If $\mathrm{F}(X)=\cot X-\mathrm{m} \csc X$ has a local maximum value at $X=\frac{\pi}{4}$ then the value of the constant $\mathrm{m}=.$.

- $\sqrt{2}$
- $-\sqrt{2}$
- -1
- 1

If the point $(1,3)$ is an inflection point of the curve of the function f.
where $f^{\prime}(x)=4 x^{3}-k x^{2}$, then the value of the constant $k=.$.

- 6
- 4
- 12
- 24

If $F(x)=\ln \left(x^{2}+1\right)^{2}+e^{\sin x}$, then $F(0) x F^{\prime}(0)=\ldots \ldots \ldots$.

- 1
- Zero
- e
- 1+e

The slope of the tangent to the curve $x^{y}-y^{x}=0$ at the point $(1,1)$ that lies on it is.........

- 1
- -1
- Zero
- 2

If $\frac{d y}{d x}=\sqrt{a y}$ and $\frac{d^{2} y}{d x^{2}}=3$, then the value of the constant $a=\ldots . . .$.

- 6
- 3
- 4
- 5

If $f^{\prime}(x)=\frac{1}{x^{2}+1}$ and $g(x)=\tan x$,
then $(f \circ g)^{\prime}(x)=\ldots$.

- 1
- $\sec ^{2} x$
- $\cos ^{2} x$
- $\sec ^{2} x \tan ^{2} x$

The rate of change of the volume of sphere with respect to it's surface area when the length of its radius equals $\mathbf{2 c m}$ is...........

- 1 cm
- $1 \mathrm{~cm}^{2}$
- $\frac{1}{2} \mathrm{~cm}$
- $\frac{1}{2} \mathrm{~cm}^{2}$

The opposite figure represents the curve of first derivative of $f(x)$.
then the statement which is must be true..........
(i) $f(4)<f(3)$
(ii) f has a local minimum value at $x=5$
(iii) f has a local maximum value at $x=1$

- (i) and (ii)
- (ii) and (iii)
- (ii) only
- (iii) only

If $1, \omega, \omega^{2}$ are the cubic roots of the unity, then the expression $\frac{14+6 \omega+21 \omega^{2}}{8 \omega^{2}-7}=\ldots \ldots \ldots$.

- $-\omega^{2}$
- $-\omega$
- ω
- ω^{2}

The area of the circle which passes through the points which represent the cubic roots of unity $=\ldots . .$. . Square unit.

- π
- 2π
- $\sqrt{3} \pi$
- $2 \sqrt{3} \pi$

In the expansion of $(x+a)^{n}$ according to the descending powers of x, if T_{4} is the fifteenth term from the end,
then $n=\ldots . .$.

- 17
- 18
- 16
- 19
The value of the determinant $\left|\begin{array}{ccc}2 k & 2 & \frac{1}{3} \\ 6 & 3 & \frac{1}{k} \\ 3 k & k & \frac{1}{2}\end{array}\right|$ where $k \neq 0$ equals
- zero
- $6 k$
- $\frac{1}{6 k}$
- $\frac{1}{6} k$

```
1 3
```

By how many ways a committee of $\mathbf{7}$ members can take an acceptance decision by majority?

- 64
- 99
- 5145
- 13440
- A circle whose center is $(0,0,-4)$ and its radius length is 3 unit length.
- A plane 4 unit length a way from the plane $x y$.
- A sphere whose center is the origin point and its radius length is 5 unit length.
- A sphere whose center is the origin point and its radius length is 4 unit length.
$(\hat{i} \times \hat{j}) \cdot \hat{k}+\hat{i} \cdot \hat{j}=\ldots \ldots \ldots$. where \hat{i}, \hat{j} and \hat{k} are the fundamental unit vectors.
- 1
- 0
- -1
- 2

If the plane whose equation: $6 x+3 y+4 z-72=0$ intersects the coordinate axes x, y and z at the points A, B and C respectively, then the volume of the pyramid $\mathrm{OABC}=\ldots$. volume unit, where \mathbf{O} is the origin point.

- 864
- 1728
- 5184
- 12

