the principle of mathemati-
cal induction. (See Exercise 56.) Additional examples of recursive definitions are given in
Examples 2 and 3.

EXAMPLE 2 Give a recursive definition of an, where a is a nonzero real number and n is a nonnegative
integer.

Solution: The recursive definition contains two parts. First a0 is specified, namely, a0 = 1. Then
the rule for finding an+1 from an, namely, an+1 = a · an, for n = 0, 1, 2, 3, . . . , is given. These
two equations uniquely define an for all nonnegative integers n. ▲

EXAMPLE 3 Give a recursive definition of

n
∑

k = 0

ak.

Solution: The first part of the recursive definition is

0
∑

k = 0

ak = a0.

The second part is

n+1
∑

k = 0

ak =

(

n
∑

k = 0

ak

)

+ an+1.

▲

In some recursive definitions of functions, the values of the function at the first k positive
integers are specified, and a rule is given for determining the value of the function at larger inte-
gers from its values at some or all of the preceding k integers. That recursive definitions defined
in this way produce well-defined functions follows from strong induction (see Exercise 57).

5.3 Recursive Definitions and Structural Induction 347

Recall from Section 2.4 that the Fibonacci numbers, f0, f1, f2, . . . , are defined by the
equations f0 = 0, f1 = 1, and

fn = fn−1 + fn−2

for n = 2, 3, 4, [We can think of the Fibonacci number fn either as the nth term of the
sequence of Fibonacci numbers f0, f1, . . . or as the value at the integer n of a function f (n).]

We can use the recursive definition of the Fibonacci numbers to prove many properties of
these numbers. We give one such property in Example 4.

EXAMPLE 4 Show that whenever n ≥ 3, fn > α
n−2, where α = (1 +

√
5)/2.

Solution: We can use strong induction to prove this inequality. Let P(n) be the statement
fn > α

n−2. We want to show that P(n) is true whenever n is an integer greater than or equal to 3.

BASIS STEP: First, note that

α < 2 = f3, α
2 = (3 +

√
5)/2 < 3 = f4,

so P(3) and P(4) are true.

INDUCTIVE STEP: Assume that P(j) is true, namely, that fj > α
j−2, for all integers j with

3 ≤ j ≤ k, where k ≥ 4. We must show that P(k + 1) is true, that is, that fk+1 > α
k−1. Because

α is a solution of x2 − x − 1 = 0 (as the quadratic formula shows), it follows that α
2 = α + 1.

Therefore,

α
k−1 = α

2 · α
k−3 = (α + 1)αk−3 = α · α

k−3 + 1 · α
k−3 = α

k−2 + α
k−3.

By the inductive hypothesis, because k ≥ 4, we have

fk−1 > α
k−3, fk > α

k−2.

Therefore, it follows that

fk+1 = fk + fk−1 > α
k−2 + α

k−3 = α
k−1.

Hence, P(k + 1) is true. This completes the proof. ▲

Remark: The inductive step shows that whenever k ≥ 4, P(k + 1) follows from the assumption
that P(j) is true for 3 ≤ j ≤ k. Hence, the inductive step does not show that P(3) → P(4).
Therefore, we had to show that P(4) is true separately.

We can now show that the Euclidean algorithm, introduced in Section 4.3, uses O(log b)

divisions to find the greatest common divisor of the positive integers a and b, where a ≥ b.

THEOREM 1 LAMÉ’S THEOREM Let a and b be positive integers with a ≥ b. Then the number of
divisions used by the Euclidean algorithm to find gcd(a, b) is less than or equal to five times
the number of decimal digits in b.

348 5 / Induction and Recursion

Proof: Recall that when the Euclidean algorithm is applied to find gcd(a, b) with a ≥ b, this
sequence of equations (where a = r0 and b = r1) is obtained.

r0 = r1q1 + r2 0 ≤ r2 < r1,

r1 = r2q2 + r3 0 ≤ r3 < r2,

·

·

·

rn−2 = rn−1qn−1 + rn 0 ≤ rn < rn−1,

rn−1 = rnqn.

Here n divisions have been used to find rn = gcd(a, b). Note that the quotients q1, q2, . . . , qn−1
are all at least 1. Moreover, qn ≥ 2, because rn < rn−1. This implies that

rn ≥ 1 = f2,

rn−1 ≥ 2rn ≥ 2f2 = f3,

rn−2 ≥ rn−1 + rn ≥ f3 + f2 = f4,

·

·

·

r2 ≥ r3 + r4 ≥ fn−1 + fn−2 = fn,

b = r1 ≥ r2 + r3 ≥ fn + fn−1 = fn+1.

It follows that if n divisions are used by the Euclidean algorithm to find gcd(a, b) with a ≥ b,
then b ≥ fn+1. By Example 4 we know that fn+1 > α

n−1 for n > 2, where α = (1 +
√

5)/2.
Therefore, it follows that b > α

n−1. Furthermore, because log10 α ≈ 0.208 > 1/5, we see that

log10 b > (n − 1) log10 α > (n − 1)/5.

Hence, n − 1 < 5 · log10 b. Now suppose that b has k decimal digits. Then b < 10k and
log10 b < k. It follows that n − 1 < 5k, and because k is an integer, it follows that n ≤ 5k.
This finishes the proof.

Because the number of decimal digits in b, which equals ⌊log10 b⌋ + 1, is less than or equal
to log10 b + 1, Theorem 1 tells us that the number of divisions required to find gcd(a, b) with

FIBONACCI (1170–1250) Fibonacci (short for filius Bonacci, or “son of Bonacci”) was also known as
Leonardo of Pisa. He was born in the Italian commercial center of Pisa. Fibonacci was a merchant who traveled
extensively throughout the Mideast, where he came into contact with Arabian mathematics. In his book Liber
Abaci, Fibonacci introduced the European world to Arabic notation for numerals and algorithms for arithmetic.
It was in this book that his famous rabbit problem (described in Section 8.1) appeared. Fibonacci also wrote
books on geometry and trigonometry and on Diophantine equations, which involve finding integer solutions to
equations.

5.3 Recursive Definitions and Structural Induction 349

a > b is less than or equal to 5(log10 b + 1). Because 5(log10 b + 1) is O(log b), we see that
O(log b) divisions are used by the Euclidean algorithm to find gcd(a, b) whenever a > b.

Recursively Defined Sets and Structures

We have explored how functions can be defined recursively.We now turn our attention to how sets
can be defined recursively. Just as in the recursive definition of functions, recursive definitions
of sets have two parts, a basis step and a recursive step. In the basis step, an initial collection
of elements is specified. In the recursive step, rules for forming new elements in the set from
those already known to be in the set are provided. Recursive definitions may also include an
exclusion rule, which specifies that a recursively defined set contains nothing other than those
elements specified in the basis step or generated by applications of the recursive step. In our
discussions, we will always tacitly assume that the exclusion rule holds and no element belongs
to a recursively defined set unless it is in the initial collection specified in the basis step or can
be generated using the recursive step one or more times. Later we will see how we can use a
technique known as structural induction to prove results about recursively defined sets.

Examples 5, 6, 8, and 9 illustrate the recursive definition of sets. In each example, we show
those elements generated by the first few applications of the recursive step.

EXAMPLE 5 Consider the subset S of the set of integers recursively defined by

BASIS STEP: 3 ∈ S.

RECURSIVE STEP: If x ∈ S and y ∈ S, then x + y ∈ S.

The new elements found to be in S are 3 by the basis step, 3 + 3 = 6 at the first application of
the recursive step, 3 + 6 = 6 + 3 = 9 and 6 + 6 = 12 at the second application of the recursive
step, and so on. We will show in Example 10 that S is the set of all positive multiples of 3. ▲

Recursive definitions play an important role in the study of strings. (See Chapter 13 for
an introduction to the theory of formal languages, for example.) Recall from Section 2.4 that a
string over an alphabet " is a finite sequence of symbols from ". We can define "

∗, the set of
strings over ", recursively, as Definition 1 shows.

DEFINITION 1 The set "
∗ of strings over the alphabet " is defined recursively by

BASIS STEP: λ ∈ "
∗ (where λ is the empty string containing no symbols).

RECURSIVE STEP: If w ∈ "
∗ and x ∈ ", then wx ∈ "

∗.

GABRIEL LAMÉ (1795–1870) Gabriel Lamé entered the École Polytechnique in 1813, graduating in 1817.
He continued his education at the École des Mines, graduating in 1820.

In 1820 Lamé went to Russia, where he was appointed director of the Schools of Highways and Trans-
portation in St. Petersburg. Not only did he teach, but he also planned roads and bridges while in Russia. He
returned to Paris in 1832, where he helped found an engineering firm. However, he soon left the firm, accepting
the chair of physics at the École Polytechnique, which he held until 1844. While holding this position, he was
active outside academia as an engineering consultant, serving as chief engineer of mines and participating in
the building of railways.

Lamé contributed original work to number theory, applied mathematics, and thermodynamics. His best-
known work involves the introduction of curvilinear coordinates. His work on number theory includes proving Fermat’s last theorem
for n = 7, as well as providing the upper bound for the number of divisions used by the Euclidean algorithm given in this text.

In the opinion of Gauss, one of the most important mathematicians of all time, Lamé was the foremost French mathematician of
his time. However, French mathematicians considered him too practical, whereas French scientists considered him too theoretical.

350 5 / Induction and Recursion

The basis step of the recursive definition of strings says that the empty string belongs to "
∗.

The recursive step states that new strings are produced by adding a symbol from " to the end of
strings in "

∗. At each application of the recursive step, strings containing one additional symbol
are generated.

EXAMPLE 6 If " = {0, 1}, the strings found to be in "
∗, the set of all bit strings, are λ, specified to be in "

∗

in the basis step, 0 and 1 formed during the first application of the recursive step, 00, 01, 10,
and 11 formed during the second application of the recursive step, and so on. ▲

Recursive definitions can be used to define operations or functions on the elements of
recursively defined sets. This is illustrated in Definition 2 of the concatenation of two strings
and Example 7 concerning the length of a string.

DEFINITION 2 Two strings can be combined via the operation of concatenation. Let " be a set of symbols
and "

∗ the set of strings formed from symbols in ". We can define the concatenation of two
strings, denoted by ·, recursively as follows.

BASIS STEP: If w ∈ "
∗, then w · λ = w, where λ is the empty string.

RECURSIVE STEP: If w1 ∈ "
∗ and w2 ∈ "

∗ and x ∈ ", then w1 · (w2x) = (w1 · w2)x.

The concatenation of the strings w1 and w2 is often written as w1w2 rather than w1 · w2. By
repeated application of the recursive definition, it follows that the concatenation of two strings
w1 and w2 consists of the symbols in w1 followed by the symbols in w2. For instance, the
concatenation of w1 = abra and w2 = cadabra is w1w2 = abracadabra.

EXAMPLE 7 Length of a String Give a recursive definition of l(w), the length of the string w.

Solution: The length of a string can be recursively defined by

l(λ) = 0;

l(wx) = l(w) + 1 if w ∈ "
∗ and x ∈ ".

▲

Another important use of recursive definitions is to define well-formed formulae of various
types. This is illustrated in Examples 8 and 9.

EXAMPLE 8 Well-Formed Formulae in Propositional Logic We can define the set of well-formed for-
mulae in propositional logic involving T, F, propositional variables, and operators from the set
{¬, ∧, ∨, →, ↔}.

BASIS STEP: T, F, and s, where s is a propositional variable, are well-formed formulae.

RECURSIVE STEP: If E and F are well-formed formulae, then (¬E), (E ∧ F), (E ∨ F),
(E → F), and (E ↔ F) are well-formed formulae.

For example, by the basis step we know that T, F, p, and q are well-formed formulae,
where p and q are propositional variables. From an initial application of the recursive step,
we know that (p ∨ q), (p → F), (F → q), and (q ∧ F) are well-formed formulae. A sec-
ond application of the recursive step shows that ((p ∨ q) → (q ∧ F)), (q ∨ (p ∨ q)), and
((p → F) → T) are well-formed formulae. We leave it to the reader to show that p¬ ∧ q,
pq∧, and ¬ ∧ pq are not well-formed formulae, by showing that none can be obtained using
the basis step and one or more applications of the recursive step. ▲

5.3 Recursive Definitions and Structural Induction 351

EXAMPLE 9 Well-Formed Formulae of Operators and Operands We can define the set of well-formed
formulae consisting of variables, numerals, and operators from the set {+, −, ∗, /, ↑} (where ∗
denotes multiplication and ↑ denotes exponentiation) recursively.

BASIS STEP: x is a well-formed formula if x is a numeral or a variable.

RECURSIVE STEP: If F and G are well-formed formulae, then (F + G), (F − G), (F ∗ G),
(F/G), and (F ↑G) are well-formed formulae.

For example, by the basis step we see that x, y, 0, and 3 are well-formed formulae (as is
any variable or numeral). Well-formed formulae generated by applying the recursive step once
include (x + 3), (3 + y), (x − y), (3 − 0), (x ∗ 3), (3 ∗ y), (3/0), (x/y), (3↑x), and (0↑3).
Applying the recursive step twice shows that formulae such as ((x + 3) + 3) and (x − (3 ∗ y))

are well-formed formulae. [Note that (3/0) is a well-formed formula because we are concerned
only with syntax matters here.] We leave it to the reader to show that each of the formulae x3 +,
y ∗ + x, and ∗ x/y is not a well-formed formula by showing that none of them can be obtained
from the basis step and one or more applications of the recursive step. ▲

We will study trees extensively in Chapter 11. A tree is a special type of a graph; a graph
is made up of vertices and edges connecting some pairs of vertices. We will study graphs in
Chapter 10. We will briefly introduce them here to illustrate how they can be defined recursively.

DEFINITION 3 The set of rooted trees, where a rooted tree consists of a set of vertices containing a distin-
guished vertex called the root, and edges connecting these vertices, can be defined recursively
by these steps:

BASIS STEP: A single vertex r is a rooted tree.

RECURSIVE STEP: Suppose that T1, T2, . . . , Tn are disjoint rooted trees with roots
r1, r2, . . . , rn, respectively. Then the graph formed by starting with a root r , which is not
in any of the rooted trees T1, T2, . . . , Tn, and adding an edge from r to each of the vertices
r1, r2, . . . , rn, is also a rooted tree.

In Figure 2 we illustrate some of the rooted trees formed starting with the basis step and applying
the recursive step one time and two times. Note that infinitely many rooted trees are formed at
each application of the recursive definition.

Basis step

Step 1

Step 2

• • • • • •

FIGURE 2 Building Up Rooted Trees.

352 5 / Induction and Recursion

Step 1

Step 2

Basis step !

Step 3

FIGURE 3 Building Up Extended Binary Trees.

Binary trees are a special type of rooted trees. We will provide recursive definitions of
two types of binary trees—full binary trees and extended binary trees. In the recursive step of
the definition of each type of binary tree, two binary trees are combined to form a new tree
with one of these trees designated the left subtree and the other the right subtree. In extended
binary trees, the left subtree or the right subtree can be empty, but in full binary trees this is not
possible. Binary trees are one of the most important types of structures in computer science. In
Chapter 11 we will see how they can be used in searching and sorting algorithms, in algorithms
for compressing data, and in many other applications. We first define extended binary trees.

DEFINITION 4 The set of extended binary trees can be defined recursively by these steps:

BASIS STEP: The empty set is an extended binary tree.

RECURSIVE STEP: If T1 and T2 are disjoint extended binary trees, there is an extended
binary tree, denoted by T1 · T2, consisting of a root r together with edges connecting the
root to each of the roots of the left subtree T1 and the right subtree T2 when these trees are
nonempty.

Figure 3 shows how extended binary trees are built up by applying the recursive step from one
to three times.

We now show how to define the set of full binary trees. Note that the difference between
this recursive definition and that of extended binary trees lies entirely in the basis step.

5.3 Recursive Definitions and Structural Induction 353

Basis step

Step 1

Step 2

FIGURE 4 Building Up Full Binary Trees.

DEFINITION 5 The set of full binary trees can be defined recursively by these steps:

BASIS STEP: There is a full binary tree consisting only of a single vertex r .

RECURSIVE STEP: If T1 and T2 are disjoint full binary trees, there is a full binary tree,
denoted by T1 · T2, consisting of a root r together with edges connecting the root to each of
the roots of the left subtree T1 and the right subtree T2.

Figure 4 shows how full binary trees are built up by applying the recursive step one and two
times.

Structural Induction

To prove results about recursively defined sets, we generally use some form of mathematical
induction. Example 10 illustrates the connection between recursively defined sets and mathe-
matical induction.

EXAMPLE 10 Show that the set S defined in Example 5 by specifying that 3 ∈ S and that if x ∈ S and y ∈ S,
then x + y ∈ S, is the set of all positive integers that are multiples of 3.

Solution: Let A be the set of all positive integers divisible by 3. To prove that A = S, we must
show that A is a subset of S and that S is a subset of A. To prove that A is a subset of S, we
must show that every positive integer divisible by 3 is in S. We will use mathematical induction
to prove this.

Let P(n) be the statement that 3n belongs to S. The basis step holds because by the first
part of the recursive definition of S, 3 · 1 = 3 is in S. To establish the inductive step, assume
that P(k) is true, namely, that 3k is in S. Because 3k is in S and because 3 is in S, it follows
from the second part of the recursive definition of S that 3k + 3 = 3(k + 1) is also in S.

To prove that S is a subset of A, we use the recursive definition of S. First, the basis step
of the definition specifies that 3 is in S. Because 3 = 3 · 1, all elements specified to be in S in
this step are divisible by 3 and are therefore in A. To finish the proof, we must show that all
integers in S generated using the second part of the recursive definition are in A. This consists
of showing that x + y is in A whenever x and y are elements of S also assumed to be in A. Now
if x and y are both in A, it follows that 3 | x and 3 | y. By part (i) of Theorem 1 of Section 4.1,
it follows that 3 | x + y, completing the proof. ▲

354 5 / Induction and Recursion

In Example 10 we used mathematical induction over the set of positive integers and a
recursive definition to prove a result about a recursively defined set. However, instead of using
mathematical induction directly to prove results about recursively defined sets, we can use a more
convenient form of induction known as structural induction. A proof by structural induction
consists of two parts. These parts are

BASIS STEP: Show that the result holds for all elements specified in the basis step of the
recursive definition to be in the set.

RECURSIVE STEP: Show that if the statement is true for each of the elements used to construct
new elements in the recursive step of the definition, the result holds for these new elements.

The validity of structural induction follows from the principle of mathematical induction
for the nonnegative integers. To see this, let P(n) state that the claim is true for all elements
of the set that are generated by n or fewer applications of the rules in the recursive step of
a recursive definition. We will have established that the principle of mathematical induction
implies the principle of structural induction if we can show that P(n) is true whenever n is a
positive integer. In the basis step of a proof by structural induction we show that P(0) is true.
That is, we show that the result is true of all elements specified to be in the set in the basis
step of the definition. A consequence of the recursive step is that if we assume P(k) is true,
it follows that P(k + 1) is true. When we have completed a proof using structural induction,
we have shown that P(0) is true and that P(k) implies P(k + 1). By mathematical induction it
follows that P(n) is true for all nonnegative integers n. This also shows that the result is true
for all elements generated by the recursive definition, and shows that structural induction is a
valid proof technique.

EXAMPLES OF PROOFS USING STRUCTURAL INDUCTION Structural induction can
be used to prove that all members of a set constructed recursively have a particular property.
We will illustrate this idea by using structural induction to prove results about well-formed
formulae, strings, and binary trees. For each proof, we have to carry out the appropriate basis
step and the appropriate recursive step. For example, to use structural induction to prove a
result about the set of well-formed formulae defined in Example 8, where we specify that T, F,
and every propositional variable s are well-formed formulae and where we specify that if E

and F are well-formed formulae, then (¬E), (E ∧ F), (E ∨ F), (E → F), and (E ↔ F) are
well-formed formulae, we need to complete this basis step and this recursive step.

BASIS STEP: Show that the result is true for T, F, and s whenever s is a propositional variable.

RECURSIVE STEP: Show that if the result is true for the compound propositions p and q, it
is also true for (¬p), (p ∨ q), (p ∧ q), (p → q), and (p ↔ q).

Example 11 illustrates how we can prove results about well-formed formulae using structural
induction.

EXAMPLE 11 Show that every well-formed formula for compound propositions, as defined in Example 8,
contains an equal number of left and right parentheses.

Solution:

BASIS STEP: Each of the formula T, F, and s contains no parentheses, so clearly they contain
an equal number of left and right parentheses.

RECURSIVE STEP: Assume p and q are well-formed formulae each containing an equal
number of left and right parentheses. That is, if lp and lq are the number of left parentheses
in p and q, respectively, and rp and rq are the number of right parentheses in p and q, respec-
tively, then lp = rp and lq = rq . To complete the inductive step, we need to show that each of

5.3 Recursive Definitions and Structural Induction 355

(¬p), (p ∨ q), (p ∧ q), (p → q), and (p ↔ q) also contains an equal number of left and right
parentheses. The number of left parentheses in the first of these compound propositions equals
lp + 1 and in each of the other compound propositions equals lp + lq + 1. Similarly, the number
of right parentheses in the first of these compound propositions equals rp + 1 and in each of the
other compound propositions equals rp + rq + 1. Because lp = rp and lq = rq , it follows that
each of these compound expressions contains the same number of left and right parentheses.
This completes the proof by structural induction. ▲

Suppose thatP(w) is a propositional function over the set of strings w ∈ "
∗.To use structural

induction to prove that P(w) holds for all strings w ∈ "
∗, we need to complete both a basis step

and a recursive step. These steps are:

BASIS STEP: Show that P(λ) is true.

RECURSIVE STEP: Assume that P(w) is true, where w ∈ "
∗. Show that if x ∈ ", then P(wx)

must also be true.

Example 12 illustrates how structural induction can be used in proofs about strings.

EXAMPLE 12 Use structural induction to prove that l(xy) = l(x) + l(y), where x and y belong to "
∗, the set

of strings over the alphabet ".

Solution: We will base our proof on the recursive definition of the set "
∗ given in Definition 1

and the definition of the length of a string in Example 7, which specifies that l(λ) = 0 and
l(wx) = l(w) + 1 when w ∈ "

∗ and x ∈ ". Let P(y) be the statement that l(xy) = l(x) + l(y)

whenever x belongs to "
∗.

BASIS STEP: To complete the basis step, we must show that P(λ) is true. That is, we must
show that l(xλ) = l(x) + l(λ) for all x ∈ "

∗. Because l(xλ) = l(x) = l(x) + 0 = l(x) + l(λ)

for every string x, it follows that P(λ) is true.

RECURSIVE STEP: To complete the inductive step, we assume that P(y) is true and
show that this implies that P(ya) is true whenever a ∈ ". What we need to show is that
l(xya) = l(x) + l(ya) for every a ∈ ". To show this, note that by the recursive definition of l(w)

(given in Example 7), we have l(xya) = l(xy) + 1 and l(ya) = l(y) + 1. And, by the inductive
hypothesis, l(xy) = l(x) + l(y). We conclude that l(xya) = l(x) + l(y) + 1 = l(x) + l(ya). ▲

We can prove results about trees or special classes of trees using structural induction. For
example, to prove a result about full binary trees using structural induction we need to complete
this basis step and this recursive step.

BASIS STEP: Show that the result is true for the tree consisting of a single vertex.

RECURSIVE STEP: Show that if the result is true for the trees T1 and T2, then it is true for
tree T1 · T2 consisting of a root r , which has T1 as its left subtree and T2 as its right subtree.

Before we provide an example showing how structural induction can be used to prove a
result about full binary trees, we need some definitions. We will recursively define the height
h(T) and the number of vertices n(T) of a full binary tree T . We begin by defining the height
of a full binary tree.

DEFINITION 6 We define the height h(T) of a full binary tree T recursively.

BASIS STEP: The height of the full binary tree T consisting of only a root r is h(T) = 0.

RECURSIVE STEP: If T1 and T2 are full binary trees, then the full binary tree T = T1 · T2
has height h(T) = 1 + max(h(T1), h(T2)).

356 5 / Induction and Recursion

If we let n(T) denote the number of vertices in a full binary tree, we observe that n(T) satisfies
the following recursive formula:

BASIS STEP: The number of vertices n(T) of the full binary tree T consisting of only a root
r is n(T) = 1.

RECURSIVE STEP: If T1 and T2 are full binary trees, then the number of vertices of the full
binary tree T = T1 · T2 is n(T) = 1 + n(T1) + n(T2).

We now show how structural induction can be used to prove a result about full binary trees.

THEOREM 2 If T is a full binary tree T , then n(T) ≤ 2h(T)+1 − 1.

Proof: We prove this inequality using structural induction.

BASIS STEP: For the full binary tree consisting of just the root r the result is true because
n(T) = 1 and h(T) = 0, so that n(T) = 1 ≤ 20+1 − 1 = 1.

RECURSIVE STEP: For the inductive hypothesis we assume that n(T1) ≤ 2h(T1)+1 − 1 and
n(T2) ≤ 2h(T2)+1 − 1 whenever T1 and T2 are full binary trees. By the recursive formulae for
n(T) and h(T) we have n(T) = 1 + n(T1) + n(T2) and h(T) = 1 + max(h(T1), h(T2)).

We find that

n(T) = 1 + n(T1) + n(T2) by the recursive formula for n(T)

≤ 1 + (2h(T1)+1 − 1) + (2h(T2)+1 − 1) by the inductive hypothesis

≤ 2 · max(2h(T1)+1, 2h(T2)+1) − 1 because the sum of two terms is at most 2
times the larger

= 2 · 2max(h(T1),h(T2))+1 − 1 because max(2x , 2y) = 2max(x,y)

= 2 · 2h(T) − 1 by the recursive definition of h(T)

= 2h(T)+1 − 1.

This completes the recursive step.

Generalized Induction

We can extend mathematical induction to prove results about other sets that have the well-
ordering property besides the set of integers. Although we will discuss this concept in detail in
Section 9.6, we provide an example here to illustrate the usefulness of such an approach.

As an example, note that we can define an ordering on N × N, the ordered pairs of non-
negative integers, by specifying that (x1, y1) is less than or equal to (x2, y2) if either x1 < x2,
or x1 = x2 and y1 < y2; this is called the lexicographic ordering. The set N × N with this
ordering has the property that every subset of N × N has a least element (see Exercise 53
in Section 9.6). This implies that we can recursively define the terms am,n, with m ∈ N and
n ∈ N, and prove results about them using a variant of mathematical induction, as illustrated in
Example 13.

5.3 Recursive Definitions and Structural Induction 357

EXAMPLE 13 Suppose that am,n is defined recursively for (m, n) ∈ N × N by a0,0 = 0 and

am,n =

{

am−1,n + 1 if n = 0 and m > 0

am,n−1 + n if n > 0.

Show that am,n = m + n(n + 1)/2 for all (m, n) ∈ N × N, that is, for all pairs of nonnegative
integers.

Solution:We can prove thatam,n = m + n(n + 1)/2 using a generalized version of mathematical
induction. The basis step requires that we show that this formula is valid when (m, n) = (0, 0).
The induction step requires that we show that if the formula holds for all pairs smaller than
(m, n) in the lexicographic ordering of N × N, then it also holds for (m, n).

BASIS STEP: Let (m, n) = (0, 0). Then by the basis case of the recursive definition of am,n

we have a0,0 = 0. Furthermore, when m = n = 0, m + n(n + 1)/2 = 0 + (0 · 1)/2 = 0. This
completes the basis step.

INDUCTIVE STEP: Suppose that am′,n′ = m′ + n′(n′ + 1)/2 whenever (m′, n′) is less
than (m, n) in the lexicographic ordering of N × N. By the recursive definition, if n = 0,
then am,n = am−1,n + 1. Because (m − 1, n) is smaller than (m, n), the inductive hypoth-
esis tells us that am−1,n = m − 1 + n(n + 1)/2, so that am,n = m − 1 + n(n + 1)/2 + 1 =

m + n(n + 1)/2, giving us the desired equality. Now suppose that n > 0, so am,n = am,n−1 + n.
Because (m, n − 1) is smaller than (m, n), the inductive hypothesis tells us that am,n−1 =

m + (n − 1)n/2, so am,n = m + (n − 1)n/2 + n = m + (n2 − n + 2n)/2 = m + n(n + 1)/2.
This finishes the inductive step. ▲

As mentioned, we will justify this proof technique in Section 9.6.

Exercises

1. Find f (1), f (2), f (3), and f (4) if f (n) is defined recur-
sively by f (0) = 1 and for n = 0, 1, 2, . . .

a) f (n + 1) = f (n) + 2.
b) f (n + 1) = 3f (n).
c) f (n + 1) = 2f (n).
d) f (n + 1) = f (n)2 + f (n) + 1.

2. Find f (1), f (2), f (3), f (4), and f (5) if f (n) is defined
recursively by f (0) = 3 and for n = 0, 1, 2, . . .

a) f (n + 1) = −2f (n).
b) f (n + 1) = 3f (n) + 7.
c) f (n + 1) = f (n)2 − 2f (n) − 2.
d) f (n + 1) = 3f (n)/3.

3. Find f (2), f (3), f (4), and f (5) if f is defined recur-
sively by f (0) = −1, f (1) = 2, and for n = 1, 2, . . .

a) f (n + 1) = f (n) + 3f (n − 1).
b) f (n + 1) = f (n)2f (n − 1).
c) f (n + 1) = 3f (n)2 − 4f (n − 1)2.
d) f (n + 1) = f (n − 1)/f (n).

4. Find f (2), f (3), f (4), and f (5) if f is defined recur-
sively by f (0) = f (1) = 1 and for n = 1, 2, . . .

a) f (n + 1) = f (n) − f (n − 1).
b) f (n + 1) = f (n)f (n − 1).
c) f (n + 1) = f (n)2 + f (n − 1)3.
d) f (n + 1) = f (n)/f (n − 1).

5. Determine whether each of these proposed definitions is
a valid recursive definition of a function f from the set
of nonnegative integers to the set of integers. If f is well
defined, find a formula for f (n) when n is a nonnegative
integer and prove that your formula is valid.
a) f (0) = 0, f (n) = 2f (n − 2) for n ≥ 1
b) f (0) = 1, f (n) = f (n − 1) − 1 for n ≥ 1
c) f (0) = 2, f (1) = 3, f (n) = f (n − 1) − 1 for

n ≥ 2
d) f (0) = 1, f (1) = 2, f (n) = 2f (n − 2) for n ≥ 2
e) f (0) = 1, f (n) = 3f (n − 1) if n is odd and n ≥ 1

and f (n) = 9f (n − 2) if n is even and n ≥ 2
6. Determine whether each of these proposed definitions is

a valid recursive definition of a function f from the set
of nonnegative integers to the set of integers. If f is well
defined, find a formula for f (n) when n is a nonnegative
integer and prove that your formula is valid.
a) f (0) = 1, f (n) = −f (n − 1) for n ≥ 1
b) f (0) = 1, f (1) = 0, f (2) = 2, f (n) = 2f (n − 3)

for n ≥ 3
c) f (0) = 0, f (1) = 1, f (n) = 2f (n + 1) for n ≥ 2
d) f (0) = 0, f (1) = 1, f (n) = 2f (n − 1) for n ≥ 1
e) f (0) = 2, f (n) = f (n − 1) if n is odd and n ≥ 1 and

f (n) = 2f (n − 2) if n ≥ 2

358 5 / Induction and Recursion

7. Give a recursive definition of the sequence {an}, n =

1, 2, 3, . . . if
a) an = 6n. b) an = 2n + 1.
c) an = 10n. d) an = 5.

8. Give a recursive definition of the sequence {an}, n =

1, 2, 3, . . . if
a) an = 4n − 2. b) an = 1 + (−1)n.
c) an = n(n + 1). d) an = n2.

9. Let F be the function such that F(n) is the sum of the first
n positive integers. Give a recursive definition of F(n).

10. Give a recursive definition of Sm(n), the sum of the inte-
ger m and the nonnegative integer n.

11. Give a recursive definition of Pm(n), the product of the
integer m and the nonnegative integer n.

In Exercises 12–19 fn is the nth Fibonacci number.
12. Prove that f 2

1 + f 2
2 + · · · + f 2

n = fnfn+1 when n is a
positive integer.

13. Prove that f1 + f3 + · · · + f2n−1 = f2n when n is a pos-
itive integer.

∗14. Show that fn+1fn−1 − f 2
n = (−1)n when n is a positive

integer.
∗15. Show that f0f1 + f1f2 + · · · + f2n−1f2n = f 2

2n when n

is a positive integer.
∗16. Show that f0 − f1 + f2 − · · · − f2n−1 + f2n =

f2n−1 − 1 when n is a positive integer.
17. Determine the number of divisions used by the Euclidean

algorithm to find the greatest common divisor of the Fi-
bonacci numbers fn and fn+1, where n is a nonnegative
integer.Verify your answer using mathematical induction.

18. Let

A =

[

1 1
1 0

]

.

Show that

An =

[

fn+1 fn

fn fn−1

]

when n is a positive integer.
19. By taking determinants of both sides of the equation in

Exercise 18, prove the identity given in Exercise 14. (Re-

call that the determinant of the matrix

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

is ad − bc.)

∗20. Give a recursive definition of the functions max and
min so that max(a1, a2, . . . , an) and min(a1, a2, . . . , an)

are the maximum and minimum of the n numbers
a1, a2, . . . , an, respectively.

∗21. Let a1, a2, . . . , an, and b1, b2, . . . , bn be real numbers.
Use the recursive definitions that you gave in Exercise 20
to prove these.
a) max(−a1, −a2, . . . , −an) = − min(a1, a2, . . . , an)

b) max(a1 + b1, a2 + b2, . . . , an + bn)

≤ max(a1, a2, . . . , an) + max(b1, b2, . . . , bn)

c) min(a1 + b1, a2 + b2, . . . , an + bn)

≥ min(a1, a2, . . . , an) + min(b1, b2, . . . , bn)

22. Show that the set S defined by 1 ∈ S and s + t ∈ S when-
ever s ∈ S and t ∈ S is the set of positive integers.

23. Give a recursive definition of the set of positive integers
that are multiples of 5.

24. Give a recursive definition of
a) the set of odd positive integers.
b) the set of positive integer powers of 3.
c) the set of polynomials with integer coefficients.

25. Give a recursive definition of
a) the set of even integers.
b) the set of positive integers congruent to 2 modulo 3.
c) the set of positive integers not divisible by 5.

26. Let S be the subset of the set of ordered pairs of integers
defined recursively by

Basis step: (0, 0) ∈ S.

Recursive step: If (a, b) ∈ S, then (a + 2, b + 3) ∈ S

and (a + 3, b + 2) ∈ S.
a) List the elements of S produced by the first five ap-

plications of the recursive definition.
b) Use strong induction on the number of applications

of the recursive step of the definition to show that
5 | a + b when (a, b) ∈ S.

c) Use structural induction to show that 5 | a + b when
(a, b) ∈ S.

27. Let S be the subset of the set of ordered pairs of integers
defined recursively by

Basis step: (0, 0) ∈ S.

Recursive step: If (a, b) ∈ S, then (a, b + 1) ∈ S,
(a + 1, b + 1) ∈ S, and (a + 2, b + 1) ∈ S.
a) List the elements of S produced by the first four ap-

plications of the recursive definition.
b) Use strong induction on the number of applications of

the recursive step of the definition to show that a ≤ 2b

whenever (a, b) ∈ S.
c) Use structural induction to show that a ≤ 2b when-

ever (a, b) ∈ S.
28. Give a recursive definition of each of these sets of ordered

pairs of positive integers. [Hint: Plot the points in the set
in the plane and look for lines containing points in the
set.]
a) S = {(a, b) | a ∈ Z+, b ∈ Z+, and a + b is odd}

b) S = {(a, b) | a ∈ Z+, b ∈ Z+, and a | b}

c) S = {(a, b) | a ∈ Z+, b ∈ Z+, and 3 | a + b}

29. Give a recursive definition of each of these sets of or-
dered pairs of positive integers. Use structural induction
to prove that the recursive definition you found is correct.
[Hint: To find a recursive definition, plot the points in the
set in the plane and look for patterns.]
a) S = {(a, b) | a ∈ Z+, b ∈ Z+, and a + b is even}

b) S = {(a, b) | a ∈ Z+, b ∈ Z+, and a or b is odd}

c) S = {(a, b) | a ∈ Z+, b ∈ Z+, a + b is odd, and 3 | b}

30. Prove that in a bit string, the string 01 occurs at most one
more time than the string 10.

31. Define well-formed formulae of sets, variables represent-
ing sets, and operators from { , ∪, ∩, −}.

5.3 Recursive Definitions and Structural Induction 359

32. a) Give a recursive definition of the function ones(s),
which counts the number of ones in a bit string s.

b) Use structural induction to prove that ones(st) =

ones(s) + ones(t).
33. a) Give a recursive definition of the function m(s), which

equals the smallest digit in a nonempty string of dec-
imal digits.

b) Use structural induction to prove that m(st) =

min(m(s), m(t)).
The reversal of a string is the string consisting of the symbols
of the string in reverse order. The reversal of the string w is
denoted by wR .
34. Find the reversal of the following bit strings.

a) 0101 b) 1 1011 c) 1000 1001 0111
35. Give a recursive definition of the reversal of a string.

[Hint: First define the reversal of the empty string. Then
write a string w of length n + 1 as xy, where x is a string
of length n, and express the reversal of w in terms of xR

and y.]
∗36. Use structural induction to prove that (w1w2)

R = wR
2 wR

1 .

37. Give a recursive definition of wi , where w is a string and
i is a nonnegative integer. (Here wi represents the con-
catenation of i copies of the string w.)

∗38. Give a recursive definition of the set of bit strings that are
palindromes.

39. When does a string belong to the set A of bit strings de-
fined recursively by

λ ∈ A

0x1 ∈ A if x ∈ A,

where λ is the empty string?
∗40. Recursively define the set of bit strings that have more

zeros than ones.
41. Use Exercise 37 and mathematical induction to show that

l(wi) = i · l(w), where w is a string and i is a nonnegative
integer.

∗42. Show that (wR)i = (wi)R whenever w is a string and i is
a nonnegative integer; that is, show that the ith power of
the reversal of a string is the reversal of the ith power of
the string.

43. Use structural induction to show that n(T) ≥ 2h(T) + 1,
where T is a full binary tree, n(T) equals the number of
vertices of T , and h(T) is the height of T .

The set of leaves and the set of internal vertices of a full binary
tree can be defined recursively.

Basis step: The root r is a leaf of the full binary tree with
exactly one vertex r . This tree has no internal vertices.

Recursive step: The set of leaves of the tree T = T1 · T2 is
the union of the sets of leaves of T1 and of T2. The inter-
nal vertices of T are the root r of T and the union of the
set of internal vertices of T1 and the set of internal vertices
of T2.
44. Use structural induction to show that l(T), the number

of leaves of a full binary tree T , is 1 more than i(T), the
number of internal vertices of T .

45. Use generalized induction as was done in Example 13 to
show that if am,n is defined recursively by a0,0 = 0 and

am,n =

{

am−1,n + 1 if n = 0 and m > 0
am,n−1 + 1 if n > 0,

then am,n = m + n for all (m, n) ∈ N × N.

46. Use generalized induction as was done in Example 13 to
show that if am,n is defined recursively by a1,1 = 5 and

am,n =

{

am−1,n + 2 if n = 1 and m > 1
am,n−1 + 2 if n > 1,

then am,n = 2(m + n) + 1 for all (m, n) ∈ Z+ × Z+.
∗47. A partition of a positive integer n is a way to write n

as a sum of positive integers where the order of terms in
the sum does not matter. For instance, 7 = 3 + 2 + 1 + 1
is a partition of 7. Let Pm equal the number of different
partitions of m, and let Pm,n be the number of different
ways to express m as the sum of positive integers not
exceeding n.
a) Show that Pm,m = Pm.
b) Show that the following recursive definition for Pm,n

is correct:

Pm,n =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1 if m = 1

1 if n = 1

Pm,m if m < n

1 + Pm,m−1 if m = n > 1

Pm,n−1 + Pm−n,n if m > n > 1.

c) Find the number of partitions of 5 and of 6 using this
recursive definition.

Consider an inductive definition of a version of Ackermann’s
function. This function was named after WilhelmAckermann,
a German mathematician who was a student of the great math-
ematician David Hilbert. Ackermann’s function plays an im-
portant role in the theory of recursive functions and in the study
of the complexity of certain algorithms involving set unions.
(There are several different variants of this function. All are
called Ackermann’s function and have similar properties even
though their values do not always agree.)

A(m, n) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2n if m = 0

0 if m ≥ 1 and n = 0

2 if m ≥ 1 and n = 1

A(m − 1, A(m, n − 1)) if m ≥ 1 and n ≥ 2

Exercises 48–55 involve this version of Ackermann’s func-
tion.

48. Find these values of Ackermann’s function.
a) A(1, 0) b) A(0, 1)

c) A(1, 1) d) A(2, 2)

49. Show that A(m, 2) = 4 whenever m ≥ 1.

50. Show that A(1, n) = 2n whenever n ≥ 1.

51. Find these values of Ackermann’s function.

a) A(2, 3) *b) A(3, 3)

∗52. Find A(3, 4).

360 5 / Induction and Recursion

∗∗53. Prove that A(m, n + 1) > A(m, n) whenever m and n are
nonnegative integers.

∗54. Prove that A(m + 1, n) ≥ A(m, n) whenever m and n are
nonnegative integers.

55. Prove that A(i, j) ≥ j whenever i and j are nonnegative
integers.

56. Use mathematical induction to prove that a function F

defined by specifying F(0) and a rule for obtaining
F(n + 1) from F(n) is well defined.

57. Use strong induction to prove that a function F defined by
specifying F(0) and a rule for obtaining F(n + 1) from
the values F(k) for k = 0, 1, 2, . . . , n is well defined.

58. Show that each of these proposed recursive definitions of
a function on the set of positive integers does not produce
a well-defined function.
a) F(n) = 1 + F(⌊n/2⌋) for n ≥ 1 and F(1) = 1.
b) F(n) = 1 + F(n − 3) for n ≥ 2, F(1) = 2, and

F(2) = 3.
c) F(n) = 1 + F(n/2) for n ≥ 2, F(1) = 1, and

F(2) = 2.
d) F(n) = 1 + F(n/2) if n is even and n ≥ 2, F(n) =

1 − F(n − 1) if n is odd, and F(1) = 1.
e) F(n) = 1 + F(n/2) if n is even and n ≥ 2, F (n) =

F(3n − 1) if n is odd and n ≥ 3, and F(1) = 1.

59. Show that each of these proposed recursive definitions of
a function on the set of positive integers does not produce
a well-defined function.
a) F(n) = 1 + F(⌊(n + 1)/2⌋) for n ≥ 1 and

F(1) = 1.

b) F(n) = 1 + F(n − 2) for n ≥ 2 and F(1) = 0.

c) F(n) = 1 + F(n/3) for n ≥ 3, F (1) = 1, F(2) = 2,
and F(3) = 3.

d) F(n) = 1 + F(n/2) if n is even and n ≥ 2, F(n) =

1 + F(n − 2) if n is odd, and F(1) = 1.
e) F(n) = 1 + F(F(n − 1)) if n ≥ 2 and F(1) = 2.

Exercises 60–62 deal with iterations of the logarithm function.
Let log n denote the logarithm of n to the base 2, as usual. The
function log(k) n is defined recursively by

log(k) n =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

n if k = 0

log(log(k−1) n) if log(k−1) n is defined

and positive

undefined otherwise.

The iterated logarithm is the function log∗ n whose value at n
is the smallest nonnegative integer k such that log(k) n ≤ 1.
60. Find these values.

a) log(2) 16 b) log(3) 256
c) log(3) 265536 d) log(4) 2265536

61. Find the value of log∗ n for these values of n.

a) 2 b) 4 c) 8 d) 16
e) 256 f) 65536 g) 22048

62. Find the largest integer n such that log∗ n = 5. Determine
the number of decimal digits in this number.

Exercises 63–65 deal with values of iterated functions. Sup-
pose that f (n) is a function from the set of real numbers, or
positive real numbers, or some other set of real numbers, to
the set of real numbers such that f (n) is monotonically in-
creasing [that is, f (n) < f (m) when n < m) and f (n) < n

for all n in the domain of f .] The function f (k)(n) is defined
recursively by

f (k)(n) =

{

n if k = 0

f (f (k−1)(n)) if k > 0.

Furthermore, let c be a positive real number. The iterated
function f ∗

c is the number of iterations of f required to reduce
its argument to c or less, so f ∗

c (n) is the smallest nonnegative
integer k such that f k(n) ≤ c.
63. Let f (n) = n − a, where a is a positive integer. Find a

formula for f (k)(n). What is the value of f ∗
0 (n) when n

is a positive integer?
64. Let f (n) = n/2. Find a formula for f (k)(n). What is the

value of f ∗
1 (n) when n is a positive integer?

65. Let f (n) =
√

n. Find a formula for f (k)(n). What is the
value of f ∗

2 (n) when n is a positive integer?

5.4 Recursive Algorithms

Introduction

Sometimes we can reduce the solution to a problem with a particular set of input values to the
solution of the same problem with smaller input values. For instance, the problem of finding
the greatest common divisor of two positive integers a and b, where b > a, can be reduced
to finding the greatest common divisor of a pair of smaller integers, namely, b mod a and
a, because gcd(b mod a, a) = gcd(a, b). When such a reduction can be done, the solution to

Here’s a famous
humorous quote: “To
understand recursion, you
must first understand
recursion.”

the original problem can be found with a sequence of reductions, until the problem has been
reduced to some initial case for which the solution is known. For instance, for finding the greatest
common divisor, the reduction continues until the smaller of the two numbers is zero, because
gcd(a, 0) = a when a > 0.

We will see that algorithms that successively reduce a problem to the same problem with
smaller input are used to solve a wide variety of problems.

9

C H A P T E R

Relations

9.1 Relations and
Their
Properties

9.2 n-ary Relations
and Their
Applications

9.3 Representing
Relations

9.4 Closures of
Relations

9.5 Equivalence
Relations

9.6 Partial
Orderings

Relationships between elements of sets occur in many contexts. Every day we deal with
relationships such as those between a business and its telephone number, an employee

and his or her salary, a person and a relative, and so on. In mathematics we study relationships
such as those between a positive integer and one that it divides, an integer and one that it is
congruent to modulo 5, a real number and one that is larger than it, a real number x and the
value f (x) where f is a function, and so on. Relationships such as that between a program and
a variable it uses, and that between a computer language and a valid statement in this language
often arise in computer science.

Relationships between elements of sets are represented using the structure called a relation,
which is just a subset of the Cartesian product of the sets. Relations can be used to solve problems
such as determining which pairs of cities are linked by airline flights in a network, finding a
viable order for the different phases of a complicated project, or producing a useful way to store
information in computer databases.

In some computer languages, only the first 31 characters of the name of a variable matter.
The relation consisting of ordered pairs of strings where the first string has the same initial
31 characters as the second string is an example of a special type of relation, known as an
equivalence relation. Equivalence relations arise throughout mathematics and computer science.
We will study equivalence relations, and other special types of relations, in this chapter.

9.1 Relations and Their Properties

Introduction

The most direct way to express a relationship between elements of two sets is to use ordered pairs
made up of two related elements. For this reason, sets of ordered pairs are called binary relations.
In this section we introduce the basic terminology used to describe binary relations. Later in this
chapter we will use relations to solve problems involving communications networks, project
scheduling, and identifying elements in sets with common properties.

DEFINITION 1 Let A and B be sets. A binary relation from A to B is a subset of A × B.

In other words, a binary relation from A to B is a set R of ordered pairs where the first element
of each ordered pair comes from A and the second element comes from B. We use the notation
a R b to denote that (a, b) ∈ R and a ̸R b to denote that (a, b) /∈ R. Moreover, when (a, b)

belongs to R, a is said to be related to b by R.
Binary relations represent relationships between the elements of two sets. We will introduce

n-ary relations, which express relationships among elements of more than two sets, later in this
chapter. We will omit the word binary when there is no danger of confusion.

Examples 1–3 illustrate the notion of a relation.

EXAMPLE 1 Let A be the set of students in your school, and let B be the set of courses. Let R be
the relation that consists of those pairs (a, b), where a is a student enrolled in course b.
For instance, if Jason Goodfriend and Deborah Sherman are enrolled in CS518, the pairs

573

574 9 / Relations

(Jason Goodfriend, CS518) and (Deborah Sherman, CS518) belong to R. If Jason Goodfriend
is also enrolled in CS510, then the pair (Jason Goodfriend, CS510) is also in R. However,
if Deborah Sherman is not enrolled in CS510, then the pair (Deborah Sherman, CS510) is
not in R.

Note that if a student is not currently enrolled in any courses there will be no pairs in R that
have this student as the first element. Similarly, if a course is not currently being offered there
will be no pairs in R that have this course as their second element. ▲

EXAMPLE 2 Let A be the set of cities in the U.S.A., and let B be the set of the 50 states in the U.S.A.
Define the relation R by specifying that (a, b) belongs to R if a city with name a is in
the state b. For instance, (Boulder, Colorado), (Bangor, Maine), (Ann Arbor, Michigan),
(Middletown, New Jersey), (Middletown, New York), (Cupertino, California), and
(Red Bank, New Jersey) are in R. ▲

EXAMPLE 3 Let A = {0, 1, 2} and B = {a, b}. Then {(0, a), (0, b), (1, a), (2, b)} is a relation from A to B.
This means, for instance, that 0 R a, but that 1 ̸R b. Relations can be represented graphically,
as shown in Figure 1, using arrows to represent ordered pairs. Another way to represent this
relation is to use a table, which is also done in Figure 1. We will discuss representations of
relations in more detail in Section 9.3. ▲

0

1

2

b

a
R a b

0

1

2

FIGURE 1 Displaying the Ordered Pairs in the Relation R from Example 3.

Functions as Relations

Recall that a function f from a set A to a set B (as defined in Section 2.3) assigns exactly
one element of B to each element of A. The graph of f is the set of ordered pairs (a, b) such
that b = f (a). Because the graph of f is a subset of A × B, it is a relation from A to B.
Moreover, the graph of a function has the property that every element of A is the first element
of exactly one ordered pair of the graph.

Conversely, if R is a relation from A to B such that every element in A is the first element
of exactly one ordered pair of R, then a function can be defined with R as its graph. This can be
done by assigning to an element a of A the unique element b ∈ B such that (a, b) ∈ R. (Note
that the relation R in Example 2 is not the graph of a function because Middletown occurs more
than once as the first element of an ordered pair in R.)

A relation can be used to express a one-to-many relationship between the elements of the
sets A and B (as in Example 2), where an element of A may be related to more than one element
of B. A function represents a relation where exactly one element of B is related to each element
of A.

Relations are a generalization of graphs of functions; they can be used to express a much
wider class of relationships between sets. (Recall that the graph of the function f from A to B

is the set of ordered pairs (a, f (a)) for a ∈ A.)

9.1 Relations and Their Properties 575

Relations on a Set

Relations from a set A to itself are of special interest.

DEFINITION 2 A relation on a set A is a relation from A to A.

In other words, a relation on a set A is a subset of A × A.

EXAMPLE 4 Let A be the set {1, 2, 3, 4}. Which ordered pairs are in the relation R = {(a, b) | a divides b}?

Solution: Because (a, b) is in R if and only if a and b are positive integers not exceeding 4 such
that a divides b, we see that

R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}.

The pairs in this relation are displayed both graphically and in tabular form in Figure 2. ▲

Next, some examples of relations on the set of integers will be given in Example 5.

EXAMPLE 5 Consider these relations on the set of integers:

R1 = {(a, b) | a ≤ b},

R2 = {(a, b) | a > b},

R3 = {(a, b) | a = b or a = −b},

R4 = {(a, b) | a = b},

R5 = {(a, b) | a = b + 1},

R6 = {(a, b) | a + b ≤ 3}.

Which of these relations contain each of the pairs (1, 1), (1, 2), (2, 1), (1, −1), and (2, 2)?

Remark: Unlike the relations in Examples 1–4, these are relations on an infinite set.

Solution: The pair (1, 1) is in R1, R3, R4, and R6; (1, 2) is in R1 and R6; (2, 1) is in R2, R5,
and R6; (1, −1) is in R2, R3, and R6; and finally, (2, 2) is in R1, R3, and R4. ▲

It is not hard to determine the number of relations on a finite set, because a relation on a
set A is simply a subset of A × A.

1 R 1 3

1

2

3

2 4

4

2

3

4

1

2

3

4

FIGURE 2 Displaying the Ordered Pairs in
the Relation R from Example 4.

576 9 / Relations

EXAMPLE 6 How many relations are there on a set with n elements?

Solution: A relation on a set A is a subset of A × A. Because A × A has n2 elements when A

has n elements, and a set with m elements has 2m subsets, there are 2n2
subsets of A × A. Thus,

there are 2n2
relations on a set with n elements. For example, there are 232

= 29 = 512 relations
on the set {a, b, c}. ▲

Properties of Relations

There are several properties that are used to classify relations on a set. We will introduce the
most important of these here.

In some relations an element is always related to itself. For instance, let R be the relation
on the set of all people consisting of pairs (x, y) where x and y have the same mother and the
same father. Then xRx for every person x.

DEFINITION 3 A relation R on a set A is called reflexive if (a, a) ∈ R for every element a ∈ A.

Remark: Using quantifiers we see that the relation R on the set A is reflexive if ∀a((a, a) ∈ R),
where the universe of discourse is the set of all elements in A.

We see that a relation on A is reflexive if every element of A is related to itself.
Examples 7–9 illustrate the concept of a reflexive relation.

EXAMPLE 7 Consider the following relations on {1, 2, 3, 4}:

R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)},

R2 = {(1, 1), (1, 2), (2, 1)},

R3 = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)},

R4 = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)},

R5 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)},

R6 = {(3, 4)}.

Which of these relations are reflexive?

Solution: The relations R3 and R5 are reflexive because they both contain all pairs of the form
(a, a), namely, (1, 1), (2, 2), (3, 3), and (4, 4). The other relations are not reflexive because
they do not contain all of these ordered pairs. In particular, R1, R2, R4, and R6 are not reflexive
because (3, 3) is not in any of these relations. ▲

EXAMPLE 8 Which of the relations from Example 5 are reflexive?

Solution: The reflexive relations from Example 5 are R1 (because a ≤ a for every integer a),
R3, and R4. For each of the other relations in this example it is easy to find a pair of the
form (a, a) that is not in the relation. (This is left as an exercise for the reader.) ▲

EXAMPLE 9 Is the “divides” relation on the set of positive integers reflexive?

Solution: Because a | a whenever a is a positive integer, the “divides” relation is reflexive. (Note
that if we replace the set of positive integers with the set of all integers the relation is not reflexive
because by definition 0 does not divide 0.) ▲

9.1 Relations and Their Properties 577

In some relations an element is related to a second element if and only if the second element
is also related to the first element. The relation consisting of pairs (x, y), where x and y are
students at your school with at least one common class has this property. Other relations have
the property that if an element is related to a second element, then this second element is not
related to the first. The relation consisting of the pairs (x, y), where x and y are students at your
school, where x has a higher grade point average than y has this property.

DEFINITION 4 A relation R on a set A is called symmetric if (b, a) ∈ R whenever (a, b) ∈ R, for all a, b ∈ A.
A relation R on a set A such that for all a, b ∈ A, if (a, b) ∈ R and (b, a) ∈ R, then a = b

is called antisymmetric.

Remark: Using quantifiers, we see that the relation R on the set A is symmetric if
∀a∀b((a, b) ∈ R → (b, a) ∈ R). Similarly, the relation R on the set A is antisymmetric if
∀a∀b(((a, b) ∈ R ∧ (b, a) ∈ R) → (a = b)).

That is, a relation is symmetric if and only if a is related to b implies that b is related to a.
A relation is antisymmetric if and only if there are no pairs of distinct elements a and b with a

related to b and b related to a. That is, the only way to have a related to b and b related to a is
for a and b to be the same element. The terms symmetric and antisymmetric are not opposites,
because a relation can have both of these properties or may lack both of them (see Exercise
10). A relation cannot be both symmetric and antisymmetric if it contains some pair of the form
(a, b), where a ̸= b.

Remark: Although relatively few of the 2n2
relations on a set with n elements are symmetric

or antisymmetric, as counting arguments can show, many important relations have one of these
properties. (See Exercise 47.)

EXAMPLE 10 Which of the relations from Example 7 are symmetric and which are antisymmetric?

Solution: The relations R2 and R3 are symmetric, because in each case (b, a) belongs to the
relation whenever (a, b) does. For R2, the only thing to check is that both (2, 1) and (1, 2) are
in the relation. For R3, it is necessary to check that both (1, 2) and (2, 1) belong to the relation,
and (1, 4) and (4, 1) belong to the relation. The reader should verify that none of the other
relations is symmetric. This is done by finding a pair (a, b) such that it is in the relation
but (b, a) is not.

R4, R5, and R6 are all antisymmetric. For each of these relations there is no pair of elements
a and b with a ̸= b such that both (a, b) and (b, a) belong to the relation. The reader should
verify that none of the other relations is antisymmetric. This is done by finding a pair (a, b)

with a ̸= b such that (a, b) and (b, a) are both in the relation. ▲

EXAMPLE 11 Which of the relations from Example 5 are symmetric and which are antisymmetric?

Solution: The relations R3, R4, and R6 are symmetric. R3 is symmetric, for if a = b or a = −b,
then b = a or b = −a. R4 is symmetric because a = b implies that b = a. R6 is symmetric
because a + b ≤ 3 implies that b + a ≤ 3. The reader should verify that none of the other
relations is symmetric.

The relations R1, R2, R4, and R5 are antisymmetric. R1 is antisymmetric because the
inequalities a ≤ b and b ≤ a imply that a = b. R2 is antisymmetric because it is impossible
that a > b and b > a. R4 is antisymmetric, because two elements are related with respect to
R4 if and only if they are equal. R5 is antisymmetric because it is impossible that a = b + 1
and b = a + 1. The reader should verify that none of the other relations is antisymmetric. ▲

578 9 / Relations

EXAMPLE 12 Is the “divides” relation on the set of positive integers symmetric? Is it antisymmetric?

Solution: This relation is not symmetric because 1 |2, but 2 ̸ | 1. It is antisymmetric, for if a

and b are positive integers with a |b and b |a, then a = b (the verification of this is left as an
exercise for the reader). ▲

Let R be the relation consisting of all pairs (x, y) of students at your school, where x has
taken more credits than y. Suppose that x is related to y and y is related to z. This means
that x has taken more credits than y and y has taken more credits than z. We can conclude
that x has taken more credits than z, so that x is related to z. What we have shown is that R has
the transitive property, which is defined as follows.

DEFINITION 5 A relation R on a set A is called transitive if whenever (a, b) ∈ R and (b, c) ∈ R,
then (a, c) ∈ R, for all a, b, c ∈ A.

Remark: Using quantifiers we see that the relation R on a set A is transitive if we have
∀a∀b∀c(((a, b) ∈ R ∧ (b, c) ∈ R) → (a, c) ∈ R).

EXAMPLE 13 Which of the relations in Example 7 are transitive?

Solution: R4, R5, and R6 are transitive. For each of these relations, we can show that it is
transitive by verifying that if (a, b) and (b, c) belong to this relation, then (a, c) also does. For
instance, R4 is transitive, because (3, 2) and (2, 1), (4, 2) and (2, 1), (4, 3) and (3, 1), and (4, 3)

and (3, 2) are the only such sets of pairs, and (3, 1), (4, 1), and (4, 2) belong to R4. The reader
should verify that R5 and R6 are transitive.

R1 is not transitive because (3, 4) and (4, 1) belong to R1, but (3, 1) does not. R2 is
not transitive because (2, 1) and (1, 2) belong to R2, but (2, 2) does not. R3 is not transitive
because (4, 1) and (1, 2) belong to R3, but (4, 2) does not. ▲

EXAMPLE 14 Which of the relations in Example 5 are transitive?

Solution: The relations R1, R2, R3, and R4 are transitive. R1 is transitive because a ≤ b and b ≤ c

imply that a ≤ c. R2 is transitive because a > b and b > c imply that a > c. R3 is transitive
because a = ±b and b = ±c imply that a = ±c. R4 is clearly transitive, as the reader should
verify. R5 is not transitive because (2, 1) and (1, 0) belong to R5, but (2, 0) does not. R6 is not
transitive because (2, 1) and (1, 2) belong to R6, but (2, 2) does not. ▲

EXAMPLE 15 Is the “divides” relation on the set of positive integers transitive?

Solution: Suppose that a divides b and b divides c. Then there are positive integers k and l

such that b = ak and c = bl. Hence, c = a(kl), so a divides c. It follows that this relation is
transitive. ▲

We can use counting techniques to determine the number of relations with specific proper-
ties. Finding the number of relations with a particular property provides information about how
common this property is in the set of all relations on a set with n elements.

EXAMPLE 16 How many reflexive relations are there on a set with n elements?

Solution: A relation R on a set A is a subset of A × A. Consequently, a relation is determined
by specifying whether each of the n2 ordered pairs in A × A is in R. However, if R is reflexive,
each of the n ordered pairs (a, a) for a ∈ A must be in R. Each of the other n(n − 1) ordered

9.1 Relations and Their Properties 579

pairs of the form (a, b), where a ̸= b, may or may not be in R. Hence, by the product rule for
counting, there are 2n (n−1) reflexive relations [this is the number of ways to choose whether
each element (a, b), with a ̸= b, belongs to R]. ▲

Formulas for the number of symmetric relations and the number of antisymmetric re-
lations on a set with n elements can be found using reasoning similar to that in Example 16
(see Exercise 47). However, no general formula is known that counts the transitive relations on a
set with n elements. Currently, T (n), the number of transitive relations on a set with n elements, is
known only for n ≤ 17. For example, T (4) = 3,994, T (5) = 154,303, and T (6) = 9,415,189.

Combining Relations

Because relations from A to B are subsets of A × B, two relations from A to B can be combined
in any way two sets can be combined. Consider Examples 17–19.

EXAMPLE 17 Let A = {1, 2, 3} and B = {1, 2, 3, 4}. The relations R1 = {(1, 1), (2, 2), (3, 3)} and
R2 = {(1, 1), (1, 2), (1, 3), (1, 4)} can be combined to obtain

R1 ∪ R2 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)},

R1 ∩ R2 = {(1, 1)},

R1 − R2 = {(2, 2), (3, 3)},

R2 − R1 = {(1, 2), (1, 3), (1, 4)}.

▲

EXAMPLE 18 Let A and B be the set of all students and the set of all courses at a school, respectively.
Suppose that R1 consists of all ordered pairs (a, b), where a is a student who has taken course b,
and R2 consists of all ordered pairs (a, b), where a is a student who requires course b to graduate.
What are the relations R1 ∪ R2, R1 ∩ R2, R1 ⊕ R2, R1 − R2, and R2 − R1?

Solution: The relation R1 ∪ R2 consists of all ordered pairs (a, b), where a is a student who
either has taken course b or needs course b to graduate, and R1 ∩ R2 is the set of all ordered
pairs (a, b), where a is a student who has taken course b and needs this course to graduate.
Also, R1 ⊕ R2 consists of all ordered pairs (a, b), where student a has taken course b but does
not need it to graduate or needs course b to graduate but has not taken it. R1 − R2 is the set of
ordered pairs (a, b), where a has taken course b but does not need it to graduate; that is, b is
an elective course that a has taken. R2 − R1 is the set of all ordered pairs (a, b), where b is a
course that a needs to graduate but has not taken. ▲

EXAMPLE 19 Let R1 be the “less than” relation on the set of real numbers and let R2 be the “greater than”
relation on the set of real numbers, that is, R1 = {(x, y) | x < y} and R2 = {(x, y) | x > y}.
What are R1 ∪ R2, R1 ∩ R2, R1 − R2, R2 − R1, and R1 ⊕ R2?

Solution: We note that (x, y) ∈ R1 ∪ R2 if and only if (x, y) ∈ R1 or (x, y) ∈ R2. Hence,
(x, y) ∈ R1 ∪ R2 if and only if x < y or x > y. Because the condition x < y or x > y is
the same as the condition x ̸= y, it follows that R1 ∪ R2 = {(x, y) | x ̸= y}. In other words, the
union of the “less than” relation and the “greater than” relation is the “not equals” relation.

Next, note that it is impossible for a pair (x, y) to belong to both R1 and R2 because it is
impossible that x < y and x > y. It follows that R1 ∩ R2 = ∅. We also see that R1 − R2 = R1,
R2 − R1 = R2, and R1 ⊕ R2 = R1 ∪ R2 − R1 ∩ R2 = {(x, y) | x ̸= y}. ▲

There is another way that relations are combined that is analogous to the composition of
functions.

580 9 / Relations

DEFINITION 6 Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite

of R and S is the relation consisting of ordered pairs (a, c), where a ∈ A, c ∈ C, and for
which there exists an element b ∈ B such that (a, b) ∈ R and (b, c) ∈ S. We denote the
composite of R and S by S ◦R.

Computing the composite of two relations requires that we find elements that are the second
element of ordered pairs in the first relation and the first element of ordered pairs in the second
relation, as Examples 20 and 21 illustrate.

EXAMPLE 20 What is the composite of the relations R and S, where R is the relation from {1, 2, 3} to {1, 2, 3, 4}

with R = {(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)} and S is the relation from {1, 2, 3, 4} to {0, 1, 2}

with S = {(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)}?

Solution: S ◦R is constructed using all ordered pairs in R and ordered pairs in S, where the
second element of the ordered pair in R agrees with the first element of the ordered pair
in S. For example, the ordered pairs (2, 3) in R and (3, 1) in S produce the ordered pair (2, 1)

in S ◦R. Computing all the ordered pairs in the composite, we find

S ◦ R = {(1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)}. ▲

EXAMPLE 21 Composing the Parent Relation with Itself Let R be the relation on the set of all people
such that (a, b) ∈ R if person a is a parent of person b. Then (a, c) ∈ R ◦R if and only if there
is a person b such that (a, b) ∈ R and (b, c) ∈ R, that is, if and only if there is a person b such
that a is a parent of b and b is a parent of c. In other words, (a, c) ∈ R ◦R if and only if a is a
grandparent of c. ▲

The powers of a relation R can be recursively defined from the definition of a composite of
two relations.

DEFINITION 7 Let R be a relation on the set A. The powers Rn, n = 1, 2, 3, . . . , are defined recursively by

R1 = R and Rn+1 = Rn ◦ R.

The definition shows that R2 = R ◦ R, R3 = R2 ◦ R = (R ◦ R)◦ R, and so on.

EXAMPLE 22 Let R = {(1, 1), (2, 1), (3, 2), (4, 3)}. Find the powers Rn, n = 2, 3, 4,

Solution: Because R2 = R ◦R, we find that R2 = {(1, 1), (2, 1), (3, 1), (4, 2)}. Further-
more, because R3 = R2 ◦R, R3 = {(1, 1), (2, 1), (3, 1), (4, 1)}. Additional computation shows
that R4 is the same as R3, so R4 = {(1, 1), (2, 1), (3, 1), (4, 1)}. It also follows that Rn = R3

for n = 5, 6, 7, The reader should verify this. ▲

The following theorem shows that the powers of a transitive relation are subsets of this
relation. It will be used in Section 9.4.

THEOREM 1 The relation R on a set A is transitive if and only if Rn ⊆ R for n = 1, 2, 3,

9.1 Relations and Their Properties 581

Proof: We first prove the “if” part of the theorem. We suppose that Rn ⊆ R for n = 1,
2, 3, In particular, R2 ⊆ R. To see that this implies R is transitive, note that if (a, b) ∈ R

and (b, c) ∈ R, then by the definition of composition, (a, c) ∈ R2. Because R2 ⊆ R, this means
that (a, c) ∈ R. Hence, R is transitive.

We will use mathematical induction to prove the only if part of the theorem. Note that this
part of the theorem is trivially true for n = 1.

Assume that Rn ⊆ R, where n is a positive integer. This is the inductive hypothesis. To
complete the inductive step we must show that this implies that Rn+1 is also a subset of R.
To show this, assume that (a, b) ∈ Rn+1. Then, because Rn+1 = Rn◦ R, there is an
element x with x ∈ A such that (a, x) ∈ R and (x, b) ∈ Rn. The inductive hypothesis, namely,
that Rn ⊆ R, implies that (x, b) ∈ R. Furthermore, because R is transitive, and (a, x) ∈ R

and (x, b) ∈ R, it follows that (a, b) ∈ R. This shows that Rn+1 ⊆ R, completing the proof.

Exercises

1. List the ordered pairs in the relation R from
A = {0, 1, 2, 3, 4} to B = {0, 1, 2, 3}, where (a, b) ∈ R

if and only if

a) a = b. b) a + b = 4.

c) a > b. d) a | b.

e) gcd(a, b) = 1. f) lcm(a, b) = 2.

2. a) List all the ordered pairs in the relation
R = {(a, b) | a divides b} on the set {1, 2, 3, 4, 5, 6}.

b) Display this relation graphically, as was done in
Example 4.

c) Display this relation in tabular form, as was done in
Example 4.

3. For each of these relations on the set {1, 2, 3, 4}, decide
whether it is reflexive, whether it is symmetric, whether
it is antisymmetric, and whether it is transitive.

a) {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}

b) {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}

c) {(2, 4), (4, 2)}

d) {(1, 2), (2, 3), (3, 4)}

e) {(1, 1), (2, 2), (3, 3), (4, 4)}

f) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}

4. Determine whether the relation R on the set of all people
is reflexive, symmetric, antisymmetric, and/or transitive,
where (a, b) ∈ R if and only if

a) a is taller than b.

b) a and b were born on the same day.

c) a has the same first name as b.

d) a and b have a common grandparent.

5. Determine whether the relation R on the set of all Web
pages is reflexive, symmetric, antisymmetric, and/or tran-
sitive, where (a, b) ∈ R if and only if

a) everyone who has visited Web page a has also visited
Web page b.

b) there are no common links found on both Web
page a and Web page b.

c) there is at least one common link on Web page a and
Web page b.

d) there is a Web page that includes links to both Web
page a and Web page b.

6. Determine whether the relation R on the set of all real
numbers is reflexive, symmetric, antisymmetric, and/or
transitive, where (x, y) ∈ R if and only if

a) x + y = 0. b) x = ±y.
c) x − y is a rational number.
d) x = 2y. e) xy ≥ 0.
f) xy = 0. g) x = 1.
h) x = 1 or y = 1.

7. Determine whether the relation R on the set of all integers
is reflexive, symmetric, antisymmetric, and/or transitive,
where (x, y) ∈ R if and only if

a) x ̸= y. b) xy ≥ 1.
c) x = y + 1 or x = y − 1.
d) x ≡ y (mod 7). e) x is a multiple of y.
f) x and y are both negative or both nonnegative.
g) x = y2. h) x ≥ y2.

8. Show that the relation R = ∅ on a nonempty set S is sym-
metric and transitive, but not reflexive.

9. Show that the relation R = ∅ on the empty set S = ∅ is
reflexive, symmetric, and transitive.

10. Give an example of a relation on a set that is

a) both symmetric and antisymmetric.
b) neither symmetric nor antisymmetric.

A relation R on the set A is irreflexive if for every
a ∈ A, (a, a) /∈ R. That is, R is irreflexive if no element
in A is related to itself.

11. Which relations in Exercise 3 are irreflexive?

12. Which relations in Exercise 4 are irreflexive?

13. Which relations in Exercise 5 are irreflexive?

14. Which relations in Exercise 6 are irreflexive?

15. Can a relation on a set be neither reflexive nor irreflexive?

16. Use quantifiers to express what it means for a relation to
be irreflexive.

17. Give an example of an irreflexive relation on the set of all
people.

582 9 / Relations

A relation R is called asymmetric if (a, b) ∈ R implies that
(b, a) /∈ R. Exercises 18–24 explore the notion of an asym-
metric relation. Exercise 22 focuses on the difference between
asymmetry and antisymmetry.

18. Which relations in Exercise 3 are asymmetric?

19. Which relations in Exercise 4 are asymmetric?

20. Which relations in Exercise 5 are asymmetric?

21. Which relations in Exercise 6 are asymmetric?

22. Must an asymmetric relation also be antisymmetric? Must
an antisymmetric relation be asymmetric? Give reasons
for your answers.

23. Use quantifiers to express what it means for a relation to
be asymmetric.

24. Give an example of an asymmetric relation on the set of
all people.

25. How many different relations are there from a set with m

elements to a set with n elements?

