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PREFACE

This ninth edition of Calculus maintains those aspects of previous editions that have led
to the series’ success—we continue to strive for student comprehension without sacrificing
mathematical accuracy, and the exercise sets are carefully constructed to avoid unhappy
surprises that can derail a calculus class. However, this edition also has many new features
that we hope will attract new users and also motivate past users to take a fresh look at our
work. We had two main goals for this edition:

* To make those adjustments to the order and content that would align the text more
precisely with the most widely followed calculus outlines.

¢ Toadd new elements to the text that would provide a wider range of teaching and learning
tools.

All of the changes were carefully reviewed by an advisory committee of outstanding teachers
comprised of both users and nonusers of the previous edition. The charge of this committee
was to ensure that all changes did not alter those aspects of the text that attracted users of
the eighth edition and at the same time provide freshness to the new edition that would
attract new users. Some of the more substantive changes are described below.

. NEW FEATURES IN THIS EDITION

New Elements in the Exercises We added new true/false exercises, new writing
exercises, and new exercise types that were requested by reviewers of the eighth edition.

Making Connections We added this new element to the end of each chapter. A
Making Connections exercise synthesizes concepts drawn across multiple sections of its
chapter rather than using ideas from a single section as is expected of a regular or review
exercise.

Reorganization of Review Material The precalculus review material that was in
Chapter 1 of the eighth edition forms Chapter O of the ninth edition. The body of material
in Chapter 1 of the eighth edition that is not generally regarded as precalculus review was
moved to appropriate sections of the text in this edition. Thus, Chapter 0 focuses exclusively
on those preliminary topics that students need to start the calculus course.

Parametric Equations Reorganized In the eighth edition, parametric equations
were introduced in the first chapter and picked up again later in the text. Many instructors
asked that we return to the traditional organization, and we have done so; the material on
parametric equations is now first introduced and then discussed in detail in Section 10.1
(Parametric Curves). However, to support those instructors who want to continue the
eighth edition path of giving an early exposure to parametric curves, we have provided
Web materials (Web Appendix I) as well as self-contained exercise sets on the topic in
Section 6.4 (Length of a Plane Curve) and Section 6.5 (Area of a Surface of Revolution).

vii
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Also, Section 14.4 (Surface Area; Parametric Surfaces) has been reorganized so surfaces
of the form z = f(x, y) are discussed before surfaces defined parametrically.

Differential Equations Reorganized We reordered and revised the chapter on
differential equations so that instructors who cover only separable equations can do so
without a forced diversion into general first-order equations and other unrelated topics.
This chapter can be skipped entirely by those who do not cover differential equations at all
in calculus.

New 2D Discussion of Centroids and Center of Gravity In the eighth edition
and earlier, centroids and center of gravity were covered only in three dimensions. In this
edition we added a new section on that topic in Chapter 6 (Applications of the Definite
Integral), so centroids and center of gravity can now be studied in two dimensions, as is
common in many calculus courses.

Related Rates and Local Linearity Reorganized The sections on related rates
and local linearity were moved to follow the sections on implicit differentiation and loga-
rithmic, exponential, and inverse trigonometric functions, thereby making a richer variety
of techniques and functions available to study related rates and local linearity.

Rectilinear Motion Reorganized The more technical aspects of rectilinear motion
that were discussed in the introductory discussion of derivatives in the eighth edition have
been deferred so as not to distract from the primary task of developing the notion of the
derivative. This also provides a less fragmented development of rectilinear motion.

Other Reorganization The section Graphing Functions Using Calculators and Com-
puter Algebra Systems, which appeared in the text body of the eighth edition, is now a text
appendix (Appendix A), and the sections Mathematical Models and Second-Order Linear
Homogeneous Differential Equations are now posted on the Web site that supports the text.

. OTHER FEATURES

Flexi bility This edition has a built-in flexibility that is designed to serve a broad spectrum
of calculus philosophies—from traditional to “reform.” Technology can be emphasized or
not, and the order of many topics can be permuted freely to accommodate each instructor’s
specific needs.

Rigor The challenge of writing a good calculus book is to strike the right balance between
rigor and clarity. Our goal is to present precise mathematics to the fullest extent possible
in an introductory treatment. Where clarity and rigor conflict, we choose clarity; however,
we believe it to be important that the student understand the difference between a careful
proof and an informal argument, so we have informed the reader when the arguments
being presented are informal or motivational. Theory involving €-§ arguments appears in
a separate section so that it can be covered or not, as preferred by the instructor.

Rule of Four The “rule of four” refers to presenting concepts from the verbal, algebraic,
visual, and numerical points of view. In keeping with current pedagogical philosophy, we
used this approach whenever appropriate.

Visualization This edition makes extensive use of modern computer graphics to clarify
concepts and to develop the student’s ability to visualize mathematical objects, particularly
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those in 3-space. For those students who are working with graphing technology, there are
many exercises that are designed to develop the student’s ability to generate and analyze
mathematical curves and surfaces.

Quick Check Exercises Each exercise set begins with approximately five exercises
(answers included) that are designed to provide students with an immediate assessment
of whether they have mastered key ideas from the section. They require a minimum of
computation and are answered by filling in the blanks.

Focus on Concepts Exercises Each exercise set contains a clearly identified group
of problems that focus on the main ideas of the section.

Technology Exercises Most sections include exercises that are designed to be solved
using either a graphing calculator or a computer algebra system such as Mathematica,
Maple, or the open source program Sage. These exercises are marked with an icon for easy
identification.

Applicability of Calculus One of the primary goals of this text is to link calculus
to the real world and the student’s own experience. This theme is carried through in the
examples and exercises.

Career Preparation This text is written at a mathematical level that will prepare stu-
dents for a wide variety of careers that require a sound mathematics background, including
engineering, the various sciences, and business.

Trigonometry Review Deficiencies in trigonometry plague many students, so we
have included a substantial trigonometry review in Appendix B.

Appendix on Polynomial Equations Because many calculus students are weak
in solving polynomial equations, we have included an appendix (Appendix C) that reviews
the Factor Theorem, the Remainder Theorem, and procedures for finding rational roots.

Principles of Integral Evaluation The traditional Techniques of Integration is
entitled “Principles of Integral Evaluation” to reflect its more modern approach to the
material. The chapter emphasizes general methods and the role of technology rather than
specific tricks for evaluating complicated or obscure integrals.

Historical Notes The biographies and historical notes have been a hallmark of this
text from its first edition and have been maintained. All of the biographical materials have
been distilled from standard sources with the goal of capturing and bringing to life for the
student the personalities of history’s greatest mathematicians.

Margin Notes and Warnings These appear in the margins throughout the text to
clarify or expand on the text exposition or to alert the reader to some pitfall.
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. SUPPLEMENTS FOR THE STUDENT

Print Supplements

The Student Solutions Manual (978-0470-37958-5) provides students with detailed solu-
tions to odd-numbered exercises from the text. The structure of solutions in the manual
matches those of worked examples in the textbook.

Student Companion Site
The Student Companion Site provides access to the following student supplements:

Web Quizzes, which are short, fill-in-the-blank quizzes that are arranged by chapter and
section.

Additional textbook content, including answers to odd-numbered exercises and appen-
dices.

WileyPLUS
WileyPLUS, Wiley’s digital-learning environment, is loaded with all of the supplements
above, and also features the following:

The E-book, which is an exact version of the print text, but also features hyperlinks to
questions, definitions, and supplements for quicker and easier support.

The Student Study Guide provides concise summaries for quick review, checklists, com-
mon mistakes/pitfalls, and sample tests for each section and chapter of the text.

The Graphing Calculator Manual helps students to get the most out of their graphing
calculator and shows how they can apply the numerical and graphing functions of their
calculators to their study of calculus.

Guided Online (GO) Exercises prompt students to build solutions step by step. Rather
than simply grading an exercise answer as wrong, GO problems show students precisely
where they are making a mistake.

Are You Ready? quizzes gauge student mastery of chapter concepts and techniques and
provide feedback on areas that require further attention.

Algebra and Trigonometry Refresher quizzes provide students with an opportunity to
brush up on material necessary to master calculus, as well as to determine areas that
require further review.

. SUPPLEMENTS FOR THE INSTRUCTOR

Print Supplements
The Instructor’s Solutions Manual (978-0470-37957-8) contains detailed solutions to all
exercises in the text.
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The Instructor’s Manual (978-0470-37956-1) suggests time allocations and teaching plans
for each section in the text. Most of the teaching plans contain a bulleted list of key points to
emphasize. The discussion of each section concludes with a sample homework assignment.

The Test Bank (978-0470-40856-8) features nearly 7000 questions and answers for every
section in the text.

Instructor Companion Site
The Instructor Companion Site provides detailed information on the textbook’s features,
contents, and coverage and provides access to the following instructor supplements:

e The Computerized Test Bank features nearly 7000 questions—mostly algorithmically
generated—that allow for varied questions and numerical inputs.

¢ PowerPoint slides cover the major concepts and themes of each section in a chapter.

¢ Personal-Response System questions (“Clicker Questions”) appear at the end of each
PowerPoint presentation and provide an easy way to gauge classroom understanding.

¢ Additional textbook content, such as Calculus Horizons and Explorations, back-of-the-
book appendices, and selected biographies.

WileyPLUS
WileyPLUS, Wiley’s digital-learning environment, is loaded with all of the supplements
above, and also features the following:

¢ Homework management tools, which easily allow you to assign and grade questions, as
well as gauge student comprehension.

¢ QuickStart features predesigned reading and homework assignments. Use them as-is or
customize them to fit the needs of your classroom.

e The E-book, which is an exact version of the print text but also features hyperlinks to
questions, definitions, and supplements for quicker and easier support.

* Animated applets, which can be used in class to present and explore key ideas graph-
ically and dynamically—especially useful for display of three-dimensional graphs in
multivariable calculus.
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. THE ROOTS OF CALCULUS

The Roots of Calculus xix

Today’s exciting applications of calculus have roots that can
be traced to the work of the Greek mathematician Archimedes,
but the actual discovery of the fundamental principles of cal-
culus was made independently by Isaac Newton (English) and
Gottfried Leibniz (German) in the late seventeenth century.
The work of Newton and Leibniz was motivated by four major
classes of scientific and mathematical problems of the time:

¢ Find the tangent line to a general curve at a given point.

¢ Find the area of a general region, the length of a general
curve, and the volume of a general solid.

¢ Find the maximum or minimum value of a quantity—for
example, the maximum and minimum distances of a planet
from the Sun, or the maximum range attainable for a pro-
jectile by varying its angle of fire.

¢ Given a formula for the distance traveled by a body in any
specified amount of time, find the velocity and acceleration
of the body at any instant. Conversely, given a formula that

specifies the acceleration of velocity at any instant, find the
distance traveled by the body in a specified period of time.

Newton and Leibniz found a fundamental relationship be-
tween the problem of finding a tangent line to a curve and
the problem of determining the area of a region. Their real-
ization of this connection is considered to be the “discovery
of calculus.” Though Newton saw how these two problems
are related ten years before Leibniz did, Leibniz published
his work twenty years before Newton. This situation led to a
stormy debate over who was the rightful discoverer of calculus.
The debate engulfed Europe for half a century, with the scien-
tists of the European continent supporting Leibniz and those
from England supporting Newton. The conflict was extremely
unfortunate because Newton’s inferior notation badly ham-
pered scientific development in England, and the Continent in
turn lost the benefit of Newton’s discoveries in astronomy and
physics for nearly fifty years. In spite of it all, Newton and
Leibniz were sincere admirers of each other’s work.

ISAAC NEWTON (1642-1727)

Newton was born in the village of Woolsthorpe, England. His father died be-
fore he was born and his mother raised him on the family farm. As a youth he
showed little evidence of his later brilliance, except for an unusual talent with
mechanical devices—he apparently built a working water clock and a toy flour
mill powered by a mouse. In 1661 he entered Trinity College in Cambridge
with a deficiency in geometry. Fortunately, Newton caught the eye of Isaac
Barrow, a gifted mathematician and teacher. Under Barrow’s guidance New-
ton immersed himself in mathematics and science, but he graduated without any
special distinction. Because the bubonic plague was spreading rapidly through
London, Newton returned to his home in Woolsthorpe and stayed there during
the years of 1665 and 1666. In those two momentous years the entire framework
of modern science was miraculously created in Newton’s mind. He discovered
calculus, recognized the underlying principles of planetary motion and gravity,
and determined that “white” sunlight was composed of all colors, red to violet.
For whatever reasons he kept his discoveries to himself. In 1667 he returned to
Cambridge to obtain his Master’s degree and upon graduation became a teacher
at Trinity. Then in 1669 Newton succeeded his teacher, Isaac Barrow, to the

Lucasian chair of mathematics at Trinity, one of the most honored chairs of mathematics in

the world.

Thereafter, brilliant discoveries flowed from Newton steadily. He formulated the law
of gravitation and used it to explain the motion of the moon, the planets, and the tides; he
formulated basic theories of light, thermodynamics, and hydrodynamics; and he devised
and constructed the first modern reflecting telescope. Throughout his life Newton was
hesitant to publish his major discoveries, revealing them only to a select circle of friends,
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perhaps because of a fear of criticism or controversy. In 1687, only after intense coaxing
by the astronomer, Edmond Halley (discoverer of Halley’s comet), did Newton publish his
masterpiece, Philosophiae Naturalis Principia Mathematica (The Mathematical Principles
of Natural Philosophy). This work is generally considered to be the most important and
influential scientific book ever written. In it Newton explained the workings of the solar
system and formulated the basic laws of motion, which to this day are fundamental in
engineering and physics. However, not even the pleas of his friends could convince Newton
to publish his discovery of calculus. Only after Leibniz published his results did Newton
relent and publish his own work on calculus.

