1. Solve the following quadratic equation: $(x+k)^{2}+9=5$.
A. $x=k \pm 2 i$
B. $x=-k \pm 2 i$
C. $x=-k \pm 4 i$
D. $x=k \pm 4 i$
2. The solution set of the following quadratic equation: $x^{2}+100=-20 x$ is
A. $\{-10,10\}$
B. $\{10\}$
C. $(-10,10)$
D. $\{-10\}$
3. Solve the following inequality $\frac{-4 x^{2}-8 x-4}{x^{2}+|-3 x+1|} \leq 0$.
A. $S=(-\infty,-1) \cup(-1,+\infty)$
B. $S=(-\infty,+\infty)$
C. $S=(-1,+\infty)$
D. $S=\{-1\}$
4. Let $a>2$ be a real number. Give the solution of following equation $x^{2}+a x+(a-1)=0$
A. $x=-1$ and $x=1+a$
B. $x=-1$ and $x=1-a$
C. ϕ
D. $x=-1$ and $x=a$
5. Let b be a real number. Give the value of b such that the equation $2 x^{2}+b x+2=0$ admits exactly one (double) positive solution.
A. $b=-4$
B. $b=4$
C. $b=-2$
D. $b=2$
6. Solve the following inequality $\frac{x^{2}+6 x+8}{x-1} \geq 0$.
A. $S=[-4,-2] \cup[1,+\infty)$
B. $S=(1,+\infty)$
C. $S=[-4,-2] \cup(1,+\infty)$
D. $S=(-\infty,-4] \cup[-2,1)$
7. Suppose $a \in \mathbb{R}$. Give the value of a such that the equation $|2 x+3 a|=|x+a|$ admit one solution.
A. $a=-1$
B. $a=1$
C. $a=-\frac{1}{2}$
D. $a=0$
8. Solve the following inequality $x^{2}-3\left|x^{2}-4\right| \geq x^{2}$
A. $S=[2,+\infty)$
B. $S=(-\infty,-2]$
C. $S=\{-2,2\}$
D. $S=(-2,2)$
9. The solution set of the following inequality $0<-2-2(x-1) \leq 2$ is
A. $(-1,0)$
B. $(-1,0]$
C. $[-1,0)$
D. $[-1,0]$
10. Give the domain of the function $f(x)=\frac{x^{3}+2 x^{2}-x-1}{\sqrt{5-|5-2 x|}}$.
A. $\operatorname{dom}(f)=(0,5)$
B. $\operatorname{dom}(f)=(-5,0)$
C. $\operatorname{dom}(f)=(-\infty, 0)$
D. $\operatorname{dom}(f)=\mathbb{R}$
11. Let a be a real number. Give all values of a that make the relation F not a function.

