6

Trigonometric Functions

6.1 Angles

Basic Terminology - Degree Measure - Standard Position • Coterminal Angles

Basic Terminology

Two distinct points determine line $\boldsymbol{A B}$.

Line segment $A B$ is a portion of the line between A and B, including points A and B.

Ray $A B$ is a portion of line $A B$ that starts at A and continues through B, and on past B.

Basic Terminology

An angle consists of two rays in a plane with a common endpoint.

The two rays are the sides of the angle.

The common endpoint is called the vertex of the angle.

Basic Terminology

An angle's measure is generated by a rotation about the vertex.

The ray in its initial position is called the initial side of the angle.

The ray in its location after the rotation is the terminal side of the angle.

Basic Terminology

Positive angle: The rotation of the terminal side of an angle is counterclockwise.

Positive angle

Negative angle: The rotation of the terminal side is clockwise.

Negative angle

Degree Measure

The most common unit for measuring angles is the degree.

A complete rotation of a ray gives an angle whose measure is 360°.

$\frac{1}{360}$ of complete rotation gives an angle whose measure is 1°.

Degree Measure

Angles are classified by their measures.

FINDING THE COMPLEMENT AND THE SUPPLEMENT OF AN ANGLE

(a) If the sum of the measures of two positive angles is 90°, the angles are complementary and the angles are complements of each other. $x+y=90$
(b)

If the sum of the measures of two positive angles is 180°, the angles are supplementary and the angles are supplements of each other.
$x+y=180^{\circ}$

For an angle measuring 40°, find the measure of
(a) its complement and (b) its supplement.
(a) To find the measure of its complement, subtract the measure of the angle from 90°.

$$
90^{\circ}-40^{\circ}=50^{\circ} \quad \text { Complement of } 40^{\circ}
$$

(b) To find the measure of its supplement, subtract the measure of the angle from 180°.

$$
180^{\circ}-40^{\circ}=140^{\circ} \quad \text { Supplement of } 40^{\circ}
$$

Find the measure of each marked angle.

Since the two angles form a right angle, they are complementary.

(a)

$$
\begin{aligned}
6 x+3 x & =90 \\
& \\
9 x & =90 \\
& \text { Combine like terms. } \\
x & =10 \\
& \text { Divide by } 9 .
\end{aligned}
$$

Determine the measure of each angle by substituting 10 for $x: \quad 6(10)=60^{\circ} \quad 3(10)=30^{\circ}$

Find the measure of each marked angle.

Since the two angles form a straight angle, they are $(4 x)^{\circ} \quad(6 x)^{\circ}$ supplementary.

$$
\begin{array}{r}
4 x+6 x=180 \\
10 x=180 \\
x=18
\end{array}
$$

The angle measures are $4(18)=72^{\circ}$ and $6(18)=108^{\circ}$.

Degrees, Minutes, Seconds

One minute is $1 / 60$ of a degree.

$$
1^{\prime}=\frac{1}{60}^{\circ} \text { or } 60^{\prime}=1^{\circ}
$$

One second is $1 / 60$ of a minute.

$$
1^{\prime \prime}=\frac{1}{60}^{\prime}=\frac{1}{3600}^{\circ} \text { or } 60^{\prime \prime}=1^{\prime}
$$

CALCULATING WITH DEGREES, MINUTES, AND SECONDS

Perform each calculation.

(a) $51^{\circ} 29^{\prime}+32^{\circ} 46^{\prime}$
$51^{\circ} 29^{\prime}$ Add degrees
$+32^{\circ} 46^{\prime}$ and minutes $83^{\circ} 75^{\prime}$ separately.

$$
\begin{aligned}
83^{\circ} 75^{\prime} & =83^{\circ}+1^{\circ} 15^{\prime} \\
& =84^{\circ} 15^{\prime}
\end{aligned}
$$

(b) $90^{\circ}-73^{\circ} 12^{\prime}$
$89^{\circ} 60^{\prime}$ Write 90° as
$-73^{\circ} 12^{\prime} 89^{\circ} 60^{\prime}$.
$16^{\circ} 48^{\prime}$

CONVERTING BETWEEN DECIMAL degrees and degrees, minutes, AND SECONDS
(a) Convert $74^{\circ} 08^{\prime} 14^{\prime \prime}$ to decimal degrees to the nearest thousandth.

$$
\begin{aligned}
74^{\circ} 08^{\prime} 14^{\prime \prime} & =74^{\circ}+\frac{8}{60}^{\circ}+\frac{14}{3600}^{\circ} \\
& \approx 74^{\circ}+0.1333^{\circ}+0.0039^{\circ} \\
& \approx 74.137^{\circ}
\end{aligned}
$$

CONVERTING BETWEEN DECIMAL degrees and decrees, Minutes, AND SECONDS (continued)
(b) Convert 34.817° to degrees, minutes, and seconds.