After twenty-five years as a professor, Newton suffered depression and a nervous break-
down. He gave up research in 1695 to accept a position as warden and later master of the
London mint. During the twenty-five years that he worked at the mint, he did virtually no
scientific or mathematical work. He was knighted in 1705 and on his death was buried in
Westminster Abbey with all the honors his country could bestow. It is interesting to note
that Newton was a learned theologian who viewed the primary value of his work to be its
support of the existence of God. Throughout his life he worked passionately to date biblical
events by relating them to astronomical phenomena. He was so consumed with this passion
that he spent years searching the Book of Daniel for clues to the end of the world and the
geography of hell.

Newton described his brilliant accomplishments as follows: “I seem to have been only
like a boy playing on the seashore and diverting myself in now and then finding a smoother
pebble or prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered
before me.”

GOTTFRIED WILHELM LEIBNIZ (1646-1716)

This gifted genius was one of the last people to have mastered most major fields
of knowledge—an impossible accomplishment in our own era of specialization.
He was an expert in law, religion, philosophy, literature, politics, geology,
metaphysics, alchemy, history, and mathematics.

Leibniz was born in Leipzig, Germany. His father, a professor of moral
philosophy at the University of Leipzig, died when Leibniz was six years old.
The precocious boy then gained access to his father’s library and began reading
voraciously on a wide range of subjects, a habit that he maintained throughout
his life. At age fifteen he entered the University of Leipzig as a law student
and by the age of twenty received a doctorate from the University of Altdorf.
Subsequently, Leibniz followed a career in law and international politics, serv-
ing as counsel to kings and princes. During his numerous foreign missions,
Leibniz came in contact with outstanding mathematicians and scientists who
stimulated his interest in mathematics—most notably, the physicist Christian
Huygens. In mathematics Leibniz was self-taught, learning the subject by read-
ing papers and journals. As a result of this fragmented mathematical education,
Leibniz often rediscovered the results of others, and this helped to fuel the
debate over the discovery of calculus.

Leibniz never married. He was moderate in his habits, quick-tempered but easily ap-
peased, and charitable in his judgment of other people’s work. In spite of his great achieve-
ments, Leibniz never received the honors showered on Newton, and he spent his final years
as a lonely embittered man. At his funeral there was one mourner, his secretary. An eye-
witness stated, “He was buried more like a robber than what he really was—an ornament
of his country.”
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The development of calculus in the
seventeenth and eighteenth
centuries was motivated by the need
to understand physical phenomena
such as the tides, the phases of the
moon, the nature of light, and

gravity.

m FUNCTIONS

.. BEFORE CALCULUS

One of the important themes in calculus is the analysis of relationships between physical or
mathematical quantities. Such relationships can be described in terms of graphs, formulas,
numerical data, or words. In this chapter we will develop the concept of a “function,” which is
the basic idea that underlies almost all mathematical and physical relationships, regardless of
the form in which they are expressed. We will study properties of some of the most basic
functions that occur in calculus, including polynomials, trigonometric functions, inverse
trigonometric functions, exponential functions, and logarithmic functions.

In this section we will define and develop the concept of a “function,” which is the basic
mathematical object that scientists and mathematicians use to describe relationships
between variable quantities. Functions play a central role in calculus and its applications.

DEFINITION OF A FUNCTION

Many scientific laws and engineering principles describe how one quantity depends on
another. This idea was formalized in 1673 by Gottfried Wilhelm Leibniz (see p. xx) who
coined the term function to indicate the dependence of one quantity on another, as described
in the following definition.

0.1.1 perFINITION If a variable y depends on a variable x in such a way that each
value of x determines exactly one value of y, then we say that y is a function of x.

Four common methods for representing functions are:

e Numerically by tables e Geometrically by graphs
e Algebraically by formulas e Verbally
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Table 0.1.1
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INDIANAPOLIS 500
QUALIFYING SPEEDS

YEAR t SPEED S
(mi/h)
1989 223.885
1990 225.301
1991 224.113
1992 232.482
1993 223.967
1994 228.011
1995 231.604
1996 233.100
1997 218.263
1998 223.503
1999 225.179
2000 223471
2001 226.037
2002 231.342
2003 231.725
2004 222.024
2005 227.598
2006 228.985
D
Time of Arrival of Arrival of
earthquake P-waves S-waves
shock

11.8

minutes

Time in minutes
0 10

9.4
minutes i

The method of representation often depends on how the function arises. For example:

Table 0.1.1 shows the top qualifying speed S for the Indianapolis 500 auto race as a
function of the year ¢. There is exactly one value of S for each value of 7.

Figure 0.1.1 is a graphical record of an earthquake recorded on a seismograph. The
graph describes the deflection D of the seismograph needle as a function of the time
T elapsed since the wave left the earthquake’s epicenter. There is exactly one value
of D for each value of T'.

Some of the most familiar functions arise from formulas; for example, the formula
C = 2nr expresses the circumference C of a circle as a function of its radius 7. There
is exactly one value of C for each value of r.

Sometimes functions are described in words. For example, Isaac Newton’s Law of
Universal Gravitation is often stated as follows: The gravitational force of attraction
between two bodies in the Universe is directly proportional to the product of their
masses and inversely proportional to the square of the distance between them. This
is the verbal description of the formula

nimy

F=G6—73

r

in which F is the force of attraction, m; and m, are the masses, r is the distance be-
tween them, and G is a constant. If the masses are constant, then the verbal description
defines F as a function of r. There is exactly one value of F for each value of r.

Surface waves

‘ ‘ 20 0 0 i 0 0 0 7
A Figure 0.1.1
In the mid-eighteenth century the Swiss mathematician Leonhard Euler (pronounced
¥ “oiler”) conceived the idea of denoting functions by letters of the alphabet, thereby making
it possible to refer to functions without stating specific formulas, graphs, or tables. To
C;rrg;:trﬁr understand Euler’s idea, think of a function as a computer program that takes an input x,
Input x || Output y operates on it in some way, and produces exactly one output y. The computer program is an
object in its own right, so we can give it a name, say f. Thus, the function f (the computer
program) associates a unique output y with each input x (Figure 0.1.2). This suggests the
A Figure 0.1.2 following definition.
225
g %(7)2 . :. .. . 0.1.2 DEFINITION A function f is arule that associates a unique output with each
g 150 A i, input. If the input is denoted by x, then the output is denoted by f(x) (read “f of x”).
= 125 LY
= 100 RN I
® 75 5
£ S0p Hm UL In this definition the term unigue means “exactly one.” Thus, a function cannot assign
10 15 20 25 30 two different outputs to the same input. For example, Figure 0.1.3 shows a plot of weight
Age A (years) versus age for a random sample of 100 college students. This plot does not describe W

A Figure 0.1.3

as a function of A because there are some values of A with more than one corresponding
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value of W. This is to be expected, since two people with the same age can have different
weights.

I INDEPENDENT AND DEPENDENT VARIABLES
For a given input x, the output of a function f is called the value of f at x or the image of
x under f. Sometimes we will want to denote the output by a single letter, say y, and write

y = f(x)

This equation expresses y as a function of x; the variable x is called the independent
variable (or argument) of f, and the variable y is called the dependent variable of f. This
terminology is intended to suggest that x is free to vary, but that once x has a specific value a
corresponding value of y is determined. For now we will only consider functions in which
the independent and dependent variables are real numbers, in which case we say that f is
areal-valued function of a real variable. Later, we will consider other kinds of functions.

» Example 1

Table 0.1.2 Table 0.1.2 describes a functional relationship y = f(x) for which
x| 0| 1] 2|3 f(0)=3 f associates y = 3 with x = 0.
y|3|4]|-1|6 f(l)y=4 f associates y = 4 with x = 1.
f2)=-1 f associates y = —1 with x = 2.
f(3) =6 f associates y = 6 with x = 3. | <«

» Example 2 The equation

y=3x"—4x +2

has the form y = f(x) in which the function f is given by the formula

Leonhard Euler (1707-1783) Euler was probably the
most prolific mathematician who ever lived. It has been
said that “Euler wrote mathematics as effortlessly as most
men breathe.” He was born in Basel, Switzerland, and
was the son of a Protestant minister who had himself
studied mathematics. Euler’s genius developed early. He
attended the University of Basel, where by age 16 he obtained both a
Bachelor of Arts degree and a Master’s degree in philosophy. While
at Basel, Euler had the good fortune to be tutored one day a week in
mathematics by a distinguished mathematician, Johann Bernoulli.
At the urging of his father, Euler then began to study theology. The
lure of mathematics was too great, however, and by age 18 Euler
had begun to do mathematical research. Nevertheless, the influence
of his father and his theological studies remained, and throughout
his life Euler was a deeply religious, unaffected person. At various
times Euler taught at St. Petersburg Academy of Sciences (in Rus-
sia), the University of Basel, and the Berlin Academy of Sciences.
Euler’s energy and capacity for work were virtually boundless. His
collected works form more than 100 quarto-sized volumes and it is

f(x) =3x>—4x +2

believed that much of his work has been lost. What is particularly
astonishing is that Euler was blind for the last 17 years of his life,
and this was one of his most productive periods! Euler’s flawless
memory was phenomenal. Early in his life he memorized the entire
Aeneid by Virgil, and at age 70 he could not only recite the entire
work but could also state the first and last sentence on each page
of the book from which he memorized the work. His ability to
solve problems in his head was beyond belief. He worked out in his
head major problems of lunar motion that baffled Isaac Newton and
once did a complicated calculation in his head to settle an argument
between two students whose computations differed in the fiftieth
decimal place.

Following the development of calculus by Leibniz and Newton,
results in mathematics developed rapidly in a disorganized way. Eu-
ler’s genius gave coherence to the mathematical landscape. He was
the first mathematician to bring the full power of calculus to bear
on problems from physics. He made major contributions to virtu-
ally every branch of mathematics as well as to the theory of optics,
planetary motion, electricity, magnetism, and general mechanics.
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Figure 0.1.4 shows only portions of the
graphs. Where appropriate, and unless
indicated otherwise, it is understood
that graphs shown in this text extend
indefinitely beyond the boundaries of
the displayed figure.

Since +/x is imaginary for negative val-
ues of x, there are no points on the
graph of y = ./x in the region where
x < 0.

(x, f(x))
y =/

ST

A Figure 0.1.5 The y-coordinate of a

point on the graph of y = f(x) is the n

value of f at the corresponding
x-coordinate.

For each input x, the corresponding output y is obtained by substituting x in this formula.
For example,

£(0) = 3(0)2 —4(0) +2 =2
F(=1.7) =3(=1.7)2 —4(=1.7) +2 = 17.47

f(N2)=3(2) —4/2+2=8-42

f associates y = 2 with x = 0.

f associates y = 17.47 with x = —1.7.

f associates y = 8 — 4/2 withx = /2. <«

GRAPHS OF FUNCTIONS

If f is a real-valued function of a real variable, then the graph of f in the xy-plane is
defined to be the graph of the equation y = f(x). For example, the graph of the function
f(x) = x is the graph of the equation y = x, shown in Figure 0.1.4. That figure also shows
the graphs of some other basic functions that may already be familiar to you. In Appendix
A we discuss techniques for graphing functions using graphing technology.

2 3
=X y =X =X
4 \ Y y 7 b y P A Y y
3 = 6 B 6 L
2 - 4 -
I - 5 I 2 -
0 | Il Il Il Il Il Il Ix 4 — 0 | Il Il Il Il Il Il Ix
—1 L 3 B ) L
-2 L 5 _4 L
-3 L -6 L
_ - 1 E _ -
-4-3-2-1 0 1 2 3 4 o1 | R E 8-6-4-2 0 2 4 6 8
1 L
-3 -2 -1 0 1 2 3
3
y )= 1/x ) =+x =x
4 Y y 4 h Y y 4 Ay Y
3 301 3 L
2 2 1
i - . 1t . 2 i
0 | I N I | | 0 | | S Y I A N I | 1 L
-1 - -1 = oL—1 1 | Ly
2 - =2 1 |
-3 L =3 r
—4 L -4 -2 B
5-4-3-2-1 0123435 -10123456789 -3 L

-8 -6-4-2 07 2 4 6 8
A Figure 0.1.4

Graphs can provide valuable visual information about a function. For example, since
the graph of a function f in the xy-plane is the graph of the equation y = f(x), the points
on the graph of f are of the form (x, f(x)); thatis, the y-coordinate of a point on the graph
of f is the value of f at the corresponding x-coordinate (Figure 0.1.5). The values of x
for which f(x) = 0 are the x-coordinates of the points where the graph of f intersects the
x-axis (Figure 0.1.6). These values are called the zeros of f, the roots of f(x) = 0, or the
x-intercepts of the graph of y = f(x).

THE VERTICAL LINE TEST

Not every curve in the xy-plane is the graph of a function. For example, consider the curve
in Figure 0.1.7, which is cut at two distinct points, (a, b) and (a, c¢), by a vertical line. This
curve cannot be the graph of y = f(x) for any function f; otherwise, we would have

fl@)=>b and f(a)=c
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which is impossible, since f cannot assign two different values to a. Thus, there is no
function f whose graph is the given curve. This illustrates the following general result,
which we will call the vertical line test.

0.1.3 THE VERTICAL LINE TEST A curve in the xy-plane is the graph of some function
f if and only if no vertical line intersects the curve more than once.

A Figure 0.1.6 f has zeros at x1, 0, xp,

and x3.

(a, )

—— |@n

» Example 3 The graph of the equation
x?+y? =25

isacircle of radius 5 centered at the origin and hence there are vertical lines that cut the graph
more than once (Figure 0.1.8). Thus this equation does not define y as a function of x. <«

xl THE ABSOLUTE VALUE FUNCTION

a

A Figure 0.1.7 This curve cannot be
the graph of a function.

Recall that the absolute value or magnitude of a real number x is defined by

x| x, x>0
X| =
—x, x<0

The effect of taking the absolute value of a number is to strip away the minus sign if the

Symbols such as +x and —x are de-
ceptive, since it is tempting to conclude
that +-x is positive and —x is negative.
However, this need not be so, since x
itself can be positive or negative. For
example, if x is negative, say x = —3,
then —x = 3 is positive and +x = —3
is negative.

