

CHEM 101

Dr.Huda Mohammed

dr.hudamohammed2@gmail.com

STUDENT'S BOOK:

General chemistry for preparatory year students

مكتبة الشقري

Course Grading

First exam: 30

Second exam: 30

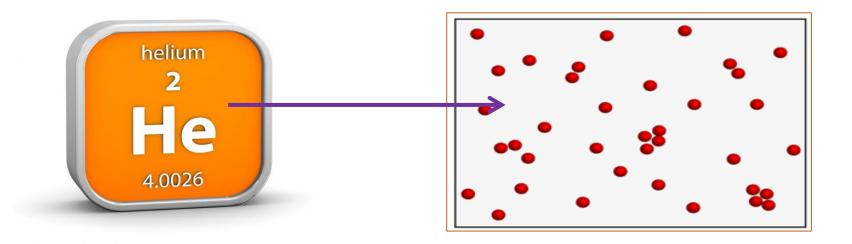
Final term exam: 40 marks

Total: 100

dr.hudamohammed2@gmail.com

ساعاتي المكتبية الاثنين والاربعاء من ١٠ الى ١١

غرفة رقم a 203 في الدور الأول من مبنى ٤

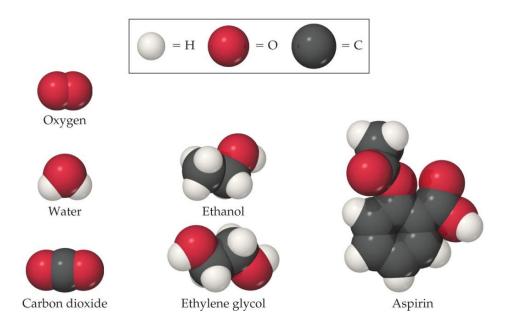

Chapter 1

Introduction:

Matter and Measurements

Part 1 Definitions

1.1 ATOMS AND MOLECULES


ATOMS:

They are the submicroscopic particles that constitute the fundamental building blocks of ordinary matter.

1.1 ATOMS AND MOLECULES

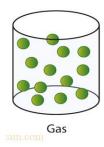
MOLECULES:

Atoms bind together in specific geometric arrangements to form molecules

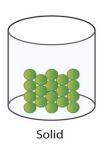
A molecule has different physical and chemical behavior than its atoms

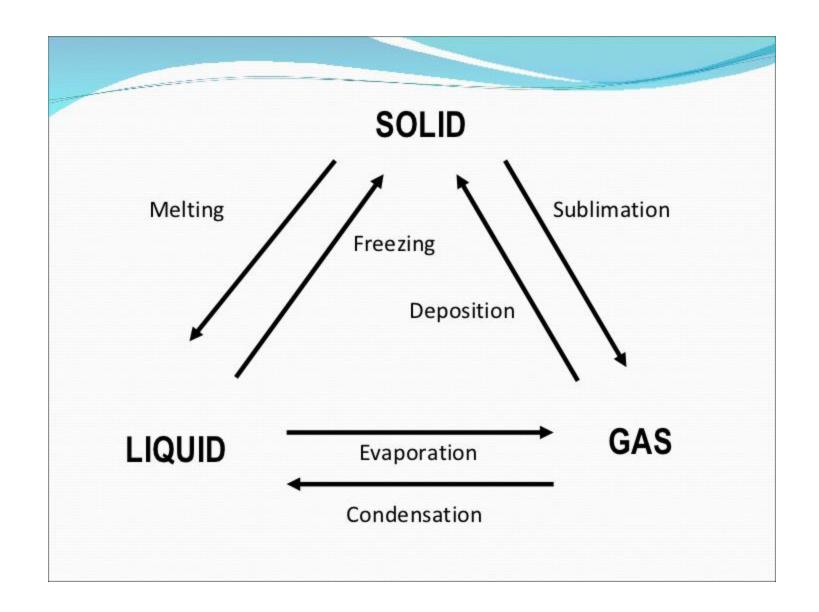
CHEMISTRY:

The science that seeks to understand the behavior of matter by studying the behavior of atoms and molecules


1.2 THE CLASSIFICATION OF MATTER

Matter is anything that has mass and takes up space.