$$
\begin{aligned}
& 34.817^{\circ}=34^{\circ}+0.817^{\circ} \\
&=34^{\circ}+0.817\left(60^{\prime}\right) \\
&=34^{\circ}+49.02^{\prime} \\
&=34^{\circ}+49^{\prime}+0.02^{\prime} \\
&=34^{\circ}+49^{\prime}+0.02(60 \prime \prime) \\
&=34^{\circ}+49^{\prime}+1.2^{\prime \prime} \\
& \approx 34^{\circ} 49^{\prime} 01^{\prime \prime} \quad \text { Approximate to the } \\
& \text { nearest second. }
\end{aligned}
$$

Standard Position

An angle is in standard position if its vertex is at the origin and its initial side lies along the positive x-axis.

(a)

(b)

Quandrantal Angles

Angles in standard position whose terminal sides lie along the x-axis or y-axis, such as angles with measures $90^{\circ}, 180^{\circ}, 270^{\circ}$, and so on, are called quadrantal angles.

Coterminal Angles

A complete rotation of a ray results in an angle measuring 360°. By continuing the rotation, angles of measure larger than 360° can be produced. Such angles are called coterminal angles.

The measures of coterminal angles differ by a multiple of 360°.
(a) Find the angle of least positive measure coterminal with an angle of 908°.

Subtract 360° as many times as needed to obtain an angle with measure greater than 0° but less than 360°.

$$
908^{\circ}-2 \cdot 360^{\circ}=188^{\circ}
$$

An angle of 188° is coterminal with an angle of 908°.
(b) Find the angle of least positive measure coterminal with an angle of -75°.

$$
360^{\circ}+\left(-75^{\circ}\right)=285^{\circ}
$$

An angle of -75° is coterminal with an angle of 285°.
(c) Find the angle of least positive measure coterminal with an angle of -800°.

The least integer multiple of 360° greater than 800° is

$$
\begin{aligned}
& 360^{\circ} \cdot 3=1080^{\circ} \\
& 1080^{\circ}+\left(-800^{\circ}\right)=280^{\circ}
\end{aligned}
$$

An angle of -800° is coterminal with an angle of 280°.

Coterminal Angles

To find an expression that will generate all angles coterminal with a given angle, add integer multiples of 360° to the given angle.

For example, the expression for all angles coterminal with 60° is $60^{\circ}+n \cdot 360^{\circ}$.

Coterminal Angles

Value of \boldsymbol{n}	Angle Coterminal with $\mathbf{6 0}^{\circ}$
2	$60^{\circ}+2 \cdot 360^{\circ}=780^{\circ}$
1	$60^{\circ}+1 \cdot 360^{\circ}=420^{\circ}$
0	$60^{\circ}+0 \cdot 360^{\circ}=60^{\circ}$ (the angle itself)
-1	$60^{\circ}+(-1) \cdot 360^{\circ}=-300^{\circ}$

CD players always spin at the same speed. Suppose a player makes 480 revolutions per min. Through how many degrees will a point on the edge of a CD move in 2 sec ?

The player revolves 480 times in 1 min or $\frac{480}{60}$ times = 8 times per sec.

In 2 sec, the player will revolve $2 \cdot 8=16$ times.
Each revolution is 360°, so a point on the edge of the CD will revolve $16 \cdot 360^{\circ}=5760^{\circ}$ in 2 sec.

6

Trigonometric Functions

6.2 Trigonometric Functions

Trigonometric Functions - Quadrantal Angles - Reciprocal Identities - Signs and Ranges of Function Values - Pythagorean Identities - Quotient Identities

Trigonometric Functions

Let (x, y) be a point other the origin on the terminal side of an angle θ in standard position. The distance from the point to the origin is $r=\sqrt{x^{2}+y^{2}}$.

Trigonometric Functions

The six trigonometric functions of θ are defined as follows:

$$
\sin \theta=\frac{y}{r} \quad \cos \theta=\frac{x}{r} \quad \tan \theta=\frac{y}{x}, x \neq 0
$$

$\csc \theta=\frac{r}{y}, y \neq 0 \quad \sec \theta=\frac{r}{x}, x \neq 0 \quad \cot \theta=\frac{x}{y}, y \neq 0$

The terminal side of angle θ in standard position passes through the point $(8,15)$. Find the values of the six trigonometric functions of angle θ.

The figure shows angle θ and the triangle formed by dropping a perpendicular from the point $(8,15)$ to the x-axis.
The point $(8,15)$ is 8 units to the right of the y-axis and 15 units above the x-axis, so $x=8$ and $y=15$.

FINDING FUNCTION VALUES OF AN

 ANGLE (continued)

We can now find the values of the six trigonometric functions of angle θ.