X2 +y*=25

A Figure 0.1.8

WARNING

number is negative and to leave the number unchanged if it is nonnegative. Thus,

51=5. |=3|=3 101=0

A more detailed discussion of the properties of absolute value is given in Web Appendix
F. However, for convenience we provide the following summary of its algebraic properties.

0.1.4 PROPERTIES OF ABSOLUTE VALUE If a and b are real numbers, then

(a) |— a| = |a | A number and its negative have the same absolute value.

(b) lab| = |a]|b] The absolute value of a product is the product of the absolute values.
(¢) la/bl =la|/|b],b #0  The absolute value of a ratio is the ratio of the absolute values.

d) la+b| <lal+ |b]| The friangle inequality

The graph of the function f(x) = |x| can be obtained by graphing the two parts of the
equation c x>0
y — { b p—
—x, x<0

separately. Combining the two parts produces the V-shaped graph in Figure 0.1.9.
Absolute values have important relationships to square roots. To see why this is so, recall

To denote the negative square root you
must write —,/x. For example, the
positive square root of 9 is /9 =3,
whereas the negative square root of 9
is —+v/9 = —3. (Do not make the mis-
take of writing \/§ =+3)

from algebra that every positive real number x has two square roots, one positive and one
negative. By definition, the symbol ,/x denotes the positive square root of x.

Care must be exercised in simplifying expressions of the form Vx2, since it is not always
true that +/x2 = x. This equation is correct if x is nonnegative, but it is false if x is negative.
For example, if x = —4, then

Vil=J(—42 =16 =4 #x



6 Chapter 0 / Before Calculus

TECHNOLOGY MASTERY

Verify (1) by using a graphing utility to
show that the equations y = +/x2 and
y = |x| have the same graph.

|
Y y=I

S5-4-3-2-1 0 1
A Figure 0.1.9

2 3 45

Ay

N

=2 -1 1 2
A Figure 0.1.10

REMARK |

© Brian Horisk/Alamy

The wind chill index measures the
sensation of coldness that we feel from
the combined effect of temperature and
wind speed.

A statement that is correct for all real values of x is

Vx2 = x| (1)

PIECEWISE-DEFINED FUNCTIONS
The absolute value function f(x) = |x|is an example of a function that is defined piecewise
in the sense that the formula for f changes, depending on the value of x.

» Example 4 Sketch the graph of the function defined piecewise by the formula

0, x < -1
f)={v1—-x2%2, —-l1l<x<l
X, x>1

Solution. The formula for f changes at the points x = —1 and x = 1. (We call these the
breakpoints for the formula.) A good procedure for graphing functions defined piecewise
is to graph the function separately over the open intervals determined by the breakpoints,
and then graph f at the breakpoints themselves. For the function f in this example the
graph is the horizontal ray y = 0 on the interval (—oo, —1], it is the semicircle y = +/1 — x2
on the interval (—1, 1), and it is the ray y = x on the interval [1, +o). The formula for f
specifies that the equation y = 0 applies at the breakpoint —1 [so y = f(—1) = 0], and it
specifies that the equation y = x applies at the breakpoint 1 [so y = f(1) = 1]. The graph
of f is shown in Figure 0.1.10. «

In Figure 0.1.10 the solid dot and open circle at the breakpoint x = 1 serve to emphasize that the point
on the graph lies on the ray and not the semicircle. There is no ambiguity at the breakpoint x = —1
because the two parts of the graph join together continuously there.

» Example 5 Increasing the speed at which air moves over a person’s skin increases
the rate of moisture evaporation and makes the person feel cooler. (This is why we fan
ourselves in hot weather.) The wind chill index is the temperature at a wind speed of 4
mi/h that would produce the same sensation on exposed skin as the current temperature
and wind speed combination. An empirical formula (i.e., a formula based on experimental
data) for the wind chill index W at 32°F for a wind speed of v mi/h is

32, 0<v<3

= 155.628 — 22.070016, 3 <

A computer-generated graph of W(v) is shown in Figure 0.1.11.

35
30
25
20 |-
15

Wind chill W (°F)

I N N T N N NN N N S S |
5 10 1520 25 30 35 40 45 50 55 60 65 70 75

Wind speed v (mi/h)

» Figure 0.1.11 Wind chill versus 0
wind speed at 32°F



One might argue that a physical square
cannot have a side of length zero.
However, it is often convenient mathe-
matically to allow zero lengths, and we
will do so throughout this text where
appropriate.

Range

Domain

A Figure 0.1.12 The projection of
y = f(x) on the x-axis is the set of
allowable x-values for f, and the
projection on the y-axis is the set of
corresponding y-values.

For a review of trigonometry see Ap-
pendix B.
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Il DOMAIN AND RANGE

If x and y are related by the equation y = f(x), then the set of all allowable inputs (x-values)
is called the domain of f, and the set of outputs (y-values) that result when x varies over
the domain is called the range of f. For example, if f is the function defined by the table
in Example 1, then the domain is the set {0, 1, 2, 3} and the range is the set {—1, 3, 4, 6}.

Sometimes physical or geometric considerations impose restrictions on the allowable
inputs of a function. For example, if y denotes the area of a square of side x, then these
variables are related by the equation y = x2. Although this equation produces a unique
value of y for every real number x, the fact that lengths must be nonnegative imposes the
requirement that x > 0.

When a function is defined by a mathematical formula, the formula itself may impose
restrictions on the allowable inputs. For example, if y = 1/x, then x = 0is not an allowable
input since division by zero is undefined, and if y = \/x, then negative values of x are not
allowable inputs because they produce imaginary values for y and we have agreed to
consider only real-valued functions of a real variable. In general, we make the following
definition.

0.1.5 peFINITION Ifareal-valued function of a real variable is defined by a formula,
and if no domain is stated explicitly, then it is to be understood that the domain consists
of all real numbers for which the formula yields a real value. This is called the natural
domain of the function.

The domain and range of a function f can be pictured by projecting the graphof y = f(x)
onto the coordinate axes as shown in Figure 0.1.12.

» Example 6 Find the natural domain of

(@) f(x)=ux? () f(x) =1/[(x — D(x —3)]
(¢) f(x)=tanx (d) f(x) =+x2—-5x+6

Solution (a). The function f has real values for all real x, so its natural domain is the
interval (—oo, +0).

Solution (b). The function f has real values for all real x, except x = 1 and x = 3,
where divisions by zero occur. Thus, the natural domain is

{x:x # landx # 3} = (—oo, ) U (1, 3) U (3, +)

Solution (¢). Since f(x) = tanx = sinx/ cosx, the function f has real values except
where cos x = 0, and this occurs when x is an odd integer multiple of 7r/2. Thus, the natural

domain consists of all real numbers except
w 3w  Sw
X=*—,£—, +—, ...
2 2 2

Solution (d). The function f has real values, except when the expression inside the
radical is negative. Thus the natural domain consists of all real numbers x such that

X =5x4+6=x—-3)(x—-2)>0
This inequality is satisfied if x < 2 or x > 3 (verify), so the natural domain of f is

(—o0, 2] U [3, +) <«
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y y=x In some cases we will state the domain explicitly when defining a function. For example,
if f(x) = x? is the area of a square of side x, then we can write

fx)y=x% x>0

to indicate that we take the domain of f to be the set of nonnegative real numbers (Fig-
3 ure 0.1.13).

B THE EFFECT OF ALGEBRAIC OPERATIONS ON THE DOMAIN
y y=xLx20 Algebraic expressions are frequently simplified by canceling common factors in the nu-
merator and denominator. However, care must be exercised when simplifying formulas for
functions in this way, since this process can alter the domain.

x » Example 7 The natural domain of the function

x> -4
x =2

fx) =

2
A Figure 0.1.13

consists of all real x except x = 2. However, if we factor the numerator and then cancel
the common factor in the numerator and denominator, we obtain

(x —2)(x +2) _

) = =———

x+2 3

L

6

5

4
3 Since the right side of (3) has a value of f(2) =4 and f(2) was undefined in (2), the
/ T algebraic simplification has changed the function. Geometrically, the graph of (3) is the
7/2_1 [ 12345 line in Figure 0.1.14a, whereas the graph of (2) is the same line but with a hole at x = 2,
since the function is undefined there (Figure 0.1.14b). In short, the geometric effect of the

(a) algebraic cancellation is to eliminate the hole in the original graph. <«

B Sometimes alterations to the domain of a function thatresult from algebraic simplification
L > are irrelevant to the problem at hand and can be ignored. However, if the domain must be
% preserved, then one must impose the restrictions on the simplified function explicitly. For

\ example, if we wanted to preserve the domain of the function in Example 7, then we would

x have to express the simplified form of the function as

\
712—1 ,‘1£3‘z‘1§
fx)=x+2, x#2

A Figure 0.1.14

» Example 8 Find the domain and range of

@ f)=2+vx—1 (b fx)=@&+D/(x—-1)

Solution (a). Since no domain is stated explicitly, the domain of f is its natural domain,

y
=24x—1 [1, +). As x varies over the interval [1, +o0), the value of +/x — 1 varies over the interval

sk y
A [0, +0), so the value of f(x) =2+ +/x — 1 varies over the interval [2, +o), which is
N the range of f. The domain and range are highlighted in green on the x- and y-axes in
oL Figure 0.1.15.
] -

; é :‘ g é 7‘ é é 1‘0 > Solution (b). The given function f is defined for all real x, except x = 1, so the natural

3 ron ).
domain of f is
A Figure 0.1.15 {x :x #1} = (=00, ) U (1, 40)
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To determine the range it will be convenient to introduce a dependent variable

_x+1
Tx—1

“

Although the set of possible y-values is not immediately evident from this equation, the
graph of (4), which is shown in Figure 0.1.16, suggests that the range of f consists of all
v, except y = 1. To see that this is so, we solve (4) for x in terms of y:

x—-—1Dy=x+1

xy—y=x+1

A Figure 0.1.16 xy—x=y+1
Ky—D=y+1

y+1

X="—

y—1

It is now evident from the right side of this equation that y = 1 is not in the range; otherwise
we would have a division by zero. No other values of y are excluded by this equation, so the
range of the function f is {y : y # 1} = (—o0, 1) U (1, +o0), which agrees with the result
obtained graphically. <

I DOMAIN AND RANGE IN APPLIED PROBLEMS
In applications, physical considerations often impose restrictions on the domain and range
of a function.

» Example 9 An open box is to be made from a 16-inch by 30-inch piece of card-

board by cutting out squares of equal size from the four corners and bending up the sides
(Figure 0.1.17a).

(a) Let V be the volume of the box that results when the squares have sides of length x.
Find a formula for V as a function of x.

(b) Find the domain of V.
(c) Use the graph of V given in Figure 0.1.17c¢ to estimate the range of V.

(d) Describe in words what the graph tells you about the volume.

Solution (a). As shown in Figure 0.1.17b, the resulting box has dimensions 16 — 2x by
30 — 2x by x, so the volume V (x) is given by

V(x) = (16 — 2x)(30 — 2x)x = 480x — 92x% + 4x3

800 -
700 [
600 [~
500 [~
400 [~
300 [~
200 [
100

Volume V of box (in®)

T ; | |
‘ 30in I 30 -2x | L J

01 2 3 4 5 6 7 8 9
Side x of square cut (in)

(a) ) (0)
A Figure 0.1.17
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Radar Tracking
6000
5000
4000
3000
2000
1000

Distance D (ft)

I S I N B
0 10 20 30 40 50 60

8:05AM. Timet(s) 8:06a.m.
A Figure 0.1.18

N

The circle is squashed because 1
unit on the y-axis has a smaller
length than 1 unit on the x-axis.

A Figure 0.1.19

In applications where the variables on
the two axes have unrelated units (say,
centimeters on the y-axis and seconds
on the x-axis), then nothing is gained
by requiring the units to have equal
lengths; choose the lengths to make
the graph as clear as possible.

Solution (b). The domain is the set of x-values and the range is the set of V-values.
Because x is a length, it must be nonnegative, and because we cannot cut out squares whose
sides are more than 8 in long (why?), the x-values in the domain must satisfy

0<x<8

Solution (c). From the graph of V versus x in Figure 0.1.17¢ we estimate that the V-
values in the range satisfy 0<V <725

Note that this is an approximation. Later we will show how to find the range exactly.

Solution (d). The graph tells us that the box of maximum volume occurs for a value of
x that is between 3 and 4 and that the maximum volume is approximately 725 in®. The
graph also shows that the volume decreases toward zero as x gets closer to O or 8, which
should make sense to you intuitively. <

In applications involving time, formulas for functions are often expressed in terms of a
variable r whose starting value is taken to be t = 0.

» Example 10 At 8:05 A.M. a car is clocked at 100 ft/s by a radar detector that is
positioned at the edge of a straight highway. Assuming that the car maintains a constant
speed between 8:05 AM. and 8:06 A.M., find a function D(¢) that expresses the distance
traveled by the car during that time interval as a function of the time 7.

Solution. Tt would be clumsy to use the actual clock time for the variable 7, so let us
agree to use the elapsed time in seconds, starting with # = 0 at 8:05 A.M. and ending with
t = 60 at 8:06 A.M. At each instant, the distance traveled (in ft) is equal to the speed of the
car (in ft/s) multiplied by the elapsed time (in s). Thus,

D(t) =100z, 0<t <60

The graph of D versus ¢ is shown in Figure 0.1.18. «

ISSUES OF SCALE AND UNITS
In geometric problems where you want to preserve the “true” shape of a graph, you must
use units of equal length on both axes. For example, if you graph a circle in a coordinate
system in which 1 unit in the y-direction is smaller than I unit in the x-direction, then the
circle will be squashed vertically into an elliptical shape (Figure 0.1.19).

