If $F(X) = \cot X$ -m csc X has a local maximum value at $X = \frac{\pi}{4}$ then the value of the constant m=.....

- √2
 -√2
 -1
- 1

If the point (1,3) is an inflection point of the curve of the function f.

where $f(x) = 4x^3 - kx^2$, then the value of the constant k=.....

- 6
- 4
- 12
- 24

If $F(x) = In (x^2 + 1)^2 + e^{\sin x}$, then $F(0) \times F'(0) = \dots$

- 1
- Zero
- e
- 1+e

The slope of the tangent to the curve $x^y - y^x = 0$ at the point (1 , 1) that lies on it is.....

- 1
- -1
- Zero
- 2

• 5

If
$$f'(x) = \frac{1}{x^2 + 1}$$
 and $g(x) = \tan x$,

then $(f \circ g)^{\setminus}(x)$ =.....

- 1
- sec²x
- cos²x
- sec²x tan²x

The rate of change of the volume of sphere with respect to it's surface area when the length of its radius equals 2 cm is.....

- 1cm
- 1cm²
- $\cdot \frac{1}{2} \text{cm}$ $\cdot \frac{1}{2} \text{cm}^2$

The opposite figure represents the curve of first derivative of f(x).

then the statement which is must be true......

- (i) f(4) < f(3)
- (ii) f has a local minimum value at x = 5
- (iii) f has a local maximum value at x = 1
 - (i) and (ii)
 - (ii) and (iii)
 - (ii) only
 - (iii) only

If 1, ω , ω^2 are the cubic roots of the unity, then the expression	$14 + 6\omega + 21\omega^2$	_
	8ω ² – 7	=

- ω²
- -ω
- ω
- ω²

In the Argand's diagram:

The area of the circle which passes through the points which represent the cubic roots of unity = Square unit.

- π
- 2 π
- $\sqrt{3} \pi$
- $2\sqrt{3} \pi$

In the expansion of $(x + a)^n$ according to the descending powers of x, if T_4 is the fifteenth term from the end,

then *n* =

- 17
- 18
- 16
- 19

The value of the determinant
$$\begin{vmatrix} 2 k & 2 & \frac{1}{3} \\ 6 & 3 & \frac{1}{k} \\ 3 k & k & \frac{1}{2} \end{vmatrix}$$
 where $k \neq 0$ equals

- zero
- 6 k
- $\frac{1}{6 k}$
- $\frac{1}{6}k$

By how many ways a committee of 7 members can take an acceptance decision by majority?

- 64
- 99
- 5145
- 13440

The set of points in the space which satisfy the two equations:

 $x^{2} + y^{2} + z^{2} = 25$ and Z = -4 represents

- A circle whose center is (0, 0, -4) and its radius length is 3 unit length.
- A plane 4 unit length a way from the plane *x y*.
- A sphere whose center is the origin point and its radius length is 5 unit length.
- A sphere whose center is the origin point and its radius length is 4 unit length.

 $(\stackrel{\wedge}{i} \times \stackrel{\wedge}{j}) \cdot \stackrel{\wedge}{k} + \stackrel{\wedge}{i} \cdot \stackrel{\wedge}{j} = \dots$ where $\stackrel{\wedge}{i} \cdot \stackrel{\wedge}{j}$ and $\stackrel{\wedge}{k}$ are the fundamental unit vectors. • 1 • 0 • -1

• 2

If the plane whose equation: 6x + 3y + 4z - 72 = 0 intersects the coordinate axes x, y and z at the points A, B and C respectively, then the volume of the pyramid OABC = volume unit, where O is the origin point.

- 864
- 1728
- 5184
- 12