Example 1

$$
\sin \theta=\frac{y}{r}=\frac{15}{17} \quad \cos \theta=\frac{x}{r}=\frac{8}{17} \quad \tan \theta=\frac{y}{x}=\frac{15}{8}
$$

$$
\csc \theta=\frac{r}{y}=\frac{17}{15} \quad \sec \theta=\frac{r}{x}=\frac{17}{8} \quad \cot \theta=\frac{x}{y}=\frac{8}{15}
$$

The terminal side of angle θ in standard position passes through the point $(-3,-4)$. Find the values of the six trigonometric functions of angle θ.

$$
r=\sqrt{(-3)^{2}+(-4)^{2}}=\sqrt{25}=5
$$

Use the definitions of the trigonometric functions.

$$
\sin \theta=\frac{y}{r} \quad \cos \theta=\frac{x}{r} \quad \tan \theta=\frac{y}{x}, x \neq 0
$$

$$
\csc \theta=\frac{r}{y}, y \neq 0 \quad \sec \theta=\frac{r}{x}, x \neq 0 \quad \cot \theta=\frac{x}{y}, y \neq 0
$$

$\sin \theta=\frac{-4}{5}=-\frac{4}{5} \quad \cos \theta=\frac{-3}{5}=-\frac{3}{5} \quad \tan \theta=\frac{-4}{-3}=\frac{4}{3}$
$\csc \theta=\frac{5}{-4}=-\frac{5}{4}$

$$
\sec \theta=\frac{5}{-3}=-\frac{5}{3}
$$

$$
\cot \theta=\frac{-3}{-4}=\frac{3}{4}
$$

Find the six trigonometric function values of the angle θ in standard position, if the terminal side of θ is defined by $x+2 y=0, x \geq 0$.

We can use any point except $(0,0)$ on the terminal side of θ to find the trigonometric function values.
Choose $x=2$.

$$
\begin{aligned}
x+2 y & =0, x \geq 0 \\
2+2 y & =0 \\
2 y & =-2 \Rightarrow y=-1
\end{aligned}
$$

The point $(2,-1)$ lies on the terminal side, and the corresponding value of r is $r=\sqrt{2^{2}+(-1)^{2}}=\sqrt{5}$.
$\sin \theta=\frac{y}{r}=\frac{-1}{\sqrt{5}}=\frac{-1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=-\frac{\sqrt{5}}{5}$ Multiply by $\frac{\sqrt{5}}{\sqrt{5}}$ to rationalize
$\cos \theta=\frac{x}{r}=\frac{2}{\sqrt{5}}=\frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{2 \sqrt{5}}{5}$ the denominators.
$\tan \theta=\frac{y}{x}=-\frac{1}{2}$
$\cot \theta=\frac{x}{y}=-2$
$\sec \theta=\frac{r}{x}=\frac{\sqrt{5}}{2}$

$$
\csc \theta=\frac{r}{y}=-\sqrt{5}
$$

HOMEWORK 2

FINDING FUNCTION VALUES OF QUADRANTAL ANGLES

(a) Find the values of the six trigonometric functions for an angle of 90°.

The terminal side passes through (0,1). So $x=0, y=1$, and $r=1$.
$\sin 90^{\circ}=\frac{1}{1}=1$
$\cos 90^{\circ}=\frac{0}{1}=0$
$\tan 90^{\circ}=\frac{1}{0}$
undefined
$\csc 90^{\circ}=\frac{1}{1}=1$
$\sec 90^{\circ}=\frac{1}{0}$
$\cot 90^{\circ}=\frac{0}{1}=0$ undefined

HOMEWORK 2

FINDING FUNCTION VALUES OF QUADRANTAL ANGLES

(b) Find the values of the six trigonometric functions for an angle θ in standard position with terminal side through $(-3,0)$.

$x=-3, y=0$, and $r=3$.
$\begin{array}{lll}\sin \theta=\frac{0}{3}=0 & \cos \theta=\frac{-3}{3}=-1 & \tan \theta=\frac{0}{-3}=0 \\ \csc \theta=\frac{3}{0} & \sec \theta=\frac{3}{-3}=-1 & \cot \theta=\frac{-3}{0}\end{array}$
undefined
undefined

Function Values

Identify the terminal side of a quadrantal angle. If the terminal side of the quadrantal angle lies along the y-axis, then the tangent and secant functions are undefined.

If the terminal side of a quadrantal angle lies along the x-axis, then the cotangent and cosecant functions are undefined.