However, sometimes it is inconvenient or impossible to display a graph using units of
equal length. For example, consider the equation

y=2x°

If we want to show the portion of the graph over the interval —3 < x < 3, then there is
no problem using units of equal length, since y only varies from O to 9 over that interval.
However, if we want to show the portion of the graph over the interval —10 < x < 10, then
there is a problem keeping the units equal in length, since the value of y varies between 0
and 100. In this case the only reasonable way to show all of the graph that occurs over the
interval —10 < x < 10 is to compress the unit of length along the y-axis, as illustrated in
Figure 0.1.20.
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y y
9,
gl 100 -
T 80
6,
5+ 60 -
4,
s 40
2r 20
1,
X X
| | | | | | | | | |
1 2 3 -10 -5 5 10

P Figure 0.1.20 -3-2-1

VQUlCK CHECK EXERCISES 0.1 (See page 15 for answers.)

1. Let f(x) =/x+144.
(a) The natural domain of f is
® fB=——_
© f*-H=____
@ fx)y=7ifx=___
(e) Therangeof fis_— .

2. Line segments in an xy-plane form “letters” as depicted.

LMD

(a) Ifthe y-axis is parallel to the letter I, which of the letters
represent the graph of y = f(x) for some function f?

(b) If the y-axis is perpendicular to the letter I, which of
the letters represent the graph of y = f(x) for some
function f?

3. The accompanying figure shows the complete graph of
y = fx).
(a) The domain of f is .
(b) Therangeof fis__ .

© f(-3)=—
@ f(3)=—n0
(e) The solutions to f(x) = —% arex =____and
X =
y
2+ p—0
1 -
| | | | | | X
-3 -2 -1 B 1 2 3
_2 [
< Figure Ex-3

4. The accompanying table gives a 5-day forecast of high and
low temperatures in degrees Fahrenheit (°F).

(a) Suppose that x and y denote the respective high and
low temperature predictions for each of the 5 days. Is
y a function of x? If so, give the domain and range of
this function.

(b) Suppose that x and y denote the respective low and high
temperature predictions for each of the 5 days. Is y a
function of x? If so, give the domain and range of this
function.

MON TUE WED | THURS | FRI

HIGH 75 71 65 70 73

LOW 52 56 48 50 52

A Table Ex-3

5. Let I, w, and A denote the length, width, and area of a
rectangle, respectively, and suppose that the width of the
rectangle is half the length.

(a) If I is expressed as a function of w, then/ =
(b) If A is expressed as a function of /, then A =
(c) Ifwisexpressedasafunctionof A, thenw =
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EXERCISE SET 0.1 [ Graphing Utility

1. Use the accompanying graph to answer the following ques-
tions, making reasonable approximations where needed.
(a) For what values of x is y = 1?

(b) For what values of x is y = 3?

(c) For what values of y is x = 3?

(d) For what values of x is y < 0?

(e) What are the maximum and minimum values of y and
for what values of x do they occur?

y
3 -

-3 -2 -1 0 1 2 3 < Figure Ex-1

2. Use the accompanying table to answer the questions posed
in Exercise 1.

x | =2 ] -1 0| 2 31 4 5 6

y| s 1|=2|7|=1]1]0]09

A Table Ex-2

3. Ineach part of the accompanying figure, determine whether
the graph defines y as a function of x.

y y

(@) (b)

. TN
N

(© (d)
A Figure Ex-3

FOCUS ON CONCEPTS

4. In each part, compare the natural domains of f and g.

2
@ f@) = );:f 2() = x
b) f(x) = %; g(x) = Jx

5. The accompanying graph shows the median income in
U.S. households (adjusted for inflation) between 1990
and 2005. Use the graph to answer the following ques-
tions, making reasonable approximations where needed.
(a) When was the median income at its maximum value,

and what was the median income when that occurred?
(b) When was the median income at its minimum value,
and what was the median income when that occurred?
(c) The median income was declining during the 2-year
period between 2000 and 2002. Was it declining
more rapidly during the first year or the second year
of that period? Explain your reasoning.

Median U.S. Household Income in
Thousands of Constant 2005 Dollars

Median U.S. Household Income

1990 1995 2000 2005
Source: U.S. Census Bureau, August 2006.

A Figure Ex-5

6. Use the median income graph in Exercise 5 to answer the
following questions, making reasonable approximations
where needed.

(a) What was the average yearly growth of median in-
come between 1993 and 19997

(b) The median income was increasing during the 6-year
period between 1993 and 1999. Was it increasing
more rapidly during the first 3 years or the last 3
years of that period? Explain your reasoning.

(c) Consider the statement: “After years of decline, me-
dian income this year was finally higher than that of
last year.” In what years would this statement have
been correct?




7. Find £(0), £(2), f(=2), f3), f(~/2), and f(31).
1

b) f(x)=1 x

2x, x<3
8. Find g(3), g(—1), g(m), g(—1.1), and g(+> — 1).

Jx+1, x>1
3, x <1

) , x>3
(@ f(x)=3x"-2

1
@ gy =11
X

— (Mﬂwz{

1 9-10 Find the natural domain and determine the range of each

function. If you have a graphing utility, use it to confirm that
your result is consistent with the graph produced by your graph-
ing utility. [Note: Set your graphing utility in radian mode when
graphing trigonometric functions.]

1 X
9. (@) f(x)=—— (b) F(x) = —
x—3 [x]
(©) gx) =+/x2-3 d) G(x) =+/x2—-2x+5
x2—4
(€) hix)= I (f) H(x) =

x—=2
(b) F(x) =+4—x?
(d G(x) =x3+2

(f) H(x) = (siny/x)*

—sinx

10. (@) f(x) =+3—x
(©) gx) =3+ /x
(e) h(x) =3sinx

FOCUS ON CONCEPTS

11. (a) Ifyouhad adevice that could record the Earth’s pop-
ulation continuously, would you expect the graph of
population versus time to be a continuous (unbro-
ken) curve? Explain what might cause breaks in the
curve.

(b) Suppose that a hospital patient receives an injection
of an antibiotic every 8 hours and that between in-
jections the concentration C of the antibiotic in the
bloodstream decreases as the antibiotic is absorbed
by the tissues. What might the graph of C versus
the elapsed time ¢ look like?

12. (a) If you had a device that could record the tempera-
ture of a room continuously over a 24-hour period,
would you expect the graph of temperature versus
time to be a continuous (unbroken) curve? Explain
your reasoning.

(b) If you had a computer that could track the number
of boxes of cereal on the shelf of a market contin-
uously over a 1-week period, would you expect the
graph of the number of boxes on the shelf versus
time to be a continuous (unbroken) curve? Explain
your reasoning.

13. A boat is bobbing up and down on some gentle waves.
Suddenly it gets hit by a large wave and sinks. Sketch
a rough graph of the height of the boat above the ocean
floor as a function of time.
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14. A cup of hot coffee sits on a table. You pour in some
cool milk and let it sit for an hour. Sketch a rough graph
of the temperature of the coffee as a function of time.

15-18 As seen in Example 3, the equation x> 4 y> = 25 does
not define y as a function of x. Each graph in these exercises
is a portion of the circle x> + y? = 25. In each case, determine
whether the graph defines y as a function of x, and if so, give a
formula for y in terms of x.

15. Y 16. Y

17. Y 18. Y

-
-

—50

19-22 True-False Determine whether the statement is true or
false. Explain your answer.

19. A curve that crosses the x-axis at two different points cannot
be the graph of a function.

20. The natural domain of a real-valued function defined by a
formula consists of all those real numbers for which the
formula yields a real value.

21. The range of the absolute value function is all positive real
numbers.

22. If g(x) = 1/4/f(x), then the domain of g consists of all
those real numbers x for which f(x) # 0.

23. Use the equation y = x> — 6x + 8 to answer the following
questions.
(a) For what values of x is y = 0?
(b) For what values of x is y = —10?
(c) For what values of x is y > 0?
(d) Does y have a minimum value? A maximum value? If
so, find them.

24. Usethe equation y = 1 + /x to answer the following ques-
tions.
(a) For what values of x is y = 4?
(b) For what values of x is y = 0?
(c) For what values of x is y > 6? (cont.)
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25.

26.
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(d) Does y have a minimum value? A maximum value? If
so, find them.

As shown in the accompanying figure, a pendulum of con-
stant length L makes an angle 6 with its vertical position.
Express the height £ as a function of the angle 6.

Express the length L of a chord of a circle with radius 10 cm
as a function of the central angle 6 (see the accompanying
figure).

LN
K &%
It

]
—=- v

A Figure Ex-25 A Figure Ex-26

M 27-28 Express the function in piecewise form without using
absolute values. [Suggestion: It may help to generate the graph
of the function.]

27.
28.

[~ 29.

~ 30.
~ 31.

@ f)=lxl+3x+1 (b) glx)=|x|+|x—1]

(@ f&x)=3+12x—=5 (b) g&x)=3|x =2| — |x + 1]

As shown in the accompanying figure, an open box is to

be constructed from a rectangular sheet of metal, 8 in by 15

in, by cutting out squares with sides of length x from each

corner and bending up the sides.

(a) Express the volume V as a function of x.

(b) Find the domain of V.

(c) Plot the graph of the function V obtained in part (a) and
estimate the range of this function.

(d) Inwords, describe how the volume V varies with x, and
discuss how one might construct boxes of maximum
volume.

\ 15 in |
A Figure Ex-29

Repeat Exercise 29 assuming the box is constructed in the
same fashion from a 6-inch-square sheet of metal.

A construction company has adjoined a 1000 ft> rectan-
gular enclosure to its office building. Three sides of the
enclosure are fenced in. The side of the building adjacent
to the enclosure is 100 ft long and a portion of this side is
used as the fourth side of the enclosure. Let x and y be the
dimensions of the enclosure, where x is measured parallel
to the building, and let L be the length of fencing required
for those dimensions.

(a) Find a formula for L in terms of x and y.

(b) Find a formula that expresses L as a function of x alone.
(c) What is the domain of the function in part (b)?

M 32.

M 33.

N 34.

(d) Plot the function in part (b) and estimate the dimensions
of the enclosure that minimize the amount of fencing
required.

As shown in the accompanying figure, a camera is mounted
at a point 3000 ft from the base of a rocket launching pad.
The rocket rises vertically when launched, and the camera’s
elevation angle is continually adjusted to follow the bottom
of the rocket.

(a) Express the height x as a function of the elevation an-
gle 6.

(b) Find the domain of the function in part (a).

(c) Plot the graph of the function in part (a) and use it to
estimate the height of the rocket when the elevation an-
gle is /4 ~ 0.7854 radian. Compare this estimate to
the exact height.

Rocket

A |
1 3000 ft ‘

Camera < Figure Ex-32

A soup company wants to manufacture a can in the shape
of a right circular cylinder that will hold 500 cm? of liquid.
The material for the top and bottom costs 0.02 cent/ cm?,
and the material for the sides costs 0.01 cent/cm?.

(a) Estimate the radius r and the height % of the can that
costs the least to manufacture. [Suggestion: Express
the cost C in terms of r.]

(b) Suppose that the tops and bottoms of radius r are
punched out from square sheets with sides of length
2r and the scraps are waste. If you allow for the cost of
the waste, would you expect the can of least cost to be
taller or shorter than the one in part (a)? Explain.

(c) Estimate the radius, height, and cost of the can in part
(b), and determine whether your conjecture was correct.

The designer of a sports facility wants to put a quarter-mile
(1320 ft) running track around a football field, oriented as
in the accompanying figure on the next page. The football
field is 360 ft long (including the end zones) and 160 ft wide.

The track consists of two straightaways and two semicircles,

with the straightaways extending at least the length of the

football field.

(a) Show that it is possible to construct a quarter-mile track
around the football field. [Suggestion: Find the shortest
track that can be constructed around the field.]

(b) Let L be the length of a straightaway (in feet), and let x
be the distance (in feet) between a sideline of the foot-
ball field and a straightaway. Make a graph of L ver-

sus x. (cont.)



(c) Use the graph to estimate the value of x that produces
the shortest straightaways, and then find this value of x
exactly.

(d) Use the graph to estimate the length of the longest pos-
sible straightaways, and then find that length exactly.

— e —

} 360" |
A Figure Ex-34

35-36 (i) Explain why the function f has one or more holes
in its graph, and state the x-values at which those holes occur.
(i1) Find a function g whose graph is identical to that of f, but
without the holes.

2 2
x+2)(x 1) 36. f(x) = x4+ |x|
x+2)(x—1 | x|

37. In2001 the National Weather Service introduced a new wind
chill temperature (WCT) index. For a given outside temper-

35. f(x) =

I/ QUICK CHECK ANSWERS 0.1
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ature 7' and wind speed v, the wind chill temperature index
is the equivalent temperature that exposed skin would feel
with a wind speed of v mi/h. Based on a more accurate
model of cooling due to wind, the new formula is

T, 0<v<3

WCT =
35.74 + 0.6215T — 35.750916 4 0.4275Tv%1%, 3 <o

where T is the temperature in °F, v is the wind speed in
mi/h, and WCT is the equivalent temperature in °F. Find
the WCT to the nearest degree if 7 = 25°F and

(a) v=3mi/h (b) v=15mi/h (c) v =46 mi/h.
Source: Adapted from UMAP Module 658, Windchill, W. Bosch and
L. Cobb, COMAP, Arlington, MA.

38-40 Use the formula for the wind chill temperature index
described in Exercise 37.