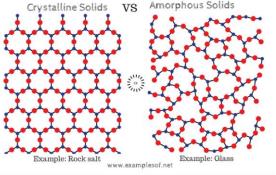

1.2 THE CLASSIFICATION OF MATTER


The States Of Matter: Solid, Liquid And Gas

Gas	Liquid	Solid
Molecules are separated by distance.	Molecules are close together but not held so rigidly in position and can move past on another.	Molecules are held close together in orderly fashion with little freedom of motion.
Have no definite shape.	Have no definite shape.	Have a definite shape.
Have no definite volume.	Have a definite volume.	Have a definite volume.

Solids

crystalline


Amorphous

Its atoms or molecules are arranged in patterns with long-range, repeating order.

Example: salt, diamond

Its atoms or molecules do not have any long-range order.

Example: glass, plastic

Dr. Huda Mohammed

Example:

1- has no definite shape and volume.

A.Gas

B.Liquid

C.Solid

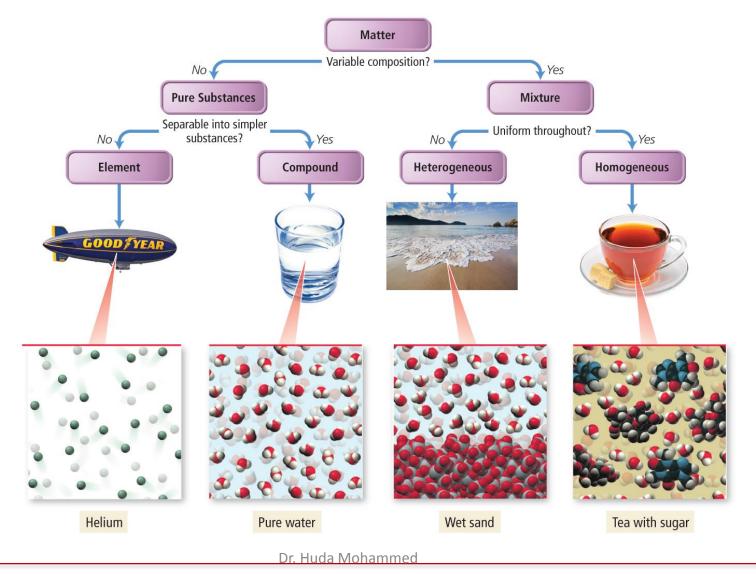
Example:

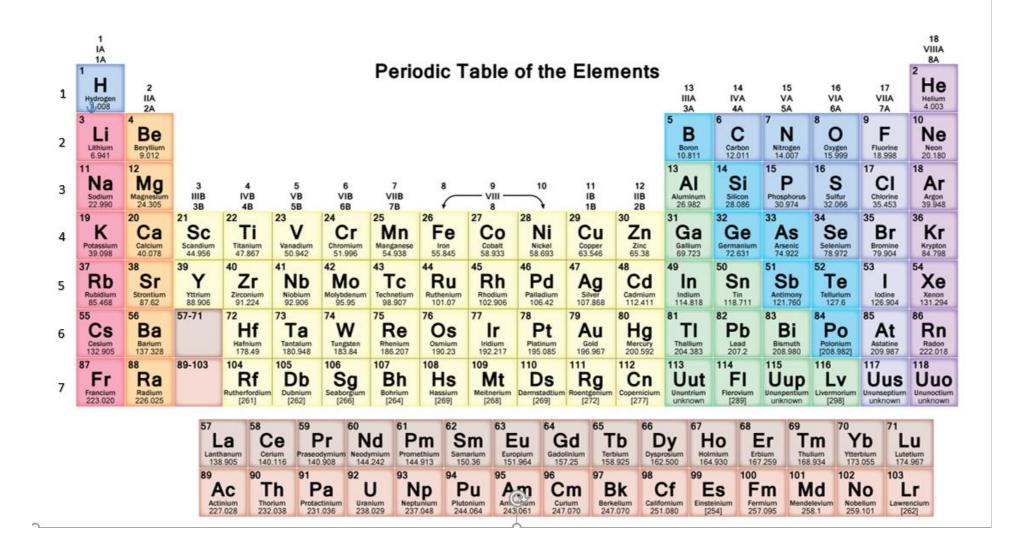
2- molecules are held close together in orderly fashion with little freedom of motion.

A.Gas

B.Liquid

C.Solid


Example:


- 3- Glass considered a/an ----- solid material
- a- amorphous
- b- liquid
- c- crystalline

Example:

- 4- Evaporation refers to which conversion:
- a- liquid to solid
- b- liquid to gas
- c- gas to liquid

Classifying Matter According To Its Composition: elements, Compounds And Mixtures

Definitions

Mixture is a combination of two or more substances in which the substances retain their distinct identities.