Function Values of Quadrantal Angles

$\boldsymbol{\theta}$	$\boldsymbol{\operatorname { s i n } \boldsymbol { \theta }}$	$\boldsymbol{\operatorname { c o s } \theta}$	$\boldsymbol{\operatorname { t a n } \theta}$	$\boldsymbol{\operatorname { c o t } \boldsymbol { \theta }}$	$\sec \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c s c } \boldsymbol { \theta }}$
$\mathbf{0}^{\circ}$	0	1	0	Undefined	1	Undefined
$\mathbf{9 0}^{\circ}$	1	0	Undefined	0	Undefined	1
$\mathbf{1 8 0}^{\circ}$	0	-1	0	Undefined	-1	Undefined
$\mathbf{2 7 0}^{\circ}$	-1	0	Undefined	0	Undefined	-1
$\mathbf{3 6 0}^{\circ}$	0	1	0	Undefined	1	Undefined

Using a Calculator

Function values of

 quadrantal angles can be found with a calculator that has trigonometric function keys. Make sure the calculator is set in degree mode.

TI-83 Plus

TI-84 Plus

Caution
 One of the most common errors involving calculators in trigonometry occurs when the calculator is set for radian measure, rather than degree measure. Be sure you know how to set your calculator in degree mode.

Reciprocal Identities

For all angles θ for which both functions are defined,

$$
\begin{array}{lll}
\sin \theta=\frac{1}{\csc \theta} & \cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{1}{\cot \theta} \\
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta}
\end{array}
$$

Find $\cos \theta$, given that $\sec \theta=\frac{5}{3}$.
Since $\cos \theta$ is the reciprocal of $\sec \theta$,

$$
\cos \theta=\frac{1}{\sec \theta}=\frac{1}{\frac{5}{3}}=\frac{3}{5}
$$

Find $\sin \theta$, given that $\csc \theta=-\frac{\sqrt{12}}{2}$. Since $\sin \theta$ is the reciprocal of $\csc \theta$,

$$
\begin{aligned}
\sin \theta & =\frac{1}{\csc \theta}=\frac{1}{-\frac{\sqrt{12}}{2}}=-\frac{2}{\sqrt{12}} \\
& =-\frac{2}{2 \sqrt{3}}=-\frac{1}{\sqrt{3}} \quad \sqrt{12}=\sqrt{4 \cdot 3}=2 \sqrt{3} \\
& =-\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \quad \begin{array}{l}
\text { Rationalize the } \\
\text { denominator. }
\end{array} \\
& =-\frac{\sqrt{3}}{3}
\end{aligned}
$$

Signs of Function Values

θ in Quadrant	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\cot \theta$	$\sec \theta$	$\csc \theta$
I	+	+	+	+	+	+
II	+	-	-	-	-	+
III	-	-	+	+	-	-
IV	-	+	-	-	+	-

Signs of Function Values

$x<0, y>0, r>0$	${ }^{y}$ ($x>0, y>0, r>0$
II Sine and cosecant positive	I All functions positive
$x<0, y<0, r>0$	${ }^{0} x>0, y<0, r>0$
Tangent and cotangent positive	Cosine and secant positive

Determine the signs of the trigonometric functions of an angle in standard position with the given measure.
(a) 87°

The angle lies in the first quadrant, so all of its trigonometric function values are positive.
(b) 300°

The angle lies in quadrant IV, so the cosine and secant are positive, while the sine, cosecant, tangent, and cotangent are negative.

Determine the signs of the trigonometric functions of an angle in standard position with the given measure.
(c) -200°

The angle lies in quadrant II, so the sine and cosecant are positive, and all other function values are negative.

Identify the quadrant (or possible quadrants) of any angle θ that satisfies the given conditions.
(a) $\sin \theta>0, \tan \theta<0$.

Since $\sin \theta>0$ in quadrants I and II, and $\tan \theta<0$ in quadrants II and IV, both conditions are met only in quadrant II.
(b) $\cos \theta<0, \sec \theta<0$

The cosine and secant functions are both negative in quadrants II and III, so θ could be in either of these two quadrants.

Ranges of Trigonometric Functions

Trigonometric Function of $\boldsymbol{\theta}$	Range (Set-Builder Notation)	Range (Interval Notation)
$\sin \theta, \cos \theta$	$\{y\|\|y\| \leq 1\}$	$[-1,1]$
$\tan \theta, \cot \theta$	$\{y \mid y$ is a real number $\}$	$(-\infty, \infty)$
$\sec \theta, \csc \theta$	$\{y\|\|y\| \geq 1\}$	$(-\infty,-1] \cup[1, \infty)$

DECIDING WHETHER A VALUE IS IN THE RANGE OF A TRIGONOMETRIC FUNCTION

Decide whether each statement is possible or impossible.
(a) $\sin \theta=2.5$

For any value of θ, we know that $-1 \leq \sin \theta \leq 1$. Since $2.5>1$, it is impossible to find a value of θ that satisfies $\sin \theta=2.5$.
(b) $\tan \theta=110.47$

The tangent function can take on any real number value. Thus, $\tan \theta=110.47$ is possible.
(c) $\sec \theta=0.6$

Since $|\sec \theta| \geq 1$ for all θ for which the secant is defined, the statement $\sec \theta=0.6$ is impossible.

