
Al Sham Private University

Faculty of Informatics Engineering

 جامعة الشام الخاصة

 كلية الهندسة المعلوماتية

 نظم معلومات موزعة
Distributed Information Systems

Lecture 3: Inter-process Communication

هسامغاندي . أ: اعداد

Introduction

• This chapter are concerned with the communication aspects of
middleware.

 By Eng. Ghandy Hessam 2

The API for the Internet protocols

By Eng. Ghandy Hessam 3

• we discuss the general characteristics of inter-process communication and
then discuss the Internet protocols as an example, explaining how
programmers can use them, either by means of UDP messages or through
TCP streams.

• Message passing between a pair of processes can be supported by two
message communication operations, send and receive, defined in terms of
destinations and messages.

• To communicate, one process sends a message (a sequence of bytes) to a
destination and another process at the destination receives the message.

• This activity involves the communication of data from the sending process
to the receiving process and may involve the synchronization of the two
processes.

By Eng. Ghandy Hessam 4

The characteristics of inter-process communication

 Synchronous and asynchronous communication:

- queue is associated with each message destination. Sending
processes cause messages to be added to remote queues and receiving
processes remove messages from local queues.

- In the synchronous form of communication, the sending and receiving
processes synchronize at every message. In this case, both send and
receive are blocking operations.

- In the asynchronous, the use of the send operation is nonblocking in
that the sending process is allowed to proceed as soon as the message
has been copied to a local buffer, and the transmission of the message
proceeds in parallel with the sending process.

By Eng. Ghandy Hessam 5

 Message destinations:

- messages are sent to (Internet address, local port) pairs. A local port is
a message destination within a computer, specified as an integer.

- Processes may use multiple ports to receive messages. Any process
that knows the number of a port can send a message to it.

- Servers generally publicize their port numbers for use by clients.

 Reliability

- As far as the validity property is concerned, a point-to-point message
service can be described as reliable if messages are guaranteed to be
delivered despite a ‘reasonable’ number of packets being dropped or
lost.

By Eng. Ghandy Hessam 6

 Ordering:

- Some applications require that messages be delivered in sender order
that is, the order in which they were transmitted by the sender.

- The delivery of messages out of sender order is regarded as a failure
by such applications.

By Eng. Ghandy Hessam 7

Sockets

• Both forms of communication (UDP and TCP) use the socket abstraction,
which provides an endpoint for communication between processes.

• Sockets originate from BSD UNIX but are also present in most other
versions of UNIX, including Linux as well as Windows and the Macintosh.

• Inter-process communication consists of transmitting a message between
a socket in one process and a socket in another process

By Eng. Ghandy Hessam 8

• For a process to receive messages, its socket must be bound to a local
port and one of the Internet addresses of the computer on which it
runs.

 Java API for Internet addresses:

- As the IP packets underlying UDP and TCP are sent to Internet
addresses, Java provides a class, InetAddress, that represents Internet
addresses.

- Users of this class refer to computers by Domain Name System (DNS)
hostnames.

InetAddress aComputer = InetAddress.getByName(“aspu.edu.sy");

By Eng. Ghandy Hessam 9

UDP datagram communication

• A datagram sent by UDP is transmitted from a sending process to a
receiving process without acknowledgement or retries.

• A datagram is transmitted between processes when one process
sends it and another receives it.

• To send or receive messages a process must first create a socket
bound to an Internet address of the local host and a local port.

• A server will bind its socket to a server port – one that it makes
known to clients so that they can send messages to it.

• A client binds its socket to any free local port.

• The receive method returns the Internet address and port of the
sender, in addition to the message, allowing the recipient to send a
reply.

By Eng. Ghandy Hessam 10

 Java API for UDP datagrams:

- The Java API provides datagram communication by means of two
classes: DatagramPacket and DatagramSocket.

- DatagramPacket: This class provides a constructor that makes an
instance out of a array of bytes comprising a message, the length of the
message and the Interne address and local port number of the
destination socket, as follows:

By Eng. Ghandy Hessam 11

By Eng. Ghandy Hessam 12

By Eng. Ghandy Hessam 13

 Failure model for UDP datagrams:

- UDP datagrams suffer from the following failures:

Omission failures: Messages may be dropped occasionally, either because of
a checksum error or because no buffer space is available at the source or
destination.

Ordering: Messages can sometimes be delivered out of sender order.

 Use of UDP:

For some applications, it is acceptable to use a service that is liable to
occasional omission failures. For example, the Domain Name System, which
looks up DNS names in the Internet, is implemented over UDP. Voice over IP
(VOIP) also runs over UDP. UDP datagrams are sometimes an attractive
choice because they do not suffer from the overheads associated with
guaranteed message delivery.

By Eng. Ghandy Hessam 14

TCP stream communication

• The API to the TCP protocol, which originates from BSD 4.x UNIX, provides
the abstraction of a stream of bytes to which data may be written and from
which data may be read.

• The following characteristics of stream:
• Message sizes: The application can choose how much data it writes to a

stream or reads from it.
• Lost messages: The TCP protocol uses an acknowledgement scheme.
• Flow control: The TCP protocol attempts to match the speeds of the

processes that read from and write to a stream. If the writer is too fast
for the reader, then it is blocked until the reader has consumed data.

• Message duplication and ordering: Message identifiers are associated
with each IP packet, which enables the recipient to detect and reject
duplicates, or to reorder messages that do not arrive in sender order.

By Eng. Ghandy Hessam 15

• The following are some notable issues related to stream
communication:

• Matching of data items: Two communicating processes need to agree as to
the contents of the data transmitted over a stream.

• Blocking: The data written to a stream is kept in a queue at the destination
socket. When a process attempts to read data from an input channel, it will
get data from the queue or it will block until data becomes available.

• Threads: When a server accepts a connection, it generally creates a new
thread in which to communicate with the new client. The advantage of using
a separate thread for each client is that the server can block when waiting for
input without delaying other clients.

By Eng. Ghandy Hessam 16

 Java API for TCP streams:

- The Java interface to TCP streams is provided in the classes
ServerSocket and Socket

- ServerSocket: This class is intended for use by a server to create a
socket at a server port for listening for connect requests from clients.
Its accept method gets a connect request from the queue.

- Socket: This class is for use by a pair of processes with a connection.
The client uses a constructor to create a socket, specifying the DNS
hostname and port of a server. provides the methods getInputStream
and getOutputStream for accessing the two streams associated with a
socket.

By Eng. Ghandy Hessam 17

By Eng. Ghandy Hessam 18

By Eng. Ghandy Hessam 19

By Eng. Ghandy Hessam 20

End of Lecture 3

By Eng. Ghandy Hessam 21