Homogenous mixture:

composition of the mixture is the same throughout.

Example: Salty water

Heterogeneous mixture

composition is not uniform.

Example: the mixture contains iron fillings and sand

Pure substance: is a form of matter that has a definite composition and district properties

Example: water, sugar and gold.

Element: is a substance that <u>can not</u> be separated into simpler substances by chemical means

Example: Gold (Ag), Oxygen (O).

Compound is a substance composed of atoms of two or more elements chemically united in fixed proportions

- Compounds <u>can</u> only be separated into their pure components (elements) by chemical means.

Example: water (H_2O) .

1.3 PHYSICAL AND CHEMICAL CHANGES AND PHYSICAL AND CHEMICAL PROPERTIES

Types of Properties

Physical Properties	Chemical Properties	
can be observed without changing a substance into another substance. Some examples include boiling point, density, mass, or volume.	can only be observed when a substance is changed into another substance. Some examples include flammability, corrosiveness, or reactivity with acid.	

Types of Changes

Physical Changes	Chemical Changes	
They are changes in matter	result in new substances.	
that do <i>not</i> change the	°Examples include	
composition of a substance.	combustion, oxidation,	
°Examples include	and decomposition.	
changes of state,		
temperature, and		
volume.		

EXAMPLE 1.1 Physical and Chemical Changes and Properties

Determine whether each change is physical or chemical. What kind of property (chemical or physical) is demonstrated in each case?

- (a) the evaporation of rubbing alcohol
- (b) the burning of lamp oil
- (c) the bleaching of hair with hydrogen peroxide
- (d) the forming of frost on a cold night

SOLUTION

- (a) When rubbing alcohol evaporates, it changes from liquid to gas, but it remains alcohol—this is a physical change. The volatility (the ability to evaporate easily) of alcohol is a physical property.
- (b) Lamp oil burns because it reacts with oxygen in air to form carbon dioxide and water—this is a chemical change. The flammability of lamp oil is a chemical property.
- (c) Applying hydrogen peroxide to hair changes pigment molecules in hair that give it color—this is a chemical change. The susceptibility of hair to bleaching is a chemical property.
- (d) Frost forms on a cold night because water vapor in air changes its state to form solid ice—this is a physical change. The temperature at which water freezes is a physical property.

17- The tarnishing of a copper penny is an example of a:

- a- chemical change
- b- physical change
- c- chemical property
- d- physical property

18- The condensation of water vapor is an example of a:

- a- chemical change
- b- physical change
- c- chemical property
- d- physical property

19- The formation of polyethylene from ethylene is an example of a:

a- chemical change

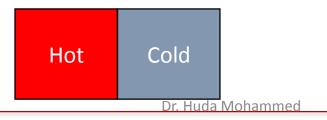
- b- physical change
- c- chemical property
- d- physical property

20- The burning candle is an example of a:

- a- chemical property
- b- physical change
- c- chemical change
- d- physical property

- a- physical change
- b- chemical change
- c- physical property
- d- chemical property

- Which of the following statements describes a chemical property?
- a-iron has a tendency to rust
- b- the forming of frost
- c-Hemoglobin molecules have a red color.
- d-When a glass of water is left out in the sun, the water gradually disappears.


Dr. Huda Mohammed

1.4 ENERGY: A FUNDAMENTAL PART OF PHYSICAL AND CHEMICAL CHANGE

1. The 1st principle (The law of conservation of energy)

Energy is neither created nor destroyed. It can only be transformed from one form to another or transferred from one system to another

2. The 2nd principle to note is the tendency of systems with HIGH potential energy to change in a way that LOWERS their potential energy.

Part 2 Units & prefixes

1.5 THE UNITS OF MEASUREMENT

Common unit systems

English system: inches, yards and pounds

Metric system

The International System of units (SI Units)

METRIC SYSTEM

Base Quantity	Name of unit	Symbol
Length	meter	m
Mass	gram	g
Time	second	S
volume	Liter or cubic centimeter	L cm³ (cc)
Temperature	Kelvin or degree Celsius	K C°
Amount of substance	mole	mol

THE INTERNATIONAL SYSTEM OF UNITS (SI UNITS)

1-Base units

Base Quantity	Name of unit	Symbol Symbol
Length	meter	m
Mass	Kilogram	Kg
Time	second	s
Electrical current	ampere	A
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

2- Derived units

Volume (m³), Speed (m/s)