38. Find the air temperature to the nearest degree if the WCT is
reported as —60°F with a wind speed of 48 mi/h.

39. Find the air temperature to the nearest degree if the WCT is
reported as —10°F with a wind speed of 48 mi/h.

40. Find the wind speed to the nearest mile per hour if the WCT
is reported as 5°F with an air temperature of 20°F.

1. (@) [=1,+w) (b) 6 (c) [t[+4 (d) 8 (e) [4, +)

@ —3 —3

() w=+A/2

2. (@ M (b) I
4. (a) yes; domain: {65, 70, 71, 73, 75}; range: {48, 50, 52, 56} (b) no

3. (@) [=3,3) (b) [-2,2] (©) =1 (d) 1
5.@l=2w (b) A=1*/2

m NEW FUNCTIONS FROM OLD

Just as numbers can be added, subtracted, multiplied, and divided to produce other
numbers, so functions can be added, subtracted, multiplied, and divided to produce other
functions. In this section we will discuss these operations and some others that have no
analogs in ordinary arithmetic.

H ARITHMETIC OPERATIONS ON FUNCTIONS
Two functions, f and g, can be added, subtracted, multiplied, and divided in a natural way
to form new functions f + g, f — g, fg, and f/g. For example, f + g is defined by the

formula

(f +8)) = f(x) +g(x) ey

which states that for each input the value of f + g is obtained by adding the values of
f and g. Equation (1) provides a formula for f + g but does not say anything about the
domain of f + g. However, for the right side of this equation to be defined, x must lie in
the domains of both f and g, so we define the domain of f + g to be the intersection of
these two domains. More generally, we make the following definition.
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If f is a constant function, that is,
f(x) = c for all x, then the product of
f and g is cg, so multiplying a func-
tion by a constant is a special case of
multiplying two functions.

0.2.1 peFINITION Given functions f and g, we define
(f +8)x) = fx)+gx)
(f —89)x) = f(x) —g(x)
(f&)(x) = f(x)g(x)
(f/e)x) = f(x)/g(x)

For the functions f + g, f — g, and fg we define the domain to be the intersection
of the domains of f and g, and for the function f/g we define the domain to be the
intersection of the domains of f and g but with the points where g(x) = 0 excluded (to
avoid division by zero).

» Example 1 Let
f)=14++vx—2 and gx)=x-3
Find the domains and formulas for the functions f + g, f — g, fg., f/g, and 7f.

Solution. First, we will find the formulas and then the domains. The formulas are
F+@=fO)+eg0)=0+v/x—-2)+x-3)=x-2+/x-2 ()
(f=9®) =f)—g)=+vVx=-2)—x—3)=4-x+vx-2 (3

(fe)(x) = fx)g(x) = (1 +vx —2)(x = 3) )

1+/x—=2
(fl9)(0) = f0)/g(x) = % 5)

THx)=Tf(x) =T+TvVx =2 (6)

The domains of f and g are [2, 4+0) and (—o, 4o0), respectively (their natural domains).
Thus, it follows from Definition 0.2.1 that the domains of f 4 g, f — g, and fg are the
intersection of these two domains, namely,

[2, +00) N (=00, +00) = [2, +o0) @)
Moreover, since g(x) = 0if x = 3, the domain of f/g is (7) with x = 3 removed, namely,
[2,3) U3, +x)

Finally, the domain of 7f is the same as the domain of f. <«

We saw in the last example that the domains of the functions f + g, f — g, fg,and f/g
were the natural domains resulting from the formulas obtained for these functions. The
following example shows that this will not always be the case.

» Example 2 Show that if f(x) = /x, g(x) = /%, and h(x) = x, then the domain of
fg is not the same as the natural domain of A.
Solution. The natural domain of 4 (x) = x is (—oo, +). Note that
(f&)(x) = Vx/x = x = h(x)
on the domain of fg. The domains of both f and g are [0, +oc), so the domain of fg is
[0, +o0) N [0, +20) = [0, +o0)



Although the domain of fog may
seem complicated at first glance, it
makes sense intuitively: To compute
f(g(x)) one needs x in the domain
of g to compute g(x), and one needs
g(x) in the domain of f to compute

f(g(x)).

Note that the functions fog and go f
in Example 3 are not the same. Thus,
the order in which functions are com-
posed can (and usually will) make a dif-
ference in the end result.
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by Definition 0.2.1. Since the domains of fg and & are different, it would be misleading to
write (fg)(x) = x without including the restriction that this formula holds only for x > 0.
<

COMPOSITION OF FUNCTIONS
We now consider an operation on functions, called composition, which has no direct analog
in ordinary arithmetic. Informally stated, the operation of composition is performed by
substituting some function for the independent variable of another function. For example,

that
suppose ta f(x)=x* and gx)=x+1
If we substitute g(x) for x in the formula for f, we obtain a new function

f(g) = (g(x)* = (x +1)?
which we denote by fog. Thus,
(fo)(x) = f(g(x) = (g(x)* = (x +1)*

In general, we make the following definition.

0.2.2 DpEFINITION Given functions f and g, the composition of f with g, denoted
by fog, is the function defined by

(fog)(x) = f(g(x))

The domain of f og is defined to consist of all x in the domain of g for which g(x) is
in the domain of f.

» Example 3 Let f(x) = x>+ 3 and g(x) = 4/x. Find
(@ (fog)x)  (b) (gof)(x)

Solution (a). The formula for f(g(x)) is

flg) =[g)P+3=(Wx)+3=x+3

Since the domain of g is [0, 4+oc) and the domain of f is (—o0o, 4+o0), the domain of fog
consists of all x in [0, +) such that g(x) = /x lies in (—o, +); thus, the domain of
fogis [0, 4). Therefore,

(fog)x)=x+3, x=0

Solution (b). The formula for g( f(x)) is

() = VF() = Va? +3

Since the domain of f is (—oc, 4-c0) and the domain of g is [0, +), the domain of go f
consists of all x in (—oo, +00) such that f(x) = x> + 3 lies in [0, +-). Thus, the domain
of go f is (—o, o). Therefore,

(8o f)x) =vx*+3

There is no need to indicate that the domain is (—oe, +o0), since this is the natural domain
of v/x2+3. «



18 Chapter 0 / Before Calculus

Compositions can also be defined for three or more functions; for example, (fogoh)(x)
is computed as
P (fogoh)(x) = f(g(h(x)))
In other words, first find A (x), then find g(h(x)), and then find f(g(h(x))).

> Example 4 Find (fogoh)(x) if
f)=+x, gx)=1/x, hx) =x>

Solution.

(fogoh)(x) = f(g(h(x) = fg(x*) = f(1/x*) = V1/x3 = 1/x*? «

EXPRESSING A FUNCTION AS A COMPOSITION
Many problems in mathematics are solved by “decomposing” functions into compositions
of simpler functions. For example, consider the function / given by

h(x) = (x + 1)

To evaluate h(x) for a given value of x, we would first compute x + 1 and then square the
result. These two operations are performed by the functions

gx)=x+1 and f(x)=x>
We can express £ in terms of f and g by writing
h(x) = (x + 1> =[g®)]* = f(g(x))
so we have succeeded in expressing & as the composition 7 = fog.

The thought process in this example suggests a general procedure for decomposing a
function % into a composition 1 = fog:

e Think about how you would evaluate 4 (x) for a specific value of x, trying to break
the evaluation into two steps performed in succession.

e The first operation in the evaluation will determine a function g and the second a
function f.

e The formula for 4 can then be written as 2(x) = f(g(x)).
For descriptive purposes, we will refer to g as the “inside function” and f as the “outside

function” in the expression f(g(x)). The inside function performs the first operation and
the outside function performs the second.

» Example 5 Express sin(x?) as a composition of two functions.

Solution. To evaluate sin(x3), we would first compute x3 and then take the sine, so
g(x) = x? is the inside function and f(x) = sin x the outside function. Therefore,

sin(x?) = f(g(x)) g(x) = x? and f(x) =sinx | 4

Table 0.2.1 gives some more examples of decomposing functions into compositions.



REMARK
Car Sales in Millions
40
36 Ky
32
28 New
24
20 /__/\U—se—d. _x
12
Used
8
4
1995 2000 2005
Source: NADA.
A Figure 0.2.1

Use the technique in Example 6 to
sketch the graph of the function

-

> Figure 0.2.2
Add the y-coordinates of 4/x and 1/x to
obtain the y-coordinate of \/x + 1/x.
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Table 0.2.1
COMPOSING FUNCTIONS
g) fx)
FUNCTION INSIDE OUTSIDE COMPOSITION
x>+ DO x2+1 x10 @2+ D9 = f(gx)
sin® x sin x x3 sin® x = f(g(x))
tan (x°) x° tan x tan (x°) = f(g(x))
N4 =3x 4-3x \x V4 - 3x = f(g(x))
8 ++x \x 8 +x 8 ++x = f(g(x))
1 1 1
7x+1 x+1 ; x+1—f(g(x))

There is always more than one way to express a function as a composition. For example, here are two
ways to express (x* + 1)!° as a composition that differ from that in Table 0.2.1:

2+ D =[x+ D = f(gx) g() = (@2 + D2 and f(x) = x°

7+ D = [+ D17 = f(g(x) g(x) = (& + 1) and f(x) = x°3

NEW FUNCTIONS FROM OLD

The remainder of this section will be devoted to considering the geometric effect of perform-
ing basic operations on functions. This will enable us to use known graphs of functions to
visualize or sketch graphs of related functions. For example, Figure 0.2.1 shows the graphs
of yearly new car sales N (f) and used car sales U (¢) over a certain time period. Those
graphs can be used to construct the graph of the total car sales

T()=N@) +U®)

by adding the values of N(¢) and U(¢) for each value of 7. In general, the graph of
y = f(x) 4+ g(x) can be constructed from the graphs of y = f(x) and y = g(x) by adding
corresponding y-values for each x.

» Example 6 Referring to Figure 0.1.4 for the graphs of y = 4/x and y = 1/x, make a
sketch that shows the general shape of the graph of y = /x + 1/x for x > 0.

Solution. To add the corresponding y-values of y = \/x and y = 1/x graphically, just
imagine them to be “stacked” on top of one another. This yields the sketch in Figure 0.2.2.
<
y y y
\x o+ 1/x
x x x| x x
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Il TRANSLATIONS
Table 0.2.2 illustrates the geometric effect on the graph of y = f(x) of adding or subtracting
a positive constant ¢ to f or to its independent variable x. For example, the first result in the
table illustrates that adding a positive constant ¢ to a function f adds c to each y-coordinate
of its graph, thereby shifting the graph of f up by c units. Similarly, subtracting ¢ from f
shifts the graph down by ¢ units. On the other hand, if a positive constant ¢ is added to x,
then the value of y = f(x 4 ¢) at x — c is f(x); and since the point x — ¢ is ¢ units to the
left of x on the x-axis, the graph of y = f(x + ¢) must be the graph of y = f(x) shifted
left by c units. Similarly, subtracting ¢ from x shifts the graph of y = f(x) right by ¢ units.

Table 0.2.2

TRANSLATION PRINCIPLES

OPERATION ON

y=f(x)

Add a positive
constant ¢ to f(x)

Subtract a positive
constant ¢ from f(x)

Add a positive
constant ¢ to x

Subtract a positive
constant ¢ from x

NEW EQUATION

y=fx)+c

y=fx)—c

y=f(x+c)

y=f(x-o¢)

GEOMETRIC Translates the graph of Translates the graph of Translates the graph of Translates the graph of

EFFECT y = f(x) up c units y = f(x) down c units y = f(x) left ¢ units y = f(x) right c units

AY e y y y
T\\// . >}=x2 y=@+27? y=x* , . y7x2y=(x—2)2
\\2 //y:x2 \\ / y=x"=2 \\ // \\ /
EXAMPLE \\ / x . \ e x | AN / x
\/ o o
-2

3 Y Before proceeding to the next examples, it will be helpful to review the graphs in Fig-

2 ures 0.1.4 and 0.1.9.

% I S I T | X

L 9 -

» Example 7 Sketch the graph of
y=+x

e

3

y

-

e

X
12
X

3
CoT
y=\x+3

A Figure 0.2.3

6

Solution.

Solution.

(@ y=+x-3

» Example 8 Sketch the graph of y = x> — 4x + 5.

Completing the square on the first two terms yields

(b) y=+/x+3

Using the translation principles given in Table 0.2.2, the graph of the equation
y = +/x — 3 can be obtained by translating the graph of y = /x right 3 units. The graph of
y = +/x + 3 can be obtained by translating the graph of y = /x left 3 units (Figure 0.2.3).

|

y=02—4x+4) —44+5=x—-27+1

(see Web Appendix H for a review of this technique). In this form we see that the graph
can be obtained by translating the graph of y = x? right 2 units because of the x — 2, and
up 1 unit because of the +1 (Figure 0.2.4). <«
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>
~

L NLA
-5 5

=(x-2°%+1
> Figure 0.2.4 y=G-2

Bl REFLECTIONS
The graph of y = f(—x) is the reflection of the graph of y = f(x) about the y-axis because
the point (x, y) on the graph of f(x) is replaced by (—x, y). Similarly, the graph of
y = — f(x) is the reflection of the graph of y = f(x) about the x-axis because the point
(x, y) on the graph of f(x) is replaced by (x, —y) [the equation y = — f(x) is equivalent
to —y = f(x)]. This is summarized in Table 0.2.3.

Table 0.2.3

REFLECTION PRINCIPLES

OPERATION ON
y=f(x) Replace x by —x Multiply f(x) by —1
NEW EQUATION | y = f(—x) y=—f(x)
GEOMETRIC Reflects the graph of Reflects the graph of
EFFECT y = f(x) about the y-axis y = f(x) about the x-axis
y y
EXAMPLE L NI i f L ik
-6 6 —6 6
-3 )
y=—x

» Example 9 Sketch the graph of y = /2 — x.

Solution. Using the translation and reflection principles in Tables 0.2.2 and 0.2.3, we
can obtain the graph by a reflection followed by a translation as follows: First reflect the
graph of y = J/x about the y-axis to obtain the graph of y = J/—x, then translate this graph
right 2 units to obtain the graph of the equation y = /—(x — 2) = J2=x (Figure 0.2.5).