Let R be a relation from a set A to a set B. The inverse rela-

tion from B to A, denoted by R−1, is the set of ordered pairs
{(b, a) | (a, b) ∈ R}. The complementary relation R is the
set of ordered pairs {(a, b) | (a, b) /∈ R}.

26. Let R be the relation R = {(a, b) | a < b} on the set of
integers. Find

a) R−1. b) R.

27. Let R be the relation R = {(a, b) | a divides b} on the set
of positive integers. Find

a) R−1. b) R.

28. Let R be the relation on the set of all states in the United
States consisting of pairs (a, b) where state a borders
state b. Find

a) R−1. b) R.

29. Suppose that the function f from A to B is a one-to-
one correspondence. Let R be the relation that equals the
graph of f . That is, R = {(a, f (a)) | a ∈ A}. What is the
inverse relation R−1?

30. Let R1 = {(1, 2), (2, 3), (3, 4)} and R2 = {(1, 1), (1, 2),
(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4)} be rela-
tions from {1, 2, 3} to {1, 2, 3, 4}. Find

a) R1 ∪ R2. b) R1 ∩ R2.

c) R1 − R2. d) R2 − R1.

31. Let A be the set of students at your school and B the set of
books in the school library. Let R1 and R2 be the relations
consisting of all ordered pairs (a, b), where student a is
required to read book b in a course, and where student a

has read book b, respectively. Describe the ordered pairs
in each of these relations.

a) R1 ∪ R2 b) R1 ∩ R2

c) R1 ⊕ R2 d) R1 − R2

e) R2 − R1

32. Let R be the relation {(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)},
and let S be the relation {(2, 1), (3, 1), (3, 2), (4, 2)}.
Find S ◦ R.

33. Let R be the relation on the set of people consisting of
pairs (a, b), where a is a parent of b. Let S be the relation
on the set of people consisting of pairs (a, b), where a

and b are siblings (brothers or sisters). What are S ◦ R

and R ◦ S?

Exercises 34–37 deal with these relations on the set of real
numbers:

R1 = {(a, b) ∈ R2 | a > b}, the “greater than” relation,

R2 = {(a, b) ∈ R2 | a ≥ b}, the “greater than or equal to”
relation,

R3 = {(a, b) ∈ R2 | a < b}, the “less than” relation,

R4 = {(a, b) ∈ R2 | a ≤ b}, the “less than or equal to”
relation,

R5 = {(a, b) ∈ R2 | a = b}, the “equal to” relation,

R6 = {(a, b) ∈ R2 | a ̸= b}, the “unequal to” relation.

34. Find

a) R1 ∪ R3. b) R1 ∪ R5.

c) R2 ∩ R4. d) R3 ∩ R5.

e) R1 − R2. f) R2 − R1.

g) R1 ⊕ R3. h) R2 ⊕ R4.

35. Find

a) R2 ∪ R4. b) R3 ∪ R6.

c) R3 ∩ R6. d) R4 ∩ R6.

e) R3 − R6. f) R6 − R3.

g) R2 ⊕ R6. h) R3 ⊕ R5.

36. Find

a) R1 ◦ R1. b) R1 ◦ R2.

c) R1 ◦ R3. d) R1 ◦ R4.

e) R1 ◦ R5. f) R1 ◦ R6.

g) R2 ◦ R3. h) R3 ◦ R3.

37. Find

a) R2 ◦ R1. b) R2 ◦ R2.

c) R3 ◦ R5. d) R4 ◦ R1.

e) R5 ◦ R3. f) R3 ◦ R6.

g) R4 ◦ R6. h) R6 ◦ R6.

38. Let R be the parent relation on the set of all people (see
Example 21). When is an ordered pair in the relation R3?

39. Let R be the relation on the set of people with doctorates
such that (a, b) ∈ R if and only if a was the thesis advisor
of b. When is an ordered pair (a, b) in R2? When is an
ordered pair (a, b) in Rn, when n is a positive integer?
(Assume that every person with a doctorate has a thesis
advisor.)

40. Let R1 and R2 be the “divides” and “is a multiple of”
relations on the set of all positive integers, respectively.
That is, R1 = {(a, b) | a divides b} and R2 = {(a, b) | a

is a multiple of b}. Find

a) R1 ∪ R2. b) R1 ∩ R2.

c) R1 − R2. d) R2 − R1.

e) R1 ⊕ R2.

9.2 n-ary Relations and Their Applications 583

41. Let R1 and R2 be the “congruent modulo 3” and the
“congruent modulo 4” relations, respectively, on the set
of integers. That is, R1 = {(a, b) | a ≡ b (mod 3)} and
R2 = {(a, b) | a ≡ b (mod 4)}. Find

a) R1 ∪ R2. b) R1 ∩ R2.
c) R1 − R2. d) R2 − R1.
e) R1 ⊕ R2.

42. List the 16 different relations on the set {0, 1}.

43. How many of the 16 different relations on {0, 1} contain
the pair (0, 1)?

44. Which of the 16 relations on {0, 1}, which you listed in
Exercise 42, are

a) reflexive? b) irreflexive?
c) symmetric? d) antisymmetric?
e) asymmetric? f) transitive?

45. a) How many relations are there on the set {a, b, c, d}?
b) How many relations are there on the set {a, b, c, d}

that contain the pair (a, a)?

46. Let S be a set with n elements and let a and b be dis-
tinct elements of S. How many relations R are there on S

such that

a) (a, b) ∈ R? b) (a, b) ̸∈ R?
c) no ordered pair in R has a as its first element?
d) at least one ordered pair in R has a as its first element?
e) no ordered pair in R has a as its first element or b as

its second element?
f) at least one ordered pair in R either has a as its first

element or has b as its second element?
∗47. How many relations are there on a set with n elements

that are

a) symmetric? b) antisymmetric?
c) asymmetric? d) irreflexive?
e) reflexive and symmetric?
f) neither reflexive nor irreflexive?

∗48. How many transitive relations are there on a set with n

elements if

a) n = 1? b) n = 2? c) n = 3?

49. Find the error in the “proof” of the following “theorem.”

“Theorem”: Let R be a relation on a set A that is sym-
metric and transitive. Then R is reflexive.

“Proof ”: Let a ∈ A. Take an element b ∈ A such that
(a, b) ∈ R. Because R is symmetric, we also have
(b, a) ∈R. Now using the transitive property, we can con-
clude that (a, a) ∈ R because (a, b) ∈ R and (b, a) ∈ R.

50. Suppose that R and S are reflexive relations on a set A.
Prove or disprove each of these statements.

a) R ∪ S is reflexive.
b) R ∩ S is reflexive.
c) R ⊕ S is irreflexive.
d) R − S is irreflexive.
e) S ◦R is reflexive.

51. Show that the relation R on a set A is symmetric if and
only if R = R−1, where R−1 is the inverse relation.

52. Show that the relation R on a set A is antisymmetric if
and only if R ∩ R−1 is a subset of the diagonal relation
! = {(a, a) | a ∈ A}.

53. Show that the relation R on a set A is reflexive if and only
if the inverse relation R−1 is reflexive.

54. Show that the relation R on a set A is reflexive if and only
if the complementary relation R is irreflexive.

55. Let R be a relation that is reflexive and transitive. Prove
that Rn = R for all positive integers n.

56. Let R be the relation on the set {1, 2, 3, 4, 5} containing
the ordered pairs (1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 1),
(3, 4), (3, 5), (4, 2), (4, 5), (5, 1), (5, 2), and (5, 4).
Find

a) R2. b) R3. c) R4. d) R5.

57. Let R be a reflexive relation on a set A. Show that Rn is
reflexive for all positive integers n.

∗58. Let R be a symmetric relation. Show that Rn is symmetric
for all positive integers n.

59. Suppose that the relation R is irreflexive. Is R2 necessar-
ily irreflexive? Give a reason for your answer.

9.2 n-ary Relations and Their Applications

Introduction

Relationships among elements of more than two sets often arise. For instance, there is a relation-
ship involving the name of a student, the student’s major, and the student’s grade point average.
Similarly, there is a relationship involving the airline, flight number, starting point, destination,
departure time, and arrival time of a flight. An example of such a relationship in mathematics
involves three integers, where the first integer is larger than the second integer, which is larger
than the third. Another example is the betweenness relationship involving points on a line, such
that three points are related when the second point is between the first and the third.

We will study relationships among elements from more than two sets in this section.These re-
lationships are called n-ary relations. These relations are used to represent computer databases.
These representations help us answer queries about the information stored in databases, such
as: Which flights land at O’Hare Airport between 3 a.m. and 4 a.m.? Which students at your

9.3 Representing Relations 591

9.3 Representing Relations

Introduction

In this section, and in the remainder of this chapter, all relations we study will be binary relations.
Because of this, in this section and in the rest of this chapter, the word relation will always refer
to a binary relation. There are many ways to represent a relation between finite sets. As we have
seen in Section 9.1, one way is to list its ordered pairs. Another way to represent a relation is to
use a table, as we did in Example 3 in Section 9.1. In this section we will discuss two alternative
methods for representing relations. One method uses zero–one matrices. The other method uses
pictorial representations called directed graphs, which we will discuss later in this section.

Generally, matrices are appropriate for the representation of relations in computer programs.
On the other hand, people often find the representation of relations using directed graphs useful
for understanding the properties of these relations.

Representing Relations Using Matrices

A relation between finite sets can be represented using a zero–one matrix. Suppose that R is a
relation from A = {a1, a2, . . . , am} to B = {b1, b2, . . . , bn}. (Here the elements of the sets A

and B have been listed in a particular, but arbitrary, order. Furthermore, when A = B we use
the same ordering for A and B.) The relation R can be represented by the matrix MR = [mij],
where

mij =

{

1 if (ai, bj) ∈ R,

0 if (ai, bj) /∈ R.

In other words, the zero–one matrix representing R has a 1 as its (i, j) entry when ai is related
to bj , and a 0 in this position if ai is not related to bj . (Such a representation depends on the
orderings used for A and B.)

The use of matrices to represent relations is illustrated in Examples 1–6.

EXAMPLE 1 Suppose that A = {1, 2, 3} and B = {1, 2}. Let R be the relation from A to B containing (a, b)

if a ∈ A, b ∈ B, and a > b. What is the matrix representing R if a1 = 1, a2 = 2, and a3 = 3,
and b1 = 1 and b2 = 2?

Solution: Because R = {(2, 1), (3, 1), (3, 2)}, the matrix for R is

MR =

⎡

⎣

0 0
1 0
1 1

⎤

⎦ .

The 1s in MR show that the pairs (2, 1), (3, 1), and (3, 2) belong to R. The 0s show that no
other pairs belong to R. ▲

EXAMPLE 2 Let A = {a1, a2, a3} and B = {b1, b2, b3, b4, b5}. Which ordered pairs are in the relation R

represented by the matrix

MR =

⎡

⎣

0 1 0 0 0
1 0 1 1 0
1 0 1 0 1

⎤

⎦ ?

592 9 / Relations

Solution: Because R consists of those ordered pairs (ai, bj) with mij = 1, it follows that

R = {(a1, b2), (a2, b1), (a2, b3), (a2, b4), (a3, b1), (a3, b3), (a3, b5)}. ▲

The matrix of a relation on a set, which is a square matrix, can be used to determine whether
the relation has certain properties. Recall that a relationR onA is reflexive if (a, a) ∈ R whenever
a ∈ A. Thus, R is reflexive if and only if (ai, ai) ∈ R for i = 1, 2, . . . , n. Hence, R is reflexive
if and only if mii = 1, for i = 1, 2, . . . , n. In other words, R is reflexive if all the elements on
the main diagonal of MR are equal to 1, as shown in Figure 1. Note that the elements off the
main diagonal can be either 0 or 1.

1
1

1

1
1

FIGURE 1 The
Zero–One Matrix
for a Reflexive
Relation. (Off
Diagonal Ele-
ments Can
Be 0 or 1.)

The relation R is symmetric if (a, b) ∈ R implies that (b, a) ∈ R. Consequently, the
relation R on the set A = {a1, a2, . . . , an} is symmetric if and only if (aj , ai) ∈ R whenever
(ai, aj) ∈ R. In terms of the entries of MR , R is symmetric if and only if mji = 1 whenever
mij = 1. This also means mji = 0 whenever mij = 0. Consequently, R is symmetric if and
only if mij = mji , for all pairs of integers i and j with i = 1, 2, . . . , n and j = 1, 2, . . . , n.
Recalling the definition of the transpose of a matrix from Section 2.6, we see that R is symmetric
if and only if

MR = (MR)t ,

that is, if MR is a symmetric matrix. The form of the matrix for a symmetric relation is illustrated
in Figure 2(a).

The relation R is antisymmetric if and only if (a, b) ∈ R and (b, a) ∈ R imply that a = b.
Consequently, the matrix of an antisymmetric relation has the property that if mij = 1 with
i ̸= j , then mji = 0. Or, in other words, either mij = 0 or mji = 0 when i ̸= j . The form of
the matrix for an antisymmetric relation is illustrated in Figure 2(b).

1

1

0

0

(a) Symmetric

0

0

1

(b) Antisymmetric

0

0

1

FIGURE 2 The Zero–One Matrices for
Symmetric and Antisymmetric Relations.

EXAMPLE 3 Suppose that the relation R on a set is represented by the matrix

MR =

⎡

⎣

1 1 0
1 1 1
0 1 1

⎤

⎦ .

Is R reflexive, symmetric, and/or antisymmetric?

Solution: Because all the diagonal elements of this matrix are equal to 1, R is reflexive. Moreover,
because MR is symmetric, it follows that R is symmetric. It is also easy to see that R is not
antisymmetric. ▲

The Boolean operations join and meet (discussed in Section 2.6) can be used to find the
matrices representing the union and the intersection of two relations. Suppose that R1 and R2

are relations on a set A represented by the matrices MR1 and MR2 , respectively. The matrix

9.3 Representing Relations 593

representing the union of these relations has a 1 in the positions where either MR1 or MR2 has
a 1. The matrix representing the intersection of these relations has a 1 in the positions where
both MR1 and MR2 have a 1. Thus, the matrices representing the union and intersection of these
relations are

MR1∪R2 = MR1 ∨ MR2 and MR1∩R2 = MR1 ∧ MR2 .

EXAMPLE 4 Suppose that the relations R1 and R2 on a set A are represented by the matrices

MR1 =

⎡

⎣

1 0 1
1 0 0
0 1 0

⎤

⎦ and MR2 =

⎡

⎣

1 0 1
0 1 1
1 0 0

⎤

⎦ .

What are the matrices representing R1 ∪ R2 and R1 ∩ R2?

Solution: The matrices of these relations are

MR1∪R2 = MR1 ∨ MR2 =

⎡

⎣

1 0 1
1 1 1
1 1 0

⎤

⎦ ,

MR1∩R2 = MR1 ∧ MR2 =

⎡

⎣

1 0 1
0 0 0
0 0 0

⎤

⎦ .

▲

We now turn our attention to determining the matrix for the composite of relations. This
matrix can be found using the Boolean product of the matrices (discussed in Section 2.6) for
these relations. In particular, suppose that R is a relation from A to B and S is a relation
from B to C. Suppose that A, B, and C have m, n, and p elements, respectively. Let the zero–
one matrices for S ◦R, R, and S be MS ◦R = [tij], MR = [rij], and MS = [sij], respectively
(these matrices have sizes m × p, m × n, and n × p, respectively). The ordered pair (ai, cj)

belongs to S ◦R if and only if there is an element bk such that (ai, bk) belongs to R and (bk, cj)

belongs to S. It follows that tij = 1 if and only if rik = skj = 1 for some k. From the definition
of the Boolean product, this means that

MS ◦R = MR ⊙ MS .

EXAMPLE 5 Find the matrix representing the relations S ◦R, where the matrices representing R and S are

MR =

⎡

⎣

1 0 1
1 1 0
0 0 0

⎤

⎦ and MS =

⎡

⎣

0 1 0
0 0 1
1 0 1

⎤

⎦ .

Solution: The matrix for S ◦R is

MS ◦R = MR ⊙ MS =

⎡

⎣

1 1 1
0 1 1
0 0 0

⎤

⎦ .

▲

594 9 / Relations

The matrix representing the composite of two relations can be used to find the matrix
for MRn . In particular,

MRn = M
[n]
R ,

from the definition of Boolean powers. Exercise 35 asks for a proof of this formula.

EXAMPLE 6 Find the matrix representing the relation R2, where the matrix representing R is

MR =

⎡

⎣

0 1 0
0 1 1
1 0 0

⎤

⎦ .

Solution: The matrix for R2 is

MR2 = M
[2]
R =

⎡

⎣

0 1 1
1 1 1
0 1 0

⎤

⎦ .

▲

Representing Relations Using Digraphs

We have shown that a relation can be represented by listing all of its ordered pairs or by
using a zero–one matrix. There is another important way of representing a relation using a
pictorial representation. Each element of the set is represented by a point, and each ordered
pair is represented using an arc with its direction indicated by an arrow. We use such pictorial
representations when we think of relations on a finite set as directed graphs, or digraphs.

DEFINITION 1 A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set
E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial

vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

An edge of the form (a, a) is represented using an arc from the vertex a back to itself. Such
an edge is called a loop.

EXAMPLE 7 The directed graph with vertices a, b, c, and d , and edges (a, b), (a, d), (b, b), (b, d), (c, a),
(c, b), and (d, b) is displayed in Figure 3. ▲

a b

d c

FIGURE 3
A Directed Graph.

The relation R on a set A is represented by the directed graph that has the elements of A as its
vertices and the ordered pairs (a, b), where (a, b) ∈ R, as edges. This assignment sets up a one-
to-one correspondence between the relations on a set A and the directed graphs with A as their
set of vertices. Thus, every statement about relations corresponds to a statement about directed
graphs, and vice versa. Directed graphs give a visual display of information about relations. As
such, they are often used to study relations and their properties. (Note that relations from a set
A to a set B can be represented by a directed graph where there is a vertex for each element of
A and a vertex for each element of B, as shown in Section 9.1. However, when A = B, such
representation provides much less insight than the digraph representations described here.) The
use of directed graphs to represent relations on a set is illustrated in Examples 8–10.

9.3 Representing Relations 595

EXAMPLE 8 The directed graph of the relation

R = {(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)}

on the set {1, 2, 3, 4} is shown in Figure 4. ▲

EXAMPLE 9 What are the ordered pairs in the relation R represented by the directed graph shown in Figure 5?

Solution: The ordered pairs (x, y) in the relation are

R = {(1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 3)}.

Each of these pairs corresponds to an edge of the directed graph, with (2, 2) and (3, 3) corre-
sponding to loops. ▲

The directed graph representing a relation can be used to determine whether the relation
We will study directed

graphs extensively in

Chapter 10.

has various properties. For instance, a relation is reflexive if and only if there is a loop at every
vertex of the directed graph, so that every ordered pair of the form (x, x) occurs in the relation.
A relation is symmetric if and only if for every edge between distinct vertices in its digraph
there is an edge in the opposite direction, so that (y, x) is in the relation whenever (x, y) is
in the relation. Similarly, a relation is antisymmetric if and only if there are never two edges
in opposite directions between distinct vertices. Finally, a relation is transitive if and only if
whenever there is an edge from a vertex x to a vertex y and an edge from a vertex y to a
vertex z, there is an edge from x to z (completing a triangle where each side is a directed edge
with the correct direction).

Remark: Note that a symmetric relation can be represented by an undirected graph, which is a
graph where edges do not have directions. We will study undirected graphs in Chapter 10.

EXAMPLE 10 Determine whether the relations for the directed graphs shown in Figure 6 are reflexive, sym-
metric, antisymmetric, and/or transitive.

Solution: Because there are loops at every vertex of the directed graph of R, it is reflexive. R is
neither symmetric nor antisymmetric because there is an edge from a to b but not one from b to
a, but there are edges in both directions connecting b and c. Finally, R is not transitive because
there is an edge from a to b and an edge from b to c, but no edge from a to c.

1

4 3

2

FIGURE 4 The
Directed Graph
of the Relation R.

21

4 3

FIGURE 5 The
Directed Graph
of the Relation R.

a

b c

(a) Directed graph of R

b

(b) Directed graph of S

c

a

d

FIGURE 6 The Directed Graphs of the
Relations R and S.

596 9 / Relations

Because loops are not present at all the vertices of the directed graph of S, this relation is not
reflexive. It is symmetric and not antisymmetric, because every edge between distinct vertices
is accompanied by an edge in the opposite direction. It is also not hard to see from the directed
graph that S is not transitive, because (c, a) and (a, b) belong to S, but (c, b) does not belong
to S. ▲

Exercises

1. Represent each of these relations on {1, 2, 3}with a matrix
(with the elements of this set listed in increasing order).

a) {(1, 1), (1, 2), (1, 3)}

b) {(1, 2), (2, 1), (2, 2), (3, 3)}

c) {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}

d) {(1, 3), (3, 1)}

2. Represent each of these relations on {1, 2, 3, 4} with a
matrix (with the elements of this set listed in increasing
order).

a) {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

b) {(1, 1), (1, 4), (2, 2), (3, 3), (4, 1)}

c) {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2),
(3, 4), (4, 1), (4, 2), (4, 3)}

d) {(2, 4), (3, 1), (3, 2), (3, 4)}

3. List the ordered pairs in the relations on {1, 2, 3} corre-
sponding to these matrices (where the rows and columns
correspond to the integers listed in increasing order).

a)

⎡

⎣

1 0 1
0 1 0
1 0 1

⎤

⎦ b)

⎡

⎣

0 1 0
0 1 0
0 1 0

⎤

⎦

c)

⎡

⎣

1 1 1
1 0 1
1 1 1

⎤

⎦

4. List the ordered pairs in the relations on {1, 2, 3, 4} corre-
sponding to these matrices (where the rows and columns
correspond to the integers listed in increasing order).

a)

⎡

⎢

⎢

⎣

1 1 0 1
1 0 1 0
0 1 1 1
1 0 1 1

⎤

⎥

⎥

⎦

b)

⎡

⎢

⎢

⎣

1 1 1 0
0 1 0 0
0 0 1 1
1 0 0 1

⎤

⎥

⎥

⎦

c)

⎡

⎢

⎢

⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤

⎥

⎥

⎦

5. How can the matrix representing a relation R on a set A

be used to determine whether the relation is irreflexive?

6. How can the matrix representing a relation R on a set A

be used to determine whether the relation is asymmetric?

7. Determine whether the relations represented by the ma-
trices in Exercise 3 are reflexive, irreflexive, symmetric,
antisymmetric, and/or transitive.

8. Determine whether the relations represented by the ma-
trices in Exercise 4 are reflexive, irreflexive, symmetric,
antisymmetric, and/or transitive.

9. How many nonzero entries does the matrix representing
the relation R on A = {1, 2, 3, . . . , 100} consisting of the
first 100 positive integers have if R is

a) {(a, b) | a > b}? b) {(a, b) | a ̸= b}?
c) {(a, b) | a = b + 1}? d) {(a, b) | a = 1}?
e) {(a, b) | ab = 1}?

10. How many nonzero entries does the matrix representing
the relation R on A = {1, 2, 3, . . . , 1000} consisting of
the first 1000 positive integers have if R is

a) {(a, b) | a ≤ b}?
b) {(a, b) | a = b ± 1}?
c) {(a, b) | a + b = 1000}?
d) {(a, b) | a + b ≤ 1001}?
e) {(a, b) | a ̸= 0}?

11. How can the matrix for R, the complement of the
relation R, be found from the matrix representing R,
when R is a relation on a finite set A?

12. How can the matrix for R−1, the inverse of the
relation R, be found from the matrix representing R,
when R is a relation on a finite set A?

13. Let R be the relation represented by the matrix

MR =

⎡

⎣

0 1 1
1 1 0
1 0 1

⎤

⎦ .

Find the matrix representing

a) R−1. b) R. c) R2.

14. Let R1 and R2 be relations on a set A represented by the
matrices

MR1 =

⎡

⎣

0 1 0
1 1 1
1 0 0

⎤

⎦ and MR2 =

⎡

⎣

0 1 0
0 1 1
1 1 1

⎤

⎦ .

Find the matrices that represent

a) R1 ∪ R2. b) R1 ∩ R2. c) R2 ◦R1.
d) R1 ◦R1. e) R1 ⊕ R2.

15. Let R be the relation represented by the matrix

MR =

⎡

⎣

0 1 0
0 0 1
1 1 0

⎤

⎦ .

Find the matrices that represent

a) R2. b) R3. c) R4.

9.4 Closures of Relations 597

16. Let R be a relation on a set A with n elements. If there
are k nonzero entries in MR , the matrix representing R,
how many nonzero entries are there in MR−1 , the matrix
representing R−1, the inverse of R?

17. Let R be a relation on a set A with n elements. If there
are k nonzero entries in MR , the matrix representing R,
how many nonzero entries are there in MR , the matrix

representing R, the complement of R?
18. Draw the directed graphs representing each of the rela-

tions from Exercise 1.
19. Draw the directed graphs representing each of the rela-

tions from Exercise 2.
20. Draw the directed graph representing each of the relations

from Exercise 3.
21. Draw the directed graph representing each of the relations

from Exercise 4.
22. Draw the directed graph that represents the relation

{(a, a), (a, b), (b, c), (c, b), (c, d), (d, a), (d, b)}.

In Exercises 23–28 list the ordered pairs in the relations rep-
resented by the directed graphs.
23.

a

b c

24.

a

b c

25.
ba

c d

26.
ba

c d

27.
a b

c
d

28.

b

c d

29. How can the directed graph of a relation R on a finite
set A be used to determine whether a relation is asym-
metric?

30. How can the directed graph of a relation R on a finite
set A be used to determine whether a relation is irreflex-
ive?

31. Determine whether the relations represented by the di-
rected graphs shown in Exercises 23–25 are reflexive,
irreflexive, symmetric, antisymmetric, and/or transitive.

32. Determine whether the relations represented by the di-
rected graphs shown in Exercises 26–28 are reflexive, ir-
reflexive, symmetric, antisymmetric, asymmetric, and/or
transitive.

33. Let R be a relation on a set A. Explain how to use the di-
rected graph representing R to obtain the directed graph
representing the inverse relation R−1.

34. Let R be a relation on a set A. Explain how to use the di-
rected graph representing R to obtain the directed graph
representing the complementary relation R.

35. Show that if MR is the matrix representing the relation R,

then M
[n]
R is the matrix representing the relation Rn.

36. Given the directed graphs representing two relations, how
can the directed graph of the union, intersection, sym-
metric difference, difference, and composition of these
relations be found?

9.4 Closures of Relations

Introduction

A computer network has data centers in Boston, Chicago, Denver, Detroit, New York, and San
Diego. There are direct, one-way telephone lines from Boston to Chicago, from Boston to
Detroit, from Chicago to Detroit, from Detroit to Denver, and from New York to San Diego.
Let R be the relation containing (a, b) if there is a telephone line from the data center in a to
that in b. How can we determine if there is some (possibly indirect) link composed of one or
more telephone lines from one center to another? Because not all links are direct, such as the
link from Boston to Denver that goes through Detroit, R cannot be used directly to answer this.
In the language of relations, R is not transitive, so it does not contain all the pairs that can be
linked. As we will show in this section, we can find all pairs of data centers that have a link
by constructing a transitive relation S containing R such that S is a subset of every transitive
relation containing R. Here, S is the smallest transitive relation that contains R. This relation is
called the transitive closure of R.

In general, let R be a relation on a set A. R may or may not have some property P, such as
reflexivity, symmetry, or transitivity. If there is a relation S with property P containing R such
that S is a subset of every relation with property P containing R, then S is called the closure

9.5 Equivalence Relations 607

13. Suppose that the relation R on the finite set A is rep-
resented by the matrix MR . Show that the matrix that
represents the symmetric closure of R is MR ∨ Mt

R .

14. Show that the closure of a relation R with respect to a
property P, if it exists, is the intersection of all the rela-
tions with property P that contain R.

15. When is it possible to define the “irreflexive closure”
of a relation R, that is, a relation that contains R, is ir-
reflexive, and is contained in every irreflexive relation
that contains R?

16. Determine whether these sequences of vertices are paths
in this directed graph.

a) a, b, c, e
b) b, e, c, b, e
c) a, a, b, e, d, e
d) b, c, e, d, a, a, b
e) b, c, c, b, e, d, e, d
f) a, a, b, b, c, c, b, e, d

ba c

e

d

17. Find all circuits of length three in the directed graph in
Exercise 16.

18. Determine whether there is a path in the directed graph in
Exercise 16 beginning at the first vertex given and ending
at the second vertex given.

a) a, b b) b, a c) b, b
d) a, e e) b, d f) c, d
g) d, d h) e, a i) e, c

19. Let R be the relation on the set {1, 2, 3, 4, 5} containing
the ordered pairs (1, 3), (2, 4), (3, 1), (3, 5), (4, 3), (5, 1),
(5, 2), and (5, 4). Find

a) R2. b) R3. c) R4.
d) R5. e) R6. f) R∗.

20. Let R be the relation that contains the pair (a, b) if a

and b are cities such that there is a direct non-stop airline
flight from a to b. When is (a, b) in

a) R2? b) R3? c) R∗?

21. Let R be the relation on the set of all students contain-
ing the ordered pair (a, b) if a and b are in at least one
common class and a ̸= b. When is (a, b) in

a) R2? b) R3? c) R∗?

22. Suppose that the relation R is reflexive. Show that R∗ is
reflexive.

23. Suppose that the relation R is symmetric. Show that R∗

is symmetric.

24. Suppose that the relation R is irreflexive. Is the
relation R2 necessarily irreflexive?

25. Use Algorithm 1 to find the transitive closures of these
relations on {1, 2, 3, 4}.

a) {(1, 2), (2,1), (2,3), (3,4), (4,1)}

b) {(2, 1), (2,3), (3,1), (3,4), (4,1), (4, 3)}

c) {(1, 2), (1,3), (1,4), (2,3), (2,4), (3, 4)}

d) {(1, 1), (1,4), (2,1), (2,3), (3,1), (3, 2), (3,4), (4, 2)}

26. Use Algorithm 1 to find the transitive closures of these
relations on {a, b, c, d, e}.

a) {(a, c), (b, d), (c, a), (d, b), (e, d)}

b) {(b, c), (b, e), (c, e), (d, a), (e, b), (e, c)}

c) {(a, b), (a, c), (a, e), (b, a), (b,c), (c,a), (c,b), (d,a),

(e, d)}

d) {(a, e), (b, a), (b, d), (c,d), (d,a), (d,c), (e,a), (e,b),

(e, c), (e, e)}

27. Use Warshall’s algorithm to find the transitive closures
of the relations in Exercise 25.

28. Use Warshall’s algorithm to find the transitive closures
of the relations in Exercise 26.

29. Find the smallest relation containing the relation
{(1, 2), (1, 4), (3, 3), (4, 1)} that is

a) reflexive and transitive.

b) symmetric and transitive.

c) reflexive, symmetric, and transitive.

30. Finish the proof of the case when a ̸= b in Lemma 1.

31. Algorithms have been devised that use O(n2.8) bit opera-
tions to compute the Boolean product of two n × n zero–
one matrices.Assuming that these algorithms can be used,
give big-O estimates for the number of bit operations us-
ingAlgorithm 1 and using Warshall’s algorithm to find the
transitive closure of a relation on a set with n elements.

∗32. Devise an algorithm using the concept of interior vertices
in a path to find the length of the shortest path between
two vertices in a directed graph, if such a path exists.

33. Adapt Algorithm 1 to find the reflexive closure of the
transitive closure of a relation on a set with n elements.

34. Adapt Warshall’s algorithm to find the reflexive closure of
the transitive closure of a relation on a set with n elements.

35. Show that the closure with respect to the property P of
the relation R = {(0, 0), (0, 1), (1, 1), (2, 2)} on the set
{0, 1, 2} does not exist if P is the property

a) “is not reflexive.”

b) “has an odd number of elements.”

9.5 Equivalence Relations

Introduction

In some programming languages the names of variables can contain an unlimited number of
characters. However, there is a limit on the number of characters that are checked when a
compiler determines whether two variables are equal. For instance, in traditional C, only the
first eight characters of a variable name are checked by the compiler. (These characters are

608 9 / Relations

uppercase or lowercase letters, digits, or underscores.) Consequently, the compiler considers
strings longer than eight characters that agree in their first eight characters the same. Let R be
the relation on the set of strings of characters such that sRt , where s and t are two strings, if s

and t are at least eight characters long and the first eight characters of s and t agree, or s = t . It
is easy to see that R is reflexive, symmetric, and transitive. Moreover, R divides the set of all
strings into classes, where all strings in a particular class are considered the same by a compiler
for traditional C.

The integers a and b are related by the “congruence modulo 4” relation when 4
divides a − b. We will show later that this relation is reflexive, symmetric, and transitive. It
is not hard to see that a is related to b if and only if a and b have the same remainder when
divided by 4. It follows that this relation splits the set of integers into four different classes.
When we care only what remainder an integer leaves when it is divided by 4, we need only
know which class it is in, not its particular value.

These two relations, R and congruence modulo 4, are examples of equivalence relations,
namely, relations that are reflexive, symmetric, and transitive. In this section we will show that
such relations split sets into disjoint classes of equivalent elements. Equivalence relations arise
whenever we care only whether an element of a set is in a certain class of elements, instead of
caring about its particular identity.

Equivalence Relations

In this section we will study relations with a particular combination of properties that allows
them to be used to relate objects that are similar in some way.

DEFINITION 1 A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and
transitive.

Equivalence relations are

important in every branch

of mathematics!

Equivalence relations are important throughout mathematics and computer science. One
reason for this is that in an equivalence relation, when two elements are related it makes sense
to say they are equivalent.

DEFINITION 2 Two elements a and b that are related by an equivalence relation are called equivalent. The
notation a ∼ b is often used to denote that a and b are equivalent elements with respect to a
particular equivalence relation.

For the notion of equivalent elements to make sense, every element should be equivalent to
itself, as the reflexive property guarantees for an equivalence relation. It makes sense to say
that a and b are related (not just that a is related to b) by an equivalence relation, because
when a is related to b, by the symmetric property, b is related to a. Furthermore, because an
equivalence relation is transitive, if a and b are equivalent and b and c are equivalent, it follows
that a and c are equivalent.

Examples 1–5 illustrate the notion of an equivalence relation.

EXAMPLE 1 Let R be the relation on the set of integers such that aRb if and only if a = b or a = −b. In
Section 9.1 we showed that R is reflexive, symmetric, and transitive. It follows that R is an
equivalence relation. ▲

EXAMPLE 2 Let R be the relation on the set of real numbers such that aRb if and only if a − b is an integer.
Is R an equivalence relation?

9.5 Equivalence Relations 609

Solution: Because a − a = 0 is an integer for all real numbers a, aRa for all real numbers a.
Hence, R is reflexive. Now suppose that aRb. Then a − b is an integer, so b − a is also an
integer. Hence, bRa. It follows that R is symmetric. If aRb and bRc, then a − b and b − c

are integers. Therefore, a − c = (a − b) + (b − c) is also an integer. Hence, aRc. Thus, R is
transitive. Consequently, R is an equivalence relation. ▲

One of the most widely used equivalence relations is congruence modulo m, where m is an
integer greater than 1.

EXAMPLE 3 Congruence Modulo m Let m be an integer with m > 1. Show that the relation

R = {(a, b) | a ≡ b (mod m)}

is an equivalence relation on the set of integers.

Solution: Recall from Section 4.1 that a ≡ b (mod m) if and only if m divides a − b. Note
that a − a = 0 is divisible by m, because 0 = 0 · m. Hence, a ≡ a (mod m), so congruence
modulo m is reflexive. Now suppose that a ≡ b (mod m). Then a − b is divisible by m, so
a − b = km, where k is an integer. It follows that b − a = (−k)m, so b ≡ a (mod m). Hence,
congruence modulo m is symmetric. Next, suppose that a ≡ b (mod m) and b ≡ c (mod m).
Then m divides both a − b and b − c. Therefore, there are integers k and l with a − b = km and
b − c = lm. Adding these two equations shows that a − c = (a − b) + (b − c) = km + lm =

(k + l)m. Thus, a ≡ c (mod m). Therefore, congruence modulo m is transitive. It follows that
congruence modulo m is an equivalence relation. ▲

EXAMPLE 4 Suppose that R is the relation on the set of strings of English letters such that aRb if and only
if l(a) = l(b), where l(x) is the length of the string x. Is R an equivalence relation?

Solution: Because l(a) = l(a), it follows that aRa whenever a is a string, so that R is reflex-
ive. Next, suppose that aRb, so that l(a) = l(b). Then bRa, because l(b) = l(a). Hence, R

is symmetric. Finally, suppose that aRb and bRc. Then l(a) = l(b) and l(b) = l(c). Hence,
l(a) = l(c), so aRc. Consequently, R is transitive. Because R is reflexive, symmetric, and
transitive, it is an equivalence relation. ▲

EXAMPLE 5 Let n be a positive integer and S a set of strings. Suppose that Rn is the relation on S such
that sRn t if and only if s = t , or both s and t have at least n characters and the first n characters
of s and t are the same. That is, a string of fewer than n characters is related only to itself; a
string s with at least n characters is related to a string t if and only if t has at least n characters
and t begins with the n characters at the start of s. For example, let n = 3 and let S be the set
of all bit strings. Then sR3 t either when s = t or both s and t are bit strings of length 3 or more
that begin with the same three bits. For instance, 01R3 01 and 00111R3 00101, but 01 ̸R3010
and 01011 ̸R3 01110.

Show that for every set S of strings and every positive integer n, Rn is an equivalence
relation on S.

Solution: The relation Rn is reflexive because s = s, so that sRn s whenever s is a string in S.
If sRn t , then either s = t or s and t are both at least n characters long that begin with the
same n characters. This means that tRn s. We conclude that Rn is symmetric.

Now suppose that sRn t and tRnu. Then either s = t or s and t are at least n characters
long and s and t begin with the same n characters, and either t = u or t and u are at least n

characters long and t and u begin with the same n characters. From this, we can deduce that
either s = u or both s and u are n characters long and s and u begin with the same n characters
(because in this case we know that s, t , and u are all at least n characters long and both s and u

begin with the same n characters as t does). Consequently, Rn is transitive. It follows that Rn is
an equivalence relation. ▲

610 9 / Relations

In Examples 6 and 7 we look at two relations that are not equivalence relations.

EXAMPLE 6 Show that the “divides” relation is the set of positive integers in not an equivalence relation.

Solution: By Examples 9 and 15 in Section 9.1, we know that the “divides” relation is reflex-
ive and transitive. However, by Example 12 in Section 9.1, we know that this relation is not
symmetric (for instance, 2 | 4 but 4 ̸ | 2). We conclude that the “divides” relation on the set of
positive integers is not an equivalence relation. ▲

EXAMPLE 7 Let R be the relation on the set of real numbers such that xRy if and only if x and y are real
numbers that differ by less than 1, that is |x − y| < 1. Show that R is not an equivalence relation.

Solution: R is reflexive because |x − x| = 0 < 1 whenever x ∈ R. R is symmetric, for if xRy,
where x and y are real numbers, then |x − y| < 1, which tells us that |y − x| = |x − y| < 1, so
that yRx. However, R is not an equivalence relation because it is not transitive. Take x = 2.8,
y = 1.9, and z = 1.1, so that |x − y| = |2.8 − 1.9| = 0.9 < 1, |y − z| = |1.9 − 1.1| =

0.8 < 1, but |x − z| = |2.8 − 1.1| = 1.7 > 1. That is, 2.8R 1.9, 1.9R 1.1, but 2.8 ̸R 1.1. ▲

Equivalence Classes

Let A be the set of all students in your school who graduated from high school. Consider the
relation R on A that consists of all pairs (x, y), where x and y graduated from the same high
school. Given a student x, we can form the set of all students equivalent to x with respect to R.
This set consists of all students who graduated from the same high school as x did. This subset
of A is called an equivalence class of the relation.

DEFINITION 3 Let R be an equivalence relation on a set A. The set of all elements that are related to an
element a of A is called the equivalence class of a. The equivalence class of a with respect
to R is denoted by [a]R . When only one relation is under consideration, we can delete the
subscript R and write [a] for this equivalence class.

In other words, if R is an equivalence relation on a set A, the equivalence class of the
element a is

[a]R = {s | (a, s) ∈ R}.

If b ∈ [a]R , then b is called a representative of this equivalence class. Any element of a class
can be used as a representative of this class. That is, there is nothing special about the particular
element chosen as the representative of the class.

EXAMPLE 8 What is the equivalence class of an integer for the equivalence relation of Example 1?

Solution: Because an integer is equivalent to itself and its negative in this equivalence relation,
it follows that [a] = {−a, a}. This set contains two distinct integers unless a = 0. For instance,
[7] = {−7, 7}, [−5] = {−5, 5}, and [0] = {0}. ▲

EXAMPLE 9 What are the equivalence classes of 0 and 1 for congruence modulo 4?

Solution: The equivalence class of 0 contains all integers a such that a ≡ 0 (mod 4). The integers
in this class are those divisible by 4. Hence, the equivalence class of 0 for this relation is

[0] = {. . . , −8, −4, 0, 4, 8, . . . }.

9.5 Equivalence Relations 611

The equivalence class of 1 contains all the integers a such that a ≡ 1 (mod 4). The integers
in this class are those that have a remainder of 1 when divided by 4. Hence, the equivalence
class of 1 for this relation is

[1] = {. . . , −7, −3, 1, 5, 9, . . . }. ▲

In Example 9 the equivalence classes of 0 and 1 with respect to congruence modulo 4
were found. Example 9 can easily be generalized, replacing 4 with any positive integer m.
The equivalence classes of the relation congruence modulo m are called the congruence
classes modulo m. The congruence class of an integer a modulo m is denoted by [a]m, so
[a]m = {. . . , a − 2m, a − m, a, a + m, a + 2m, . . .}. For instance, from Example 9 it follows
that [0]4 = {. . . , −8, −4, 0, 4, 8, . . . } and [1]4 = {. . . , −7, −3, 1, 5, 9, . . . }.

EXAMPLE 10 What is the equivalence class of the string 0111 with respect to the equivalence relation R3 from
Example 5 on the set of all bit strings? (Recall that sR3 t if and only if s and t are bit strings
with s = t or s and t are strings of at least three bits that start with the same three bits.)

Solution: The bit strings equivalent to 0111 are the bit strings with at least three bits that begin
with 011. These are the bit strings 011, 0110, 0111, 01100, 01101, 01110, 01111, and so on.
Consequently,

[011]R3 = {011, 0110, 0111, 01100, 01101, 01110, 01111, . . .}. ▲

EXAMPLE 11 Identifiers in the C Programming Language In the C programming language, an identifier
is the name of a variable, a function, or another type of entity. Each identifier is a nonempty
string of characters where each character is a lowercase or an uppercase English letter, a digit,
or an underscore, and the first character is a lowercase or an uppercase English letter. Identifiers
can be any length. This allows developers to use as many characters as they want to name an
entity, such as a variable. However, for compilers for some versions of C, there is a limit on the
number of characters checked when two names are compared to see whether they refer to the
same thing. For example, Standard C compilers consider two identifiers the same when they
agree in their first 31 characters. Consequently, developers must be careful not to use identifiers
with the same initial 31 characters for different things. We see that two identifiers are considered
the same when they are related by the relation R31 in Example 5. Using Example 5, we know
that R31, on the set of all identifiers in Standard C, is an equivalence relation.

What are the equivalence classes of each of the identifiers Number_of_tropical_
storms, Number_of_named_tropical_storms, and Number_of_named_tropical_storms_in_the_
Atlantic_in_2005?

Solution: Note that when an identifier is less than 31 characters long, by the definition of R31,
its equivalence class contains only itself. Because the identifier Number_of_tropical_storms is
25 characters long, its equivalence class contains exactly one element, namely, itself.

The identifier Number_of_named_tropical_storms is exactly 31 characters long. An identi-
fier is equivalent to it when it starts with these same 31 characters. Consequently, every identifier
at least 31 characters long that starts with Number_of_named_tropical_storms is equivalent to
this identifier. It follows that the equivalence class of Number_of_named_tropical_storms is the
set of all identifiers that begin with the 31 characters Number_of_named_tropical_storms.

An identifier is equivalent to the Number_of_named_tropical_storms_in_the_Atlantic_in_
2005 if and only if it begins with its first 31 characters. Because these characters
are Number_of_named_tropical_storms, we see that an identifier is equivalent to Num-
ber_of_named_tropical_storms_in_the_Atlantic_in_2005 if and only if it is equivalent to Num-
ber_of_named_tropical_storms. It follows that these last two identifiers have the same equiva-
lence class. ▲

612 9 / Relations

Equivalence Classes and Partitions

Let A be the set of students at your school who are majoring in exactly one subject, and let R

be the relation on A consisting of pairs (x, y), where x and y are students with the same major.
Then R is an equivalence relation, as the reader should verify. We can see that R splits all
students in A into a collection of disjoint subsets, where each subset contains students with
a specified major. For instance, one subset contains all students majoring (just) in computer
science, and a second subset contains all students majoring in history. Furthermore, these sub-
sets are equivalence classes of R. This example illustrates how the equivalence classes of an
equivalence relation partition a set into disjoint, nonempty subsets. We will make these notions
more precise in the following discussion.

Let R be a relation on the set A. Theorem 1 shows that the equivalence classes of two
elements of A are either identical or disjoint.

THEOREM 1 Let R be an equivalence relation on a set A. These statements for elements a and b of A are
equivalent:

(i) aRb (ii) [a] = [b] (iii) [a] ∩ [b] ̸= ∅

Proof: We first show that (i) implies (ii). Assume that aRb. We will prove that [a] = [b] by
showing [a] ⊆ [b] and [b] ⊆ [a]. Suppose c ∈ [a]. Then aRc. Because aRb and R is symmetric,
we know that bRa. Furthermore, because R is transitive and bRa and aRc, it follows that bRc.
Hence, c ∈ [b]. This shows that [a] ⊆ [b]. The proof that [b] ⊆ [a] is similar; it is left as an
exercise for the reader.

Second, we will show that (ii) implies (iii). Assume that [a] = [b]. It follows that
[a] ∩ [b] ̸= ∅ because [a] is nonempty (because a ∈ [a] because R is reflexive).

Next, we will show that (iii) implies (i). Suppose that [a] ∩ [b] ̸= ∅. Then there is an
element c with c ∈ [a] and c ∈ [b]. In other words, aRc and bRc. By the symmetric
property, cRb. Then by transitivity, because aRc and cRb, we have aRb.

Because (i) implies (ii), (ii) implies (iii), and (iii) implies (i), the three statements, (i), (ii),
and (iii), are equivalent.

We are now in a position to show how an equivalence relation partitions a set. Let R be an
equivalence relation on a set A. The union of the equivalence classes of R is all of A, because
an element a of A is in its own equivalence class, namely, [a]R . In other words,

⋃

a∈A

[a]R = A.

In addition, from Theorem 1, it follows that these equivalence classes are either equal or disjoint,
so

[a]R ∩ [b]R = ∅,

when [a]R ̸= [b]R .
These two observations show that the equivalence classes form a partition of A, becauseRecall that an index set is

a set whose members

label, or index, the

elements of a set.

they split A into disjoint subsets. More precisely, a partition of a set S is a collection of disjoint
nonempty subsets of S that have S as their union. In other words, the collection of subsets Ai ,
i ∈ I (where I is an index set) forms a partition of S if and only if

Ai ̸= ∅ for i ∈ I,

Ai ∩ Aj = ∅ when i ̸= j,

9.5 Equivalence Relations 613

A1

A7

A4

A2

A3

A6

A5

A9

A8

FIGURE 1 A Partition of a Set.

and

⋃

i∈I

Ai = S.

(Here the notation
⋃

i∈I Ai represents the union of the sets Ai for all i ∈ I .) Figure 1 illustrates
the concept of a partition of a set.

EXAMPLE 12 Suppose that S = {1, 2, 3, 4, 5, 6}. The collection of sets A1 = {1, 2, 3}, A2 = {4, 5}, and
A3 = {6} forms a partition of S, because these sets are disjoint and their union is S. ▲

We have seen that the equivalence classes of an equivalence relation on a set form a partition
of the set. The subsets in this partition are the equivalence classes. Conversely, every partition
of a set can be used to form an equivalence relation. Two elements are equivalent with respect
to this relation if and only if they are in the same subset of the partition.

To see this, assume that {Ai | i ∈ I } is a partition on S. Let R be the relation on S consisting
of the pairs (x, y), where x and y belong to the same subset Ai in the partition. To show that R

is an equivalence relation we must show that R is reflexive, symmetric, and transitive.
We see that (a, a) ∈ R for every a ∈ S, because a is in the same subset as itself. Hence, R

is reflexive. If (a, b) ∈ R, then b and a are in the same subset of the partition, so that (b, a) ∈ R

as well. Hence, R is symmetric. If (a, b) ∈ R and (b, c) ∈ R, then a and b are in the same
subset X in the partition, and b and c are in the same subset Y of the partition. Because the subsets
of the partition are disjoint and b belongs to X and Y , it follows that X = Y . Consequently, a

and c belong to the same subset of the partition, so (a, c) ∈ R. Thus, R is transitive.
It follows that R is an equivalence relation. The equivalence classes of R consist of subsets

of S containing related elements, and by the definition of R, these are the subsets of the partition.
Theorem 2 summarizes the connections we have established between equivalence relations and
partitions.

THEOREM 2 Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition
of S. Conversely, given a partition {Ai | i ∈ I } of the set S, there is an equivalence relation
R that has the sets Ai , i ∈ I , as its equivalence classes.

Example 13 shows how to construct an equivalence relation from a partition.

EXAMPLE 13 List the ordered pairs in the equivalence relation R produced by the partition A1 = {1, 2, 3},
A2 = {4, 5}, and A3 = {6} of S = {1, 2, 3, 4, 5, 6}, given in Example 12.

614 9 / Relations

Solution: The subsets in the partition are the equivalence classes of R. The pair (a, b) ∈ R if and
only if a and b are in the same subset of the partition. The pairs (1, 1), (1, 2), (1, 3), (2, 1), (2, 2),
(2, 3), (3, 1), (3, 2), and (3, 3) belong to R because A1 = {1, 2, 3} is an equivalence class; the
pairs (4, 4), (4, 5), (5, 4), and (5, 5) belong to R because A2 = {4, 5} is an equivalence class;
and finally the pair (6, 6) belongs to R because {6} is an equivalence class. No pair other than
those listed belongs to R. ▲

The congruence classes modulo m provide a useful illustration of Theorem 2. There
are m different congruence classes modulo m, corresponding to the m different remainders
possible when an integer is divided by m. These m congruence classes are denoted by
[0]m, [1]m, . . . , [m − 1]m. They form a partition of the set of integers.

EXAMPLE 14 What are the sets in the partition of the integers arising from congruence modulo 4?

Solution: There are four congruence classes, corresponding to [0]4, [1]4, [2]4, and [3]4. They
are the sets

[0]4 = {. . . , −8, −4, 0, 4, 8, . . . },

[1]4 = {. . . , −7, −3, 1, 5, 9, . . . },

[2]4 = {. . . , −6, −2, 2, 6, 10, . . . },

[3]4 = {. . . , −5, −1, 3, 7, 11, . . . }.

These congruence classes are disjoint, and every integer is in exactly one of them. In other
words, as Theorem 2 says, these congruence classes form a partition. ▲

We now provide an example of a partition of the set of all strings arising from an equivalence
relation on this set.

EXAMPLE 15 Let R3 be the relation from Example 5. What are the sets in the partition of the set of all bit strings
arising from the relation R3 on the set of all bit strings? (Recall that sR3 t , where s and t are bit
strings, if s = t or s and t are bit strings with at least three bits that agree in their first three bits.)

Solution: Note that every bit string of length less than three is equivalent only to itself.
Hence [λ]R3 = {λ}, [0]R3 = {0}, [1]R3 = {1}, [00]R3 = {00}, [01]R3 = {01}, [10]R3 = {10}, and
[11]R3 = {11}. Note that every bit string of length three or more is equivalent to one of the eight
bit strings 000, 001, 010, 011, 100, 101, 110, and 111. We have

[000]R3 = {000, 0000, 0001, 00000, 00001, 00010, 00011, . . .},

[001]R3 = {001, 0010, 0011, 00100, 00101, 00110, 00111, . . .},

[010]R3 = {010, 0100, 0101, 01000, 01001, 01010, 01011, . . .},

[011]R3 = {011, 0110, 0111, 01100, 01101, 01110, 01111, . . .},

[100]R3 = {100, 1000, 1001, 10000, 10001, 10010, 10011, . . .},

[101]R3 = {101, 1010, 1011, 10100, 10101, 10110, 10111, . . .},

[110]R3 = {110, 1100, 1101, 11000, 11001, 11010, 11011, . . .},

[111]R3 = {111, 1110, 1111, 11100, 11101, 11110, 11111, . . .}.

These 15 equivalence classes are disjoint and every bit string is in exactly one of them. As
Theorem 2 tells us, these equivalence classes partition the set of all bit strings. ▲

9.5 Equivalence Relations 615

Exercises

1. Which of these relations on {0, 1, 2, 3} are equivalence
relations? Determine the properties of an equivalence re-
lation that the others lack.

a) {(0, 0), (1, 1), (2, 2), (3, 3)}

b) {(0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)}

c) {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}

d) {(0, 0), (1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2),

(3, 3)}

e) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0),

(2, 2), (3, 3)}

2. Which of these relations on the set of all people are equiv-
alence relations? Determine the properties of an equiva-
lence relation that the others lack.

a) {(a, b) | a and b are the same age}

b) {(a, b) | a and b have the same parents}

c) {(a, b) | a and b share a common parent}

d) {(a, b) | a and b have met}

e) {(a, b) | a and b speak a common language}

3. Which of these relations on the set of all functions from Z

to Z are equivalence relations? Determine the properties
of an equivalence relation that the others lack.

a) {(f, g) | f (1) = g(1)}

b) {(f, g) | f (0) = g(0) or f (1) = g(1)}

c) {(f, g) | f (x) − g(x) = 1 for all x ∈ Z}

d) {(f, g) | for some C ∈ Z, for all x ∈ Z, f (x) −

g(x) = C}

e) {(f, g) | f (0) = g(1) and f (1) = g(0)}

4. Define three equivalence relations on the set of students
in your discrete mathematics class different from the re-
lations discussed in the text. Determine the equivalence
classes for each of these equivalence relations.

5. Define three equivalence relations on the set of buildings
on a college campus. Determine the equivalence classes
for each of these equivalence relations.

6. Define three equivalence relations on the set of classes of-
fered at your school. Determine the equivalence classes
for each of these equivalence relations.

7. Show that the relation of logical equivalence on the set
of all compound propositions is an equivalence relation.
What are the equivalence classes of F and of T?

8. Let R be the relation on the set of all sets of real numbers
such that S R T if and only if S and T have the same
cardinality. Show that R is an equivalence relation. What
are the equivalence classes of the sets {0, 1, 2} and Z?

9. Suppose that A is a nonempty set, and f is a function that
has A as its domain. Let R be the relation on A consisting
of all ordered pairs (x, y) such that f (x) = f (y).

a) Show that R is an equivalence relation on A.

b) What are the equivalence classes of R?

10. Suppose that A is a nonempty set and R is an equivalence
relation on A. Show that there is a function f with A as its
domain such that (x, y) ∈ R if and only if f (x) = f (y).

11. Show that the relation R consisting of all pairs (x, y) such
that x and y are bit strings of length three or more that
agree in their first three bits is an equivalence relation on
the set of all bit strings of length three or more.

12. Show that the relation R consisting of all pairs (x, y) such
that x and y are bit strings of length three or more that
agree except perhaps in their first three bits is an equiva-
lence relation on the set of all bit strings of length three
or more.

13. Show that the relation R consisting of all pairs (x, y) such
that x and y are bit strings that agree in their first and third
bits is an equivalence relation on the set of all bit strings
of length three or more.

14. Let R be the relation consisting of all pairs (x, y) such
that x and y are strings of uppercase and lowercase En-
glish letters with the property that for every positive in-
teger n, the nth characters in x and y are the same letter,
either uppercase or lowercase. Show that R is an equiva-
lence relation.

15. Let R be the relation on the set of ordered pairs of posi-
tive integers such that ((a, b), (c, d)) ∈ R if and only if
a + d = b + c. Show that R is an equivalence relation.

16. Let R be the relation on the set of ordered pairs of posi-
tive integers such that ((a, b), (c, d)) ∈ R if and only if
ad = bc. Show that R is an equivalence relation.

17. (Requires calculus)

a) Show that the relation R on the set of all differentiable
functions from R to R consisting of all pairs (f, g)

such that f ′(x) = g′(x) for all real numbers x is an
equivalence relation.

b) Which functions are in the same equivalence class as
the function f (x) = x2?

18. (Requires calculus)

a) Let n be a positive integer. Show that the relation
R on the set of all polynomials with real-valued
coefficients consisting of all pairs (f, g) such that
f (n)(x) = g(n)(x) is an equivalence relation. [Here
f (n)(x) is the nth derivative of f (x).]

b) Which functions are in the same equivalence class as
the function f (x) = x4, where n = 3?

19. Let R be the relation on the set of all URLs (or Web ad-
dresses) such that x R y if and only if the Web page at
x is the same as the Web page at y. Show that R is an
equivalence relation.

20. Let R be the relation on the set of all people who have
visited a particular Web page such that x R y if and only
if person x and person y have followed the same set of
links starting at this Web page (going from Web page to
Web page until they stop using the Web). Show that R is
an equivalence relation.

616 9 / Relations

In Exercises 21–23 determine whether the relation with the
directed graph shown is an equivalence relation.

21.

a b

c d

22.

a b

d c

23.
a b

cd

24. Determine whether the relations represented by these
zero–one matrices are equivalence relations.

a)

⎡

⎣

1 1 1
0 1 1
1 1 1

⎤

⎦ b)

⎡

⎢

⎢

⎣

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎤

⎥

⎥

⎦

c)

⎡

⎢

⎢

⎣

1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 1

⎤

⎥

⎥

⎦

25. Show that the relation R on the set of all bit strings such
that s R t if and only if s and t contain the same number
of 1s is an equivalence relation.

26. What are the equivalence classes of the equivalence rela-
tions in Exercise 1?

27. What are the equivalence classes of the equivalence rela-
tions in Exercise 2?

28. What are the equivalence classes of the equivalence rela-
tions in Exercise 3?

29. What is the equivalence class of the bit string 011 for the
equivalence relation in Exercise 25?

30. What are the equivalence classes of these bit strings for
the equivalence relation in Exercise 11?

a) 010 b) 1011 c) 11111 d) 01010101

31. What are the equivalence classes of the bit strings
in Exercise 30 for the equivalence relation from
Exercise 12?

32. What are the equivalence classes of the bit strings
in Exercise 30 for the equivalence relation from
Exercise 13?

33. What are the equivalence classes of the bit strings in Ex-
ercise 30 for the equivalence relation R4 from Exam-
ple 5 on the set of all bit strings? (Recall that bit strings s

and t are equivalent under R4 if and only if they are equal
or they are both at least four bits long and agree in their
first four bits.)

34. What are the equivalence classes of the bit strings in Ex-
ercise 30 for the equivalence relation R5 from Example 5
on the set of all bit strings? (Recall that bit strings s and
t are equivalent under R5 if and only if they are equal or
they are both at least five bits long and agree in their first
five bits.)

35. What is the congruence class [n]5 (that is, the equiva-
lence class of n with respect to congruence modulo 5)
when n is

a) 2? b) 3? c) 6? d) −3?

36. What is the congruence class [4]m when m is

a) 2? b) 3? c) 6? d) 8?

37. Give a description of each of the congruence classes
modulo 6.

38. What is the equivalence class of each of these strings with
respect to the equivalence relation in Exercise 14?

a) No b) Yes c) Help

39. a) What is the equivalence class of (1, 2) with respect to
the equivalence relation in Exercise 15?

b) Give an interpretation of the equivalence classes for
the equivalence relation R in Exercise 15. [Hint: Look
at the difference a − b corresponding to (a, b).]

40. a) What is the equivalence class of (1, 2) with respect
to the equivalence relation in Exercise 16?

b) Give an interpretation of the equivalence classes for
the equivalence relation R in Exercise 16. [Hint: Look
at the ratio a/b corresponding to (a, b).]

41. Which of these collections of subsets are partitions of
{1, 2, 3, 4, 5, 6}?

a) {1, 2}, {2, 3, 4}, {4, 5, 6} b) {1}, {2, 3, 6}, {4}, {5}

c) {2, 4, 6}, {1, 3, 5} d) {1, 4, 5}, {2, 6}

42. Which of these collections of subsets are partitions of
{−3, −2, −1, 0, 1, 2, 3}?

a) {−3, −1, 1, 3}, {−2, 0, 2}

b) {−3, −2, −1, 0}, {0, 1, 2, 3}

c) {−3, 3}, {−2, 2}, {−1, 1}, {0}

d) {−3, −2, 2, 3}, {−1, 1}

43. Which of these collections of subsets are partitions of the
set of bit strings of length 8?

a) the set of bit strings that begin with 1, the set of bit
strings that begin with 00, and the set of bit strings
that begin with 01

b) the set of bit strings that contain the string 00, the set
of bit strings that contain the string 01, the set of bit
strings that contain the string 10, and the set of bit
strings that contain the string 11

c) the set of bit strings that end with 00, the set of bit
strings that end with 01, the set of bit strings that end
with 10, and the set of bit strings that end with 11

d) the set of bit strings that end with 111, the set of bit
strings that end with 011, and the set of bit strings that
end with 00

e) the set of bit strings that contain 3k ones for some
nonnegative integer k; the set of bit strings that con-
tain 3k + 1 ones for some nonnegative integer k; and
the set of bit strings that contain 3k + 2 ones for some
nonnegative integer k.

44. Which of these collections of subsets are partitions of the
set of integers?

a) the set of even integers and the set of odd integers
b) the set of positive integers and the set of negative in-

tegers

9.5 Equivalence Relations 617

c) the set of integers divisible by 3, the set of integers
leaving a remainder of 1 when divided by 3, and the
set of integers leaving a remainder of 2 when divided
by 3

d) the set of integers less than −100, the set of integers
with absolute value not exceeding 100, and the set of
integers greater than 100

e) the set of integers not divisible by 3, the set of even
integers, and the set of integers that leave a remainder
of 3 when divided by 6

45. Which of these are partitions of the set Z × Z of ordered
pairs of integers?

a) the set of pairs (x, y), where x or y is odd; the set
of pairs (x, y), where x is even; and the set of pairs
(x, y), where y is even

b) the set of pairs (x, y), where both x and y are odd;
the set of pairs (x, y), where exactly one of x and y

is odd; and the set of pairs (x, y), where both x and y

are even

c) the set of pairs (x, y), where x is positive; the set of
pairs (x, y), where y is positive; and the set of pairs
(x, y), where both x and y are negative

d) the set of pairs (x, y), where 3 | x and 3 | y; the set
of pairs (x, y), where 3 | x and 3 ̸ | y; the set of pairs
(x, y), where 3 ̸ | x and 3 | y; and the set of pairs
(x, y), where 3 ̸ | x and 3 ̸ | y

e) the set of pairs (x, y), where x > 0 and y > 0; the
set of pairs (x, y), where x > 0 and y ≤ 0; the set of
pairs (x, y), where x ≤ 0 and y > 0; and the set of
pairs (x, y), where x ≤ 0 and y ≤ 0

f) the set of pairs (x, y), where x ̸= 0 and y ̸= 0; the set
of pairs (x, y), where x = 0 and y ̸= 0; and the set of
pairs (x, y), where x ̸= 0 and y = 0

46. Which of these are partitions of the set of real numbers?

a) the negative real numbers, {0}, the positive real
numbers

b) the set of irrational numbers, the set of rational
numbers

c) the set of intervals [k, k + 1], k = . . . , −2,−1, 0,

1, 2, . . .

d) the set of intervals (k, k + 1), k = . . . , −2, −1, 0,
1, 2, . . .

e) the set of intervals (k, k + 1], k = . . . , −2, −1, 0,
1, 2, . . .

f) the sets {x + n | n ∈ Z} for all x ∈ [0, 1)

47. List the ordered pairs in the equivalence relations pro-
duced by these partitions of {0, 1, 2, 3, 4, 5}.

a) {0}, {1, 2}, {3, 4, 5}

b) {0, 1}, {2, 3}, {4, 5}

c) {0, 1, 2}, {3, 4, 5}

d) {0}, {1}, {2}, {3}, {4}, {5}

48. List the ordered pairs in the equivalence relations pro-
duced by these partitions of {a, b, c, d, e, f, g}.

a) {a, b}, {c, d}, {e, f, g}

b) {a}, {b}, {c, d}, {e, f }, {g}

c) {a, b, c, d}, {e, f, g}

d) {a, c, e, g}, {b, d}, {f }

A partition P1 is called a refinement of the partition P2 if
every set in P1 is a subset of one of the sets in P2.

49. Show that the partition formed from congruence classes
modulo 6 is a refinement of the partition formed from
congruence classes modulo 3.

50. Show that the partition of the set of people living in the
United States consisting of subsets of people living in the
same county (or parish) and same state is a refinement of
the partition consisting of subsets of people living in the
same state.

51. Show that the partition of the set of bit strings of length 16
formed by equivalence classes of bit strings that agree on
the last eight bits is a refinement of the partition formed
from the equivalence classes of bit strings that agree on
the last four bits.

In Exercises 52 and 53, Rn refers to the family of equivalence
relations defined in Example 5. Recall that s Rn t , where s

and t are two strings if s = t or s and t are strings with at least
n characters that agree in their first n characters.

52. Show that the partition of the set of all bit strings formed
by equivalence classes of bit strings with respect to the
equivalence relation R4 is a refinement of the partition
formed by equivalence classes of bit strings with respect
to the equivalence relation R3.

53. Show that the partition of the set of all identifiers in C
formed by the equivalence classes of identifiers with re-
spect to the equivalence relation R31 is a refinement of
the partition formed by equivalence classes of identifiers
with respect to the equivalence relation R8. (Compilers
for “old” C consider identifiers the same when their names
agree in their first eight characters, while compilers in
standard C consider identifiers the same when their names
agree in their first 31 characters.)

54. Suppose that R1 and R2 are equivalence relations on a
set A. Let P1 and P2 be the partitions that correspond to
R1 and R2, respectively. Show that R1 ⊆ R2 if and only
if P1 is a refinement of P2.

55. Find the smallest equivalence relation on the set
{a, b, c, d, e} containing the relation {(a, b), (a, c),

(d, e)}.

56. Suppose that R1 and R2 are equivalence relations on the
set S. Determine whether each of these combinations
of R1 and R2 must be an equivalence relation.

a) R1 ∪ R2 b) R1 ∩ R2 c) R1 ⊕ R2

57. Consider the equivalence relation from Example 2,
namely, R = {(x, y) | x − y is an integer}.

a) What is the equivalence class of 1 for this equivalence
relation?

b) What is the equivalence class of 1/2 for this equiva-
lence relation?

618 9 / Relations

∗58. Each bead on a bracelet with three beads is either red,
white, or blue, as illustrated in the figure shown.

Bead 1

Red

Bead 3

Blue

Bead 2

White

Define the relation R between bracelets as: (B1, B2),
where B1 and B2 are bracelets, belongs to R if and only
if B2 can be obtained from B1 by rotating it or rotating it
and then reflecting it.

a) Show that R is an equivalence relation.

b) What are the equivalence classes of R?
∗59. Let R be the relation on the set of all colorings of the 2 × 2

checkerboard where each of the four squares is colored
either red or blue so that (C1, C2), where C1 and C2 are
2 × 2 checkerboards with each of their four squares col-
ored blue or red, belongs to R if and only if C2 can be
obtained from C1 either by rotating the checkerboard or
by rotating it and then reflecting it.

a) Show that R is an equivalence relation.

b) What are the equivalence classes of R?

60. a) Let R be the relation on the set of functions from Z+

to Z+ such that (f, g) belongs to R if and only if f

is #(g) (see Section 3.2). Show that R is an equiva-
lence relation.

b) Describe the equivalence class containing f (n) = n2

for the equivalence relation of part (a).

61. Determine the number of different equivalence relations
on a set with three elements by listing them.

62. Determine the number of different equivalence relations
on a set with four elements by listing them.

∗63. Do we necessarily get an equivalence relation when we
form the transitive closure of the symmetric closure of
the reflexive closure of a relation?

∗64. Do we necessarily get an equivalence relation when we
form the symmetric closure of the reflexive closure of the
transitive closure of a relation?

65. Suppose we use Theorem 2 to form a partition P from
an equivalence relation R. What is the equivalence rela-
tion R′ that results if we use Theorem 2 again to form an
equivalence relation from P ?

66. Suppose we use Theorem 2 to form an equivalence rela-
tion R from a partition P . What is the partition P ′ that
results if we use Theorem 2 again to form a partition
from R?

67. Devise an algorithm to find the smallest equivalence re-
lation containing a given relation.

∗68. Let p(n) denote the number of different equivalence
relations on a set with n elements (and by Theo-
rem 2 the number of partitions of a set with n ele-
ments). Show that p(n) satisfies the recurrence relation

p(n) =
∑n−1

j=0 C(n − 1, j)p(n − j − 1) and the initial
condition p(0) = 1. (Note: The numbers p(n) are called
Bell numbers after the American mathematician E. T.
Bell.)

69. Use Exercise 68 to find the number of different equiv-
alence relations on a set with n elements, where n is a
positive integer not exceeding 10.

9.6 Partial Orderings

Introduction

We often use relations to order some or all of the elements of sets. For instance, we order words
using the relation containing pairs of words (x, y), where x comes before y in the dictionary.
We schedule projects using the relation consisting of pairs (x, y), where x and y are tasks in
a project such that x must be completed before y begins. We order the set of integers using
the relation containing the pairs (x, y), where x is less than y. When we add all of the pairs
of the form (x, x) to these relations, we obtain a relation that is reflexive, antisymmetric, and
transitive. These are properties that characterize relations used to order the elements of sets.

DEFINITION 1 A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisym-
metric, and transitive. A set S together with a partial ordering R is called a partially ordered

set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.

We give examples of posets in Examples 1–3.

EXAMPLE 1 Show that the “greater than or equal” relation (≥) is a partial ordering on the set of integers.

9.6 Partial Orderings 619

Solution: Because a ≥ a for every integer a, ≥ is reflexive. If a ≥ b and b ≥ a, then a = b.
Hence, ≥ is antisymmetric. Finally, ≥ is transitive because a ≥ b and b ≥ c imply that a ≥ c.
It follows that ≥ is a partial ordering on the set of integers and (Z, ≥) is a poset. ▲

EXAMPLE 2 The divisibility relation | is a partial ordering on the set of positive integers, because it is
reflexive, antisymmetric, and transitive, as was shown in Section 9.1. We see that (Z+, |) is a
poset. Recall that (Z+ denotes the set of positive integers.) ▲

EXAMPLE 3 Show that the inclusion relation ⊆ is a partial ordering on the power set of a set S.

Solution: Because A ⊆ A whenever A is a subset of S, ⊆ is reflexive. It is antisymmetric because
A ⊆ B and B ⊆ A imply that A = B. Finally, ⊆ is transitive, because A ⊆ B and B ⊆ C imply
that A ⊆ C. Hence, ⊆ is a partial ordering on P(S), and (P (S), ⊆) is a poset. ▲

Example 4 illustrates a relation that is not a partial ordering.

EXAMPLE 4 Let R be the relation on the set of people such that xRy if x and y are people and x is older
than y. Show that R is not a partial ordering.

Solution: Note that R is antisymmetric because if a person x is older than a person y, then y

is not older than x. That is, if xRy, then y ̸Rx. The relation R is transitive because if person x

is older than person y and y is older than person z, then x is older than z. That is, if xRy

and yRz, then xRz. However, R is not reflexive, because no person is older than himself or
herself. That is, x ̸Rx for all people x. It follows that R is not a partial ordering. ▲

In different posets different symbols such as ≤, ⊆, and |, are used for a partial ordering.
However, we need a symbol that we can use when we discuss the ordering relation in an
arbitrary poset. Customarily, the notation a ! b is used to denote that (a, b) ∈ R in an arbitrary
poset (S, R). This notation is used because the “less than or equal to” relation on the set of real
numbers is the most familiar example of a partial ordering and the symbol ! is similar to the ≤

symbol. (Note that the symbol ! is used to denote the relation in any poset, not just the “less
than or equals” relation.) The notation a ≺ b denotes that a ! b, but a ̸= b. Also, we say “a is
less than b” or “b is greater than a” if a ≺ b.

