Chapter one

Units and Measurements

Measurement and Uncertainty; Significant Figures

NO measurement is absolutely precise OR accurate

Good accuracy
Good precision

Poor accuracy
Good precision

Poor accuracy
Poor precision

Precision refers to the repeatability of a measurement using a given instrument. Accuracy refers to how close a measurement is to the true value

Measurement and Uncertainty; Significant Figures

Main sources of uncertainty (errors):

- Human errors:
- Limited Instrument accuracy (systematic error)

Smallest division $=1 \mathrm{~mm}=0.1 \mathrm{~cm}$

The ruler is precise to within 0.1 cm , \Rightarrow estimated uncertainty (error) $= \pm 0.1 \mathrm{~cm}$

The tiny book is $3.7 \pm 0.1 \mathrm{~cm}$ wide
\Rightarrow its true width likely lies between 3.8 and 3.6 cm

Width of thumbnail $=1.3 \pm 0.1 \mathrm{~cm}$
\Rightarrow it lies between 1.4 and 1.2 cm

Therefore measurement result is expressed as: (Result \pm Error) unit

Measurement result is expressed as:

(Result \pm Error) unit

The percent uncertainty $=\frac{\text { Error }}{\text { Result }} \times 100 \%$

Example 1:

Calculate the percent uncertainty in the measurement: $L=20.2 \pm 0.4 \mathrm{~cm}$

$$
\begin{aligned}
& \text { The Percent Uncertainty (P.U.) }=\frac{\text { Error }}{\text { Result }} \times 100 \% \\
& \text { Error }=0.4 \mathrm{~cm} ; \text { result }=20.2 \mathrm{~cm} \\
& \therefore \text { P.U. }=\frac{0.4 \mathrm{~cm}}{20.2 \mathrm{~cm}} \times 100 \%=1.9801 \% \approx 2 \%
\end{aligned}
$$

Example 2:

What is the percent uncertainty in the measurement of an area A : $\mathrm{A}=2.03 \mathrm{~m}^{2}$

Result $=2.03 \mathrm{~m}^{2}$ (with two decimal places)
\Rightarrow In this case the error is taken as the smallest number with two decimal places.
\Rightarrow Error $=0.01 \mathrm{~m}^{2}$

$$
\begin{aligned}
& \text { The Percent Uncertainty (P.U.) }=\frac{\text { Error }}{\text { Result }} \times 100 \% \\
& \therefore \text { P.U. }=\frac{0.01 \mathrm{~m}^{2}}{2.03 \mathrm{~m}^{2}} \times 100 \% \approx 0.5 \%
\end{aligned}
$$

Significant figure

The number of reliably known digits in a number

For example: $2 \mathrm{~cm}, 2.0 \mathrm{~cm}, \& 2.00 \mathrm{~cm}$ are mathematically the same but experimentally different: They have different significant figures.

Counting rules

Rule 1: All nonzero digits (1, 2, 3, ... 7, 8, 9) are significant figures

Q. determine the number of significant figures in:

11 and 235.68
Ans. $\quad \begin{aligned} & 11 \\ & \\ & \\ & \end{aligned}$ Has two significant figures
235.68 Has five significant figures

Rule 2:

Zeros

Trailing zeros (to the
right of a number)

Number with decimal point \Rightarrow Count
10.00
630.
17.300

Number without
decimal point \Rightarrow Don't count 10

630
$\uparrow \uparrow$
$\underset{\uparrow}{5} \underset{\times \times \times \times}{4000}$

Zeros in-between digits
\Rightarrow Count
$\underset{\uparrow \uparrow \uparrow \uparrow}{2033}$ 1001
$\underset{\times \uparrow \uparrow \uparrow}{0106.22}$

Leading zeros (to the left of a number)
\Rightarrow Don't count
0091
$\times \times \uparrow$
0.1
$\underset{\times}{0.005} \underset{\times}{ } 01$