<
y y y
6 6 6
X X X
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
-10 10 -10 10 -10 S 10
-6 -6 -6
3 3 3
y=3k y== y=\2-x

» Figure 0.2.5



22 Chapter 0 / Before Calculus

» Example 10 Sketch the graph of y = 4 — |x — 2|.

Solution. The graph can be obtained by a reflection and two translations: First translate
the graph of y = |x| right 2 units to obtain the graph of y = |x — 2|; then reflect this graph

about the x-axis to obtain the graph of y = —|x — 2|; and then translate this graph up 4
units to obtain the graph of the equation y = —|x — 2| +4 =4 — |x — 2| (Figure 0.2.6).
<
b} y y y
8 |- \ 8 8 |-
\\\\7\\\\)( 11| \\\\x \\\71\\\\)‘ \\l/\\\\x
-8 L 8 -6 L 10 -6 10 -6 L Y
y =] y=lx-2 y=-|x-2| y=4-|x-2
A Figure 0.2.6

Il STRETCHES AND COMPRESSIONS

Describe the geometric effect of mul-
tiplying a function f by a negative
constant in terms of reflection and
stretching or compressing. What is the
geometric effect of multiplying the in-
dependent variable of a function f by
a negative constant?

Multiplying f(x) by a positive constant ¢ has the geometric effect of stretching the graph
of y = f(x) in the y-direction by a factor of ¢ if ¢ > 1 and compressing it in the y-
direction by a factor of 1/c¢if 0 < ¢ < 1. For example, multiplying f(x) by 2 doubles each
y-coordinate, thereby stretching the graph vertically by a factor of 2, and multiplying by %
cuts each y-coordinate in half, thereby compressing the graph vertically by a factor of 2.
Similarly, multiplying x by a positive constant ¢ has the geometric effect of compressing
the graph of y = f(x) by afactor of ¢ in the x-direction if ¢ > 1 and stretching it by a factor
of 1/cif 0 < ¢ < 1. [If this seems backwards to you, then think of it this way: The value
of 2x changes twice as fast as x, so a point moving along the x-axis from the origin will
only have to move half as far for y = f(2x) to have the same value as y = f(x), thereby
creating a horizontal compression of the graph.] All of this is summarized in Table 0.2.4.

Table 0.2.4
STRETCHING AND COMPRESSING PRINCIPLES
OPERATION ON Multiply f(x) by ¢ Multiply f(x) by ¢ Multiply x by ¢ Multiply x by ¢
y=fx) (c>1) O<c<l) (c>1) 0<c<1)
NEW EQUATION | vy = cf(x) y=cf(x) y = f(cx) vy = f(cx)
GEOMETRIC Stretches the graph of Compresses the graph of ~ Compresses the graph of Stretches the graph of
EFFECT y = f(x) vertically by a y = f(x) vertically by a y = f(x) horizontally by a  y = f(x) horizontally by a
factor of ¢ factor of 1/¢ factor of ¢ factor of 1/¢
Y y y AY
2] y=2cosx | y=cosx n L
= ) = Ccos 2x 1
1 7=cosx%: ! ‘/yzlcosx 1Y o8y v eos 1 Yy =cos3x
2
wns | AN ARG PR RIS
B v B B I y=cosx
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B SYMMETRY

Explain why the graph of a nonzero
function cannot be symmetric about
the x-axis.

> Figure 0.2.7

A Figure 0.2.8

Figure 0.2.7 illustrates three types of symmetries: symmetry about the x-axis, symmetry
about the y-axis, and symmetry about the origin. As illustrated in the figure, a curve is
symmetric about the x-axis if for each point (x, y) on the graph the point (x, —y) is also
on the graph, and it is symmetric about the y-axis if for each point (x, y) on the graph
the point (—x, y) is also on the graph. A curve is symmetric about the origin if for each
point (x, y) on the graph, the point (—x, —y) is also on the graph. (Equivalently, a graph is
symmetric about the origin if rotating the graph 180° about the origin leaves it unchanged.)
This suggests the following symmetry tests.

y y

(x, ) )L O i JC )

1 x X

i >

Ve
e
e
=) (=x,-y)
Symmetric about Symmetric about Symmetric about
the x-axis the y-axis the origin

0.2.3 THEOREM (Symmetry Tests)

(a) A plane curve is symmetric about the y-axis if and only if replacing x by —x in its
equation produces an equivalent equation.

(b) A plane curve is symmetric about the x-axis if and only if replacing y by —y in its
equation produces an equivalent equation.

(¢) A plane curve is symmetric about the origin if and only if replacing both x by —x
and y by —y in its equation produces an equivalent equation.

» Example 11 Use Theorem 0.2.3 to identify symmetries in the graph of x = y.

Solution. Replacing y by —y yields x = (—y)?, which simplifies to the original equation
x = y2. Thus, the graph is symmetric about the x-axis. The graph is not symmetric about
the y-axis because replacing x by —x yields —x = y?, which is not equivalent to the original
equation x = y2. Similarly, the graph is not symmetric about the origin because replacing x
by —x and y by —y yields —x = (—y)?, which simplifies to —x = y?, and this is again not
equivalent to the original equation. These results are consistent with the graph of x = y?
shown in Figure 0.2.8. «

EVEN AND ODD FUNCTIONS
A function f is said to be an even function if
f(=x) = f(x) ®)

and is said to be an odd function if

f(=x) = —f(x) )

Geometrically, the graphs of even functions are symmetric about the y-axis because replac-
ing x by —x in the equation y = f(x) yields y = f(—x), which is equivalent to the original
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equation y = f(x) by (8) (see Figure 0.2.9). Similarly, it follows from (9) that graphs of odd

functions are symmetric about the origin (see Figure 0.2.10). Some examples of even func-

tions are x2, x*, x°, and cos x; and some examples of odd functions are x3, x5, x7, and sin x.

fex) { } |

| |
/=T
A Figure 0.2.9 This is the graph of an A Figure 0.2.10 This is the graph of
even function since f(—x) = f(x). an odd function since f(—x) = — f(x).

VQUICK CHECK EXERCISES 0.2  (See page 27 for answers.)

1. Let f(x) = 3./x — 2 and g(x) = |x|. In each part, give the 3. The graph of y = 1 + (x — 2)? may be obtained by shift-
formula for the function and state the corresponding domain. ing the graph of y = x2 ________ (left/right) by
(@ f+g _— Domain: _ unit(s) and then shifting thisnew graph_____ (up/down)
® f—g:—_ Domain: by unit(s).
@ fgr— Domain: __ 4. Let
d) f/gs——  Domain: x+1, —2<x<0
2. Let f(x) =2 — x? and g(x) = /x. In each part, give the f@) = Ix — 1], 0<x<?2
formula for the composition and state the corresponding
domain. (a) The letter of the alphabet that most resembles the graph
(@) fog:—  Domain: of fis :
(b) go f: Domain: (b) Is f an even function?
EXERCISE SET 0.2 [ Graphing utility
3. The graph of a function f is shown in the accompanying
1. The graph of a function f is shown in the accompanying figure. Sketch the graphs of the following equations.
figure. Sketch the graphs of the following equations. @ y=fx+1D (b) y = f2x)
@ y=fx)—1 (b) y=flx—1) © y=I1f@) @ y=1-|f)|

© y=1f) d y=f(-1ix) y

y 1

2 -1 3
/ . < Figure Ex-3

-1 2 4. Use the graph in Exercise 3 to sketch the graph of the
< Figure Ex-1 equation y = f(|x]).

2. Use the graph in Exercise 1 to sketch the graphs of the [~ 5-24 Sketch the graph of the equation by translating, reflect-

followi_ng equations. b) v = £ ing, compressing, and stretching the graph of y = x2, y = /x,
@ y=—f(=x) b) y=f2-x y = 1/x,y = |x|, or y = J/x appropriately. Then use a graph-
©y=1-f2-x) ) y=35f2x) ing utility to confirm that your sketch is correct.




5.y=-2(x+1?%-3 6. y=1(x—-37%+2
7.y =142x —x? 8.y:%(x2—2x+3)
9. y=3-+/x+1 10. y=1++/x—4
I y=31/x+1 12. y = —/3x
1

13.y:x_3 14.y:1_x

1 x—1
15.y:2—x+1 16. y = e
17. y=|x+2| -2 18. y=1—|x — 3|
19. y=12x — 1|+ 1 20, y=+/x2—4x+4
2. y=1-23x 2. y=x—-2—
23 y=2+4+Jx+1 24, y+Jx—2=0

25. (a) Sketch the graph of y = x + |x| by adding the corre-
sponding y-coordinates on the graphs of y = x and
y=lxl.

(b) Express the equation y = x + |x| in piecewise form
with no absolute values, and confirm that the graph you
obtained in part (a) is consistent with this equation.

[ 26. Sketch the graph of y = x 4 (1/x) by adding correspond-

ing y-coordinates on the graphsof y = x and y = 1/x. Use
a graphing utility to confirm that your sketch is correct.

27-28 Find formulas for f + g, f — g, fg,and f/g, and state
the domains of the functions.

27. f(x) = 2«/x -1, glx)y=+/x—-1
1
8. f() = 1. 800 =
29. Let f(x) = ﬁ and g(x) = x> + 1. Find
(@ f(g(2) (b) g(f(4) (©) f(f(16)
(d) g(g(0)) (® f2+h ) gB+h).
30. Let g(x) = +/x. Find
(@) g(158 +2) ) g(Wx+2)  (c)3g(5x)
(d) 200 (e) g(gx)) (f) (g(x))*—g(x?)
(&) g(1/yx) (h) g((x — D) (1) gx+h).

31-34 Find formulas for fog and go f, and state the domains
of the compositions

31. f(x) = x? g(x) V1 —x
32. f(x) = \/x -3, gx) =+/x2+3
B0 = o g =

- l1—x
3. f(x) = T2 glx) =

35-40 Express f as a composition of two functions; that is,
find g and % such that f = goh. [Note: Each exercise has more
than one solution. ]

35. (@) f(x)=+x+2 (b) f(x) = |x? —3x +5]
36. (a) f(x) =x"+1 ® ) =—
37. (a) f(x) =sin’x (b) f(x) =

5+ cosx
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38. (a) f(x) =3sin(x?) (b) f(x) =3sin’x +4sinx

39. @) f(x) = (1+sin@d)’  b) ) =V1-Jx
1
40. @) f) =1 (b) f(x) =15 +2x]

41-44 True-False Determine whether the statement is true or
false. Explain your answer.

41. The domain of f + g is the intersection of the domains of
f and g.

42. The domain of f o g consists of all values of x in the domain
of g for which g(x) # 0.

43. The graph of an even function is symmetric about the y-axis.

44. The graph of y = f(x + 2) + 3 is obtained by translating
the graph of y = f(x) right 2 units and up 3 units.

FOCUS ON CONCEPTS

45. Use the data in the accompanying table to make a plot
of y = f(g(x)).

x |3 ]|-2|-1 0| 1 2 3
fx)| -4 |-3|-2|-1] 0 1 2
gx) | -1 0 1 213 |-21]-3

A Table Ex-45
46. Find the domain of go f for the functions f and g in
Exercise 45.

47. Sketch the graph of y = f(g(x)) for the functions
graphed in the accompanying figure.

< Figure Ex-47

48. Sketch the graph of y = g(f(x)) for the functions
graphed in Exercise 47.

49. Use the graphs of f and g in Exercise 47 to esti-
mate the solutions of the equations f(g(x)) =0 and

g(f(x)) =0.
50. Use the table given in Exercise 45 to solve the equations

J(g(x)) =0and g(f(x)) =0.
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51-54 Find
fx+h)— fx) fw) — f(x)
and

h w—Xx

Simplify as much as possible.
51. f(x) =3x2-5 52. f(x) =x%+6x
53. f(x)=1/x 54, f(x)=1/x?

55. Classify the functions whose values are given in the accom-
panying table as even, odd, or neither.

x |3 |2 |-1lo|1]2]3
f@| 5 323 11]3]5
g 4 |1 |20 2 |-1 -4
h)| 2 |-5 | 8 |2 | 8 |=5 | 2
A Table Ex-55

56. Complete the accompanying table so that the graph of
y = f(x) is symmetric about

(a) the y-axis (b) the origin.

x [-3|-=2|-1|0/] 1| 2|3

fo| 1 -1]0 -5

A Table Ex-56

57. The accompanying figure shows a portion of a graph. Com-
plete the graph so that the entire graph is symmetric about
(a) the x-axis (b) the y-axis (c) the origin.

58. The accompanying figure shows a portion of the graph of a
function f. Complete the graph assuming that
(a) f is an even function (b) f is an odd function.

y

A Figure Ex-57 A Figure Ex-58

59. In each part, classify the function as even, odd, or neither.

@ f(x)=x? (b) f(x) = x>

(© fx) = Ix]| d f)=x+1
XS—X

(e) f(X)=1+x2 ) flx)=2

60. Suppose that the function f has domain all real numbers.
Determine whether each function can be classified as even
or odd. Explain.

J&) + f(=x) (b) h(x) = J) — f(=x)

(a) glx) = > >

61. Suppose that the function f has domain all real numbers.
Show that f can be written as the sum of an even function
and an odd function. [Hint: See Exercise 60.]

62-63 Use Theorem 0.2.3 to determine whether the graph has
symmetries about the x-axis, the y-axis, or the origin.
62. (a) x =5y*+9 (b) x2—=2y*=3
(©) xy=5
63. (a) x* =2y +y
© y*=Ix| -5

X
b =
() y 3122

M 64-65 (i) Use a graphing utility to graph the equation in the first

quadrant. [Note: To do this you will have to solve the equation
for y in terms of x.] (ii) Use symmetry to make a hand-drawn
sketch of the entire graph. (iii) Confirm your work by generating
the graph of the equation in the remaining three quadrants.

64. 9x2 +4y? =36 65. 4x> +16y* =16

[~ 66. The graph of the equation x2/3 + y¥3 = 1, which is shown

in the accompanying figure, is called a four-cusped hypo-

cycloid.