When a and b are elements of the poset (S, !), it is not necessary that either a ! b

or b ! a. For instance, in (P (Z), ⊆), {1, 2} is not related to {1, 3}, and vice versa, because
neither set is contained within the other. Similarly, in (Z+, |), 2 is not related to 3 and 3 is not
related to 2, because 2 ̸ | 3 and 3 ̸ | 2. This leads to Definition 2.

DEFINITION 2 The elements a and b of a poset (S, !) are called comparable if either a ! b or b ! a. When
a and b are elements of S such that neither a ! b nor b ! a, a and b are called incomparable.

EXAMPLE 5 In the poset (Z+, |), are the integers 3 and 9 comparable? Are 5 and 7 comparable?

Solution: The integers 3 and 9 are comparable, because 3 | 9. The integers 5 and 7 are incom-
parable, because 5 ̸ | 7 and 7 ̸ | 5. ▲

The adjective “partial” is used to describe partial orderings because pairs of elements may
be incomparable. When every two elements in the set are comparable, the relation is called a
total ordering.

DEFINITION 3 If (S, !) is a poset and every two elements of S are comparable, S is called a totally ordered

or linearly ordered set, and ! is called a total order or a linear order. A totally ordered set
is also called a chain.

620 9 / Relations

EXAMPLE 6 The poset (Z, ≤) is totally ordered, because a ≤ b or b ≤ a whenever a and b are integers. ▲

EXAMPLE 7 The poset (Z+, |) is not totally ordered because it contains elements that are incomparable, such
as 5 and 7. ▲

In Chapter 6 we noted that (Z+, ≤) is well-ordered, where ≤ is the usual “less than or equal
to” relation. We now define well-ordered sets.

DEFINITION 4 (S, !) is a well-ordered set if it is a poset such that ! is a total ordering and every nonempty
subset of S has a least element.

EXAMPLE 8 The set of ordered pairs of positive integers, Z+× Z+, with (a1, a2) ! (b1, b2) if a1 < b1, or if
a1 = b1 and a2 ≤ b2 (the lexicographic ordering), is a well-ordered set. The verification of this
is left as Exercise 53. The set Z, with the usual ≤ ordering, is not well-ordered because the set
of negative integers, which is a subset of Z, has no least element. ▲

At the end of Section 5.3 we showed how to use the principle of well-ordered induction
(there called generalized induction) to prove results about a well-ordered set. We now state and
prove that this proof technique is valid.

THEOREM 1 THE PRINCIPLE OF WELL-ORDERED INDUCTION Suppose that S is a well-
ordered set. Then P(x) is true for all x ∈ S, if

INDUCTIVE STEP: For every y ∈ S, if P(x) is true for all x ∈ S with x ≺ y, then P(y)

is true.

Proof: Suppose it is not the case that P(x) is true for all x ∈ S. Then there is an element
y ∈ S such that P(y) is false. Consequently, the set A = {x ∈ S | P(x) is false} is nonempty.
Because S is well ordered, A has a least element a. By the choice of a as a least element of A,
we know that P(x) is true for all x ∈ S with x ≺ a. This implies by the inductive step P(a) is
true. This contradiction shows that P(x) must be true for all x ∈ S.

Remark: We do not need a basis step in a proof using the principle of well-ordered induction
because if x0 is the least element of a well ordered set, the inductive step tells us that P(x0)

is true. This follows because there are no elements x ∈ S with x ≺ x0, so we know (using a
vacuous proof) that P(x) is true for all x ∈ S with x ≺ x0.

The principle of well-ordered induction is a versatile technique for proving results about
well-ordered sets. Even when it is possible to use mathematical induction for the set of positive
integers to prove a theorem, it may be simpler to use the principle of well-ordered induction, as
we saw in Examples 5 and 6 in Section 6.2, where we proved a result about the well-ordered
set (N × N, !) where ! is lexicographic ordering on N × N.

Lexicographic Order

The words in a dictionary are listed in alphabetic, or lexicographic, order, which is based on the
ordering of the letters in the alphabet. This is a special case of an ordering of strings on a set

9.6 Partial Orderings 621

constructed from a partial ordering on the set. We will show how this construction works in any
poset.

First, we will show how to construct a partial ordering on the Cartesian product of two
posets, (A1, ! 1) and (A2, ! 2). The lexicographic ordering ! on A1 × A2 is defined by
specifying that one pair is less than a second pair if the first entry of the first pair is less than
(in A1) the first entry of the second pair, or if the first entries are equal, but the second entry of
this pair is less than (in A2) the second entry of the second pair. In other words, (a1, a2) is less
than (b1, b2), that is,

(a1, a2) ≺ (b1, b2),

either if a1 ≺1 b1 or if both a1 = b1 and a2 ≺2 b2.
We obtain a partial ordering ! by adding equality to the ordering ≺ on A1 × A2. The

verification of this is left as an exercise.

EXAMPLE 9 Determine whether (3, 5) ≺ (4, 8), whether (3, 8) ≺ (4, 5), and whether (4, 9) ≺ (4, 11) in the
poset (Z × Z, !), where ! is the lexicographic ordering constructed from the usual ≤ relation
on Z.

Solution: Because 3 < 4, it follows that (3, 5) ≺ (4, 8) and that (3, 8) ≺ (4, 5). We have
(4, 9) ≺ (4, 11), because the first entries of (4, 9) and (4, 11) are the same but 9 < 11. ▲

In Figure 1 the ordered pairs in Z+× Z+ that are less than (3, 4) are highlighted.
A lexicographic ordering can be defined on the Cartesian product of n posets (A1, ! 1),
(A2, ! 2), . . . , (An, !n). Define the partial ordering ! on A1 × A2 × · · · × An by

(a1, a2, . . . , an) ≺ (b1, b2, . . . , bn)

if a1 ≺1 b1, or if there is an integer i > 0 such that a1 = b1, . . . , ai = bi , and ai+1 ≺i+1 bi+1.
In other words, one n-tuple is less than a second n-tuple if the entry of the first n-tuple in the
first position where the two n-tuples disagree is less than the entry in that position in the second
n-tuple.

(1, 7)

(1, 6)

(1, 5)

(1, 4)

(1, 3)

(1, 2)

(1, 1)

(2, 7)

(2, 6)

(2, 5)

(2, 4)

(2, 3)

(2, 2)

(2, 1)

(3, 7)

(3, 6)

(3, 5)

(3, 4)

(3, 3)

(3, 2)

(3, 1)

(4, 7)

(4, 6)

(4, 5)

(4, 4)

(4, 3)

(4, 2)

(4, 1)

(5, 7)

(5, 6)

(5, 5)

(5, 4)

(5, 3)

(5, 2)

(5, 1)

(6, 7)

(6, 6)

(6, 5)

(6, 4)

(6, 3)

(6, 2)

(6, 1)

(7, 7)

(7, 6)

(7, 5)

(7, 4)

(7, 3)

(7, 2)

(7, 1)

. . .

.
 .

.

.
 .

.

.
 .

.

.
 .

.

.
 .

.

.
 .

.

.
 .

.

. . .

. . .

. . .

. . .

. . .

. . .

FIGURE 1 The Ordered Pairs Less Than (3, 4) in Lexicographic Order.

622 9 / Relations

EXAMPLE 10 Note that (1, 2, 3, 5) ≺ (1, 2, 4, 3), because the entries in the first two positions of these 4-tuples
agree, but in the third position the entry in the first 4-tuple, 3, is less than that in the second
4-tuple, 4. (Here the ordering on 4-tuples is the lexicographic ordering that comes from the
usual “less than or equals” relation on the set of integers.) ▲

We can now define lexicographic ordering of strings. Consider the strings a1a2 . . . am and
b1b2 . . . bn on a partially ordered set S. Suppose these strings are not equal. Let t be the minimum
of m and n. The definition of lexicographic ordering is that the string a1a2 . . . am is less than
b1b2 . . . bn if and only if

(a1, a2, . . . , at) ≺ (b1, b2, . . . , bt), or

(a1, a2, . . . , at) = (b1, b2, . . . , bt) and m < n,

where ≺ in this inequality represents the lexicographic ordering of St . In other words, to de-
termine the ordering of two different strings, the longer string is truncated to the length of the
shorter string, namely, to t = min(m, n) terms. Then the t-tuples made up of the first t terms of
each string are compared using the lexicographic ordering on St . One string is less than another
string if the t-tuple corresponding to the first string is less than the t-tuple of the second string,
or if these two t-tuples are the same, but the second string is longer. The verification that this is
a partial ordering is left as Exercise 38 for the reader.

EXAMPLE 11 Consider the set of strings of lowercase English letters. Using the ordering of letters in the
alphabet, a lexicographic ordering on the set of strings can be constructed. A string is less than
a second string if the letter in the first string in the first position where the strings differ comes
before the letter in the second string in this position, or if the first string and the second string
agree in all positions, but the second string has more letters. This ordering is the same as that
used in dictionaries. For example,

discreet ≺ discrete,

because these strings differ first in the seventh position, and e ≺ t . Also,

discreet ≺ discreetness,

because the first eight letters agree, but the second string is longer. Furthermore,

discrete ≺ discretion,

because

discrete ≺ discreti.

▲
Hasse Diagrams

Many edges in the directed graph for a finite poset do not have to be shown because they must be
present. For instance, consider the directed graph for the partial ordering {(a, b) | a ≤ b} on the
set {1, 2, 3, 4}, shown in Figure 2(a). Because this relation is a partial ordering, it is reflexive,
and its directed graph has loops at all vertices. Consequently, we do not have to show these loops
because they must be present; in Figure 2(b) loops are not shown. Because a partial ordering is
transitive, we do not have to show those edges that must be present because of transitivity. For
example, in Figure 2(c) the edges (1, 3), (1, 4), and (2, 4) are not shown because they must be
present. If we assume that all edges are pointed “upward” (as they are drawn in the figure), we
do not have to show the directions of the edges; Figure 2(c) does not show directions.

In general, we can represent a finite poset (S, !) using this procedure: Start with the
directed graph for this relation. Because a partial ordering is reflexive, a loop (a, a) is present at
every vertex a. Remove these loops. Next, remove all edges that must be in the partial ordering
because of the presence of other edges and transitivity. That is, remove all edges (x, y) for
which there is an element z ∈ S such that x ≺ z and z ≺ x. Finally, arrange each edge so that

9.6 Partial Orderings 623

(a) (b) (c)

4

3

2

1

4

3

2

1

4

3

2

1

FIGURE 2 Constructing the Hasse Diagram
for ({1, 2, 3, 4}, ≤).

its initial vertex is below its terminal vertex (as it is drawn on paper). Remove all the arrows on
the directed edges, because all edges point “upward” toward their terminal vertex.

These steps are well defined, and only a finite number of steps need to be carried out for
a finite poset. When all the steps have been taken, the resulting diagram contains sufficient
information to find the partial ordering, as we will explain later. The resulting diagram is called
the Hasse diagram of (S, !), named after the twentieth-century German mathematician Helmut
Hasse who made extensive use of them.

Let (S, !) be a poset. We say that an element y ∈ S covers an element x ∈ S if x ≺ y

and there is no element z ∈ S such that x ≺ z ≺ y. The set of pairs (x, y) such that y

covers x is called the covering relation of (S, !). From the description of the Hasse diagram of
a poset, we see that the edges in the Hasse diagram of (S, !) are upwardly pointing edges cor-
responding to the pairs in the covering relation of (S, !). Furthermore, we can recover a poset
from its covering relation, because it is the reflexive transitive closure of its covering relation.
(Exercise 31 asks for a proof of this fact.) This tells us that we can construct a partial ordering
from its Hasse diagram.

EXAMPLE 12 Draw the Hasse diagram representing the partial ordering {(a, b) |a divides b} on
{1, 2, 3, 4, 6, 8, 12}.

Solution: Begin with the digraph for this partial order, as shown in Figure 3(a). Remove all
loops, as shown in Figure 3(b). Then delete all the edges implied by the transitive property.
These are (1, 4), (1, 6), (1, 8), (1, 12), (2, 8), (2, 12), and (3, 12). Arrange all edges to point
upward, and delete all arrows to obtain the Hasse diagram. The resulting Hasse diagram is shown
in Figure 3(c). ▲

EXAMPLE 13 Draw the Hasse diagram for the partial ordering {(A, B) | A ⊆ B} on the power set P(S) where
S = {a, b, c}.

HELMUT HASSE (1898–1979) Helmut Hasse was born in Kassel, Germany. He served in the German
navy after high school. He began his university studies at Göttingen University in 1918, moving in 1920 to
Marburg University to study under the number theorist Kurt Hensel. During this time, Hasse made fundamental
contributions to algebraic number theory. He became Hensel’s successor at Marburg, later becoming director
of the famous mathematical institute at Göttingen in 1934, and took a position at Hamburg University in 1950.
Hasse served for 50 years as an editor of Crelle’s Journal, a famous German mathematics periodical, taking over
the job of chief editor in 1936 when the Nazis forced Hensel to resign. During World War II Hasse worked on
applied mathematics research for the German navy. He was noted for the clarity and personal style of his lectures
and was devoted both to number theory and to his students. (Hasse has been controversial for connections with
the Nazi party. Investigations have shown he was a strong German nationalist but not an ardent Nazi.)

624 9 / Relations

8 12

4 6

2 3

1

(a)

8 12

4 6

2 3

1

(b)

8 12

4 6

2 3

1

(c)

FIGURE 3 Constructing the Hasse Diagram of ({1, 2, 3, 4, 6, 8, 12}, |).

Solution: The Hasse diagram for this partial ordering is obtained from the associated digraph by
deleting all the loops and all the edges that occur from transitivity, namely, (∅, {a, b}), (∅, {a, c}),
(∅, {b, c}), (∅, {a, b, c}), ({a}, {a, b, c}), ({b}, {a, b, c}), and ({c}, {a, b, c}). Finally all edges
point upward, and arrows are deleted. The resulting Hasse diagram is illustrated in Figure 4. ▲

Maximal and Minimal Elements

Elements of posets that have certain extremal properties are important for many applications.
An element of a poset is called maximal if it is not less than any element of the poset. That is, a

is maximal in the poset (S, !) if there is no b ∈ S such that a ≺ b. Similarly, an element of a
poset is called minimal if it is not greater than any element of the poset. That is, a is minimal
if there is no element b ∈ S such that b ≺ a. Maximal and minimal elements are easy to spot
using a Hasse diagram. They are the “top” and “bottom” elements in the diagram.

EXAMPLE 14 Which elements of the poset ({2, 4, 5, 10, 12, 20, 25}, |) are maximal, and which are minimal?

Solution: The Hasse diagram in Figure 5 for this poset shows that the maximal elements
are 12, 20, and 25, and the minimal elements are 2 and 5. As this example shows, a poset
can have more than one maximal element and more than one minimal element. ▲

Sometimes there is an element in a poset that is greater than every other element. Such an
element is called the greatest element. That is, a is the greatest element of the poset (S, !)

{a, b, c}

{a, b}
{b, c}{a, c}

{b}{a}
{c}

∅

FIGURE 4 The Hasse Diagram
of (P ({a, b, c}), ⊆).

12

4

2

20

10

5

25

FIGURE 5 The Hasse
Diagram of a Poset.

9.6 Partial Orderings 625

c

a

b d d e

a b

c

a b

d

c

d

b c

a

(a) (b) (c) (d)

FIGURE 6 Hasse Diagrams of Four Posets.

if b ! a for all b ∈ S. The greatest element is unique when it exists [see Exercise 40(a)].
Likewise, an element is called the least element if it is less than all the other elements in the
poset. That is, a is the least element of (S, !) if a ! b for all b ∈ S. The least element is unique
when it exists [see Exercise 40(b)].

EXAMPLE 15 Determine whether the posets represented by each of the Hasse diagrams in Figure 6 have a
greatest element and a least element.

Solution: The least element of the poset with Hasse diagram (a) is a. This poset has no greatest
element. The poset with Hasse diagram (b) has neither a least nor a greatest element. The poset
with Hasse diagram (c) has no least element. Its greatest element is d . The poset with Hasse
diagram (d) has least element a and greatest element d . ▲

EXAMPLE 16 Let S be a set. Determine whether there is a greatest element and a least element in the poset
(P (S), ⊆).

Solution: The least element is the empty set, because ∅ ⊆ T for any subset T of S. The set S is
the greatest element in this poset, because T ⊆ S whenever T is a subset of S. ▲

EXAMPLE 17 Is there a greatest element and a least element in the poset (Z+, |)?

Solution: The integer 1 is the least element because 1|n whenever n is a positive integer. Because
there is no integer that is divisible by all positive integers, there is no greatest element. ▲

Sometimes it is possible to find an element that is greater than or equal to all the elements
in a subset A of a poset (S, !). If u is an element of S such that a ! u for all elements a ∈ A,
then u is called an upper bound of A. Likewise, there may be an element less than or equal to
all the elements in A. If l is an element of S such that l ! a for all elements a ∈ A, then l is
called a lower bound of A.

EXAMPLE 18 Find the lower and upper bounds of the subsets {a, b, c}, {j, h}, and {a, c, d, f } in the poset
with the Hasse diagram shown in Figure 7.

Solution: The upper bounds of {a, b, c} are e, f, j , and h, and its only lower bound is a. There
are no upper bounds of {j, h}, and its lower bounds are a, b, c, d, e, and f . The upper bounds
of {a, c, d, f } are f , h, and j , and its lower bound is a. ▲

a

cb

ed

fg

j
h

FIGURE 7 The
Hasse Diagram of
a Poset.

The element x is called the least upper bound of the subset A if x is an upper bound that
is less than every other upper bound of A. Because there is only one such element, if it exists,
it makes sense to call this element the least upper bound [see Exercise 42(a)]. That is, x is the
least upper bound of A if a ! x whenever a ∈ A, and x ! z whenever z is an upper bound of
A. Similarly, the element y is called the greatest lower bound of A if y is a lower bound of
A and z ! y whenever z is a lower bound of A. The greatest lower bound of A is unique if it
exists [see Exercise 42(b)]. The greatest lower bound and least upper bound of a subset A are
denoted by glb(A) and lub(A), respectively.

626 9 / Relations

EXAMPLE 19 Find the greatest lower bound and the least upper bound of {b, d, g}, if they exist, in the poset
shown in Figure 7.

Solution: The upper bounds of {b, d, g} are g and h. Because g ≺ h, g is the least upper bound.
The lower bounds of {b, d, g} are a and b. Because a ≺ b, b is the greatest lower bound. ▲

EXAMPLE 20 Find the greatest lower bound and the least upper bound of the sets {3, 9, 12} and {1, 2, 4, 5, 10},
if they exist, in the poset (Z+, |).

Solution: An integer is a lower bound of {3, 9, 12} if 3, 9, and 12 are divisible by this integer.
The only such integers are 1 and 3. Because 1 | 3, 3 is the greatest lower bound of {3, 9, 12}.
The only lower bound for the set {1, 2, 4, 5, 10} with respect to | is the element 1. Hence, 1 is
the greatest lower bound for {1, 2, 4, 5, 10}.

An integer is an upper bound for {3, 9, 12} if and only if it is divisible by 3, 9, and 12.
The integers with this property are those divisible by the least common multiple of 3, 9, and
12, which is 36. Hence, 36 is the least upper bound of {3, 9, 12}. A positive integer is an upper
bound for the set {1, 2, 4, 5, 10} if and only if it is divisible by 1, 2, 4, 5, and 10. The integers
with this property are those integers divisible by the least common multiple of these integers,
which is 20. Hence, 20 is the least upper bound of {1, 2, 4, 5, 10}. ▲

Lattices

A partially ordered set in which every pair of elements has both a least upper bound and a
greatest lower bound is called a lattice. Lattices have many special properties. Furthermore,
lattices are used in many different applications such as models of information flow and play an
important role in Boolean algebra.

EXAMPLE 21 Determine whether the posets represented by each of the Hasse diagrams in Figure 8 are lattices.

Solution: The posets represented by the Hasse diagrams in (a) and (c) are both lattices because
in each poset every pair of elements has both a least upper bound and a greatest lower bound,
as the reader should verify. On the other hand, the poset with the Hasse diagram shown in (b)
is not a lattice, because the elements b and c have no least upper bound. To see this, note that
each of the elements d , e, and f is an upper bound, but none of these three elements precedes
the other two with respect to the ordering of this poset. ▲

f

a

b

d

e

c

(a)

f

a

c

ed

(b)

b

h

a

d

ge

(c)

b d

g

FIGURE 8 Hasse Diagrams of Three Posets.

9.6 Partial Orderings 627

EXAMPLE 22 Is the poset (Z+, |) a lattice?

Solution: Let a and b be two positive integers. The least upper bound and greatest lower bound
of these two integers are the least common multiple and the greatest common divisor of these
integers, respectively, as the reader should verify. It follows that this poset is a lattice. ▲

EXAMPLE 23 Determine whether the posets ({1, 2, 3, 4, 5}, |) and ({1, 2, 4, 8, 16}, |) are lattices.

Solution: Because 2 and 3 have no upper bounds in ({1, 2, 3, 4, 5}, |), they certainly do not have
a least upper bound. Hence, the first poset is not a lattice.

Every two elements of the second poset have both a least upper bound and a greatest lower
bound. The least upper bound of two elements in this poset is the larger of the elements and the
greatest lower bound of two elements is the smaller of the elements, as the reader should verify.
Hence, this second poset is a lattice. ▲

EXAMPLE 24 Determine whether (P (S), ⊆) is a lattice where S is a set.

Solution: Let A and B be two subsets of S. The least upper bound and the greatest lower bound
of A and B are A ∪ B and A ∩ B, respectively, as the reader can show. Hence, (P (S), ⊆) is a
lattice. ▲

EXAMPLE 25 The Lattice Model of Information Flow In many settings the flow of information from one
person or computer program to another is restricted via security clearances. We can use a lattice
model to represent different information flow policies. For example, one common information
flow policy is the multilevel security policy used in government and military systems. Each
piece of information is assigned to a security class, and each security class is represented by a
pair (A, C) where A is an authority level and C is a category. People and computer programs
are then allowed access to information from a specific restricted set of security classes.

The typical authority levels used in the U.S. government are unclassified (0), confidential (1),
secret (2), and top secret (3). (Information is said to be classified if it is confidential, secret,

There are billions of

pages of classified U.S.

government documents.

or top secret.) Categories used in security classes are the subsets of a set of all compartments

relevant to a particular area of interest. Each compartment represents a particular subject area.
For example, if the set of compartments is {spies, moles, double agents}, then there are eight
different categories, one for each of the eight subsets of the set of compartments, such as
{spies, moles}.

We can order security classes by specifying that (A1, C1) ! (A2, C2) if and only if
A1 ≤ A2 and C1 ⊆ C2. Information is permitted to flow from security class (A1, C1) into
security class (A2, C2) if and only if (A1, C1) ! (A2, C2). For example, information is
permitted to flow from the security class (secret, {spies, moles}) into the security class
(top secret, {spies, moles, double agents}), whereas information is not allowed to flow from
the security class (top secret, {spies, moles}) into either of the security classes (secret, {spies,

moles, double agents}) or (top secret, {spies}).
We leave it to the reader (see Exercise 48) to show that the set of all security classes with

the ordering defined in this example forms a lattice. ▲

Topological Sorting

Suppose that a project is made up of 20 different tasks. Some tasks can be completed only after
others have been finished. How can an order be found for these tasks? To model this problem
we set up a partial order on the set of tasks so that a ≺ b if and only if a and b are tasks where b

628 9 / Relations

cannot be started until a has been completed. To produce a schedule for the project, we need to
produce an order for all 20 tasks that is compatible with this partial order. We will show how
this can be done.

We begin with a definition. A total ordering ! is said to be compatible with the partial
ordering R if a ! b whenever aRb. Constructing a compatible total ordering from a partial
ordering is called topological sorting.∗ We will need to use Lemma 1.

LEMMA 1 Every finite nonempty poset (S, !) has at least one minimal element.

Proof: Choose an element a0 of S. If a0 is not minimal, then there is an element a1 with a1 ≺ a0.
If a1 is not minimal, there is an element a2 with a2 ≺ a1. Continue this process, so that if an is
not minimal, there is an element an+1 with an+1 ≺ an. Because there are only a finite number
of elements in the poset, this process must end with a minimal element an.

The topological sorting algorithm we will describe works for any finite nonempty poset.
To define a total ordering on the poset (A, !), first choose a minimal element a1; such an
element exists by Lemma 1. Next, note that (A − {a1}, !) is also a poset, as the reader should
verify. (Here by ! we mean the restriction of the original relation ! on A to A − {a1}.) If it is
nonempty, choose a minimal element a2 of this poset. Then remove a2 as well, and if there are
additional elements left, choose a minimal element a3 in A − {a1, a2}. Continue this process by
choosing ak+1 to be a minimal element in A − {a1, a2, . . . , ak}, as long as elements remain.

Because A is a finite set, this process must terminate. The end product is a sequence of
elements a1, a2, . . . , an. The desired total ordering !t is defined by

a1 ≺t a2 ≺t · · · ≺t an.

This total ordering is compatible with the original partial ordering. To see this, note that if b ≺ c

in the original partial ordering, c is chosen as the minimal element at a phase of the algorithm
where b has already been removed, for otherwise c would not be a minimal element. Pseudocode
for this topological sorting algorithm is shown in Algorithm 1.

ALGORITHM 1 Topological Sorting.

procedure topological sort ((S, !): finite poset)

k := 1

while S ̸= ∅

ak : = a minimal element of S {such an element exists by Lemma 1}

S : = S − {ak}

k : = k + 1

return a1, a2, . . . , an {a1, a2, . . . , an is a compatible total ordering of S}

EXAMPLE 26 Find a compatible total ordering for the poset ({1, 2, 4, 5, 12, 20}, |).

∗“Topological sorting” is terminology used by computer scientists; mathematicians use the terminology “linearization of a

partial ordering” for the same thing. In mathematics, topology is the branch of geometry dealing with properties of geometric

figures that hold for all figures that can be transformed into one another by continuous bijections. In computer science, a

topology is any arrangement of objects that can be connected with edges.

9.6 Partial Orderings 629

Minimal

element

chosen

51 2 4 12

20

4

12 12

20

201220

4

12

2

20

4

12

2 5

20

4

12

2
5

1

FIGURE 9 A Topological Sort of ({1, 2, 4, 5, 12, 20}, |).

Solution: The first step is to choose a minimal element. This must be 1, because it is the only
minimal element. Next, select a minimal element of ({2, 4, 5, 12, 20}, |). There are two minimal
elements in this poset, namely, 2 and 5. We select 5. The remaining elements are {2, 4, 12, 20}.

The only minimal element at this stage is 2. Next, 4 is chosen because it is the only minimal
element of ({4, 12, 20}, |). Because both 12 and 20 are minimal elements of ({12, 20}, |), either
can be chosen next. We select 20, which leaves 12 as the last element left. This produces the
total ordering

1 ≺ 5 ≺ 2 ≺ 4 ≺ 20 ≺ 12.

The steps used by this sorting algorithm are displayed in Figure 9. ▲

Topological sorting has an application to the scheduling of projects.

EXAMPLE 27 A development project at a computer company requires the completion of seven tasks. Some of
these tasks can be started only after other tasks are finished. A partial ordering on tasks is set up
by considering task X ≺ task Y if task Y cannot be started until task X has been completed. The
Hasse diagram for the seven tasks, with respect to this partial ordering, is shown in Figure 10.
Find an order in which these tasks can be carried out to complete the project.

Solution: An ordering of the seven tasks can be obtained by performing a topolog-
ical sort. The steps of a sort are illustrated in Figure 11. The result of this sort,
A ≺ C ≺ B ≺ E ≺ F ≺ D ≺ G, gives one possible order for the tasks. ▲

C E

B

FD

A

G

FIGURE 10 The
Hasse Diagram for
Seven Tasks.

B

Minimal

element

chosen

CA B E D G

A C E

F

G

D

B

C E

F

G

D

B

E

F

G

D

E

F

G

D

G

D

G

F

F

G

D

FIGURE 11 A Topological Sort of the Tasks.

630 9 / Relations

Exercises

1. Which of these relations on {0, 1, 2, 3} are partial order-
ings? Determine the properties of a partial ordering that
the others lack.

a) {(0, 0), (1, 1), (2, 2), (3, 3)}

b) {(0, 0), (1, 1), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)}

c) {(0, 0), (1, 1), (1, 2), (2, 2), (3, 3)}

d) {(0, 0), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}

e) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0),

(2, 2), (3, 3)}

2. Which of these relations on {0, 1, 2, 3} are partial order-
ings? Determine the properties of a partial ordering that
the others lack.

a) {(0, 0), (2, 2), (3, 3)}

b) {(0, 0), (1, 1), (2, 0), (2, 2), (2, 3), (3, 3)}

c) {(0, 0), (1, 1), (1, 2), (2, 2), (3, 1), (3, 3)}

d) {(0, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 2), (2, 3),

(3, 0), (3, 3)}

e) {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2),

(1, 3), (2, 0), (2, 2), (3, 3)}

3. Is (S, R) a poset if S is the set of all people in the world
and (a, b) ∈ R, where a and b are people, if

a) a is taller than b?

b) a is not taller than b?

c) a = b or a is an ancestor of b?

d) a and b have a common friend?

4. Is (S, R) a poset if S is the set of all people in the world
and (a, b) ∈ R, where a and b are people, if

a) a is no shorter than b?

b) a weighs more than b?

c) a = b or a is a descendant of b?

d) a and b do not have a common friend?

5. Which of these are posets?

a) (Z, =) b) (Z, ̸=) c) (Z, ≥) d) (Z, ̸ |)

6. Which of these are posets?

a) (R, =) b) (R, <) c) (R, ≤) d) (R, ̸=)

7. Determine whether the relations represented by these
zero–one matrices are partial orders.

a)

⎡

⎣

1 1 1
1 1 0
0 0 1

⎤

⎦ b)

⎡

⎣

1 1 1
0 1 0
0 0 1

⎤

⎦

c)

⎡

⎢

⎢

⎣

1 1 1 0
0 1 1 0
0 0 1 1
1 1 0 1

⎤

⎥

⎥

⎦

8. Determine whether the relations represented by these
zero–one matrices are partial orders.

a)

⎡

⎣

1 0 1
1 1 0
0 0 1

⎤

⎦ b)

⎡

⎣

1 0 0
0 1 0
1 0 1

⎤

⎦

c)

⎡

⎢

⎢

⎣

1 0 1 0
0 1 1 0
0 0 1 1
1 1 0 1

⎤

⎥

⎥

⎦

In Exercises 9–11 determine whether the relation with the
directed graph shown is a partial order.

9.

a b

c d

10.

a b

c d

11.
a b

c d

12. Let (S, R) be a poset. Show that (S, R−1) is also a poset,
where R−1 is the inverse of R. The poset (S, R−1) is
called the dual of (S, R).

13. Find the duals of these posets.

a) ({0, 1, 2}, ≤) b) (Z, ≥)

c) (P (Z), ⊇) d) (Z+, |)

14. Which of these pairs of elements are comparable in the
poset (Z+, |)?

a) 5, 15 b) 6, 9 c) 8, 16 d) 7, 7

15. Find two incomparable elements in these posets.

a) (P({0, 1, 2}), ⊆) b) ({1, 2, 4, 6, 8}, |)

16. Let S = {1, 2, 3, 4}. With respect to the lexicographic or-
der based on the usual “less than” relation,

a) find all pairs in S × S less than (2, 3).

b) find all pairs in S × S greater than (3, 1).

c) draw the Hasse diagram of the poset (S × S, !).

17. Find the lexicographic ordering of these n-tuples:

a) (1, 1, 2), (1, 2, 1) b) (0, 1, 2, 3), (0, 1, 3, 2)

c) (1, 0, 1, 0, 1), (0, 1, 1, 1, 0)

18. Find the lexicographic ordering of these strings of lower-
case English letters:

a) quack, quick, quicksilver, quicksand, quacking

b) open, opener, opera, operand, opened

c) zoo, zero, zoom, zoology, zoological

19. Find the lexicographic ordering of the bit strings 0, 01,
11, 001, 010, 011, 0001, and 0101 based on the ordering
0 < 1.

20. Draw the Hasse diagram for the “greater than or equal to”
relation on {0, 1, 2, 3, 4, 5}.

9.6 Partial Orderings 631

21. Draw the Hasse diagram for the “less than or equal to”
relation on {0, 2, 5, 10, 11, 15}.

22. Draw the Hasse diagram for divisibility on the set

a) {1, 2, 3, 4, 5, 6}. b) {3, 5, 7, 11, 13, 16, 17}.

c) {2, 3, 5, 10, 11, 15, 25}. d) {1, 3, 9, 27, 81, 243}.

23. Draw the Hasse diagram for divisibility on the set

a) {1, 2, 3, 4, 5, 6, 7, 8}. b) {1, 2, 3, 5, 7, 11, 13}.

c) {1, 2, 3, 6, 12, 24, 36, 48}.

d) {1, 2, 4, 8, 16, 32, 64}.

24. Draw the Hasse diagram for inclusion on the set P(S),
where S = {a, b, c, d}.

In Exercises 25–27 list all ordered pairs in the partial ordering
with the accompanying Hasse diagram.

25.
c d

a

b

26.

a

cb

de

27.

a cb

fd e

g

28. What is the covering relation of the partial ordering
{(a, b) | a divides b} on {1, 2, 3, 4, 6, 12}?

29. What is the covering relation of the partial order-
ing {(A, B) | A ⊆ B} on the power set of S, where
S = {a, b, c}?

30. What is the covering relation of the partial ordering for
the poset of security classes defined in Example 25?

31. Show that a finite poset can be reconstructed from its cov-
ering relation. [Hint: Show that the poset is the reflexive
transitive closure of its covering relation.]

32. Answer these questions for the partial order represented
by this Hasse diagram.

b

fd

gi

j

a c

e

h

k

ml

a) Find the maximal elements.

b) Find the minimal elements.

c) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {a, b, c}.

f) Find the least upper bound of {a, b, c}, if it exists.

g) Find all lower bounds of {f, g, h}.

h) Find the greatest lower bound of {f, g, h}, if it exists.

33. Answer these questions for the poset ({3, 5, 9, 15,
24, 45}, |).

a) Find the maximal elements.

b) Find the minimal elements.

c) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {3, 5}.

f) Find the least upper bound of {3, 5}, if it exists.

g) Find all lower bounds of {15, 45}.

h) Find the greatest lower bound of {15, 45}, if it exists.

34. Answer these questions for the poset ({2, 4, 6, 9, 12,
18, 27, 36, 48, 60, 72}, |).

a) Find the maximal elements.

b) Find the minimal elements.

c) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {2, 9}.

f) Find the least upper bound of {2, 9}, if it exists.

g) Find all lower bounds of {60, 72}.

h) Find the greatest lower bound of {60, 72}, if it exists.

35. Answer these questions for the poset ({{1}, {2}, {4},

{1, 2}, {1, 4}, {2, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}}, ⊆).

a) Find the maximal elements.

b) Find the minimal elements.

c) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {{2}, {4}}.

f) Find the least upper bound of {{2}, {4}}, if it exists.

g) Find all lower bounds of {{1, 3, 4}, {2, 3, 4}}.

h) Find the greatest lower bound of {{1, 3, 4}, {2, 3, 4}},
if it exists.

36. Give a poset that has

a) a minimal element but no maximal element.

b) a maximal element but no minimal element.

c) neither a maximal nor a minimal element.

37. Show that lexicographic order is a partial ordering on the
Cartesian product of two posets.

38. Show that lexicographic order is a partial ordering on the
set of strings from a poset.

39. Suppose that (S, !1) and (T , !2) are posets. Show that
(S × T , !) is a poset where (s, t) ! (u, v) if and only if
s !1 u and t !2 v.

632 9 / Relations

40. a) Show that there is exactly one greatest element of a
poset, if such an element exists.

b) Show that there is exactly one least element of a poset,
if such an element exists.

41. a) Show that there is exactly one maximal element in a
poset with a greatest element.

b) Show that there is exactly one minimal element in a
poset with a least element.

42. a) Show that the least upper bound of a set in a poset is
unique if it exists.

b) Show that the greatest lower bound of a set in a poset
is unique if it exists.

43. Determine whether the posets with these Hasse diagrams
are lattices.

a)

a

b

d

c

e

f

g
b)

a

b

d

c

e

f g

h
c)

a

b

d

c

e

f g

h

i

44. Determine whether these posets are lattices.

a) ({1, 3, 6, 9, 12}, |) b) ({1, 5, 25, 125}, |)

c) (Z, ≥)

d) (P (S), ⊇), where P(S) is the power set of a set S

45. Show that every nonempty finite subset of a lattice has a
least upper bound and a greatest lower bound.

46. Show that if the poset (S, R) is a lattice then the dual
poset (S, R−1) is also a lattice.

47. In a company, the lattice model of information flow is used
to control sensitive information with security classes rep-
resented by ordered pairs (A, C). Here A is an authority
level, which may be nonproprietary (0), proprietary (1),
restricted (2), or registered (3).A category C is a subset of
the set of all projects {Cheetah, Impala, Puma}. (Names
of animals are often used as code names for projects in
companies.)

a) Is information permitted to flow from (Proprietary,
{Cheetah, Puma}) into (Restricted, {Puma})?

b) Is information permitted to flow from (Restricted,
{Cheetah}) into (Registered, {Cheetah, Impala})?

c) Into which classes is information from (Proprietary,
{Cheetah, Puma}) permitted to flow?

d) From which classes is information permitted to flow
into the security class (Restricted, {Impala, Puma})?

48. Show that the set S of security classes (A, C) is a lattice,
where A is a positive integer representing an authority
class and C is a subset of a finite set of compartments,
with (A1, C1) ! (A2, C2) if and only if A1 ≤ A2 and
C1 ⊆ C2. [Hint: First show that (S, !) is a poset and then
show that the least upper bound and greatest lower bound
of (A1, C1) and (A2, C2) are (max(A1, A2), C1 ∪ C2)

and (min(A1, A2), C1 ∩ C2), respectively.]

∗49. Show that the set of all partitions of a set S with the re-
lation P1 ! P2 if the partition P1 is a refinement of the
partition P2 is a lattice. (See the preamble to Exercise 49
of Section 9.5.)

50. Show that every totally ordered set is a lattice.

51. Show that every finite lattice has a least element and a
greatest element.

52. Give an example of an infinite lattice with

a) neither a least nor a greatest element.

b) a least but not a greatest element.

c) a greatest but not a least element.

d) both a least and a greatest element.

53. Verify that (Z+× Z+, !) is a well-ordered set, where !

is lexicographic order, as claimed in Example 8.

54. Determine whether each of these posets is well-ordered.

a) (S, ≤), where S = {10, 11, 12, . . .}

b) (Q ∩ [0, 1], ≤) (the set of rational numbers between
0 and 1 inclusive)

c) (S, ≤), where S is the set of positive rational numbers
with denominators not exceeding 3

d) (Z−, ≥), where Z− is the set of negative integers

A poset (R, !) is well-founded if there is no infinite de-
creasing sequence of elements in the poset, that is, elements
x1, x2, . . . , xn such that · · · ≺ xn ≺ · · · ≺ x2 ≺ x1. A poset
(R, !) is dense if for all x ∈ S and y ∈ S with x ≺ y, there
is an element z ∈ R such that x ≺ z ≺ y.

55. Show that the poset (Z, !), where x ≺ y if and only if
|x| < |y| is well-founded but is not a totally ordered set.

56. Show that a dense poset with at least two elements that
are comparable is not well-founded.

57. Show that the poset of rational numbers with the usual
“less than or equal to” relation, (Q, ≤), is a dense poset.

∗58. Show that the set of strings of lowercase English let-
ters with lexicographic order is neither well-founded nor
dense.

59. Show that a poset is well-ordered if and only if it is totally
ordered and well-founded.

60. Show that a finite nonempty poset has a maximal element.

61. Find a compatible total order for the poset with the Hasse
diagram shown in Exercise 32.

62. Find a compatible total order for the divisibility relation
on the set {1, 2, 3, 6, 8, 12, 24, 36}.

63. Find all compatible total orderings for the poset
({1, 2, 4, 5, 12, 20}, |} from Example 26.

64. Find all compatible total orderings for the poset with the
Hasse diagram in Exercise 27.

65. Find all possible orders for completing the tasks in the
development project in Example 27.

Key Terms and Results 633

66. Schedule the tasks needed to build a house, by specifying
their order, if the Hasse diagram representing these tasks
is as shown in the figure.

Completion

Exterior fixtures

Exterior painting

Exterior siding

Roof

Framing

Foundation

Carpeting

Flooring

Plumbing Wiring

Wall-board

Interior painting

Interior fixtures

67. Find an ordering of the tasks of a software project if the
Hasse diagram for the tasks of the project is as shown.

Set up
test sites

Determine user needs

Write
documentation

Completion

β testβ

Develop module A

Write functional requirements

Develop system
requirements

Develop module B

Develop module C

Integrate modules

β testα

Key Terms and Results

TERMS

binary relation from A to B: a subset of A × B

relation on A: a binary relation from A to itself (i.e., a subset
of A × A)

S ◦R: composite of R and S

R−1: inverse relation of R

Rn: nth power of R

reflexive: a relation R on A is reflexive if (a, a) ∈ R for all
a ∈ A

symmetric: a relation R on A is symmetric if (b, a) ∈ R when-
ever (a, b) ∈ R

antisymmetric: a relation R on A is antisymmetric if a = b

whenever (a, b) ∈ R and (b, a) ∈ R

transitive: a relation R on A is transitive if (a, b) ∈ R and
(b, c) ∈ R implies that (a, c) ∈ R

n-ary relation on A1, A2, . . . , An: a subset of A1× A2 ×

· · · × An

relational data model: a model for representing databases us-
ing n-ary relations

primary key: a domain of an n-ary relation such that an n-
tuple is uniquely determined by its value for this domain

composite key: the Cartesian product of domains of an n-ary
relation such that an n-tuple is uniquely determined by its
values in these domains

selection operator: a function that selects the n-tuples in an
n-ary relation that satisfy a specified condition

projection: a function that produces relations of smaller de-
gree from an n-ary relation by deleting fields

join: a function that combines n-ary relations that agree on
certain fields

directed graph or digraph: a set of elements called vertices
and ordered pairs of these elements, called edges

loop: an edge of the form (a, a)

closure of a relation R with respect to a property P: the re-
lation S (if it exists) that contains R, has property P, and
is contained within any relation that contains R and has
property P

path in a digraph: a sequence of edges (a, x1), (x1, x2), . . . ,

(xn−2, xn−1), (xn−1, b) such that the terminal vertex of each
edge is the initial vertex of the succeeding edge in the se-
quence

circuit (or cycle) in a digraph: a path that begins and ends at
the same vertex

R∗ (connectivity relation): the relation consisting of those
ordered pairs (a, b) such that there is a path from a to b

equivalence relation: a reflexive, symmetric, and transitive
relation

equivalent: if R is an equivalence relation, a is equivalent to
b if aRb

[a]R (equivalence class of a with respect to R): the set of all
elements of A that are equivalent to a

[a]m (congruence class modulo m): the set of integers con-
gruent to a modulo m

partition of a set S: a collection of pairwise disjoint nonempty
subsets that have S as their union

partial ordering: a relation that is reflexive, antisymmetric,
and transitive

poset (S, R): a set S and a partial ordering R on this set

comparable: the elements a and b in the poset (A, !) are
comparable if a ! b or b ! a

incomparable: elements in a poset that are not comparable

total (or linear) ordering: a partial ordering for which every
pair of elements are comparable

totally (or linearly) ordered set: a poset with a total (or linear)
ordering

well-ordered set: a poset (S, !), where ! is a total order
and every nonempty subset of S has a least element

634 9 / Relations

lexicographic order: a partial ordering of Cartesian products
or strings

Hasse diagram: a graphical representation of a poset where
loops and all edges resulting from the transitive property
are not shown, and the direction of the edges is indicated
by the position of the vertices

maximal element: an element of a poset that is not less than
any other element of the poset

minimal element: an element of a poset that is not greater than
any other element of the poset

greatest element: an element of a poset greater than all other
elements in this set

least element: an element of a poset less than all other elements
in this set

upper bound of a set: an element in a poset greater than all
other elements in the set

lower bound of a set: an element in a poset less than all other
elements in the set

least upper bound of a set: an upper bound of the set that is
less than all other upper bounds

greatest lower bound of a set: a lower bound of the set that
is greater than all other lower bounds

lattice: a partially ordered set in which every two elements
have a greatest lower bound and a least upper bound

compatible total ordering for a partial ordering: a total or-
dering that contains the given partial ordering

topological sort: the construction of a total ordering compat-
ible with a given partial ordering

RESULTS

The reflexive closure of a relation R on the set A equals R ∪ !,
where ! = {(a, a) | a ∈ A}.

The symmetric closure of a relation R on the set A equals
R ∪ R−1, where R−1 = {(b, a) | (a, b) ∈ R}.

The transitive closure of a relation equals the connectivity re-
lation formed from this relation.

Warshall’s algorithm for finding the transitive closure of a re-
lation

Let R be an equivalence relation. Then the following three
statements are equivalent: (1) a R b; (2) [a]R ∩ [b]R ̸= ∅;
(3) [a]R = [b]R .

The equivalence classes of an equivalence relation on a set A

form a partition of A. Conversely, an equivalence relation
can be constructed from any partition so that the equivalence
classes are the subsets in the partition.

The principle of well-ordered induction
The topological sorting algorithm

Review Questions

1. a) What is a relation on a set?

b) How many relations are there on a set with n elements?

2. a) What is a reflexive relation?

b) What is a symmetric relation?

c) What is an antisymmetric relation?

d) What is a transitive relation?

3. Give an example of a relation on the set {1, 2, 3, 4} that is

a) reflexive, symmetric, and not transitive.

b) not reflexive, symmetric, and transitive.

c) reflexive, antisymmetric, and not transitive.

d) reflexive, symmetric, and transitive.

e) reflexive, antisymmetric, and transitive.

4. a) How many reflexive relations are there on a set with n

elements?

b) How many symmetric relations are there on a set with
n elements?

c) How many antisymmetric relations are there on a set
with n elements?

5. a) Explain how an n-ary relation can be used to represent
information about students at a university.

b) How can the 5-ary relation containing names of stu-
dents, their addresses, telephone numbers, majors, and
grade point averages be used to form a 3-ary relation
containing the names of students, their majors, and
their grade point averages?

c) How can the 4-ary relation containing names of stu-
dents, their addresses, telephone numbers, and majors
and the 4-ary relation containing names of students,
their student numbers, majors, and numbers of credit
hours be combined into a single n-ary relation?

6. a) Explain how to use a zero–one matrix to represent a
relation on a finite set.

b) Explain how to use the zero–one matrix representing a
relation to determine whether the relation is reflexive,
symmetric, and/or antisymmetric.

7. a) Explain how to use a directed graph to represent a re-
lation on a finite set.

b) Explain how to use the directed graph representing a
relation to determine whether a relation is reflexive,
symmetric, and/or antisymmetric.

8. a) Define the reflexive closure and the symmetric closure
of a relation.

b) How can you construct the reflexive closure of a rela-
tion?

c) How can you construct the symmetric closure of a re-
lation?

d) Find the reflexive closure and the symmetric closure
of the relation {(1, 2), (2, 3), (2, 4), (3, 1)} on the set
{1, 2, 3, 4}.

9. a) Define the transitive closure of a relation.

b) Can the transitive closure of a relation be obtained by
including all pairs (a, c) such that (a, b) and (b, c) be-
long to the relation?

Supplementary Exercises 635

c) Describe two algorithms for finding the transitive clo-
sure of a relation.

d) Find the transitive closure of the relation
{(1,1), (1,3), (2,1), (2,3), (2,4), (3,2), (3,4), (4,1)}.

10. a) Define an equivalence relation.
b) Which relations on the set {a, b, c, d} are equivalence

relations and contain (a, b) and (b, d)?

11. a) Show that congruence modulo m is an equivalence re-
lation whenever m is a positive integer.

b) Show that the relation {(a, b) | a ≡ ±b (mod 7)} is an
equivalence relation on the set of integers.

12. a) What are the equivalence classes of an equivalence re-
lation?

b) What are the equivalence classes of the “congruent
modulo 5” relation?

c) What are the equivalence classes of the equivalence
relation in Question 11(b)?

13. Explain the relationship between equivalence relations on
a set and partitions of this set.

14. a) Define a partial ordering.
b) Show that the divisibility relation on the set of positive

integers is a partial order.

15. Explain how partial orderings on the sets A1 and A2 can
be used to define a partial ordering on the set A1 × A2.

16. a) Explain how to construct the Hasse diagram of a partial
order on a finite set.

b) Draw the Hasse diagram of the divisibility relation on
the set {2, 3, 5, 9, 12, 15, 18}.

17. a) Define a maximal element of a poset and the greatest
element of a poset.

b) Give an example of a poset that has three maximal
elements.

c) Give an example of a poset with a greatest element.

18. a) Define a lattice.

b) Give an example of a poset with five elements that is
a lattice and an example of a poset with five elements
that is not a lattice.

19. a) Show that every finite subset of a lattice has a greatest
lower bound and a least upper bound.

b) Show that every lattice with a finite number of elements
has a least element and a greatest element.

20. a) Define a well-ordered set.

b) Describe an algorithm for producing a totally ordered
set compatible with a given partially ordered set.

c) Explain how the algorithm from (b) can be used to or-
der the tasks in a project if tasks are done one at a time
and each task can be done only after one or more of
the other tasks have been completed.

Supplementary Exercises

1. Let S be the set of all strings of English letters. Determine
whether these relations are reflexive, irreflexive, symmet-
ric, antisymmetric, and/or transitive.

a) R1 = {(a, b) | a and b have no letters in common}

b) R2 = {(a, b) | a and b are not the same length}

c) R3 = {(a, b) | a is longer than b}

2. Construct a relation on the set {a, b, c, d} that is

a) reflexive, symmetric, but not transitive.

b) irreflexive, symmetric, and transitive.

c) irreflexive, antisymmetric, and not transitive.

d) reflexive, neither symmetric nor antisymmetric, and
transitive.

e) neither reflexive, irreflexive, symmetric, antisymmet-
ric, nor transitive.

3. Show that the relation R on Z × Z defined by
(a, b) R (c, d) if and only if a + d = b + c is an equiva-
lence relation.

4. Show that a subset of an antisymmetric relation is also
antisymmetric.

5. Let R be a reflexive relation on a set A. Show that R ⊆ R2.

6. Suppose that R1 and R2 are reflexive relations on a set A.
Show that R1 ⊕ R2 is irreflexive.

7. Suppose that R1 and R2 are reflexive relations on a set A.
Is R1 ∩ R2 also reflexive? Is R1 ∪ R2 also reflexive?

8. Suppose that R is a symmetric relation on a set A. Is R

also symmetric?

9. Let R1 and R2 be symmetric relations. Is R1 ∩ R2 also
symmetric? Is R1 ∪ R2 also symmetric?

10. A relation R is called circular if aRb and bRc imply that
cRa. Show that R is reflexive and circular if and only if
it is an equivalence relation.

11. Show that a primary key in an n-ary relation is a primary
key in any projection of this relation that contains this key
as one of its fields.

12. Is the primary key in an n-ary relation also a primary
key in a larger relation obtained by taking the join of this
relation with a second relation?

13. Show that the reflexive closure of the symmetric closure
of a relation is the same as the symmetric closure of its
reflexive closure.

14. Let R be the relation on the set of all mathematicians that
contains the ordered pair (a, b) if and only if a and b have
written a published mathematical paper together.

a) Describe the relation R2.
b) Describe the relation R∗.
c) The Erdős number of a mathematician is 1 if this

mathematician wrote a paper with the prolific Hun-
garian mathematician Paul Erdős, it is 2 if this math-
ematician did not write a joint paper with Erdős but
wrote a joint paper with someone who wrote a joint
paper with Erdős, and so on (except that the Erdős
number of Erdős himself is 0). Give a definition of the
Erdős number in terms of paths in R.

636 9 / Relations

15. a) Give an example to show that the transitive closure
of the symmetric closure of a relation is not necessar-
ily the same as the symmetric closure of the transitive
closure of this relation.

b) Show, however, that the transitive closure of the sym-
metric closure of a relation must contain the symmetric
closure of the transitive closure of this relation.

16. a) Let S be the set of subroutines of a computer pro-
gram. Define the relation R by PR Q if subroutine P

calls subroutine Q during its execution. Describe the
transitive closure of R.

b) For which subroutines P does (P, P) belong to the
transitive closure of R?

c) Describe the reflexive closure of the transitive closure
of R.

17. Suppose that R and S are relations on a set A with R ⊆ S

such that the closures of R and S with respect to a prop-
erty P both exist. Show that the closure of R with respect
to P is a subset of the closure of S with respect to P.

18. Show that the symmetric closure of the union of two re-
lations is the union of their symmetric closures.

∗19. Devise an algorithm, based on the concept of interior ver-
tices, that finds the length of the longest path between two
vertices in a directed graph, or determines that there are
arbitrarily long paths between these vertices.

20. Which of these are equivalence relations on the set of all
people?

a) {(x, y) | x and y have the same sign of the zodiac}

b) {(x, y) | x and y were born in the same year}

c) {(x, y) | x and y have been in the same city}

∗21. How many different equivalence relations with exactly
three different equivalence classes are there on a set with
five elements?

22. Show that {(x, y) | x − y ∈ Q} is an equivalence relation
on the set of real numbers, where Q denotes the set of
rational numbers. What are [1], [1

2], and [π]?

23. Suppose that P1 = {A1, A2, . . . , Am} and P2 =

{B1, B2, . . . , Bn} are both partitions of the set S. Show
that the collection of nonempty subsets of the form
Ai ∩ Bj is a partition of S that is a refinement of both P1

and P2 (see the preamble to Exercise 49 of Section 9.5).

∗24. Show that the transitive closure of the symmetric closure
of the reflexive closure of a relation R is the smallest
equivalence relation that contains R.

25. Let R(S) be the set of all relations on a set S. Define the
relation ! on R(S) by R1 ! R2 if R1 ⊆ R2, where R1

and R2 are relations on S. Show that (R(S), !) is a poset.

26. Let P(S) be the set of all partitions of the set S. Define the
relation ! on P(S) by P1 ! P2 if P1 is a refinement of
P2 (see Exercise 49 of Section 9.5). Show that (P(S), !)

is a poset.

PAUL ERDŐS (1913–1996) Paul Erdős, born in Budapest, Hungary, was the son of two high school mathe-
matics teachers. He was a child prodigy; at age 3 he could multiply three-digit numbers in his head, and at 4 he
discovered negative numbers on his own. Because his mother did not want to expose him to contagious diseases,
he was mostly home-schooled. At 17 Erdős entered Eőtvős University, graduating four years later with a Ph.D.
in mathematics. After graduating he spent four years at Manchester, England, on a postdoctoral fellowship. In
1938 he went to the United States because of the difficult political situation in Hungary, especially for Jews.
He spent much of his time in the United States, except for 1954 to 1962, when he was banned as part of the
paranoia of the McCarthy era. He also spent considerable time in Israel.

Erdős made many significant contributions to combinatorics and to number theory. One of the discoveries
of which he was most proud is his elementary proof (in the sense that it does not use any complex analysis) of the prime number
theorem, which provides an estimate for the number of primes not exceeding a fixed positive integer. He also participated in the
modern development of the Ramsey theory.

Erdős traveled extensively throughout the world to work with other mathematicians, visiting conferences, universities, and
research laboratories. He had no permanent home. He devoted himself almost entirely to mathematics, traveling from one mathe-
matician to the next, proclaiming “My brain is open.” Erdős was the author or coauthor of more than 1500 papers and had more
than 500 coauthors. Copies of his articles are kept by Ron Graham, a famous discrete mathematician with whom he collaborated
extensively and who took care of many of his worldly needs.

Erdős offered rewards, ranging from $10 to $10,000, for the solution of problems that he found particularly interesting, with the
size of the reward depending on the difficulty of the problem. He paid out close to $4000. Erdős had his own special language, using
such terms as “epsilon” (child), “boss” (woman), “slave” (man), “captured” (married), “liberated” (divorced), “Supreme Fascist”
(God), “Sam” (United States), and “Joe” (Soviet Union). Although he was curious about many things, he concentrated almost all
his energy on mathematical research. He had no hobbies and no full-time job. He never married and apparently remained celibate.
Erdős was extremely generous, donating much of the money he collected from prizes, awards, and stipends for scholarships and to
worthwhile causes. He traveled extremely lightly and did not like having many material possessions.

Supplementary Exercises 637

27. Schedule the tasks needed to cook a Chinese meal by
specifying their order, if the Hasse diagram representing
these tasks is as shown here.

Serve

Cut
fish

Clean
fish

Cut ginger
and garlic

Make
garnishes

Steam
 rice

Find recipe

Buy groceries

Buy seafood

Arrange on platters

Cook in wok

 Chop
 water
chestnuts

Wash
vegetables

Wash
shellfish

A subset of a poset such that every two elements of this sub-
set are comparable is called a chain. A subset of a poset is
called an antichain if every two elements of this subset are
incomparable.

28. Find all chains in the posets with the Hasse diagrams
shown in Exercises 25–27 in Section 9.6.

29. Find all antichains in the posets with the Hasse diagrams
shown in Exercises 25–27 in Section 9.6.

30. Find an antichain with the greatest number of elements
in the poset with the Hasse diagram of Exercise 32 in
Section 9.6.

31. Show that every maximal chain in a finite poset (S, !)

contains a minimal element of S. (A maximal chain is a
chain that is not a subset of a larger chain.)

∗∗32. Show that every finite poset can be partitioned into k

chains, where k is the largest number of elements in an
antichain in this poset.

∗33. Show that in any group of mn + 1 people there is either a
list of m + 1 people where a person in the list (except for
the first person listed) is a descendant of the previous per-
son on the list, or there are n + 1 people such that none of
these people is a descendant of any of the other n people.
[Hint: Use Exercise 32.]

Suppose that (S, !) is a well-founded partially ordered set.
The principle of well-founded induction states that P(x) is
true for all x ∈ S if ∀x(∀y(y ≺ x → P(y)) → P(x)).

34. Show that no separate basis case is needed for the prin-
ciple of well-founded induction. That is, P(u) is true for
all minimal elements u in S if ∀x(∀y(y ≺ x → P(y)) →

P(x)).

∗35. Show that the principle of well-founded induction is valid.

A relation R on a set A is a quasi-ordering on A if R is
reflexive and transitive.

36. Let R be the relation on the set of all functions from
Z+ to Z+ such that (f, g) belongs to R if and only if f

is O(g). Show that R is a quasi-ordering.

37. Let R be a quasi-ordering on a set A. Show that R ∩ R−1

is an equivalence relation.

∗38. Let R be a quasi-ordering and let S be the relation on the
set of equivalence classes of R ∩ R−1 such that (C, D)

belongs to S, where C and D are equivalence classes
of R, if and only if there are elements c of C and d of
D such that (c, d) belongs to R. Show that S is a partial
ordering.

Let L be a lattice. Define the meet (∧) and join (∨) operations
by x ∧ y = glb(x, y) and x ∨ y = lub(x, y).

39. Show that the following properties hold for all elements
x, y, and z of a lattice L.

a) x ∧ y = y ∧ x and x ∨ y = y ∨ x (commutative

laws)

b) (x ∧ y) ∧ z = x ∧ (y ∧ z) and (x ∨ y) ∨ z = x ∨

(y ∨ z) (associative laws)

c) x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x (absorption

laws)

d) x ∧ x = x and x ∨ x = x (idempotent laws)

40. Show that if x and y are elements of a lattice L, then
x ∨ y = y if and only if x ∧ y = x.

A lattice L is bounded if it has both an upper bound, de-
noted by 1, such that x ! 1 for all x ∈ L and a lower bound,
denoted by 0, such that 0 ! x for all x ∈ L.

41. Show that if L is a bounded lattice with upper bound
1 and lower bound 0 then these properties hold for all
elements x ∈ L.

a) x ∨ 1 = 1 b) x ∧ 1 = x

c) x ∨ 0 = x d) x ∧ 0 = 0

42. Show that every finite lattice is bounded.

A lattice is called distributive if x ∨ (y ∧ z) = (x ∨ y) ∧

(x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, and
z in L.

∗43. Give an example of a lattice that is not distributive.

44. Show that the lattice (P (S), ⊆) where P(S) is the power
set of a finite set S is distributive.

45. Is the lattice (Z+, |) distributive?

The complement of an element a of a bounded lattice L with
upper bound 1 and lower bound 0 is an element b such that
a ∨ b = 1 and a ∧ b = 0. Such a lattice is complemented if
every element of the lattice has a complement.

46. Give an example of a finite lattice where at least one el-
ement has more than one complement and at least one
element has no complement.

47. Show that the lattice (P (S), ⊆) where P(S) is the power
set of a finite set S is complemented.

638 9 / Relations

∗48. Show that if L is a finite distributive lattice, then an ele-
ment of L has at most one complement.

The game of Chomp, introduced in Example 12 in Section 1.8,
can be generalized for play on any finite partially ordered set
(S, 9) with a least element a. In this game, a move consists of
selecting an element x in S and removing x and all elements
larger than it from S. The loser is the player who is forced to
select the least element a.

49. Show that the game of Chomp with cookies arranged in
an m × n rectangular grid, described in Example 12 in
Section 1.8, is the same as the game of Chomp on the
poset (S, |), where S is the set of all positive integers that
divide pm−1qn−1, where p and q are distinct primes.

50. Show that if (S, 9) has a greatest element b, then a win-
ning strategy for Chomp on this poset exists. [Hint: Gen-
eralize the argument in Example 12 in Section 1.8.]

Computer Projects

Write programs with these input and output.

1. Given the matrix representing a relation on a finite set, de-
termine whether the relation is reflexive and/or irreflexive.

2. Given the matrix representing a relation on a finite set,
determine whether the relation is symmetric and/or anti-
symmetric.

3. Given the matrix representing a relation on a finite set,
determine whether the relation is transitive.

4. Given a positive integer n, display all the relations on a set
with n elements.

∗5. Given a positive integer n, determine the number of tran-
sitive relations on a set with n elements.

∗6. Given a positive integer n, determine the number of equiv-
alence relations on a set with n elements.

∗7. Given a positive integer n, display all the equivalence re-
lations on the set of the n smallest positive integers.

8. Given an n-ary relation, find the projection of this relation
when specified fields are deleted.

9. Given an m-ary relation and an n-ary relation, and a set of
common fields, find the join of these relations with respect
to these common fields.

10. Given the matrix representing a relation on a finite set,
find the matrix representing the reflexive closure of this
relation.

11. Given the matrix representing a relation on a finite set,
find the matrix representing the symmetric closure of this
relation.

12. Given the matrix representing a relation on a finite set,
find the matrix representing the transitive closure of this
relation by computing the join of the Boolean powers of
the matrix representing the relation.

13. Given the matrix representing a relation on a finite set,
find the matrix representing the transitive closure of this
relation using Warshall’s algorithm.

14. Given the matrix representing a relation on a finite set, find
the matrix representing the smallest equivalence relation
containing this relation.

15. Given a partial ordering on a finite set, find a total ordering
compatible with it using topological sorting.

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Display all the different relations on a set with four ele-
ments.

2. Display all the different reflexive and symmetric relations
on a set with six elements.

3. Display all the reflexive and transitive relations on a set
with five elements.

∗4. Determine how many transitive relations there are on a set
with n elements for all positive integers n with n ≤ 7.

5. Find the transitive closure of a relation of your choice on
a set with at least 20 elements. Either use a relation that

corresponds to direct links in a particular transportation
or communications network or use a randomly generated
relation.

6. Compute the number of different equivalence relations on a
set with n elements for all positive integers n not exceeding
20.

7. Display all the equivalence relations on a set with seven
elements.

∗8. Display all the partial orders on a set with five elements.
∗9. Display all the lattices on a set with five elements.

Writing Projects 639

Writing Projects

Respond to these with essays using outside sources.

1. Discuss the concept of a fuzzy relation. How are fuzzy
relations used?

2. Describe the basic principles of relational databases, go-
ing beyond what was covered in Section 9.2. How widely
used are relational databases as compared with other types
of databases?

3. Look up the original papers by Warshall and by Roy (in
French) in which they develop algorithms for finding tran-
sitive closures. Discuss their approaches. Why do you
suppose that what we call Warshall’s algorithm was dis-
covered independently by more than one person?

4. Describe how equivalence classes can be used to define
the rational numbers as classes of pairs of integers and
how the basic arithmetic operations on rational numbers
can be defined following this approach. (See Exercise 40
in Section 9.5.)

5. Explain how Helmut Hasse used what we now call Hasse
diagrams.

6. Describe some of the mechanisms used to enforce infor-
mation flow policies in computer operating systems.

7. Discuss the use of the Program Evaluation and Review
Technique (PERT) to schedule the tasks of a large com-
plicated project. How widely is PERT used?

8. Discuss the use of the Critical Path Method (CPM) to find
the shortest time for the completion of a project. How
widely is CPM used?

9. Discuss the concept of duality in a lattice. Explain how
duality can be used to establish new results.

10. Explain what is meant by a modular lattice. Describe
some of the properties of modular lattices and describe
how modular lattices arise in the study of projective ge-
ometry.

10
C H A P T E R

Graphs

10.1 Graphs and
Graph Models

10.2 Graph
Terminology
and Special
Types of
Graphs

10.3 Representing
Graphs and
Graph
Isomorphism

10.4 Connectivity

10.5 Euler and
Hamilton
Paths

10.6 Shortest-Path
Problems

10.7 Planar Graphs

10.8 Graph
Coloring

Graphs are discrete structures consisting of vertices and edges that connect these vertices.
There are different kinds of graphs, depending on whether edges have directions, whether

multiple edges can connect the same pair of vertices, and whether loops are allowed. Problems
in almost every conceivable discipline can be solved using graph models. We will give examples
to illustrate how graphs are used as models in a variety of areas. For instance, we will show how
graphs are used to represent the competition of different species in an ecological niche, how
graphs are used to represent who influences whom in an organization, and how graphs are used
to represent the outcomes of round-robin tournaments. We will describe how graphs can be used
to model acquaintanceships between people, collaboration between researchers, telephone calls
between telephone numbers, and links between websites. We will show how graphs can be used
to model roadmaps and the assignment of jobs to employees of an organization.

Using graph models, we can determine whether it is possible to walk down all the streets
in a city without going down a street twice, and we can find the number of colors needed to
color the regions of a map. Graphs can be used to determine whether a circuit can be imple-
mented on a planar circuit board. We can distinguish between two chemical compounds with the
same molecular formula but different structures using graphs. We can determine whether two
computers are connected by a communications link using graph models of computer networks.
Graphs with weights assigned to their edges can be used to solve problems such as finding the
shortest path between two cities in a transportation network. We can also use graphs to schedule
exams and assign channels to television stations. This chapter will introduce the basic concepts
of graph theory and present many different graph models. To solve the wide variety of problems
that can be studied using graphs, we will introduce many different graph algorithms. We will
also study the complexity of these algorithms.

10.1 Graphs and Graph Models

We begin with the definition of a graph.

DEFINITION 1 A graph G = (V , E) consists of V , a nonempty set of vertices (or nodes) and E, a set of
edges. Each edge has either one or two vertices associated with it, called its endpoints. An
edge is said to connect its endpoints.

Remark: The set of vertices V of a graph G may be infinite. A graph with an infinite vertex
set or an infinite number of edges is called an infinite graph, and in comparison, a graph with
a finite vertex set and a finite edge set is called a finite graph. In this book we will usually
consider only finite graphs.

Now suppose that a network is made up of data centers and communication links between
computers. We can represent the location of each data center by a point and each communications
link by a line segment, as shown in Figure 1.

This computer network can be modeled using a graph in which the vertices of the graph
represent the data centers and the edges represent communication links. In general, we visualize

641

642 10 / Graphs

San Francisco

Los Angeles

Denver

Detroit

Chicago

New York

Washington

FIGURE 1 A Computer Network.

graphs by using points to represent vertices and line segments, possibly curved, to represent
edges, where the endpoints of a line segment representing an edge are the points representing
the endpoints of the edge. When we draw a graph, we generally try to draw edges so that they do
not cross. However, this is not necessary because any depiction using points to represent vertices
and any form of connection between vertices can be used. Indeed, there are some graphs that
cannot be drawn in the plane without edges crossing (see Section 10.7). The key point is that
the way we draw a graph is arbitrary, as long as the correct connections between vertices are
depicted.

Note that each edge of the graph representing this computer network connects two different
vertices. That is, no edge connects a vertex to itself. Furthermore, no two different edges connect
the same pair of vertices. A graph in which each edge connects two different vertices and where
no two edges connect the same pair of vertices is called a simple graph. Note that in a simple
graph, each edge is associated to an unordered pair of vertices, and no other edge is associated
to this same edge. Consequently, when there is an edge of a simple graph associated to {u, v},
we can also say, without possible confusion, that {u, v} is an edge of the graph.

A computer network may contain multiple links between data centers, as shown in Figure 2.
To model such networks we need graphs that have more than one edge connecting the same
pair of vertices. Graphs that may have multiple edges connecting the same vertices are called
multigraphs. When there are m different edges associated to the same unordered pair of vertices
{u, v}, we also say that {u, v} is an edge of multiplicity m. That is, we can think of this set of
edges as m different copies of an edge {u, v}.

San Francisco

Los Angeles

Denver

Detroit
Chicago New York

Washington

FIGURE 2 A Computer Network with Multiple Links between Data Centers.

Sometimes a communications link connects a data center with itself, perhaps a feedback
loop for diagnostic purposes. Such a network is illustrated in Figure 3. To model this network we

San Francisco

Los Angeles

Denver

Detroit
Chicago New York

Washington

FIGURE 3 A Computer Network with Diagnostic Links.

10.1 Graphs and Graph Models 643

San Francisco

Los Angeles

Denver

Detroit
Chicago New York

Washington

FIGURE 4 A Communications Network with One-Way Communications Links.

need to include edges that connect a vertex to itself. Such edges are called loops, and sometimes
we may even have more than one loop at a vertex. Graphs that may include loops, and possibly
multiple edges connecting the same pair of vertices or a vertex to itself, are sometimes called
pseudographs.

So far the graphs we have introduced are undirected graphs. Their edges are also said
to be undirected. However, to construct a graph model, we may find it necessary to assign
directions to the edges of a graph. For example, in a computer network, some links may operate
in only one direction (such links are called single duplex lines). This may be the case if there is
a large amount of traffic sent to some data centers, with little or no traffic going in the opposite
direction. Such a network is shown in Figure 4.

To model such a computer network we use a directed graph. Each edge of a directed graph
is associated to an ordered pair. The definition of directed graph we give here is more general
than the one we used in Chapter 9, where we used directed graphs to represent relations.

DEFINITION 2 A directed graph (or digraph) (V , E) consists of a nonempty set of vertices V and a set of
directed edges (or arcs) E. Each directed edge is associated with an ordered pair of vertices.
The directed edge associated with the ordered pair (u, v) is said to start at u and end at v.

When we depict a directed graph with a line drawing, we use an arrow pointing from u to v to
indicate the direction of an edge that starts at u and ends at v. A directed graph may contain loops
and it may contain multiple directed edges that start and end at the same vertices.A directed graph
may also contain directed edges that connect vertices u and v in both directions; that is, when a
digraph contains an edge from u to v, it may also contain one or more edges from v to u. Note that
we obtain a directed graph when we assign a direction to each edge in an undirected graph. When
a directed graph has no loops and has no multiple directed edges, it is called a simple directed
graph. Because a simple directed graph has at most one edge associated to each ordered pair
of vertices (u, v), we call (u, v) an edge if there is an edge associated to it in the graph.

In some computer networks, multiple communication links between two data centers may
be present, as illustrated in Figure 5. Directed graphs that may have multiple directed edges
from a vertex to a second (possibly the same) vertex are used to model such networks. We called
such graphs directed multigraphs. When there are m directed edges, each associated to an
ordered pair of vertices (u, v), we say that (u, v) is an edge of multiplicity m.

San Francisco

Los Angeles

Denver

Detroit
Chicago New York

Washington

FIGURE 5 A Computer Network with Multiple One-Way Links.