FINDING ALL FUNCTION VALUES GIVEN ONE VALUE AND THE QUADRANT

Suppose that angle θ is in quadrant II and $\sin \theta=\frac{2}{3}$. Find the values of the other five trigonometric functions.

Choose any point on the terminal side of angle θ.

$$
\sin \theta=\frac{2}{3}=\frac{y}{r}
$$

Let $r=3$. Then $y=2$.

$$
x^{2}+y^{2}=r^{2} \Rightarrow x^{2}+2^{2}=3^{2} \Rightarrow x^{2}=5 \Rightarrow x= \pm \sqrt{5}
$$

Since θ is in quadrant II, $x=-\sqrt{5}$.

FINDING ALL FUNCTION VALUES GIVEN ONE VALUE AND THE QUADRANT (continued)

$$
\begin{aligned}
\cos \theta & =\frac{x}{r}=-\frac{\sqrt{5}}{3} \\
\sec \theta & =\frac{r}{x}=\frac{3}{-\sqrt{5}} \quad \begin{array}{c}
\begin{array}{c}
\text { Remen } \\
\text { rationa } \\
\text { denom }
\end{array} \\
\\
\end{array}=-\frac{3}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=-\frac{3 \sqrt{5}}{5} \\
\tan \theta & =\frac{y}{x}=\frac{2}{-\sqrt{5}} \\
& =-\frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=-\frac{2 \sqrt{5}}{5}
\end{aligned}
$$

FINDING ALL FUNCTION VALUES GIVEN ONE VALUE AND THE QUADRANT (continued)

$$
\cot \theta=\frac{x}{y}=-\frac{\sqrt{5}}{2}
$$

$$
\csc \theta=\frac{r}{y}=\frac{3}{2}
$$

Pythagorean Identities منطابقات فـيثاغثورث

For all angles θ for which the function values are defined, the following identities hold.

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \tan ^{2} \theta+1=\sec ^{2} \theta \\
& 1+\cot ^{2} \theta=\csc ^{2} \theta
\end{aligned}
$$

هنطابقات Quotient Identities

For all angles θ for which the denominators are not zero, the following identities hold.

$$
\frac{\sin \theta}{\cos \theta}=\tan \theta \quad \frac{\cos \theta}{\sin \theta}=\cot \theta
$$

HOMEWORK 5

Find $\sin \theta$ and $\tan \theta$, given that $\cos \theta=-\frac{\sqrt{3}}{4}$ and $\sin \theta>0$.
Start with $\sin ^{2} \theta+\cos ^{2} \theta=1$.

$$
\begin{aligned}
\sin ^{2} \theta+\left(-\frac{\sqrt{3}}{4}\right)^{2} & =1 \\
\sin ^{2} \theta & =\frac{13}{16}
\end{aligned}
$$

$$
\sin \theta= \pm \sqrt{\frac{13}{16}}= \pm \frac{\sqrt{13}}{4}
$$

$$
\sin \theta=\frac{\sqrt{13}}{} \quad \begin{aligned}
& \text { Choose the positive }
\end{aligned}
$$

$$
\sin \theta=\frac{0}{4} \text { square root since } \sin \theta>0 .
$$

HOMEWORK 5

USING IDENTITIES TO FIND FUNCTION VALUES (continued)

To find $\tan \theta$, use the quotient identity $\tan \theta=\frac{\sin \theta}{\cos \theta}$.

$$
\begin{aligned}
\tan \theta & =\frac{\sin \theta}{\cos \theta}=\frac{\frac{\sqrt{13}}{4}}{-\frac{\sqrt{3}}{4}}=-\frac{\sqrt{13}}{\sqrt{3}} \\
& =-\frac{\sqrt{13}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=-\frac{\sqrt{39}}{3}
\end{aligned}
$$

Caution

Be careful to choose the correct sign when square roots are taken.

Find $\sin \theta$ and $\cos \theta$, given that $\tan \theta=\frac{4}{3}$ and θ is in quadrant III.

Solution: Since θ is in quadrant III, $\sin \theta$ and $\cos \theta$ will both be negative. It is tempting to say that since

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{4}{3} \text { and } \tan \theta=\frac{4}{3}
$$

then $\sin \theta=-4$ and $\cos \theta=-3$. This is incorrect, however, since both $\sin \theta$ and $\cos \theta$ must be in the interval $[-1,1]$.