(a) Use Theorem 0.2.3 to confirm that this graph is sym-
metric about the x-axis, the y-axis, and the origin.

(b) Find a function f whose graph in the first quadrant
coincides with the four-cusped hypocycloid, and use a
graphing utility to confirm your work.

(c) Repeat part (b) for the remaining three quadrants.

y

Four-cusped hypocycloid
ped vpocy < Figure Ex-66

67. The equation y = | f(x)| can be written as

_ f), f&x)=0
—fx), flx)<0

which shows that the graph of y = | f(x)| can be obtained
from the graph of y = f(x) by retaining the portion that lies
on or above the x-axis and reflecting about the x-axis the
portion that lies below the x-axis. Use this method to obtain
the graph of y = |2x — 3| from the graph of y = 2x — 3.

68-69 Use the method described in Exercise 67.
68. Sketch the graph of y = |1 — x?|.
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69. Sketch the graph of (@) f(x)=|x] (b) f(x) = |x?%]
(@) f(x)=cosx] (b) f(x) =cosx +|cosx|. © fx)=1x]? (d) f(x) = [sinx]

70. The greatest integer function, |x]|, is defined to be the 71. Isitever true that fog = go f if f and g are nonconstant
greatest integer that is less than or equal to x. For exam- functions? If not, prove it; if so, give some examples for
ple, [2.7] =2, |—2.3] = —3,and |4] = 4. In each part, which it is true.

sketch the graph of y = f(x).

I/ QUICK CHECK ANSWERS 0.2

L@ (f+e@)=3/x—2+xx>0 (1) (f—g)x) =3J/x—2—x; x>0 (c) (fg)(x) =3x¥?—2x; x>0

2
@ (f/9)x) = %; x>0 2.@) (fog)(x)=2—x; x>0 (b) (gof)x)=+2—x2 —«/QSx < V2
3. right; 2; up; 1 4. (a) W (b) yes

m FAMILIES OF FUNCTIONS

Functions are often grouped into families according to the form of their defining formulas
or other common characteristics. In this section we will discuss some of the most basic
families of functions.

Ay B FAMILIES OF CURVES
The graph of a constant function f(x) = c is the graph of the equation y = ¢, which is
(0, ¢) y=c the horizontal line shown in Figure 0.3.1a. If we vary ¢, then we obtain a set or family of
horizontal lines such as those in Figure 0.3.15.

Constants that are varied to produce families of curves are called parameters. For
example, recall that an equation of the form y = mx + b represents a line of slope m and
y-intercept b. If we keep b fixed and treat m as a parameter, then we obtain a family of
lines whose members all have y-intercept b (Figure 0.3.2a), and if we keep m fixed and
treat b as a parameter, we obtain a family of parallel lines whose members all have slope m
(Figure 0.3.2b).

(@) y y
y
I c=4
— /
c=2 / X X
c=1
c=0 X
c=-1
Py
c=-3
- c=-45
i The family y = mx + b The family y = mx + b
(b) (b fixed and m varying) (m fixed and b varying)

A Figure 0.3.1 > Figure 0.3.2 (a) ()
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Il POWER FUNCTIONS; THE FAMILY y = x"
A function of the form f(x) = x?, where p is constant, is called a power function. For the
moment, let us consider the case where p is a positive integer, say p = n. The graphs of
the curves y = x" forn = 1, 2, 3, 4, and 5 are shown in Figure 0.3.3. The first graph is the
line with slope 1 that passes through the origin, and the second is a parabola that opens up

and has its vertex at the origin (see Web Appendix H).

y o y=x y o y=x y y=x \y Y= y y=x
1F 1F 1 / k s 1F
X X X X
1 1 1 1 1 1 1 1 1 1
-1 1 -1 1 -1 1 -1 1 -1 1
-1+ -1+ -1} -1+ -1+
A Figure 0.3.3
For n > 2 the shape of the curve y = x" depends on whether n is even or odd (Fig-
ure 0.3.4):

e Foreven values of n, the functions f(x) = x" are even, so their graphs are symmetric
about the y-axis. The graphs all have the general shape of the graph of y = x2, and
each graph passes through the points (—1, 1), (0, 0), and (1, 1). As n increases, the
graphs become flatter over the interval —1 < x < 1 and steeper over the intervals
x>1landx < —1.

e For odd values of n, the functions f(x) = x" are odd, so their graphs are symmetric
about the origin. The graphs all have the general shape of the curve y = x3, and
each graph passes through the points (—1, —1), (0, 0), and (1, 1). As n increases,
the graphs become flatter over the interval —1 < x < 1 and steeper over the intervals
x>landx < —1.

5
I3
Y= x7 y yx: X
1
1 1 Y
-1 1
! -1
-1
The family y = x" The family y = x"
> Figure 0.3.4 (n even) (n odd)

REMARK

The flattening and steepening effects can be understood by considering what happens when a number

x is raised to higher and higher powers: If —1 < x < 1, then the absolute value of x" decreases as
n increases, thereby causing the graphs to become flatter on this interval as n increases (try raising 1
or —3 to higher and higher powers). On the other hand, if x > 1 or x < —1, then the absolute value
of x" increases as n increases, thereby causing the graphs to become steeper on these intervals as n
increases (try raising 2 or —2 to higher and higher powers).
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If p is a negative integer, say p = —n, then the power functions f(x) = x? have the form
f(x) =x" = 1/x". Figure 0.3.5 shows the graphs of y = 1/x and y = 1/x2. The graph
of y = 1/x is called an equilateral hyperbola (for reasons to be discussed later).

As illustrated in Figure 0.3.5, the shape of the curve y = 1/x" depends on whether 7 is

even or odd:

¢ For even values of 7, the functions f(x) = 1/x" are even, so their graphs are sym-
metric about the y-axis. The graphs all have the general shape of the curve y = 1/x2,
and each graph passes through the points (—1, 1) and (1, 1). As n increases, the
graphs become steeper over the intervals —1 <x < 0 and 0 < x < 1 and become

flatter over the intervals x > 1 and x < —1.

By considering the value of 1/x" for a
fixed x as n increases, explain why the
graphs become flatter or steeper as de-
scribed here for increasing values of n.

* For odd values of n, the functions f(x) = 1/x" are odd, so their graphs are symmetric
about the origin. The graphs all have the general shape of the curve y = 1/x, and
each graph passes through the points (1, —1) and (—1, —1). As n increases, the
graphs become steeper over the intervals —1 < x < 0 and 0 < x < 1 and become

flatter over the intervals x > 1 and x < —1.

¢ For both even and odd values of n the graph y = 1/x" has a break at the origin (called
a discontinuity), which occurs because division by zero is undefined.

y = 1/x?

LD ., n -1, 1

y=1/x
(1,1
X
=1,-1)
A Figure 0.3.5
Table 0.3.1
x| 08 |1]25| 4 [625|10
y| 6255 2 |1.25| 08 |05

The family y = 1/x"
(n even)

Il INVERSE PROPORTIONS

Tyy= 1/x3

ey =1/x

=1,-D

The family y = 1/x"
(n odd)

Recall that a variable y is said to be inversely proportional to a variable x if there is a
positive constant k, called the constant of proportionality, such that

y=-
X

ey

Since k is assumed to be positive, the graph of (1) has the same shape as y = 1/x but is
compressed or stretched in the y-direction. Also, it should be evident from (1) that doubling

x multiplies y by 1, tripling x multiplies y by 1, and so forth.

Equation (1) can be expressed as xy = k, which tells us that the product of inversely
proportional variables is a positive constant. This is a useful form for identifying inverse

proportionality in experimental data.

» Example 1 Table 0.3.1 shows some experimental data.

(a) Explain why the data suggest that y is inversely proportional to x.

(b) Express y as a function of x.

(c) Graph your function and the data together for x > 0.
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y
y=+x
a0 x
(@)
—)7
y= 3
(1, 1) x
(b)
)7
y=+x
, 1
y=-Vx
(©
A Figure 0.3.8
y
4
3k y=x3
2 -
1 -
X
1 1 1 1 1 1 1 1
-4 -3 -2 -1 1 2 3 4
A Figure 0.3.9
TECHNOLOGY
MASTERY

Solution. For every data point we have xy = 5, so y is inversely proportional to x and
y = 5/x. The graph of this equation with the data points is shown in Figure 0.3.6. <«

Inverse proportions arise in various laws of physics. For example, Boyle’s law in physics
states that if a fixed amount of an ideal gas is held at a constant temperature, then the product
of the pressure P exerted by the gas and the volume V that it occupies is constant; that is,

PV =k

This implies that the variables P and V are inversely proportional to one another. Fig-
ure 0.3.7 shows a typical graph of volume versus pressure under the conditions of Boyle’s
law. Note how doubling the pressure corresponds to halving the volume, as expected.

P (Pressure)

10
9
8
7
6
5 2Py |
N |
3 \
Py —
: 1
Ir |
N N T T T T M R X 1 [ V (Volume)
123 45678 910 §V0 Vo
A Figure 0.3.6 A Figure 0.3.7 Doubling pressure corresponds

to halving volume

POWER FUNCTIONS WITH NONINTEGER EXPONENTS
If p = 1/n, where n is a positive integer, then the power functions f(x) = x” have the

form F) = Pl _ oy

In particular, if n = 2, then f(x) = 4/, and if n = 3, then f(x) = J/x. The graphs of
these functions are shown in parts (a) and () of Figure 0.3.8.

Since every real number has a real cube root, the domain of the function f(x) = J/x
is (—oo, +0), and hence the graph of y = Q/f extends over the entire x-axis. In contrast,
the graph of y = /x extends only over the interval [0, +o) because /x is imaginary for
negative x. As illustrated in Figure 0.3.8c, the graphs of y = \/x and y = —./x form the
upper and lower halves of the parabola x = y?. In general, the graph of y = /x extends
over the entire x-axis if n is odd, but extends only over the interval [0, +) if n is even.

Power functions can have other fractional exponents. Some examples are

f)y =3 fx) = V3, f)y=x""8 @

The graph of f(x) = x?3 is shown in Figure 0.3.9. We will discuss expressions involving
irrational exponents later.

Graphing utilities sometimes omit portions of the graph of a function involving fractional exponents
(or radicals). If f(x) = x?/, where p/q is a positive fraction in lowest terms, then you can circumvent
this problem as follows:

 If pis even and g is odd, then graph g(x) = |x|7/? instead of f(x).
e If pisodd and ¢ is odd, then graph g(x) = (|x|/x)|x|"/¢ instead of f(x).

Use a graphing utility to generate graphs of f(x) = +/x? and f(x) = x~7/8 that show all of their signif-
icant features.



A more detailed review of polynomials
appears in Appendix C.

The constant 0 is a polynomial called
the zero polynomial. In this text we
will take the degree of the zero poly-
nomial to be undefined. Other texts
may use different conventions for the
degree of the zero polynomial.
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H POLYNOMIALS

A polynomialin x is a function that is expressible as a sum of finitely many terms of the form
cx", where c is a constant and n is a nonnegative integer. Some examples of polynomials

are x4+ 1, 3x2+5x—+2, X%, 4(=4x%, 5x7—x*+3

The function (x> — 4)? is also a polynomial because it can be expanded by the binomial
formula (see the inside front cover) and expressed as a sum of terms of the form cx”:

(2 =43 = (2 =30’ @) + 3@ — @) =x — 12x* +48x2 — 64  (3)

A general polynomial can be written in either of the following forms, depending on
whether one wants the powers of x in ascending or descending order:

co+c1x +eax? 4+ opx”

X"+ ey X" eix + ¢
The constants ¢y, ¢y, . .., ¢, are called the coefficients of the polynomial. When a polyno-
mial is expressed in one of these forms, the highest power of x that occurs with a nonzero
coefficient is called the degree of the polynomial. Nonzero constant polynomials are con-

sidered to have degree 0, since we can write ¢ = cx”. Polynomials of degree 1, 2, 3, 4,
and 5 are described as linear, quadratic, cubic, quartic, and quintic, respectively. For

example
pe, 34 5x x2—3x+1 2% =7
Has degree 1 (linear) Has degree 2 (quadratic) Has degree 3 (cubic)
8x* —9x3 +5x —3 V343440 (x2 —4)°
Has degree 4 (quartic) Has degree 5 (quintic) Has degree 6 [see (3)]

The natural domain of a polynomial in x is (—ce, 4+0), since the only operations involved
are multiplication and addition; the range depends on the particular polynomial. We already
know that the graphs of polynomials of degree 0 and 1 are lines and that the graphs of
polynomials of degree 2 are parabolas. Figure 0.3.10 shows the graphs of some typical
polynomials of higher degree. Later, we will discuss polynomial graphs in detail, but for
now it suffices to observe that graphs of polynomials are very well behaved in the sense that
they have no discontinuities or sharp corners. As illustrated in Figure 0.3.10, the graphs of
polynomials wander up and down for awhile in a roller-coaster fashion, but eventually that
behavior stops and the graphs steadily rise or fall indefinitely as one travels along the curve
in either the positive or negative direction. We will see later that the number of peaks and
valleys is less than the degree of the polynomial.

y y Ay

A Figure 0.3.10

oA VL Al
~

Il RATIONAL FUNCTIONS

A function that can be expressed as a ratio of two polynomials is called a rational function.
If P(x) and Q(x) are polynomials, then the domain of the rational function
P(x)

T =56
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consists of all values of x such that Q(x) # 0. For example, the domain of the rational
function

2
x4 2x
fO=——

consists of all values of x, except x = 1 and x = —1. Its graph is shown in Figure 0.3.11

along with the graphs of two other typical rational functions.
The graphs of rational functions with nonconstant denominators differ from the graphs
of polynomials in some essential ways:

e Unlike polynomials whose graphs are continuous (unbroken) curves, the graphs of
rational functions have discontinuities at the points where the denominator is zero.

e Unlike polynomials, rational functions may have numbers at which they are not
defined. Near such points, many rational functions have graphs that closely approxi-
mate a vertical line, called a vertical asymptote. These are represented by the dashed
vertical lines in Figure 0.3.11.

e Unlike the graphs of nonconstant polynomials, which eventually rise or fall indefi-
nitely, the graphs of many rational functions eventually get closer and closer to some
horizontal line, called a horizontal asymptote, as one traverses the curve in either
the positive or negative direction. The horizontal asymptotes are represented by the
dashed horizontal lines in the first two parts of Figure 0.3.11. In the third part of the
figure the x-axis is a horizontal asymptote.