644 10 / Graphs

TABLE 1 Graph Terminology.

Type Edges Multiple Edges Allowed? Loops Allowed?

Simple graph Undirected No No

Multigraph Undirected Yes No

Pseudograph Undirected Yes Yes

Simple directed graph Directed No No

Directed multigraph Directed Yes Yes

Mixed graph Directed and undirected Yes Yes

For some models we may need a graph where some edges are undirected, while others are
directed.A graph with both directed and undirected edges is called a mixed graph. For example,
a mixed graph might be used to model a computer network containing links that operate in both
directions and other links that operate only in one direction.

This terminology for the various types of graphs is summarized in Table 1. We will some-
times use the term graph as a general term to describe graphs with directed or undirected edges
(or both), with or without loops, and with or without multiple edges. At other times, when the
context is clear, we will use the term graph to refer only to undirected graphs.

Because of the relatively modern interest in graph theory, and because it has applications to a
wide variety of disciplines, many different terminologies of graph theory have been introduced.
The reader should determine how such terms are being used whenever they are encountered.
The terminology used by mathematicians to describe graphs has been increasingly standardized,
but the terminology used to discuss graphs when they are used in other disciplines is still quite
varied. Although the terminology used to describe graphs may vary, three key questions can
help us understand the structure of a graph:

! Are the edges of the graph undirected or directed (or both)?

! If the graph is undirected, are multiple edges present that connect the same pair of vertices?
If the graph is directed, are multiple directed edges present?

! Are loops present?

Answering such questions helps us understand graphs. It is less important to remember the
particular terminology used.

Graph Models

Graphs are used in a wide variety of models. We began this section by describing how to construct
graph models of communications networks linking data centers. We will complete this section
by describing some diverse graph models for some interesting applications. We will return to
many of these applications later in this chapter and in Chapter 11. We will introduce additional
graph models in subsequent sections of this and later chapters. Also, recall that directed graph

Can you find a subject to

which graph theory has

not been applied?

models for some applications were introduced in Chapter 9. When we build a graph model, we
need to make sure that we have correctly answered the three key questions we posed about the
structure of a graph.

SOCIAL NETWORKS Graphs are extensively used to model social structures based on dif-
ferent kinds of relationships between people or groups of people. These social structures, and the
graphs that represent them, are known as social networks. In these graph models, individuals
or organizations are represented by vertices; relationships between individuals or organizations
are represented by edges. The study of social networks is an extremely active multidisciplinary
area, and many different types of relationships between people have been studied using them.

10.1 Graphs and Graph Models 645

Jan Todd

Eduardo

Kamlesh

Lila

Liz

Kari Shaquira

Joel

Koko

ChingKamini
Amy

Gail

Steve

Paula

FIGURE 6 An Acquaintanceship Graph.

Linda Brian

Deborah Fred Yvonne

FIGURE 7 An Influence Graph.

We will introduce some of the most commonly studied social networks here. More information
about social networks can be found in [Ne10] and [EaKl10].

EXAMPLE 1 Acquaintanceship and Friendship Graphs We can use a simple graph to represent whether
two people know each other, that is, whether they are acquainted, or whether they are friends
(either in the real world in the virtual world via a social networking site such as Facebook).
Each person in a particular group of people is represented by a vertex. An undirected edge is
used to connect two people when these people know each other, when we are concerned only
with acquaintanceship, or whether they are friends. No multiple edges and usually no loops are
used. (If we want to include the notion of self-knowledge, we would include loops.) A small
acquaintanceship graph is shown in Figure 6. The acquaintanceship graph of all people in the
world has more than six billion vertices and probably more than one trillion edges! We will
discuss this graph further in Section 10.4. ▲

EXAMPLE 2 Influence Graphs In studies of group behavior it is observed that certain people can influence
the thinking of others. A directed graph called an influence graph can be used to model this
behavior. Each person of the group is represented by a vertex. There is a directed edge from
vertex a to vertex b when the person represented by vertex a can influence the person represented
by vertex b. This graph does not contain loops and it does not contain multiple directed edges.
An example of an influence graph for members of a group is shown in Figure 7. In the group
modeled by this influence graph, Deborah cannot be influenced, but she can influence Brian,
Fred, and Linda. Also, Yvonne and Brian can influence each other. ▲

EXAMPLE 3 Collaboration Graphs A collaboration graph is used to model social networks where two
people are related by working together in a particular way. Collaboration graphs are simple
graphs, as edges in these graphs are undirected and there are no multiple edges or loops. Vertices
in these graphs represent people; two people are connected by an undirected edge when the
people have collaborated. There are no loops nor multiple edges in these graphs. The Hollywood
graph is a collaborator graph that represents actors by vertices and connects two actors with
an edge if they have worked together on a movie or television show. The Hollywood graph is a
huge graph with more than 1.5 million vertices (as of early 2011). We will discuss some aspects
of the Hollywood graph later in Section 10.4.

In an academic collaboration graph, vertices represent people (perhaps restricted to mem-
bers of a certain academic community), and edges link two people if they have jointly published
a paper. The collaboration graph for people who have published research papers in mathematics
was found in 2004 to have more than 400,000 vertices and 675,000 edges, and these numbers
have grown considerably since then. We will have more to say about this graph in Section 10.4.
Collaboration graphs have also been used in sports, where two professional athletes are consid-
ered to have collaborated if they have ever played on the same team during a regular season of
their sport. ▲

646 10 / Graphs

COMMUNICATION NETWORKS We can model different communications networks using
vertices to represent devices and edges to represent the particular type of communications links
of interest. We have already modeled a data network in the first part of this section.

EXAMPLE 4 Call Graphs Graphs can be used to model telephone calls made in a network, such as a long-
distance telephone network. In particular, a directed multigraph can be used to model calls where
each telephone number is represented by a vertex and each telephone call is represented by a
directed edge. The edge representing a call starts at the telephone number from which the call
was made and ends at the telephone number to which the call was made. We need directed edges
because the direction in which the call is made matters. We need multiple directed edges because
we want to represent each call made from a particular telephone number to a second number.

A small telephone call graph is displayed in Figure 8(a), representing seven telephone
numbers. This graph shows, for instance, that three calls have been made from 732-555-1234
to 732-555-9876 and two in the other direction, but no calls have been made from 732-555-4444
to any of the other six numbers except 732-555-0011. When we care only whether there has been
a call connecting two telephone numbers, we use an undirected graph with an edge connecting
telephone numbers when there has been a call between these numbers. This version of the call
graph is displayed in Figure 8(b).

Call graphs that model actual calling activities can be huge. For example, one call graph
studied at AT&T, which models calls during 20 days, has about 290 million vertices and 4 billion
edges. We will discuss call graphs further in Section 10.4. ▲

INFORMATION NETWORKS Graphs can be used to model various networks that link
particular types of information. Here, we will describe how to model the World Wide Web using
a graph. We will also describe how to use a graph to model the citations in different types of
documents.

EXAMPLE 5 The Web Graph The World Wide Web can be modeled as a directed graph where each Web
page is represented by a vertex and where an edge starts at the Web page a and ends at the
Web page b if there is a link on a pointing to b. Because new Web pages are created and others
removed somewhere on the Web almost every second, the Web graph changes on an almost
continual basis. Many people are studying the properties of the Web graph to better understand
the nature of the Web. We will return to Web graphs in Section 10.4, and in Chapter 11 we will
explain how the Web graph is used by the Web crawlers that search engines use to create indexes
of Web pages. ▲

EXAMPLE 6 Citation Graphs Graphs can be used to represent citations in different types of documents,
including academic papers, patents, and legal opinions. In such graphs, each document is rep-
resented by a vertex, and there is an edge from one document to a second document if the

(a)

732-555-1234

732-555-1001

732-555-6666

732-555-0011

732-555-4444

732-555-9876

(b)

732-555-1234

732-555-1001

732-555-6666

732-555-0069732-555-0069

732-555-0011

732-555-4444

732-555-9876

FIGURE 8 A Call Graph.

10.1 Graphs and Graph Models 647

first document cites the second in its citation list. (In an academic paper, the citation list is the
bibliography, or list of references; in a patent it is the list of previous patents that are cited; and
in a legal opinion it is the list of previous opinions cited.) A citation graph is a directed graph
without loops or multiple edges. ▲

SOFTWARE DESIGN APPLICATIONS Graph models are useful tools in the design of
software. We will briefly describe two of these models here.

EXAMPLE 7 Module Dependency Graphs One of the most important tasks in designing software is how to
structure a program into different parts, or modules. Understanding how the different modules of
a program interact is essential not only for program design, but also for testing and maintenance
of the resulting software.A module dependency graph provides a useful tool for understanding
how different modules of a program interact. In a program dependency graph, each module is
represented by a vertex. There is a directed edge from a module to a second module if the second
module depends on the first. An example of a program dependency graph for a web browser is
shown in Figure 9. ▲

EXAMPLE 8 Precedence Graphs and Concurrent Processing Computer programs can be executed more
rapidly by executing certain statements concurrently. It is important not to execute a statement
that requires results of statements not yet executed. The dependence of statements on previous
statements can be represented by a directed graph. Each statement is represented by a vertex,
and there is an edge from one statement to a second statement if the second statement cannot
be executed before the first statement. This resulting graph is called a precedence graph. A
computer program and its graph are displayed in Figure 10. For instance, the graph shows that
statement S5 cannot be executed before statements S1, S2, and S4 are executed. ▲

TRANSPORTATION NETWORKS We can use graphs to model many different types of
transportation networks, including road, air, and rail networks, as well shipping networks.

EXAMPLE 9 Airline Routes We can model airline networks by representing each airport by a vertex. In
particular, we can model all the flights by a particular airline each day using a directed edge
to represent each flight, going from the vertex representing the departure airport to the vertex
representing the destination airport. The resulting graph will generally be a directed multigraph,
as there may be multiple flights from one airport to some other airport during the same day. ▲

EXAMPLE 10 Road Networks Graphs can be used to model road networks. In such models, vertices repre-
sent intersections and edges represent roads. When all roads are two-way and there is at most
one road connecting two intersections, we can use a simple undirected graph to model the road
network. However, we will often want to model road networks when some roads are one-way
and when there may be more than one road between two intersections. To build such models,
we use undirected edges to represent two-way roads and we use directed edges to represent

main

page network

parserdisplay protocol

abstract
syntax tree

FIGURE 9 A Module Dependency Graph.

S1

S2

S3

S4

S5

S6

a := 0

b := 1

c := a + 1

d := b + a

e := d + 1

e := c + d

S1

S6

S5

S4
S3

S2

FIGURE 10 A Precedence Graph.

648 10 / Graphs

one-way roads. Multiple undirected edges represent multiple two-way roads connecting the
same two intersections. Multiple directed edges represent multiple one-way roads that start at
one intersection and end at a second intersection. Loops represent loop roads. Mixed graphs are
needed to model road networks that include both one-way and two-way roads. ▲

BIOLOGICAL NETWORKS Many aspects of the biological sciences can be modeled using
graphs.

EXAMPLE 11 Niche Overlap Graphs in Ecology Graphs are used in many models involving the interaction
of different species of animals. For instance, the competition between species in an ecosystem
can be modeled using a niche overlap graph. Each species is represented by a vertex. An
undirected edge connects two vertices if the two species represented by these vertices compete
(that is, some of the food resources they use are the same). A niche overlap graph is a simple
graph because no loops or multiple edges are needed in this model. The graph in Figure 11
models the ecosystem of a forest. We see from this graph that squirrels and raccoons compete
but that crows and shrews do not. ▲

EXAMPLE 12 Protein Interaction Graphs A protein interaction in a living cell occurs when two or more
proteins in that cell bind to perform a biological function. Because protein interactions are
crucial for most biological functions, many scientists work on discovering new proteins and
understanding interactions between proteins. Protein interactions within a cell can be modeled
using a protein interaction graph (also called a protein–protein interaction network), an
undirected graph in which each protein is represented by a vertex, with an edge connecting the
vertices representing each pair of proteins that interact. It is a challenging problem to determine
genuine protein interactions in a cell, as experiments often produce false positives, which con-
clude that two proteins interact when they really do not. Protein interaction graphs can be used
to deduce important biological information, such as by identifying the most important proteins
for various functions and the functionality of newly discovered proteins.

Because there are thousands of different proteins in a typical cell, the protein interaction
graph of a cell is extremely large and complex. For example, yeast cells have more than 6,000
proteins, and more than 80,000 interactions between them are known, and human cells have
more than 100,000 proteins, with perhaps as many as 1,000,000 interactions between them.
Additional vertices and edges are added to a protein interaction graph when new proteins and
interactions between proteins are discovered. Because of the complexity of protein interac-
tion graphs, they are often split into smaller graphs called modules that represent groups of
proteins that are involved in a particular function of a cell. Figure 12 illustrates a module of
the protein interaction graph described in [Bo04], comprising the complex of proteins that de-
grade RNA in human cells. To learn more about protein interaction graphs, see [Bo04], [Ne10],
and [Hu07]. ▲

Hawk Owl
Raccoon

Crow
Opossum

Squirrel

WoodpeckerShrew
Mouse

FIGURE 11 A Niche Overlap Graph.

Q9Y3A5

RRP42

RRP41

RRP40

RRP46PM/Sci2

RRP44

RRP4

RRP43

FIGURE 12 A Module of a Protein Interaction Graph.

10.1 Graphs and Graph Models 649

Team

1

Team

2

Team

5

Team

4

Team

3

Team

6

FIGURE 13 A Graph
Model of a Round-Robin
Tournament.

Stanford

Georgia
Stanford

Xavier

Stanford

Oklahoma

Connecticut

Stanford

Game winners shown in blue

Oklahoma

Kentucky

Oklahoma

Notre Dame

Xavier

Gonzaga

Kentucky

Nebraska

Connecticut

Iowa State
Connecticut

Florida State

Connecticut

Baylor
Baylor

Tennessee
Baylor

Duke

Florida State

Mississippi State

Duke

San Diego State

FIGURE 14 A Single-Elimination Tournament.

TOURNAMENTS We now give some examples that show how graphs can also be used to
model different kinds of tournaments.

EXAMPLE 13 Round-Robin Tournaments A tournament where each team plays every other team exactly
once and no ties are allowed is called a round-robin tournament. Such tournaments can be
modeled using directed graphs where each team is represented by a vertex. Note that (a, b) is
an edge if team a beats team b. This graph is a simple directed graph, containing no loops or
multiple directed edges (because no two teams play each other more than once). Such a directed
graph model is presented in Figure 13. We see that Team 1 is undefeated in this tournament,
and Team 3 is winless. ▲

EXAMPLE 14 Single-EliminationTournaments A tournament where each contestant is eliminated after one
loss is called a single-elimination tournament. Single-elimination tournaments are often used
in sports, including tennis championships and the yearly NCAA basketball championship. We
can model such a tournament using a vertex to represent each game and a directed edge to connect
a game to the next game the winner of this game played in. The graph in Figure 14 represents
the games played by the final 16 teams in the 2010 NCAA women’s basketball tournament. ▲

Exercises

1. Draw graph models, stating the type of graph (from Ta-
ble 1) used, to represent airline routes where every day
there are four flights from Boston to Newark, two flights
from Newark to Boston, three flights from Newark to Mi-
ami, two flights from Miami to Newark, one flight from
Newark to Detroit, two flights from Detroit to Newark,
three flights from Newark to Washington, two flights from
Washington to Newark, and one flight from Washington
to Miami, with

a) an edge between vertices representing cities that have
a flight between them (in either direction).

b) an edge between vertices representing cities for each
flight that operates between them (in either direction).

c) an edge between vertices representing cities for each
flight that operates between them (in either direction),

plus a loop for a special sightseeing trip that takes off
and lands in Miami.

d) an edge from a vertex representing a city where a flight
starts to the vertex representing the city where it ends.

e) an edge for each flight from a vertex representing a
city where the flight begins to the vertex representing
the city where the flight ends.

2. What kind of graph (from Table 1) can be used to model
a highway system between major cities where

a) there is an edge between the vertices representing
cities if there is an interstate highway between them?

b) there is an edge between the vertices representing
cities for each interstate highway between them?

c) there is an edge between the vertices representing
cities for each interstate highway between them, and
there is a loop at the vertex representing a city if there
is an interstate highway that circles this city?

650 10 / Graphs

For Exercises 3–9, determine whether the graph shown has
directed or undirected edges, whether it has multiple edges,
and whether it has one or more loops. Use your answers to
determine the type of graph in Table 1 this graph is.

3. a b

c d

4. a b

c d

5. a b

c d

6. a b

c d

e

7. b

c

de
a

8. a e

d

cb

9. b

c

d
e

f

a

10. For each undirected graph in Exercises 3–9 that is not
simple, find a set of edges to remove to make it simple.

11. Let G be a simple graph. Show that the relation R on the
set of vertices of G such that uRv if and only if there
is an edge associated to {u, v} is a symmetric, irreflexive
relation on G.

12. Let G be an undirected graph with a loop at every vertex.
Show that the relation R on the set of vertices of G such
that uRv if and only if there is an edge associated to {u, v}

is a symmetric, reflexive relation on G.

13. The intersection graph of a collection of sets A1,
A2, . . . , An is the graph that has a vertex for each of these
sets and has an edge connecting the vertices representing
two sets if these sets have a nonempty intersection. Con-
struct the intersection graph of these collections of sets.

a) A1 = {0, 2, 4, 6, 8}, A2 = {0, 1, 2, 3, 4},

A3 = {1, 3, 5, 7, 9}, A4 = {5, 6, 7, 8, 9},

A5 = {0, 1, 8, 9}

b) A1 = {. . . , −4, −3, −2, −1, 0},

A2 = {. . . , −2, −1, 0, 1, 2, . . .},

A3 = {. . . , −6, −4, −2, 0, 2, 4, 6, . . .},

A4 = {. . . , −5, −3, −1, 1, 3, 5, . . .},

A5 = {. . . , −6, −3, 0, 3, 6, . . .}

c) A1 = {x | x < 0},

A2 = {x | −1 < x < 0},

A3 = {x | 0 < x < 1},

A4 = {x | −1 < x < 1},

A5 = {x | x > −1},

A6 = R

14. Use the niche overlap graph in Figure 11 to determine the
species that compete with hawks.

15. Construct a niche overlap graph for six species of birds,
where the hermit thrush competes with the robin and
with the blue jay, the robin also competes with the
mockingbird, the mockingbird also competes with the
blue jay, and the nuthatch competes with the hairy wood-
pecker.

16. Draw the acquaintanceship graph that represents that Tom
and Patricia, Tom and Hope, Tom and Sandy, Tom and
Amy, Tom and Marika, Jeff and Patricia, Jeff and Mary,
Patricia and Hope, Amy and Hope, and Amy and Marika
know each other, but none of the other pairs of people
listed know each other.

17. We can use a graph to represent whether two people were
alive at the same time. Draw such a graph to represent
whether each pair of the mathematicians and computer
scientists with biographies in the first five chapters of
this book who died before 1900 were contemporaneous.
(Assume two people lived at the same time if they were
alive during the same year.)

18. Who can influence Fred and whom can Fred influence in
the influence graph in Example 2?

19. Construct an influence graph for the board members of a
company if the President can influence the Director of Re-
search and Development, the Director of Marketing, and
the Director of Operations; the Director of Research and
Development can influence the Director of Operations;
the Director of Marketing can influence the Director of
Operations; and no one can influence, or be influenced
by, the Chief Financial Officer.

20. Which other teams did Team 4 beat and which teams beat
Team 4 in the round-robin tournament represented by the
graph in Figure 13?

21. In a round-robin tournament the Tigers beat the Blue Jays,
the Tigers beat the Cardinals, the Tigers beat the Orioles,
the Blue Jays beat the Cardinals, the Blue Jays beat the
Orioles, and the Cardinals beat the Orioles. Model this
outcome with a directed graph.

22. Construct the call graph for a set of seven telephone
numbers 555-0011, 555-1221, 555-1333, 555-8888,
555-2222, 555-0091, and 555-1200 if there were three
calls from 555-0011 to 555-8888 and two calls from
555-8888 to 555-0011, two calls from 555-2222 to
555-0091, two calls from 555-1221 to each of the
other numbers, and one call from 555-1333 to each of
555-0011, 555-1221, and 555-1200.

23. Explain how the two telephone call graphs for calls made
during the month of January and calls made during the
month of February can be used to determine the new tele-
phone numbers of people who have changed their tele-
phone numbers.

10.2 Graph Terminology and Special Types of Graphs 651

24. a) Explain how graphs can be used to model electronic
mail messages in a network. Should the edges be di-
rected or undirected? Should multiple edges be al-
lowed? Should loops be allowed?

b) Describe a graph that models the electronic mail sent
in a network in a particular week.

25. How can a graph that models e-mail messages sent in a
network be used to find people who have recently changed
their primary e-mail address?

26. How can a graph that models e-mail messages sent in
a network be used to find electronic mail mailing lists
used to send the same message to many different e-mail
addresses?

27. Describe a graph model that represents whether each per-
son at a party knows the name of each other person at the
party. Should the edges be directed or undirected? Should
multiple edges be allowed? Should loops be allowed?

28. Describe a graph model that represents a subway system
in a large city. Should edges be directed or undirected?
Should multiple edges be allowed? Should loops be al-
lowed?

29. For each course at a university, there may be one or more
other courses that are its prerequisites. How can a graph
be used to model these courses and which courses are pre-
requisites for which courses? Should edges be directed or
undirected? Looking at the graph model, how can we find
courses that do not have any prerequisites and how can
we find courses that are not the prerequisite for any other
courses?

30. Describe a graph model that represents the positive rec-
ommendations of movie critics, using vertices to repre-

sent both these critics and all movies that are currently
being shown.

31. Describe a graph model that represents traditional mar-
riages between men and women. Does this graph have
any special properties?

32. Which statements must be executed before S6 is executed
in the program in Example 8? (Use the precedence graph
in Figure 10.)

33. Construct a precedence graph for the following program:

S1: x := 0

S2: x := x + 1

S3: y := 2

S4: z := y

S5: x := x + 2

S6: y := x + z

S7: z := 4

34. Describe a discrete structure based on a graph that can
be used to model airline routes and their flight times.
[Hint: Add structure to a directed graph.]

35. Describe a discrete structure based on a graph that can be
used to model relationships between pairs of individuals
in a group, where each individual may either like, dislike,
or be neutral about another individual, and the reverse
relationship may be different. [Hint: Add structure to a
directed graph. Treat separately the edges in opposite di-
rections between vertices representing two individuals.]

36. Describe a graph model that can be used to represent all
forms of electronic communication between two people
in a single graph. What kind of graph is needed?

10.2 Graph Terminology and Special Types of Graphs

Introduction

We introduce some of the basic vocabulary of graph theory in this section. We will use this vo-
cabulary later in this chapter when we solve many different types of problems. One such problem
involves determining whether a graph can be drawn in the plane so that no two of its edges cross.
Another example is deciding whether there is a one-to-one correspondence between the vertices
of two graphs that produces a one-to-one correspondence between the edges of the graphs. We
will also introduce several important families of graphs often used as examples and in models.
Several important applications will be described where these special types of graphs arise.

Basic Terminology

First, we give some terminology that describes the vertices and edges of undirected graphs.

DEFINITION 1 Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if u

and v are endpoints of an edge e of G. Such an edge e is called incident with the vertices u

and v and e is said to connect u and v.

652 10 / Graphs

We will also find useful terminology describing the set of vertices adjacent to a particular vertex
of a graph.

DEFINITION 2 The set of all neighbors of a vertex v of G = (V , E), denoted by N(v), is called the neigh-

borhood of v. If A is a subset of V , we denote by N(A) the set of all vertices in G that are
adjacent to at least one vertex in A. So, N(A) =

⋃

v∈A N(v).

To keep track of how many edges are incident to a vertex, we make the following definition.

DEFINITION 3 The degree of a vertex in an undirected graph is the number of edges incident with it, except
that a loop at a vertex contributes twice to the degree of that vertex. The degree of the
vertex v is denoted by deg(v).

EXAMPLE 1 What are the degrees and what are the neighborhoods of the vertices in the graphs G and H

displayed in Figure 1?

Solution: In G, deg(a) = 2, deg(b) = deg(c) = deg(f) = 4, deg(d) = 1, deg(e) = 3, and
deg(g) = 0. The neighborhoods of these vertices are N(a) = {b, f }, N(b) = {a, c, e, f },
N(c) = {b, d, e, f }, N(d) = {c}, N(e) = {b, c, f }, N(f) = {a, b, c, e}, and N(g) = ∅. In
H , deg(a) = 4, deg(b) = deg(e) = 6, deg(c) = 1, and deg(d) = 5. The neighborhoods of
these vertices are N(a) = {b, d, e}, N(b) = {a, b, c, d, e}, N(c) = {b}, N(d) = {a, b, e}, and
N(e) = {a, b, d}. ▲

b c d

f e ga

G

a b c

e d

H

FIGURE 1 The Undirected Graphs G and H .

A vertex of degree zero is called isolated. It follows that an isolated vertex is not adjacent
to any vertex. Vertex g in graph G in Example 1 is isolated. A vertex is pendant if and only
if it has degree one. Consequently, a pendant vertex is adjacent to exactly one other vertex.
Vertex d in graph G in Example 1 is pendant.

Examining the degrees of vertices in a graph model can provide useful information about
the model, as Example 2 shows.

EXAMPLE 2 What does the degree of a vertex in a niche overlap graph (introduced in Example 11 in Sec-
tion 10.1) represent? Which vertices in this graph are pendant and which are isolated? Use the
niche overlap graph shown in Figure 11 of Section 10.1 to interpret your answers.

Solution: There is an edge between two vertices in a niche overlap graph if and only if the two
species represented by these vertices compete. Hence, the degree of a vertex in a niche overlap
graph is the number of species in the ecosystem that compete with the species represented by
this vertex. A vertex is pendant if the species competes with exactly one other species in the

10.2 Graph Terminology and Special Types of Graphs 653

ecosystem. Finally, the vertex representing a species is isolated if this species does not compete
with any other species in the ecosystem.

For instance, the degree of the vertex representing the squirrel in the niche overlap graph
in Figure 11 in Section 10.1 is four, because the squirrel competes with four other species: the
crow, the opossum, the raccoon, and the woodpecker. In this niche overlap graph, the mouse is
the only species represented by a pendant vertex, because the mouse competes only with the
shrew and all other species compete with at least two other species. There are no isolated vertices
in the graph in this niche overlap graph because every species in this ecosystem competes with
at least one other species. ▲

What do we get when we add the degrees of all the vertices of a graph G = (V , E)? Each
edge contributes two to the sum of the degrees of the vertices because an edge is incident with
exactly two (possibly equal) vertices. This means that the sum of the degrees of the vertices
is twice the number of edges. We have the result in Theorem 1, which is sometimes called
the handshaking theorem (and is also often known as the handshaking lemma), because of the
analogy between an edge having two endpoints and a handshake involving two hands.

THEOREM 1 THE HANDSHAKING THEOREM Let G = (V , E) be an undirected graph with m

edges. Then

2m =
∑

v∈V

deg(v).

(Note that this applies even if multiple edges and loops are present.)

EXAMPLE 3 How many edges are there in a graph with 10 vertices each of degree six?

Solution: Because the sum of the degrees of the vertices is 6 · 10 = 60, it follows that 2m = 60
where m is the number of edges. Therefore, m = 30. ▲

Theorem 1 shows that the sum of the degrees of the vertices of an undirected graph is even.
This simple fact has many consequences, one of which is given as Theorem 2.

THEOREM 2 An undirected graph has an even number of vertices of odd degree.

Proof: Let V1 and V2 be the set of vertices of even degree and the set of vertices of odd degree,
respectively, in an undirected graph G = (V , E) with m edges. Then

2m =
∑

v∈V

deg(v) =
∑

v∈V1

deg(v) +
∑

v∈V2

deg(v).

Because deg(v) is even for v ∈ V1, the first term in the right-hand side of the last equality is
even. Furthermore, the sum of the two terms on the right-hand side of the last equality is even,
because this sum is 2m. Hence, the second term in the sum is also even. Because all the terms in
this sum are odd, there must be an even number of such terms. Thus, there are an even number
of vertices of odd degree.

Terminology for graphs with directed edges reflects the fact that edges in directed graphs
have directions.

654 10 / Graphs

DEFINITION 4 When (u, v) is an edge of the graph G with directed edges, u is said to be adjacent to v and v

is said to be adjacent from u. The vertex u is called the initial vertex of (u, v), and v is called
the terminal or end vertex of (u, v). The initial vertex and terminal vertex of a loop are the
same.

Because the edges in graphs with directed edges are ordered pairs, the definition of the degree
of a vertex can be refined to reflect the number of edges with this vertex as the initial vertex and
as the terminal vertex.

DEFINITION 5 In a graph with directed edges the in-degree of a vertex v, denoted by deg−(v), is the number
of edges with v as their terminal vertex. The out-degree of v, denoted by deg+(v), is the
number of edges with v as their initial vertex. (Note that a loop at a vertex contributes 1 to
both the in-degree and the out-degree of this vertex.)

EXAMPLE 4 Find the in-degree and out-degree of each vertex in the graph G with directed edges shown in
Figure 2.

e d f

a

b

c

G

FIGURE 2 The Directed Graph G.

Solution: The in-degrees in G are deg−(a) = 2, deg−(b) = 2, deg−(c) = 3, deg−(d) = 2,
deg−(e) = 3, and deg−(f) = 0. The out-degrees are deg+(a) = 4, deg+(b) = 1, deg+(c) = 2,
deg+(d) = 2, deg+(e) = 3, and deg+(f) = 0. ▲

Because each edge has an initial vertex and a terminal vertex, the sum of the in-degrees and
the sum of the out-degrees of all vertices in a graph with directed edges are the same. Both of
these sums are the number of edges in the graph. This result is stated as Theorem 3.

THEOREM 3 Let G = (V , E) be a graph with directed edges. Then

∑

v∈V

deg−(v) =
∑

v∈V

deg+(v) = |E|.

There are many properties of a graph with directed edges that do not depend on the direction
of its edges. Consequently, it is often useful to ignore these directions. The undirected graph that
results from ignoring directions of edges is called the underlying undirected graph. A graph
with directed edges and its underlying undirected graph have the same number of edges.

Some Special Simple Graphs

We will now introduce several classes of simple graphs. These graphs are often used as examples
and arise in many applications.

10.2 Graph Terminology and Special Types of Graphs 655

EXAMPLE 5 Complete Graphs A complete graph on n vertices, denoted by Kn, is a simple graph
that contains exactly one edge between each pair of distinct vertices. The graphs Kn, for
n = 1, 2, 3, 4, 5, 6, are displayed in Figure 3. A simple graph for which there is at least one
pair of distinct vertex not connected by an edge is called noncomplete. ▲

K1 K2 K3 K4 K5 K6

FIGURE 3 The Graphs Kn for 1 ≤ n ≤ 6.

EXAMPLE 6 Cycles A cycle Cn, n ≥ 3, consists of n vertices v1, v2, . . . , vn and edges {v1, v2},
{v2, v3}, . . . , {vn−1, vn}, and {vn, v1}. The cycles C3, C4, C5, and C6 are displayed in
Figure 4. ▲

C3 C4 C5 C6

FIGURE 4 The Cycles C3, C4, C5, and C6.

EXAMPLE 7 Wheels We obtain a wheel Wn when we add an additional vertex to a cycle Cn, for n ≥ 3,
and connect this new vertex to each of the n vertices in Cn, by new edges. The wheels W3, W4,
W5, and W6 are displayed in Figure 5. ▲

W3 W4 W5 W6

FIGURE 5 The Wheels W3, W4, W5, and W6.

EXAMPLE 8 n-Cubes An n-dimensional hypercube, or n-cube, denoted by Qn, is a graph that has vertices
representing the 2n bit strings of length n. Two vertices are adjacent if and only if the bit strings
that they represent differ in exactly one bit position. We display Q1, Q2, and Q3 in Figure 6.

Note that you can construct the (n + 1)-cube Qn+1 from the n-cube Qn by making two
copies of Qn, prefacing the labels on the vertices with a 0 in one copy of Qn and with a 1 in the
other copy of Qn, and adding edges connecting two vertices that have labels differing only in
the first bit. In Figure 6, Q3 is constructed from Q2 by drawing two copies of Q2 as the top and
bottom faces of Q3, adding 0 at the beginning of the label of each vertex in the bottom face and
1 at the beginning of the label of each vertex in the top face. (Here, by face we mean a face of
a cube in three-dimensional space. Think of drawing the graph Q3 in three-dimensional space
with copies of Q2 as the top and bottom faces of a cube and then drawing the projection of the
resulting depiction in the plane.) ▲

656 10 / Graphs

Q1 Q2

0 1

00 01

10 11

Q3

000 001

100 101

111110

010 011

FIGURE 6 The n-cube Qn, n = 1, 2, 3.

Bipartite Graphs

Sometimes a graph has the property that its vertex set can be divided into two disjoint subsets
such that each edge connects a vertex in one of these subsets to a vertex in the other subset.
For example, consider the graph representing marriages between men and women in a village,
where each person is represented by a vertex and a marriage is represented by an edge. In this
graph, each edge connects a vertex in the subset of vertices representing males and a vertex in
the subset of vertices representing females. This leads us to Definition 5.

DEFINITION 6 A simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint
sets V1 and V2 such that every edge in the graph connects a vertex in V1 and a vertex in V2

(so that no edge in G connects either two vertices in V1 or two vertices in V2). When this
condition holds, we call the pair (V1, V2) a bipartition of the vertex set V of G.

In Example 9 we will show that C6 is bipartite, and in Example 10 we will show that K3 is
not bipartite.

EXAMPLE 9 C6 is bipartite, as shown in Figure 7, because its vertex set can be partitioned into the two sets
V1 = {v1, v3, v5} and V2 = {v2, v4, v6}, and every edge of C6 connects a vertex in V1 and a
vertex in V2. ▲

EXAMPLE 10 K3 is not bipartite. To verify this, note that if we divide the vertex set of K3 into two disjoint
sets, one of the two sets must contain two vertices. If the graph were bipartite, these two vertices
could not be connected by an edge, but in K3 each vertex is connected to every other vertex by
an edge. ▲

EXAMPLE 11 Are the graphs G and H displayed in Figure 8 bipartite?

V1 V2
v1

v3

v5

v2

v4

v6

FIGURE 7 Showing That C6 Is
Bipartite.

a b

c

e d

f

g

G

a b

e d

H

f c

FIGURE 8 The Undirected Graphs G and H .

10.2 Graph Terminology and Special Types of Graphs 657

Solution: Graph G is bipartite because its vertex set is the union of two disjoint sets, {a, b, d}

and {c, e, f, g}, and each edge connects a vertex in one of these subsets to a vertex in the other
subset. (Note that for G to be bipartite it is not necessary that every vertex in {a, b, d} be adjacent
to every vertex in {c, e, f, g}. For instance, b and g are not adjacent.)

Graph H is not bipartite because its vertex set cannot be partitioned into two subsets so
that edges do not connect two vertices from the same subset. (The reader should verify this by
considering the vertices a, b, and f .) ▲

Theorem 4 provides a useful criterion for determining whether a graph is bipartite.

THEOREM 4 A simple graph is bipartite if and only if it is possible to assign one of two different colors to
each vertex of the graph so that no two adjacent vertices are assigned the same color.

Proof: First, suppose that G = (V , E) is a bipartite simple graph. Then V = V1 ∪ V2, where V1

and V2 are disjoint sets and every edge in E connects a vertex in V1 and a vertex in V2. If we
assign one color to each vertex in V1 and a second color to each vertex in V2, then no two
adjacent vertices are assigned the same color.

Now suppose that it is possible to assign colors to the vertices of the graph using just two
colors so that no two adjacent vertices are assigned the same color. Let V1 be the set of vertices
assigned one color and V2 be the set of vertices assigned the other color. Then, V1 and V2

are disjoint and V = V1 ∪ V2. Furthermore, every edge connects a vertex in V1 and a vertex
in V2 because no two adjacent vertices are either both in V1 or both in V2. Consequently, G

is bipartite.

We illustrate how Theorem 4 can be used to determine whether a graph is bipartite in
Example 12.

EXAMPLE 12 Use Theorem 4 to determine whether the graphs in Example 11 are bipartite.

Solution: We first consider the graph G. We will try to assign one of two colors, say red and
blue, to each vertex in G so that no edge in G connects a red vertex and a blue vertex. Without
loss of generality we begin by arbitrarily assigning red to a. Then, we must assign blue to c, e,
f , and g, because each of these vertices is adjacent to a. To avoid having an edge with two blue
endpoints, we must assign red to all the vertices adjacent to either c, e, f , or g. This means that
we must assign red to both b and d (and means that a must be assigned red, which it already has
been). We have now assigned colors to all vertices, with a, b, and d red and c, e, f , and g blue.
Checking all edges, we see that every edge connects a red vertex and a blue vertex. Hence, by
Theorem 4 the graph G is bipartite.

Next, we will try to assign either red or blue to each vertex in H so that no edge in H

connects a red vertex and a blue vertex. Without loss of generality we arbitrarily assign red to a.
Then, we must assign blue to b, e, and f , because each is adjacent to a. But this is not possible
because e and f are adjacent, so both cannot be assigned blue. This argument shows that we
cannot assign one of two colors to each of the vertices of H so that no adjacent vertices are
assigned the same color. It follows by Theorem 4 that H is not bipartite. ▲

Theorem 4 is an example of a result in the part of graph theory known as graph colorings.
Graph colorings is an important part of graph theory with important applications. We will study
graph colorings further in Section 10.8.

Another useful criterion for determining whether a graph is bipartite is based on the notion
of a path, a topic we study in Section 10.4. A graph is bipartite if and only if it is not possible
to start at a vertex and return to this vertex by traversing an odd number of distinct edges. We
will make this notion more precise when we discuss paths and circuits in graphs in Section 10.4
(see Exercise 63 in that section).

658 10 / Graphs

EXAMPLE 13 Complete Bipartite Graphs A complete bipartite graph Km,n is a graph that has its vertex
set partitioned into two subsets of m and n vertices, respectively with an edge between two
vertices if and only if one vertex is in the first subset and the other vertex is in the second subset.
The complete bipartite graphs K2,3, K3,3, K3,5, and K2,6 are displayed in Figure 9. ▲

K2,3 K3,3

K3,5 K2,6

FIGURE 9 Some Complete Bipartite Graphs.

Bipartite Graphs and Matchings

Bipartite graphs can be used to model many types of applications that involve matching the
elements of one set to elements of another, as Example 14 illustrates.

EXAMPLE 14 Job Assignments Suppose that there are m employees in a group and n different jobs that
need to be done, where m ≥ n. Each employee is trained to do one or more of these n jobs. We
would like to assign an employee to each job. To help with this task, we can use a graph to model
employee capabilities. We represent each employee by a vertex and each job by a vertex. For
each employee, we include an edge from that employee to all jobs that the employee has been
trained to do. Note that the vertex set of this graph can be partitioned into two disjoint sets, the
set of employees and the set of jobs, and each edge connects an employee to a job. Consequently,
this graph is bipartite, where the bipartition is (E, J) where E is the set of employees and J is
the set of jobs. We now consider two different scenarios.

First, suppose that a group has four employees: Alvarez, Berkowitz, Chen, and Davis;
and suppose that four jobs need to be done to complete Project 1: requirements, architecture,
implementation, and testing. Suppose that Alvarez has been trained to do requirements and
testing; Berkowitz has been trained to do architecture, implementation, and testing; Chen has
been trained to do requirements, architecture, and implementation; and Davis has only been
trained to do requirements. We model these employee capabilities using the bipartite graph in
Figure 10(a).

Second, suppose that a group has second group also has four employees: Washington, Xuan,
Ybarra, and Ziegler; and suppose that the same four jobs need to be done to complete Project 2 as
are needed to complete Project 1. Suppose that Washington has been trained to do architecture;
Xuan has been trained to do requirements, implementation, and testing;Ybarra has been trained
to do architecture; and Ziegler has been trained to do requirements, architecture and testing. We
model these employee capabilities using the bipartite graph in Figure 10(b).

To complete Project 1, we must assign an employee to each job so that every job has an
employee assigned to it, and so that no employee is assigned more than one job. We can do this
by assigning Alvarez to testing, Berkowitz to implementation, Chen to architecture, and Davis
to requirements, as shown in Figure 10(a) (where blue lines show this assignment of jobs).

To complete Project 2, we must also assign an employee to each job so that every job has
an employee assigned to it and no employee is assigned more than one job. However, this is

10.2 Graph Terminology and Special Types of Graphs 659

Alvarez Berkowitz Chen Davis

requirements architecture implementation testing

Washington Xuan Ybarra Ziegler

requirements architecture implementation testing

(a) (b)

FIGURE 10 Modeling the Jobs for Which Employees Have Been Trained.

impossible because there are only two employees, Xuan and Ziegler, who have been trained for
at least one of the three jobs of requirements, implementation, and testing. Consequently, there
is no way to assign three different employees to these three job so that each job is assigned an
employee with the appropriate training. ▲

Finding an assignment of jobs to employees can be thought of as finding a matching in the
graph model, where a matching M in a simple graph G = (V , E) is a subset of the set E of
edges of the graph such that no two edges are incident with the same vertex. In other words, a
matching is a subset of edges such that if {s, t} and {u, v} are distinct edges of the matching,
then s, t , u, and v are distinct. A vertex that is the endpoint of an edge of a matching M is said to
be matched in M; otherwise it is said to be unmatched. A maximum matching is a matching
with the largest number of edges. We say that a matching M in a bipartite graph G = (V , E)

with bipartition (V1, V2) is a complete matching from V1 to V2 if every vertex in V1 is the
endpoint of an edge in the matching, or equivalently, if |M| = |V1|. For example, to assign jobs
to employees so that the largest number of jobs are assigned employees, we seek a maximum
matching in the graph that models employee capabilities. To assign employees to all jobs we
seek a complete matching from the set of jobs to the set of employees. In Example 14, we found
a complete matching from the set of jobs to the set of employees for Project 1, and this matching
is a maximun matching, and we showed that no complete matching exists from the set of jobs
to the employees for Project 2.

We now give an example of how matchings can be used to model marriages.

EXAMPLE 15 Marriages on an Island Suppose that there are m men and n women on an island. Each person
has a list of members of the opposite gender acceptable as a spouse. We construct a bipartite
graph G = (V1, V2) where V1 is the set of men and V2 is the set of women so that there is an
edge between a man and a woman if they find each other acceptable as a spouse. A matching in
this graph consists of a set of edges, where each pair of endpoints of an edge is a husband-wife
pair. A maximum matching is a largest possible set of married couples, and a complete matching
of V1 is a set of married couples where every man is married, but possibly not all women. ▲

NECESSARY AND SUFFICIENT CONDITIONS FOR COMPLETE MATCHINGS We
now turn our attention to the question of determining whether a complete matching from V1

to V2 exists when (V1, V2) is a bipartition of a bipartite graph G = (V , E). We will introduce a
theorem that provides a set of necessary and sufficient conditions for the existence of a complete
matching. This theorem was proved by Philip Hall in 1935.

Hall’s marriage theorem

is an example of a

theorem where obvious

necessary conditions are

sufficient too.

THEOREM 5 HALL’S MARRIAGE THEOREM The bipartite graph G = (V , E) with bipartition
(V1, V2) has a complete matching from V1 to V2 if and only if |N(A)| ≥ |A| for all subsets
A of V1.

660 10 / Graphs

Proof: We first prove the only if part of the theorem. To do so, suppose that there is a complete
matching M from V1 to V2. Then, if A ⊆ V1, for every vertex v ∈ A, there is an edge in M

connecting v to a vertex in V2. Consequently, there are at least as many vertices in V2 that are
neighbors of vertices in V1 as there are vertices in V1. It follows that |N(A)| ≥ |A|.

To prove the if part of the theorem, the more difficult part, we need to show that if
|N(A)| ≥ |A| for all A ⊆ V1, then there is a complete matching M from V1 to V2. We will
use strong induction on |V1| to prove this.

Basis step: If |V1| = 1, then V1 contains a single vertex v0. Because |N({v0})| ≥ |{v0}| = 1,
there is at least one edge connecting v0 and a vertex w0 ∈ V2. Any such edge forms a complete
matching from V1 to V2.

Inductive step: We first state the inductive hypothesis.

Inductive hypothesis: Let k be a positive integer. If G = (V , E) is a bipartite graph with bipar-
tition (V1, V2), and |V1| = j ≤ k, then there is a complete matching M from V1 to V2 whenever
the condition that |N(A)| ≥ |A| for all A ⊆ V1 is met.

Now suppose that H = (W, F) is a bipartite graph with bipartition (W1, W2) and |W1| =

k + 1. We will prove that the inductive holds using a proof by cases, using two case. Case (i)

applies when for all integers j with 1 ≤ j ≤ k, the vertices in every set of j elements from W1 are
adjacent to at least j + 1 elements of W2. Case (ii) applies when for some j with 1 ≤ j ≤ k there
is a subset W ′

1 of j vertices such that there are exactly j neighbors of these vertices in W2. Because
either Case (i) or Case (ii) holds, we need only consider these cases to complete the inductive step.

Case (i): Suppose that for all integers j with 1 ≤ j ≤ k, the vertices in every subset of j elements
from W1 are adjacent to at least j + 1 elements of W2. Then, we select a vertex v ∈ W1 and an
element w ∈ N({v}), which must exist by our assumption that |N({v}| ≥ |{v}| = 1. We delete
v and w and all edges incident to them from H . This produces a bipartite graph H ′ with
bipartition (W1 − {v}, W2 − {w}). Because |W1 − {v}| = k, the inductive hypothesis tells us
there is a complete matching from W1 − {v} to W2 − {w}. Adding the edge from v to w to this
complete matching produces a complete matching from W1 to W2.

Case (ii): Suppose that for some j with 1 ≤ j ≤ k, there is a subset W ′
1 of j vertices such that

there are exactly j neighbors of these vertices in W2. Let W ′
2 be the set of these neighbors. Then,

by the inductive hypothesis there is a complete matching from W ′
1 to W ′

2. Remove these 2j

vertices from W1 and W2 and all incident edges to produce a bipartite graph K with bipartition
(W1 − W ′

1, W2 − W ′
2).

We will show that the graph K satisfies the condition |N(A)| ≥ |A| for all subsets A of
W1 − W ′

1. If not, there would be a subset of t vertices of W1 − W ′
1 where 1 ≤ t ≤ k + 1 − j

such that the vertices in this subset have fewer than t vertices of W2 − W ′
2 as neighbors. Then,

the set of j + t vertices of W1 consisting of these t vertices together with the j vertices we
removed from W1 has fewer than j + t neighbors in W2, contradicting the hypothesis that
|N(A)| ≥ |A| for all A ⊆ W1.

PHILIP HALL (1904–1982) Philip Hall grew up in London, where his mother was a dressmaker. He won a
scholarship for board school reserved for needy children, and later a scholarship to King’s College of Cambridge
University. He received his bachelors degree in 1925. In 1926, unsure of his career goals, he took a civil service
exam, but decided to continue his studies at Cambridge after failing.

In 1927 Hall was elected to a fellowship at King’s College; soon after, he made his first important discovery
in group theory. The results he proved are now known as Hall’s theorems. In 1933 he was appointed as a Lecturer
at Cambridge, where he remained until 1941. During World War II he worked as a cryptographer at Bletchley
Park breaking Italian and Japanese codes. At the end of the war, Hall returned to King’s College, and was soon
promoted. In 1953 he was appointed to the Sadleirian Chair. His work during the 1950s proved to be extremely

influential to the rapid development of group theory during the 1960s.
Hall loved poetry and recited it beautifully in Italian and Japanese, as well as English. He was interested in art, music, and

botany. He was quite shy and disliked large groups of people. Hall had an incredibly broad and varied knowledge, and was respected
for his integrity, intellectual standards, and judgement. He was beloved by his students.

10.2 Graph Terminology and Special Types of Graphs 661

Hence, by the inductive hypothesis, the graph K has a complete matching. Combining this
complete matching with the complete matching from W ′

1 to W ′
2, we obtain a complete matching

from W1 to W2.

We have shown that in both cases there is a complete matching from W1 to W2. This
completes the inductive step and completes the proof.

We have used strong induction to prove Hall’s marriage theorem. Although our proof is
elegant, it does have some drawbacks. In particular, we cannot construct an algorithm based on
this proof that finds a complete matching in a bipartite graph. For a constructive proof that can
be used as the basis of an algorithm, see [Gi85].

Some Applications of Special Types of Graphs

We conclude this section by introducing some additional graph models that involve the special
types of graph we have discussed in this section.

EXAMPLE 16 Local Area Networks The various computers in a building, such as minicomputers and per-
sonal computers, as well as peripheral devices such as printers and plotters, can be connected
using a local area network. Some of these networks are based on a star topology, where all
devices are connected to a central control device. A local area network can be represented using
a complete bipartite graph K1,n, as shown in Figure 11(a). Messages are sent from device to
device through the central control device.

(a) (b) (c)

FIGURE 11 Star, Ring, and Hybrid Topologies for Local Area Networks.

Other local area networks are based on a ring topology, where each device is connected to
exactly two others. Local area networks with a ring topology are modeled using n-cycles, Cn,
as shown in Figure 11(b). Messages are sent from device to device around the cycle until the
intended recipient of a message is reached.

Finally, some local area networks use a hybrid of these two topologies. Messages may be
sent around the ring, or through a central device. This redundancy makes the network more
reliable. Local area networks with this redundancy can be modeled using wheels Wn, as shown
in Figure 11(c). ▲

EXAMPLE 17 Interconnection Networks for Parallel Computation For many years, computers executed
programs one operation at a time. Consequently, the algorithms written to solve problems were
designed to perform one step at a time; such algorithms are called serial. (Almost all algorithms
described in this book are serial.) However, many computationally intense problems, such as
weather simulations, medical imaging, and cryptanalysis, cannot be solved in a reasonable
amount of time using serial operations, even on a supercomputer. Furthermore, there is a physical
limit to how fast a computer can carry out basic operations, so there will always be problems
that cannot be solved in a reasonable length of time using serial operations.

Parallel processing, which uses computers made up of many separate processors, each
with its own memory, helps overcome the limitations of computers with a single processor.
Parallel algorithms, which break a problem into a number of subproblems that can be solved

662 10 / Graphs

P1 P2 P3 P4 P5 P6

FIGURE 12 A Linear
Array for Six Processors.

P(0, 0) P(0, 1) P(0, 2) P(0, 3)

P(1, 0) P(1, 1) P(1, 2) P(1, 3)

P(2, 0) P(2, 1) P(2, 2) P(2, 3)

P(3, 0) P(3, 1) P(3, 2) P(3, 3)

FIGURE 13 A Mesh Network for
16 Processors.

concurrently, can then be devised to rapidly solve problems using a computer with multiple
processors. In a parallel algorithm, a single instruction stream controls the execution of the
algorithm, sending subproblems to different processors, and directs the input and output of
these subproblems to the appropriate processors.

When parallel processing is used, one processor may need output generated by another
processor. Consequently, these processors need to be interconnected. We can use the appropriate
type of graph to represent the interconnection network of the processors in a computer with
multiple processors. In the following discussion, we will describe the most commonly used
types of interconnection networks for parallel processors. The type of interconnection network
used to implement a particular parallel algorithm depends on the requirements for exchange of
data between processors, the desired speed, and, of course, the available hardware.

The simplest, but most expensive, network-interconnecting processors include a two-way
link between each pair of processors. This network can be represented by Kn, the complete
graph on n vertices, when there are n processors. However, there are serious problems with
this type of interconnection network because the required number of connections is so large.
In reality, the number of direct connections to a processor is limited, so when there are a large
number of processors, a processor cannot be linked directly to all others. For example, when
there are 64 processors, C(64, 2) = 2016 connections would be required, and each processor
would have to be directly connected to 63 others.

On the other hand, perhaps the simplest way to interconnect n processors is to use an
arrangement known as a linear array. Each processor Pi , other than P1 and Pn, is connected to
its neighbors Pi−1 and Pi+1 via a two-way link. P1 is connected only to P2, and Pn is connected
only to Pn−1. The linear array for six processors is shown in Figure 12. The advantage of a
linear array is that each processor has at most two direct connections to other processors. The
disadvantage is that it is sometimes necessary to use a large number of intermediate links, called
hops, for processors to share information.

The mesh network (or two-dimensional array) is a commonly used interconnection net-
work. In such a network, the number of processors is a perfect square, say n = m2. The n

processors are labeled P(i, j), 0 ≤ i ≤ m − 1, 0 ≤ j ≤ m − 1. Two-way links connect proces-
sor P(i, j) with its four neighbors, processors P(i ± 1, j) and P(i, j ± 1), as long as these
are processors in the mesh. (Note that four processors, on the corners of the mesh, have only
two adjacent processors, and other processors on the boundaries have only three neighbors.
Sometimes a variant of a mesh network in which every processor has exactly four connections
is used; see Exercise 72.) The mesh network limits the number of links for each processor. Com-
munication between some pairs of processors requires O(

√
n) = O(m) intermediate links. (See

Exercise 73.) The graph representing the mesh network for 16 processors is shown in Figure 13.
One important type of interconnection network is the hypercube. For such a network, the

number of processors is a power of 2, n = 2m. The n processors are labeled P0, P1, . . . , Pn−1.
Each processor has two-way connections to m other processors. Processor Pi is linked to the
processors with indices whose binary representations differ from the binary representation of i

10.2 Graph Terminology and Special Types of Graphs 663

in exactly one bit. The hypercube network balances the number of direct connections for each
processor and the number of intermediate connections required so that processors can com-
municate. Many computers have been built using a hypercube network, and many parallel
algorithms have been devised that use a hypercube network. The graph Qm, the m-cube, rep-
resents the hypercube network with n = 2m processors. Figure 14 displays the hypercube net-
work for eight processors. (Figure 14 displays a different way to draw Q3 than was shown in
Figure 6.) ▲

New Graphs from Old

Sometimes we need only part of a graph to solve a problem. For instance, we may care only
about the part of a large computer network that involves the computer centers in New York,
Denver, Detroit, and Atlanta. Then we can ignore the other computer centers and all telephone
lines not linking two of these specific four computer centers. In the graph model for the large
network, we can remove the vertices corresponding to the computer centers other than the four
of interest, and we can remove all edges incident with a vertex that was removed. When edges
and vertices are removed from a graph, without removing endpoints of any remaining edges, a
smaller graph is obtained. Such a graph is called a subgraph of the original graph.

DEFINITION 7 A subgraph of a graph G = (V , E) is a graph H = (W, F), where W ⊆ V and F ⊆ E. A
subgraph H of G is a proper subgraph of G if H ̸= G.

Given a set of vertices of a graph, we can form a subgraph of this graph with these vertices
and the edges of the graph that connect them.

DEFINITION 8 Let G = (V , E) be a simple graph. The subgraph induced by a subset W of the vertex set V

is the graph (W, F), where the edge set F contains an edge in E if and only if both endpoints
of this edge are in W .

EXAMPLE 18 The graph G shown in Figure 15 is a subgraph of K5. If we add the edge connecting c and e to
G, we obtain the subgraph induced by W = {a, b, c, e}. ▲

REMOVING OR ADDING EDGES OF A GRAPH Given a graph G = (V , E) and an edge
e ∈ E, we can produce a subgraph of G by removing the edge e. The resulting subgraph, denoted
by G − e, has the same vertex set V as G. Its edge set is E − e. Hence,

G − e = (V , E − {e}).

Similarly, if E′ is a subset of E, we can produce a subgraph of G by removing the edges in E′

from the graph. The resulting subgraph has the same vertex set V as G. Its edge set is E − E′.

P0 P7P1 P2 P3 P4 P5 P6

FIGURE 14 A Hypercube Network for Eight Processors.

d c

a

be

c

a

b
e

FIGURE 15 A Subgraph of K5.

664 10 / Graphs

d e

ba c

G1

(a)

d

ba

G2

c

f

(b)

d

ba c

e f

G1 G2

FIGURE 16 (a) The Simple Graphs G1 and G2; (b) Their Union G1 ∪ G2.

We can also add an edge e to a graph to produce a new larger graph when this edge connects
two vertices already in G. We denote by G + e the new graph produced by adding a new edge e,
connecting two previously nonincident vertices, to the graph G Hence,

G + e = (V , E ∪ {e}).

The vertex set of G + e is the same as the vertex set of G and the edge set is the union of the
edge set of G and the set {e}.

EDGE CONTRACTIONS Sometimes when we remove an edge from a graph, we do not
want to retain the endpoints of this edge as separate vertices in the resulting subgraph. In such
a case we perform an edge contraction which removes an edge e with endpoints u and v and
merges u and w into a new single vertex w, and for each edge with u or v as an endpoint replaces
the edge with one with w as endpoint in place of u or v and with the same second endpoint.
Hence, the contraction of the edge e with endpoints u and v in the graph G = (V , E) produces a
new graph G′ = (V ′, E′) (which is not a subgraph of G), where V ′ = V − {u, v} ∪ {w} and E′

contains the edges in E which do not have either u or v as endpoints and an edge connecting w

to every neighbor of either u or v in V . For example, the contraction of the edge connecting the
vertices e and c in the graph G1 in Figure 16 produces a new graph G′

1 with vertices a, b, d ,
and w. As in G1, there is an edge in G′

1 connecting a and b and an edge connecting a and d .
There also is an edge in G′

1 that connects b and w that replaces the edges connecting b and c and
connecting b and e in G1 and an edge in G′

1 that connects d and w replacing the edge connecting
d and e in G1.

REMOVING VERTICES FROM A GRAPH When we remove a vertex v and all edges
incident to it from G = (V , E), we produce a subgraph, denoted by G − v. Observe that
G − v = (V − v, E′), where E′ is the set of edges of G not incident to v. Similarly, if V ′

is a subset of V , then the graph G − V ′ is the subgraph (V − V ′, E′), where E′ is the set of
edges of G not incident to a vertex in V ′.

GRAPH UNIONS Two or more graphs can be combined in various ways. The new graph that
contains all the vertices and edges of these graphs is called the union of the graphs. We will
give a more formal definition for the union of two simple graphs.

DEFINITION 9 The union of two simple graphs G1 = (V1, E1) and G2 = (V2, E2) is the simple graph with
vertex set V1 ∪ V2 and edge set E1 ∪ E2. The union of G1 and G2 is denoted by G1 ∪ G2.

EXAMPLE 19 Find the union of the graphs G1 and G2 shown in Figure 16(a). ▲

10.2 Graph Terminology and Special Types of Graphs 665

Solution: The vertex set of the union G1 ∪ G2 is the union of the two vertex sets, namely,
{a, b, c, d, e, f }. The edge set of the union is the union of the two edge sets. The union is
displayed in Figure 16(b).

Exercises

In Exercises 1–3 find the number of vertices, the number of
edges, and the degree of each vertex in the given undirected
graph. Identify all isolated and pendant vertices.

1. a b c

f e d

2. a b

e d
c

3. a b c d

i h g ef

4. Find the sum of the degrees of the vertices of each graph
in Exercises 1–3 and verify that it equals twice the number
of edges in the graph.

5. Can a simple graph exist with 15 vertices each of degree
five?

6. Show that the sum, over the set of people at a party, of
the number of people a person has shaken hands with, is
even. Assume that no one shakes his or her own hand.

In Exercises 7–9 determine the number of vertices and edges
and find the in-degree and out-degree of each vertex for the
given directed multigraph.

7.

a

b

cd

8. a b

d c

9.

cd

ba

e

10. For each of the graphs in Exercises 7–9 determine the
sum of the in-degrees of the vertices and the sum of the
out-degrees of the vertices directly. Show that they are
both equal to the number of edges in the graph.

11. Construct the underlying undirected graph for the graph
with directed edges in Figure 2.

12. What does the degree of a vertex represent in the acquain-
tanceship graph, where vertices represent all the people
in the world? What does the neighborhood a vertex in this
graph represent? What do isolated and pendant vertices
in this graph represent? In one study it was estimated that
the average degree of a vertex in this graph is 1000. What
does this mean in terms of the model?

13. What does the degree of a vertex represent in an academic
collaboration graph? What does the neighborhood of a
vertex represent? What do isolated and pendant vertices
represent?

14. What does the degree of a vertex in the Hollywood graph
represent? What does the neighborhood of a vertex repre-
sent?What do the isolated and pendant vertices represent?

15. What do the in-degree and the out-degree of a vertex in a
telephone call graph, as described in Example 4 of Sec-
tion 10.1, represent? What does the degree of a vertex in
the undirected version of this graph represent?

16. What do the in-degree and the out-degree of a vertex in
the Web graph, as described in Example 5 of Section 10.1,
represent?

17. What do the in-degree and the out-degree of a vertex in a
directed graph modeling a round-robin tournament rep-
resent?

18. Show that in a simple graph with at least two vertices
there must be two vertices that have the same degree.

19. Use Exercise 18 to show that in a group of people, there
must be two people who are friends with the same number
of other people in the group.

20. Draw these graphs.

a) K7 b) K1,8 c) K4,4
d) C7 e) W7 f) Q4

In Exercises 21–25 determine whether the graph is bipartite.
You may find it useful to apply Theorem 4 and answer the
question by determining whether it is possible to assign either
red or blue to each vertex so that no two adjacent vertices are
assigned the same color.

21. a b

c d

e

22. b c

a

e

d

666 10 / Graphs

23. b c

ef

a d

24. a b

cf

e d

25. b

a

f

e

d

c

26. For which values of n are these graphs bipartite?

a) Kn b) Cn c) Wn d) Qn

27. Suppose that there are four employees in the computer
support group of the School of Engineering of a large
university. Each employee will be assigned to support
one of four different areas: hardware, software, network-
ing, and wireless. Suppose that Ping is qualified to support
hardware, networking, and wireless; Quiggley is qualified
to support software and networking; Ruiz is qualified to
support networking and wireless, and Sitea is qualified to
support hardware and software.

a) Use a bipartite graph to model the four employees and
their qualifications.

b) Use Hall’s theorem to determine whether there is an
assignment of employees to support areas so that each
employee is assigned one area to support.

c) If an assignment of employees to support areas so that
each employee is assigned to one support area exists,
find one.

28. Suppose that a new company has five employees: Zamora,
Agraharam, Smith, Chou, and Macintyre. Each employee
will assume one of six responsiblities: planning, public-
ity, sales, marketing, development, and industry relations.
Each employee is capable of doing one or more of these
jobs: Zamora could do planning, sales, marketing, or in-
dustry relations; Agraharam could do planning or devel-
opment; Smith could do publicity, sales, or industry re-
lations; Chou could do planning, sales, or industry rela-
tions; and Macintyre could do planning, publicity, sales,
or industry relations.

a) Model the capabilities of these employees using a bi-
partite graph.

b) Find an assignment of responsibilites such that each
employee is assigned one responsibility.

c) Is the matching of responsibilities you found in part
(b) a complete matching? Is it a maximum matching?

29. Suppose that there are five young women and five young
men on an island. Each man is willing to marry some of
the women on the island and each woman is willing to
marry any man who is willing to marry her. Suppose that
Sandeep is willing to marry Tina and Vandana; Barry is
willing to marry Tina, Xia, and Uma; Teja is willing to
marry Tina and Zelda; Anil is willing to marry Vandana
and Zelda; and Emilio is willing to marry Tina and Zelda.
Use Hall’s theorem to show there is no matching of the
young men and young women on the island such that each
young man is matched with a young woman he is willing
to marry.

30. Suppose that there are five young women and six young
men on an island. Each woman is willing to marry some
of the men on the island and each man is willing to marry
any woman who is willing to marry him. Suppose that
Anna is willing to marry Jason, Larry, and Matt; Barbara
is willing to marry Kevin and Larry; Carol is willing to
marry Jason, Nick, and Oscar; Diane is willing to marry
Jason, Larry, Nick, and Oscar; and Elizabeth is willing to
marry Jason and Matt.

a) Model the possible marriages on the island using a
bipartite graph.

b) Find a matching of the young women and the young
men on the island such that each young woman is
matched with a young man whom she is willing to
marry.

c) Is the matching you found in part (b) a complete
matching? Is it a maximum matching?

∗31. Suppose there is an integer k such that every man on a
desert island is willing to marry exactly k of the women
on the island and every woman on the island is willing to
marry exactly k of the men. Also, suppose that a man is
willing to marry a woman if and only if she is willing to
marry him. Show that it is possible to match the men and
women on the island so that everyone is matched with
someone that they are willing to marry.

∗32. In this exercise we prove a theorem of Øystein Ore.
Suppose that G = (V , E) is a bipartite graph with bipar-
tition (V1, V2) and that A ⊆ V1. Show that the maximum
number of vertices of V1 that are the endpoints of a
matching of G equals |V1| − maxA⊆V1 def(A), where
def(A) = |A| − |N(A)|. (Here, def(A) is called the de-

ficiency of A.) [Hint: Form a larger graph by adding
maxA⊆V1 def(A) new vertices to V2 and connect all of
them to the vertices of V1.]

33. For the graph G in Exercise 1 find

a) the subgraph induced by the vertices a, b, c, and f .
b) the new graph G1 obtained from G by contracting the

edge connecting b and f .

34. Let n be a positive integer. Show that a subgraph induced
by a nonempty subset of the vertex set of Kn is a complete
graph.

10.2 Graph Terminology and Special Types of Graphs 667

35. How many vertices and how many edges do these graphs
have?

a) Kn b) Cn c) Wn

d) Km,n e) Qn

The degree sequence of a graph is the sequence of the de-
grees of the vertices of the graph in nonincreasing order. For
example, the degree sequence of the graph G in Example 1 is
4, 4, 4, 3, 2, 1, 0.

36. Find the degree sequences for each of the graphs in
Exercises 21–25.

37. Find the degree sequence of each of the following
graphs.

a) K4 b) C4 c) W4
d) K2,3 e) Q3

38. What is the degree sequence of the bipartite graph Km,n

where m and n are positive integers? Explain your answer.

39. What is the degree sequence of Kn, where n is a positive
integer? Explain your answer.

40. How many edges does a graph have if its degree sequence
is 4, 3, 3, 2, 2? Draw such a graph.

41. How many edges does a graph have if its degree sequence
is 5, 2, 2, 2, 2, 1? Draw such a graph.

A sequence d1, d2, . . . , dn is called graphic if it is the degree
sequence of a simple graph.

42. Determine whether each of these sequences is graphic.
For those that are, draw a graph having the given degree
sequence.

a) 5, 4, 3, 2, 1, 0 b) 6, 5, 4, 3, 2, 1 c) 2, 2, 2, 2, 2, 2
d) 3, 3, 3, 2, 2, 2 e) 3, 3, 2, 2, 2, 2 f) 1, 1, 1, 1, 1, 1
g) 5, 3, 3, 3, 3, 3 h) 5, 5, 4, 3, 2, 1

43. Determine whether each of these sequences is graphic.
For those that are, draw a graph having the given degree
sequence.

a) 3, 3, 3, 3, 2 b) 5, 4, 3, 2, 1 c) 4, 4, 3, 2, 1
d) 4, 4, 3, 3, 3 e) 3, 2, 2, 1, 0 f) 1, 1, 1, 1, 1

∗44. Suppose that d1, d2, . . . , dn is a graphic sequence. Show
that there is a simple graph with vertices v1, v2, . . . , vn

such that deg(vi) = di for i = 1, 2, . . . , n and v1 is adja-
cent to v2, . . . , vd1+1.

∗45. Show that a sequence d1, d2, . . . , dn of nonnegative inte-
gers in nonincreasing order is a graphic sequence if and
only if the sequence obtained by reordering the terms
of the sequence d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn so
that the terms are in nonincreasing order is a graphic
sequence.

∗46. Use Exercise 45 to construct a recursive algorithm for de-
termining whether a nonincreasing sequence of positive
integers is graphic.

47. Show that every nonincreasing sequence of nonnegative
integers with an even sum of its terms is the degree se-
quence of a pseudograph, that is, an undirected graph
where loops are allowed. [Hint: Construct such a graph
by first adding as many loops as possible at each vertex.
Then add additional edges connecting vertices of odd
degree. Explain why this construction works.]

48. How many subgraphs with at least one vertex does K2

have?

49. How many subgraphs with at least one vertex does K3

have?

50. How many subgraphs with at least one vertex does W3

have?

51. Draw all subgraphs of this graph.

ba

c d

52. Let G be a graph with v vertices and e edges. Let M be
the maximum degree of the vertices of G, and let m be
the minimum degree of the vertices of G. Show that

a) 2e/v ≥ m. b) 2e/v ≤ M .

A simple graph is called regular if every vertex of this graph
has the same degree. A regular graph is called n-regular if
every vertex in this graph has degree n.

53. For which values of n are these graphs regular?

a) Kn b) Cn c) Wn d) Qn

54. For which values of m and n is Km,n regular?

55. How many vertices does a regular graph of degree four
with 10 edges have?

In Exercises 56–58 find the union of the given pair of simple
graphs. (Assume edges with the same endpoints are the same.)

56. a

d

b

c

f

e

f b

d

57. a b

c d

e

a b

c d

e

f

g

58. a b

c d

a e

f g

h

59. The complementary graph G of a simple graph G has
the same vertices as G. Two vertices are adjacent in G if
and only if they are not adjacent in G. Describe each of
these graphs.

a) Kn b) Km,n c) Cn d) Qn

60. If G is a simple graph with 15 edges and G has 13 edges,
how many vertices does G have?

668 10 / Graphs

61. If the simple graph G has v vertices and e edges, how
many edges does G have?

62. If the degree sequence of the simple graph G is
4, 3, 3, 2, 2, what is the degree sequence of G?

63. If the degree sequence of the simple graph G is
d1, d2, . . . , dn, what is the degree sequence of G?

∗64. Show that if G is a bipartite simple graph with v vertices
and e edges, then e ≤ v2/4.

65. Show that if G is a simple graph with n vertices, then the
union of G and G is Kn.

∗66. Describe an algorithm to decide whether a graph is bipar-
tite based on the fact that a graph is bipartite if and only
if it is possible to color its vertices two different colors
so that no two vertices of the same color are adjacent.

The converse of a directed graph G = (V , E), denoted
by Gconv, is the directed graph (V , F), where the set F

of edges of Gconv is obtained by reversing the direction of
each edge in E.

67. Draw the converse of each of the graphs in Exercises 7–9
in Section 10.1.

68. Show that (Gconv)conv = G whenever G is a directed
graph.

69. Show that the graph G is its own converse if and only if the
relation associated with G (see Section 9.3) is symmetric.

70. Show that if a bipartite graph G = (V , E) is n-regular for
some positive integer n (see the preamble to Exercise 53)
and (V1, V2) is a bipartition of V , then |V1| = |V2|. That
is, show that the two sets in a bipartition of the vertex set
of an n-regular graph must contain the same number of
vertices.

71. Draw the mesh network for interconnecting nine parallel
processors.

72. In a variant of a mesh network for interconnecting n = m2

processors, processor P(i, j) is connected to the four pro-
cessors P((i ± 1) mod m, j) and P(i, (j ± 1) mod m),
so that connections wrap around the edges of the mesh.
Draw this variant of the mesh network for 16 processors.

73. Show that every pair of processors in a mesh network
of n = m2 processors can communicate using O(

√
n) =

O(m) hops between directly connected processors.

10.3 Representing Graphs and Graph Isomorphism

Introduction

There are many useful ways to represent graphs. As we will see throughout this chapter, in
working with a graph it is helpful to be able to choose its most convenient representation. In
this section we will show how to represent graphs in several different ways.

Sometimes, two graphs have exactly the same form, in the sense that there is a one-to-one
correspondence between their vertex sets that preserves edges. In such a case, we say that the
two graphs are isomorphic. Determining whether two graphs are isomorphic is an important
problem of graph theory that we will study in this section.

Representing Graphs

One way to represent a graph without multiple edges is to list all the edges of this graph. Another
way to represent a graph with no multiple edges is to use adjacency lists, which specify the
vertices that are adjacent to each vertex of the graph.

EXAMPLE 1 Use adjacency lists to describe the simple graph given in Figure 1.

Solution: Table 1 lists those vertices adjacent to each of the vertices of the graph. ▲

b

a c

e d

FIGURE 1 A Simple Graph.

TABLE 1 An Adjacency List
for a Simple Graph.

Vertex Adjacent Vertices

a b, c, e

b a

c a, d, e

d c, e

e a, c, d

10.3 Representing Graphs and Graph Isomorphism 669

b

a c

e d

FIGURE 2 A Directed Graph.