$$
F=\{(-a,-1),(5,0),(a, 4),(-2, a),(1,3)\}
$$

A. $a \in\{1,5,-2\}$
B. $a \in \mathbb{R}$
C. $a \in\{-1,1,5,-5,-2,2,0\}$
D. $a \in \mathbb{R} \backslash\{-1,1,5,-5,-2,2\}$
12. Let $a \in \mathbb{R} \backslash\{-2\}$. Give the condition such that the point $(2 a,-1)$ belongs to the line with equation $a x+2 y=6$.
A. $a=-2$
B. $a=-1$
C. $a=1$
D. $a=2$
13. Let $b \in \mathbb{R}$ and $b \neq 1$. Give the value of b such that the line with equation $(b+1) x-y=4$ is perpendicular to the line with the equation $b x+2 y=3$.
A. $b=1$
B. $b=-3$
C. $b=-2$
D. $b=3$
14. If $f(x)=\frac{1}{x-1}$ and $g(x)=\frac{3 x-10}{x+2}$, then domain of $(f \circ g)(x)$ is
A. $(-\infty,-2) \cup(-2,6) \cup(6, \infty)$
B. $(-\infty, 2) \cup(2,6) \cup(6, \infty)$
C. $(-\infty,-6) \cup(-6,2) \cup(2, \infty)$
D. $(-\infty,-6) \cup(-6,-2) \cup(-2, \infty)$
15. Let $a=1+\sqrt{2}$ and $f(x)=3 x^{2}-5 x-3$. Evaluate $f(a)$.
A. $3+\sqrt{2}$
B. $\sqrt{2}$
C. $1+\sqrt{2}$
D. $1+3 \sqrt{2}$
16. Let $f(x)=\frac{x}{x^{2}+6}$ and $g(x)=\sqrt{4-x^{2}}$. Find $(f \circ g)(x)$.
A. $(f \circ g)(x)=\frac{1}{-x^{2}+10}$
B. $(f \circ g)(x)=\frac{\sqrt{4-x^{2}}}{-x^{2}+10}$
C. $(f \circ g)(x)=\frac{\sqrt{4-x^{2}}}{x^{2}+10}$
D. $(f \circ g)(x)=\frac{\sqrt{4-x^{2}}}{-x^{2}+2}$
17. If $f(x)=5 x^{2}+20 x+9$, then \ldots
A. $f(x)=5(x+2)^{2}+11$
B. $f(x)=5(x+2)^{2}-11$
C. $f(x)=-5(x-2)^{2}+11$
D. $f(x)=-5(x-2)^{2}-11$
18. Let $a>0$. Let $f(x)=\left(a^{2}-7\right) x^{2}-2 x+4$ and $g(x)=-3 x^{2}+2 x+a$. Give the value of a such that the graphs of f and g open in the same direction and have the same width.
A. $a=2$
B. $a=1$
C. $a=-2$
D. $a=4$
19. Let $a \in \mathbb{R}$ and $f(x)=-x^{5}+a x-2 a$. Give the value of a such that $f(1-i)$ is a pure complex number using the remainder theorem.
A. $a=4$
B. $a=-2$
C. $a=-1$
D. $a=2$
20. The remainder of the division $\frac{x^{4}-10 x^{2}+1}{x-\sqrt{2}}$ is
A. 0
B. -10
C. -15
D. -20
21. For the real numbers a and b, if $f(a+b)=0$, then
A. $(x-a)$ is factor of $f(x)$.
B. $(x-b)$ is factor of $f(x)$.
C. $(x-a-b)$ is factor of $f(x)$.
D. $(x+a-b)$ is zero of $f(x)$.
22. The division of $x^{3}+3 x^{2}+3 x+7$ by $(x+2)$ is equivalent to
A. $x^{3}+3 x^{2}+3 x+7=(x+2)\left(x^{2}+x+1\right)+5$
B. $x^{3}+3 x^{2}+3 x+7=(x+2)\left(x^{2}+x-1\right)+5$
C. $x^{3}+3 x^{2}+3 x+7=(x+2)\left(x^{2}+x+1\right)-5$
D. $x^{3}+3 x^{2}+3 x+7=(x+2)\left(x^{2}-x+1\right)+5$
23. The solution set of the equation $|x-3|=3 x-5$, is
A. ϕ
B. $\{1,2\}$
C. $\{2\}$
D. $\{1\}$
24. The equation of the line with slope 2 and passes through the point $(-3,-2)$ is
A. $y=-2 x-4$
B. $y=2 x+4$
C. $y=2 x-4$
D. $y=-2 x+4$
25. The inverse function of $f(x)=x^{3}-3$ is
A. $f^{-1}(x)=(x+3)^{\frac{1}{3}}$
B. $f^{-1}(x)=(x+3)^{-\frac{1}{3}}$
C. $f^{-1}(x)=(x-3)^{\frac{1}{3}}$
D. $f^{-1}(x)=(x-3)^{-\frac{1}{3}}$
26. Let $f(x)=x^{2}-1, g(x)=\frac{x^{2}+1}{x-1}$. Compute the value of $(f g)(2)$
A. 15
B. 7
C. 4
D. undefined
27. If $a \in R \backslash\{0\}, f(x)=-a^{4} x^{3}+9 x^{2}$, then \ldots
A. f is linear
B. f is quadratic
C. f is cubic
D. f is quartic
28. Let $f(x)=\frac{1}{2}(x+1)^{2}+35$. The graph of $f(x)$ is ...
A. open down
B. open up
C. open right
D. open left
29. Determine the one-to-one function:
A. $F=\{(31,31),(-33,31),(10,-32)\}$
B. $F=\{(32,-33),(33,-34),(34,-33)\}$
C. $F=\{(36,-32),(35,11),(33,37)\}$
D. $F=\{(-35,-35),(32,33),(30,-35)\}$
30. Determine the inverse function of $f(x)=\frac{7-3 x}{2+5 x}$
A. $f^{-1}(x)=\frac{7-2 x}{3+5 x}$
B. $f^{-1}(x)=\frac{7+2 x}{3-5 x}$
C. $f^{-1}(x)=\frac{7+2 x}{3+5 x}$
D. $f^{-1}(x)=\frac{7-2 x}{3-5 x}$
31. The zeros of $f(x)=(x-1)(x-2)(x+3)$ are
A. $1 ;-2$ and -3 .
B. $-1 ;-2$ and -3 .
C. $1 ; 2$ and -3 .
D. $1 ; 2$ and 3 .
32. The function $f(x)=3 x^{2}-3$ is not one-to-one, because
A. $f(1)=0$.
B. $f(x) \neq f(y)$ for all $x=y$.
C. $f(x) \neq f(y)$ for all $x \neq y$.
D. $f(-1)=f(1)$.
33. The solution set of the following inequality $x^{2}-3 x+2>0$ is
A. $(-\infty, 1) \cup(2, \infty)$
B. $(-\infty, 1] \cup[2, \infty)$
C. $(1,2)$
D. $[1,2]$

Theses exercises DO NOT represent the whole content of the exam. You need to study the book.

Good Luck