Use the identity $\tan ^{2} \theta+1=\sec ^{2} \theta$ to find $\sec \theta$. Then use the reciprocal identity to find $\cos \theta$.

$$
\begin{aligned}
&\left(\frac{4}{3}\right)^{2}+1=\sec ^{2} \theta \\
& \frac{25}{9}=\sec ^{2} \theta \\
&-\frac{5}{3}=\sec \theta \\
& \begin{array}{l}
\text { Choose the negative } \\
\text { square root since sec } \theta<0 \\
\text { when } \theta \text { is in quadrant III. }
\end{array} \\
&-\frac{3}{5}=\cos \theta \\
& \begin{array}{l}
\text { Secant and cosine are } \\
\text { reciprocals. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\sin ^{2} \theta & =1-\cos ^{2} \theta \\
\sin ^{2} \theta & =1-\left(-\frac{3}{5}\right)^{2} \\
\sin ^{2} \theta & =\frac{16}{25} \\
\sin \theta & =-\frac{4}{5}
\end{aligned}
$$

Choose the negative
square root since $\sin \theta<0$ for θ in quadrant III.

This example can also be worked by sketching θ in standard position in quadrant III, finding r to be 5, and then using the definitions of $\sin \theta$ and $\cos \theta$ in terms of x, y, and r.

6

Trigonometric Functions

6.3 Evaluating Trigonometric Functions

Right-Triangle-Based Definitions of the Trigonometric Functions * Cofunctions - Trigonometric Function Values of Special Angles Reference Angles - Special Angles as Reference Angles -
Finding Function Values Using a Calculator - Finding Angle ملغي Measures

Right-Triangle-Based Definitions of Trigonometric Functions

Let A represent any acute angle in standard position.

$$
\begin{array}{ll}
\sin A=\frac{y}{r}=\frac{\text { side opposite } A}{\text { hypotenuse }} & \csc A=\frac{r}{y}=\frac{\text { hypotenuse }}{\text { side opposite } A} \\
\cos A=\frac{x}{r}=\frac{\text { side adjacent to } A}{\text { hypotenuse }} & \sec A=\frac{r}{x}=\frac{\text { hypotenuse }}{\text { side adjacent to } A} \\
\tan A=\frac{y}{x}=\frac{\text { side opposite } A}{\text { side adjacent to } A} & \cot A=\frac{x}{y}=\frac{\text { side adjacent to } A}{\text { side opposite } A}
\end{array}
$$

Find the sine, cosine, and tangent values for angles A and B.

$$
\begin{aligned}
& \sin A=\frac{\text { side opposite }}{\text { hypotenuse }}=\frac{7}{25} \\
& \cos A=\frac{\text { side adjacent }}{\text { hypotenuse }}=\frac{24}{25} \\
& \tan A=\frac{\text { side opposite }}{\text { side adjacent }}=\frac{7}{24}
\end{aligned}
$$

Find the sine, cosine, and tangent values for angles A and B.

$$
\begin{aligned}
& \sin B=\frac{\text { side opposite }}{\text { hypotenuse }}=\frac{24}{25} \\
& \cos B=\frac{\text { side adjacent }}{\text { hypotenuse }}=\frac{7}{25} \\
& \tan B=\frac{\text { side opposite }}{\text { side adjacent }}=\frac{24}{7}
\end{aligned}
$$

Cofunction Identities ملغي

For any acute angle A, cofunction values of complementary angles are equal.
$\sin A=\cos \left(90^{\circ}-A\right) \quad \cos A=\sin \left(90^{\circ}-A\right)$
$\tan A=\cot \left(90^{\circ}-A\right) \quad \cot A=\tan \left(90^{\circ}-A\right)$
$\sec A=\csc \left(90^{\circ}-A\right) \quad \csc A=\sec \left(90^{\circ}-A\right)$

Write each function in terms of its cofunction.

(a) $\cos 52^{\circ}=\sin \left(90^{\circ}-52^{\circ}\right)=\sin 38^{\circ}$
(b) $\tan 71^{\circ}=\cot \left(90^{\circ}-71^{\circ}\right)=\cot 19^{\circ}$
(c) $\sec 24^{\circ}=\csc \left(90^{\circ}-24^{\circ}\right)=\csc 66^{\circ}$

$30^{\circ}-60^{\circ}$ Triangles

Bisect one angle of an equilateral triangle to create two $30^{\circ}-60^{\circ}$ triangles.

Equilateral triangle

$30^{\circ}-60^{\circ}$ Triangles

Use the Pythagorean theorem to solve for x.

$$
\begin{aligned}
2^{2} & =1^{2}+x^{2} \\
4 & =1+x^{2} \\
3 & =x^{2} \\
\sqrt{3} & =x
\end{aligned}
$$

Find the six trigonometric function values for a 60° angle.
$\sin 60^{\circ}=\frac{\text { side opposite }}{\text { hypotenuse }}=\frac{\sqrt{3}}{2}$
$\cos 60^{\circ}=\frac{\text { side adjacent }}{\text { hypotenuse }}=\frac{1}{2}$
$\tan 60^{\circ}=\frac{\text { side opposite }}{\text { side adjacent }}=\frac{\sqrt{3}}{1}=\sqrt{3}$