TABLE 2 An Adjacency List for a
Directed Graph.

Initial Vertex Terminal Vertices

a b, c, d, e

b b, d

c a, c, e

d

e b, c, d

EXAMPLE 2 Represent the directed graph shown in Figure 2 by listing all the vertices that are the terminal
vertices of edges starting at each vertex of the graph.

Solution: Table 2 represents the directed graph shown in Figure 2. ▲

a b

c d

FIGURE 3
Simple Graph.

Adjacency Matrices

Carrying out graph algorithms using the representation of graphs by lists of edges, or by adja-
cency lists, can be cumbersome if there are many edges in the graph. To simplify computation,
graphs can be represented using matrices. Two types of matrices commonly used to represent
graphs will be presented here. One is based on the adjacency of vertices, and the other is based
on incidence of vertices and edges.

Suppose that G = (V , E) is a simple graph where |V | = n. Suppose that the vertices of
G are listed arbitrarily as v1, v2, . . . , vn. The adjacency matrix A (or AG) of G, with respect
to this listing of the vertices, is the n x n zero–one matrix with 1 as its (i, j)th entry when vi

and vj are adjacent, and 0 as its (i, j)th entry when they are not adjacent. In other words, if its
adjacency matrix is A = [aij], then

aij =

{

1 if {vi, vj } is an edge of G,

0 otherwise.

EXAMPLE 3 Use an adjacency matrix to represent the graph shown in Figure 3.

Solution: We order the vertices as a, b, c, d. The matrix representing this graph is

⎡

⎢

⎢

⎣

0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

⎤

⎥

⎥

⎦

.

▲

EXAMPLE 4 Draw a graph with the adjacency matrix

⎡

⎢

⎢

⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤

⎥

⎥

⎦

with respect to the ordering of vertices a, b, c, d.

a b

d c

FIGURE 4
A Graph with the
Given Adjacency
Matrix. Solution: A graph with this adjacency matrix is shown in Figure 4. ▲

670 10 / Graphs

Note that an adjacency matrix of a graph is based on the ordering chosen for the vertices.
Hence, there may be as many as n! different adjacency matrices for a graph with n vertices,
because there are n! different orderings of n vertices.

The adjacency matrix of a simple graph is symmetric, that is, aij = aji , because both of
these entries are 1 when vi and vj are adjacent, and both are 0 otherwise. Furthermore, because
a simple graph has no loops, each entry aii, i = 1, 2, 3, . . . , n, is 0.

Adjacency matrices can also be used to represent undirected graphs with loops and with
multiple edges. A loop at the vertex vi is represented by a 1 at the (i, i)th position of the
adjacency matrix. When multiple edges connecting the same pair of vertices vi and vj , or
multiple loops at the same vertex, are present, the adjacency matrix is no longer a zero–one
matrix, because the (i, j)th entry of this matrix equals the number of edges that are associated
to {vi, vj }. All undirected graphs, including multigraphs and pseudographs, have symmetric
adjacency matrices.

EXAMPLE 5 Use an adjacency matrix to represent the pseudograph shown in Figure 5.

a b

d c

FIGURE 5
A Pseudograph.

Solution: The adjacency matrix using the ordering of vertices a, b, c, d is

⎡

⎢

⎢

⎣

0 3 0 2
3 0 1 1
0 1 1 2
2 1 2 0

⎤

⎥

⎥

⎦

.

▲

We used zero–one matrices in Chapter 9 to represent directed graphs. The matrix for a
directed graph G = (V , E) has a 1 in its (i, j)th position if there is an edge from vi to vj ,
where v1, v2, . . . , vn is an arbitrary listing of the vertices of the directed graph. In other words,
if A = [aij] is the adjacency matrix for the directed graph with respect to this listing of the
vertices, then

aij =

{

1 if (vi, vj) is an edge of G,

0 otherwise.

The adjacency matrix for a directed graph does not have to be symmetric, because there may
not be an edge from vj to vi when there is an edge from vi to vj .

Adjacency matrices can also be used to represent directed multigraphs.Again, such matrices
are not zero–one matrices when there are multiple edges in the same direction connecting two
vertices. In the adjacency matrix for a directed multigraph, aij equals the number of edges that
are associated to (vi, vj).

TRADE-OFFS BETWEEN ADJACENCY LISTS AND ADJACENCY MATRICES When
a simple graph contains relatively few edges, that is, when it is sparse, it is usually preferable
to use adjacency lists rather than an adjacency matrix to represent the graph. For example, if
each vertex has degree not exceeding c, where c is a constant much smaller than n, then each
adjacency list contains c or fewer vertices. Hence, there are no more than cn items in all these
adjacency lists. On the other hand, the adjacency matrix for the graph has n2 entries. Note,
however, that the adjacency matrix of a sparse graph is a sparse matrix, that is, a matrix with
few nonzero entries, and there are special techniques for representing, and computing with,
sparse matrices.

Now suppose that a simple graph is dense, that is, suppose that it contains many edges, such
as a graph that contains more than half of all possible edges. In this case, using an adjacency
matrix to represent the graph is usually preferable over using adjacency lists. To see why, we
compare the complexity of determining whether the possible edge {vi, vj } is present. Using an
adjacency matrix, we can determine whether this edge is present by examining the (i, j)th entry

10.3 Representing Graphs and Graph Isomorphism 671

in the matrix. This entry is 1 if the graph contains this edge and is 0 otherwise. Consequently,
we need make only one comparison, namely, comparing this entry with 0, to determine whether
this edge is present. On the other hand, when we use adjacency lists to represent the graph, we
need to search the list of vertices adjacent to either vi or vj to determine whether this edge is
present. This can require !(|V |) comparisons when many edges are present.

Incidence Matrices

Another common way to represent graphs is to use incidence matrices. Let G = (V , E) be an
undirected graph. Suppose that v1, v2, . . . , vn are the vertices and e1, e2, . . . , em are the edges
of G. Then the incidence matrix with respect to this ordering of V and E is the n × m matrix
M = [mij], where

mij =

{

1 when edge ej is incident with vi,

0 otherwise.

EXAMPLE 6 Represent the graph shown in Figure 6 with an incidence matrix.

v1 v2 v3

v5v4

e6

e3

e5e4

e2

e1

FIGURE 6 An
Undirected
Graph.

Solution: The incidence matrix is

⎡

⎢

⎢

⎢

⎢

⎣

e1 e2 e3 e4 e5 e6

v1 1 1 0 0 0 0
v2 0 0 1 1 0 1
v3 0 0 0 0 1 1
v4 1 0 1 0 0 0
v5 0 1 0 1 1 0

⎤

⎥

⎥

⎥

⎥

⎦

.

▲

Incidence matrices can also be used to represent multiple edges and loops. Multiple edges
are represented in the incidence matrix using columns with identical entries, because these edges
are incident with the same pair of vertices. Loops are represented using a column with exactly
one entry equal to 1, corresponding to the vertex that is incident with this loop.

EXAMPLE 7 Represent the pseudograph shown in Figure 7 using an incidence matrix.

Solution: The incidence matrix for this graph is

⎡

⎢

⎢

⎢

⎢

⎣

e1 e2 e3 e4 e5 e6 e7 e8

v1 1 1 1 0 0 0 0 0
v2 0 1 1 1 0 1 1 0
v3 0 0 0 1 1 0 0 0
v4 0 0 0 0 0 0 1 1
v5 0 0 0 0 1 1 0 0

⎤

⎥

⎥

⎥

⎥

⎦

.
▲

v5
v4

v1 v2 v3
e4

e5e6

e8

e3e1

e2

e7

FIGURE 7
A Pseudograph.

Isomorphism of Graphs

We often need to know whether it is possible to draw two graphs in the same way. That is, do
the graphs have the same structure when we ignore the identities of their vertices? For instance,
in chemistry, graphs are used to model chemical compounds (in a way we will describe later).
Different compounds can have the same molecular formula but can differ in structure. Such
compounds can be represented by graphs that cannot be drawn in the same way. The graphs
representing previously known compounds can be used to determine whether a supposedly new
compound has been studied before.

672 10 / Graphs

There is a useful terminology for graphs with the same structure.

DEFINITION 1 The simple graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there exists a one-
to-one and onto function f from V1 to V2 with the property that a and b are adjacent in G1 if
and only if f (a) and f (b) are adjacent in G2, for all a and b in V1. Such a function f is called
an isomorphism.∗ Two simple graphs that are not isomorphic are called nonisomorphic.

In other words, when two simple graphs are isomorphic, there is a one-to-one correspondence
between vertices of the two graphs that preserves the adjacency relationship. Isomorphism of
simple graphs is an equivalence relation. (We leave the verification of this as Exercise 45.)

EXAMPLE 8 Show that the graphs G = (V , E) and H = (W, F), displayed in Figure 8, are isomorphic.

Solution: The function f with f (u1) = v1, f (u2) = v4, f (u3) = v3, and f (u4) = v2 is a one-
to-one correspondence between V and W . To see that this correspondence preserves adjacency,
note that adjacent vertices in G are u1 and u2, u1 and u3, u2 and u4, and u3 and u4, and each of the
pairs f (u1) = v1 and f (u2) = v4, f (u1) = v1 and f (u3) = v3, f (u2) = v4 and f (u4) = v2,
and f (u3) = v3 and f (u4) = v2 consists of two adjacent vertices in H . ▲

u1 u2

u3 u4
G

v1 v2

v3 v4
H

FIGURE 8 The
Graphs G and H .

Determining whether Two Simple Graphs are Isomorphic

It is often difficult to determine whether two simple graphs are isomorphic. There are n! possible
one-to-one correspondences between the vertex sets of two simple graphs with n vertices. Testing
each such correspondence to see whether it preserves adjacency and nonadjacency is impractical
if n is at all large.

Sometimes it is not hard to show that two graphs are not isomorphic. In particular, we can
show that two graphs are not isomorphic if we can find a property only one of the two graphs
has, but that is preserved by isomorphism. A property preserved by isomorphism of graphs is
called a graph invariant. For instance, isomorphic simple graphs must have the same number
of vertices, because there is a one-to-one correspondence between the sets of vertices of the
graphs.

Isomorphic simple graphs also must have the same number of edges, because the one-to-one
correspondence between vertices establishes a one-to-one correspondence between edges. In
addition, the degrees of the vertices in isomorphic simple graphs must be the same. That is, a
vertex v of degree d in G must correspond to a vertex f (v) of degree d in H , because a vertex
w in G is adjacent to v if and only if f (v) and f (w) are adjacent in H .

EXAMPLE 9 Show that the graphs displayed in Figure 9 are not isomorphic.

Solution: Both G and H have five vertices and six edges. However, H has a vertex of degree one,
namely, e, whereas G has no vertices of degree one. It follows that G and H are not isomorphic.

▲

The number of vertices, the number of edges, and the number of vertices of each degree
are all invariants under isomorphism. If any of these quantities differ in two simple graphs,
these graphs cannot be isomorphic. However, when these invariants are the same, it does not
necessarily mean that the two graphs are isomorphic. There are no useful sets of invariants
currently known that can be used to determine whether simple graphs are isomorphic.

∗The word isomorphism comes from the Greek roots isos for “equal” and morphe for “form.”

10.3 Representing Graphs and Graph Isomorphism 673

a c

e d

G

b

a c

e d

H

b

FIGURE 9 The Graphs G and H .

a b

d c

g

f
e

h

G

s t

v u

y

w

z

H

x

FIGURE 10 The Graphs G and H .

EXAMPLE 10 Determine whether the graphs shown in Figure 10 are isomorphic.

Solution: The graphs G and H both have eight vertices and 10 edges. They also both have four
vertices of degree two and four of degree three. Because these invariants all agree, it is still
conceivable that these graphs are isomorphic.

b

f

h

d

s

w

z

v

FIGURE 11 The
Subgraphs of G

and H Made Up
of Vertices of De-
gree Three and
the Edges Con-
necting Them.

However, G and H are not isomorphic. To see this, note that because deg(a) = 2 in G, a

must correspond to either t , u, x, or y in H , because these are the vertices of degree two in H .
However, each of these four vertices in H is adjacent to another vertex of degree two in H ,
which is not true for a in G.

Another way to see that G and H are not isomorphic is to note that the subgraphs of G

and H made up of vertices of degree three and the edges connecting them must be isomorphic
if these two graphs are isomorphic (the reader should verify this). However, these subgraphs,
shown in Figure 11, are not isomorphic. ▲

To show that a function f from the vertex set of a graph G to the vertex set of a graph H is an
isomorphism, we need to show that f preserves the presence and absence of edges. One helpful
way to do this is to use adjacency matrices. In particular, to show that f is an isomorphism, we
can show that the adjacency matrix of G is the same as the adjacency matrix of H , when rows
and columns are labeled to correspond to the images under f of the vertices in G that are the
labels of these rows and columns in the adjacency matrix of G. We illustrate how this is done
in Example 11.

EXAMPLE 11 Determine whether the graphs G and H displayed in Figure 12 are isomorphic.

Solution: Both G and H have six vertices and seven edges. Both have four vertices of degree two
and two vertices of degree three. It is also easy to see that the subgraphs of G and H consisting
of all vertices of degree two and the edges connecting them are isomorphic (as the reader should
verify). Because G and H agree with respect to these invariants, it is reasonable to try to find
an isomorphism f .

u1

u5

u2

u6

u3u4

G

v1

v2

v3

v6

v4v5

H

FIGURE 12 Graphs G and H .

674 10 / Graphs

We now will define a function f and then determine whether it is an isomorphism. Because
deg(u1) = 2 and because u1 is not adjacent to any other vertex of degree two, the image of u1

must be either v4 or v6, the only vertices of degree two in H not adjacent to a vertex of degree
two. We arbitrarily set f (u1) = v6. [If we found that this choice did not lead to isomorphism,
we would then try f (u1) = v4.] Because u2 is adjacent to u1, the possible images of u2 are v3

and v5. We arbitrarily set f (u2) = v3. Continuing in this way, using adjacency of vertices and
degrees as a guide, we set f (u3) = v4, f (u4) = v5, f (u5) = v1, and f (u6) = v2. We now have
a one-to-one correspondence between the vertex set of G and the vertex set of H , namely,
f (u1) = v6, f (u2) = v3, f (u3) = v4, f (u4) = v5, f (u5) = v1, f (u6) = v2. To see whether f

preserves edges, we examine the adjacency matrix of G,

AG =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u1 u2 u3 u4 u5 u6

u1 0 1 0 1 0 0

u2 1 0 1 0 0 1

u3 0 1 0 1 0 0

u4 1 0 1 0 1 0

u5 0 0 0 1 0 1

u6 0 1 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and the adjacency matrix of H with the rows and columns labeled by the images of the corre-
sponding vertices in G,

AH =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

v6 v3 v4 v5 v1 v2

v6 0 1 0 1 0 0

v3 1 0 1 0 0 1

v4 0 1 0 1 0 0

v5 1 0 1 0 1 0

v1 0 0 0 1 0 1

v2 0 1 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Because AG = AH , it follows that f preserves edges. We conclude that f is an isomorphism,
so G and H are isomorphic. Note that if f turned out not to be an isomorphism, we would
not have established that G and H are not isomorphic, because another correspondence of the
vertices in G and H may be an isomorphism. ▲

ALGORITHMS FOR GRAPH ISOMORPHISM The best algorithms known for determining
whether two graphs are isomorphic have exponential worst-case time complexity (in the number
of vertices of the graphs). However, linear average-case time complexity algorithms are known
that solve this problem, and there is some hope, but also skepticism, that an algorithm with
polynomial worst-case time complexity for determining whether two graphs are isomorphic can
be found. The best practical general purpose software for isomorphism testing, called NAUTY,
can be used to determine whether two graphs with as many as 100 vertices are isomorphic
in less than a second on a modern PC. NAUTY software can be downloaded over the Internet
and experimented with. Practical algorithms for determining whether two graphs are isomorphic
exist for graphs that are restricted in various ways, such as when the maximum degree of vertices
is small. The problem of determining whether any two graphs are isomorphic is of special interest
because it is one of only a few NP problems (see Exercise 72) not known to be either tractable
or NP-complete (see Section 3.3).

APPLICATIONS OF GRAPH ISOMORPHISMS Graph isomorphisms, and functions that
are almost graph isomorphisms, arise in applications of graph theory to chemistry and to the
design of electronic circuits, and other areas including bioinformatics and computer vision.

10.3 Representing Graphs and Graph Isomorphism 675

Chemists use multigraphs, known as molecular graphs, to model chemical compounds. In these
graphs, vertices represent atoms and edges represent chemical bonds between these atoms.
Two structural isomers, molecules with identical molecular formulas but with atoms bonded
differently, have nonisomorphic molecular graphs. When a potentially new chemical compound
is synthesized, a database of molecular graphs is checked to see whether the molecular graph
of the compound is the same as one already known.

Electronic circuits are modeled using graphs in which vertices represent components and
edges represent connections between them. Modern integrated circuits, known as chips, are
miniaturized electronic circuits, often with millions of transistors and connections between
them. Because of the complexity of modern chips, automation tools are used to design them.
Graph isomorphism is the basis for the verification that a particular layout of a circuit produced
by an automated tool corresponds to the original schematic of the design. Graph isomorphism
can also be used to determine whether a chip from one vendor includes intellectual property
from a different vendor. This can be done by looking for large isomorphic subgraphs in the
graphs modeling these chips.

Exercises

In Exercises 1–4 use an adjacency list to represent the given
graph.

1. a b

c d

2. b

d e

a c

3. a b

dc

4. a b

ed

c

5. Represent the graph in Exercise 1 with an adjacency ma-
trix.

6. Represent the graph in Exercise 2 with an adjacency ma-
trix.

7. Represent the graph in Exercise 3 with an adjacency ma-
trix.

8. Represent the graph in Exercise 4 with an adjacency ma-
trix.

9. Represent each of these graphs with an adjacency matrix.

a) K4 b) K1,4 c) K2,3

d) C4 e) W4 f) Q3

In Exercises 10–12 draw a graph with the given adjacency
matrix.

10.
⎡

⎣

0 1 0
1 0 1
0 1 0

⎤

⎦

11.
⎡

⎢

⎢

⎣

0 0 1 1
0 0 1 0
1 1 0 1
1 1 1 0

⎤

⎥

⎥

⎦

12.
⎡

⎢

⎢

⎣

1 1 1 0
0 0 1 0
1 0 1 0
1 1 1 0

⎤

⎥

⎥

⎦

In Exercises 13–15 represent the given graph using an adja-
cency matrix.

13. ba

dc

14. a b

c d

15.

a

c

b

d

In Exercises 16–18 draw an undirected graph represented by
the given adjacency matrix.

16.
⎡

⎣

1 3 2
3 0 4
2 4 0

⎤

⎦

17.
⎡

⎢

⎢

⎣

1 2 0 1
2 0 3 0
0 3 1 1
1 0 1 0

⎤

⎥

⎥

⎦

18.
⎡

⎢

⎢

⎢

⎢

⎣

0 1 3 0 4
1 2 1 3 0
3 1 1 0 1
0 3 0 0 2
4 0 1 2 3

⎤

⎥

⎥

⎥

⎥

⎦

676 10 / Graphs

In Exercises 19–21 find the adjacency matrix of the given
directed multigraph with respect to the vertices listed in al-
phabetic order.

19.

d

ba

c

20.

d

ba

c

21. b

c

a

d

In Exercises 22–24 draw the graph represented by the given
adjacency matrix.

22.
⎡

⎣

1 0 1
0 0 1
1 1 1

⎤

⎦

23.
⎡

⎣

1 2 1
2 0 0
0 2 2

⎤

⎦

24.
⎡

⎢

⎢

⎣

0 2 3 0
1 2 2 1
2 1 1 0
1 0 0 2

⎤

⎥

⎥

⎦

25. Is every zero–one square matrix that is symmetric and
has zeros on the diagonal the adjacency matrix of a sim-
ple graph?

26. Use an incidence matrix to represent the graphs in Exer-
cises 1 and 2.

27. Use an incidence matrix to represent the graphs in Exer-
cises 13–15.

∗28. What is the sum of the entries in a row of the adjacency
matrix for an undirected graph? For a directed graph?

∗29. What is the sum of the entries in a column of the adjacency
matrix for an undirected graph? For a directed graph?

30. What is the sum of the entries in a row of the incidence
matrix for an undirected graph?

31. What is the sum of the entries in a column of the incidence
matrix for an undirected graph?

∗32. Find an adjacency matrix for each of these graphs.

a) Kn b) Cn c) Wn d) Km,n e) Qn

∗33. Find incidence matrices for the graphs in parts (a)–(d) of
Exercise 32.

In Exercises 34–44 determine whether the given pair of graphs
is isomorphic. Exhibit an isomorphism or provide a rigorous
argument that none exists.

34.

u1 u5u2 u3 u4

v1 v2

v4 v5

v3

35.

u2

u1

u5 u4

u3

v2

v1 v3

v4v5

36. v1

v5

v4 v3

v2

u2u1

u3u4

u5

37. v1u1 u2

u7 u3

u4u6

u5

v7

v6

v5
v4

v3

v2

38. u1 u2

u5 u4 u3

v1
v2

v3

v4

v5

39. u1
v1 v2

v4 v3

v6

v5

u2u6

u3u5

u4

40.

u5

u1 u2

u4

v1 v2

v6 v3

v5 v4

u6 u3

10.3 Representing Graphs and Graph Isomorphism 677

41. u1 u2 u3 u5 u6 u8

u4 u7

v1 v2 v4 v5 v6 v8

v3 v7

42.

u1 u2 u3 u4 u5

u6 u7

u8 u9 u10

v6 v7

v1 v2 v3 v4 v5

v8 v9 v10

43.

u1

u2

u3

u4u5

u6

u7

u8

u9
u10

v1

v2

v3

v4

v5

v6 v7 v9

v10

v8

44.

u7

u8

u1

u2

u3

u4

u5

u6

v7

v8

v1

v2

v3

v4

v5

v6

45. Show that isomorphism of simple graphs is an equiva-
lence relation.

46. Suppose that G and H are isomorphic simple graphs.
Show that their complementary graphs G and H are also
isomorphic.

47. Describe the row and column of an adjacency matrix of
a graph corresponding to an isolated vertex.

48. Describe the row of an incidence matrix of a graph cor-
responding to an isolated vertex.

49. Show that the vertices of a bipartite graph with two or
more vertices can be ordered so that its adjacency matrix

has the form

[

0 A

B 0

]

,

where the four entries shown are rectangular blocks.

A simple graph G is called self-complementary if G and G

are isomorphic.

50. Show that this graph is self-complementary.

d c

a b

51. Find a self-complementary simple graph with five ver-
tices.

∗52. Show that if G is a self-complementary simple graph
with v vertices, then v ≡ 0 or 1 (mod 4).

53. For which integers n is Cn self-complementary?

54. How many nonisomorphic simple graphs are there with n

vertices, when n is

a) 2? b) 3? c) 4?

55. How many nonisomorphic simple graphs are there with
five vertices and three edges?

56. How many nonisomorphic simple graphs are there with
six vertices and four edges?

57. Are the simple graphs with the following adjacency ma-
trices isomorphic?

a)
⎡

⎣

0 0 1
0 0 1
1 1 0

⎤

⎦ ,

⎡

⎣

0 1 1
1 0 0
1 0 0

⎤

⎦

b)
⎡

⎢

⎢

⎣

0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0

⎤

⎥

⎥

⎦

c)
⎡

⎢

⎢

⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

0 1 0 1
1 0 0 0
0 0 0 1
1 0 1 0

⎤

⎥

⎥

⎦

58. Determine whether the graphs without loops with these
incidence matrices are isomorphic.

a)
⎡

⎣

1 0 1
0 1 1
1 1 0

⎤

⎦ ,

⎡

⎣

1 1 0
1 0 1
0 1 1

⎤

⎦

b)
⎡

⎢

⎢

⎣

1 1 0 0 0
1 0 1 0 1
0 0 0 1 1
0 1 1 1 0

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

0 1 0 0 1
0 1 1 1 0
1 0 0 1 0
1 0 1 0 1

⎤

⎥

⎥

⎦

59. Extend the definition of isomorphism of simple graphs to
undirected graphs containing loops and multiple edges.

60. Define isomorphism of directed graphs.

678 10 / Graphs

In Exercises 61–64 determine whether the given pair of di-
rected graphs are isomorphic. (See Exercise 60.)

61. u1 u2

u3 u4

v1 v2

v3 v4

62. u1 u2

u3 u4

v1 v2

v3 v4

63. u1

u2 u3

u4

v1

v2 v3

v4

64. u1 u2 u3

u5u4 u6

v1 v2

v4v5

v6 v3

65. Show that if G and H are isomorphic directed graphs,
then the converses of G and H (defined in the preamble
of Exercise 67 of Section 10.2) are also isomorphic.

66. Show that the property that a graph is bipartite is an iso-
morphic invariant.

67. Find a pair of nonisomorphic graphs with the same de-
gree sequence (defined in the preamble to Exercise 36
in Section 10.2) such that one graph is bipartite, but the
other graph is not bipartite.

∗68. How many nonisomorphic directed simple graphs are
there with n vertices, when n is

a) 2? b) 3? c) 4?

∗69. What is the product of the incidence matrix and its trans-
pose for an undirected graph?

∗70. How much storage is needed to represent a simple graph
with n vertices and m edges using

a) adjacency lists?

b) an adjacency matrix?

c) an incidence matrix?

A devil’s pair for a purported isomorphism test is a pair of
nonisomorphic graphs that the test fails to show that they are
not isomorphic.

71. Find a devil’s pair for the test that checks the degree se-
quence (defined in the preamble to Exercise 36 in Sec-
tion 10.2) in two graphs to make sure they agree.

72. Suppose that the function f from V1 to V2 is an isomor-
phism of the graphs G1 = (V1, E1) and G2 = (V2, E2).
Show that it is possible to verify this fact in time polyno-
mial in terms of the number of vertices of the graph, in
terms of the number of comparisons needed.

10.4 Connectivity

Introduction

Many problems can be modeled with paths formed by traveling along the edges of graphs. For
instance, the problem of determining whether a message can be sent between two computers
using intermediate links can be studied with a graph model. Problems of efficiently planning
routes for mail delivery, garbage pickup, diagnostics in computer networks, and so on can be
solved using models that involve paths in graphs.

Paths

Informally, a path is a sequence of edges that begins at a vertex of a graph and travels from
vertex to vertex along edges of the graph. As the path travels along its edges, it visits the vertices
along this path, that is, the endpoints of these edges.

10.4 Connectivity 679

A formal definition of paths and related terminology is given in Definition 1.

DEFINITION 1 Let n be a nonnegative integer and G an undirected graph. A path of length n from u

to v in G is a sequence of n edges e1, . . . , en of G for which there exists a sequence
x0 = u, x1, . . . , xn−1, xn = v of vertices such that ei has, for i = 1, . . . , n, the endpoints xi−1

and xi . When the graph is simple, we denote this path by its vertex sequence x0, x1, . . . , xn

(because listing these vertices uniquely determines the path). The path is a circuit if it begins
and ends at the same vertex, that is, if u = v, and has length greater than zero. The path or cir-
cuit is said to pass through the vertices x1, x2, . . . , xn−1 or traverse the edges e1, e2, . . . , en.
A path or circuit is simple if it does not contain the same edge more than once.

When it is not necessary to distinguish between multiple edges, we will denote a path
e1, e2, . . . , en, where ei is associated with {xi−1, xi} for i = 1, 2, . . . , n by its vertex sequence
x0, x1, . . . , xn. This notation identifies a path only as far as which vertices it passes through.
Consequently, it does not specify a unique path when there is more than one path that passes
through this sequence of vertices, which will happen if and only if there are multiple edges
between some successive vertices in the list. Note that a path of length zero consists of a single
vertex.

Remark: There is considerable variation of terminology concerning the concepts defined
in Definition 1. For instance, in some books, the term walk is used instead of path,
where a walk is defined to be an alternating sequence of vertices and edges of a graph,
v0, e1, v1, e2, . . . , vn−1, en, vn, where vi−1 and vi are the endpoints of ei for i = 1, 2, . . . , n.
When this terminology is used, closed walk is used instead of circuit to indicate a walk that
begins and ends at the same vertex, and trail is used to denote a walk that has no repeated
edge (replacing the term simple path). When this terminology is used, the terminology path is
often used for a trail with no repeated vertices, conflicting with the terminology in Definition 1.
Because of this variation in terminology, you will need to make sure which set of definitions are
used in a particular book or article when you read about traversing edges of a graph. The text
[GrYe06] is a good reference for the alternative terminology described in this remark.

EXAMPLE 1 In the simple graph shown in Figure 1, a, d , c, f , e is a simple path of length 4, because {a, d},
{d, c}, {c, f }, and {f, e} are all edges. However, d , e, c, a is not a path, because {e, c} is not an
edge. Note that b, c, f , e, b is a circuit of length 4 because {b, c}, {c, f }, {f, e}, and {e, b} are
edges, and this path begins and ends at b. The path a, b, e, d , a, b, which is of length 5, is not
simple because it contains the edge {a, b} twice. ▲

Paths and circuits in directed graphs were introduced in Chapter 9. We now provide more
general definitions.

a b c

d e f

FIGURE 1 A Simple Graph.

680 10 / Graphs

DEFINITION 2 Let n be a nonnegative integer and G a directed graph. A path of length n from u to v in G is a
sequence of edges e1, e2, . . . , en of G such that e1 is associated with (x0, x1), e2 is associated
with (x1, x2), and so on, with en associated with (xn−1, xn), where x0 = u and xn = v. When
there are no multiple edges in the directed graph, this path is denoted by its vertex sequence
x0, x1, x2, . . . , xn. A path of length greater than zero that begins and ends at the same vertex
is called a circuit or cycle. A path or circuit is called simple if it does not contain the same
edge more than once.

Remark: Terminology other than that given in Definition 2 is often used for the concepts defined
there. In particular, the alternative terminology that uses walk, closed walk, trail, and path

(described in the remarks following Definition 1) may be used for directed graphs. See [GrYe05]
for details.

Note that the terminal vertex of an edge in a path is the initial vertex of the next edge in the
path. When it is not necessary to distinguish between multiple edges, we will denote a path
e1, e2, . . . , en, where ei is associated with (xi−1, xi) for i = 1, 2, . . . , n, by its vertex sequence
x0, x1, . . . , xn. The notation identifies a path only as far as which the vertices it passes through.
There may be more than one path that passes through this sequence of vertices, which will
happen if and only if there are multiple edges between two successive vertices in the list.

Paths represent useful information in many graph models, as Examples 2–4 demonstrate.

EXAMPLE 2 Paths in Acquaintanceship Graphs In an acquaintanceship graph there is a path between
two people if there is a chain of people linking these people, where two people adjacent in
the chain know one another. For example, in Figure 6 in Section 10.1, there is a chain of six
people linking Kamini and Ching. Many social scientists have conjectured that almost every
pair of people in the world are linked by a small chain of people, perhaps containing just five or
fewer people. This would mean that almost every pair of vertices in the acquaintanceship graph
containing all people in the world is linked by a path of length not exceeding four. The play Six

Degrees of Separation by John Guare is based on this notion. ▲

EXAMPLE 3 Paths in Collaboration Graphs In a collaboration graph, two people a and b are connected
by a path when there is a sequence of people starting with a and ending with b such that the
endpoints of each edge in the path are people who have collaborated. We will consider two
particular collaboration graphs here. First, in the academic collaboration graph of people who
have written papers in mathematics, the Erdős number of a person m (defined in terms of
relations in Supplementary Exercise 14 in Chapter 9) is the length of the shortest path between
m and the extremely prolific mathematician Paul Erdős (who died in 1996). That is, the Erdős
number of a mathematician is the length of the shortest chain of mathematicians that begins
with Paul Erdős and ends with this mathematician, where each adjacent pair of mathematicians
have written a joint paper. The number of mathematicians with each Erdős number as of early
2006, according to the Erdős Number Project, is shown in Table 1.

In the Hollywood graph (see Example 3 in Section 10.1) two actors a and b are linked when
there is a chain of actors linking a and b, where every two actors adjacent in the chain have
acted in the same movie. In the Hollywood graph, the Bacon number of an actor c is defined
to be the length of the shortest path connecting c and the well-known actor Kevin Bacon. As
new movies are made, including new ones with Kevin Bacon, the Bacon number of actors can
change. In Table 2 we show the number of actors with each Bacon number as of early 2011

Replace Kevin Bacon by

your own favorite actor to

invent a new party game

using data from the Oracle of Bacon website. The origins of the Bacon number of an actor
dates back to the early 1990s, when Kevin Bacon remarked that he had worked with everyone
in Hollywood or someone who worked with them. This lead some people to invent a party

10.4 Connectivity 681

TABLE 1 The Number
of Mathematicians
with a Given Erdős
Number (as of early
2006).

Erdős Number

Number of People

0 1

1 504

2 6,593

3 33,605

4 83,642

5 87,760

6 40,014

7 11,591

8 3,146

9 819

10 244

11 68

12 23

13 5

TABLE 2 The Number
of Actors with a Given
Bacon Number (as of
early 2011).

Bacon Number

Number of People

0 1

1 2,367

2 242,407

3 785,389

4 200,602

5 14,048

6 1,277

7 114

8 16

game where participants where challenged to find a sequence of movies leading from each actor
named to Kevin Bacon. We can find a number similar to a Bacon number using any actor as the
center of the acting universe. ▲

Connectedness in Undirected Graphs

When does a computer network have the property that every pair of computers can share infor-
mation, if messages can be sent through one or more intermediate computers? When a graph
is used to represent this computer network, where vertices represent the computers and edges
represent the communication links, this question becomes: When is there always a path between
two vertices in the graph?

DEFINITION 3 An undirected graph is called connected if there is a path between every pair of distinct
vertices of the graph. An undirected graph that is not connected is called disconnected. We
say that we disconnect a graph when we remove vertices or edges, or both, to produce a
disconnected subgraph.

Thus, any two computers in the network can communicate if and only if the graph of this network
is connected.

EXAMPLE 4 The graph G1 in Figure 2 is connected, because for every pair of distinct vertices there is a
path between them (the reader should verify this). However, the graph G2 in Figure 2 is not
connected. For instance, there is no path in G2 between vertices a and d . ▲

We will need the following theorem in Chapter 11.

682 10 / Graphs

a b

g e

f d

a b

c

c

d f

e

G2G1

FIGURE 2 The Graphs G1 and
G2.

a c

b
d e

h g

f

H1

H2
H3

H

FIGURE 3 The Graph H and Its
Connected Components H1, H2, and H3.

THEOREM 1 There is a simple path between every pair of distinct vertices of a connected undirected graph.

Proof: Let u and v be two distinct vertices of the connected undirected graph G = (V , E). Be-
cause G is connected, there is at least one path between u and v. Let x0, x1, . . . , xn, where x0 = u

and xn = v, be the vertex sequence of a path of least length. This path of least length is simple. To
see this, suppose it is not simple. Then xi = xj for some i and j with 0 ≤ i < j . This means that
there is a path from u to v of shorter length with vertex sequence x0, x1, . . . , xi−1, xj , . . . , xn

obtained by deleting the edges corresponding to the vertex sequence xi, . . . , xj−1.

CONNECTED COMPONENTS A connected component of a graph G is a connected sub-
graph of G that is not a proper subgraph of another connected subgraph of G. That is, a connected
component of a graph G is a maximal connected subgraph of G. A graph G that is not connected
has two or more connected components that are disjoint and have G as their union.

EXAMPLE 5 What are the connected components of the graph H shown in Figure 3?

Solution: The graph H is the union of three disjoint connected subgraphs H1, H2, and H3, shown
in Figure 3. These three subgraphs are the connected components of H . ▲

EXAMPLE 6 Connected Components of Call Graphs Two vertices x and y are in the same component of a
telephone call graph (see Example 4 in Section 10.1) when there is a sequence of telephone calls
beginning at x and ending at y. When a call graph for telephone calls made during a particular
day in the AT&T network was analyzed, this graph was found to have 53,767,087 vertices,
more than 170 million edges, and more than 3.7 million connected components. Most of these
components were small; approximately three-fourths consisted of two vertices representing pairs
of telephone numbers that called only each other. This graph has one huge connected component
with 44,989,297 vertices comprising more than 80% of the total. Furthermore, every vertex in
this component can be linked to any other vertex by a chain of no more than 20 calls. ▲

How Connected is a Graph?

Suppose that a graph represents a computer network. Knowing that this graph is connected tells
us that any two computers on the network can communicate. However, we would also like to
understand how reliable this network is. For instance, will it still be possible for all computers to
communicate after a router or a communications link fails? To answer this and similar questions,
we now develop some new concepts.

10.4 Connectivity 683

Sometimes the removal from a graph of a vertex and all incident edges produces a subgraph
with more connected components. Such vertices are called cut vertices (or articulation points).
The removal of a cut vertex from a connected graph produces a subgraph that is not connected.
Analogously, an edge whose removal produces a graph with more connected components than
in the original graph is called a cut edge or bridge. Note that in a graph representing a computer
network, a cut vertex and a cut edge represent an essential router and an essential link that cannot
fail for all computers to be able to communicate.

EXAMPLE 7 Find the cut vertices and cut edges in the graph G1 shown in Figure 4.

Solution: The cut vertices of G1 are b, c, and e. The removal of one of these vertices (and its
adjacent edges) disconnects the graph. The cut edges are {a, b} and {c, e}. Removing either one
of these edges disconnects G1. ▲

VERTEX CONNECTIVITY Not all graphs have cut vertices. For example, the complete
graph Kn, where n ≥ 3, has no cut vertices. When you remove a vertex from Kn and all edges
incident to it, the resulting subgraph is the complete graph Kn−1, a connected graph. Connected
graphs without cut vertices are called nonseparable graphs, and can be thought of as more
connected than those with a cut vertex. We can extend this notion by defining a more granulated
measure of graph connectivity based on the minimum number of vertices that can be removed
to disconnect a graph.

a d f

b c e

a

g

h

b c

a g f

d

e

b c

h g f

d

e

b c

a

g

f

d

e

G1

a c d

f

b

e

G2

G3
G4

G5

FIGURE 4 Some Connected Graphs

684 10 / Graphs

A subset V ′ of the vertex set V of G = (V , E) is a vertex cut, or separating set, if G − V ′

is disconnected. For instance, in the graph in Figure 1, the set {b, c, e} is a vertex cut with three
vertices, as the reader should verify. We leave it to the reader (Exercise 51) to show that every
connected graph, except a complete graph, has a vertex cut. We define the vertex connectivity
of a noncomplete graph G, denoted by κ(G), as the minimum number of vertices in a vertex
cut.

κ is the lowercase Greek

letter kappa. When G is a complete graph, it has no vertex cuts, because removing any subset of its vertices
and all incident edges still leaves a complete graph. Consequently, we cannot define κ(G) as the
minimum number of vertices in a vertex cut when G is complete. Instead, we set κ(Kn) = n − 1,
the number of vertices needed to be removed to produce a graph with a single vertex.

Consequently, for every graph G, κ(G) is minimum number of vertices that can be re-
moved from G to either disconnect G or produce a graph with a single vertex. We have
0 ≤ κ(G) ≤ n − 1 if G has n vertices, κ(G) = 0 if and only if G is disconnected or G = K1,
and κ(G) = n − 1 if and only if G is complete [see Exercise 52(a)].

The larger κ(G) is, the more connected we consider G to be. Disconnected graphs and K1

have κ(G) = 0, connected graphs with cut vertices and K2 have κ(G) = 1, graphs without cut
vertices that can be disconnected by removing two vertices and K3 have κ(G) = 2, and so
on. We say that a graph is k-connected (or k-vertex-connected), if κ(G) ≥ k. A graph G is 1-
connected if it is connected and not a graph containing a single vertex; a graph is 2-connected, or
biconnected, if it is nonseparable and has at least three vertices. Note that if G is a k-connected
graph, then G is a j -connected graph for all j with 0 ≤ j ≤ k.

EXAMPLE 8 Find the vertex connectivity for each of the graphs in Figure 4.

Solution: Each of the five graphs in Figure 4 is connected and has more than vertex, so each
of these graphs has positive vertex connectivity. Because G1 is a connected graph with a cut
vertex, as shown in Example 7, we know that κ(G1) = 1. Similarly, κ(G2) = 1, because c is a
cut vertex of G2.

The reader should verify that G3 has no cut vertices. but that {b, g} is a vertex cut. Hence,
κ(G3) = 2. Similarly, because G4 has a vertex cut of size two, {c, f }, but no cut vertices. It
follows that κ(G4) = 2. The reader can verify that G5 has no vertex cut of size two, but {b, c, f }

is a vertex cut of G5. Hence, κ(G5) = 3. ▲

EDGE CONNECTIVITY We can also measure the connectivity of a connected graph G =

(V , E) in terms of the minimum number of edges that we can remove to disconnect it. If a graph
has a cut edge, then we need only remove it to disconnect G. If G does not have a cut edge,
we look for the smallest set of edges that can be removed to disconnect it. A set of edges E′

is called an edge cut of G if the subgraph G − E′ is disconnected. The edge connectivity
λ is the lowercase Greek

letter lambda. of a graph G, denoted by λ(G), is the minimum number of edges in an edge cut of G. This
defines λ(G) for all connected graphs with more than one vertex because it is always possible
to disconnect such a graph by removing all edges incident to one of its vertices. Note that
λ(G) = 0 if G is not connected. We also specify that λ(G) = 0 if G is a graph consisting of a
single vertex. It follows that if G is a graph with n vertices, then 0 ≤ λ(G) ≤ n − 1. We leave
it to the reader [Exercise 52(b)] to show that λ(G) = n − 1 where G is a graph with n vertices
if and only if G = Kn, which is equivalent to the statement that λ(G) ≤ n − 2 when G is not a
complete graph.

EXAMPLE 9 Find the edge connectivity of each of the graphs in Figure 4.

Solution: Each of the five graphs in Figure 4 is connected and has more than one vertex, so we
know that all of them have positive edge connectivity. As we saw in Example 7, G1 has a cut
edge, so λ(G1) = 1.

10.4 Connectivity 685

The graph G2 has no cut edges, as the reader should verify, but the removal of the two edges
{a, b} and {a, c} disconnects it. Hence, λ(G2) = 2. Similarly, λ(G3) = 2, because G3 has no
cut edges, but the removal of the two edges {b, c} and {f, g} disconnects it.

The reader should verify that the removal of no two edges disconnects G4, but the removal
of the three edges {b, c}, {a, f }, and {f, g} disconnects it. Hence, λ(G4) = 3. Finally, the reader
should verify that λ(G5) = 3, because the removal of any two of its edges does not disconnect
it, but the removal of {a, b}, {a, g}, and {a, h} does. ▲

AN INEQUALITY FOR VERTEX CONNECTIVITY AND EDGE CONNECTIVITY

When G = (V , E) is a noncomplete connected graph with at least three vertices, the minimum
degree of a vertex of G is an upper bound for both the vertex connectivity of G and the edge
connectivity of G. That is, κ(G) ≤ minv∈V deg(v) and λ(G) ≤ minv∈V deg(v). To see this,
observe that deleting all the neighbors of a fixed vertex of minimum degree disconnects G, and
deleting all the edges that have a fixed vertex of minimum degree as an endpoint disconnects G.

In Exercise 55, we ask the reader to show that κ(G) ≤ λ(G) when G is a connected non-
complete graph. Note also that κ(Kn) = λ(Kn) = minv∈V deg(v) = n − 1 when n is a positive
integer and that κ(G) = λ(G) = 0 when G is a disconnected graph. Putting these facts together,
establishes that for all graphs G,

κ(G) ≤ λ(G) ≤ minv∈V deg(v).

APPLICATIONS OF VERTEX AND EDGE CONNECTIVITY Graph connectivity plays
an important role in many problems involving the reliability of networks. For instance, as we
mentioned in our introduction of cut vertices and cut edges, we can model a data network using
vertices to represent routers and edges to represent links between them. The vertex connectivity
of the resulting graph equals the minimum number of routers that disconnect the network when
they are out of service. If fewer routers are down, data transmission between every pair of routers
is still possible. The edge connectivity represents the minimum number of fiber optic links that
can be down to disconnect the network. If fewer links are down, it will still be possible for data
to be transmitted between every pair of routers.

We can model a highway network, using vertices to represent highway intersections and
edges to represent sections of roads running between intersections. The vertex connectivity of the
resulting graph represents the minimum number of intersections that can be closed at a particular
time that makes it impossible to travel between every two intersections. If fewer intersections
are closed, travel between every pair of intersections is still possible. The edge connectivity
represents the minimum number of roads that can be closed to disconnect the highway network.
If fewer highways are closed, it will still be possible to travel between any two intersections.
Clearly, it would be useful for the highway department to take this information into account
when planning road repairs.

Connectedness in Directed Graphs

There are two notions of connectedness in directed graphs, depending on whether the directions
of the edges are considered.

DEFINITION 4 A directed graph is strongly connected if there is a path from a to b and from b to a whenever
a and b are vertices in the graph.

For a directed graph to be strongly connected there must be a sequence of directed edges
from any vertex in the graph to any other vertex. A directed graph can fail to be strongly
connected but still be in “one piece.” Definition 5 makes this notion precise.

686 10 / Graphs

DEFINITION 5 A directed graph is weakly connected if there is a path between every two vertices in the
underlying undirected graph.

That is, a directed graph is weakly connected if and only if there is always a path between
two vertices when the directions of the edges are disregarded. Clearly, any strongly connected
directed graph is also weakly connected.

EXAMPLE 10 Are the directed graphs G and H shown in Figure 5 strongly connected? Are they weakly
connected?

Solution: G is strongly connected because there is a path between any two vertices in this
directed graph (the reader should verify this). Hence, G is also weakly connected. The graph
H is not strongly connected. There is no directed path from a to b in this graph. However, H is
weakly connected, because there is a path between any two vertices in the underlying undirected
graph of H (the reader should verify this). ▲

STRONG COMPONENTS OF A DIRECTED GRAPH The subgraphs of a directed graph G

that are strongly connected but not contained in larger strongly connected subgraphs, that is,
the maximal strongly connected subgraphs, are called the strongly connected components or
strong components of G. Note that if a and b are two vertices in a directed graph, their strong
components are either the same or disjoint. (We leave the proof of this last fact as Exercise 17.)

EXAMPLE 11 The graph H in Figure 5 has three strongly connected components, consisting of the vertex a;
the vertex e; and the subgraph consisting of the vertices b, c, and d and edges (b, c), (c, d), and
(d, b). ▲

EXAMPLE 12 The Strongly Connected Components of the Web Graph The Web graph introduced in
Example 5 of Section 10.1 represents Web pages with vertices and links with directed edges. A
snapshot of the Web in 1999 produced a Web graph with over 200 million vertices and over 1.5
billion edges (numbers that have now grown considerably). (See [Br00] for details.)

The underlying undirected graph of this Web graph is not connected, but it has a connected
component that includes approximately 90% of the vertices in the graph. The subgraph of the

In 2010 the Web graph

was estimated to have at

least 55 billion vertices

and one trillion edges.

This implies that more

than 40 TB of computer

memory would have been

needed to represent its

adjacency matrix.

original directed graph corresponding to this connected component of the underlying undirected
graph (that is, with the same vertices and all directed edges connecting vertices in this graph)
has one very large strongly connected component and many small ones. The former is called
the giant strongly connected component (GSCC) of the directed graph. A Web page in this
component can be reached following links starting at any other page in this component. The
GSCC in the Web graph produced by this study was found to have over 53 million vertices.
The remaining vertices in the large connected component of the undirected graph represent
three different types of Web pages: pages that can be reached from a page in the GSCC, but
do not link back to these pages following a series of links; pages that link back to pages in the

a b

e d

c

G

a b

e d

H

c

FIGURE 5 The Directed Graphs G and H .

10.4 Connectivity 687

GSCC following a series of links, but cannot be reached by following links on pages in the
GSCC; and pages that cannot reach pages in the GSCC and cannot be reached from pages in
the GSCC following a series of links. In this study, each of these three other sets was found to
have approximately 44 million vertices. (It is rather surprising that these three sets are close to
the same size.) ▲

Paths and Isomorphism

There are several ways that paths and circuits can help determine whether two graphs are
isomorphic. For example, the existence of a simple circuit of a particular length is a useful
invariant that can be used to show that two graphs are not isomorphic. In addition, paths can be
used to construct mappings that may be isomorphisms.

As we mentioned, a useful isomorphic invariant for simple graphs is the existence of a
simple circuit of length k, where k is a positive integer greater than 2. (The proof that this is an
invariant is left as Exercise 60.) Example 13 illustrates how this invariant can be used to show
that two graphs are not isomorphic.

EXAMPLE 13 Determine whether the graphs G and H shown in Figure 6 are isomorphic.

Solution: Both G and H have six vertices and eight edges. Each has four vertices of degree
three, and two vertices of degree two. So, the three invariants—number of vertices, number of
edges, and degrees of vertices—all agree for the two graphs. However, H has a simple circuit
of length three, namely, v1, v2, v6, v1, whereas G has no simple circuit of length three, as
can be determined by inspection (all simple circuits in G have length at least four). Because
the existence of a simple circuit of length three is an isomorphic invariant, G and H are not
isomorphic. ▲

We have shown how the existence of a type of path, namely, a simple circuit of a particular
length, can be used to show that two graphs are not isomorphic. We can also use paths to find
mappings that are potential isomorphisms.

EXAMPLE 14 Determine whether the graphs G and H shown in Figure 7 are isomorphic.

Solution: Both G and H have five vertices and six edges, both have two vertices of degree three
and three vertices of degree two, and both have a simple circuit of length three, a simple circuit
of length four, and a simple circuit of length five. Because all these isomorphic invariants agree,
G and H may be isomorphic.

u6

u5

u2

u3

u1

u4

G

v6

v5

v2

v3

v1

v4

H

FIGURE 6 The Graphs G and H .

H

v4 v3

v5 v2

v1

G

u5 u4

u1 u3

u2

FIGURE 7 The Graphs G and H .

688 10 / Graphs

To find a possible isomorphism, we can follow paths that go through all vertices so that the
corresponding vertices in the two graphs have the same degree. For example, the paths u1, u4,
u3, u2, u5 in G and v3, v2, v1, v5, v4 in H both go through every vertex in the graph; start at a
vertex of degree three; go through vertices of degrees two, three, and two, respectively; and end
at a vertex of degree two. By following these paths through the graphs, we define the mapping f

with f (u1) = v3, f (u4) = v2, f (u3) = v1, f (u2) = v5, and f (u5) = v4. The reader can show
that f is an isomorphism, so G and H are isomorphic, either by showing that f preserves edges
or by showing that with the appropriate orderings of vertices the adjacency matrices of G and H

are the same. ▲

Counting Paths Between Vertices

The number of paths between two vertices in a graph can be determined using its adjacency
matrix.

THEOREM 2 Let G be a graph with adjacency matrix A with respect to the ordering v1, v2, . . . , vn of
the vertices of the graph (with directed or undirected edges, with multiple edges and loops
allowed). The number of different paths of length r from vi to vj , where r is a positive integer,
equals the (i, j)th entry of Ar .

Proof: The theorem will be proved using mathematical induction. Let G be a graph with adja-
cency matrix A (assuming an ordering v1, v2, . . . , vn of the vertices of G). The number of paths
from vi to vj of length 1 is the (i, j)th entry of A, because this entry is the number of edges
from vi to vj .

Assume that the (i, j)th entry of Ar is the number of different paths of length r from vi

to vj . This is the inductive hypothesis. Because Ar+1 = ArA, the (i, j)th entry of Ar+1 equals

bi1a1j + bi2a2j + · · · + binanj ,

where bik is the (i, k)th entry of Ar . By the inductive hypothesis, bik is the number of paths of
length r from vi to vk .

A path of length r + 1 from vi to vj is made up of a path of length r from vi to some
intermediate vertex vk , and an edge from vk to vj . By the product rule for counting, the number
of such paths is the product of the number of paths of length r from vi to vk , namely, bik , and
the number of edges from vk to vj , namely, akj . When these products are added for all possible
intermediate vertices vk , the desired result follows by the sum rule for counting.

EXAMPLE 15 How many paths of length four are there from a to d in the simple graph G in Figure 8?

a b

d c

FIGURE 8 The
Graph G.

Solution: The adjacency matrix of G (ordering the vertices as a, b, c, d) is

A =

⎡

⎢

⎢

⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤

⎥

⎥

⎦

.

Hence, the number of paths of length four from a to d is the (1, 4)th entry of A4. Because

A4 =

⎡

⎢

⎢

⎣

8 0 0 8
0 8 8 0
0 8 8 0
8 0 0 8

⎤

⎥

⎥

⎦

,

10.4 Connectivity 689

there are exactly eight paths of length four from a to d . By inspection of the graph, we see that
a, b, a, b, d; a, b, a, c, d; a, b, d, b, d; a, b, d, c, d; a, c, a, b, d; a, c, a, c, d; a, c, d, b, d; and
a, c, d, c, d are the eight paths of length four from a to d . ▲

Theorem 2 can be used to find the length of the shortest path between two vertices of a
graph (see Exercise 56), and it can also be used to determine whether a graph is connected (see
Exercises 61 and 62).

Exercises

1. Does each of these lists of vertices form a path in the
following graph? Which paths are simple? Which are cir-
cuits? What are the lengths of those that are paths?

a) a, e, b, c, b b) a, e, a, d, b, c, a

c) e, b, a, d, b, e d) c, b, d, a, e, c

a b c

d e

2. Does each of these lists of vertices form a path in the
following graph? Which paths are simple? Which are cir-
cuits? What are the lengths of those that are paths?

a) a, b, e, c, b b) a, d, a, d, a

c) a, d, b, e, a d) a, b, e, c, b, d, a

a b c

d e

In Exercises 3–5 determine whether the given graph is con-
nected.

3.

4.

5.

6. How many connected components does each of the
graphs in Exercises 3–5 have? For each graph find each
of its connected components.

7. What do the connected components of acquaintanceship
graphs represent?

8. What do the connected components of a collaboration
graph represent?

9. Explain why in the collaboration graph of mathematicians
(see Example 3 in Section 10.1) a vertex representing a
mathematician is in the same connected component as the
vertex representing Paul Erdős if and only if that mathe-
matician has a finite Erdős number.

10. In the Hollywood graph (see Example 3 in Section 10.1),
when is the vertex representing an actor in the same con-
nected component as the vertex representing Kevin Ba-
con?

11. Determine whether each of these graphs is strongly con-
nected and if not, whether it is weakly connected.

a) a b c

e d

b) a b

c

e d

c)
a

b
c

ef

g d

690 10 / Graphs

12. Determine whether each of these graphs is strongly con-
nected and if not, whether it is weakly connected.

a) ba

e df

c

b)

a c

f d

b

e

c) ba c

dg

ef

13. What do the strongly connected components of a tele-
phone call graph represent?

14. Find the strongly connected components of each of these
graphs.

a) a b c

e d

b) a b c

f e d

c)
a b c

i h g

d

f

e

15. Find the strongly connected components of each of these
graphs.

a) a b

f e

c

d

b) a b c

h g f

d

e

c) a b c

i h g

d

f

e

Suppose that G = (V , E) is a directed graph. A vertex w ∈ V

is reachable from a vertex v ∈ V if there is a directed path
from v to w. The vertices v and w are mutually reachable if
there are both a directed path from v to w and a directed path
from w to v in G.

16. Show that if G = (V , E) is a directed graph and u, v, and
w are vertices in V for which u and v are mutually reach-
able and v and w are mutually reachable, then u and w

are mutually reachable.

17. Show that if G = (V , E) is a directed graph, then the
strong components of two vertices u and v of V are either
the same or disjoint. [Hint: Use Exercise 16.]

18. Show that all vertices visited in a directed path connecting
two vertices in the same strongly connected component
of a directed graph are also in this strongly connected
component.

19. Find the number of paths of length n between two differ-
ent vertices in K4 if n is

a) 2. b) 3. c) 4. d) 5.

20. Use paths either to show that these graphs are not isomor-
phic or to find an isomorphism between these graphs.

u1 u2

u4

u5 u6

u8

G

u7

u3

v1 v2

v4

v5 v6

v8

H

v7

v3

21. Use paths either to show that these graphs are not isomor-
phic or to find an isomorphism between them.

u1 u2

u3

u4

u8

u7

u5u6

G

v1 v2

v3

v4

v8

v7

v5v6

H

10.4 Connectivity 691

22. Use paths either to show that these graphs are not isomor-
phic or to find an isomorphism between them.

u1 u2

u3

u4

u8

u7

u5u6

G

v1 v2

v3

v4

v8

v7

v5v6

H

23. Use paths either to show that these graphs are not isomor-
phic or to find an isomorphism between them.

u1 v1

v3

v2v4

v5

v6

v7
v8u8

u2

u3

u4u5

u7u6

G H

24. Find the number of paths of length n between any two ad-
jacent vertices in K3,3 for the values of n in Exercise 19.

25. Find the number of paths of length n between any two
nonadjacent vertices in K3,3 for the values of n in Exer-
cise 19.

26. Find the number of paths between c and d in the graph in
Figure 1 of length

a) 2. b) 3. c) 4. d) 5. e) 6. f) 7.

27. Find the number of paths from a to e in the directed graph
in Exercise 2 of length

a) 2. b) 3. c) 4. d) 5. e) 6. f) 7.

∗28. Show that every connected graph with n vertices has at
least n − 1 edges.

29. Let G = (V , E) be a simple graph. Let R be the relation
on V consisting of pairs of vertices (u, v) such that there
is a path from u to v or such that u = v. Show that R is
an equivalence relation.

∗30. Show that in every simple graph there is a path from every
vertex of odd degree to some other vertex of odd degree.

In Exercises 31–33 find all the cut vertices of the given graph.

31. a d e

b c f

32. a

b c d e

f

33. a b f

d i h

c g
e

34. Find all the cut edges in the graphs in Exercises 31–33.

∗35. Suppose that v is an endpoint of a cut edge. Prove that v

is a cut vertex if and only if this vertex is not pendant.

∗36. Show that a vertex c in the connected simple graph G is
a cut vertex if and only if there are vertices u and v, both
different from c, such that every path between u and v

passes through c.

∗37. Show that a simple graph with at least two vertices has at
least two vertices that are not cut vertices.

∗38. Show that an edge in a simple graph is a cut edge if and
only if this edge is not part of any simple circuit in the
graph.

39. A communications link in a network should be provided
with a backup link if its failure makes it impossible for
some message to be sent. For each of the communications
networks shown here in (a) and (b), determine those links
that should be backed up.

a)

San Francisco

Los Angeles

Denver

Chicago

Washington

New York

Boston

b)

San
Francisco

Los
Angeles

Salt Lake
City

Chicago

Washington

New York

Boston

Denver

Seattle Portland

Kansas City

Bangor
Burlington

Atlanta

A vertex basis in a directed graph G is a minimal set B of
vertices of G such that for each vertex v of G not in B there
is a path to v from some vertex B.

40. Find a vertex basis for each of the directed graphs in Ex-
ercises 7–9 of Section 10.2.

41. What is the significance of a vertex basis in an influence
graph (described in Example 2 of Section 10.1)? Find a
vertex basis in the influence graph in that example.

42. Show that if a connected simple graph G is the union of
the graphs G1 and G2, then G1 and G2 have at least one
common vertex.

∗43. Show that if a simple graph G has k connected compo-
nents and these components have n1, n2, . . . , nk vertices,
respectively, then the number of edges of G does not ex-
ceed

k
∑

i=1

C(ni, 2).

692 10 / Graphs

∗44. Use Exercise 43 to show that a simple graph with n

vertices and k connected components has at most (n −
k)(n − k + 1)/2 edges. [Hint: First show that

k
∑

i=1

n2
i ≤ n2 − (k − 1)(2n − k),

where ni is the number of vertices in the ith connected
component.]

∗45. Show that a simple graph G with n vertices is connected
if it has more than (n − 1)(n − 2)/2 edges.

46. Describe the adjacency matrix of a graph with n con-
nected components when the vertices of the graph are
listed so that vertices in each connected component are
listed successively.

47. How many nonisomorphic connected simple graphs are
there with n vertices when n is

a) 2? b) 3? c) 4? d) 5?

48. Show that each of the following graphs has no cut ver-
tices.

a) Cn where n ≥ 3

b) Wn where n ≥ 3

c) Km,n where m ≥ 2 and n ≥ 2

d) Qn where n ≥ 2

49. Show that each of the graphs in Exercise 48 has no cut
edges.

50. For each of these graphs, find κ(G), λ(G), and
minv∈V deg(v), and determine which of the two inequal-
ities in κ(G) ≤ λ(G) ≤ minv∈V deg(v) are strict.

a)

d

ca

e

b

b) b d

h f

c ea g

c) a b

f

j

e

i

d

h

c

g

lk

d)

b c

fd e

a

51. Show that if G is a connected graph, then it is possible to
remove vertices to disconnect G if and only if G is not a
complete graph.

52. Show that if G is a connected graph with n vertices then

a) κ(G) = n − 1 if and only if G = Kn.

b) λ(G) = n − 1 if and only if G = Kn.

53. Find κ(Km,n) and λ(Km,n), where m and n are positive
integers.

54. Construct a graph G with κ(G) = 1, λ(G) = 2, and
minv∈V deg(v) = 3.

∗55. Show that if G is a graph, then κ(G) ≤ λ(G).

56. Explain how Theorem 2 can be used to find the length of
the shortest path from a vertex v to a vertex w in a graph.

57. Use Theorem 2 to find the length of the shortest path
between a and f in the graph in Figure 1.

58. Use Theorem 2 to find the length of the shortest path from
a to c in the directed graph in Exercise 2.

59. Let P1 and P2 be two simple paths between the vertices u

and v in the simple graph G that do not contain the same
set of edges. Show that there is a simple circuit in G.

60. Show that the existence of a simple circuit of length k,
where k is an integer greater than 2, is an invariant for
graph isomorphism.

61. Explain how Theorem 2 can be used to determine whether
a graph is connected.

62. Use Exercise 61 to show that the graph G1 in Figure 2
is connected whereas the graph G2 in that figure is not
connected.

63. Show that a simple graph G is bipartite if and only if it
has no circuits with an odd number of edges.

64. In an old puzzle attributed to Alcuin ofYork (735–804), a
farmer needs to carry a wolf, a goat, and a cabbage across
a river. The farmer only has a small boat, which can carry
the farmer and only one object (an animal or a vegetable).
He can cross the river repeatedly. However, if the farmer
is on the other shore, the wolf will eat the goat, and, simi-
larly, the goat will eat the cabbage. We can describe each
state by listing what is on each shore. For example, we can
use the pair (FG,WC) for the state where the farmer and
goat are on the first shore and the wolf and cabbage are
on the other shore. [The symbol ∅ is used when nothing
is on a shore, so that (FWGC, ∅) is the initial state.]

a) Find all allowable states of the puzzle, where neither
the wolf and the goat nor the goat and the cabbage are
left on the same shore without the farmer.

b) Construct a graph such that each vertex of this graph
represents an allowable state and the vertices repre-
senting two allowable states are connected by an edge
if it is possible to move from one state to the other us-
ing one trip of the boat.

c) Explain why finding a path from the vertex represent-
ing (FWGC, ∅) to the vertex representing (∅, FWGC)
solves the puzzle.

d) Find two different solutions of the puzzle, each using
seven crossings.

e) Suppose that the farmer must pay a toll of one dollar
whenever he crosses the river with an animal. Which
solution of the puzzle should the farmer use to pay the
least total toll?

10.5 Euler and Hamilton Paths 693

∗65. Use a graph model and a path in your graph, as in Exer-
cise 64, to solve the jealous husbands problem. Two
married couples, each a husband and a wife, want to
cross a river. They can only use a boat that can carry
one or two people from one shore to the other shore.
Each husband is extremely jealous and is not willing
to leave his wife with the other husband, either in the
boat or on shore. How can these four people reach the
opposite shore?

66. Suppose that you have a three-gallon jug and a five-gallon
jug. You may fill either jug with water, you may empty
either jug, and you may transfer water from either jug
into the other jug. Use a path in a directed graph to
show that you can end up with a jug containing exactly
one gallon. [Hint: Use an ordered pair (a, b) to indicate
how much water is in each jug. Represent these ordered
pairs by vertices. Add an edge for each allowable opera-
tion with the jugs.]

10.5 Euler and Hamilton Paths

Introduction

Can we travel along the edges of a graph starting at a vertex and returning to it by traversing
each edge of the graph exactly once? Similarly, can we travel along the edges of a graph starting
at a vertex and returning to it while visiting each vertex of the graph exactly once? Although
these questions seem to be similar, the first question, which asks whether a graph has an Euler

circuit, can be easily answered simply by examining the degrees of the vertices of the graph,
while the second question, which asks whether a graph has a Hamilton circuit, is quite difficult
to solve for most graphs. In this section we will study these questions and discuss the difficulty
of solving them. Although both questions have many practical applications in many different
areas, both arose in old puzzles. We will learn about these old puzzles as well as modern
practical applications.

Euler Paths and Circuits

The town of Königsberg, Prussia (now called Kaliningrad and part of the Russian republic),
was divided into four sections by the branches of the Pregel River. These four sections included
the two regions on the banks of the Pregel, Kneiphof Island, and the region between the two
branches of the Pregel. In the eighteenth century seven bridges connected these regions. Figure 1
depicts these regions and bridges.

Only five bridges connect

Kaliningrad today. Of

these, just two remain

from Euler’s day.

The townspeople took long walks through town on Sundays. They wondered whether it was
possible to start at some location in the town, travel across all the bridges once without crossing
any bridge twice, and return to the starting point.

The Swiss mathematician Leonhard Euler solved this problem. His solution, published
in 1736, may be the first use of graph theory. (For a translation of Euler’s original paper see
[BiLlWi99].) Euler studied this problem using the multigraph obtained when the four regions
are represented by vertices and the bridges by edges. This multigraph is shown in Figure 2.

C

A

B

D

FIGURE 1 The Seven Bridges of Königsberg.

A

C

B

D

FIGURE 2 Multigraph Model
of the Town of Königsberg.

11

C H A P T E R

Trees

11.1 Introduction

to Trees

11.2 Applications

of Trees

11.3 Tree Traversal

11.4 Spanning

Trees

11.5 Minimum

Spanning

Trees

Aconnected graph that contains no simple circuits is called a tree. Trees were used as long

ago as 1857, when the English mathematician Arthur Cayley used them to count certain

types of chemical compounds. Since that time, trees have been employed to solve problems in

a wide variety of disciplines, as the examples in this chapter will show.

Trees are particularly useful in computer science, where they are employed in a wide range

of algorithms. For instance, trees are used to construct efficient algorithms for locating items in

a list. They can be used in algorithms, such as Huffman coding, that construct efficient codes

saving costs in data transmission and storage. Trees can be used to study games such as checkers

and chess and can help determine winning strategies for playing these games. Trees can be used

to model procedures carried out using a sequence of decisions. Constructing these models can

help determine the computational complexity of algorithms based on a sequence of decisions,

such as sorting algorithms.

Procedures for building trees containing every vertex of a graph, including depth-first search

and breadth-first search, can be used to systematically explore the vertices of a graph. Explor-

ing the vertices of a graph via depth-first search, also known as backtracking, allows for the

systematic search for solutions to a wide variety of problems, such as determining how eight

queens can be placed on a chessboard so that no queen can attack another.

We can assign weights to the edges of a tree to model many problems. For example, using

weighted trees we can develop algorithms to construct networks containing the least expensive

set of telephone lines linking different network nodes.

11.1 Introduction to Trees

In Chapter 10 we showed how graphs can be used to model and solve many problems. In

this chapter we will focus on a particular type of graph called a tree, so named because such

graphs resemble trees. For example, family trees are graphs that represent genealogical charts.

Family trees use vertices to represent the members of a family and edges to represent parent–

child relationships. The family tree of the male members of the Bernoulli family of Swiss

mathematicians is shown in Figure 1. The undirected graph representing a family tree (restricted

to people of just one gender and with no inbreeding) is an example of a tree.

Nikolaus

(1623–1708)

Nikolaus

(1662–1716)

Nikolaus I

(1687–1759)

Daniel

(1700–1782)

Nikolaus II

(1695–1726)

Johann II

(1710–1790)

Johann I

(1667–1748)

Jacob I

(1654–1705)

Johann III

(1746–1807)

Jacob II

(1759–1789)

FIGURE 1 The Bernoulli Family of Mathematicians. 745

746 11 / Trees

a b

c d

e f

a b

c

d

e f

a b

c d

e f

a b

c

d

e f

G1 G2 G3 G4

FIGURE 2 Examples of Trees and Graphs That Are Not Trees.

DEFINITION 1 A tree is a connected undirected graph with no simple circuits.

Because a tree cannot have a simple circuit, a tree cannot contain multiple edges or loops.

Therefore any tree must be a simple graph.

EXAMPLE 1 Which of the graphs shown in Figure 2 are trees?

Solution: G1 and G2 are trees, because both are connected graphs with no simple circuits. G3 is

not a tree because e, b, a, d , e is a simple circuit in this graph. Finally, G4 is not a tree because

it is not connected. ▲

Any connected graph that contains no simple circuits is a tree. What about graphs containing

no simple circuits that are not necessarily connected? These graphs are called forests and have

the property that each of their connected components is a tree. Figure 3 displays a forest.

Trees are often defined as undirected graphs with the property that there is a unique simple

path between every pair of vertices. Theorem 1 shows that this alternative definition is equivalent

to our definition.

THEOREM 1 An undirected graph is a tree if and only if there is a unique simple path between any two of

its vertices.

This is one graph with three connected components.

FIGURE 3 Example of a Forest.

11.1 Introduction to Trees 747

Proof: First assume that T is a tree. Then T is a connected graph with no simple circuits. Let x

and y be two vertices of T . Because T is connected, by Theorem 1 of Section 10.4 there is a

simple path between x and y. Moreover, this path must be unique, for if there were a second

such path, the path formed by combining the first path from x to y followed by the path from y

to x obtained by reversing the order of the second path from x to y would form a circuit. This

implies, using Exercise 59 of Section 10.4, that there is a simple circuit in T . Hence, there is a

unique simple path between any two vertices of a tree.

Now assume that there is a unique simple path between any two vertices of a graph T .

Then T is connected, because there is a path between any two of its vertices. Furthermore, T

can have no simple circuits. To see that this is true, suppose T had a simple circuit that contained

the vertices x and y. Then there would be two simple paths between x and y, because the simple

circuit is made up of a simple path from x to y and a second simple path from y to x. Hence, a

graph with a unique simple path between any two vertices is a tree.

Rooted Trees

In many applications of trees, a particular vertex of a tree is designated as the root. Once we

specify a root, we can assign a direction to each edge as follows. Because there is a unique path

from the root to each vertex of the graph (by Theorem 1), we direct each edge away from the

root. Thus, a tree together with its root produces a directed graph called a rooted tree.

DEFINITION 2 A rooted tree is a tree in which one vertex has been designated as the root and every edge is

directed away from the root.

Rooted trees can also be defined recursively. Refer to Section 5.3 to see how this can be done.

We can change an unrooted tree into a rooted tree by choosing any vertex as the root. Note that

different choices of the root produce different rooted trees. For instance, Figure 4 displays the

rooted trees formed by designating a to be the root and c to be the root, respectively, in the

tree T . We usually draw a rooted tree with its root at the top of the graph. The arrows indicating

the directions of the edges in a rooted tree can be omitted, because the choice of root determines

the directions of the edges.

The terminology for trees has botanical and genealogical origins. Suppose that T is a rooted

tree. If v is a vertex in T other than the root, the parent of v is the unique vertex u such that there

is a directed edge from u to v (the reader should show that such a vertex is unique). When u is

the parent of v, v is called a child of u. Vertices with the same parent are called siblings. The

ancestors of a vertex other than the root are the vertices in the path from the root to this vertex,

excluding the vertex itself and including the root (that is, its parent, its parent’s parent, and so

on, until the root is reached). The descendants of a vertex v are those vertices that have v as

a

b

c

e

gf

d

a

b
c

d

egf

a

c

d

e

b

gf

T With root a With root c

FIGURE 4 A Tree and Rooted Trees Formed by Designating Two Different Roots.

748 11 / Trees

a

f
b g

j
i

hc

d e k l m

T

FIGURE 5 A Rooted Tree T .

g

j
i

h

k l m

FIGURE 6 The

Subtree Rooted at g.

an ancestor. A vertex of a rooted tree is called a leaf if it has no children. Vertices that have

children are called internal vertices. The root is an internal vertex unless it is the only vertex

in the graph, in which case it is a leaf.

