Chapter one Units and Measurements

Measurement and Uncertainty; Significant Figures

<u>NO</u> measurement is <u>absolutely</u> *precise* OR *accurate*

Good accuracy Good precision

Poor accuracy Good precision Poor accuracy Poor precision

Precision refers to the repeatability of a measurement using a given instrument. Accuracy refers to how close a measurement is to the true value

Measurement and Uncertainty; Significant Figures

Main sources of uncertainty (errors):

- Human errors:
- Limited Instrument accuracy (systematic error)

The ruler is *precise* to within 0.1 cm,

 \Rightarrow estimated uncertainty (error) = \pm 0.1 cm

The tiny book is 3.7 ± 0.1 cm wide

 \Rightarrow its <u>true</u> width likely lies between **3.8 and 3.6 cm**

Width of thumbnail = 1.3 ± 0.1 cm \Rightarrow it lies between 1.4 and 1.2 cm

Therefore measurement result is expressed as:

(Result ± Error) unit

Measurement result is expressed as: (Result ± Error) unit

The percent uncertainty
$$= \frac{\text{Error}}{\text{Result}} \times 100 \%$$

Example 1:

Calculate the percent uncertainty in the measurement: $L = 20.2 \pm 0.4$ cm

> The Percent Uncertainty (P.U.) = $\frac{\text{Error}}{\text{Result}} \times 100 \%$ $Error = 0.4 \, cm$; $result = 20.2 \, cm$ \therefore P.U. = $\frac{0.4 \, cm}{20.2 \, cm} \times 100 \% = 1.9801\% \approx 2\%$

Example 2:

What is the percent uncertainty in the measurement of an area A: A = 2.03 m^2

Result = 2.03 m² (with *two decimal places*)

 \Rightarrow In this case the *error* is taken as the smallest number with *two decimal places.* \Rightarrow Error = 0.01 m²

The Percent Uncertainty (P.U.) = $\frac{\text{Error}}{\text{Result}} \times 100 \%$ \therefore P.U. = $\frac{0.01 \text{ m}^2}{2.03 \text{ m}^2} \times 100 \% \approx 0.5 \%$

Significant figure

The number of reliably known digits in a number

For example: 2 cm, 2.0 cm, & 2.00 cm are mathematically the same but experimentally different: *They have different significant figures*.

Counting rules

Rule 1: All nonzero digits (1, 2, 3, ..., 7, 8, 9) are significant figures

<u>Q</u>. determine the number of significant figures in: **11** and **235.68**

<u>Ans</u>. 11 Has *two* significant figures 235.68 Has *five* significant figures

Trailing zeros: special case

A whole number (*without decimal point*) preceded by the word <u>about</u>
 (approximately, etc ...) ⇒ don't count zeros

Check your understanding

17. The number of significant figures in (23.20) is:

A	1
В	2
С	3
D	4

18. The number of significant figures in (0.062) is:

A	1
В	2
С	3
D	4

19. The number of decimal places in (0.062) is:

A	1
В	2
С	3
D	4

Significant figure: mathematical operations

Carry out intermediate calculations without rounding. Only round the final answer (outcome) according to the following rules:

Multiplications and divisions

Final result presented with *significant figures* similar to that for the number with *least significant figure* used in the operation.

$$11.3 \text{ cm} \times 2.0 \text{ cm} = 22.6 \text{ cm}^2 \xrightarrow{\text{Round}} 23 \text{ cm}^2$$

1.

SUGGESTION: Use the significant figures rule, but consider the % uncertainty too, and add an extra digit if it gives a more realistic estimate of uncertainty. See page 6 in your book for more details

2. Addition and subtraction

Final result presented with *decimal places* similar to that for the number with *least decimal places* used in the operation. 9.300cm+0.01cm=9.310cm $\xrightarrow{\text{Round}} 9.31cm$

Conceptual Example 1.2

Using protractor, you measure an angle to be 30°.

 (a) How many significant figures should you quote in this measurement.
 (1° ⇒ we write 30° not 30.0°)

(b) Use a calculator to find the cosine of the angle you measure.

Answer:

- A. 0.86602540378443864676372317075294
- B. 0.8660
- C. 0.866
- D. 0.87
- E. 0.9
- F. 1

Check your understanding

20. The area of a (10.0 cm \times 6.5 cm) rectangle is correctly given as:

А	65 cm^2
В	65.0 cm^2
С	65.00 cm^2
D	65.000 cm ²

23. Taking accuracy into account, the difference D = A - B between two numbers, A = 3.6 and B = 0.57, is correctly written as:

А	3.03
В	3.00
С	3.003
D	3.0

Powers of 10 (Scientific Notation)

- Common to express very large or very small numbers using powers of 10 notation.
- Examples: **39,600 = 3.96** × **10**⁴

(moved decimal 4 places to left)

 $0.0021 = 2.1 \times 10^{-3}$

(moved decimal 3 places to right)

• Useful for controlling significant figures:

$$39600 \equiv 3.960 \times 10^4 = 3.960000 \times 10^4 \approx 4 \times 10^4$$

Units, Standards, SI System

- All measured physical quantities have units.
- Units are **VITAL** in physics!!
- The **SI system of units**:

SI = "Systéme International" (French)

More commonly called the "MKS system" (meter-kilogram-second) or more simply, "the metric system"