Find the six trigonometric function values for a 60° angle.
$\cot 60^{\circ}=\frac{\text { side adjacent }}{\text { side opposite }}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$
$\sec 60^{\circ}=\frac{\text { hypotenuse }}{\text { side adjacent }}=\frac{2}{1}=2$
$\csc 60^{\circ}=\frac{\text { hypotenuse }}{\text { side opposite }}=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$

$45^{\circ}-45^{\circ}$ Right Triangles

Use the Pythagorean theorem to

 solve for r.$$
\begin{aligned}
1^{2}+1^{2} & =r^{2} \\
2 & =r^{2} \\
\sqrt{2} & =r
\end{aligned}
$$

$45^{\circ}-45^{\circ}$ right triangle

$45^{\circ}-45^{\circ}$ Right Triangles

$\sin 45^{\circ}=\frac{\text { side opposite }}{\text { hypotenuse }}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$

$\tan 45^{\circ}=\frac{\text { side opposite }}{\text { side adjacent }}=\frac{1}{1}=1$
$45^{\circ}-45^{\circ}$ right triangle

$45^{\circ}-45^{\circ}$ Right Triangles

$\cot 45^{\circ}=\frac{\text { side adjacent }}{\text { side opposite }}=\frac{1}{1}=1$
$\sec 45^{\circ}=\frac{\text { hypotenuse }}{\text { side adjacent }}=\frac{\sqrt{2}}{1}=\sqrt{2}$

$\csc 45^{\circ}=\frac{\text { hypotenuse }}{\text { side opposite }}=\frac{\sqrt{2}}{1}=\sqrt{2}$
$45^{\circ}-45^{\circ}$ right triangle

Function Values of Special Angles

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\cot \theta$	$\sec \theta$	$\csc \theta$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$

Reference Angles

A reference angle for an angle θ is the positive acute angle made by the terminal side of angle θ and the x-axis.

θ in quadrant II

θ in quadrant III

θ in quadrant IV

Caution

A common error is to find the reference angle by using the terminal side of θ and the y-axis.

The reference angle is always found with reference to the x-axis.

Homework 2(a) FINDING REFERENCE ANGLES

Find the reference angle for an angle of 218°.
The positive acute angle made by the terminal side of this angle and the x-axis is $218^{\circ}-180^{\circ}=38^{\circ}$.

For $\theta=218^{\circ}$, the reference angle $\theta^{\prime}=38^{\circ}$.

Example 4(b) FINDING REFERENCE ANGLES

Find the reference angle for an angle of 1387°.
First find a coterminal angle between 0° and 360°.

Divide 1387° by 360 to get a quotient of about 3.9. Begin by subtracting 360° three times. $1387^{\circ}-3\left(360^{\circ}\right)=307^{\circ}$.

$$
360^{\circ}-307^{\circ}=53^{\circ}
$$

The reference angle for 307° (and thus for 1387°) is $360^{\circ}-307^{\circ}=53^{\circ}$.

Reference Angle $\boldsymbol{\theta}^{\prime}$ for $\boldsymbol{\theta}$, where $\mathbf{0}^{\circ}<\boldsymbol{\theta}<\mathbf{3 6 0}^{\circ}$

Find the values of the six trigonometric functions for 210°.

The reference angle for a
210° angle is
$210^{\circ}-180^{\circ}=30^{\circ}$.
Choose point P on the terminal side of the angle so
 the distance from the origin to P is 2.

$$
r=2, x=-\sqrt{3}, y=-1
$$

$\sin 210^{\circ}=\frac{-1}{2}=-\frac{1}{2}$
$\cos 210^{\circ}=\frac{-\sqrt{3}}{2}=-\frac{\sqrt{3}}{2}$
$\tan 210^{\circ}=\frac{-1}{-\sqrt{3}}=\frac{\sqrt{3}}{3}$
$\cot 210^{\circ}=\frac{-\sqrt{3}}{-1}=\sqrt{3}$

$\sec 210^{\circ}=\frac{2}{-\sqrt{3}}=-\frac{2 \sqrt{3}}{3}$
$\csc 210^{\circ}=\frac{2}{-1}=-2$

Finding Trigonometric Function Values For Any Nonquadrantal Angle θ

Step 1 If $\theta>360^{\circ}$, or if $\theta<0^{\circ}$, find a coterminal angle by adding or subtracting 360° as many times as needed to get an angle greater than 0° but less than 360°.

Step 2 Find the reference angle θ^{\prime}.
Step 3 Find the trigonometric function values for reference angle θ^{\prime}.

Finding Trigonometric Function Values For Any Nonquadrantal Angle θ (continued)

Step 4 Determine the correct signs for the values found in Step 3. This gives the values of the trigonometric functions for angle θ.