If a is a vertex in a tree, the subtree with a as its root is the subgraph of the tree consisting

of a and its descendants and all edges incident to these descendants.

EXAMPLE 2 In the rooted tree T (with root a) shown in Figure 5, find the parent of c, the children of g, the

siblings of h, all ancestors of e, all descendants of b, all internal vertices, and all leaves. What

is the subtree rooted at g?

Solution: The parent of c is b. The children of g are h, i, and j . The siblings of h are i and j .

The ancestors of e are c, b, and a. The descendants of b are c, d , and e. The internal vertices

are a, b, c, g, h, and j . The leaves are d , e, f , i, k, l, and m. The subtree rooted at g is shown

in Figure 6. ▲

Rooted trees with the property that all of their internal vertices have the same number of

children are used in many different applications. Later in this chapter we will use such trees to

study problems involving searching, sorting, and coding.

DEFINITION 3 A rooted tree is called an m-ary tree if every internal vertex has no more than m children.

The tree is called a full m-ary tree if every internal vertex has exactly m children. An m-ary

tree with m = 2 is called a binary tree.

EXAMPLE 3 Are the rooted trees in Figure 7 full m-ary trees for some positive integer m?

T1 T2 T3 T4

FIGURE 7 Four Rooted Trees.

11.1 Introduction to Trees 749

Solution: T1 is a full binary tree because each of its internal vertices has two children. T2 is a

full 3-ary tree because each of its internal vertices has three children. In T3 each internal vertex

has five children, so T3 is a full 5-ary tree. T4 is not a full m-ary tree for any m because some of

its internal vertices have two children and others have three children. ▲

ORDERED ROOTED TREES An ordered rooted tree is a rooted tree where the children

of each internal vertex are ordered. Ordered rooted trees are drawn so that the children of each

internal vertex are shown in order from left to right. Note that a representation of a rooted tree in

the conventional way determines an ordering for its edges. We will use such orderings of edges

in drawings without explicitly mentioning that we are considering a rooted tree to be ordered.

In an ordered binary tree (usually called just a binary tree), if an internal vertex has two

children, the first child is called the left child and the second child is called the right child.

The tree rooted at the left child of a vertex is called the left subtree of this vertex, and the tree

rooted at the right child of a vertex is called the right subtree of the vertex. The reader should

note that for some applications every vertex of a binary tree, other than the root, is designated

as a right or a left child of its parent. This is done even when some vertices have only one child.

We will make such designations whenever it is necessary, but not otherwise.

Ordered rooted trees can be defined recursively. Binary trees, a type of ordered rooted trees,

were defined this way in Section 5.3.

EXAMPLE 4 What are the left and right children of d in the binary tree T shown in Figure 8(a) (where the

order is that implied by the drawing)? What are the left and right subtrees of c?

Solution: The left child of d is f and the right child is g. We show the left and right subtrees

of c in Figures 8(b) and 8(c), respectively. ▲

a

b

d

f g j k
l

e h i

c

m

j

i
h

k
l

m

(a) (b) (c)

T

FIGURE 8 A Binary Tree T and Left and Right Subtrees of the Vertex c.

Just as in the case of graphs, there is no standard terminology used to describe trees, rooted

trees, ordered rooted trees, and binary trees. This nonstandard terminology occurs because trees

are used extensively throughout computer science, which is a relatively young field. The reader

should carefully check meanings given to terms dealing with trees whenever they occur.

Trees as Models

Trees are used as models in such diverse areas as computer science, chemistry, geology, botany,

and psychology. We will describe a variety of such models based on trees.

750 11 / Trees

H

CH H

C

CH H

CH H

H

H H

H

C

H

H C

CH H

H

C

H

H

H

H

Butane Isobutane

FIGURE 9 The Two Isomers of Butane.

EXAMPLE 5 Saturated Hydrocarbons and Trees Graphs can be used to represent molecules, where atoms

are represented by vertices and bonds between them by edges. The English mathematicianArthur

Cayley discovered trees in 1857 when he was trying to enumerate the isomers of compounds of

the form CnH2n+2, which are called saturated hydrocarbons.

In graph models of saturated hydrocarbons, each carbon atom is represented by a vertex

of degree 4, and each hydrogen atom is represented by a vertex of degree 1. There are 3n + 2

vertices in a graph representing a compound of the form CnH2n+2. The number of edges in such a

graph is half the sum of the degrees of the vertices. Hence, there are (4n + 2n + 2)/2 = 3n + 1

edges in this graph. Because the graph is connected and the number of edges is one less than

the number of vertices, it must be a tree (see Exercise 15).

The nonisomorphic trees with n vertices of degree 4 and 2n + 2 of degree 1 represent the

different isomers of CnH2n+2. For instance, when n = 4, there are exactly two nonisomorphic

trees of this type (the reader should verify this). Hence, there are exactly two different isomers

of C4H10. Their structures are displayed in Figure 9. These two isomers are called butane and

isobutane. ▲

EXAMPLE 6 Representing Organizations The structure of a large organization can be modeled using a

rooted tree. Each vertex in this tree represents a position in the organization. An edge from one

vertex to another indicates that the person represented by the initial vertex is the (direct) boss

of the person represented by the terminal vertex. The graph shown in Figure 10 displays such a

tree. In the organization represented by this tree, the Director of Hardware Development works

directly for the Vice President of R&D. ▲
EXAMPLE 7 Computer File Systems Files in computer memory can be organized into directories. A

directory can contain both files and subdirectories. The root directory contains the entire file

ARTHUR CAYLEY (1821–1895) Arthur Cayley, the son of a merchant, displayed his mathematical talents
at an early age with amazing skill in numerical calculations. Cayley entered Trinity College, Cambridge, when
he was 17. While in college he developed a passion for reading novels. Cayley excelled at Cambridge and
was elected to a 3-year appointment as Fellow of Trinity and assistant tutor. During this time Cayley began
his study of n-dimensional geometry and made a variety of contributions to geometry and to analysis. He
also developed an interest in mountaineering, which he enjoyed during vacations in Switzerland. Because no
position as a mathematician was available to him, Cayley left Cambridge, entering the legal profession and
gaining admittance to the bar in 1849. Although Cayley limited his legal work to be able to continue his
mathematics research, he developed a reputation as a legal specialist. During his legal career he was able to

write more than 300 mathematical papers. In 1863 Cambridge University established a new post in mathematics and offered it to
Cayley. He took this job, even though it paid less money than he made as a lawyer.

11.1 Introduction to Trees 751

President

VP

Marketing

VP

R&D

VP

Services

VP

Finance

Director

Research

Director

Software

Development

Director

Hardware

Development

AVP

Sales

Chief

Field

Operations

AVP

Marketing

Director

Material

Management

Director

Accounting

Director

MIS

FIGURE 10 An Organizational Tree for a Computer Company.

system. Thus, a file system may be represented by a rooted tree, where the root represents the

root directory, internal vertices represent subdirectories, and leaves represent ordinary files or

empty directories. One such file system is shown in Figure 11. In this system, the file khr is in

the directory rje. (Note that links to files where the same file may have more than one pathname

can lead to circuits in computer file systems.) ▲

usr bin tmp

bin lsrje spool mail who junk

khrnroff vied opr uucp

printer file

The root is the root directory /

Internal vertices are directories

Leaves are files

/

FIGURE 11 A Computer File System.

EXAMPLE 8 Tree-Connected Parallel Processors In Example 17 of Section 10.2 we described several

interconnection networks for parallel processing. A tree-connected network is another impor-

tant way to interconnect processors. The graph representing such a network is a complete binary

tree, that is, a full binary tree where every root is at the same level. Such a network interconnects

n = 2k − 1 processors, where k is a positive integer. A processor represented by the vertex v

that is not a root or a leaf has three two-way connections—one to the processor represented by

the parent of v and two to the processors represented by the two children of v. The processor

represented by the root has two two-way connections to the processors represented by its two

children. A processor represented by a leaf v has a single two-way connection to the parent of v.

We display a tree-connected network with seven processors in Figure 12.

P1

P4 P5 P6 P7

P2 P3

FIGURE 12 A

Tree-Connected

Network of Seven

Processors.

We now illustrate how a tree-connected network can be used for parallel computation. In

particular, we show how the processors in Figure 12 can be used to add eight numbers, using

three steps. In the first step, we add x1 and x2 using P4, x3 and x4 using P5, x5 and x6 using P6,

752 11 / Trees

and x7 and x8 using P7. In the second step, we add x1 + x2 and x3 + x4 using P2 and x5 + x6 and

x7 + x8 using P3. Finally, in the third step, we add x1 + x2 + x3 + x4 and x5 + x6 + x7 + x8

using P1. The three steps used to add eight numbers compares favorably to the seven steps

required to add eight numbers serially, where the steps are the addition of one number to the

sum of the previous numbers in the list. ▲

Properties of Trees

We will often need results relating the numbers of edges and vertices of various types in trees.

THEOREM 2 A tree with n vertices has n − 1 edges.

Proof: We will use mathematical induction to prove this theorem. Note that for all the trees here

we can choose a root and consider the tree rooted.

BASIS STEP: When n = 1, a tree with n = 1 vertex has no edges. It follows that the theorem

is true for n = 1.

INDUCTIVE STEP: The inductive hypothesis states that every tree with k vertices has k − 1

edges, where k is a positive integer. Suppose that a tree T has k + 1 vertices and that v is a

leaf of T (which must exist because the tree is finite), and let w be the parent of v. Removing

from T the vertex v and the edge connecting w to v produces a tree T ′ with k vertices, because

the resulting graph is still connected and has no simple circuits. By the inductive hypothesis, T ′

has k − 1 edges. It follows that T has k edges because it has one more edge than T ′, the edge

connecting v and w. This completes the inductive step.

Recall that a tree is a connected undirected graph with no simple circuits. So, when G is an

undirected graph with n vertices, Theorem 2 tells us that the two conditions (i) G is connected

and (ii) G has no simple circuits, imply (iii) G has n − 1 edges. Also, when (i) and (iii) hold,

then (ii) must also hold, and when (ii) and (iii) hold, (i) must also hold. That is, if G is connected

and G has n − 1 edges, then G has no simple circuits, so that G is a tree (see Exercise 15(a)),

and if G has no simple circuits and G has n − 1 edges, then G is connected, and so is a tree (see

Exercise 15(b)). Consequently, when two of (i), (ii), and (iii) hold, the third condition must also

hold, and G must be a tree.

COUNTING VERTICES IN FULL m-ARY TREES The number of vertices in a full m-ary

tree with a specified number of internal vertices is determined, as Theorem 3 shows. As in

Theorem 2, we will use n to denote the number of vertices in a tree.

THEOREM 3 A full m-ary tree with i internal vertices contains n = mi + 1 vertices.

Proof: Every vertex, except the root, is the child of an internal vertex. Because each of the i

internal vertices has m children, there are mi vertices in the tree other than the root. Therefore,

the tree contains n = mi + 1 vertices.

Suppose that T is a full m-ary tree. Let i be the number of internal vertices and l the number

of leaves in this tree. Once one of n, i, and l is known, the other two quantities are determined.

Theorem 4 explains how to find the other two quantities from the one that is known.

11.1 Introduction to Trees 753

THEOREM 4 A full m-ary tree with

(i) n vertices has i = (n − 1)/m internal vertices and l = [(m − 1)n + 1]/m leaves,

(ii) i internal vertices has n = mi + 1 vertices and l = (m − 1)i + 1 leaves,

(iii) l leaves has n = (ml − 1)/(m − 1) vertices and i = (l − 1)/(m − 1) internal ver-

tices.

Proof: Let n represent the number of vertices, i the number of internal vertices, and l the number

of leaves. The three parts of the theorem can all be proved using the equality given in Theorem 3,

that is, n = mi + 1, together with the equality n = l + i, which is true because each vertex is

either a leaf or an internal vertex. We will prove part (i) here. The proofs of parts (ii) and (iii)

are left as exercises for the reader.

Solving for i in n = mi + 1 gives i = (n − 1)/m. Then inserting this expression for i into

the equation n = l + i shows that l = n − i = n − (n − 1)/m = [(m − 1)n + 1]/m.

Example 9 illustrates how Theorem 4 can be used.

EXAMPLE 9 Suppose that someone starts a chain letter. Each person who receives the letter is asked to send

it on to four other people. Some people do this, but others do not send any letters. How many

people have seen the letter, including the first person, if no one receives more than one letter

and if the chain letter ends after there have been 100 people who read it but did not send it out?

How many people sent out the letter?

Solution: The chain letter can be represented using a 4-ary tree. The internal vertices correspond

to people who sent out the letter, and the leaves correspond to people who did not send it

out. Because 100 people did not send out the letter, the number of leaves in this rooted tree is

l = 100. Hence, part (iii) of Theorem 4 shows that the number of people who have seen the letter

is n = (4 · 100 − 1)/(4 − 1) = 133. Also, the number of internal vertices is 133 − 100 = 33,

so 33 people sent out the letter. ▲

BALANCED m-ARY TREES It is often desirable to use rooted trees that are “balanced” so

that the subtrees at each vertex contain paths of approximately the same length. Some definitions

will make this concept clear. The level of a vertex v in a rooted tree is the length of the unique

path from the root to this vertex. The level of the root is defined to be zero. The height of a

rooted tree is the maximum of the levels of vertices. In other words, the height of a rooted tree

is the length of the longest path from the root to any vertex.

EXAMPLE 10 Find the level of each vertex in the rooted tree shown in Figure 13. What is the height of this

tree?

Solution: The root a is at level 0. Vertices b, j , and k are at level 1. Vertices c, e, f , and l are at

level 2. Vertices d , g, i, m, and n are at level 3. Finally, vertex h is at level 4. Because the largest

level of any vertex is 4, this tree has height 4. ▲

A rooted m-ary tree of height h is balanced if all leaves are at levels h or h − 1.

a

j k
b

f l
e

c

d
g

h

i m n

FIGURE 13 A

Rooted Tree.

EXAMPLE 11 Which of the rooted trees shown in Figure 14 are balanced?

Solution: T1 is balanced, because all its leaves are at levels 3 and 4. However, T2 is not balanced,

because it has leaves at levels 2, 3, and 4. Finally, T3 is balanced, because all its leaves are at

level 3. ▲

754 11 / Trees

T1 T2 T3

FIGURE 14 Some Rooted Trees.

A BOUND FORTHE NUMBER OF LEAVES IN AN m-ARYTREE It is often useful to have

an upper bound for the number of leaves in an m-ary tree. Theorem 5 provides such a bound in

terms of the height of the m-ary tree.

THEOREM 5 There are at most mh leaves in an m-ary tree of height h.

Proof: The proof uses mathematical induction on the height. First, consider m-ary trees of

height 1. These trees consist of a root with no more than m children, each of which is a leaf.

Hence, there are no more than m1 = m leaves in an m-ary tree of height 1. This is the basis step

of the inductive argument.

Now assume that the result is true for all m-ary trees of height less than h; this is the inductive

hypothesis. Let T be an m-ary tree of height h. The leaves of T are the leaves of the subtrees

of T obtained by deleting the edges from the root to each of the vertices at level 1, as shown in

Figure 15.

Each of these subtrees has height less than or equal to h − 1. So by the inductive hypothesis,

each of these rooted trees has at most mh−1 leaves. Because there are at most m such subtrees,

each with a maximum of mh−1 leaves, there are at most m · mh−1 = mh leaves in the rooted

tree. This finishes the inductive argument.

COROLLARY 1 If an m-ary tree of height h has l leaves, then h ≥ ⌈logm l⌉. If the m-ary tree is full and

balanced, then h = ⌈logm l⌉. (We are using the ceiling function here. Recall that ⌈x⌉ is the

smallest integer greater than or equal to x.)

Proof: We know that l ≤ mh from Theorem 5. Taking logarithms to the base m shows that

logm l ≤ h. Because h is an integer, we have h ≥ ⌈logm l⌉. Now suppose that the tree is balanced.

1st

subtree

of height

! h – 1

2nd

subtree

of height

 ! h – 1

3rd

subtree

of height

! h – 1

(m – 1)st

subtree

of height

! h – 1

m th

subtree

of height

! h – 1

• • •

FIGURE 15 The Inductive Step of the Proof.

11.1 Introduction to Trees 755

Then each leaf is at level h or h − 1, and because the height is h, there is at least one leaf at level h.

It follows that there must be more than mh−1 leaves (see Exercise 30). Because l ≤ mh, we have

mh−1 < l ≤ mh. Taking logarithms to the base m in this inequality gives h − 1 < logm l ≤ h.

Hence, h = ⌈logm l⌉.

Exercises

1. Which of these graphs are trees?

a) b)

c) d)

e) f)

2. Which of these graphs are trees?

a) b)

c) d)

e) f)

3. Answer these questions about the rooted tree illustrated.

u

ts

r
q

ponml

e g i k

dcb

a

hf j

a) Which vertex is the root?

b) Which vertices are internal?

c) Which vertices are leaves?

d) Which vertices are children of j?

e) Which vertex is the parent of h?

f) Which vertices are siblings of o?

g) Which vertices are ancestors of m?

h) Which vertices are descendants of b?

4. Answer the same questions as listed in Exercise 3 for the

rooted tree illustrated.

b

a

d
c

e g h i
f

j k l m n
o

p

srq

b

a

d
c

e g h i
f

j k l m n
o

p

srq

5. Is the rooted tree in Exercise 3 a full m-ary tree for some

positive integer m?

6. Is the rooted tree in Exercise 4 a full m-ary tree for some

positive integer m?

7. What is the level of each vertex of the rooted tree in Ex-

ercise 3?

8. What is the level of each vertex of the rooted tree in Ex-

ercise 4?

9. Draw the subtree of the tree in Exercise 3 that is rooted

at

a) a. b) c. c) e.

10. Draw the subtree of the tree in Exercise 4 that is rooted

at

a) a. b) c. c) e.

11. a) How many nonisomorphic unrooted trees are there

with three vertices?

b) How many nonisomorphic rooted trees are there

with three vertices (using isomorphism for directed

graphs)?
∗12. a) How many nonisomorphic unrooted trees are there

with four vertices?

b) How many nonisomorphic rooted trees are there

with four vertices (using isomorphism for directed

graphs)?

756 11 / Trees

∗13. a) How many nonisomorphic unrooted trees are there

with five vertices?

b) How many nonisomorphic rooted trees are there with

five vertices (using isomorphism for directed graphs)?

∗14. Show that a simple graph is a tree if and only if it is

connected but the deletion of any of its edges produces a

graph that is not connected.

15.∗ Let G be a simple graph with n vertices. Show that

a) G is a tree if and only if it is connected and has n − 1

edges.

b) G is a tree if and only if G has no simple circuits and

has n − 1 edges. [Hint: To show that G is connected

if it has no simple circuits and n − 1 edges, show that

G cannot have more than one connected component.]

16. Which complete bipartite graphs Km,n, where m and n

are positive integers, are trees?

17. How many edges does a tree with 10,000 vertices have?

18. How many vertices does a full 5-ary tree with 100 internal

vertices have?

19. How many edges does a full binary tree with 1000 internal

vertices have?

20. How many leaves does a full 3-ary tree with 100 vertices

have?

21. Suppose 1000 people enter a chess tournament. Use a

rooted tree model of the tournament to determine how

many games must be played to determine a champion, if

a player is eliminated after one loss and games are played

until only one entrant has not lost. (Assume there are no

ties.)

22. A chain letter starts when a person sends a letter to five

others. Each person who receives the letter either sends it

to five other people who have never received it or does not

send it to anyone. Suppose that 10,000 people send out

the letter before the chain ends and that no one receives

more than one letter. How many people receive the letter,

and how many do not send it out?

23. A chain letter starts with a person sending a letter out

to 10 others. Each person is asked to send the letter out

to 10 others, and each letter contains a list of the previous

six people in the chain. Unless there are fewer than six

names in the list, each person sends one dollar to the first

person in this list, removes the name of this person from

the list, moves up each of the other five names one posi-

tion, and inserts his or her name at the end of this list. If

no person breaks the chain and no one receives more than

one letter, how much money will a person in the chain

ultimately receive?

∗24. Either draw a full m-ary tree with 76 leaves and height 3,

where m is a positive integer, or show that no such tree

exists.

∗25. Either draw a full m-ary tree with 84 leaves and height 3,

where m is a positive integer, or show that no such tree

exists.

∗26. A full m-ary tree T has 81 leaves and height 4.

a) Give the upper and lower bounds for m.

b) What is m if T is also balanced?

A complete m-ary tree is a full m-ary tree in which every leaf

is at the same level.

27. Construct a complete binary tree of height 4 and a com-

plete 3-ary tree of height 3.

28. How many vertices and how many leaves does a complete

m-ary tree of height h have?

29. Prove

a) part (ii) of Theorem 4.

b) part (iii) of Theorem 4.

30. Show that a full m-ary balanced tree of height h has more

than mh−1 leaves.

31. How many edges are there in a forest of t trees containing

a total of n vertices?

32. Explain how a tree can be used to represent the table of

contents of a book organized into chapters, where each

chapter is organized into sections, and each section is or-

ganized into subsections.

33. How many different isomers do these saturated hydro-

carbons have?

a) C3H8 b) C5H12 c) C6H14

34. What does each of these represent in an organizational

tree?

a) the parent of a vertex

b) a child of a vertex

c) a sibling of a vertex

d) the ancestors of a vertex

e) the descendants of a vertex

f) the level of a vertex

g) the height of the tree

35. Answer the same questions as those given in Exercise 34

for a rooted tree representing a computer file system.

36. a) Draw the complete binary tree with 15 vertices that

represents a tree-connected network of 15 processors.

b) Show how 16 numbers can be added using the 15 pro-

cessors in part (a) using four steps.

37. Let n be a power of 2. Show that n numbers can be added

in log n steps using a tree-connected network of n − 1

processors.

∗38. A labeled tree is a tree where each vertex is assigned a

label. Two labeled trees are considered isomorphic when

there is an isomorphism between them that preserves the

labels of vertices. How many nonisomorphic trees are

there with three vertices labeled with different integers

from the set {1, 2, 3}? How many nonisomorphic trees

are there with four vertices labeled with different inte-

gers from the set {1, 2, 3, 4}?

11.2 Applications of Trees 757

The eccentricity of a vertex in an unrooted tree is the length

of the longest simple path beginning at this vertex. A vertex is

called a center if no vertex in the tree has smaller eccentricity

than this vertex. In Exercises 39–41 find every vertex that is a

center in the given tree.

39. a

b

f
g

j k l

ih

c

ed

40. a d f

b e h g

c
i j k

41. a

 e

 f
g

b

d c h

m

k

i
j

l

n

42. Show that a center should be chosen as the root to produce

a rooted tree of minimal height from an unrooted tree.

∗43. Show that a tree has either one center or two centers that

are adjacent.

44. Show that every tree can be colored using two colors.

The rooted Fibonacci trees Tn are defined recursively in the

following way. T1 and T2 are both the rooted tree consisting

of a single vertex, and for n = 3, 4, . . . , the rooted tree Tn is

constructed from a root with Tn−1 as its left subtree and Tn−2

as its right subtree.

45. Draw the first seven rooted Fibonacci trees.

∗46. How many vertices, leaves, and internal vertices does the

rooted Fibonacci tree Tn have, where n is a positive inte-

ger? What is its height?

47. What is wrong with the following “proof” using mathe-

matical induction of the statement that every tree with n

vertices has a path of length n − 1. Basis step: Every tree

with one vertex clearly has a path of length 0. Inductive

step: Assume that a tree with n vertices has a path of

length n − 1, which has u as its terminal vertex. Add a

vertex v and the edge from u to v. The resulting tree has

n + 1 vertices and has a path of length n. This completes

the inductive step.

48.∗ Show that the average depth of a leaf in a binary tree

with n vertices is !(log n).

11.2 Applications of Trees

Introduction

We will discuss three problems that can be studied using trees. The first problem is: How should

items in a list be stored so that an item can be easily located? The second problem is: What

series of decisions should be made to find an object with a certain property in a collection of

objects of a certain type? The third problem is: How should a set of characters be efficiently

coded by bit strings?

Binary Search Trees

Searching for items in a list is one of the most important tasks that arises in computer science.

Our primary goal is to implement a searching algorithm that finds items efficiently when the

items are totally ordered. This can be accomplished through the use of a binary search tree,

which is a binary tree in which each child of a vertex is designated as a right or left child, no

vertex has more than one right child or left child, and each vertex is labeled with a key, which

is one of the items. Furthermore, vertices are assigned keys so that the key of a vertex is both

larger than the keys of all vertices in its left subtree and smaller than the keys of all vertices in

its right subtree.

This recursive procedure is used to form the binary search tree for a list of items. Start with

a tree containing just one vertex, namely, the root. The first item in the list is assigned as the

key of the root. To add a new item, first compare it with the keys of vertices already in the tree,

starting at the root and moving to the left if the item is less than the key of the respective vertex

if this vertex has a left child, or moving to the right if the item is greater than the key of the

758 11 / Trees

respective vertex if this vertex has a right child. When the item is less than the respective vertex

and this vertex has no left child, then a new vertex with this item as its key is inserted as a

new left child. Similarly, when the item is greater than the respective vertex and this vertex has

no right child, then a new vertex with this item as its key is inserted as a new right child. We

illustrate this procedure with Example 1.

EXAMPLE 1 Form a binary search tree for the words mathematics, physics, geography, zoology, meteorology,

geology, psychology, and chemistry (using alphabetical order).

Solution: Figure 1 displays the steps used to construct this binary search tree. The word mathe-

matics is the key of the root. Because physics comes after mathematics (in alphabetical order),

add a right child of the root with key physics. Because geography comes before mathemat-

ics, add a left child of the root with key geography. Next, add a right child of the vertex with

key physics, and assign it the key zoology, because zoology comes after mathematics and after

physics. Similarly, add a left child of the vertex with key physics and assign this new vertex the

key meteorology. Add a right child of the vertex with key geography and assign this new vertex

the key geology. Add a left child of the vertex with key zoology and assign it the key psychology.

Add a left child of the vertex with key geography and assign it the key chemistry. (The reader

should work through all the comparisons needed at each step.) ▲

Once we have a binary search tree, we need a way to locate items in the binary search tree,

as well as a way to add new items. Algorithm 1, an insertion algorithm, actually does both of

these tasks, even though it may appear that it is only designed to add vertices to a binary search

tree. That is, Algorithm 1 is a procedure that locates an item x in a binary search tree if it is

present, and adds a new vertex with x as its key if x is not present. In the pseudocode, v is the

vertex currently under examination and label(v) represents the key of this vertex. The algorithm

begins by examining the root. If x equals the key of v, then the algorithm has found the location

of x and terminates; if x is less than the key of v, we move to the left child of v and repeat the

procedure; and if x is greater than the key of v, we move to the right child of v and repeat the

procedure. If at any step we attempt to move to a child that is not present, we know that x is not

present in the tree, and we add a new vertex as this child with x as its key.

mathematics mathematics mathematics

mathematics

physicsgeographyphysics

physics > mathematics geography < mathematics

zoology > mathematics

zoology > physics

physics

geography

zoology
meteorology

meteorology > mathematics

meteorology < physics

mathematics

physics
geography

zoology

meteorology

geology

mathematics

physics
geography

zoology

geology < mathematics

geology > geography

mathematics

physics

geography

zoology
meteorology

geology

psychology

psychology > mathematics

psychology > physics

psychology < zoology

mathematics

physics

geography

zoology

meteorology

geology

psychology

chemistry

chemistry < mathematics

chemistry < geography

FIGURE 1 Constructing a Binary Search Tree.

11.2 Applications of Trees 759

ALGORITHM 1 Locating an Item in or Adding an Item to a Binary Search Tree.

procedure insertion(T : binary search tree, x: item)

v := root of T

{a vertex not present in T has the value null }

while v ̸= null and label(v) ̸= x

if x < label(v) then

if left child of v ̸= null then v := left child of v

else add new vertex as a left child of v and set v := null

else

if right child of v ̸= null then v := right child of v

else add new vertex as a right child of v and set v := null

if root of T = null then add a vertex v to the tree and label it with x

else if v is null or label(v) ̸= x then label new vertex with x and let v be this new vertex

return v {v = location of x}

Example 2 illustrates the use of Algorithm 1 to insert a new item into a binary search tree.

EXAMPLE 2 Use Algorithm 1 to insert the word oceanography into the binary search tree in Example 1.

Solution: Algorithm 1 begins with v, the vertex under examination, equal to the root of T , so

label(v) = mathematics. Because v ̸= null and label(v) = mathematics < oceanography, we

next examine the right child of the root. This right child exists, so we set v, the vertex under

examination, to be this right child. At this step we have v ̸= null and label(v) = physics >

oceanography, so we examine the left child of v. This left child exists, so we set v, the vertex under

examination, to this left child. At this step, we also have v ̸= null and label(v) = metereology <

oceanography, so we try to examine the right child of v. However, this right child does not exist,

so we add a new vertex as the right child of v (which at this point is the vertex with the key

metereology) and we set v := null. We now exit the while loop because v = null. Because the

root of T is not null and v = null, we use the else if statement at the end of the algorithm to

label our new vertex with the key oceanography. ▲

We will now determine the computational complexity of this procedure. Suppose we have

a binary search tree T for a list of n items. We can form a full binary tree U from T by adding

unlabeled vertices whenever necessary so that every vertex with a key has two children. This is

illustrated in Figure 2. Once we have done this, we can easily locate or add a new item as a key

without adding a vertex.

The most comparisons needed to add a new item is the length of the longest path in U from

the root to a leaf. The internal vertices of U are the vertices of T . It follows that U has n internal

vertices. We can now use part (ii) of Theorem 4 in Section 11.1 to conclude that U has n + 1

leaves. Using Corollary 1 of Section 11.1, we see that the height of U is greater than or equal to

h = ⌈log(n + 1)⌉. Consequently, it is necessary to perform at least ⌈log(n + 1)⌉ comparisons

to add some item. Note that if U is balanced, its height is ⌈log(n + 1)⌉ (by Corollary 1 of

Section 11.1). Thus, if a binary search tree is balanced, locating or adding an item requires no

more than ⌈log(n + 1)⌉ comparisons. A binary search tree can become unbalanced as items

are added to it. Because balanced binary search trees give optimal worst-case complexity for

binary searching, algorithms have been devised that rebalance binary search trees as items are

added. The interested reader can consult references on data structures for the description of such

algorithms.

760 11 / Trees

UT

Unlabeled vertices circled

FIGURE 2 Adding Unlabeled Vertices to Make a Binary Search Tree Full.

Decision Trees

Rooted trees can be used to model problems in which a series of decisions leads to a solution.

For instance, a binary search tree can be used to locate items based on a series of comparisons,

where each comparison tells us whether we have located the item, or whether we should go

right or left in a subtree. A rooted tree in which each internal vertex corresponds to a decision,

with a subtree at these vertices for each possible outcome of the decision, is called a decision

tree. The possible solutions of the problem correspond to the paths to the leaves of this rooted

tree. Example 3 illustrates an application of decision trees.

EXAMPLE 3 Suppose there are seven coins, all with the same weight, and a counterfeit coin that weighs less

than the others. How many weighings are necessary using a balance scale to determine which

of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Solution: There are three possibilities for each weighing on a balance scale. The two pans can

have equal weight, the first pan can be heavier, or the second pan can be heavier. Consequently,

the decision tree for the sequence of weighings is a 3-ary tree. There are at least eight leaves in

the decision tree because there are eight possible outcomes (because each of the eight coins can

be the counterfeit lighter coin), and each possible outcome must be represented by at least one

leaf. The largest number of weighings needed to determine the counterfeit coin is the height of

the decision tree. From Corollary 1 of Section 11.1 it follows that the height of the decision tree

is at least ⌈log3 8⌉ = 2. Hence, at least two weighings are needed.

It is possible to determine the counterfeit coin using two weighings. The decision tree that

illustrates how this is done is shown in Figure 3. ▲

THE COMPLEXITY OF COMPARISON-BASED SORTING ALGORITHMS Many dif-

ferent sorting algorithms have been developed. To decide whether a particular sorting algorithm

is efficient, its complexity is determined. Using decision trees as models, a lower bound for the

worst-case complexity of sorting algorithms that are based on binary comparisons can be found.

We can use decision trees to model sorting algorithms and to determine an estimate for the

worst-case complexity of these algorithms. Note that given n elements, there are n! possible

orderings of these elements, because each of the n! permutations of these elements can be the

correct order. The sorting algorithms studied in this book, and most commonly used sorting

algorithms, are based on binary comparisons, that is, the comparison of two elements at a time.

The result of each such comparison narrows down the set of possible orderings. Thus, a sorting

algorithm based on binary comparisons can be represented by a binary decision tree in which

each internal vertex represents a comparison of two elements. Each leaf represents one of the n!

permutations of n elements.

11.2 Applications of Trees 761

BalanceLighter Lighter

4

1

2

1 3 2

BalanceLighter Lighter7 8

7 Impossible 8

BalanceLighter Lighter4 5

4 56

5 6Balance1 2 3 LighterLighter

4 5 61 2 3

2 7 8 4 5

1

FIGURE 3 A Decision Tree for Locating a Counterfeit Coin. The counterfeit coin is shown in color

below each final weighing.

EXAMPLE 4 We display in Figure 4 a decision tree that orders the elements of the list a, b, c. ▲

a : b

c > a > b

a : c

a > b

b : c

a < b

b : c

a < ca > c

a > c > b

b < c

a > b > c

b > c

c > b > aa : c

b < cb > c

b > c > a

a < c

b > a > c

a > c

FIGURE 4 A Decision Tree for Sorting Three Distinct Elements.

The complexity of a sort based on binary comparisons is measured in terms of the number

of such comparisons used. The largest number of binary comparisons ever needed to sort a list

with n elements gives the worst-case performance of the algorithm. The most comparisons used

equals the longest path length in the decision tree representing the sorting procedure. In other

words, the largest number of comparisons ever needed is equal to the height of the decision

tree. Because the height of a binary tree with n! leaves is at least ⌈log n!⌉ (using Corollary 1 in

Section 11.1), at least ⌈log n!⌉ comparisons are needed, as stated in Theorem 1.

THEOREM 1 A sorting algorithm based on binary comparisons requires at least ⌈log n!⌉ comparisons.

We can use Theorem 1 to provide a big-Omega estimate for the number of comparisons used

by a sorting algorithm based on binary comparison. We need only note that by Exercise 72 in

Section 3.2 we know that ⌈log n!⌉ is "(n log n), one of the commonly used reference functions

for the computational complexity of algorithms. Corollary 1 is a consequence of this estimate.

762 11 / Trees

COROLLARY 1 The number of comparisons used by a sorting algorithm to sort n elements based on binary

comparisons is !(n log n).

A consequence of Corollary 1 is that a sorting algorithm based on binary comparisons that

uses "(n log n) comparisons, in the worst case, to sort n elements is optimal, in the sense that

no other such algorithm has better worst-case complexity. Note that by Theorem 1 in Section 5.4

we see that the merge sort algorithm is optimal in this sense.

We can also establish a similar result for the average-case complexity of sorting algorithms.

The average number of comparisons used by a sorting algorithm based on binary comparisons is

the average depth of a leaf in the decision tree representing the sorting algorithm. By Exercise 48

in Section 11.1 we know that the average depth of a leaf in a binary tree with N vertices

is !(log N). We obtain the following estimate when we let N = n! and note that a function that

is !(log n!) is also !(n log n) because log n! is "(n log n).

THEOREM 2 The average number of comparisons used by a sorting algorithm to sort n elements based on

binary comparisons is !(n log n).

Prefix Codes

Consider the problem of using bit strings to encode the letters of the English alphabet (where

no distinction is made between lowercase and uppercase letters). We can represent each letter

with a bit string of length five, because there are only 26 letters and there are 32 bit strings of

length five. The total number of bits used to encode data is five times the number of characters

in the text when each character is encoded with five bits. Is it possible to find a coding scheme

of these letters such that, when data are coded, fewer bits are used? We can save memory and

reduce transmittal time if this can be done.

Consider using bit strings of different lengths to encode letters. Letters that occur more

frequently should be encoded using short bit strings, and longer bit strings should be used to

encode rarely occurring letters. When letters are encoded using varying numbers of bits, some

method must be used to determine where the bits for each character start and end. For instance,

if e were encoded with 0, a with 1, and t with 01, then the bit string 0101 could correspond to

eat, tea, eaea, or tt.

One way to ensure that no bit string corresponds to more than one sequence of letters is

to encode letters so that the bit string for a letter never occurs as the first part of the bit string

for another letter. Codes with this property are called prefix codes. For instance, the encoding

of e as 0, a as 10, and t as 11 is a prefix code. A word can be recovered from the unique bit

string that encodes its letters. For example, the string 10110 is the encoding of ate. To see this,

note that the initial 1 does not represent a character, but 10 does represent a (and could not be

the first part of the bit string of another letter). Then, the next 1 does not represent a character,

but 11 does represent t. The final bit, 0, represents e.

A prefix code can be represented using a binary tree, where the characters are the labels of

the leaves in the tree. The edges of the tree are labeled so that an edge leading to a left child is

assigned a 0 and an edge leading to a right child is assigned a 1. The bit string used to encode

a character is the sequence of labels of the edges in the unique path from the root to the leaf

that has this character as its label. For instance, the tree in Figure 5 represents the encoding of

e by 0, a by 10, t by 110, n by 1110, and s by 1111.

1

1

1

10

0

0

0

t

s

a

e

n

FIGURE 5 A

Binary Tree with a

Prefix Code.
The tree representing a code can be used to decode a bit string. For instance, consider the

word encoded by 11111011100 using the code in Figure 5. This bit string can be decoded by

starting at the root, using the sequence of bits to form a path that stops when a leaf is reached.

11.2 Applications of Trees 763

Each 0 bit takes the path down the edge leading to the left child of the last vertex in the path, and

each 1 bit corresponds to the right child of this vertex. Consequently, the initial 1111 corresponds

to the path starting at the root, going right four times, leading to a leaf in the graph that has s

as its label, because the string 1111 is the code for s. Continuing with the fifth bit, we reach a

leaf next after going right then left, when the vertex labeled with a, which is encoded by 10, is

visited. Starting with the seventh bit, we reach a leaf next after going right three times and then

left, when the vertex labeled with n, which is encoded by 1110, is visited. Finally, the last bit, 0,

leads to the leaf that is labeled with e. Therefore, the original word is sane.

We can construct a prefix code from any binary tree where the left edge at each internal

vertex is labeled by 0 and the right edge by a 1 and where the leaves are labeled by characters.

Characters are encoded with the bit string constructed using the labels of the edges in the unique

path from the root to the leaves.

HUFFMAN CODING We now introduce an algorithm that takes as input the frequencies

(which are the probabilities of occurrences) of symbols in a string and produces as output a

prefix code that encodes the string using the fewest possible bits, among all possible binary

prefix codes for these symbols. This algorithm, known as Huffman coding, was developed by

David Huffman in a term paper he wrote in 1951 while a graduate student at MIT. (Note that this

algorithm assumes that we already know how many times each symbol occurs in the string, so we

can compute the frequency of each symbol by dividing the number of times this symbol occurs

by the length of the string.) Huffman coding is a fundamental algorithm in data compression,

the subject devoted to reducing the number of bits required to represent information. Huffman

coding is extensively used to compress bit strings representing text and it also plays an important

role in compressing audio and image files.

Algorithm 2 presents the Huffman coding algorithm. Given symbols and their frequencies,

our goal is to construct a rooted binary tree where the symbols are the labels of the leaves. The

algorithm begins with a forest of trees each consisting of one vertex, where each vertex has

a symbol as its label and where the weight of this vertex equals the frequency of the symbol

that is its label. At each step, we combine two trees having the least total weight into a single

tree by introducing a new root and placing the tree with larger weight as its left subtree and the

tree with smaller weight as its right subtree. Furthermore, we assign the sum of the weights of

the two subtrees of this tree as the total weight of the tree. (Although procedures for breaking

ties by choosing between trees with equal weights can be specified, we will not specify such

procedures here.) The algorithm is finished when it has constructed a tree, that is, when the

forest is reduced to a single tree.

DAVID A. HUFFMAN (1925–1999) David Huffman grew up in Ohio. At the age of 18 he received his B.S.
in electrical engineering from The Ohio State University. Afterward he served in the U.S. Navy as a radar
maintenance officer on a destroyer that had the mission of clearing mines in Asian waters after World War II.
Later, he earned his M.S. from Ohio State and his Ph.D. in electrical engineering from MIT. Huffman joined
the MIT faculty in 1953, where he remained until 1967 when he became the founding member of the computer
science department at the University of California at Santa Cruz. He played an important role in developing this
department and spent the remainder of his career there, retiring in 1994.

Huffman is noted for his contributions to information theory and coding, signal designs for radar and
for communications, and design procedures for asynchronous logical circuits. His work on surfaces with zero

curvature led him to develop original techniques for folding paper and vinyl into unusual shapes considered works of art by many
and publicly displayed in several exhibits. However, Huffman is best known for his development of what is now called Huffman
coding, a result of a term paper he wrote during his graduate work at MIT.

Huffman enjoyed exploring the outdoors, hiking, and traveling extensively. He became certified as a scuba diver when he was
in his late 60s. He kept poisonous snakes as pets.

764 11 / Trees

ALGORITHM 2 Huffman Coding.

procedure Huffman(C: symbols ai with frequencies wi , i = 1, . . . , n)

F := forest of n rooted trees, each consisting of the single vertex ai and assigned weight wi

while F is not a tree

Replace the rooted trees T and T ′ of least weights from F with w(T) ≥ w(T ′) with a tree

having a new root that has T as its left subtree and T ′ as its right subtree. Label the new

edge to T with 0 and the new edge to T ′ with 1.

Assign w(T) + w(T ′) as the weight of the new tree.

{the Huffman coding for the symbol ai is the concatenation of the labels of the edges in the

unique path from the root to the vertex ai}

Example 5 illustrates how Algorithm 2 is used to encode a set of five symbols.

EXAMPLE 5 Use Huffman coding to encode the following symbols with the frequencies listed: A: 0.08, B:

0.10, C: 0.12, D: 0.15, E: 0.20, F: 0.35. What is the average number of bits used to encode a

character?

Solution: Figure 6 displays the steps used to encode these symbols. The encoding produced

encodes A by 111, B by 110, C by 011, D by 010, E by 10, and F by 00. The average number

of bits used to encode a symbol using this encoding is

3 · 0.08 + 3 · 0.10 + 3 · 0.12 + 3 · 0.15 + 2 · 0.20 + 2 · 0.35 = 2.45. ▲

Note that Huffman coding is a greedy algorithm. Replacing the two subtrees with the

smallest weight at each step leads to an optimal code in the sense that no binary prefix code

for these symbols can encode these symbols using fewer bits. We leave the proof that Huffman

codes are optimal as Exercise 32.

There are many variations of Huffman coding. For example, instead of encoding single
Huffman coding is used

in JPEG image coding symbols, we can encode blocks of symbols of a specified length, such as blocks of two symbols.

Doing so may reduce the number of bits required to encode the string (see Exercise 30). We can

also use more than two symbols to encode the original symbols in the string (see the preamble

to Exercise 28). Furthermore, a variation known as adaptive Huffman coding (see [Sa00]) can

be used when the frequency of each symbol in a string is not known in advance, so that encoding

is done at the same time the string is being read.

Game Trees

Trees can be used to analyze certain types of games such as tic-tac-toe, nim, checkers, and chess.

In each of these games, two players take turns making moves. Each player knows the moves

made by the other player and no element of chance enters into the game. We model such games

using game trees; the vertices of these trees represent the positions that a game can be in as it

progresses; the edges represent legal moves between these positions. Because game trees are

usually large, we simplify game trees by representing all symmetric positions of a game by the

same vertex. However, the same position of a game may be represented by different vertices

11.2 Applications of Trees 765

B

A

0

0.18

1

A

0.08

B

0.10

C

0.12

D

0.15

E

0.20

F

Initial
forest

Step 1

Step 2

0.35

C

0.12

D

0.15

E

0.20

F

0.35

B

0

0.18

1

A

E

0.20

F

0.35

D

0

0.27

1

C

Step 3

0

0.38

1

E

F

0.35

0 1

AB

D

0

0.27

1

C

Step 4

0

0.38

1 1

E
0 1 0 1

AB

0

0.62

F

D C

Step 5

0

1.00

0

0 1
F E

0 1

1

1

CD

0 1

AB

FIGURE 6 Huffman Coding of Symbols in Example 4.

if different sequences of moves lead to this position. The root represents the starting position.

The usual convention is to represent vertices at even levels by boxes and vertices at odd levels

by circles. When the game is in a position represented by a vertex at an even level, it is the first

player’s move; when the game is in a position represented by a vertex at an odd level, it is the

second player’s move. Game trees may be infinite when the games they represent never end,

such as games that can enter infinite loops, but for most games there are rules that lead to finite

game trees.

The leaves of a game tree represent the final positions of a game. We assign a value to each

leaf indicating the payoff to the first player if the game terminates in the position represented

by this leaf. For games that are win–lose, we label a terminal vertex represented by a circle with

a 1 to indicate a win by the first player and we label a terminal vertex represented by a box with

a −1 to indicate a win by the second player. For games where draws are allowed, we label a

terminal vertex corresponding to a draw position with a 0. Note that for win–lose games, we

have assigned values to terminal vertices so that the larger the value, the better the outcome for

the first player.

In Example 6 we display a game tree for a well-known and well-studied game.

766 11 / Trees

–1 –1

+1 +1 +1 +1 +1 +1

–1 –1

Terminal vertices are labeled

with +1 if the first player wins

and –1 if the second player wins–1

–1

2 2 1

2 2

2 1 1 1 1

2 1 1

2 1

1 1 11 1

2 1 1 1 1 1 12

1 1 1 1 1

2 1 1 1

2 1

2 1 1 1

FIGURE 7 The Game Tree for a Game of Nim.

EXAMPLE 6 Nim In a version of the game of nim, at the start of a game there are a number of piles of

stones. Two players take turns making moves; a legal move consists of removing one or more
Although nim is an

ancient game, Charles

Bouton coined its modern

name in 1901 after an

archaic English word

meaning “to steal.”

stones from one of the piles, without removing all the stones left. A player without a legal move

loses. (Another way to look at this is that the player removing the last stone loses because the

position with no piles of stones is not allowed.) The game tree shown in Figure 7 represents this

version of nim given the starting position where there are three piles of stones containing two,

two, and one stone each, respectively. We represent each position with an unordered list of the

number of stones in the different piles (the order of the piles does not matter). The initial move

by the first player can lead to three possible positions because this player can remove one stone

from a pile with two stones (leaving three piles containing one, one, and two stones); two stones

from a pile containing two stones (leaving two piles containing two stones and one stone); or

one stone from the pile containing one stone (leaving two piles of two stones). When only one

pile with one stone is left, no legal moves are possible, so such positions are terminal positions.

Because nim is a win–lose game, we label the terminal vertices with +1 when they represent

wins for the first player and −1 when they represent wins for the second player. ▲

EXAMPLE 7 Tic-tac-toe The game tree for tic-tac-toe is extremely large and cannot be drawn here, although

a computer could easily build such a tree.We show a portion of the game tic-tac-toe in Figure 8(a).

Note that by considering symmetric positions equivalent, we need only consider three possible

initial moves, as shown in Figure 8(a). We also show a subtree of this game tree leading to

terminal positions in Figure 8(b), where a player who can win makes a winning move. ▲

We can recursively define the values of all vertices in a game tree in a way that enables

us to determine the outcome of this game when both players follow optimal strategies. By a

strategy we mean a set of rules that tells a player how to select moves to win the game. An

optimal strategy for the first player is a strategy that maximizes the payoff to this player and for

the second player is a strategy that minimizes this payoff. We now recursively define the value

of a vertex.

11.2 Applications of Trees 767

XX

X

• • •

• • •• • •

• • •

X

O

X

X

O X

X X

O

XX

O

X

O

X

O

X

O

X OOX

(a)

X

O

•
•

•

XX

X

O wins O wins

X winsdraw

XXX

X X O

O

X O X

X O

O O

X O X

X O

O O X

X O X

X O

X O O

X O X

X O

O X

O O X

X O

X O

OO X

X O

O O

X O X

X X O

X

O X

X O

X O

O X

X

(b)

X O

O

O X

FIGURE 8 Some of the Game Tree for Tic-Tac-Toe.

DEFINITION 1 The value of a vertex in a game tree is defined recursively as:

(i) the value of a leaf is the payoff to the first player when the game terminates in the

position represented by this leaf.

(ii) the value of an internal vertex at an even level is the maximum of the values of its

children, and the value of an internal vertex at an odd level is the minimum of the

values of its children.

The strategy where the first player moves to a position represented by a child with maximum

value and the second player moves to a position of a child with minimum value is called the

minmax strategy. We can determine who will win the game when both players follow the

minmax strategy by calculating the value of the root of the tree; this value is called the value of

the tree. This is a consequence of Theorem 3.

THEOREM 3 The value of a vertex of a game tree tells us the payoff to the first player if both players follow

the minmax strategy and play starts from the position represented by this vertex.

Proof: We will use induction to prove this theorem.

BASIS STEP: If the vertex is a leaf, by definition the value assigned to this vertex is the payoff

to the first player.

768 11 / Trees

–1 –1

+1–1 –1 –1 –1 –1+1 +1 +1

+1

+1

+1 +1
–1 –1+1+1 +1 +1

–1 –1

+1 +1

–1 –1

max

min

max

min

–1

2 2 1

2 2

2 1 1 1 1

2 1 1

2 1

1 1 11 1

2 1 1 1 1 1 12

1 1 1 1 1

2 1 1 1

2 1

2 1 1 1

FIGURE 9 Showing the Values of Vertices in the Game of Nim.

INDUCTIVE STEP: The inductive hypothesis is the assumption that the values of the children

of a vertex are the payoffs to the first player, assuming that play starts at each of the positions

represented by these vertices. We need to consider two cases, when it is the first player’s turn

and when it is the second player’s turn.

When it is the first player’s turn, this player follows the minmax strategy and moves to the

position represented by the child with the largest value. By the inductive hypothesis, this value

is the payoff to the first player when play starts at the position represented by this child and

follows the minmax strategy. By the recursive step in the definition of the value of an internal

vertex at an even level (as the maximum value of its children), the value of this vertex is the

payoff when play begins at the position represented by this vertex.

When it is the second player’s turn, this player follows the minmax strategy and moves to

the position represented by the child with the least value. By the inductive hypothesis, this value

is the payoff to the first player when play starts at the position represented by this child and

both players follow the minmax strategy. By the recursive definition of the value of an internal

vertex at an odd level as the minimum value of its children, the value of this vertex is the payoff

when play begins at the position represented by this vertex.

Remark: By extending the proof of Theorem 3, it can be shown that the minmax strategy is the

optimal strategy for both players.

Example 8 illustrates how the minmax procedure works. It displays the values assigned to

the internal vertices in the game tree from Example 6. Note that we can shorten the computation

required by noting that for win–lose games, once a child of a square vertex with value +1

is found, the value of the square vertex is also +1 because +1 is the largest possible payoff.

Similarly, once a child of a circle vertex with value −1 is found, this is the value of the circle

vertex also.

EXAMPLE 8 In Example 6 we constructed the game tree for nim with a starting position where there are

three piles containing two, two, and one stones. In Figure 9 we show the values of the vertices

of this game tree. The values of the vertices are computed using the values of the leaves and

working one level up at a time. In the right margin of this figure we indicate whether we use

the maximum or minimum of the values of the children to find the value of an internal vertex at

11.2 Applications of Trees 769

each level. For example, once we have found the values of the three children of the root, which

are 1, −1, and −1, we find the value of the root by computing max(1, −1, −1) = 1. Because

the value of the root is 1, it follows that the first player wins when both players follow a minmax

strategy. ▲

Game trees for some well-known games can be extraordinarily large, because these games

have many different possible moves. For example, the game tree for chess has been estimated to

have as many as 10100 vertices! It may be impossible to use Theorem 3 directly to study a game

because of the size of the game tree. Therefore, various approaches have been devised to help

determine good strategies and to determine the outcome of such games. One useful technique,

called alpha-beta pruning, eliminates much computation by pruning portions of the game tree

that cannot affect the values of ancestor vertices. (For information about alpha-beta pruning,

consult [Gr90].)Another useful approach is to use evaluation functions, which estimate the value
Chess programs on

smartphones can now play

at the grandmaster level.

of internal vertices in the game tree when it is not feasible to compute these values exactly. For

example, in the game of tic-tac-toe, as an evaluation function for a position, we may use the

number of files (rows, columns, and diagonals) containing no Os (used to indicate moves of the

second player) minus the number of files containing no Xs (used to indicate moves of the first

player). This evaluation function provides some indication of which player has the advantage in

the game. Once the values of an evaluation function are inserted, the value of the game can be

computed following the rules used for the minmax strategy. Computer programs created to play

chess, such as the famous Deep Blue program, are based on sophisticated evaluation functions.

For more information about how computers play chess see [Le91].

Exercises

1. Build a binary search tree for the words banana, peach,

apple, pear, coconut, mango, and papaya using alphabet-

ical order.

2. Build a binary search tree for the words oenology,

phrenology, campanology, ornithology, ichthyology, lim-

nology, alchemy, and astrology using alphabetical order.

3. How many comparisons are needed to locate or to add

each of these words in the search tree for Exercise 1, start-

ing fresh each time?

a) pear b) banana

c) kumquat d) orange

4. How many comparisons are needed to locate or to add

each of the words in the search tree for Exercise 2, start-

ing fresh each time?

a) palmistry b) etymology

c) paleontology d) glaciology

5. Using alphabetical order, construct a binary search tree

for the words in the sentence “The quick brown fox jumps

over the lazy dog.”

6. How many weighings of a balance scale are needed to find

a lighter counterfeit coin among four coins? Describe an

algorithm to find the lighter coin using this number of

weighings.

7. How many weighings of a balance scale are needed to

find a counterfeit coin among four coins if the counter-

feit coin may be either heavier or lighter than the others?

Describe an algorithm to find the counterfeit coin using

this number of weighings.

∗8. How many weighings of a balance scale are needed to

find a counterfeit coin among eight coins if the coun-

terfeit coin is either heavier or lighter than the others?

Describe an algorithm to find the counterfeit coin using

this number of weighings.

∗9. How many weighings of a balance scale are needed to

find a counterfeit coin among 12 coins if the counterfeit

coin is lighter than the others? Describe an algorithm to

find the lighter coin using this number of weighings.

∗10. One of four coins may be counterfeit. If it is counterfeit,

it may be lighter or heavier than the others. How many

weighings are needed, using a balance scale, to determine

whether there is a counterfeit coin, and if there is, whether

it is lighter or heavier than the others? Describe an algo-

rithm to find the counterfeit coin and determine whether

it is lighter or heavier using this number of weighings.

11. Find the least number of comparisons needed to sort four

elements and devise an algorithm that sorts these elements

using this number of comparisons.

∗12. Find the least number of comparisons needed to sort five

elements and devise an algorithm that sorts these elements

using this number of comparisons.

770 11 / Trees

The tournament sort is a sorting algorithm that works by

building an ordered binary tree. We represent the elements to

be sorted by vertices that will become the leaves. We build up

the tree one level at a time as we would construct the tree repre-

senting the winners of matches in a tournament. Working left

to right, we compare pairs of consecutive elements, adding a

parent vertex labeled with the larger of the two elements under

comparison. We make similar comparisons between labels of

vertices at each level until we reach the root of the tree that is

labeled with the largest element. The tree constructed by the

tournament sort of 22, 8, 14, 17, 3, 9, 27, 11 is illustrated in

part (a) of the figure. Once the largest element has been de-

termined, the leaf with this label is relabeled by −∞, which

is defined to be less than every element. The labels of all ver-

tices on the path from this vertex up to the root of the tree are

recalculated, as shown in part (b) of the figure. This produces

the second largest element. This process continues until the

entire list has been sorted.

27 is largest element

(a)

22

22 17

22 8 14 17 3 9 27 11

9 27

27

27

22 is second largest element

(b)

22

22

22 17

22 8 14 17 3 9 "# 11

9 11

11

13. Complete the tournament sort of the list 22, 8, 14, 17, 3,

9, 27, 11. Show the labels of the vertices at each step.

14. Use the tournament sort to sort the list 17, 4, 1, 5, 13, 10,

14, 6.

15. Describe the tournament sort using pseudocode.

16. Assuming that n, the number of elements to be sorted,

equals 2k for some positive integer k, determine the num-

ber of comparisons used by the tournament sort to find

the largest element of the list using the tournament sort.

17. How many comparisons does the tournament sort use to

find the second largest, the third largest, and so on, up to

the (n − 1)st largest (or second smallest) element?

18. Show that the tournament sort requires "(n log n) com-

parisons to sort a list of n elements. [Hint: By inserting

the appropriate number of dummy elements defined to be

smaller than all integers, such as −∞, assume that n = 2k

for some positive integer k.]

19. Which of these codes are prefix codes?

a) a: 11, e: 00, t : 10, s: 01

b) a: 0, e: 1, t : 01, s: 001

c) a: 101, e: 11, t : 001, s: 011, n: 010

d) a: 010, e: 11, t : 011, s: 1011, n: 1001, i: 10101

20. Construct the binary tree with prefix codes representing

these coding schemes.

a) a: 11, e: 0, t : 101, s: 100

b) a: 1, e: 01, t : 001, s: 0001, n: 00001

c) a: 1010, e: 0, t : 11, s: 1011, n: 1001, i: 10001

21. What are the codes for a, e, i, k, o, p, and u if the coding

scheme is represented by this tree?

0

0

0

1

1

1

1

1

1

10

0

10
ea

k o

p u

i

22. Given the coding scheme a: 001, b: 0001, e: 1, r: 0000,

s: 0100, t : 011, x: 01010, find the word represented by

a) 01110100011. b) 0001110000.

c) 0100101010. d) 01100101010.

23. Use Huffman coding to encode these symbols with given

frequencies: a: 0.20, b: 0.10, c: 0.15, d: 0.25, e: 0.30.

What is the average number of bits required to encode a

character?

24. Use Huffman coding to encode these symbols with given

frequencies: A: 0.10, B: 0.25, C: 0.05, D: 0.15, E: 0.30,

F: 0.07, G: 0.08. What is the average number of bits re-

quired to encode a symbol?

25. Construct two different Huffman codes for these symbols

and frequencies: t : 0.2, u: 0.3, v: 0.2, w: 0.3.

26. a) Use Huffman coding to encode these symbols with

frequencies a: 0.4, b: 0.2, c: 0.2, d: 0.1, e: 0.1 in two

different ways by breaking ties in the algorithm dif-

ferently. First, among the trees of minimum weight

select two trees with the largest number of vertices

to combine at each stage of the algorithm. Second,

among the trees of minimum weight select two trees

with the smallest number of vertices at each stage.

b) Compute the average number of bits required to en-

code a symbol with each code and compute the vari-

ances of this number of bits for each code. Which

tie-breaking procedure produced the smaller variance

in the number of bits required to encode a symbol?

11.2 Applications of Trees 771

27. Construct a Huffman code for the letters of the English al-

phabet where the frequencies of letters in typical English

text are as shown in this table.

Letter Frequency Letter Frequency

A 0.0817 N 0.0662

B 0.0145 O 0.0781

C 0.0248 P 0.0156

D 0.0431 Q 0.0009

E 0.1232 R 0.0572

F 0.0209 S 0.0628

G 0.0182 T 0.0905

H 0.0668 U 0.0304

I 0.0689 V 0.0102

J 0.0010 W 0.0264

K 0.0080 X 0.0015

L 0.0397 Y 0.0211

M 0.0277 Z 0.0005

Suppose that m is a positive integer with m ≥ 2. An m-ary

Huffman code for a set of N symbols can be constructed anal-

ogously to the construction of a binary Huffman code. At the

initial step, ((N − 1) mod (m − 1)) + 1 trees consisting of a

single vertex with least weights are combined into a rooted

tree with these vertices as leaves. At each subsequent step,

the m trees of least weight are combined into an m-ary tree.

28. Describe the m-ary Huffman coding algorithm in

pseudocode.

29. Using the symbols 0, 1, and 2 use ternary (m = 3)

Huffman coding to encode these letters with the given

frequencies: A: 0.25, E: 0.30, N: 0.10, R: 0.05, T: 0.12,

Z: 0.18.

30. Consider the three symbols A, B, and C with frequencies

A: 0.80, B: 0.19, C: 0.01.

a) Construct a Huffman code for these three symbols.

b) Form a new set of nine symbols by grouping together

blocks of two symbols, AA, AB, AC, BA, BB, BC,

CA, CB, and CC. Construct a Huffman code for these

nine symbols, assuming that the occurrences of sym-

bols in the original text are independent.

c) Compare the average number of bits required to en-

code text using the Huffman code for the three sym-

bols in part (a) and the Huffman code for the nine

blocks of two symbols constructed in part (b). Which

is more efficient?

31. Given n + 1 symbols x1, x2, . . . , xn, xn+1 appearing 1,

f1, f2, . . . , fn times in a symbol string, respectively,

where fj is the j th Fibonacci number, what is the max-

imum number of bits used to encode a symbol when all

possible tie-breaking selections are considered at each

stage of the Huffman coding algorithm?

∗32. Show that Huffman codes are optimal in the sense that

they represent a string of symbols using the fewest bits

among all binary prefix codes.

33. Draw a game tree for nim if the starting position consists

of two piles with two and three stones, respectively. When

drawing the tree represent by the same vertex symmetric

positions that result from the same move. Find the value

of each vertex of the game tree. Who wins the game if

both players follow an optimal strategy?

34. Draw a game tree for nim if the starting position consists

of three piles with one, two, and three stones, respectively.

When drawing the tree represent by the same vertex sym-

metric positions that result from the same move. Find the

value of each vertex of the game tree. Who wins the game

if both players follow an optimal strategy?

35. Suppose that we vary the payoff to the winning player

in the game of nim so that the payoff is n dollars when

n is the number of legal moves made before a terminal

position is reached. Find the payoff to the first player if

the initial position consists of

a) two piles with one and three stones, respectively.

b) two piles with two and four stones, respectively.

c) three piles with one, two, and three stones,

respectively.

36. Suppose that in a variation of the game of nim we allow a

player to either remove one or more stones from a pile or

merge the stones from two piles into one pile as long as at

least one stone remains. Draw the game tree for this vari-

ation of nim if the starting position consists of three piles

containing two, two, and one stone, respectively. Find the

values of each vertex in the game tree and determine the

winner if both players follow an optimal strategy.

37. Draw the subtree of the game tree for tic-tac-toe begin-

ning at each of these positions. Determine the value of

each of these subtrees.

a) X

X

X

X

O

O O

b) X

X

X

X

O

O

O

c) X

XX

O

O O

d) X

X

X

O

O

O

38. Suppose that the first four moves of a tic-tac-toe game are

as shown. Does the first player (whose moves are marked

by Xs) have a strategy that will always win?

a) X XO

O

b) X XO

O

c)

X

X

O

O d)

X

X

O

O

772 11 / Trees

39. Show that if a game of nim begins with two piles contain-

ing the same number of stones, as long as this number is at

least two, then the second player wins when both players

follow optimal strategies.

40. Show that if a game of nim begins with two piles con-

taining different numbers of stones, the first player wins

when both players follow optimal strategies.

41. How many children does the root of the game tree for

checkers have? How many grandchildren does it have?

42. How many children does the root of the game tree for

nim have and how many grandchildren does it have if the

starting position is

a) piles with four and five stones, respectively.

b) piles with two, three, and four stones, respectively.

c) piles with one, two, three, and four stones, respec-

tively.

d) piles with two, two, three, three, and five stones, re-

spectively.

43. Draw the game tree for the game of tic-tac-toe for the lev-

els corresponding to the first two moves. Assign the value

of the evaluation function mentioned in the text that as-

signs to a position the number of files containing no Os

minus the number of files containing no Xs as the value of

each vertex at this level and compute the value of the tree

for vertices as if the evaluation function gave the correct

values for these vertices.

44. Use pseudocode to describe an algorithm for determin-

ing the value of a game tree when both players follow a

minmax strategy.

11.3 Tree Traversal

Introduction

Ordered rooted trees are often used to store information. We need procedures for visiting each

vertex of an ordered rooted tree to access data. We will describe several important algorithms

for visiting all the vertices of an ordered rooted tree. Ordered rooted trees can also be used

to represent various types of expressions, such as arithmetic expressions involving numbers,

variables, and operations. The different listings of the vertices of ordered rooted trees used to

represent expressions are useful in the evaluation of these expressions.

Universal Address Systems

Procedures for traversing all vertices of an ordered rooted tree rely on the orderings of children.

In ordered rooted trees, the children of an internal vertex are shown from left to right in the

drawings representing these directed graphs.

We will describe one way we can totally order the vertices of an ordered rooted tree. To

produce this ordering, we must first label all the vertices. We do this recursively:

1. Label the root with the integer 0. Then label its k children (at level 1) from left to right

with 1, 2, 3, . . . , k.

2. For each vertex v at level n with label A, label its kv children, as they are drawn from left

to right, with A.1, A.2, . . . , A.kv.

Following this procedure, a vertex v at level n, for n ≥ 1, is labeled x1.x2.xn, where the

unique path from the root to v goes through the x1st vertex at level 1, the x2nd vertex at level 2,

and so on. This labeling is called the universal address system of the ordered rooted tree.

We can totally order the vertices using the lexicographic ordering of their labels in the univer-

sal address system. The vertex labeled x1.x2.xn is less than the vertex labeled y1.y2.ym

if there is an i, 0 ≤ i ≤ n, with x1 = y1, x2 = y2, . . . , xi−1 = yi−1, and xi < yi ; or if n < m

and xi = yi for i = 1, 2, . . . , n.

11.3 Tree Traversal 773

0

1 2 3 4 5

1.1 1.2 1.3
5.1

5.2 5.3
3.1

3.2 4.1

3.1.2

3.1.3
3.1.1 5.1.1

3.1.2.1 3.1.2.3

3.1.2.2 3.1.2.4

FIGURE 1 The Universal Address System of an Ordered Rooted Tree.

EXAMPLE 1 We display the labelings of the universal address system next to the vertices in the ordered rooted

tree shown in Figure 1. The lexicographic ordering of the labelings is

0 < 1 < 1.1 < 1.2 < 1.3 < 2 < 3 < 3.1 < 3.1.1 < 3.1.2 < 3.1.2.1 < 3.1.2.2

< 3.1.2.3 < 3.1.2.4 < 3.1.3 < 3.2 < 4 < 4.1 < 5 < 5.1 < 5.1.1 < 5.2 < 5.3

▲

Traversal Algorithms

Procedures for systematically visiting every vertex of an ordered rooted tree are called traversal

algorithms. We will describe three of the most commonly used such algorithms, preorder

traversal, inorder traversal, and postorder traversal. Each of these algorithms can be defined

recursively. We first define preorder traversal.

DEFINITION 1 Let T be an ordered rooted tree with root r . If T consists only of r , then r is the preorder

traversal of T . Otherwise, suppose that T1, T2, . . . , Tn are the subtrees at r from left to right

in T . The preorder traversal begins by visiting r . It continues by traversing T1 in preorder,

then T2 in preorder, and so on, until Tn is traversed in preorder.

The reader should verify that the preorder traversal of an ordered rooted tree gives the same

ordering of the vertices as the ordering obtained using a universal address system. Figure 2

indicates how a preorder traversal is carried out.

Example 2 illustrates preorder traversal.

EXAMPLE 2 In which order does a preorder traversal visit the vertices in the ordered rooted tree T shown in

Figure 3?

Solution: The steps of the preorder traversal of T are shown in Figure 4. We traverse T in

preorder by first listing the root a, followed by the preorder list of the subtree with root b, the

preorder list of the subtree with root c (which is just c) and the preorder list of the subtree with

root d .

774 11 / Trees

r

T1 T2 Tn

Step 2:

Visit T1

in preorder

Step 3:

Visit T2

in preorder

Step n + 1:

Visit Tn

in preorder

. . .

Step 1: Visit r

Preorder traversal

FIGURE 2 Preorder Traversal.

b

a

e

j

o

m

f h i

c
d

g

n p

l

k

T

FIGURE 3 The Ordered

Rooted Tree T .

a b e j k n o p f c d g l m h i

a b e j k f c d g l m h i

n o p

n o p

k

j

a b e f c d g h i

l m

n o p

k
j

e g

l m

a b c d

f h i

n o p

k
j

e

b

f

a

c

h i

d

l m

Preorder traversal: Visit root,

visit subtrees left to right

g

FIGURE 4 The Preorder Traversal of T .

11.3 Tree Traversal 775

r

T1 T2 Tn

Step 1:

Visit T1 in

inorder

Step 3:

Visit T2 in

inorder

Step n + 1:

Visit Tn in

inorder

• • •

Step 2: Visit r

Inorder traversal

FIGURE 5 Inorder Traversal.

The preorder list of the subtree with root b begins by listing b, then the vertices of the

subtree with root e in preorder, and then the subtree with root f in preorder (which is just f).

The preorder list of the subtree with root d begins by listing d , followed by the preorder list of

the subtree with root g, followed by the subtree with root h (which is just h), followed by the

subtree with root i (which is just i).

The preorder list of the subtree with root e begins by listing e, followed by the preorder

listing of the subtree with root j (which is just j), followed by the preorder listing of the subtree

with root k. The preorder listing of the subtree with root g is g followed by l, followed by m.

The preorder listing of the subtree with root k is k, n, o, p. Consequently, the preorder traversal

of T is a, b, e, j , k, n, o, p, f , c, d , g, l, m, h, i. ▲

We will now define inorder traversal.

DEFINITION 2 Let T be an ordered rooted tree with root r . If T consists only of r , then r is the inorder

traversal of T . Otherwise, suppose that T1, T2, . . . , Tn are the subtrees at r from left to right.

The inorder traversal begins by traversing T1 in inorder, then visiting r . It continues by

traversing T2 in inorder, then T3 in inorder, . . . , and finally Tn in inorder.

Figure 5 indicates how inorder traversal is carried out. Example 3 illustrates how inorder

traversal is carried out for a particular tree.

EXAMPLE 3 In which order does an inorder traversal visit the vertices of the ordered rooted tree T in Figure 3?

Solution: The steps of the inorder traversal of the ordered rooted tree T are shown in Figure 6.

The inorder traversal begins with an inorder traversal of the subtree with root b, the root a, the

inorder listing of the subtree with root c, which is just c, and the inorder listing of the subtree

with root d .

The inorder listing of the subtree with root b begins with the inorder listing of the subtree

with root e, the root b, and f . The inorder listing of the subtree with root d begins with the

inorder listing of the subtree with root g, followed by the root d , followed by h, followed by i.

The inorder listing of the subtree with root e is j , followed by the root e, followed by the

inorder listing of the subtree with root k. The inorder listing of the subtree with root g is l, g, m.

The inorder listing of the subtree with root k is n, k, o, p. Consequently, the inorder listing of

the ordered rooted tree is j , e, n, k, o, p, b, f , a, c, l, g, m, d , h, i. ▲

776 11 / Trees

j e n k o p b f a c l g m d h i

j e k b f a c l g m d h i

n o p

n o p

k

j

e b a c g d h i

l m

n o p

k
j

e g

l m

b c d

f h i

n o p

k
j

e

b

f

a

c
g

i

d

l m

Inorder traversal: Visit leftmost

subtree, visit root, visit other

subtrees left to right

f

a

h

T

FIGURE 6 The Inorder Traversal of T .

We now define postorder traversal.

DEFINITION 3 Let T be an ordered rooted tree with root r . If T consists only of r , then r is the postorder

traversal of T . Otherwise, suppose that T1, T2, . . . , Tn are the subtrees at r from left to

right. The postorder traversal begins by traversing T1 in postorder, then T2 in postorder, . . . ,

then Tn in postorder, and ends by visiting r .

Figure 7 illustrates how postorder traversal is done. Example 4 illustrates how postorder

traversal works.

11.3 Tree Traversal 777

r

T1 T2 Tn

Step 1:

Visit T1

in postorder

Step 2:

Visit T2

in postorder

Step n:

Visit Tn

 in postorder

• • •

Step n + 1: Visit r

Postorder traversal

FIGURE 7 Postorder Traversal.

EXAMPLE 4 In which order does a postorder traversal visit the vertices of the ordered rooted tree T shown

in Figure 3?

