Chapter 9 Lecture

Chapter 9: Static and Current Electricity

This lecture will help you understand:

- Electric Charge
- Coulomb's Law
- Electric Field
- Electric Current
- Electrical Resistance

- Electric force:
 - a fundamental force of nature can attract some objects and repel others
- Electric charge:
 - fundamental quantity underlying electric force and all electric phenomena
 - comes in two kinds:
 - positive such as protons
 - negative such as electrons

- Fundamental rule for electricity:
 - Like charges repel; unlike charges attract.

(b)

- Protons
 - positive electric charges
 - repel positives, but attract negatives
- Electrons
 - negative electric charges
 - repel negatives, but attract positives
- Neutrons
 - neutral electric charge

- Atom is normally electrically neutral
- Same number of electrons outside nucleus as protons in the nucleus
- Outer electrons in metals
 - loosely bound
 - can move freely
 - can flow
 - can join with other atoms

- Atom losing 1 or more electrons \Rightarrow positive ion
- Atom gaining 1 or more electrons \Rightarrow negative ion
- Amount of work varies in pulling electrons from atoms of different substances
 - very little for metals and other good *conductors*
 - more work for rubber and other good *insulators*

Conductors and Insulators

Electric Conductors

- Materials that allow easy flow of charged particles.
 - outermost electrons of atoms attracted loosely and are easily dislodged—as in metals.
 - innermost electrons strongly attracted to nucleus

Electric Insulators

Materials having tightly bound electrons.

Electric Charge

- Conservation of Charge
 - In any charging process,
 no electrons are created
 or destroyed.
 - Electrons are simply transferred from one material to another.

Electric Charge CHECK YOUR NEIGHBOR

When you brush Fido's fur and scrape electrons from it, the charge of Fido's fur is

- A. positive.
- B. negative.
- C. both A and B.
- D. neither A nor B.

Electric Charge CHECK YOUR ANSWER

- When you brush Fido's fur and scrape electrons from it, the charge of Fido's fur is
- A. positive.
- B. negative.
- C. both A and B.
- D. neither A nor B.

Explanation:

And if electrons were scraped off the brush onto Fido's fur, the fur would have a negative charge.

- Coulomb's Law
 - For a pair of charged objects much smaller than the distance between them, force between them varies directly as
 - the product of their charges
 - and inversely as the square of the separation distance

$$F = k \frac{q_1 q_2}{d^2}$$

- Unit of charge is measured in coulombs, C.
 - The charge of an electron is the fundamental charge

$$= 1.6 \times 10^{-19} \text{ C}.$$

• k is the proportionality constant 9.0 \times 10⁹ N • m²/C²

that converts units to force in Coulomb's law

- like signs of charge—force is repulsion
- unlike signs of charge—force is attraction

- Differences and similarities between gravitational and electrical forces:
 - Gravity only attracts. Electricity can both attract and repel.
 - Both forces can act between things that are not in contact with each other.
 - Both forces act in a straight-line direction between masses or charges.
 - A force field surrounds both: Gravitational field for mass and electric field for charge.

 $F \sim \frac{q_1 q_2}{d^2}$ $F \sim \frac{1}{1^2}$ $\frac{F}{\left(\frac{q_1q_2}{d^2}\right)} = k$ $\frac{F}{\left(\frac{m_1m_2}{d^2}\right)} = G$ $F = G \frac{m_1 m_2}{d^2}$ $F = k \frac{q_1 q_2}{d^2}$

- Charge Polarization
 - Molecules in solids can't move from their relatively stationary positions, but their "centers of charge" can move.
 - This distortion of charge in the atom or molecule is *electric polarization*.

Polarization

- Charge polarization
 - Why a charged rubber balloon sticks to a wall.
 - The charged balloon induces polarization of molecules or atoms in the wall. Negative charges on balloon pull positive sides of molecules near it. Hence a slightly positive induced surface charge on the wall.
 - The balloon sticks.

Electric Field

- Electric field:
 - occupies the space that surrounds any charged object
 - is a vector quantity (having magnitude and direction)
 - magnitude of field at any point is force per unit charge
 - obeys the inverse-square law for a point source

Electric Field

- Field lines:
 - used to visualize electric field
 - show direction of electric field—away from positive and toward negative
 - show intensity of electric field:
 - bunched together \Rightarrow field is strongest
 - lines farther apart \Rightarrow field is weaker

Electric Current

- Electric current:
 - is the flow of electric charge
 - in metal—conduction electrons
 - in fluids—positive and negative ions
 - measured in amperes
- One ampere is the rate of flow of 1 coulomb of charge per second or billion billion electrons per second.
- Actual speed of el6.25ectrons is slow through a wire, but electric signal travels near the speed of light.

Electric Current CHECK YOUR NEIGHBOR

Which of these statements is true?

A. Electric current is a flow of electric charge.

- B. Electric current is stored in batteries.
- C. Both are true.
- D. Neither are true.

Electric Current CHECK YOUR ANSWER

Which of these statements is true?

- A. Electric current is a flow of electric charge.
- B. Electric current is stored in batteries.
- C. Both are true.
- D. Neither are true.

Explanation:

Voltage, not current, is stored in batteries. The voltage will produce a current in a connecting circuit. The battery moves electrons already in the wire, not necessarily those in the battery.

Electric Current

- Electric current may be
 - DC—direct current charges flow in one direction
 - AC—alternating current charges alternate in direction
- Accomplished in a generator or alternator by periodically switching the sign at the terminals

Electrical Resistance

- Electrical resistance:
 - describes how well a circuit component resists the

passage of electric current

defined as the ratio of energy-source voltage to the

current moving through the energy receiver

measured in ohms after 19th century German

physicist Georg Simon Ohm

Electrical Resistance

- Factors affecting electrical resistance:
 - thin wires resist electrical current more than thicker wires
 - long wires offer more electrical resistance
 - materials of wire:
 - copper has a low electrical resistance, so it is used to make connecting wires
 - rubber has an enormous resistance, so it is used in electrical insulators
 - temperature:
 - higher temperature (greater jostling of atoms), greater resistance

Electrical Conductors

- Semiconductors
 - materials that are neither good conductors nor good insulators, whose resistance can be varied
- Superconductors
 - certain metals that acquire infinite conductivity (zero resistance) at temperatures near absolute zero

Electric Current

- Sustained electric current requires suitable voltage source
 - works by pulling negative charges apart from positive ones (available at the terminals of a battery or generator)
 - energy per charge at terminals provides the difference in potential (voltage) to provide "electrical pressure" to move electrons through a circuit