EXAMPLES

The SI unit of Time is

a) (a)The second

(b) The mole

(b) (c) The gram

(d) The candela

The mole is the SI unit of

(a) Current

(b) Amount of substance

(c) Temperature

(d) Length

The Meter: A Measure of Length

The distance light travels through a vacuum in a certain period of time 1/299,792,458 second

1 yard = 36 inches

1 meter = 39.37 inches

The Kilogram: A Measure of Mass

Kilogram: The mass of a metal cylinder kept at the International

Bureau of Weights and Measures at Sevres, France

Mass

is a measure of the quantity of matter in an object

SI unit of mass is the KILOGRAM (kg)

Common unit of mass is the **GRAM** $(1g=1\times10^{-3} kg)$

Weight

Gravitational pull on the matter within it

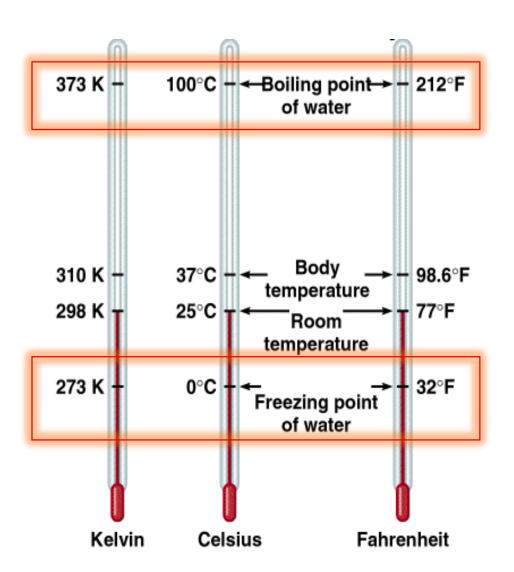
weight = gx mass

The Second: A Measure of Time

Second (s): The duration of 9,192,631,770 periods of the radiation emitted from a certain transition in a cesium-133 atom

The Kelvin: A Measure of Temperature

The temperature: it is a measure of the amount of average


kinetic energy of the atoms or molecules that compose the matter.

Temperature Scales

There are three temperature scales, their units are:

- 1. Degrees Celsius ⁰C
- 2. Degrees Fahrenheit ⁰F
- 3. Kelvin K

KELVIN IS THE SI BASE UNIT OF TEMPERATURE

$$K = {}^{o}C + 273.15$$

Convert 15 degrees Celsius to kelvin.

$$15 \, {}^{\circ}\text{C} = ? \, \text{K}$$

$$K = {}^{o}C + 273.15$$

$$K = 15 + 273.15$$

$$K = 288.15$$

Dr. Huda Mohammed

Convert 313.15 kelvin to degrees Celsius.

$$313.15 \text{ K} = ? \circ \text{C}$$

$$K = {}^{\circ}C + 273.15$$

$$313.15 = {}^{\circ}C + 273.15$$

$$313.15 - 273.15 = {}^{\circ}C$$

$$^{0}C = 40$$

$${}^{0}C = \frac{({}^{0}F - 32)}{1.8}$$

Convert 172.9 ⁰F to degrees Celsius.

$${}^{0}C = \frac{{}^{({}^{0}F - 32)}}{1.8}$$
$${}^{0}C = \frac{(172.9 - 32)}{1.8} = 78.3$$

$${}^{0}C = \frac{({}^{0}F - 32)}{1.8}$$

Convert 20 degrees Celsius to ⁰F.

$${}^{0}C = \frac{{}^{({}^{0}F - 32)}}{1.8}$$
$${}^{20} = \frac{{}^{({}^{0}F - 32)}}{1.8}$$

$$20 \times 1.8 = {}^{0}\text{F} - 32$$

$$^{0}F = 68$$

Ex: Convert -77°F to kalvin?