Solution: The steps of the postorder traversal of the ordered rooted tree T are shown in Figure 8.

The postorder traversal begins with the postorder traversal of the subtree with rootb, the postorder

traversal of the subtree with root c, which is just c, the postorder traversal of the subtree with

root d , followed by the root a.

The postorder traversal of the subtree with root b begins with the postorder traversal of the

subtree with root e, followed by f , followed by the root b. The postorder traversal of the rooted

tree with root d begins with the postorder traversal of the subtree with root g, followed by h,

followed by i, followed by the root d .

The postorder traversal of the subtree with root e begins with j , followed by the postorder

traversal of the subtree with root k, followed by the root e. The postorder traversal of the subtree

with root g is l, m, g. The postorder traversal of the subtree with root k is n, o, p, k. Therefore,

the postorder traversal of T is j , n, o, p, k, e, f , b, c, l, m, g, h, i, d , a. ▲

There are easy ways to list the vertices of an ordered rooted tree in preorder, inorder, and

postorder. To do this, first draw a curve around the ordered rooted tree starting at the root, moving

along the edges, as shown in the example in Figure 9. We can list the vertices in preorder by

listing each vertex the first time this curve passes it. We can list the vertices in inorder by listing

a leaf the first time the curve passes it and listing each internal vertex the second time the curve

passes it. We can list the vertices in postorder by listing a vertex the last time it is passed on the

way back up to its parent. When this is done in the rooted tree in Figure 9, it follows that the

preorder traversal gives a, b, d , h, e, i, j , c, f , g, k, the inorder traversal gives h, d , b, i, e, j ,

a, f , c, k, g; and the postorder traversal gives h, d , i, j , e, b, f , k, g, c, a.

Algorithms for traversing ordered rooted trees in preorder, inorder, or postorder are most

easily expressed recursively.

ALGORITHM 1 Preorder Traversal.

procedure preorder(T : ordered rooted tree)

r := root of T

list r

for each child c of r from left to right

T (c) := subtree with c as its root

preorder(T (c))

778 11 / Trees

j n o p k e f b c l m g h

a

d a

j k e f b c l m g h i d

n o p

n o p

k

j

e f c g h i d

l m

n o p

k
j

e g

l

b d

f h i

n o p

k
j

e

b

f

a

c
g

i

d

l m

Postorder traversal: Visit

subtrees left to right; visit root

b

c

h

T

a

i

a

m

FIGURE 8 The Postorder Traversal of T .

a

b

d

h i j k

e

f

g

c

FIGURE 9 A Shortcut for Traversing an Ordered

Rooted Tree in Preorder, Inorder, and Postorder.

11.3 Tree Traversal 779

ALGORITHM 2 Inorder Traversal.

procedure inorder(T : ordered rooted tree)

r := root of T

if r is a leaf then list r

else

l := first child of r from left to right

T (l) := subtree with l as its root

inorder(T (l))

list r

for each child c of r except for l from left to right

T (c) := subtree with c as its root

inorder(T (c))

ALGORITHM 3 Postorder Traversal.

procedure postorder(T : ordered rooted tree)

r := root of T

for each child c of r from left to right

T (c) := subtree with c as its root

postorder(T (c))

list r

Note that both the preorder traversal and the postorder traversal encode the structure of

an ordered rooted tree when the number of children of each vertex is specified. That is, an

ordered rooted tree is uniquely determined when we specify a list of vertices generated by a

preorder traversal or by a postorder traversal of the tree, together with the number of children

of each vertex (see Exercises 26 and 27). In particular, both a preorder traversal and a postorder

traversal encode the structure of a full ordered m-ary tree. However, when the number of children

of vertices is not specified, neither a preorder traversal nor a postorder traversal encodes the

structure of an ordered rooted tree (see Exercises 28 and 29).

Infix, Prefix, and Postfix Notation

We can represent complicated expressions, such as compound propositions, combinations of

sets, and arithmetic expressions using ordered rooted trees. For instance, consider the repre-

sentation of an arithmetic expression involving the operators + (addition), − (subtraction), ∗

(multiplication), / (division), and ↑ (exponentiation). We will use parentheses to indicate the

order of the operations. An ordered rooted tree can be used to represent such expressions, where

the internal vertices represent operations, and the leaves represent the variables or numbers.

Each operation operates on its left and right subtrees (in that order).

EXAMPLE 5 What is the ordered rooted tree that represents the expression ((x + y)↑2) + ((x − 4)/3)?

Solution: The binary tree for this expression can be built from the bottom up. First, a sub-

tree for the expression x + y is constructed. Then this is incorporated as part of the larger

subtree representing (x + y)↑2. Also, a subtree for x − 4 is constructed, and then this is incor-

porated into a subtree representing (x − 4)/3. Finally the subtrees representing (x + y) ↑ 2

780 11 / Trees

+ –

x y 4

+ 2

x y

/

– 3

4

+ 2

x y

/

– 3

x 4

+

x

x

FIGURE 10 A Binary Tree Representing ((x + y) ↑ 2) + ((x − 4)/3).

and (x − 4)/3 are combined to form the ordered rooted tree representing ((x + y) ↑ 2) +

((x − 4)/3). These steps are shown in Figure 10. ▲

An inorder traversal of the binary tree representing an expression produces the original

expression with the elements and operations in the same order as they originally occurred, except

for unary operations, which instead immediately follow their operands. For instance, inorder

traversals of the binary trees in Figure 11, which represent the expressions (x + y)/(x + 3),

(x + (y/x)) + 3, and x + (y/(x + 3)), all lead to the infix expression x + y/x + 3. To make

such expressions unambiguous it is necessary to include parentheses in the inorder traversal

whenever we encounter an operation. The fully parenthesized expression obtained in this way

is said to be in infix form.

We obtain the prefix form of an expression when we traverse its rooted tree in preorder.

Expressions written in prefix form are said to be in Polish notation, which is named after the

Polish logician Jan ✱✱Lukasiewicz. An expression in prefix notation (where each operation has

a specified number of operands), is unambiguous, so no parentheses are needed in such an

expression. The verification of this is left as an exercise for the reader.

EXAMPLE 6 What is the prefix form for ((x + y) ↑ 2) + ((x − 4)/3)?

Solution:We obtain the prefix form for this expression by traversing the binary tree that represents

it in preorder, shown in Figure 10. This produces + ↑ + x y 2 / − x 4 3. ▲

In the prefix form of an expression, a binary operator, such as +, precedes its two operands.

Hence, we can evaluate an expression in prefix form by working from right to left. When

we encounter an operator, we perform the corresponding operation with the two operands

/

+

x 3

+

+

/

y x

3

+

+

x y

+

x 3

/

x y

x

FIGURE 11 Rooted Trees Representing (x + y)/(x + 3), (x + (y/x)) + 3, and

x + (y/(x + 3)).

11.3 Tree Traversal 781

+ – * 2 3 5 / ≠ 2 3 4

+ – * 2 3 5 / 8 4

+ – * 2 3 5 2

+ – 6 5 2

+ 1 2

2 ≠ 3 = 8

8 / 4 = 2

2 * 3 = 6

6 – 5 = 1

1 + 2 = 3

Value of expression: 3

FIGURE 12 Evaluating a Prefix

Expression.

7 2 3 * – 4 ≠ 9 3 / +

2 * 3 = 6

7 – 6 = 1

14 = 1

9 / 3 = 3

1 + 3 = 4

7 6 – 4 ≠ 9 3 / +

1 4 ≠ 9 3 / +

1 9 3 / +

1 3 +

Value of expression: 4

FIGURE 13 Evaluating a Postfix

Expression.

immediately to the right of this operand. Also, whenever an operation is performed, we consider

the result a new operand.

EXAMPLE 7 What is the value of the prefix expression + − ∗ 2 3 5/↑ 2 3 4?

Solution: The steps used to evaluate this expression by working right to left, and performing

operations using the operands on the right, are shown in Figure 12. The value of this expression

is 3. ▲

We obtain the postfix form of an expression by traversing its binary tree in postorder.
Reverse polish notation

was first proposed in 1954

by Burks, Warren, and

Wright.

Expressions written in postfix form are said to be in reverse Polish notation. Expressions in

reverse Polish notation are unambiguous, so parentheses are not needed. The verification of this

is left to the reader. Reverse polish notation was extensively used in electronic calculators in

the 1970s and 1980s.

EXAMPLE 8 What is the postfix form of the expression ((x + y) ↑ 2) + ((x − 4)/3)?

Solution: The postfix form of the expression is obtained by carrying out a postorder traversal of

the binary tree for this expression, shown in Figure 10. This produces the postfix expression: x

y + 2 ↑ x 4 − 3 / +. ▲

In the postfix form of an expression, a binary operator follows its two operands. So, to

evaluate an expression from its postfix form, work from left to right, carrying out operations

whenever an operator follows two operands. After an operation is carried out, the result of this

operation becomes a new operand.

EXAMPLE 9 What is the value of the postfix expression 7 2 3 ∗ − 4 ↑ 9 3/+?

Solution: The steps used to evaluate this expression by starting at the left and carrying out

operations when two operands are followed by an operator are shown in Figure 13. The value

of this expression is 4. ▲

782 11 / Trees

p q p q

p q p q

p q p q

FIGURE 14 Constructing the Rooted Tree for a Compound Proposition.

Rooted trees can be used to represent other types of expressions, such as those representing

compound propositions and combinations of sets. In these examples unary operators, such as

the negation of a proposition, occur. To represent such operators and their operands, a vertex

representing the operator and a child of this vertex representing the operand are used.

EXAMPLE 10 Find the ordered rooted tree representing the compound proposition (¬(p ∧ q)) ↔ (¬p ∨ ¬q).

Then use this rooted tree to find the prefix, postfix, and infix forms of this expression.

Solution: The rooted tree for this compound proposition is constructed from the bottom up. First,

subtrees for ¬p and ¬q are formed (where ¬ is considered a unary operator). Also, a subtree

for p ∧ q is formed. Then subtrees for ¬(p ∧ q) and (¬p) ∨ (¬q) are constructed. Finally,

these two subtrees are used to form the final rooted tree. The steps of this procedure are shown

in Figure 14.

The prefix, postfix, and infix forms of this expression are found by traversing this rooted tree

in preorder, postorder, and inorder (including parentheses), respectively. These traversals give

↔ ¬ ∧ pq ∨ ¬p¬q, pq ∧ ¬p¬q¬ ∨ ↔, and (¬(p ∧ q)) ↔ ((¬p) ∨ (¬q)), respectively. ▲

Because prefix and postfix expressions are unambiguous and because they can be evaluated

easily without scanning back and forth, they are used extensively in computer science. Such

expressions are especially useful in the construction of compilers.

JAN ✱✱LUKASIEWICZ (1878–1956) Jan ✱✱Lukasiewicz was born into a Polish-speaking family in Lvov. At that
time Lvov was part of Austria, but it is now in the Ukraine. His father was a captain in the Austrian army.
✱✱Lukasiewicz became interested in mathematics while in high school. He studied mathematics and philosophy
at the University of Lvov at both the undergraduate and graduate levels. After completing his doctoral work
he became a lecturer there, and in 1911 he was appointed to a professorship. When the University of Warsaw
was reopened as a Polish university in 1915, ✱✱Lukasiewicz accepted an invitation to join the faculty. In 1919 he
served as the Polish Minister of Education. He returned to the position of professor at Warsaw University where
he remained from 1920 to 1939, serving as rector of the university twice.

✱✱Lukasiewicz was one of the cofounders of the famous Warsaw School of Logic. He published his famous
text, Elements of Mathematical Logic, in 1928. With his influence, mathematical logic was made a required course for mathematics
and science undergraduates in Poland. His lectures were considered excellent, even attracting students of the humanities.

✱✱Lukasiewicz and his wife experienced great suffering during World War II, which he documented in a posthumously published
autobiography. After the war they lived in exile in Belgium. Fortunately, in 1949 he was offered a position at the Royal Irish Academy
in Dublin.

✱✱Lukasiewicz worked on mathematical logic throughout his career. His work on a three-valued logic was an important contribution
to the subject. Nevertheless, he is best known in the mathematical and computer science communities for his introduction of
parenthesis-free notation, now called Polish notation.

11.3 Tree Traversal 783

Exercises

In Exercises 1–3 construct the universal address system for the

given ordered rooted tree. Then use this to order its vertices

using the lexicographic order of their labels.

1.

2.

3.

4. Suppose that the address of the vertex v in the ordered

rooted tree T is 3.4.5.2.4.

a) At what level is v?

b) What is the address of the parent of v?

c) What is the least number of siblings v can have?

d) What is the smallest possible number of vertices in T

if v has this address?

e) Find the other addresses that must occur.

5. Suppose that the vertex with the largest address in an or-

dered rooted tree T has address 2.3.4.3.1. Is it possible to

determine the number of vertices in T ?

6. Can the leaves of an ordered rooted tree have the follow-

ing list of universal addresses? If so, construct such an

ordered rooted tree.

a) 1.1.1, 1.1.2, 1.2, 2.1.1.1, 2.1.2, 2.1.3, 2.2, 3.1.1,

3.1.2.1, 3.1.2.2, 3.2

b) 1.1, 1.2.1, 1.2.2, 1.2.3, 2.1, 2.2.1, 2.3.1, 2.3.2,

2.4.2.1, 2.4.2.2, 3.1, 3.2.1, 3.2.2

c) 1.1, 1.2.1, 1.2.2, 1.2.2.1, 1.3, 1.4, 2, 3.1, 3.2, 4.1.1.1

In Exercises 7–9 determine the order in which a preorder

traversal visits the vertices of the given ordered rooted tree.

7. a

c

gf

e
d

b

8. a

b c

d
e

f g
h

i

j

k
l

ponm

9. a

b d
c

f

k

i
e g

l m
n

r s

jh

o p q

10. In which order are the vertices of the ordered rooted tree

in Exercise 7 visited using an inorder traversal?

11. In which order are the vertices of the ordered rooted tree

in Exercise 8 visited using an inorder traversal?

12. In which order are the vertices of the ordered rooted tree

in Exercise 9 visited using an inorder traversal?

13. In which order are the vertices of the ordered rooted tree

in Exercise 7 visited using a postorder traversal?

14. In which order are the vertices of the ordered rooted tree

in Exercise 8 visited using a postorder traversal?

15. In which order are the vertices of the ordered rooted tree

in Exercise 9 visited using a postorder traversal?

784 11 / Trees

16. a) Represent the expression ((x + 2) ↑ 3) ∗

(y −(3 + x)) − 5 using a binary tree.

Write this expression in

b) prefix notation.
c) postfix notation.
d) infix notation.

17. a) Represent the expressions (x + xy) + (x/y) and

x + ((xy + x)/y) using binary trees.

Write these expressions in

b) prefix notation.
c) postfix notation.
d) infix notation.

18. a) Represent the compound propositions ¬(p ∧ q) ↔

(¬p ∨ ¬q) and (¬p ∧ (q ↔ ¬p)) ∨ ¬q using or-

dered rooted trees.

Write these expressions in

b) prefix notation.
c) postfix notation.
d) infix notation.

19. a) Represent (A ∩ B) − (A ∪ (B − A)) using an or-

dered rooted tree.

Write this expression in

b) prefix notation.
c) postfix notation.
d) infix notation.

∗20. In how many ways can the string ¬p ∧ q ↔ ¬p ∨ ¬q

be fully parenthesized to yield an infix expression?
∗21. In how many ways can the string A ∩ B − A ∩ B − A be

fully parenthesized to yield an infix expression?

22. Draw the ordered rooted tree corresponding to each of

these arithmetic expressions written in prefix notation.

Then write each expression using infix notation.

a) + ∗ + − 5 3 2 1 4
b) ↑ + 2 3 − 5 1
c) ∗ / 9 3 + ∗ 2 4 − 7 6

23. What is the value of each of these prefix expressions?

a) − ∗ 2 / 8 4 3
b) ↑ − ∗ 3 3 ∗ 4 2 5
c) + − ↑ 3 2 ↑ 2 3 / 6 − 4 2
d) ∗ + 3 + 3 ↑ 3 + 3 3 3

24. What is the value of each of these postfix expressions?

a) 5 2 1 − − 3 1 4 ++ ∗
b) 9 3 / 5 + 7 2 − ∗
c) 3 2 ∗ 2 ↑ 5 3 − 8 4 / ∗ −

25. Construct the ordered rooted tree whose preorder traver-

sal is a, b, f, c, g, h, i, d, e, j, k, l, where a has four children,

c has three children, j has two children, b and e have one

child each, and all other vertices are leaves.
∗26. Show that an ordered rooted tree is uniquely determined

when a list of vertices generated by a preorder traversal

of the tree and the number of children of each vertex are

specified.
∗27. Show that an ordered rooted tree is uniquely determined

when a list of vertices generated by a postorder traversal

of the tree and the number of children of each vertex are

specified.

28. Show that preorder traversals of the two ordered rooted

trees displayed below produce the same list of vertices.

Note that this does not contradict the statement in Ex-

ercise 26, because the numbers of children of internal

vertices in the two ordered rooted trees differ.

a

b e

dc
f

hg

a

b

ec

f

hgd

29. Show that postorder traversals of these two ordered rooted

trees produce the same list of vertices. Note that this does

not contradict the statement in Exercise 27, because the

numbers of children of internal vertices in the two ordered

rooted trees differ.

a

f

bc

e

hgd

a

dc

e

hf g

b

Well-formed formulae in prefix notation over a set of sym-

bols and a set of binary operators are defined recursively by

these rules:

(i) if x is a symbol, then x is a well-formed formula in

prefix notation;

(ii) if X and Y are well-formed formulae and ∗ is an

operator, then ∗ XY is a well-formed formula.

30. Which of these are well-formed formulae over the sym-

bols {x, y, z} and the set of binary operators {×, +, ◦}?

a) × + + x y x

b) ◦ x y × x z

c) × ◦ x z × × x y

d) × + ◦ x x ◦ x x x

∗31. Show that any well-formed formula in prefix notation

over a set of symbols and a set of binary operators contains

exactly one more symbol than the number of operators.

32. Give a definition of well-formed formulae in postfix no-

tation over a set of symbols and a set of binary operators.

33. Give six examples of well-formed formulae with three or

more operators in postfix notation over the set of symbols

{x, y, z} and the set of operators {+, ×, ◦}.

34. Extend the definition of well-formed formulae in prefix

notation to sets of symbols and operators where the op-

erators may not be binary.

11.4 Spanning Trees 785

Etna Old Town

Hampden

Herman
Orono

Bangor

(a)

Etna Old Town

Hampden

Herman

Orono

Bangor

(b)

FIGURE 1 (a) A Road System and (b) a Set

of Roads to Plow.

a b c d

e
f

g

FIGURE 2 The

Simple Graph G.

11.4 Spanning Trees

Introduction

Consider the system of roads in Maine represented by the simple graph shown in Figure 1(a).

The only way the roads can be kept open in the winter is by frequently plowing them. The

highway department wants to plow the fewest roads so that there will always be cleared roads

connecting any two towns. How can this be done?

At least five roads must be plowed to ensure that there is a path between any two towns.

Figure 1(b) shows one such set of roads. Note that the subgraph representing these roads is a

tree, because it is connected and contains six vertices and five edges.

This problem was solved with a connected subgraph with the minimum number of edges

containing all vertices of the original simple graph. Such a graph must be a tree.

DEFINITION 1 Let G be a simple graph. A spanning tree of G is a subgraph of G that is a tree containing

every vertex of G.

A simple graph with a spanning tree must be connected, because there is a path in the

spanning tree between any two vertices. The converse is also true; that is, every connected

simple graph has a spanning tree. We will give an example before proving this result.

EXAMPLE 1 Find a spanning tree of the simple graph G shown in Figure 2.

Solution: The graph G is connected, but it is not a tree because it contains simple circuits.

Remove the edge {a, e}. This eliminates one simple circuit, and the resulting subgraph is still

connected and still contains every vertex of G. Next remove the edge {e, f } to eliminate a

second simple circuit. Finally, remove edge {c, g} to produce a simple graph with no simple

circuits. This subgraph is a spanning tree, because it is a tree that contains every vertex of G.

The sequence of edge removals used to produce the spanning tree is illustrated in Figure 3.

a b c d

e
f

g

Edge removed: {a, e}

(a)

a b c d

e
f

g

{e, f}

(b)

a b c d

e
f

g

{c, g}

(c)

FIGURE 3 Producing a Spanning Tree for G by Removing Edges That Form Simple Circuits.

786 11 / Trees

a b c d

e
f

g

a b c d

e f g

a b c d

e
f

g

a b c d

e f g

FIGURE 4 Spanning Trees of G.

The tree shown in Figure 3 is not the only spanning tree of G. For instance, each of the trees

shown in Figure 4 is a spanning tree of G. ▲

THEOREM 1 A simple graph is connected if and only if it has a spanning tree.

Proof: First, suppose that a simple graph G has a spanning tree T . T contains every vertex of G.

Furthermore, there is a path in T between any two of its vertices. Because T is a subgraph of G,

there is a path in G between any two of its vertices. Hence, G is connected.

Now suppose that G is connected. If G is not a tree, it must contain a simple circuit. Remove

an edge from one of these simple circuits. The resulting subgraph has one fewer edge but still

contains all the vertices of G and is connected. This subgraph is still connected because when

two vertices are connected by a path containing the removed edge, they are connected by a path

not containing this edge. We can construct such a path by inserting into the original path, at

the point where the removed edge once was, the simple circuit with this edge removed. If this

subgraph is not a tree, it has a simple circuit; so as before, remove an edge that is in a simple

circuit. Repeat this process until no simple circuits remain. This is possible because there are

only a finite number of edges in the graph. The process terminates when no simple circuits

remain. A tree is produced because the graph stays connected as edges are removed. This tree

is a spanning tree because it contains every vertex of G.

Spanning trees are important in data networking, as Example 2 shows.

EXAMPLE 2 IP Multicasting Spanning trees play an important role in multicasting over Internet Protocol

(IP) networks. To send data from a source computer to multiple receiving computers, each of

which is a subnetwork, data could be sent separately to each computer. This type of networking,

called unicasting, is inefficient, because many copies of the same data are transmitted over the

network. To make the transmission of data to multiple receiving computers more efficient, IP

multicasting is used. With IP multicasting, a computer sends a single copy of data over the

network, and as data reaches intermediate routers, the data are forwarded to one or more other

routers so that ultimately all receiving computers in their various subnetworks receive these data.

(Routers are computers that are dedicated to forwarding IP datagrams between subnetworks in

a network. In multicasting, routers use Class D addresses, each representing a session that

receiving computers may join; see Example 17 in Section 6.1.)

For data to reach receiving computers as quickly as possible, there should be no loops

(which in graph theory terminology are circuits or cycles) in the path that data take through the

network. That is, once data have reached a particular router, data should never return to this

11.4 Spanning Trees 787

Source

IP network

(a)

Subnetwork

Router

Subnetwork with a receiving station

Source

Multicast spanning tree

(b)

FIGURE 5 A Multicast Spanning Tree.

router. To avoid loops, the multicast routers use network algorithms to construct a spanning tree

in the graph that has the multicast source, the routers, and the subnetworks containing receiving

computers as vertices, with edges representing the links between computers and/or routers.

The root of this spanning tree is the multicast source. The subnetworks containing receiving

computers are leaves of the tree. (Note that subnetworks not containing receiving stations are

not included in the graph.) This is illustrated in Figure 5. ▲

Depth-First Search

The proof of Theorem 1 gives an algorithm for finding spanning trees by removing edges from

simple circuits. This algorithm is inefficient, because it requires that simple circuits be identified.

Instead of constructing spanning trees by removing edges, spanning trees can be built up by

successively adding edges. Two algorithms based on this principle will be presented here.

We can build a spanning tree for a connected simple graph using depth-first search. We

will form a rooted tree, and the spanning tree will be the underlying undirected graph of this

rooted tree. Arbitrarily choose a vertex of the graph as the root. Form a path starting at this

vertex by successively adding vertices and edges, where each new edge is incident with the last

vertex in the path and a vertex not already in the path. Continue adding vertices and edges to this

path as long as possible. If the path goes through all vertices of the graph, the tree consisting of

this path is a spanning tree. However, if the path does not go through all vertices, more vertices

and edges must be added. Move back to the next to last vertex in the path, and, if possible, form

a new path starting at this vertex passing through vertices that were not already visited. If this

cannot be done, move back another vertex in the path, that is, two vertices back in the path, and

try again.

Repeat this procedure, beginning at the last vertex visited, moving back up the path one

vertex at a time, forming new paths that are as long as possible until no more edges can be

added. Because the graph has a finite number of edges and is connected, this process ends with

the production of a spanning tree. Each vertex that ends a path at a stage of the algorithm will

be a leaf in the rooted tree, and each vertex where a path is constructed starting at this vertex

will be an internal vertex.

788 11 / Trees

a

b g

d i j

khe

f
c

FIGURE 6 The Graph G.

g

h

k

f

j

(a)

f

g

h

k

f

j

i

(b) (c)

g

h

k

f

j

i

(d)

e

c

d

a

g

h

k

f

j

i

(e)

e

c

d

ab

FIGURE 7 Depth-First Search of G.

The reader should note the recursive nature of this procedure. Also, note that if the vertices

in the graph are ordered, the choices of edges at each stage of the procedure are all determined

when we always choose the first vertex in the ordering that is available. However, we will not

always explicitly order the vertices of a graph.

Depth-first search is also called backtracking, because the algorithm returns to vertices

previously visited to add paths. Example 3 illustrates backtracking.

EXAMPLE 3 Use depth-first search to find a spanning tree for the graph G shown in Figure 6.

Solution: The steps used by depth-first search to produce a spanning tree of G are shown in

Figure 7. We arbitrarily start with the vertex f . A path is built by successively adding edges

incident with vertices not already in the path, as long as this is possible. This produces a path

f , g, h, k, j (note that other paths could have been built). Next, backtrack to k. There is no

path beginning at k containing vertices not already visited. So we backtrack to h. Form the

path h, i. Then backtrack to h, and then to f . From f build the path f , d , e, c, a. Then backtrack

to c and form the path c, b. This produces the spanning tree. ▲

The edges selected by depth-first search of a graph are called tree edges. All other edges

of the graph must connect a vertex to an ancestor or descendant of this vertex in the tree. These

edges are called back edges. (Exercise 43 asks for a proof of this fact.)

EXAMPLE 4 In Figure 8 we highlight the tree edges found by depth-first search starting at vertex f by showing

them with heavy colored lines. The back edges (e, f) and (f, h) are shown with thinner black

lines. ▲
We have explained how to find a spanning tree of a graph using depth-first search. However,

our discussion so far has not brought out the recursive nature of depth-first search. To help

make the recursive nature of the algorithm clear, we need a little terminology. We say that we

a d

b g

i j

khe

f
c

FIGURE 8 The Tree Edges and Back Edges

of the Depth-First Search in Example 4.

11.4 Spanning Trees 789

explore from a vertex v when we carry out the steps of depth-first search beginning when v is

added to the tree and ending when we have backtracked back to v for the last time. The key

observation needed to understand the recursive nature of the algorithm is that when we add an

edge connecting a vertex v to a vertex w, we finish exploring from w before we return to v to

complete exploring from v.

In Algorithm 1 we construct the spanning tree of a graph G with vertices v1, . . . , vn by first

selecting the vertex v1 to be the root. We initially set T to be the tree with just this one vertex.

At each step we add a new vertex to the tree T together with an edge from a vertex already

in T to this new vertex and we explore from this new vertex. Note that at the completion of

the algorithm, T contains no simple circuits because no edge is ever added that connects two

vertices in the tree. Moreover, T remains connected as it is built. (These last two observations

can be easily proved via mathematical induction.) Because G is connected, every vertex in G

is visited by the algorithm and is added to the tree (as the reader should verify). It follows

that T is a spanning tree of G.

ALGORITHM 1 Depth-First Search.

procedure DFS(G: connected graph with vertices v1, v2, . . . , vn)

T := tree consisting only of the vertex v1

visit(v1)

procedure visit(v: vertex of G)

for each vertex w adjacent to v and not yet in T

add vertex w and edge {v, w} to T

visit(w)

We now analyze the computational complexity of the depth-first search algorithm. The key

observation is that for each vertex v, the procedure visit(v) is called when the vertex v is first

encountered in the search and it is not called again. Assuming that the adjacency lists for G are

available (see Section 10.3), no computations are required to find the vertices adjacent to v. As

we follow the steps of the algorithm, we examine each edge at most twice to determine whether

to add this edge and one of its endpoints to the tree. Consequently, the procedure DFS constructs

a spanning tree using O(e), or O(n2), steps where e and n are the number of edges and vertices

in G, respectively. [Note that a step involves examining a vertex to see whether it is already in

the spanning tree as it is being built and adding this vertex and the corresponding edge if the

vertex is not already in the tree. We have also made use of the inequality e ≤ n(n − 1)/2, which

holds for any simple graph.]

Depth-first search can be used as the basis for algorithms that solve many different problems.

For example, it can be used to find paths and circuits in a graph, it can be used to determine

the connected components of a graph, and it can be used to find the cut vertices of a connected

graph. As we will see, depth-first search is the basis of backtracking techniques used to search

for solutions of computationally difficult problems. (See [GrYe05], [Ma89], and [CoLeRiSt09]

for a discussion of algorithms based on depth-first search.)

Breadth-First Search

We can also produce a spanning tree of a simple graph by the use of breadth-first search.

Again, a rooted tree will be constructed, and the underlying undirected graph of this rooted tree

forms the spanning tree. Arbitrarily choose a root from the vertices of the graph. Then add all

790 11 / Trees

km

j
h

i

d

a b c l

ge f

FIGURE 9 A Graph G.

edges incident to this vertex. The new vertices added at this stage become the vertices at level 1

in the spanning tree. Arbitrarily order them. Next, for each vertex at level 1, visited in order,

add each edge incident to this vertex to the tree as long as it does not produce a simple circuit.

Arbitrarily order the children of each vertex at level 1. This produces the vertices at level 2

in the tree. Follow the same procedure until all the vertices in the tree have been added. The

procedure ends because there are only a finite number of edges in the graph. A spanning tree is

produced because we have produced a tree containing every vertex of the graph. An example of

breadth-first search is given in Example 5.

EXAMPLE 5 Use breadth-first search to find a spanning tree for the graph shown in Figure 9.

Solution: The steps of the breadth-first search procedure are shown in Figure 10. We choose

the vertex e to be the root. Then we add edges incident with all vertices adjacent to e, so edges

from e to b, d , f , and i are added. These four vertices are at level 1 in the tree. Next, add the

edges from these vertices at level 1 to adjacent vertices not already in the tree. Hence, the edges

from b to a and c are added, as are edges from d to h, from f to j and g, and from i to k. The

new vertices a, c, h, j , g, and k are at level 2. Next, add edges from these vertices to adjacent

vertices not already in the graph. This adds edges from g to l and from k to m. ▲

We describe breadth-first search in pseudocode asAlgorithm 2. In this algorithm, we assume

the vertices of the connected graph G are ordered as v1, v2, . . . , vn. In the algorithm we use the

term “process” to describe the procedure of adding new vertices, and corresponding edges, to

the tree adjacent to the current vertex being processed as long as a simple circuit is not produced.

ml

kg j

e e

b d f i

e

b d f i

ha c kg j

e

b d f i

ha c

FIGURE 10 Breadth-First Search of G.

11.4 Spanning Trees 791

ALGORITHM 2 Breadth-First Search.

procedure BFS (G: connected graph with vertices v1, v2, . . . , vn)

T := tree consisting only of vertex v1

L := empty list

put v1 in the list L of unprocessed vertices

while L is not empty

remove the first vertex, v, from L

for each neighbor w of v

if w is not in L and not in T then

add w to the end of the list L

add w and edge {v, w} to T

We now analyze the computational complexity of breadth-first search. For each vertex v in

the graph we examine all vertices adjacent to v and we add each vertex not yet visited to the

tree T . Assuming we have the adjacency lists for the graph available, no computation is required

to determine which vertices are adjacent to a given vertex. As in the analysis of the depth-first

search algorithm, we see that we examine each edge at most twice to determine whether we

should add this edge and its endpoint not already in the tree. It follows that the breadth-first

search algorithm uses O(e) or O(n2) steps.

Breadth-first search is one of the most useful algorithms in graph theory. In particular, it can

serve as the basis for algorithms that solve a wide variety of problems. For example, algorithms

that find the connected components of a graph, that determine whether a graph is bipartite, and

that find the path with the fewest edges between two vertices in a graph can all be built using

breadth-first search.

Backtracking Applications

There are problems that can be solved only by performing an exhaustive search of all possible

solutions. One way to search systematically for a solution is to use a decision tree, where each

internal vertex represents a decision and each leaf a possible solution. To find a solution via

backtracking, first make a sequence of decisions in an attempt to reach a solution as long as this

is possible. The sequence of decisions can be represented by a path in the decision tree. Once

it is known that no solution can result from any further sequence of decisions, backtrack to the

parent of the current vertex and work toward a solution with another series of decisions, if this is

possible. The procedure continues until a solution is found, or it is established that no solution

exists. Examples 6 to 8 illustrate the usefulness of backtracking.

EXAMPLE 6 Graph Colorings How can backtracking be used to decide whether a graph can be colored

using n colors?

Solution: We can solve this problem using backtracking in the following way. First pick some

vertex a and assign it color 1. Then pick a second vertex b, and if b is not adjacent to a, assign

it color 1. Otherwise, assign color 2 to b. Then go on to a third vertex c. Use color 1, if possible,

for c. Otherwise use color 2, if this is possible. Only if neither color 1 nor color 2 can be used

should color 3 be used. Continue this process as long as it is possible to assign one of the n

colors to each additional vertex, always using the first allowable color in the list. If a vertex is

reached that cannot be colored by any of the n colors, backtrack to the last assignment made and

change the coloring of the last vertex colored, if possible, using the next allowable color in the

list. If it is not possible to change this coloring, backtrack farther to previous assignments, one

step back at a time, until it is possible to change a coloring of a vertex. Then continue assigning

792 11 / Trees

e d

a cb

a red, b blue

a red

a red, b blue, c red

a red, b blue, c red, d green

a red, b blue, c green

a red, b blue, c green, d red

a red, b blue, c green, d red, e green

FIGURE 11 Coloring a Graph Using Backtracking.

colors of additional vertices as long as possible. If a coloring using n colors exists, backtracking

will produce it. (Unfortunately this procedure can be extremely inefficient.)

In particular, consider the problem of coloring the graph shown in Figure 11 with three

colors. The tree shown in Figure 11 illustrates how backtracking can be used to construct a

3-coloring. In this procedure, red is used first, then blue, and finally green. This simple example

can obviously be done without backtracking, but it is a good illustration of the technique.

In this tree, the initial path from the root, which represents the assignment of red to a, leads

to a coloring with a red, b blue, c red, and d green. It is impossible to color e using any of

the three colors when a, b, c, and d are colored in this way. So, backtrack to the parent of the

vertex representing this coloring. Because no other color can be used for d , backtrack one more

level. Then change the color of c to green. We obtain a coloring of the graph by then assigning

red to d and green to e. ▲

EXAMPLE 7 The n-Queens Problem The n-queens problem asks how n queens can be placed on an n × n

chessboard so that no two queens can attack one another. How can backtracking be used to solve

the n-queens problem?

Solution: To solve this problem we must find n positions on an n × n chessboard so that no

two of these positions are in the same row, same column, or in the same diagonal [a diagonal

consists of all positions (i, j) with i + j = m for some m, or i − j = m for some m]. We will

use backtracking to solve the n-queens problem. We start with an empty chessboard. At stage

k + 1 we attempt putting an additional queen on the board in the (k + 1)st column, where there

are already queens in the first k columns. We examine squares in the (k + 1)st column starting

with the square in the first row, looking for a position to place this queen so that it is not in the

same row or on the same diagonal as a queen already on the board. (We already know it is not

in the same column.) If it is impossible to find a position to place the queen in the (k + 1)st

column, backtrack to the placement of the queen in the kth column, and place this queen in the

next allowable row in this column, if such a row exists. If no such row exists, backtrack further.

In particular, Figure 12 displays a backtracking solution to the four-queens problem. In this

solution, we place a queen in the first row and column. Then we put a queen in the third row of

the second column. However, this makes it impossible to place a queen in the third column. So

we backtrack and put a queen in the fourth row of the second column. When we do this, we can

place a queen in the second row of the third column. But there is no way to add a queen to the

fourth column. This shows that no solution results when a queen is placed in the first row and

column. We backtrack to the empty chessboard, and place a queen in the second row of the first

column. This leads to a solution as shown in Figure 12. ▲

11.4 Spanning Trees 793

X

X

X X

X

X

X

X

X

X X

X

X X

X

X

X

X

X represents a queen

FIGURE 12 A Backtracking Solution of the Four-Queens Problem.

EXAMPLE 8 Sums of Subsets Consider this problem. Given a set of positive integers x1, x2, . . . , xn, find

a subset of this set of integers that has M as its sum. How can backtracking be used to solve this

problem?

Solution: We start with a sum with no terms. We build up the sum by successively adding terms.

An integer in the sequence is included if the sum remains less than M when this integer is added

to the sum. If a sum is reached such that the addition of any term is greater than M , backtrack

by dropping the last term of the sum.

Figure 13 displays a backtracking solution to the problem of finding a subset of

{31, 27, 15, 11, 7, 5} with the sum equal to 39. ▲

∅

Sum = 0

{31}

Sum = 31

{31, 7}

Sum = 38

{31, 5}

Sum = 36

{27}

Sum = 27

{27, 11}

Sum = 38

{27, 7}

Sum = 34

{27, 7, 5}

Sum = 39

FIGURE 13 Find a Sum Equal to 39 Using Backtracking.

794 11 / Trees

a
a d i

h

l

k

j

b

f

e

c

g

e
f g

h

b c d

i j

(a) (b)

k l

FIGURE 14 Depth-First Search of a Directed Graph.

Depth-First Search in Directed Graphs

We can easily modify both depth-first search and breadth-first search so that they can run given

a directed graph as input. However, the output will not necessarily be a spanning tree, but rather

a spanning forest. In both algorithms we can add an edge only when it is directed away from

the vertex that is being visited and to a vertex not yet added. If at a stage of either algorithm we

find that no edge exists starting at a vertex already added to one not yet added, the next vertex

added by the algorithm becomes the root of a new tree in the spanning forest. This is illustrated

in Example 9.

EXAMPLE 9 What is the output of depth-first search given the graph G shown in Figure 14(a) as input?

Solution: We begin the depth-first search at vertex a and add vertices b, c, and g and the

corresponding edges where we are blocked. We backtrack to c but we are still blocked, and then

backtrack to b, where we add vertices f and e and the corresponding edges. Backtracking takes

us all the way back to a. We then start a new tree at d and add vertices h, l, k, and j and the

corresponding edges. We backtrack to k, then l, then h, and back to d . Finally, we start a new

tree at i, completing the depth-first search. The output is shown in Figure 14(b). ▲

Depth-first search in directed graphs is the basis of many algorithms (see [GrYe05], [Ma89],

and [CoLeRiSt09]). It can be used to determine whether a directed graph has a circuit, it can

be used to carry out a topological sort of a graph, and it can also be used to find the strongly

connected components of a directed graph.

We conclude this section with an application of depth-first search and breadth-first search

to search engines on the Web.

EXAMPLE 10 Web Spiders To index websites, search engines such as Google and Yahoo systematically

explore the Web starting at known sites. These search engines use programs called Web spiders

(or crawlers or bots) to visit websites and analyze their contents. Web spiders use both depth-first

searching and breadth-first searching to create indices.As described in Example 5 in Section 10.1,

Web pages and links between them can be modeled by a directed graph called the Web graph.

Web pages are represented by vertices and links are represented by directed edges. Using depth-

first search, an initial Web page is selected, a link is followed to a second Web page (if there is

such a link), a link on the second Web page is followed to a third Web page, if there is such a

link, and so on, until a page with no new links is found. Backtracking is then used to examine

11.4 Spanning Trees 795

links at the previous level to look for new links, and so on. (Because of practical limitations, Web

spiders have limits to the depth they search in depth-first search.) Using breadth-first search, an

initial Web page is selected and a link on this page is followed to a second Web page, then a

second link on the initial page is followed (if it exists), and so on, until all links of the initial

page have been followed. Then links on the pages one level down are followed, page by page,

and so on. ▲

Exercises

1. How many edges must be removed from a connected

graph with n vertices and m edges to produce a spanning

tree?

In Exercises 2–6 find a spanning tree for the graph shown by

removing edges in simple circuits.

2. a b c

d e

3.

a
b c

g
f

d

e

4. a

h

b c

g f e

i j
d

5. a b

c
d

e

g

j

i k

h

lf

6.
d

b

e

g j

ha

c

f

i l

k

7. Find a spanning tree for each of these graphs.

a) K5 b) K4,4 c) K1,6

d) Q3 e) C5 f) W5

In Exercises 8–10 draw all the spanning trees of the given

simple graphs.

8. a

b c

9. a b f g

c d e h

10. c

d

b ea f

∗11. How many different spanning trees does each of these

simple graphs have?

a) K3 b) K4 c) K2,2 d) C5

∗12. How many nonisomorphic spanning trees does each of

these simple graphs have?

a) K3 b) K4 c) K5

In Exercises 13–15 use depth-first search to produce a span-

ning tree for the given simple graph. Choose a as the root of

this spanning tree and assume that the vertices are ordered

alphabetically.

13. e

f

dc

g j

h i

b

a

14. d

h

k

e fb

a

c

m

i

l n

g

j

796 11 / Trees

15.

s

qhg i

p

t

r

lo

je

k

a

b

c

d

f

mn

16. Use breadth-first search to produce a spanning tree for

each of the simple graphs in Exercises 13–15. Choose a

as the root of each spanning tree.

17. Use depth-first search to find a spanning tree of each of

these graphs.

a) W6 (see Example 7 of Section 10.2), starting at the

vertex of degree 6

b) K5

c) K3,4, starting at a vertex of degree 3

d) Q3

18. Use breadth-first search to find a spanning tree of each of

the graphs in Exercise 17.

19. Describe the trees produced by breadth-first search and

depth-first search of the wheel graph Wn, starting at the

vertex of degree n, where n is an integer with n ≥ 3. (See

Example 7 of Section 10.2.) Justify your answers.

20. Describe the trees produced by breadth-first search and

depth-first search of the complete graph Kn, where n is a

positive integer. Justify your answers.

21. Describe the trees produced by breadth-first search and

depth-first search of the complete bipartite graph Km,n,

starting at a vertex of degree m, where m and n are positive

integers. Justify your answers.

22. Describe the tree produced by breadth-first search and

depth-first search for the n-cube graph Qn, where n is a

positive integer.

23. Suppose that an airline must reduce its flight schedule to

save money. If its original routes are as illustrated here,

which flights can be discontinued to retain service be-

tween all pairs of cities (where it may be necessary to

combine flights to fly from one city to another)?

Boston

Bangor

New York

Washington

Atlanta

Dallas
San Diego

Los
Angeles

San
Francisco

Seattle
Chicago

Detroit

Denver

St. Louis

24. Explain how breadth-first search or depth-first search can

be used to order the vertices of a connected graph.

∗25. Show that the length of the shortest path between ver-

tices v and u in a connected simple graph equals the level

number of u in the breadth-first spanning tree of G with

root v.

26. Use backtracking to try to find a coloring of each of the

graphs in Exercises 7–9 of Section 10.8 using three col-

ors.

27. Use backtracking to solve the n-queens problem for these

values of n.

a) n = 3 b) n = 5 c) n = 6

28. Use backtracking to find a subset, if it exists, of the set

{27, 24, 19, 14, 11, 8} with sum

a) 20. b) 41. c) 60.

29. Explain how backtracking can be used to find a Hamilton

path or circuit in a graph.

30. a) Explain how backtracking can be used to find the way

out of a maze, given a starting position and the exit

position. Consider the maze divided into positions,

where at each position the set of available moves in-

cludes one to four possibilities (up, down, right, left).

b) Find a path from the starting position marked by X to

the exit in this maze.

X

Exit

A spanning forest of a graph G is a forest that contains every

vertex of G such that two vertices are in the same tree of the

forest when there is a path in G between these two vertices.

31. Show that every finite simple graph has a spanning forest.

32. How many trees are in the spanning forest of a graph?

33. How many edges must be removed to produce the span-

ning forest of a graph with n vertices, m edges, and c

connected components?

34. Let G be a connected graph. Show that if T is a spanning

tree of G constructed using breadth-first search, then an

edge of G not in T must connect vertices at the same level

or at levels that differ by 1 in this spanning tree.

35. Explain how to use breadth-first search to find the length

of a shortest path between two vertices in an undirected

graph.

36. Devise an algorithm based on breadth-first search that de-

termines whether a graph has a simple circuit, and if so,

finds one.

37. Devise an algorithm based on breadth-first search for find-

ing the connected components of a graph.

38. Explain how breadth-first search and how depth-first

search can be used to determine whether a graph is bipar-

tite.

39. Which connected simple graphs have exactly one span-

ning tree?

40. Devise an algorithm for constructing the spanning for-

est of a graph based on deleting edges that form simple

circuits.

11.5 Minimum Spanning Trees 797

41. Devise an algorithm for constructing the spanning forest

of a graph based on depth-first searching.

42. Devise an algorithm for constructing the spanning forest

of a graph based on breadth-first searching.

43. Let G be a connected graph. Show that if T is a span-

ning tree of G constructed using depth-first search, then

an edge of G not in T must be a back edge, that is, it

must connect a vertex to one of its ancestors or one of its

descendants in T .

44. When must an edge of a connected simple graph be in

every spanning tree for this graph?

45. For which graphs do depth-first search and breadth-first

search produce identical spanning trees no matter which

vertex is selected as the root of the tree? Justify your an-

swer.

46. Use Exercise 43 to prove that if G is a connected, simple

graph with n vertices and G does not contain a simple

path of length k then it contains at most (k − 1)n edges.

47. Use mathematical induction to prove that breadth-first

search visits vertices in order of their level in the result-

ing spanning tree.

48. Use pseudocode to describe a variation of depth-first

search that assigns the integer n to the nth vertex vis-

ited in the search. Show that this numbering corresponds

to the numbering of the vertices created by a preorder

traversal of the spanning tree.

49. Use pseudocode to describe a variation of breadth-first

search that assigns the integer m to the mth vertex visited

in the search.
∗50. Suppose that G is a directed graph and T is a spanning

tree constructed using breadth-first search. Show that ev-

ery edge of G has endpoints that are at the same level or

one level higher or lower.

51. Show that if G is a directed graph and T is a spanning

tree constructed using depth-first search, then every edge

not in the spanning tree is a forward edge connecting

an ancestor to a descendant, a back edge connecting a

descendant to an ancestor, or a cross edge connecting a

vertex to a vertex in a previously visited subtree.
∗52. Describe a variation of depth-first search that assigns the

smallest available positive integer to a vertex when the

algorithm is totally finished with this vertex. Show that in

this numbering, each vertex has a larger number than its

children and that the children have increasing numbers

from left to right.

Let T1 and T2 be spanning trees of a graph. The distance be-

tween T1 and T2 is the number of edges in T1 and T2 that are

not common to T1 and T2.

53. Find the distance between each pair of spanning trees

shown in Figures 3(c) and 4 of the graph G shown in

Figure 2.

∗54. Suppose that T1, T2, and T3 are spanning trees of the

simple graph G. Show that the distance between T1

and T3 does not exceed the sum of the distance between T1

and T2 and the distance between T2 and T3.

∗∗55. Suppose that T1 and T2 are spanning trees of a simple

graph G. Moreover, suppose that e1 is an edge in T1 that

is not in T2. Show that there is an edge e2 in T2 that is not

in T1 such that T1 remains a spanning tree if e1 is removed

from it and e2 is added to it, and T2 remains a spanning

tree if e2 is removed from it and e1 is added to it.

∗56. Show that it is possible to find a sequence of spanning

trees leading from any spanning tree to any other by suc-

cessively removing one edge and adding another.

A rooted spanning tree of a directed graph is a rooted tree

containing edges of the graph such that every vertex of the

graph is an endpoint of one of the edges in the tree.

57. For each of the directed graphs in Exercises 18–23 of Sec-

tion 10.5 either find a rooted spanning tree of the graph

or determine that no such tree exists.

∗58. Show that a connected directed graph in which each ver-

tex has the same in-degree and out-degree has a rooted

spanning tree. [Hint: Use an Euler circuit.]

∗59. Give an algorithm to build a rooted spanning tree for con-

nected directed graphs in which each vertex has the same

in-degree and out-degree.

∗60. Show that if G is a directed graph and T is a spanning

tree constructed using depth-first search, then G contains

a circuit if and only if G contains a back edge (see Exer-

cise 51) relative to the spanning tree T .

∗61. Use Exercise 60 to construct an algorithm for determining

whether a directed graph contains a circuit.

11.5 Minimum Spanning Trees

Introduction

A company plans to build a communications network connecting its five computer centers. Any

pair of these centers can be linked with a leased telephone line. Which links should be made to

ensure that there is a path between any two computer centers so that the total cost of the network

is minimized? We can model this problem using the weighted graph shown in Figure 1, where

vertices represent computer centers, edges represent possible leased lines, and the weights on

edges are the monthly lease rates of the lines represented by the edges. We can solve this problem

12
C H A P T E R

Boolean Algebra

12.1 Boolean

Functions

12.2 Representing

Boolean

Functions

12.3 Logic Gates

12.4 Minimization

of Circuits

The circuits in computers and other electronic devices have inputs, each of which is either

a 0 or a 1, and produce outputs that are also 0s and 1s. Circuits can be constructed using

any basic element that has two different states. Such elements include switches that can be

in either the on or the off position and optical devices that can be either lit or unlit. In 1938

Claude Shannon showed how the basic rules of logic, first given by George Boole in 1854 in his

The Laws of Thought, could be used to design circuits. These rules form the basis for Boolean

algebra. In this chapter we develop the basic properties of Boolean algebra. The operation of a

circuit is defined by a Boolean function that specifies the value of an output for each set of inputs.

The first step in constructing a circuit is to represent its Boolean function by an expression built

up using the basic operations of Boolean algebra. We will provide an algorithm for producing

such expressions. The expression that we obtain may contain many more operations than are

necessary to represent the function. Later in the chapter we will describe methods for finding an

expression with the minimum number of sums and products that represents a Boolean function.

The procedures that we will develop, Karnaugh maps and the Quine–McCluskey method, are

important in the design of efficient circuits.

12.1 Boolean Functions

Introduction

Boolean algebra provides the operations and the rules for working with the set {0, 1}. Electronic

and optical switches can be studied using this set and the rules of Boolean algebra. The three

operations in Boolean algebra that we will use most are complementation, the Boolean sum, and

the Boolean product. The complement of an element, denoted with a bar, is defined by 0 = 1

and 1 = 0. The Boolean sum, denoted by + or by OR, has the following values:

1 + 1 = 1, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0.

The Boolean product, denoted by · or by AND, has the following values:

1 · 1 = 1, 1 · 0 = 0, 0 · 1 = 0, 0 · 0 = 0.

When there is no danger of confusion, the symbol · can be deleted, just as in writing algebraic

products. Unless parentheses are used, the rules of precedence for Boolean operators are: first,

all complements are computed, followed by all Boolean products, followed by all Boolean sums.

This is illustrated in Example 1.

EXAMPLE 1 Find the value of 1 · 0 + (0 + 1).

Solution: Using the definitions of complementation, the Boolean sum, and the Boolean product,

it follows that

1 · 0 + (0 + 1) = 0 + 1

= 0 + 0

= 0.

▲

811

812 12 / Boolean Algebra

The complement, Boolean sum, and Boolean product correspond to the logical operators,

¬, ∨, and ∧, respectively, where 0 corresponds to F (false) and 1 corresponds to T (true). Equal-

ities in Boolean algebra can be directly translated into equivalences of compound propositions.

Conversely, equivalences of compound propositions can be translated into equalities in Boolean

algebra. We will see later in this section why these translations yield valid logical equivalences

and identities in Boolean algebra. Example 2 illustrates the translation from Boolean algebra to

propositional logic.

EXAMPLE 2 Translate 1 · 0 + (0 + 1) = 0, the equality found in Example 1, into a logical equivalence.

Solution: We obtain a logical equivalence when we translate each 1 into a T, each 0 into

an F, each Boolean sum into a disjunction, each Boolean product into a conjunction, and each

complementation into a negation. We obtain

(T ∧ F) ∨ ¬(T ∨ F) ≡ F. ▲

Example 3 illustrates the translation from propositional logic to Boolean algebra.

EXAMPLE 3 Translate the logical equivalence (T ∧ T) ∨ ¬F ≡ T into an identity in Boolean algebra.

Solution: We obtain an identity in Boolean algebra when we translate each T into a 1, each F

into a 0, each disjunction into a Boolean sum, each conjunction into a Boolean product, and

each negation into a complementation. We obtain

(1 · 1) + 0 = 1. ▲

Boolean Expressions and Boolean Functions

Let B = {0, 1}. Then Bn = {(x1, x2, . . . , xn) | xi ∈ B for 1 ≤ i ≤ n} is the set of all possible

n-tuples of 0s and 1s. The variable x is called a Boolean variable if it assumes values only

from B, that is, if its only possible values are 0 and 1. A function from Bn to B is called a

Boolean function of degree n.

CLAUDE ELWOOD SHANNON (1916–2001) Claude Shannon was born in Petoskey, Michigan, and grew up
in Gaylord, Michigan. His father was a businessman and a probate judge, and his mother was a language teacher
and a high school principal. Shannon attended the University of Michigan, graduating in 1936. He continued
his studies at M.I.T., where he took the job of maintaining the differential analyzer, a mechanical computing
device consisting of shafts and gears built by his professor, Vannevar Bush. Shannon’s master’s thesis, written
in 1936, studied the logical aspects of the differential analyzer. This master’s thesis presents the first application
of Boolean algebra to the design of switching circuits; it is perhaps the most famous master’s thesis of the
twentieth century. He received his Ph.D. from M.I.T. in 1940. Shannon joined Bell Laboratories in 1940, where
he worked on transmitting data efficiently. He was one of the first people to use bits to represent information. At

Bell Laboratories he worked on determining the amount of traffic that telephone lines can carry. Shannon made many fundamental
contributions to information theory. In the early 1950s he was one of the founders of the study of artificial intelligence. He joined
the M.I.T. faculty in 1956, where he continued his study of information theory.

Shannon had an unconventional side. He is credited with inventing the rocket-powered Frisbee. He is also famous for riding a
unicycle down the hallways of Bell Laboratories while juggling four balls. Shannon retired when he was 50 years old, publishing
papers sporadically over the following 10 years. In his later years he concentrated on some pet projects, such as building a motorized
pogo stick. One interesting quote from Shannon, published in Omni Magazine in 1987, is “I visualize a time when we will be to
robots what dogs are to humans. And I am rooting for the machines.”

12.1 Boolean Functions 813

EXAMPLE 4 The function F(x, y) = xy from the set of ordered pairs of Boolean variables to the set {0, 1} is

a Boolean function of degree 2 with F(1, 1) = 0, F(1, 0) = 1, F(0, 1) = 0, and F(0, 0) = 0.

We display these values of F in Table 1. ▲

TABLE 1

x y F(x, y)

1 1 0

1 0 1

0 1 0

0 0 0

Boolean functions can be represented using expressions made up from variables and Boolean

operations. The Boolean expressions in the variables x1, x2, . . . , xn are defined recursively as

0, 1, x1, x2, . . . , xn are Boolean expressions;

if E1 and E2 are Boolean expressions, then E1, (E1E2), and (E1 + E2) are Boolean ex-

pressions.

Each Boolean expression represents a Boolean function. The values of this function are obtained

by substituting 0 and 1 for the variables in the expression. In Section 12.2 we will show that

every Boolean function can be represented by a Boolean expression.

EXAMPLE 5 Find the values of the Boolean function represented by F(x, y, z) = xy + z.

Solution: The values of this function are displayed in Table 2. ▲

TABLE 2

x y z xy z F(x, y, z) = xy + z

1 1 1 1 0 1

1 1 0 1 1 1

1 0 1 0 0 0

1 0 0 0 1 1

0 1 1 0 0 0

0 1 0 0 1 1

0 0 1 0 0 0

0 0 0 0 1 1

Note that we can represent a Boolean function graphically by distinguishing the vertices of

the n-cube that correspond to the n-tuples of bits where the function has value 1.

EXAMPLE 6 The function F(x, y, z) = xy + z from B3 to B from Example 5 can be represented by distin-

guishing the vertices that correspond to the five 3-tuples (1, 1, 1), (1, 1, 0), (1, 0, 0), (0, 1, 0),

and (0, 0, 0), where F(x, y, z) = 1, as shown in Figure 1. These vertices are displayed using

solid black circles. ▲

110 111

011

101

010

100

000 001

FIGURE 1

Boolean functions F and G of n variables are equal if and only if F(b1, b2, . . . , bn) =

G(b1, b2, . . . , bn) whenever b1, b2, . . . , bn belong to B. Two different Boolean expressions that

represent the same function are called equivalent. For instance, the Boolean expressions xy,

xy + 0, and xy · 1 are equivalent. The complement of the Boolean function F is the function F ,

where F(x1, . . . , xn) = F(x1, . . . , xn). Let F and G be Boolean functions of degree n. The

Boolean sum F + G and the Boolean product FG are defined by

(F + G)(x1, . . . , xn) = F(x1, . . . , xn) + G(x1, . . . , xn),

(FG)(x1, . . . , xn) = F(x1, . . . , xn)G(x1, . . . , xn).

A Boolean function of degree two is a function from a set with four elements, namely,

pairs of elements from B = {0, 1}, to B, a set with two elements. Hence, there are 16 different

Boolean functions of degree two. In Table 3 we display the values of the 16 different Boolean

functions of degree two, labeled F1, F2, . . . , F16.

814 12 / Boolean Algebra

TABLE 3 The 16 Boolean Functions of Degree Two.

x y F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

EXAMPLE 7 How many different Boolean functions of degree n are there?

Solution: From the product rule for counting, it follows that there are 2n different n-tuples

of 0s and 1s. Because a Boolean function is an assignment of 0 or 1 to each of these 2n different

n-tuples, the product rule shows that there are 22n
different Boolean functions of degree n. ▲

Table 4 displays the number of different Boolean functions of degrees one through six. The

number of such functions grows extremely rapidly.

TABLE 4 The Number of Boolean
Functions of Degree n.

Degree Number

1 4

2 16

3 256

4 65,536

5 4,294,967,296

6 18,446,744,073,709,551,616

Identities of Boolean Algebra

There are many identities in Boolean algebra. The most important of these are displayed in

Table 5. These identities are particularly useful in simplifying the design of circuits. Each of

the identities in Table 5 can be proved using a table. We will prove one of the distributive laws

in this way in Example 8. The proofs of the remaining properties are left as exercises for the

reader.

EXAMPLE 8 Show that the distributive law x(y + z) = xy + xz is valid.

Solution: The verification of this identity is shown in Table 6. The identity holds because the

last two columns of the table agree. ▲

The reader should compare the Boolean identities in Table 5 to the logical equivalences

in Table 6 of Section 1.3 and the set identities in Table 1 in Section 2.2. All are special cases

of the same set of identities in a more abstract structure. Each collection of identities can

be obtained by making the appropriate translations. For example, we can transform each of

the identities in Table 5 into a logical equivalence by changing each Boolean variable into a

propositional variable, each 0 into a F, each 1 into a T, each Boolean sum into a disjunction, each

Boolean product into a conjunction, and each complementation into a negation, as we illustrate

in Example 9.

12.1 Boolean Functions 815

TABLE 5 Boolean Identities.

Identity Name

x = x Law of the double complement

x + x = x Idempotent laws

x · x = x

x + 0 = x Identity laws

x · 1 = x

x + 1 = 1 Domination laws

x · 0 = 0

x + y = y + x Commutative laws

xy = yx

x + (y + z) = (x + y) + z Associative laws

x(yz) = (xy)z

x + yz = (x + y)(x + z) Distributive laws

x(y + z) = xy + xz

(xy) = x + y De Morgan’s laws

(x + y) = x y

x + xy = x Absorption laws

x(x + y) = x

x + x = 1 Unit property

xx = 0 Zero property

Compare these Boolean

identities with the logical

equivalences in Section

1.3 and the set identities

in Section 2.2.

EXAMPLE 9 Translate the distributive law x + yz = (x + y)(x + z) in Table 5 into a logical equivalence.

Solution: To translate a Boolean identity into a logical equivalence, we change each Boolean

variable into a propositional variable. Here we will change the Boolean variables x, y, and z into

the propositional variables p, q, and r . Next, we change each Boolean sum into a disjunction and

each Boolean product into a conjunction. (Note that 0 and 1 do not appear in this identity and

TABLE 6 Verifying One of the Distributive Laws.

x y z y + z xy xz x(y + z) xy + xz

1 1 1 1 1 1 1 1

1 1 0 1 1 0 1 1

1 0 1 1 0 1 1 1

1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0

816 12 / Boolean Algebra

complementation also does not appear.) This transforms the Boolean identity into the logical

equivalence

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

This logical equivalence is one of the distributive laws for propositional logic in Table 6 in

Section 1.3. ▲

Identities in Boolean algebra can be used to prove further identities. We demonstrate this

in Example 10.

EXAMPLE 10 Prove the absorption law x(x + y) = x using the other identities of Boolean algebra shown in

Table 5. (This is called an absorption law because absorbing x + y into x leaves x unchanged.)

Solution: We display steps used to derive this identity and the law used in each step:

x(x + y) = (x + 0)(x + y) Identity law for the Boolean sum

= x + 0 · y Distributive law of the Boolean sum over the

Boolean product

= x + y · 0 Commutative law for the Boolean product

= x + 0 Domination law for the Boolean product

= x Identity law for the Boolean sum. ▲

Duality

The identities in Table 5 come in pairs (except for the law of the double complement and the unit

and zero properties). To explain the relationship between the two identities in each pair we use

the concept of a dual. The dual of a Boolean expression is obtained by interchanging Boolean

sums and Boolean products and interchanging 0s and 1s.

EXAMPLE 11 Find the duals of x(y + 0) and x · 1 + (y + z).

Solution: Interchanging · signs and + signs and interchanging 0s and 1s in these expressions

produces their duals. The duals are x + (y · 1) and (x + 0)(yz), respectively. ▲

The dual of a Boolean function F represented by a Boolean expression is the function

represented by the dual of this expression. This dual function, denoted by F d , does not depend on

the particular Boolean expression used to representF . An identity between functions represented

by Boolean expressions remains valid when the duals of both sides of the identity are taken.

(See Exercise 30 for the reason why this is true.) This result, called the duality principle, is

useful for obtaining new identities.

EXAMPLE 12 Construct an identity from the absorption law x(x + y) = x by taking duals.

Solution: Taking the duals of both sides of this identity produces the identity x + xy = x, which

is also called an absorption law and is shown in Table 5. ▲

12.1 Boolean Functions 817

The Abstract Definition of a Boolean Algebra

In this section we have focused on Boolean functions and expressions. However, the results we

have established can be translated into results about propositions or results about sets. Because

of this, it is useful to define Boolean algebras abstractly. Once it is shown that a particular

structure is a Boolean algebra, then all results established about Boolean algebras in general

apply to this particular structure.

Boolean algebras can be defined in several ways. The most common way is to specify the

properties that operations must satisfy, as is done in Definition 1.

DEFINITION 1 A Boolean algebra is a set B with two binary operations ∨ and ∧, elements 0 and 1, and a

unary operation such that these properties hold for all x, y, and z in B:

x ∨ 0 = x

x ∧ 1 = x

}

Identity laws

x ∨ x = 1

x ∧ x = 0

}

Complement laws

(x ∨ y) ∨ z = x ∨ (y ∨ z)

(x ∧ y) ∧ z = x ∧ (y ∧ z)

}

Associative laws

x ∨ y = y ∨ x

x ∧ y = y ∧ x

}

Commutative laws

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

}

Distributive laws

Using the laws given in Definition 1, it is possible to prove many other laws that hold for every

Boolean algebra, such as idempotent and domination laws. (See Exercises 35–42.)

From our previous discussion, B = {0, 1} with the OR and AND operations and the com-

plement operator, satisfies all these properties. The set of propositions in n variables, with the ∨

and ∧ operators, F and T, and the negation operator, also satisfies all the properties of a Boolean

algebra, as can be seen from Table 6 in Section 1.3. Similarly, the set of subsets of a universal

set U with the union and intersection operations, the empty set and the universal set, and the

set complementation operator, is a Boolean algebra as can be seen by consulting Table 1 in

Section 2.2. So, to establish results about each of Boolean expressions, propositions, and sets,

we need only prove results about abstract Boolean algebras.

Boolean algebras may also be defined using the notion of a lattice, discussed in Chapter 9.

Recall that a lattice L is a partially ordered set in which every pair of elements x, y has a least

upper bound, denoted by lub(x, y) and a greatest lower bound denoted by glb(x, y). Given two

elements x and y of L, we can define two operations ∨ and ∧ on pairs of elements of L by

x ∨ y = lub(x, y) and x ∧ y = glb(x, y).

For a latticeL to be a Boolean algebra as specified in Definition 1, it must have two properties.

First, it must be complemented. For a lattice to be complemented it must have a least element 0

and a greatest element 1 and for every element x of the lattice there must exist an element x such

that x ∨ x = 1 and x ∧ x = 0. Second, it must be distributive. This means that for every x, y,

and z in L, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). Showing

that a complemented, distributive lattice is a Boolean algebra has been left as Supplementary

Exercise 39 in Chapter 9.

818 12 / Boolean Algebra

Exercises

1. Find the values of these expressions.

a) 1 · 0 b) 1 + 1 c) 0 · 0 d) (1 + 0)

2. Find the values, if any, of the Boolean variable x that

satisfy these equations.

a) x · 1 = 0 b) x + x = 0

c) x · 1 = x d) x · x = 1

3. a) Show that (1 · 1) + (0 · 1 + 0) = 1.

b) Translate the equation in part (a) into a propositional

equivalence by changing each 0 into an F, each 1

into a T, each Boolean sum into a disjunction, each

Boolean product into a conjunction, each complemen-

tation into a negation, and the equals sign into a propo-

sitional equivalence sign.

4. a) Show that (1 · 0) + (1 · 0) = 1.

b) Translate the equation in part (a) into a propositional

equivalence by changing each 0 into an F, each 1

into a T, each Boolean sum into a disjunction, each

Boolean product into a conjunction, each complemen-

tation into a negation, and the equals sign into a propo-

sitional equivalence sign.

5. Use a table to express the values of each of these Boolean

functions.

a) F(x, y, z) = xy

b) F(x, y, z) = x + yz

c) F(x, y, z) = xy + (xyz)

d) F(x, y, z) = x(yz + y z)

6. Use a table to express the values of each of these Boolean

functions.

a) F(x, y, z) = z

b) F(x, y, z) = xy + yz

c) F(x, y, z) = xyz + (xyz)

d) F(x, y, z) = y(xz + x z)

7. Use a 3-cube Q3 to represent each of the Boolean func-

tions in Exercise 5 by displaying a black circle at each

vertex that corresponds to a 3-tuple where this function

has the value 1.

8. Use a 3-cube Q3 to represent each of the Boolean func-

tions in Exercise 6 by displaying a black circle at each

vertex that corresponds to a 3-tuple where this function

has the value 1.

9. What values of the Boolean variables x and y satisfy

xy = x + y?

10. How many different Boolean functions are there of de-

gree 7?

11. Prove the absorption law x + xy = x using the other laws

in Table 5.

12. Show that F(x, y, z) = xy + xz + yz has the value 1 if

and only if at least two of the variables x, y, and z have

the value 1.

13. Show that xy + yz + xz = xy + yz + xz.

Exercises 14–23 deal with the Boolean algebra {0, 1} with ad-

dition, multiplication, and complement defined at the begin-

ning of this section. In each case, use a table as in Example 8.

14. Verify the law of the double complement.

15. Verify the idempotent laws.

16. Verify the identity laws.

17. Verify the domination laws.

18. Verify the commutative laws.

19. Verify the associative laws.

20. Verify the first distributive law in Table 5.

21. Verify De Morgan’s laws.

22. Verify the unit property.

23. Verify the zero property.

The Boolean operator ⊕, called the XOR operator, is defined

by 1 ⊕ 1 = 0, 1 ⊕ 0 = 1, 0 ⊕ 1 = 1, and 0 ⊕ 0 = 0.

24. Simplify these expressions.

a) x ⊕ 0 b) x ⊕ 1
c) x ⊕ x d) x ⊕ x

25. Show that these identities hold.

a) x ⊕ y = (x + y)(xy)
b) x ⊕ y = (xy) + (xy)

26. Show that x ⊕ y = y ⊕ x.

27. Prove or disprove these equalities.

a) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z
b) x + (y ⊕ z) = (x + y) ⊕ (x + z)
c) x ⊕ (y + z) = (x ⊕ y) + (x ⊕ z)

28. Find the duals of these Boolean expressions.

a) x + y b) x y
c) xyz + x y z d) xz + x · 0 + x · 1

∗29. Suppose that F is a Boolean function represented by a

Boolean expression in the variables x1, . . . , xn. Show that

F d(x1, . . . , xn) = F(x1, . . . , xn).
∗30. Show that if F and G are Boolean functions represented

by Boolean expressions in n variables and F = G, then

F d = Gd , where F d and Gd are the Boolean functions

represented by the duals of the Boolean expressions rep-

resenting F and G, respectively. [Hint: Use the result of

Exercise 29.]
∗31. How many different Boolean functions F(x, y, z) are

there such that F(x, y, z) = F(x, y, z) for all values of

the Boolean variables x, y, and z?
∗32. How many different Boolean functions F(x, y, z) are

there such that F(x, y, z) = F(x, y, z) = F(x, y, z) for

all values of the Boolean variables x, y, and z?

33. Show that you obtain De Morgan’s laws for propositions

(in Table 6 in Section 1.3) when you transform De Mor-

gan’s laws for Boolean algebra in Table 6 into logical

equivalences.

34. Show that you obtain the absorption laws for proposi-

tions (in Table 6 in Section 1.3) when you transform the

absorption laws for Boolean algebra in Table 6 into logi-

cal equivalences.

12.2 Representing Boolean Functions 819

In Exercises 35–42, use the laws in Definition 1 to show that

the stated properties hold in every Boolean algebra.

35. Show that in a Boolean algebra, the idempotent laws

x ∨ x = x and x ∧ x = x hold for every element x.

36. Show that in a Boolean algebra, every element x has a

unique complement x such that x ∨ x = 1 and x ∧ x = 0.

37. Show that in a Boolean algebra, the complement of the

element 0 is the element 1 and vice versa.

38. Prove that in a Boolean algebra, the law of the double

complement holds; that is, x = x for every element x.

39. Show that De Morgan’s laws hold in a Boolean algebra.

That is, show that for all x and y, (x ∨ y) = x ∧ y and

(x ∧ y) = x ∨ y.

40. Show that in a Boolean algebra, the modular properties

hold. That is, show that x ∧ (y ∨ (x ∧ z)) = (x ∧ y) ∨

(x ∧ z) and x ∨ (y ∧ (x ∨ z)) = (x ∨ y) ∧ (x ∨ z).

41. Show that in a Boolean algebra, if x ∨ y = 0, then x = 0

and y = 0, and that if x ∧ y = 1, then x = 1 and y = 1.

42. Show that in a Boolean algebra, the dual of an iden-

tity, obtained by interchanging the ∨ and ∧ operators

and interchanging the elements 0 and 1, is also a valid

identity.

43. Show that a complemented, distributive lattice is a

Boolean algebra.

12.2 Representing Boolean Functions

Two important problems of Boolean algebra will be studied in this section. The first problem

is: Given the values of a Boolean function, how can a Boolean expression that represents this

function be found? This problem will be solved by showing that any Boolean function can be

represented by a Boolean sum of Boolean products of the variables and their complements. The

solution of this problem shows that every Boolean function can be represented using the three

Boolean operators ·, +, and . The second problem is: Is there a smaller set of operators that

can be used to represent all Boolean functions? We will answer this question by showing that

all Boolean functions can be represented using only one operator. Both of these problems have

practical importance in circuit design.

Sum-of-Products Expansions

We will use examples to illustrate one important way to find a Boolean expression that represents

a Boolean function.