Trailing zeros: special case

- A whole number (without decimal point) preceded by the word about (approximately, etc ...) \Rightarrow don't count zeros

- A whole number (without decimal point) preceded by the word precisely (accurately, etc ...) \Rightarrow Count zeros precisely $\underset{\uparrow}{80 \mathrm{~cm}}$ Implying $\pm 1 \mathrm{~cm}$ uncertainty precisely 1300 km Implying ± 1 km uncertainty

Check your understanding

17. The number of significant figures in (23.20) is:

A	1
B	2
C	3
D	4

18. The number of significant figures in (0.062) is:

19. The number of decimal places in (0.062) is:

A	1
B	2
C	3
D	4

Significant figure: mathematical operations

Carry out intermediate calculations without rounding. Only round the final answer (outcome) according to the following rules:

1. Multiplications and divisions

Final result presented with significant figures similar to that for the number with least significant figure used in the operation.

$$
11.3 \mathrm{~cm} \times \underset{\uparrow}{2} .0 \mathrm{~cm}=22.6 \mathrm{~cm}^{2} \xrightarrow{\text { Round }}{ }_{\uparrow \uparrow}^{23 \mathrm{~cm}^{2}}
$$

SUGGESTION: Use the significant figures rule, but consider the \% uncertainty too, and add an extra digit if it gives a more realistic estimate of uncertainty. See page 6 in your book for more details

2. Addition and subtraction

Final result presented with decimal places similar to that for the number with least decimal places used in the operation.

$$
9.300 \mathrm{~cm}+0.01 \mathrm{~cm}=9.310 \mathrm{~cm} \xrightarrow{\text { Round }} 9.31 \mathrm{~cm}
$$

Conceptual Example 1.2

 Using protractor, you measure an angle to be 30°.(a) How many significant figures should you quote in this measurement.
$\left(1^{\circ} \Rightarrow\right.$ we write 30° not 30.0°)

(b) Use a calculator to find the cosine of the angle you measure.

Answer:
A. 0.86602540378443864676372317075294
B. 0.8660
C. 0.866
D. 0.87
E. 0.9
F. 1

Check your understanding

20. The area of a ($10.0 \mathrm{~cm} \times 6.5 \mathrm{~cm}$) rectangle is correctly given as:

A	$65 \mathrm{~cm}^{2}$
B	$65.0 \mathrm{~cm}^{2}$
C	$65.00 \mathrm{~cm}^{2}$
D	$65.000 \mathrm{~cm}^{2}$

23. Taking accuracy into account, the difference $\mathrm{D}=\mathrm{A}$ B between two numbers, $A=3.6$ and $B=0.57$, is correctly written as:

A	3.03
B	3.00
C	3.003
D	3.0

Powers of 10
 (Scientific Notation)

- Common to express very large or very small numbers using powers of 10 notation.
- Examples: $39,600=3.96 \times 10^{\mathbf{4}}$
(moved decimal 4 places to left)
$0.0021=2.1 \times 10^{-3}$
(moved decimal 3 places to right)
- Useful for controlling significant figures:

$$
39600 \equiv \underset{\uparrow \uparrow \uparrow \uparrow}{3.960} \times 10^{4}=\underset{\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow}{3.96000} \times 10^{4} \approx \underset{\uparrow}{4} \times 10^{4}
$$

Units, Standards, SI System

- All measured physical quantities have units.
- Units are VITAL in physics!!
- The SI system of units:

SI = "Systéme International" (French)
More commonly called the "MKS system" (meter-kilogram-second) or more simply, "the metric system"