- A. 212.6 K
- B. -212.6 K
- C. -28.1 K
- D. +13.5 K

PREFIXES USED WITH SI UNIT

Exa-	E	1018	1 exameter (Em)=1x10 ¹⁸ m
Peta-	P	10 ¹⁵	1 petameter (Pm)=1x10 ¹⁵ m
tera-	T	1012	1 terameter (Tm)=1x10 ¹² m
giga-	G	10 ⁹	1 gigameter (Gm)=1x10 ⁹ m
mega-	M	106	1 megameter (Mm)=1x10 ⁶ m
kilo-	K	10 ³	1 kilometer (Km)=1x10 ³ m
Meter, Liter, gram			
deci-	d	0.1 or 10 ⁻¹	1 decimeter(dm)= 1x10 ⁻¹ m
centi-	c	0.01 or 10 ⁻²	1 centimeter (cm)=1x10 ⁻² m
milli-	m	10-3	1 milimeter (mm)=1x10 ⁻³ m
micro-	μ	10-6	1 micro meter (μm)= 1x10 ⁻⁶ m
nano-	n	10-9	1 nano meter (nm) =1x10 ⁻⁹ m
pico-	p	10 ⁻¹²	1 pico meter (pm)=1x10 ⁻¹² m
femto-	£	10.15	1 femto meter (fm)=1x10 ⁻¹⁵ m
Atto-	a	10-18	atto meter (am)=1x10 ⁻¹⁸ m

EXAMPLES

The SI prefixes Mega- represents:

(a) 10^{-6}

(b) 10^6

(c) 10^3

(d) 10^9

1 Kg =

(a) 10^{-6} g

(b) 10^3 g

(c) 10^{-1} g

(d)

Convert 3terameter to gigameter

$$3 \text{ terameter} = \mathbf{x} \text{ gigameter}$$

$$3 (10^{12}) = \mathbf{x} (10^9)$$

$$\frac{3(10^{12}) = \mathbf{x}}{(10^9)}$$

$$3 \times 10^3 = x$$

Convert 0.8 microsecond to centisecond

0.8 microsecond = x centisecond

$$0.8 (10^{-6}) = \mathbf{x} (10^{-2})$$

$$\frac{0.8 (10^{-6})}{(10^{-2})} = \mathbf{x}$$

$$0.8 \times 10^{-4} = x$$

$$8 \times 10^{-5} = x$$

Convert 0.02 megagram to picogram

$$0.02 \text{ megagram} = x \text{ picogram}$$

$$0.02 (10^6) = \mathbf{x} (10^{-12})$$

$$\frac{0.02 (10^6) = \mathbf{x}}{(10^{-12})}$$

$$2 \times 10^{16} = x$$

Convert 5 m to pm

$$5 \text{ m} = \mathbf{x} \text{ pm}$$

$$5 (1) = \mathbf{x} (10^{-12})$$

$$\underline{5} = \mathbf{x}$$

$$(10^{-12})$$

$$5 \times 10^{12} = x$$

Convert 5 cm³ to m³

$$5 \text{ cm}^3 = \mathbf{x} \text{ m}^3$$

$$5 (10^{-2})^3 = \mathbf{x} (1)^3$$

$$5 \times 10^{-6} = x$$

Convert 6.6 m² to dm²

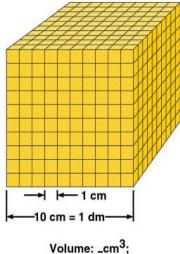
$$6.6 \text{ m}^2 = \mathbf{x} \text{ dm}^2$$

6.6
$$(1)^2 = \mathbf{x} (10^{-1})^2$$

$$6.6 = x \times 10^{-2}$$

$$6.6 = x$$

$$10^{-2}$$


$$660 = x$$

$$6.6 \times 10^2 = x$$

Ex: Which of these quantities represents the largest mass?

- A. $2.0 \times 10^2 \text{ mg}$
- B. 0.0010 kg
- C. $1.0 \times 10^5 \, \mu g$
- D. $2.0 \times 10^2 \text{ cg}$

VOLUME

Volume= width x length x height

$$=$$
 m x m x $=$ m³

SI derived unit for volume is cubic meter (m³)

Another common units of volume

1-
$$1 dm^3 = 1L$$

$$1cm^3 = 1mL$$

Calculating Density

DENSITY

density =
$$\frac{\text{mass}}{\text{volume}} = \frac{\text{kg}}{\text{m}^3} = \text{kg/m}^3$$

SI derived unit for density is kg/m³

Another common units of density

$$g/L = 1 g/dm^3$$

1 g/mL=1 g/cm³

Example 1.1

Gold is a precious metal that is chemically unreactive. It is used mainly in jewellery, dentistry, and electronic devices. A piece of gold ingot with a mass of 301 g has a volume of 15.6 cm³. calculate the density of gold.

$$d = \frac{m}{V}$$

$$d = \frac{301 \text{ g}}{15.6 \text{ cm}^3}$$

$$= 19.3 \text{ g/cm}^3$$

Dr. Huda Mohammed