EXAMPLE 1 Find Boolean expressions that represent the functions F(x, y, z) and G(x, y, z), which are given

in Table 1.

Solution: An expression that has the value 1 when x = z = 1 and y = 0, and the value 0 other-

wise, is needed to represent F . Such an expression can be formed by taking the Boolean product

of x, y, and z. This product, xyz, has the value 1 if and only if x = y = z = 1, which holds if

and only if x = z = 1 and y = 0.
TABLE 1

x y z F G

1 1 1 0 0

1 1 0 0 1

1 0 1 1 0

1 0 0 0 0

0 1 1 0 0

0 1 0 0 1

0 0 1 0 0

0 0 0 0 0

To represent G, we need an expression that equals 1 when x = y = 1 and z = 0, or x = z =

0 and y = 1. We can form an expression with these values by taking the Boolean sum of two

different Boolean products. The Boolean product xyz has the value 1 if and only if x = y = 1

and z = 0. Similarly, the product xyz has the value 1 if and only if x = z = 0 and y = 1. The

Boolean sum of these two products, xyz + xyz, represents G, because it has the value 1 if and

only if x = y = 1 and z = 0, or x = z = 0 and y = 1. ▲

Example 1 illustrates a procedure for constructing a Boolean expression representing a

function with given values. Each combination of values of the variables for which the function

has the value 1 leads to a Boolean product of the variables or their complements.

820 12 / Boolean Algebra

DEFINITION 1 A literal is a Boolean variable or its complement. A minterm of the Boolean variables

x1, x2, . . . , xn is a Boolean product y1y2 · · · yn, where yi = xi or yi = xi . Hence, a minterm

is a product of n literals, with one literal for each variable.

A minterm has the value 1 for one and only one combination of values of its variables. More

precisely, the minterm y1y2 . . . yn is 1 if and only if each yi is 1, and this occurs if and only

if xi = 1 when yi = xi and xi = 0 when yi = xi .

EXAMPLE 2 Find a minterm that equals 1 if x1 = x3 = 0 and x2 = x4 = x5 = 1, and equals 0 otherwise.

Solution: The minterm x1x2x3x4x5 has the correct set of values. ▲

By taking Boolean sums of distinct minterms we can build up a Boolean expression with a

specified set of values. In particular, a Boolean sum of minterms has the value 1 when exactly

one of the minterms in the sum has the value 1. It has the value 0 for all other combinations of

values of the variables. Consequently, given a Boolean function, a Boolean sum of minterms

can be formed that has the value 1 when this Boolean function has the value 1, and has the

value 0 when the function has the value 0. The minterms in this Boolean sum correspond to

those combinations of values for which the function has the value 1. The sum of minterms that

represents the function is called the sum-of-products expansion or the disjunctive normal

form of the Boolean function.

(See Exercise 42 in Section 1.3 for the development of disjunctive normal form in propo-

sitional calculus.)

EXAMPLE 3 Find the sum-of-products expansion for the function F(x, y, z) = (x + y)z.

Solution: We will find the sum-of-products expansion of F(x, y, z) in two ways. First, we will

use Boolean identities to expand the product and simplify. We find that

F(x, y, z) = (x + y)z

= xz + yz Distributive law

= x1z + 1yz Identity law

= x(y + y)z + (x + x)yz Unit property

= xyz + xy z + xyz + xyz Distributive law

= xyz + xy z + xy z. Idempotent law

Second, we can construct the sum-of-products expansion by determining the values of F for

all possible values of the variables x, y, and z. These values are found in Table 2. The sum-of-

products expansion of F is the Boolean sum of three minterms corresponding to the three rows

of this table that give the value 1 for the function. This gives

F(x, y, z) = xyz + xy z + xyz.

▲

It is also possible to find a Boolean expression that represents a Boolean function by taking

a Boolean product of Boolean sums. The resulting expansion is called the conjunctive normal

form or product-of-sums expansion of the function. These expansions can be found from

sum-of-products expansions by taking duals. How to find such expansions directly is described

in Exercise 10.

12.2 Representing Boolean Functions 821

TABLE 2

x y z x + y z (x + y)z

1 1 1 1 0 0

1 1 0 1 1 1

1 0 1 1 0 0

1 0 0 1 1 1

0 1 1 1 0 0

0 1 0 1 1 1

0 0 1 0 0 0

0 0 0 0 1 0

Functional Completeness

Every Boolean function can be expressed as a Boolean sum of minterms. Each minterm is the

Boolean product of Boolean variables or their complements. This shows that every Boolean

function can be represented using the Boolean operators ·, +, and −. Because every Boolean

function can be represented using these operators we say that the set {·, +,− } is functionally

complete. Can we find a smaller set of functionally complete operators? We can do so if one

of the three operators of this set can be expressed in terms of the other two. This can be done

using one of De Morgan’s laws. We can eliminate all Boolean sums using the identity

x + y = x y,

which is obtained by taking complements of both sides in the second De Morgan law, given in

Table 5 in Section 12.1, and then applying the double complementation law. This means that

the set {·,− } is functionally complete. Similarly, we could eliminate all Boolean products using

the identity

xy = x + y,

which is obtained by taking complements of both sides in the first De Morgan law, given in

Table 5 in Section 12.1, and then applying the double complementation law. Consequently

{+,− } is functionally complete. Note that the set {+, ·} is not functionally complete, be-

cause it is impossible to express the Boolean function F(x) = x using these operators (see

Exercise 19).

We have found sets containing two operators that are functionally complete. Can we find

a smaller set of functionally complete operators, namely, a set containing just one opera-

tor? Such sets exist. Define two operators, the | or NAND operator, defined by 1 | 1 = 0 and

1 | 0 = 0 | 1 = 0 | 0 = 1; and the ↓ or NOR operator, defined by 1 ↓ 1 = 1 ↓ 0 = 0 ↓ 1 = 0

and 0 ↓ 0 = 1. Both of the sets { | } and { ↓ } are functionally complete. To see that { | } is

functionally complete, because {·,− } is functionally complete, all that we have to do is show

that both of the operators · and − can be expressed using just the | operator. This can be done as

x = x | x,

xy = (x | y) | (x | y).

The reader should verify these identities (see Exercise 14). We leave the demonstration that { ↓ }

is functionally complete for the reader (see Exercises 15 and 16).

822 12 / Boolean Algebra

Exercises

1. Find a Boolean product of the Boolean variables x, y,

and z, or their complements, that has the value 1 if and

only if

a) x = y = 0, z = 1. b) x = 0, y = 1, z = 0.
c) x = 0, y = z = 1. d) x = y = z = 0.

2. Find the sum-of-products expansions of these Boolean

functions.

a) F(x, y) = x + y b) F(x, y) = x y
c) F(x, y) = 1 d) F(x, y) = y

3. Find the sum-of-products expansions of these Boolean

functions.

a) F(x, y, z) = x + y + z
b) F(x, y, z) = (x + z)y
c) F(x, y, z) = x
d) F(x, y, z) = x y

4. Find the sum-of-products expansions of the Boolean

function F(x, y, z) that equals 1 if and only if

a) x = 0. b) xy = 0.
c) x + y = 0. d) xyz = 0.

5. Find the sum-of-products expansion of the Boolean func-

tion F(w, x, y, z) that has the value 1 if and only if an

odd number of w, x, y, and z have the value 1.

6. Find the sum-of-products expansion of the Boolean func-

tion F(x1, x2, x3, x4, x5) that has the value 1 if and only

if three or more of the variables x1, x2, x3, x4, and x5 have

the value 1.

Another way to find a Boolean expression that represents a

Boolean function is to form a Boolean product of Boolean

sums of literals. Exercises 7–11 are concerned with represen-

tations of this kind.

7. Find a Boolean sum containing either x or x, either y

or y, and either z or z that has the value 0 if and only if

a) x = y = 1, z = 0. b) x = y = z = 0.
c) x = z = 0, y = 1.

8. Find a Boolean product of Boolean sums of literals that

has the value 0 if and only if x = y = 1 and z = 0,

x = z = 0 and y = 1, or x = y = z = 0. [Hint: Take the

Boolean product of the Boolean sums found in parts (a),

(b), and (c) in Exercise 7.]

9. Show that the Boolean sum y1 + y2 + · · · + yn, where

yi = xi or yi = xi , has the value 0 for exactly one combi-

nation of the values of the variables, namely, when xi = 0

if yi = xi and xi = 1 if yi = xi . This Boolean sum is

called a maxterm.

10. Show that a Boolean function can be represented as

a Boolean product of maxterms. This representation is

called the product-of-sums expansion or conjunctive

normal form of the function. [Hint: Include one max-

term in this product for each combination of the variables

where the function has the value 0.]

11. Find the product-of-sums expansion of each of the

Boolean functions in Exercise 3.

12. Express each of these Boolean functions using the oper-

ators · and −.

a) x + y + z b) x + y(x + z)

c) x + y d) x(x + y + z)

13. Express each of the Boolean functions in Exercise 12 us-

ing the operators + and .

14. Show that

a) x = x | x. b) xy = (x | y) | (x | y).

c) x + y = (x | x) | (y | y).

15. Show that

a) x = x ↓ x.

b) xy = (x ↓ x) ↓ (y ↓ y).

c) x + y = (x ↓ y) ↓ (x ↓ y).

16. Show that { ↓ } is functionally complete using Exer-

cise 15.

17. Express each of the Boolean functions in Exercise 3 using

the operator | .

18. Express each of the Boolean functions in Exercise 3 using

the operator ↓.

19. Show that the set of operators {+, ·} is not functionally

complete.

20. Are these sets of operators functionally complete?

a) {+, ⊕} b) { , ⊕} c) {·, ⊕}

12.3 Logic Gates

Introduction

Boolean algebra is used to model the circuitry of electronic devices. Each input and each output

of such a device can be thought of as a member of the set {0, 1}. A computer, or other electronic

device, is made up of a number of circuits. Each circuit can be designed using the rules of

Boolean algebra that were studied in Sections 12.1 and 12.2. The basic elements of circuits

12.3 Logic Gates 823

x
x + y

y

x

y

x xy

(a) Inverter (b) OR gate (c) AND gate

x

FIGURE 1 Basic Types of Gates.

are called gates, and were introduced in Section 1.2. Each type of gate implements a Boolean

operation. In this section we define several types of gates. Using these gates, we will apply the

rules of Boolean algebra to design circuits that perform a variety of tasks. The circuits that we

will study in this chapter give output that depends only on the input, and not on the current

state of the circuit. In other words, these circuits have no memory capabilities. Such circuits are

called combinational circuits or gating networks.

We will construct combinational circuits using three types of elements. The first is an

inverter, which accepts the value of one Boolean variable as input and produces the complement

of this value as its output. The symbol used for an inverter is shown in Figure 1(a). The input to

the inverter is shown on the left side entering the element, and the output is shown on the right

side leaving the element.

The next type of element we will use is the OR gate. The inputs to this gate are the values

of two or more Boolean variables. The output is the Boolean sum of their values. The symbol

used for an OR gate is shown in Figure 1(b). The inputs to the OR gate are shown on the left

side entering the element, and the output is shown on the right side leaving the element.

The third type of element we will use is the AND gate. The inputs to this gate are the values

of two or more Boolean variables. The output is the Boolean product of their values. The symbol

used for an AND gate is shown in Figure 1(c). The inputs to the AND gate are shown on the left

side entering the element, and the output is shown on the right side leaving the element.

We will permit multiple inputs to AND and OR gates. The inputs to each of these gates are

shown on the left side entering the element, and the output is shown on the right side. Examples

of AND and OR gates with n inputs are shown in Figure 2.

•
•

•

•
•

•

x1
x2

xn

x1x2 • • • xn

x1
x2

xn

x1 + x2 + • • • + xn

FIGURE 2 Gates with n Inputs.

Combinations of Gates

Combinational circuits can be constructed using a combination of inverters, OR gates, and AND

gates. When combinations of circuits are formed, some gates may share inputs. This is shown in

one of two ways in depictions of circuits. One method is to use branchings that indicate all the

gates that use a given input. The other method is to indicate this input separately for each gate.

Figure 3 illustrates the two ways of showing gates with the same input values. Note also that

output from a gate may be used as input by one or more other elements, as shown in Figure 3.

Both drawings in Figure 3 depict the circuit that produces the output xy + xy.

EXAMPLE 1 Construct circuits that produce the following outputs: (a) (x + y)x, (b) x (y + z), and (c) (x +

y + z)(x y z).

Solution: Circuits that produce these outputs are shown in Figure 4. ▲

824 12 / Boolean Algebra

x
x

xy + xy

y

x xy

y

xy

x

xy + xy

y

x xy

xy

FIGURE 3 Two Ways to Draw the Same Circuit.

(c)

y

x

x

x + y

x

(x + y) x

y

x

y + z

x (y + z)

x

(y + z)

z
z

(x + y + z)x y z

xyz

x

y

z

x

y

z

x

y

z

 x + y + z

(b)

(a)

FIGURE 4 Circuits that Produce the Outputs Specified in Example 1.

12.3 Logic Gates 825

Examples of Circuits

We will give some examples of circuits that perform some useful functions.

EXAMPLE 2 A committee of three individuals decides issues for an organization. Each individual votes either

yes or no for each proposal that arises. A proposal is passed if it receives at least two yes votes.

Design a circuit that determines whether a proposal passes.

Solution: Let x = 1 if the first individual votes yes, and x = 0 if this individual votes no;

let y = 1 if the second individual votes yes, and y = 0 if this individual votes no; let z = 1

if the third individual votes yes, and z = 0 if this individual votes no. Then a circuit must be

designed that produces the output 1 from the inputs x, y, and z when two or more of x, y,

and z are 1. One representation of the Boolean function that has these output values is

xy + xz + yz (see Exercise 12 in Section 12.1). The circuit that implements this function is

shown in Figure 5. ▲

x

y

x

z

y

z

xy

xz

yz

xy + xz + yz

FIGURE 5 A Circuit for Majority Voting.

EXAMPLE 3 Sometimes light fixtures are controlled by more than one switch. Circuits need to be designed

so that flipping any one of the switches for the fixture turns the light on when it is off and turns

the light off when it is on. Design circuits that accomplish this when there are two switches and

when there are three switches.

TABLE 1

x y F(x, y)

1 1 1

1 0 0

0 1 0

0 0 1

Solution: We will begin by designing the circuit that controls the light fixture when two different

switches are used. Let x = 1 when the first switch is closed and x = 0 when it is open, and let

y = 1 when the second switch is closed and y = 0 when it is open. Let F(x, y) = 1 when the

light is on and F(x, y) = 0 when it is off. We can arbitrarily decide that the light will be on

when both switches are closed, so that F(1, 1) = 1. This determines all the other values of F .

When one of the two switches is opened, the light goes off, so F(1, 0) = F(0, 1) = 0. When

the other switch is also opened, the light goes on, so F(0, 0) = 1. Table 1 displays these values.

Note that F(x, y) = xy + x y. This function is implemented by the circuit shown in Figure 6.

x

y

xy

xy + xy
x

y

x

y

xy

FIGURE 6 A Circuit for a Light Controlled by Two Switches.

826 12 / Boolean Algebra

xyz

x

y

y

x

z
y
x

z

x

z

x

y

z

y xyz

y

z

z

x

xyz

xyz

xyz + xyz + xyz + xyz

FIGURE 7 A Circuit for a Fixture Controlled by Three Switches.

We will now design a circuit for three switches. Let x, y, and z be the Boolean variables that

indicate whether each of the three switches is closed. We let x = 1 when the first switch is closed,

and x = 0 when it is open; y = 1 when the second switch is closed, and y = 0 when it is open;

and z = 1 when the third switch is closed, and z = 0 when it is open. Let F(x, y, z) = 1 when the

light is on and F(x, y, z) = 0 when the light is off. We can arbitrarily specify that the light be on

when all three switches are closed, so that F(1, 1, 1) = 1. This determines all other values of F .

When one switch is opened, the light goes off, so F(1, 1, 0) = F(1, 0, 1) = F(0, 1, 1) = 0.

When a second switch is opened, the light goes on, so F(1, 0, 0) = F(0, 1, 0) = F(0, 0, 1) = 1.

Finally, when the third switch is opened, the light goes off again, so F(0, 0, 0) = 0. Table 2

shows the values of this function.

TABLE 2

x y z F(x, y, z)

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

0 0 0 0

TABLE 3
Input and
Output for the
Half Adder.

Input Output

x y s c

1 1 0 1

1 0 1 0

0 1 1 0

0 0 0 0

The function F can be represented by its sum-of-products expansion as F(x, y, z) =

xyz + xy z + xyz + x yz. The circuit shown in Figure 7 implements this function. ▲
Adders

We will illustrate how logic circuits can be used to carry out addition of two positive integers

from their binary expansions. We will build up the circuitry to do this addition from some

component circuits. First, we will build a circuit that can be used to find x + y, where x and y

are two bits. The input to our circuit will be x and y, because these each have the value 0 or the

value 1. The output will consist of two bits, namely, s and c, where s is the sum bit and c is the

carry bit. This circuit is called a multiple output circuit because it has more than one output.

The circuit that we are designing is called the half adder, because it adds two bits, without

considering a carry from a previous addition. We show the input and output for the half adder

in Table 3. From Table 3 we see that c = xy and that s = xy + xy = (x + y)(xy). Hence, the

circuit shown in Figure 8 computes the sum bit s and the carry bit c from the bits x and y.

We use the full adder to compute the sum bit and the carry bit when two bits and a carry

are added. The inputs to the full adder are the bits x and y and the carry ci . The outputs are the

sum bit s and the new carry ci+1. The inputs and outputs for the full adder are shown in Table 4.

12.3 Logic Gates 827

xy
(xy)

Sum = (x + y)(xy)

x + y

Carry = xy

x

y

FIGURE 8 The Half Adder.

(x + y)(xy)
Half

adder

Half

adder

 s = xyci + xyci + xyci + xyci

xy

ci+1 = xyci + xyci +

 xyci + xyci

ci

x

y

FIGURE 9 A Full Adder.

The two outputs of the full adder, the sum bit s and the carry ci+1, are given by the sum-

of-products expansions xyci + xy ci + xyci + x yci and xyci + xyci + xyci + xyci , respec-

tively. However, instead of designing the full adder from scratch, we will use half adders to

produce the desired output. A full adder circuit using half adders is shown in Figure 9.

TABLE 4
Input and
Output for
the Full Adder.

Input Output

x y ci s ci+1

1 1 1 1 1

1 1 0 0 1

1 0 1 0 1

1 0 0 1 0

0 1 1 0 1

0 1 0 1 0

0 0 1 1 0

0 0 0 0 0

Finally, in Figure 10 we show how full and half adders can be used to add the two three-bit

integers (x2x1x0)2 and (y2y1y0)2 to produce the sum (s3s2s1s0)2. Note that s3, the highest-order

bit in the sum, is given by the carry c2.

Full

adder

y1

x2

Half

adder

x0

y0

Full

adder

c0

ci
s2

s1

s0

c2 = s3

x1

y2

FIGURE 10 Adding Two Three-Bit

Integers with Full and Half Adders.

Exercises

In Exercises 1–5 find the output of the given circuit.

1. x

y

y

2. x

y

3.

z

y

x

x

4. x

y

z

x

y

z

828 12 / Boolean Algebra

5.

x

y

z

z

y

x

z

y

x

6. Construct circuits from inverters, AND gates, and OR

gates to produce these outputs.

a) x + y b) (x + y)x

c) xyz + x y z d) (x + z)(y + z)

7. Design a circuit that implements majority voting for five

individuals.

8. Design a circuit for a light fixture controlled by four

switches, where flipping one of the switches turns the

light on when it is off and turns it off when it is on.

9. Show how the sum of two five-bit integers can be found

using full and half adders.

10. Construct a circuit for a half subtractor using AND gates,

OR gates, and inverters. A half subtractor has two bits

as input and produces as output a difference bit and a

borrow.

11. Construct a circuit for a full subtractor using AND gates,

OR gates, and inverters. A full subtractor has two bits

and a borrow as input, and produces as output a difference

bit and a borrow.

12. Use the circuits from Exercises 10 and 11 to find the dif-

ference of two four-bit integers, where the first integer is

greater than the second integer.

∗13. Construct a circuit that compares the two-bit integers

(x1x0)2 and (y1y0)2, returning an output of 1 when the

first of these numbers is larger and an output of 0 other-

wise.
∗14. Construct a circuit that computes the product of the two-

bit integers (x1x0)2 and (y1y0)2. The circuit should have

four output bits for the bits in the product.

Two gates that are often used in circuits are NAND and NOR

gates. When NAND or NOR gates are used to represent cir-

cuits, no other types of gates are needed. The notation for these

gates is as follows:

x

y

x

y

x NAND y x NOR y

∗15. Use NAND gates to construct circuits with these out-

puts.

a) x b) x + y

c) xy d) x ⊕ y

∗16. Use NOR gates to construct circuits for the outputs given

in Exercise 15.

∗17. Construct a half adder using NAND gates.

∗18. Construct a half adder using NOR gates.

A multiplexer is a switching circuit that produces as output

one of a set of input bits based on the value of control bits.

19. Construct a multiplexer using AND gates, OR gates, and

inverters that has as input the four bits x0, x1, x2, and x3

and the two control bits c0 and c1. Set up the circuit so

that xi is the output, where i is the value of the two-bit

integer (c1c0)2.

The depth of a combinatorial circuit can be defined by spec-

ifying that the depth of the initial input is 0 and if a gate

has n different inputs at depths d1, d2, . . . , dn, respectively,

then its outputs have depth equal to max(d1, d2, . . . , dn) + 1;

this value is also defined to be the depth of the gate. The depth

of a combinatorial circuit is the maximum depth of the gates

in the circuit.

20. Find the depth of

a) the circuit constructed in Example 2 for majority vot-

ing among three people.

b) the circuit constructed in Example 3 for a light con-

trolled by two switches.

c) the half adder shown in Figure 8.

d) the full adder shown in Figure 9.

12.4 Minimization of Circuits

Introduction

The efficiency of a combinational circuit depends on the number and arrangement of its gates.The

process of designing a combinational circuit begins with the table specifying the output for each

combination of input values. We can always use the sum-of-products expansion of a circuit to

find a set of logic gates that will implement this circuit. However, the sum-of-products expansion

12.4 Minimization of Circuits 829

x

y

z

x

y

z

x

z

xz

xyz

xyz

xyz + xyz

y

FIGURE 1 Two Circuits with the Same Output.

may contain many more terms than are necessary. Terms in a sum-of-products expansion that

differ in just one variable, so that in one term this variable occurs and in the other term the

complement of this variable occurs, can be combined. For instance, consider the circuit that has

output 1 if and only if x = y = z = 1 or x = z = 1 and y = 0. The sum-of-products expansion

of this circuit is xyz + xyz. The two products in this expansion differ in exactly one variable,

namely, y. They can be combined as

xyz + xyz = (y + y)(xz)

= 1 · (xz)

= xz.

Hence, xz is a Boolean expression with fewer operators that represents the circuit. We show

two different implementations of this circuit in Figure 1. The second circuit uses only one gate,

whereas the first circuit uses three gates and an inverter.

This example shows that combining terms in the sum-of-products expansion of a circuit

leads to a simpler expression for the circuit. We will describe two procedures that simplify

sum-of-products expansions.

The goal of both procedures is to produce Boolean sums of Boolean products that represent

a Boolean function with the fewest products of literals such that these products contain the

fewest literals possible among all sums of products that represent a Boolean function. Finding

such a sum of products is called minimization of the Boolean function. Minimizing a Boolean

function makes it possible to construct a circuit for this function that uses the fewest gates and

fewest inputs to the AND gates and OR gates in the circuit, among all circuits for the Boolean

expression we are minimizing.

Until the early 1960s logic gates were individual components. To reduce costs it was impor-

tant to use the fewest gates to produce a desired output. However, in the mid-1960s, integrated

circuit technology was developed that made it possible to combine gates on a single chip. Even

though it is now possible to build increasingly complex integrated circuits on chips at low cost,

minimization of Boolean functions remains important.

Reducing the number of gates on a chip can lead to a more reliable circuit and can reduce

the cost to produce the chip. Also, minimization makes it possible to fit more circuits on the

same chip. Furthermore, minimization reduces the number of inputs to gates in a circuit. This

reduces the time used by a circuit to compute its output. Moreover, the number of inputs to a

gate may be limited because of the particular technology used to build logic gates.

The first procedure we will introduce, known as Karnaugh maps (or K-maps), was designed

in the 1950s to help minimize circuits by hand. K-maps are useful in minimizing circuits with

up to six variables, although they become rather complex even for five or six variables. The

830 12 / Boolean Algebra

second procedure we will describe, the Quine–McCluskey method, was invented in the 1960s.

It automates the process of minimizing combinatorial circuits and can be implemented as a

computer program.

COMPLEXITY OF BOOLEAN FUNCTION MINIMIZATION Unfortunately, minimizing

Boolean functions with many variables is a computationally intensive problem. It has been shown

that this problem is an NP-complete problem (see Section 3.3 and [Ka93]), so the existence of a

polynomial-time algorithm for minimizing Boolean circuits is unlikely. The Quine–McCluskey

method has exponential complexity. In practice, it can be used only when the number of liter-

als does not exceed ten. Since the 1970s a number of newer algorithms have been developed

for minimizing combinatorial circuits (see [Ha93] and [KaBe04]). However, with the best al-

gorithms yet devised, only circuits with no more than 25 variables can be minimized. Also,

heuristic (or rule-of-thumb) methods can be used to substantially simplify, but not necessarily

minimize, Boolean expressions with a larger number of literals.

Karnaugh Maps

To reduce the number of terms in a Boolean expression representing a circuit, it is necessary

to find terms to combine. There is a graphical method, called a Karnaugh map or K-map,

for finding terms to combine for Boolean functions involving a relatively small number of

variables. The method we will describe was introduced by Maurice Karnaugh in 1953. His

method is based on earlier work by E. W. Veitch. (This method is usually applied only when

the function involves six or fewer variables.) K-maps give us a visual method for simplifying

sum-of-products expansions; they are not suited for mechanizing this process. We will first

illustrate how K-maps are used to simplify expansions of Boolean functions in two variables.

We will continue by showing how K-maps can be used to minimize Boolean functions in three

variables and then in four variables. Then we will describe the concepts that can be used to

extend K-maps to minimize Boolean functions in more than four variables.

There are four possible minterms in the sum-of-products expansion of a Boolean function

in the two variables x and y. A K-map for a Boolean function in these two variables consists

of four cells, where a 1 is placed in the cell representing a minterm if this minterm is present

in the expansion. Cells are said to be adjacent if the minterms that they represent differ in

exactly one literal. For instance, the cell representing xy is adjacent to the cells representing xy

and x y. The four cells and the terms that they represent are shown in Figure 2.

x xy

x xy

 y y

xy

xy

FIGURE 2

K-maps in Two

Variables.

EXAMPLE 1 Find the K-maps for (a) xy + xy, (b) xy + xy, and (c) xy + xy + x y.

Solution: We include a 1 in a cell when the minterm represented by this cell is present in the

sum-of-products expansion. The three K-maps are shown in Figure 3. ▲

We can identify minterms that can be combined from the K-map. Whenever there are 1s

in two adjacent cells in the K-map, the minterms represented by these cells can be combined

into a product involving just one of the variables. For instance, xy and x y are represented by

adjacent cells and can be combined into y, because xy + x y = (x + x)y = y. Moreover, if 1s

MAURICE KARNAUGH (BORN 1924) Maurice Karnaugh, born in New York City, received his B.S. from
the City College of New York and his M.S. and Ph.D. from Yale University. He was a member of the technical
staff at Bell Laboratories from 1952 until 1966 and Manager of Research and Development at the Federal
Systems Division of AT&T from 1966 to 1970. In 1970 he joined IBM as a member of the research staff.
Karnaugh has made fundamental contributions to the application of digital techniques in both computing and
telecommunications. His current interests include knowledge-based systems in computers and heuristic search
methods.

12.4 Minimization of Circuits 831

x

x

 y y

1

1

x

x

 y y

1

1 x

x

 y y

1

1

1

(a) (b) (c)

FIGURE 3 K-maps for the Sum-of-Products Expansions in Example 1.

are in all four cells, the four minterms can be combined into one term, namely, the Boolean

expression 1 that involves none of the variables. We circle blocks of cells in the K-map that

represent minterms that can be combined and then find the corresponding sum of products. The

goal is to identify the largest possible blocks, and to cover all the 1s with the fewest blocks using

the largest blocks first and always using the largest possible blocks.

EXAMPLE 2 Simplify the sum-of-products expansions given in Example 1.

Solution: The grouping of minterms is shown in Figure 4 using the K-maps for these expansions.

Minimal expansions for these sums-of-products are (a) y, (b) xy + xy, and (c) x + y. ▲

x

x

 y

1

1

y

1

1 x

x

 y y

1

1

1

(a) (b) (c)

y

x

x

FIGURE 4 Simplifying the Sum-of-Products Expansions from Example 2.

A K-map in three variables is a rectangle divided into eight cells. The cells represent the

eight possible minterms in three variables. Two cells are said to be adjacent if the minterms that

they represent differ in exactly one literal. One of the ways to form a K-map in three variables

is shown in Figure 5(a). This K-map can be thought of as lying on a cylinder, as shown in

Figure 5(b). On the cylinder, two cells have a common border if and only if they are adjacent.

(a)

(b)

xyz

xyz

xyz

xyz

xyz

xyz

xyz

xyz

yz yz yz yz

x

x

xyz

xyz xyz

xyz

xyz xyz
xyz xyz

FIGURE 5 K-maps in Three Variables.

832 12 / Boolean Algebra

(a)

yz yz yz yz

yz = xyz + xyz

(b)

yz yz yz yz

x

x

xz = xyz + xyz

(c)

yz yz yz yz

x

x

z = xyz + xyz + xyz + xyz

(d)

yz yz yz yz

x

x

x = xyz + xyz + xyz + xyz

(e)

yz yz yz yz

x

x

1 = xyz + xyz + xyz + xyz +

 xyz + xyz + xyz + xyz

x

x

FIGURE 6 Blocks in K-maps in Three Variables.

To simplify a sum-of-products expansion in three variables, we use the K-map to iden-

tify blocks of minterms that can be combined. Blocks of two adjacent cells represent pairs of

minterms that can be combined into a product of two literals; 2 × 2 and 4 × 1 blocks of cells

represent minterms that can be combined into a single literal; and the block of all eight cells

represents a product of no literals, namely, the function 1. In Figure 6, 1 × 2, 2 × 1, 2 × 2, 4×1,

and 4 × 2 blocks and the products they represent are shown.

The product of literals corresponding to a block of all 1s in the K-map is called an implicant

of the function being minimized. It is called a prime implicant if this block of 1s is not contained

in a larger block of 1s representing the product of fewer literals than in this product.

The goal is to identify the largest possible blocks in the map and cover all the 1s in the map

with the least number of blocks, using the largest blocks first. The largest possible blocks are

always chosen, but we must always choose a block if it is the only block of 1s covering a 1 in

the K-map. Such a block represents an essential prime implicant. By covering all the 1s in the

map with blocks corresponding to prime implicants we can express the sum of products as a

sum of prime implicants. Note that there may be more than one way to cover all the 1s using

the least number of blocks.

Example 3 illustrates how K-maps in three variables are used.

EXAMPLE 3 Use K-maps to minimize these sum-of-products expansions.

(a) xyz + xy z + xyz + x y z

(b) xyz + xy z + xyz + x yz + x y z

(c) xyz + xyz + xyz + xy z + xyz + x yz + x y z

(d) xyz + xy z + x yz + x y z

Solution: The K-maps for these sum-of-products expansions are shown in Figure 7. The group-

ing of blocks shows that minimal expansions into Boolean sums of Boolean products are

(a) xz + y z + xyz, (b) y + xz, (c) x + y + z, and (d) xz + x y. In part (d) note that the prime

implicants xz and x y are essential prime implicants, but the prime implicant y z is a

prime implicant that is not essential, because the cells it covers are covered by the other two

prime implicants. ▲

12.4 Minimization of Circuits 833

(a)

yz yz yz yz

(b)

yz yz yz yz

x

x

(c) (d)

yz yz yz yz

x

x

x

x 1 1

11

yz yz yz yz

x

x 1

11

1

11

11

1

11

1 11

11

FIGURE 7 Using K-maps in Three Variables.

A K-map in four variables is a square that is divided into 16 cells. The cells represent the 16

possible minterms in four variables. One of the ways to form a K-map in four variables is shown

in Figure 8.

Two cells are adjacent if and only if the minterms they represent differ in one literal. Con-

sequently, each cell is adjacent to four other cells. The K-map of a sum-of-products expansion

in four variables can be thought of as lying on a torus, so that adjacent cells have a common

boundary (see Exercise 28). The simplification of a sum-of-products expansion in four variables

is carried out by identifying those blocks of 2, 4, 8, or 16 cells that represent minterms that can be

combined. Each cell representing a minterm must either be used to form a product using fewer

literals, or be included in the expansion. In Figure 9 some examples of blocks that represent

products of three literals, products of two literals, and a single literal are illustrated.

As is the case in K-maps in two and three variables, the goal is to identify the largest

blocks of 1s in the map that correspond to the prime implicants and to cover all the 1s using

the fewest blocks needed, using the largest blocks first. The largest possible blocks are always

used. Example 4 illustrates how K-maps in four variables are used.

yz yz yz yz

wx

wx

wx

wx

wxyz wxyz wxyz wxyz

wxyz wxyz wxyz wxyz

wxyz wxyz wxyz wxyz

wxyz wxyz wxyz wxyz

FIGURE 8 K-maps in Four Variables.

834 12 / Boolean Algebra

yz

wx

wxz = wxyz + wxyz wx = wxyz + wxyz +

wxyz + wxyz

(b)(a)

xz = wxyz + wxyz +

wxyz + wxyz

z = wxyz + wxyz + wxyz +

wxyz + wxyz + wxyz + wxyz + wxyz

(d)(c)

yz yz yz

wx

wx

wx

yz

wx

yz yz yz

wx

wx

wx

yz

wx

yz yz yz

wx

wx

wx

yz

wx

yz yz yz

wx

wx

wx

FIGURE 9 Blocks in K-maps in Four Variables.

EXAMPLE 4 Use K-maps to simplify these sum-of-products expansions.

(a) wxyz + wxyz + wxy z + wxyz + wx yz + wx y z + wxyz +

w xyz + w xyz

(b) wxy z + wxyz + wxyz + wx y z + wxy z + w xyz + w x y z

(c) wxyz + wxy z + wxyz + wxyz + wx y z + wxyz + wxyz + wxy z +

wxyz + w xyz + w x y z

Solution: The K-maps for these expansions are shown in Figure 10. Using the blocks shown

leads to the sum of products (a) wyz + wxz + wx y + w xy + wxyz, (b) y z + wxy + x z, and

(c) z + wx + wxy. The reader should determine whether there are other choices of blocks in

each part that lead to different sums of products representing these Boolean functions. ▲

K-maps can realistically be used to minimize Boolean functions with five or six variables,

but beyond that, they are rarely used because they become extremely complicated. However, the

concepts used in K-maps play an important role in newer algorithms. Furthermore, mastering

these concepts helps you understand these newer algorithms and the computer-aided design

(CAD) programs that implement them.As we develop these concepts, we will be able to illustrate

them by referring back to our discussion of minimization of Boolean functions in three and in

four variables.

The K-maps we used to minimize Boolean functions in two, three, and four variables are

built using 2 × 2, 2 × 4, and 4 × 4 rectangles, respectively. Furthermore, corresponding cells in

the top row and bottom row and in the leftmost column and rightmost column in each of these

12.4 Minimization of Circuits 835

(b)(a)

yz

wx

yz yz yz

wx

wx

wx

yz

wx

yz yz yz

wx

wx

wx

1

1

1 1

1 1

1 1

1

1 1

1

1

1

1

1

(c)

yz

wx

yz yz yz

wx

wx

wx

1 1

1 1

11

1

1

1

1

1

FIGURE 10 Using K-maps in Four Variables.

cases are considered adjacent because they represent minterms differing in only one literal. We

can build K-maps for minimizing Boolean functions in more than four variables in a similar

way. We use a rectangle containing 2⌊n/2⌋ rows and 2⌈n/2⌉ columns. (These K-maps contain

2n cells because ⌈n/2⌉ + ⌊n/2⌋ = n.) The rows and columns need to be positioned so that the

cells representing minterms differing in just one literal are adjacent or are considered adjacent

by specifying additional adjacencies of rows and columns. To help (but not entirely) achieve

this, the rows and columns of a K-map are arranged using Gray codes (see Section 10.5), where

we associate bit strings and products by specifying that a 1 corresponds to the appearance of

a variable and a 0 with the appearance of its complement. For example, in a 10-dimensional

K-map, the Gray code 01110 used to label a row corresponds to the product x1x2x3x4x5.

EXAMPLE 5 The K-maps we used to minimize Boolean functions with four variables have four rows and

four columns. Both the rows and the columns are arranged using the Gray code 11,10,00,01.

The rows represent products wx, wx, w x, and wx, respectively, and the columns correspond to

the products yz, yz, y z, and yz, respectively. Using Gray codes and considering cells adjacent

in the first and last rows and in the first and last columns, we ensured that minterms that differ

in only one variable are always adjacent. ▲

EXAMPLE 6 To minimize Boolean functions in five variables we use K-maps with 23 = 8 columns and

22 = 4 rows. We label the four rows using the Gray code 11,10,00,01, corresponding to

x1x2, x1x2, x1x2, and x1x2, respectively. We label the eight columns using the Gray code

111,110,100,101,001,000,010,011 corresponding to the terms x3x4x5, x3x4x5, x3x4x5, x3x4x5,

x3x4x5, x3x4x5, x3x4x5, and x3x4x5, respectively. Using Gray codes to label columns and rows

ensures that the minterms represented by adjacent cells differ in only one variable. However,

to make sure all cells representing products that differ in only one variable are considered ad-

jacent, we consider cells in the top and bottom rows to be adjacent, as well as cells in the first

and eighth columns, the first and fourth columns, the second and seventh columns, the third and

sixth columns, and the fifth and eighth columns (as the reader should verify). ▲

To use a K-map to minimize a Boolean function in n variables, we first draw a K-map of

the appropriate size. We place 1s in all cells corresponding to minterms in the sum-of-products

expansion of this function. We then identify all prime implicants of the Boolean function. To do

this we look for the blocks consisting of 2k clustered cells all containing a 1, where 1 ≤ k ≤ n.

These blocks correspond to the product of n − k literals. (Exercise 33 asks the reader to verify

this.) Furthermore, a block of 2k cells each containing a 1 not contained in a block of 2k+1

cells each containing a 1 represents a prime implicant. The reason that this implicant is a prime

implicant is that no product obtained by deleting a literal is also represented by a block of cells

all containing 1s.

836 12 / Boolean Algebra

EXAMPLE 7 A block of eight cells representing a product of two literals in a K-map for minimizing Boolean

functions in five variables all containing 1s is a prime implicant if it is not contained in a larger

block of 16 cells all containing 1s representing a single literal. ▲

Once all prime implicants have been identified, the goal is to find the smallest possible subset

of these prime implicants with the property that the cells representing these prime implicants

cover all the cells containing a 1 in the K-map. We begin by selecting the essential prime

implicants because each of these is represented by a block that covers a cell containing a 1 that

is not covered by any other prime implicant. We add additional prime implicants to ensure that

all 1s in the K-map are covered. When the number of variables is large, this last step can become

exceedingly complicated.

Don’t Care Conditions

In some circuits we care only about the output for some combinations of input values, be-

cause other combinations of input values are not possible or never occur. This gives us freedom

in producing a simple circuit with the desired output because the output values for all those

combinations that never occur can be arbitrarily chosen. The values of the function for these

combinations are called don’t care conditions. A d is used in a K-map to mark those com-

binations of values of the variables for which the function can be arbitrarily assigned. In the

minimization process we can assign 1s as values to those combinations of the input values that

lead to the largest blocks in the K-map. This is illustrated in Example 8.

EXAMPLE 8 One way to code decimal expansions using bits is to use the four bits of the binary expansion

of each digit in the decimal expansion. For instance, 873 is encoded as 100001110011. This

encoding of a decimal expansion is called a binary coded decimal expansion. Because there

are 16 blocks of four bits and only 10 decimal digits, there are six combinations of four bits that

are not used to encode digits. Suppose that a circuit is to be built that produces an output of 1 if

the decimal digit is 5 or greater and an output of 0 if the decimal digit is less than 5. How can

this circuit be simply built using OR gates, AND gates, and inverters?

Solution: Let F(w, x, y, z) denote the output of the circuit, where wxyz is a binary expansion

of a decimal digit. The values of F are shown in Table 1. The K-map for F , with ds in the

don’t care positions, is shown in Figure 11(a). We can either include or exclude squares with

ds from blocks. This gives us many possible choices for the blocks. For example, excluding

all squares with ds and forming blocks, as shown in Figure 11(b), produces the expression

wx y + wxy + wxz. Including some of the ds and excluding others and forming blocks, as

TABLE 1

Digit w x y z F

0 0 0 0 0 0

1 0 0 0 1 0

2 0 0 1 0 0

3 0 0 1 1 0

4 0 1 0 0 0

5 0 1 0 1 1

6 0 1 1 0 1

7 0 1 1 1 1

8 1 0 0 0 1

9 1 0 0 1 1

12.4 Minimization of Circuits 837

yz yz yz yz

wx

wx

wx

wx

d d d d

d d 1 1

1 1 1

yz yz yz yz

wx

wx

wx

wx

d d d d

d d 1 1

1 1 1

yz yz yz yz

wx

wx

wx

wx

d d d d

d d 1 1

1 1 1

yz yz yz yz

wx

wx

wx

wx

d d d d

d d 1 1

1 1 1

(a) (b)

(c) (d)

FIGURE 11 The K-map for F Showing Its Don’t Care Positions.

shown in Figure 11(c), produces the expression wx + wxy + xyz. Finally, including all the ds

and using the blocks shown in Figure 11(d) produces the simplest sum-of-products expansion

possible, namely, F(x, y, z) = w + xy + xz. ▲

The Quine–MCCluskey Method

We have seen that K-maps can be used to produce minimal expansions of Boolean functions

as Boolean sums of Boolean products. However, K-maps are awkward to use when there are

more than four variables. Furthermore, the use of K-maps relies on visual inspection to identify

terms to group. For these reasons there is a need for a procedure for simplifying sum-of-products

expansions that can be mechanized. The Quine–McCluskey method is such a procedure. It can

be used for Boolean functions in any number of variables. It was developed in the 1950s by

W. V. Quine and E. J. McCluskey, Jr. Basically, the Quine–McCluskey method consists of two

EDWARD J. MCCLUSKEY (BORN 1929) Edward McCluskey attended Bowdoin College and M.I.T., where
he received his doctorate in electrical engineering in 1956. He joined Bell Telephone Laboratories in 1955,
remaining there until 1959. McCluskey was professor of electrical engineering at Princeton University from
1959 until 1966, also serving as director of the Computer Center at Princeton from 1961 to 1966. In 1967 he
took a position as professor of computer science and electrical engineering at Stanford University, where he also
served as director of the Digital Systems Laboratory from 1969 to 1978. McCluskey has worked in a variety of
areas in computer science, including fault-tolerant computing, computer architecture, testing, and logic design.
He is the director of the Center for Reliable Computing at Stanford University where he is now an emeritus
professor. McCluskey is also an ACM Fellow.

838 12 / Boolean Algebra

TABLE 2

Minterm Bit String Number of 1s

xyz 111 3

xyz 101 2

xyz 011 2

x yz 001 1

x y z 000 0

parts. The first part finds those terms that are candidates for inclusion in a minimal expansion

as a Boolean sum of Boolean products. The second part determines which of these terms to

actually use. We will use Example 9 to illustrate how, by successively combining implicants

into implicants with one fewer literal, this procedure works.

EXAMPLE 9 We will show how the Quine–McCluskey method can be used to find a minimal expansion

equivalent to

xyz + xyz + xyz + x yz + x y z.

We will represent the minterms in this expansion by bit strings. The first bit will be 1 if x

occurs and 0 if x occurs. The second bit will be 1 if y occurs and 0 if y occurs. The third bit

will be 1 if z occurs and 0 if z occurs. We then group these terms according to the number of 1s

in the corresponding bit strings. This information is shown in Table 2.

Minterms that can be combined are those that differ in exactly one literal. Hence, two terms

that can be combined differ by exactly one in the number of 1s in the bit strings that represent

them. When two minterms are combined into a product, this product contains two literals. A

product in two literals is represented using a dash to denote the variable that does not occur. For

instance, the minterms xyz and x yz, represented by bit strings 101 and 001, can be combined

into yz, represented by the string –01. All pairs of minterms that can be combined and the

product formed from these combinations are shown in Table 3.

Next, all pairs of products of two literals that can be combined are combined into one

literal. Two such products can be combined if they contain literals for the same two variables,

and literals for only one of the two variables differ. In terms of the strings representing the

products, these strings must have a dash in the same position and must differ in exactly one

of the other two slots. We can combine the products yz and yz, represented by the strings –11

and –01, into z, represented by the string – –1. We show all the combinations of terms that can

be formed in this way in Table 3.

TABLE 3

Step 1 Step 2

Term Bit String Term String Term String

1 xyz 111 (1,2) xz 1–1 (1,2,3,4) z – –1

2 xyz 101 (1,3) yz –11

3 xyz 011 (2,4) yz –01

4 x yz 001 (3,4) xz 0–1

5 x y z 000 (4,5) x y 00–

12.4 Minimization of Circuits 839

TABLE 4

xyz xyz xyz x yz x y z

z X X X X

x y X X

In Table 3 we also indicate which terms have been used to form products with fewer literals;

these terms will not be needed in a minimal expansion. The next step is to identify a minimal

set of products needed to represent the Boolean function. We begin with all those products that

were not used to construct products with fewer literals. Next, we form Table 4, which has a row

for each candidate product formed by combining original terms, and a column for each original

term; and we put an X in a position if the original term in the sum-of-products expansion was

used to form this candidate product. In this case, we say that the candidate product covers

the original minterm. We need to include at least one product that covers each of the original

minterms. Consequently, whenever there is only one X in a column in the table, the product

corresponding to the row this X is in must be used. From Table 4 we see that both z and x y are

needed. Hence, the final answer is z + x y. ▲

As was illustrated in Example 9, the Quine–McCluskey method uses this sequence of steps

to simplify a sum-of-products expression.

1. Express each minterm in n variables by a bit string of length n with a 1 in the ith position

if xi occurs and a 0 in this position if xi occurs.

2. Group the bit strings according to the number of 1s in them.

3. Determine all products in n − 1 variables that can be formed by taking the Boolean sum

of minterms in the expansion. Minterms that can be combined are represented by bit

strings that differ in exactly one position. Represent these products in n − 1 variables

with strings that have a 1 in the ith position if xi occurs in the product, a 0 in this position

if xi occurs, and a dash in this position if there is no literal involving xi in the product.

WILLARDVAN ORMAN QUINE (1908–2000) Willard Quine, born inAkron, Ohio, attended Oberlin College
and later Harvard University, where he received his Ph.D. in philosophy in 1932. He became a Junior Fellow
at Harvard in 1933 and was appointed to a position on the faculty there in 1936. He remained at Harvard
his entire professional life, except for World War II, when he worked for the U.S. Navy decrypting messages
from German submarines. Quine was always interested in algorithms, but not in hardware. He arrived at his
discovery of what is now called the Quine–McCluskey method as a device for teaching mathematical logic,
rather than as a method for simplifying switching circuits. Quine was one of the most famous philosophers of
the twentieth century. He made fundamental contributions to the theory of knowledge, mathematical logic and
set theory, and the philosophies of logic and language. His books, including New Foundations of Mathematical

Logic published in 1937 and Word and Object published in 1960, have had a profound impact. Quine retired from Harvard in 1978
but continued to commute from his home in Beacon Hill to his office there. He used the 1927 Remington typewriter on which he
prepared his doctoral thesis for his entire life. He even had an operation performed on this machine to add a few special symbols,
removing the second period, the second comma, and the question mark. When asked whether he missed the question mark, he
replied, “Well, you see, I deal in certainties.” There is even a word quine, defined in the New Hacker’s Dictionary as a program
that generates a copy of its own source code as its complete output. Producing the shortest possible quine in a given programming
language is a popular puzzle for hackers.

840 12 / Boolean Algebra

4. Determine all products in n − 2 variables that can be formed by taking the Boolean sum

of the products in n − 1 variables found in the previous step. Products in n − 1 variables

that can be combined are represented by bit strings that have a dash in the same position

and differ in exactly one position.

5. Continue combining Boolean products into products in fewer variables as long as possible.

6. Find all the Boolean products that arose that were not used to form a Boolean product in

one fewer literal.

7. Find the smallest set of these Boolean products such that the sum of these products

represents the Boolean function. This is done by forming a table showing which minterms

are covered by which products. Every minterm must be covered by at least one product.

The first step in using this table is to find all essential prime implicants. Each essential

prime implicant must be included because it is the only prime implicant that covers one of

the minterms. Once we have found essential prime implicants, we can simplify the table

by eliminating the rows for minterms covered by these prime implicants. Furthermore,

we can eliminate any prime implicants that cover a subset of minterms covered by another

prime implicant (as the reader should verify). Moreover, we can eliminate from the table

the row for a minterm if there is another minterm that is covered by a subset of the

prime implicants that cover this minterm. This process of identifying essential prime

implicants that must be included, followed by eliminating redundant prime implicants

and identifying minterms that can be ignored, is iterated until the table does not change.

At this point we use a backtracking procedure to find the optimal solution where we add

prime implicants to the cover to find possible solutions, which we compare to the best

solution found so far at each step.

A final example will illustrate how this procedure is used to simplify a sum-of-products

expansion in four variables.

EXAMPLE 10 Use the Quine–McCluskey method to simplify the sum-of-products expansion wxyz + wxyz +

wxyz + wxyz + wxyz + w xyz + w x yz.

Solution: We first represent the minterms by bit strings and then group these terms together

according to the number of 1s in the bit strings. This is shown in Table 5. All the Boolean

products that can be formed by taking Boolean sums of these products are shown in Table 6.

The only products that were not used to form products in fewer variables are wz, wyz,

wxy, and xyz. In Table 7 we show the minterms covered by each of these products. To cover

these minterms we must include wz and wyz, because these products are the only products that

cover wxyz and wxyz, respectively. Once these two products are included, we see that only

one of the two products left is needed. Consequently, we can take either wz + wyz + wxy or

wz + wyz + xyz as the final answer. ▲

TABLE 5

Term Bit String Number of 1s

wxyz 1110 3

wxyz 1011 3

wxyz 0111 3

wxyz 1010 2

wxyz 0101 2

w xyz 0011 2

w x yz 0001 1

12.4 Minimization of Circuits 841

TABLE 6

Step 1 Step 2

Term Bit String Term String Term String

1 wxyz 1110 (1,4) wyz 1–10 (3,5,6,7) wz 0 – –1

2 wxyz 1011 (2,4) wxy 101–

3 wxyz 0111 (2,6) xyz –011

4 wxyz 1010 (3,5) wxz 01–1

5 wxyz 0101 (3,6) wyz 0–11

6 w xyz 0011 (5,7) w yz 0–01

7 w x yz 0001 (6,7) w xz 00–1

TABLE 7

wxyz wxyz wxyz wxyz wxyz w xyz w x yz

wz X X X X

wyz X X

wxy X X

xyz X X

Exercises

1. a) Draw a K-map for a function in two variables and put

a 1 in the cell representing xy.

b) What are the minterms represented by cells adjacent

to this cell?

2. Find the sum-of-products expansions represented by each

of these K-maps.

a)

x

x

 y y

1

1 1

b)

x

x

 y y

11

c)

x

x

 y y

1

1

1

1

3. Draw the K-maps of these sum-of-products expansions

in two variables.

a) xy b) xy + x y

c) xy + xy + xy + x y

4. Use a K-map to find a minimal expansion as a Boolean

sum of Boolean products of each of these functions of the

Boolean variables x and y.

a) xy + x y

b) xy + xy

c) xy + xy + xy + x y

5. a) Draw a K-map for a function in three variables. Put a

1 in the cell that represents xyz.

b) Which minterms are represented by cells adjacent to

this cell?

6. Use K-maps to find simpler circuits with the same output

as each of the circuits shown.

a) x

y

z

x

xyz

xyz

xyz + xyz

x

y

z

b) x

y

z

x

y

z

x

y

z

x

y

z

z

y

z

x

z

x
y

z

xyz

xyz

xyz

xyz

xyz + xyz + xyz + xyz

842 12 / Boolean Algebra

c) x

y

z

x

z

z

z

y

xyz

x + z

y + z

xyz[(x + z) + (y + z)]

(x + z) + (y + z)

z

x

y

7. Draw the K-maps of these sum-of-products expansions

in three variables.

a) xy z b) xyz + x y z

c) xyz + xyz + xyz + x yz

8. Construct a K-map for F(x, y, z) = xz + yz + xyz. Use

this K-map to find the implicants, prime implicants, and

essential prime implicants of F(x, y, z).

9. Construct a K-map for F(x, y, z) = xz + xyz + yz. Use

this K-map to find the implicants, prime implicants, and

essential prime implicants of F(x, y, z).

10. Draw the 3-cube Q3 and label each vertex with the

minterm in the Boolean variables x, y, and z associated

with the bit string represented by this vertex. For each

literal in these variables indicate the 2-cube Q2 that is a

subgraph of Q3 and represents this literal.

11. Draw the 4-cube Q4 and label each vertex with the

minterm in the Boolean variables w, x, y, and z asso-

ciated with the bit string represented by this vertex. For

each literal in these variables, indicate which 3-cube Q3

that is a subgraph of Q4 represents this literal. Indicate

which 2-cube Q2 that is a subgraph of Q4 represents the

products wz, xy, and y z.

12. Use a K-map to find a minimal expansion as a Boolean

sum of Boolean products of each of these functions in the

variables x, y, and z.

a) xyz + x yz

b) xyz + xyz + xyz + xyz

c) xyz + xyz + xy z + xyz + x yz

d) xyz + xyz + xy z + xyz + xyz + x y z

13. a) Draw a K-map for a function in four variables. Put a

1 in the cell that represents wxyz.

b) Which minterms are represented by cells adjacent to

this cell?

14. Use a K-map to find a minimal expansion as a Boolean

sum of Boolean products of each of these functions in the

variables w, x, y, and z.
a) wxyz + wxyz + wxy z + wxyz + wx yz

b) wxyz + wxyz + wxyz + wxyz + w xyz + w x yz

c) wxyz + wxyz + wxyz + wx yz + wx y z +

wxyz + w xyz + w x yz

d) wxyz + wxyz + wxyz + wxyz + wxyz +

wxyz + w xyz + w xyz + w x yz

15. Find the cells in a K-map for Boolean functions with five

variables that correspond to each of these products.

a) x1x2x3x4 b) x1x3x5 c) x2x4

d) x3x4 e) x3 f) x5

16. How many cells in a K-map for Boolean functions

with six variables are needed to represent x1, x1x6,

x1x2x6, x2x3x4x5, and x1x2x4x5, respectively?

17. a) How many cells does a K-map in six variables have?

b) How many cells are adjacent to a given cell in a K-map

in six variables?

18. Show that cells in a K-map for Boolean functions in

five variables represent minterms that differ in exactly

one literal if and only if they are adjacent or are in cells

that become adjacent when the top and bottom rows and

cells in the first and eighth columns, the first and fourth

columns, the second and seventh columns, the third and

sixth columns, and the fifth and eighth columns are con-

sidered adjacent.

19. Which rows and which columns of a 4 × 16 map for

Boolean functions in six variables using the Gray codes

1111, 1110, 1010, 1011, 1001, 1000, 0000, 0001, 0011,

0010, 0110, 0111, 0101, 0100, 1100, 1101 to label the

columns and 11, 10, 00, 01 to label the rows need to be

considered adjacent so that cells that represent minterms

that differ in exactly one literal are considered adjacent?

∗20. Use K-maps to find a minimal expansion as a Boolean

sum of Boolean products of Boolean functions that have

as input the binary code for each decimal digit and pro-

duce as output a 1 if and only if the digit corresponding

to the input is

a) odd. b) not divisible by 3.

c) not 4, 5, or 6.

∗21. Suppose that there are five members on a committee, but

that Smith and Jones always vote the opposite of Marcus.

Design a circuit that implements majority voting of the

committee using this relationship between votes.

22. Use the Quine–McCluskey method to simplify the sum-

of-products expansions in Example 3.

23. Use the Quine–McCluskey method to simplify the sum-

of-products expansions in Exercise 12.

24. Use the Quine–McCluskey method to simplify the sum-

of-products expansions in Example 4.

25. Use the Quine–McCluskey method to simplify the sum-

of-products expansions in Exercise 14.

∗26. Explain how K-maps can be used to simplify product-of-

sums expansions in three variables. [Hint: Mark with a 0

all the maxterms in an expansion and combine blocks of

maxterms.]

27. Use the method from Exercise 26 to simplify the product-

of-sums expansion (x + y + z)(x + y + z)(x + y + z)

(x + y + z)(x + y + z).

∗28. Draw a K-map for the 16 minterms in four Boolean vari-

ables on the surface of a torus.

Key Terms and Results 843

29. Build a circuit using OR gates, AND gates, and inverters

that produces an output of 1 if a decimal digit, encoded

using a binary coded decimal expansion, is divisible by

3, and an output of 0 otherwise.

In Exercises 30–32 find a minimal sum-of-products expan-

sion, given the K-map shown with don’t care conditions indi-

cated with ds.

30. yzyz yz yz

wx

wx

wx

wx

d 1 d

d

1

1

1

d

d

d

31. yzyz yz yz

wx

wx

wx

wx

d 1

1 1

1 d

d d

32. yzyz yz yz

wx

wx

wx

wx

d 1

1

d

d d

d d

111

33. Show that products of k literals correspond to 2n−k-

dimensional subcubes of the n-cube Qn, where the ver-

tices of the cube correspond to the minterms represented

by the bit strings labeling the vertices, as described in

Example 8 of Section 10.2.

Key Terms and Results

TERMS

Boolean variable: a variable that assumes only the values 0

and 1

x (complement of x): an expression with the value 1 when x

has the value 0 and the value 0 when x has the value 1

x · y (or xy) (Boolean product or conjunction of x and y):

an expression with the value 1 when both x and y have the

value 1 and the value 0 otherwise

x + y (Boolean sum or disjunction of x and y): an expres-

sion with the value 1 when either x or y, or both, has the

value 1, and 0 otherwise

Boolean expressions: the expressions obtained recursively by

specifying that 0, 1, x1, . . . , xn are Boolean expressions and

E1, (E1 + E2), and (E1E2) are Boolean expressions if E1

and E2 are

dual of a Boolean expression: the expression obtained by in-

terchanging + signs and · signs and interchanging 0s and

1s

Boolean function of degree n: a function from Bn to B where

B = {0, 1}

Boolean algebra: a set B with two binary operations ∨ and ∧,

elements 0 and 1, and a complementation operator that

satisfies the identity, complement, associative, commuta-

tive, and distributive laws

literal of the Boolean variable x: either x or x

minterm of x1, x2, . . . , xn: a Boolean product y1y2 · · · yn,

where each yi is either xi or xi

sum-of-products expansion (or disjunctive normal form):

the representation of a Boolean function as a disjunction of

minterms

functionally complete: a set of Boolean operators is called

functionally complete if every Boolean function can be rep-

resented using these operators

x | y (or x NAND y): the expression that has the value 0 when

both x and y have the value 1 and the value 1 otherwise

x ↓ y (or x NOR y): the expression that has the value 0 when

either x or y or both have the value 1 and the value 0 other-

wise

inverter: a device that accepts the value of a Boolean variable

as input and produces the complement of the input

OR gate: a device that accepts the values of two or more

Boolean variables as input and produces their Boolean sum

as output

AND gate: a device that accepts the values of two or more

Boolean variables as input and produces their Boolean prod-

uct as output

half adder: a circuit that adds two bits, producing a sum bit

and a carry bit

full adder: a circuit that adds two bits and a carry, producing

a sum bit and a carry bit

K-map for n variables: a rectangle divided into 2n cells where

each cell represents a minterm in the variables

minimization of a Boolean function: representing a Boolean

function as the sum of the fewest products of literals

such that these products contain the fewest literals possi-

ble among all sums of products that represent this Boolean

function

implicant of a Boolean function: a product of literals with the

property that if this product has the value 1, then the value

of this Boolean function is 1

prime implicant of a Boolean function: a product of literals

that is an implicant of the Boolean function and no product

obtained by deleting a literal is also an implicant of this

function

essential prime implicant of a Boolean function: a prime

implicant of the Boolean function that must be included in

a minimization of this function

don’t care condition: a combination of input values for a cir-

cuit that is not possible or never occurs

RESULTS

The identities for Boolean algebra (see Table 5 in Section 12.1).

844 12 / Boolean Algebra

An identity between Boolean functions represented by Boolean

expressions remains valid when the duals of both sides of

the identity are taken.

Every Boolean function can be represented by a sum-of-

products expansion.

Each of the sets {+, −} and {·, −} is functionally complete.

Each of the sets { ↓ } and { | } is functionally complete.

The use of K-maps to minimize Boolean expressions.

The Quine–McCluskey method for minimizing Boolean ex-

pressions.

Review Questions

1. Define a Boolean function of degree n.

2. How many Boolean functions of degree two are there?

3. Give a recursive definition of the set of Boolean expres-

sions.

4. a) What is the dual of a Boolean expression?

b) What is the duality principle? How can it be used to

find new identities involving Boolean expressions?

5. Explain how to construct the sum-of-products expansion

of a Boolean function.

6. a) What does it mean for a set of operators to be func-

tionally complete?

b) Is the set {+, ·} functionally complete?

c) Are there sets of a single operator that are functionally

complete?

7. Explain how to build a circuit for a light controlled by

two switches using OR gates, AND gates, and inverters.

8. Construct a half adder using OR gates, AND gates, and

inverters.

9. Is there a single type of logic gate that can be used to build

all circuits that can be built using OR gates, AND gates,

and inverters?

10. a) Explain how K-maps can be used to simplify sum-of-

products expansions in three Boolean variables.

b) Use a K-map to simplify the sum-of-products expan-

sion xyz + xyz + xy z + xyz + x y z.

11. a) Explain how K-maps can be used to simplify sum-of-

products expansions in four Boolean variables.

b) Use a K-map to simplify the sum-of-products ex-

pansion wxyz + wxyz + wxyz + wxy z + wxyz +

wx yz + wxyz + w xyz + w xyz.

12. a) What is a don’t care condition?

b) Explain how don’t care conditions can be used to build

a circuit using OR gates, AND gates, and inverters

that produces an output of 1 if a decimal digit is 6 or

greater, and an output of 0 if this digit is less than 6.

13. a) Explain how to use the Quine–McCluskey method to

simplify sum-of-products expansions.

b) Use this method to simplify xyz + xy z + xyz +

x yz + x y z.

Supplementary Exercises

1. For which values of the Boolean variables x, y, and z does

a) x + y + z = xyz?

b) x(y + z) = x + yz?

c) x y z = x + y + z?

2. Let x and y belong to {0, 1}. Does it necessarily follow

that x = y if there exists a value z in {0, 1} such that

a) xz = yz? b) x + z = y + z?

c) x ⊕ z = y ⊕ z? d) x ↓ z = y ↓ z?

e) x | z = y | z?

A Boolean function F is called self-dual if and only if

F(x1, . . . , xn) = F(x1, . . . , xn).

3. Which of these functions are self-dual?

a) F(x, y) = x b) F(x, y) = xy + x y

c) F(x, y) = x + y d) F(x, y) = xy + xy

4. Give an example of a self-dual Boolean function of three

variables.

∗5. How many Boolean functions of degree n are self-dual?

We define the relation ≤ on the set of Boolean functions

of degree n so that F ≤ G, where F and G are Boolean

functions if and only if G(x1, x2, . . . , xn) = 1 whenever

F(x1, x2, . . . , xn) = 1.

6. Determine whether F ≤ G or G ≤ F for the following

pairs of functions.

a) F(x, y) = x, G(x, y) = x + y

b) F(x, y) = x + y, G(x, y) = xy

c) F(x, y) = x, G(x, y) = x + y

7. Show that if F and G are Boolean functions of degree n,

then

a) F ≤ F + G. b) FG ≤ F .

8. Show that if F , G, and H are Boolean functions of degree

n, then F + G ≤ H if and only if F ≤ H and G ≤ H .

∗9. Show that the relation ≤ is a partial ordering on the set of

Boolean functions of degree n.

∗10. Draw the Hasse diagram for the poset consisting of the

set of the 16 Boolean functions of degree two (shown in

Table 3 of Section 12.1) with the partial ordering ≤.

∗11. For each of these equalities either prove it is an identity

or find a set of values of the variables for which it does

not hold.

a) x | (y | z) = (x | y) | z

b) x ↓ (y ↓ z) = (x ↓ y) ↓ (x ↓ z)

c) x ↓ (y | z) = (x ↓ y) | (x ↓ z)

Computer Projects 845

Define the Boolean operator ⊙ as follows: 1 ⊙ 1 = 1, 1 ⊙ 0 =

0, 0 ⊙ 1 = 0, and 0 ⊙ 0 = 1.

12. Show that x ⊙ y = xy + x y.

13. Show that x ⊙ y = (x ⊕ y).

14. Show that each of these identities holds.

a) x ⊙ x = 1 b) x ⊙ x = 0

c) x ⊙ y = y ⊙ x

15. Is it always true that (x ⊙ y) ⊙ z = x ⊙ (y ⊙ z)?

∗16. Determine whether the set {⊙} is functionally complete.

∗17. How many of the 16 Boolean functions in two variables

x and y can be represented using only the given set of

operators, variables x and y, and values 0 and 1?

a) { } b) {·} c) {+} d) {·, +}

The notation for an XOR gate, which produces the output

x ⊕ y from x and y, is as follows:

x y
x

y

18. Determine the output of each of these circuits.

a)
x

y

b)
x

y

x

z

y

z

19. Show how a half adder can be constructed using fewer

gates than are used in Figure 8 of Section 12.3 when XOR

gates can be used in addition to OR gates, AND gates, and

inverters.

20. Design a circuit that determines whether three or more

of four individuals on a committee vote yes on an issue,

where each individual uses a switch for the voting.

A threshold gate produces an output y that is either 0

or 1 given a set of input values for the Boolean variables

x1, x2, . . . , xn. A threshold gate has a threshold value T ,

which is a real number, and weights w1, w2, . . . , wn, each of

which is a real number. The output y of the threshold gate is 1

if and only if w1x1 + w2x2 + · · · + wnxn ≥ T . The threshold

gate with threshold value T and weights w1, w2, . . . , wn is rep-

resented by the following diagram. Threshold gates are useful

in modeling in neurophysiology and in artificial intelligence.

•
•

• •
•

•

w1

w2

x2

x1

wn

T y

xn

21. A threshold gate represents a Boolean function. Find a

Boolean expression for the Boolean function represented

by this threshold gate.

–1

1

x1

2

1

2
y

x3

x2

22. A Boolean function that can be represented by a thresh-

old gate is called a threshold function. Show that each

of these functions is a threshold function.

a) F(x) = x b) F(x, y) = x + y

c) F(x, y) = xy d) F(x, y) = x | y

e) F(x, y) = x ↓ y f) F(x, y, z) = x + yz

g) F(w, x, y, z) = w + xy + z

h) F(w, x, y, z) = wxz + xyz

∗23. Show that F(x, y) = x ⊕ y is not a threshold function.

∗24. Show that F(w, x, y, z) = wx + yz is not a threshold

function.

Computer Projects

Write programs with these input and output.

1. Given the values of two Boolean variables x and y, find

the values of x + y, xy, x ⊕ y, x | y, and x ↓ y.

2. Construct a table listing the set of values of all 256

Boolean functions of degree three.

3. Given the values of a Boolean function in n variables,

where n is a positive integer, construct the sum-of-

products expansion of this function.

4. Given the table of values of a Boolean function, express

this function using only the operators · and .

5. Given the table of values of a Boolean function, express

this function using only the operators + and .

∗6. Given the table of values of a Boolean function, express

this function using only the operator | .

846 12 / Boolean Algebra

∗7. Given the table of values of a Boolean function, express

this function using only the operator ↓.

8. Given the table of values of a Boolean function of degree

three, construct its K-map.

9. Given the table of values of a Boolean function of degree

four, construct its K-map.

∗∗10. Given the table of values of a Boolean function, use the

Quine–McCluskey method to find a minimal sum-of-

products representation of this function.

11. Given a threshold value and a set of weights for a thresh-

old gate and the values of the n Boolean variables in the

input, determine the output of this gate.

12. Given a positive integer n, construct a random Boolean

expression in n variables in disjunctive normal form.

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Compute the number of Boolean functions of degrees

seven, eight, nine, and ten.

2. Construct a table of the Boolean functions of degree three.

3. Construct a table of the Boolean functions of degree four.

4. Express each of the different Boolean expressions in three

variables in disjunctive normal form with just the NAND

operator, using as few NAND operators as possible. What

is the largest number of NAND operators required?

5. Express each of the different Boolean expressions in dis-

junctive normal form in four variables using just the NOR

operator, with as few NOR operators as possible. What is

the largest number of NOR operators required?

6. Randomly generate 10 different Boolean expressions in

four variables and determine the average number of steps

required to minimize them using the Quine–McCluskey

method.

7. Randomly generate 10 different Boolean expressions in

five variables and determine the average number of steps

required to minimize them using the Quine–McCluskey

method.

Writing Projects

Respond to these with essays using outside sources.

1. Describe some of the early machines devised to solve

problems in logic, such as the Stanhope Demonstrator,

Jevons’s Logic Machine, and the Marquand Machine.

2. Explain the difference between combinational circuits

and sequential circuits. Then explain how flip-flops are

used to build sequential circuits.

3. Define a shift register and discuss how shift registers are

used. Show how to build shift registers using flip-flops

and logic gates.

4. Show how multipliers can be built using logic gates.

5. Find out how logic gates are physically constructed. Dis-

cuss whether NAND and NOR gates are used in building

circuits.

6. Explain how dependency notation can be used to describe

complicated switching circuits.

7. Describe how multiplexers are used to build switching

circuits.

8. Explain the advantages of using threshold gates to con-

struct switching circuits. Illustrate this by using threshold

gates to construct half and full adders.

9. Describe the concept of hazard-free switching circuits and

give some of the principles used in designing such circuits.

10. Explain how to use K-maps to minimize functions of six

variables.

11. Discuss the ideas used by newer methods for minimiz-

ing Boolean functions, such as Espresso. Explain how

these methods can help solve minimization problems in

as many as 25 variables.

12. Describe what is meant by the functional decomposition

of a Boolean function of n variables and discuss proce-

dures for decomposing Boolean functions into a compo-

sition of Boolean functions with fewer variables.

	Cover Page
	Title Page
	Copyright Page
	Contents
	About the Author
	Preface
	The Companion Website
	To the Student
	1 The Foundations: Logic and Proofs
	1.1 Propositional Logic
	1.2 Applications of Propositional Logic
	1.3 Propositional Equivalences
	1.4 Predicates and Quantifiers
	1.5 Nested Quantifiers
	1.7 Introduction to Proofs
	1.8 Proof Methods and Strategy
	End-of-Chapter Material

	5 Induction and Recursion
	5.1 Mathematical Induction
	5.2 Strong Induction andWell-Ordering
	5.3 Recursive Definitions and Structural Induction
	5.4 Recursive Algorithms

	9 Relations
	9.1 Relations and Their Properties
	9.2 n-ary Relations and Their Applications
	9.3 Representing Relations
	9.4 Closures of Relations
	9.5 Equivalence Relations
	9.6 Partial Orderings
	End-of-Chapter Material

	10 Graphs
	10.1 Graphs and Graph Models
	10.2 Graph Terminology and Special Types of Graphs
	10.3 Representing Graphs and Graph Isomorphism
	10.4 Connectivity
	10.5 Euler and Hamilton Paths

	11 Trees
	11.1 Introduction to Trees
	11.2 Applications of Trees
	11.3 Tree Traversal
	11.4 Spanning Trees
	11.5 Minimum Spanning Trees

	12 Boolean Algebra
	12.1 Boolean Functions
	12.2 Representing Boolean Functions
	12.3 Logic Gates
	12.4 Minimization of Circuits
	End-of-Chapter Material