SI or MKS System

- Defined in terms of standards (a standard = one unit of a physical quantity) for length, mass, time,
- Length unit: Meter (m) (kilometer = km = 1000 m)
 - Standard meter. Newest definition in terms of speed of light = Length of path traveled by light in vacuum in (1/299,792,458) of a second!
- Time unit: Second (s)
 - Standard second. Newest definition = time required for 9,192,631,770 oscillations of radiation emitted by cesium atoms!
 - An earlier definition is terms of the solar day: (1 sec = 1/86400 of the solar day)
- Mass unit: Kilogram (kg) (kilogram = kg = 1000 g)
 - Standard kg. A particular platinum-iridium cylinder whose mass is defined as exactly 1 kg

SI Base Quantities and Units

	Quantity	Unit	Unit Abbreviation
1.	Length	meter	m
2.	Time	second	S
3.	Mass	kilogram	kg
4.	Electric current	ampere	A
5.	Temperature	kelvin	К
6.	Amount of substance	mole	mol
7.	Luminous intensity	candela	cd

SI Derived Quantities and Units

All physical quantities are *defined* in terms of the *base quantities* Example: Derived units for *speed, acceleration and force:*

Speed (m/s) = $\frac{\text{Distance (m)}}{\text{Time (s)}}$ Acceleration (m/s²) = $\frac{\Delta \text{ velocity (m/s)}}{\text{Time (s)}}$

Force (Newton, N) = Mass (kg) × Acceleration (m/s²)

Larger & smaller units defined from SI standards by powers of 10 & Greek prefixes

Other Systems of Units

- CGS (<u>c</u>entimeter-<u>g</u>ram-<u>s</u>econd) system
 - Centimeter = 0.01 meter
 - Gram = 0.001 kilogram
- British (foot-pound-second) system
 - Our "everyday life" system of units
 - Still used in some countries like USA

Converting Units

Suppose you are to convert 15 US Dollar (\$) into Saudi Ryal (SR) :

1st Find conversion factor: 1 \$ = 3.75 SR

2nd
$$\frac{1\$}{1\$} = \frac{3.75 \text{ SR}}{1\$} \implies 1 = 3.75 \frac{\text{SR}}{\$}$$

3rd $15\$ = 15\$ \times 1 = 15\$ \times 3.75 \frac{\text{SR}}{\$} = 56.25 \text{ SR}$

Likewise convert 21.5 inches (in) into cm :

1st Conversion factor: 1 in = 2.54 cm
2nd
$$\frac{1in}{1in} = \frac{2.54 \text{ cm}}{1in} \Rightarrow 1 = 2.54 \frac{\text{cm}}{\text{in}}$$

3rd 21.5 in = 21.5 in ×1 = 21.5 in ×2.54 $\frac{\text{cm}}{\text{in}} = 54.6 \text{ cm}$

```
Example 1:
A distance of 10 ft. is equal to:
(Hint: 1 ft = 12 in and 1 in = 2.54 cm)
= 10 x 12 x 2.54
= 305 cm or ≈ 3 m
```

```
Example 2:
The maximum capacity in liters of a 3-m<sup>3</sup> water tank is:
(Hint: 1 m<sup>3</sup> = 1000 L)
= 3000 L
```

Order of Magnitude; Rapid Estimating

- Sometimes, we are interested in only an approximate value for a quantity. We are interested in obtaining rough or order of magnitude estimates.
- Order of magnitude estimates: Made by rounding off all numbers in a calculation to 1 significant figure, along with power of 10.
 - Can be accurate to within a factor of 10 (often better)

56. In the world, the 14 highest peaks are between 8000 m and 9000 m high. The order-of-magnitude of their height (ارتفاع) is:

А	$1 \times 10^4 \mathrm{m}$
В	$0.1 \times 10^4 \mathrm{m}$
С	$2 \times 10^4 \mathrm{m}$
D	$10 \times 10^4 \mathrm{m}$

Explanation:

 $9000 \text{ m} \sim 10000 \text{ m} = 10^4 \text{ m}$

 $8500 \,\mathrm{m} \sim 9000 \,\mathrm{m} \sim 10000 = 10^4 \,\mathrm{m}$

 $8000 \sim 10000 = 10^4 \text{ m}$

58. The thickness (سماكة) of a 200-page book is 1.0 cm. The thickness of one sheet of this book can be estimated as:

А	0.001 mm
В	0.01 mm
С	0.1 mm√
D	1 mm

Dimensions and Dimensional Analysis[‡]

The dimension of a physical quantity is the type of units or **base quantities** that make it up.

Base quantity	Dimension abbreviation
Length	[L]
Time	[T]
Mass	[M]
•••	•••
Dimension of the velocit	ty & speed = $[V] = \frac{[L]}{[T]}$
	[1]

Dimension of the acceleration =
$$\frac{[L]}{[T^2]}$$

Example:

 \Rightarrow LHS dimension \neq RHS dimension

\Rightarrow The equation is *incorrect*

If LHS dimension = RHS dimension

 $V_{final} = V_{intial} + a \cdot t$ \Rightarrow The equation is *dimensionally correct* (But could be physically incorrect)

Examples

60. The dimensions of volume are:

Α	L ³
В	L^2
С	L^3/T^2
D	$L^{2} T^{-1}$

61. The dimensions of force are:

A	LMT
В	L M T ⁻² ,
С	$L^3 M^2/T^2$
D	$L^2 M T^{-1}$

62. * Which of the following is dimensionally correct?

Α	speed = acceleration / time
В	distance = speed / time
С	$force = mass \times acceleration$
D	density = mass \times volume