Homework 3(a)

Find the exact value of $\cos \left(-240^{\circ}\right)$.
Since an angle of -240° is coterminal with an angle of $-240^{\circ}+360^{\circ}=120^{\circ}$, the reference angle is $180^{\circ}-120^{\circ}=60^{\circ}$.

$$
\begin{aligned}
\cos \left(-240^{\circ}\right) & =\cos 120^{\circ} \\
& =-\cos 60^{\circ} \\
& =-\frac{1}{2}
\end{aligned}
$$

Find the exact value of $\tan 675^{\circ}$.
Subtract 360° to find a coterminal angle between 0° and $360^{\circ}: 675^{\circ}-360^{\circ}=315^{\circ}$.
The reference angle is $360^{\circ}-315^{\circ}=45^{\circ}$. An angle of 315° is in quadrant IV, so the tangent will be negative.

$$
\begin{aligned}
\tan 675^{\circ} & =\tan 315^{\circ} \\
& =-\tan 45^{\circ} \\
& =-1
\end{aligned}
$$

Approximate the value of each expression.
(a) $\sin 49^{\circ} 12^{\prime} \approx 0.75699506$
(b) $\sec 97.977^{\circ}$

Calculators do not have a secant key, so first find cos 97.977° and then take the reciprocal.
$\sec 97.977^{\circ} \approx-7.20587921$

Approximate the value of each expression.
(c) $\frac{1}{\cot 51.4283^{\circ}}$

Use the reciprocal identity
$\tan \theta=\frac{1}{\cot \theta}$.
$\frac{1}{\cot 51.4283^{\circ}}=\tan 51.4283^{\circ} \approx 1.25394815$
(d) $\sin \left(-246^{\circ}\right) \approx-0.91354546$

USING INVERSE TRIGONOMETRIC FUNCTIONS TO FIND ANGLES

Use a calculator to find an angle θ in the interval [$0^{\circ}, 90^{\circ}$] that satisfies each condition.
(a) $\sin \theta \approx 0.96770915$

Use degree mode and the inverse sine function.
$\theta=\sin ^{-1} 0.96770915 \approx 75.399995^{\circ}$

$\left\|\begin{array}{c} \sin -1(96776915) \\ \cos -1\left(\frac{1}{1.5959554}\right. \\ 18.51470432 \end{array}\right\|$	

Use the identity $\cos \theta=\frac{1}{\sec \theta}$.
$\theta=\cos ^{-1}\left(\frac{1}{1.0545829}\right) \approx 18.514704^{\circ}$

Caution

To determine the secant of an angle, we find the reciprocal of the cosine of the angle. To determine an angle with a given secant value, we find the inverse cosine of the reciprocal of the value.

Find all values of θ, if θ is in the interval $\left[0^{\circ}, 360^{\circ}\right.$) and $\cos \theta=-\frac{\sqrt{2}}{2}$.
Since $\cos \theta$ is negative, θ must lie in quadrant II or III.
The absolute value of $\cos \theta$ is $\frac{\sqrt{2}}{2}$, so the reference angle is 45°.

The angle in quadrant II is
$180^{\circ}-45^{\circ}=135^{\circ}$.

The angle in quadrant III is

$$
180^{\circ}+45^{\circ}=225^{\circ} .
$$

Example 10 FINDING GRADE RESISTANCE

When an automobile travels uphill or downhill on a highway, it experiences a force due to gravity. This force F in pounds is the grade resistance and is modeled by the equation $F=W \sin \theta$, where θ is the grade and W is the weight of the automobile. If the automobile is moving uphill, then $\theta>0^{\circ}$; if downhill, then $\theta<0^{\circ}$.

(a) Calculate F to the nearest 10 lb for a $2500-\mathrm{lb}$ car traveling an uphill grade with $\theta=2.5^{\circ}$.

$$
F=W \sin \theta=2500 \sin 2.5^{\circ} \approx 110 \mathrm{lb}
$$

(b) Calculate F to the nearest 10 lb for a $5000-\mathrm{lb}$ truck traveling a downhill grade with $\theta=-6.1^{\circ}$.

$$
F=W \sin \theta=5000 \sin \left(-6.1^{\circ}\right) \approx-530 \mathrm{lb}
$$

F is negative because the truck is moving downhill.
(c) Calculate F for $\theta=0^{\circ}$ and $\theta=90^{\circ}$. Do these answers agree with your intuition?

$$
\begin{aligned}
& F=W \sin \theta=W \sin 0^{\circ}=W(0)=0 \mathrm{lb} \\
& F=W \sin \theta=W \sin 90^{\circ}=W(1)=W \mathrm{lb}
\end{aligned}
$$

If $\theta=0^{\circ}$, then there is level ground and gravity does not cause the vehicle to roll.

If $\theta=90^{\circ}$, then the road is vertical and the full weight of the vehicle would be pulled downward by gravity, so $F=W$.