SI or MKS System

- Defined in terms of standards (a standard \equiv one unit of a physical quantity) for length, mass, time,
- Length unit: Meter (m) (kilometer = km = 1000 m)
- Standard meter. Newest definition in terms of speed of light \equiv Length of path traveled by light in vacuum in $(1 / 299,792,458)$ of a second!
- Time unit: Second (s)
- Standard second. Newest definition \equiv time required for 9,192,631,770 oscillations of radiation emitted by cesium atoms!
- An earlier definition is terms of the solar day: ($1 \mathrm{sec}=$ 1/86400 of the solar day)
- Mass unit: Kilogram (kg) (kilogram = $\mathrm{kg}=1000 \mathrm{~g}$)
- Standard kg. A particular platinum-iridium cylinder whose mass is defined as exactly 1 kg

SI Base Quantities and Units

Quantity

1. Length
2. Time
3. Mass
4. Electric current
5. Temperature
6. Amount of substance
7. Luminous intensity

Unit
meter
second
kilogram
ampere
kelvin
mole
candela

Unit Abbreviation

SI Derived Quantities and Units

All physical quantities are defined in terms of the base quantities
Example: Derived units for speed, acceleration and force:

$$
\text { Speed }(\mathrm{m} / \mathrm{s})=\frac{\text { Distance }(\mathrm{m})}{\text { Time }(\mathrm{s})}
$$

$$
\text { Acceleration }\left(\mathrm{m} / \mathrm{s}^{2}\right)=\frac{\Delta \text { velocity }(\mathrm{m} / \mathrm{s})}{\text { Time }(\mathrm{s})}
$$

Force $($ Newton, N$)=\operatorname{Mass}(\mathrm{kg}) \times \operatorname{Acceleration}\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Larger \& smaller units defined from SI standards by powers of 10 \& Greek prefixes

	Prefix	Abbreviation	Value
	exa	E	10^{18}
	peta	P	10^{15}
- H cide	tera	T	10^{12}
	giga	G	10^{9}
Wenes	mega	M	10^{6}
Fullerene	kilo	k	10^{3}
molecule 10000 km	hecto	h	10^{2}
	deka	da	10^{1}
$1 \mathrm{dm} \quad\left(10^{7} \mathrm{~m}\right)$	deci	d	10^{-1}
$\left(10^{-1} \mathrm{~m}\right)$	centi	c	10^{-2}
1 nm	milli	m	10^{-3}
$\left(10^{-9} \mathrm{~m}\right)$	micro ${ }^{+}$	μ	10^{-6}
	nano	n	10^{-9}
	pico	p	10^{-12}
	femto	f	10^{-15}
	atto	a	10^{-18}

Other Systems of Units

- CGS (centimeter-gram-second) system
- Centimeter $=0.01$ meter
- Gram = 0.001 kilogram
- British (foot-pound-second) system
- Our "everyday life" system of units
- Still used in some countries like USA

Converting Units

Suppose you are to convert 15 US Dollar (\$) into Saudi Ryal (SR) :
$1^{\text {st }}$ Find conversion factor: $1 \$=3.75$ SR
$2^{\text {nd }} \frac{1, \$}{1, \$}=\frac{3.75 \mathrm{SR}}{1 \$} \Rightarrow 1=3.75 \frac{\mathrm{SR}}{\$}$
$3^{\text {rd }} \quad \underset{ }{15 \$}=15 \$ \times 1=15 \$ \times 3.75 \frac{\mathrm{SR}}{\$}=56.25 \mathrm{SR}$
Likewise convert 21.5 inches (in) into $\mathbf{~ c m ~ : ~}$
$1^{\text {st }} \quad$ Conversion factor: $1 \mathrm{in}=2.54 \mathrm{~cm}$
$2^{\text {nd }} \quad \frac{1 \text { iní }}{1 \text { in' }}=\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \Rightarrow 1=2.54 \frac{\mathrm{~cm}}{\text { in }}$
3 3rd $\quad 21.5 \mathrm{in}=21.5 \mathrm{in} \times 1=21.5 \mathrm{in}^{\prime} \times 2.54 \frac{\mathrm{~cm}}{\frac{\mathrm{in}}{\mathrm{in}^{\prime}}}=54.6 \mathrm{~cm}$

Example 1:

A distance of 10 ft . is equal to:
(Hint: $1 \mathrm{ft}=12 \mathrm{in}$ and $1 \mathrm{in}=\mathbf{2 . 5 4} \mathrm{cm}$)
$=10 \times 12 \times 2.54$
$=305 \mathrm{~cm}$ or $\approx \mathbf{3} \mathbf{~ m}$

Example 2:
The maximum capacity in liters of a $3-\mathrm{m}^{3}$ water tank is:
(Hint: $1 \mathrm{~m}^{3}=1000 \mathrm{~L}$)
$=3000 \mathrm{~L}$

Order of Magnitude; Rapid Estimating

- Sometimes, we are interested in only an approximate value for a quantity. We are interested in obtaining rough or order of magnitude estimates.
- Order of magnitude estimates: Made by rounding off all numbers in a calculation to 1 significant figure, along with power of 10.
- Can be accurate to within a factor of 10 (often better)

56. In the world, the 14 highest peaks are between 8000 m and 9000 m high. The order-of-magnitude of their height (ارنفاع) is:

A	$1 \times 10^{4} \mathrm{~m} \checkmark$
B	$0.1 \times 10^{4} \mathrm{~m}$
C	$2 \times 10^{4} \mathrm{~m}$
D	$10 \times 10^{4} \mathrm{~m}$

Explanation:

```
9000 m ~ 10000 m = 104 m
\vdots
8500 m~9000 m~10000 = 104 m
8000~ 10000 = 104 m
```

58. The thickness (سماكة) of a 200-page book is 1.0 cm . The thickness of one sheet of this book can be estimated as:

A	0.001 mm
B	0.01 mm
C	$0.1 \mathrm{~mm} \checkmark$
D	1 mm

Dimensions and Dimensional Analysis ${ }^{\ddagger}$

The dimension of a physical quantity is the type of units or base quantities that make it up.

Base quantity
Length
Time
Mass
...

Dimension abbreviation

Dimension of the velocity $\&$ speed $=[\mathrm{V}]=\frac{[\mathrm{L}]}{[\mathrm{T}]}$

$$
\text { Dimension of the acceleration }=\frac{[\mathrm{L}]}{\left[\mathrm{T}^{2}\right]}
$$

Dimensional analysis:

Example:

$$
\begin{aligned}
& V_{\text {Left Hand Side (LHS) }}^{V_{\text {final }}}=\underbrace{V_{\text {intial }}+a \cdot t^{2}}_{\text {Right Hand Side (RHS) }} \\
& \qquad \stackrel{[L]}{\frac{[L]}{[T]}} \stackrel{?}{=} \frac{[L]}{[T]}+\frac{[L]}{\left[T^{2}\right]} \cdot\left[T^{2}\right]=\frac{[L]}{[T]}+[L] \\
& \text { LHS dimension } \\
& \Rightarrow \text { LHS dimension } \neq \text { RHS dimension } \\
& \Rightarrow \text { The equation is incorrect }
\end{aligned}
$$

If LHS dimension $=$ RHS dimension

$$
V_{\text {final }}=V_{\text {intial }}+a \cdot t
$$

\Rightarrow The equation is dimensionally correct
(But could be physically incorrect)

Examples

60. The dimensions of volume are:

A	L^{3}
B	L^{2}
C	L^{3} / T^{2}
D	$L^{2} T^{-1}$

61. The dimensions of force are:

A	L M T
B	$\mathrm{~L} \mathrm{M} \mathrm{T}^{-2}$,
C	$\mathrm{L}^{3} \mathrm{M}^{2} / \mathrm{T}^{2}$
D	$\mathrm{L}^{2} \mathrm{M} \mathrm{T}^{-1}$

62. * Which of the following is dimensionally correct?

A	speed $=$ acceleration $/$ time
B	distance $=$ speed $/$ time
C	force $=$ mass \times acceleration
D	density $=$ mass \times volume