\ | y Y
g4t | |
| | 4+ |
N L }
NI
,,,,,,, Nl TTe— [ S
TR T T ! L X [T R N e R R B A R ’:
-5 \ \ 5 -5 B } 7 —4
| | u
I Y B \ B
I LY -3 |
\ \ \ L
4111
| I
y_x2+2x y= -1 y= 3
x2-1 x2-2x-3 X241
A Figure 0.3.11

Il ALGEBRAIC FUNCTIONS

In this text we will assume that the in-
dependent variable of a trigonometric
function is in radians unless otherwise
stated. A review of trigonometric func-
tions can be found in Appendix B.

Functions that can be constructed from polynomials by applying finitely many algebraic
operations (addition, subtraction, multiplication, division, and root extraction) are called
algebraic functions. Some examples are

f)=vVx2—4, f(x)=3Jx2+x),

As illustrated in Figure 0.3.12, the graphs of algebraic functions vary widely, so it is difficult
to make general statements about them. Later in this text we will develop general calculus
methods for analyzing such functions.

) =x¥3(x +2)

THE FAMILIES y = A sin Bx AND y = A cos Bx
Many important applications lead to trigonometric functions of the form

f(x)=Asin(Bx —C) and g(x)=Acos(Bx —C) “)

where A, B, and C are nonzero constants. The graphs of such functions can be obtained by
stretching, compressing, translating, and reflecting the graphs of y = sinx and y = cosx
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y
4+
y y s
5 [~ 15 -
4r 10 2]
3+ \ sk
2F X
| | | x
L x -3 =2 12 L L L
[ | | [ S5 -4 -3 -2 1 1
-5-4-3-2-1 1 2 3 45
y= \x2—4 y=3%/f(2+x) y=)c2/3(x+2)2
A Figure 0.3.12

appropriately. To see why this is so, let us start with the case where C = 0 and consider
how the graphs of the equations

y=AsinBx and y = AcosBx

relate to the graphs of y = sinx and y = cos x. If A and B are positive, then the effect of the
constant A is to stretch or compress the graphs of y = sin x and y = cos x vertically and the
effect of the constant B is to compress or stretch the graphs of sin x and cos x horizontally.
For example, the graph of y = 2 sin 4x can be obtained by stretching the graph of y = sin x
vertically by a factor of 2 and compressing it horizontally by a factor of 4. (Recall from
Section 0.2 that the multiplier of x stretches when it is less than 1 and compresses when it is
greater than 1.) Thus, as shown in Figure 0.3.13, the graph of y = 2 sin 4x varies between
—2 and 2, and repeats every 27r/4 = 7/2 units.

y =2sin4x

y =sinx

» Figure 0.3.13

In general, if A and B are positive numbers, then the graphs of

y=AsinBx and y = AcosBx

oscillate between —A and A and repeat every 27/ B units, so we say that these functions
have amplitude A and period 27/ B. In addition, we define the frequency of these func-
tions to be the reciprocal of the period, that is, the frequency is B/2m. If A or B is negative,
then these constants cause reflections of the graphs about the axes as well as compressing
or stretching them; and in this case the amplitude, period, and frequency are given by

B|

. 2w |
period = —, frequency = p

amplitude = |A]|, i3]

» Example2 Make sketches of the following graphs that show the period and amplitude.

(a) y =3sin2nx (b) y = —3co0s0.5x (¢) y=1+sinx
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Solution (a). The equation is of the form y = A sin Bx with A = 3 and B = 27, so the
graph has the shape of a sine function, but it has an amplitude of A = 3 and a period of
27/B = 27/2m = 1 (Figure 0.3.14a).

Solution (b). The equation is of the form y = A cos Bx with A = —3 and B = 0.5, so
the graph has the shape of a cosine curve that has been reflected about the x-axis (be-
cause A = —3 is negative), but with amplitude |A| = 3 and period 277/ B = 27/0.5 = 47
(Figure 0.3.14D).

Solution (c¢). The graph has the shape of a sine curve that has been translated up 1 unit
(Figure 0.3.14c¢). «

e N3 TN e
Amplitudel ]\ /\ /\ /\JAmplitude Amplitude
X X
| |

A Figure 0.3.14

TR/ VARN

Period Period
(@) (b) ()

B THE FAMILIES y = A sin(Bx - C) AND y = A cos(Bx - C)

To investigate the graphs of the more general families
y=Asin(Bx —C) and y= Acos(Bx —C)

it will be helpful to rewrite these equations as

SN Y ORI YA

In this form we see that the graphs of these equations can be obtained by translating the
graphs of y = Asin Bx and y = A cos Bx to the left or right, depending on the sign of
C/B. For example, if C/B > 0, then the graph of

y = Asin[B(x — C/B)] = Asin(Bx — C)

can be obtained by translating the graph of y = A sin Bx to the right by C/B units (Fig-
ure 0.3.15). If C/B < 0, the graph of y = Asin(Bx — C) is obtained by translating the
graph of y = A sin Bx to the left by |C/B]| units.

Amplitude = A
x
\y =Asin(Bx—-C)
y = Asin Bx

» Example 3 Find the amplitude and period of

g
y=3005(2x+5>

> Figure 0.3.15
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and determine how the graph of y = 3 cos 2x should be translated to produce the graph of
this equation. Confirm your results by graphing the equation on a calculator or computer.

Solution.

which is of the form

VQUICK CHECK EXERCISES 0.3

NN
IS
(3]
3

(See page 38 for answers.)

The equation can be rewritten as

oy y =3cos [Ex - (—g)] — 3cos [2 (x _ (—g))]

IREVATR

A Figure 0.3.16

s aonfn (-]

with A =3, B =2, and C/B = —n/4. It follows that the amplitude is A = 3, the period
is 2/ B = 7, and the graph is obtained by translating the graph of y = 3 cos 2x left by
|C/B| = 7/4 units (Figure 0.3.16). <«

1.

2.
3.

EXERCISE SET 0.3

Consider the family of functions y = x”, where 7 is an in-
teger. The graphs of y = x” are symmetric with respect to
the y-axis if n is . These graphs are symmetric
with respect to the origin if n is . The y-axis is a
vertical asymptote for these graphs if n is

What is the natural domain of a polynomial?

Consider the family of functions y = x'/ where n is a

nonzero integer. Find the natural domain of these functions
ifnis

(a) positive and even
(c) negative and even

(b) positive and odd
(d) negative and odd.

~ Graphing Utility

. The graph of y = A sin Bx has amplitude

. Classify each equation as a polynomial, rational, algebraic,

or not an algebraic function.

(@) y=4/x+2
(c) y = 5x3 4 cos4x

b) y=+3x*—x+1

X245
d y=
dy P

(e) y=3x>+4x72
and is
periodic with period

1.

(a) Find an equation for the family of lines whose members
have slope m = 3.

(b) Find an equation for the member of the family that
passes through (—1, 3).

(c) Sketch some members of the family, and label them
with their equations. Include the line in part (b).

. Find an equation for the family of lines whose members are

perpendicular to those in Exercise 1.

. (a) Find an equation for the family of lines with y-intercept

b=2.

(b) Find an equation for the member of the family whose
angle of inclination is 135°.

(c) Sketch some members of the family, and label them
with their equations. Include the line in part (b).

. Find an equation for the family of lines that pass through the

intersection of 5x —3y + 11 =0and 2x — 9y +7 =0.

. The U.S. Internal Revenue Service uses a 10-year linear de-

preciation schedule to determine the value of various busi-
ness items. This means that an item is assumed to have a
value of zero at the end of the tenth year and that at inter-
mediate times the value is a linear function of the elapsed
time. Sketch some typical depreciation lines, and explain
the practical significance of the y-intercepts.

. Find all lines through (6, —1) for which the product of the

x- and y-intercepts is 3.

4. Find an equation for

(a) the family of lines that pass through the origin

(b) the family of lines with x-intercept a = 1

(c) the family of lines that pass through the point (1, —2)
(d) the family of lines parallel to 2x + 4y = 1.

5. Find an equation for the family of lines tangent to the circle
with center at the origin and radius 3.

FOCUS ON CONCEPTS

9-10 State a geometric property common to all lines in the
family, and sketch five of the lines.
9. (a) The family y = —x + b
(b) The family y = mx — 1
(c) The family y = m(x +4) +2
(d) The family x — ky =1
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10. (a) The family y =5
(b) The family Ax +2y+1=20
(c) The family 2x + By + 1 =0
(d) The family y — 1 = m(x + 1)

11. In each part, match the equation with one of the accom-

panying graphs.

@ y=x (b) y =2x°

© y=—1/x8 (d) y=val -1

© y=Vx-2 (f) y=—x7

y y y

. : ;
T

N~

v

’

A Figure Ex-11

VI

12. The accompanying table gives approximate values of three
functions: one of the form kx2, one of the form kx—3, and
one of the form kx*2. Identify which is which, and estimate
k in each case.

x [ 025 | 037 | 21 4.0 5.8 6.2 79 9.3
fx) | 640 197 | 1.08 | 0.156 {0.0513|0.0420|0.0203|0.0124
g(x) [0.0312]0.0684| 2.20 | 8.00 | 16.8 | 19.2 | 31.2 | 432
h(x) | 0.250 | 0.450 | 6.09 | 16.0 | 27.9 | 30.9 | 44.4 | 56.7

A Table Ex-12

4 13-14 Sketch the graph of the equation for n = 1, 3, and 5 in
one coordinate system and for n = 2, 4, and 6 in another coordi-
nate system. If you have a graphing utility, use it to check your
work.

13. (a)
14. (a) y =2x"
© y=-=30x+2"
15. (a) Sketch the graph of y = ax? fora = £1, £2, and £3
in a single coordinate system.
(b) Sketch the graph of y = x> + b for b = &1, £2, and
=43 in a single coordinate system.
(c) Sketch some typical members of the family of curves
y =ax>+b.
Sketch the graph of y = a+/x fora = +1, £2, and +3
in a single coordinate system.

y=—x" (b) y=2x"  (¢) y=(x— D
(b) y=—x""

16. (a)

(b) Sketch the graph of y = /x + b for b = £1, +2, and
43 in a single coordinate system.
(c) Sketch some typical members of the family of curves

y =a/x +b.

[ 17-18 Sketch the graph of the equation by making appropriate
transformations to the graph of a basic power function. If you
have a graphing utility, use it to check your work.

17. (@) y =2(x +1)2 b) y=-3x-2)°

(C))’:m (d)y:m
18. @) y=1—+x+2 b)) y=1-—Ix+2
5 2
(C))’=m (d)y=m

19. Use the graph of y = /x to help sketch the graph of

y = lxl.
20. Use the graph of y = 3/x to help sketch the graph of
y = Il

21. Asdiscussed in this section, Boyle’s law states that at a con-
stant temperature the pressure P exerted by a gas is related
to the volume V by the equation PV = k.

(a) Find the appropriate units for the constant k if pressure
(which is force per unit area) is in newtons per square
meter (N/m?) and volume is in cubic meters (m?).

(b) Find k if the gas exerts a pressure of 20,000 N/m? when
the volume is 1 liter (0.001 m?).

(c) Make a table that shows the pressures for volumes of
0.25,0.5, 1.0, 1.5, and 2.0 liters.

(d) Make a graph of P versus V.

22. A manufacturer of cardboard drink containers wants to con-
struct a closed rectangular container that has a square base
and will hold 11—0 liter (100 cm?). Estimate the dimension of
the container that will require the least amount of material
for its manufacture.

23-24 A variable y is said to be inversely proportional to the
square of a variable x if y is related to x by an equation of
the form y = k/x?%, where k is a nonzero constant, called the
constant of proportionality. This terminology is used in these
exercises.

23. According to Coulomb’s law, the force F of attraction be-
tween positive and negative point charges is inversely pro-
portional to the square of the distance x between them.

(a) Assuming that the force of attraction between two point
charges is 0.0005 newton when the distance between
them is 0.3 meter, find the constant of proportionality
(with proper units).

(b) Find the force of attraction between the point charges
when they are 3 meters apart.

(c) Make a graph of force versus distance for the two
charges.

(cont.)



24.

(d) What happens to the force as the particles get closer and
closer together? What happens as they get farther and
farther apart?

It follows from Newton’s Law of Universal Gravitation that
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4 30. Find an equation of the form y = k/(x> + bx +¢)

whose graph is a reasonable match to that in the ac-
companying figure. If you have a graphing utility, use
it to check your work.

the weight W of an object (relative to the Earth) is inversely Ay
proportional to the square of the distance x between the \ \
object and the center of the Earth, that is, W = C/ x2. i i
(a) Assuming that a weather satellite weighs 2000 pounds ! !
on the surface of the Earth and that the Earth is a sphere | |

of radius 4000 miles, find the constant C. ] { . { 1
\ \
\ \
\ \
\ \
\ \
\ \
\ \

Y =

(b) Find the weight of the satellite when it is 1000 miles
above the surface of the Earth.

(c) Make a graph of the satellite’s weight versus its distance
from the center of the Earth.

(d) Is there any distance from the center of the Earth at
which the weight of the satellite is zero? Explain your
reasoning.

< Figure Ex-30

31-32 Find an equation of the form y = D + A sin Bx or
y = D + A cos Bx for each graph.

25-28 True-False Determine whether the statement is true or 31.
5 4
s £ /\ s

false. Explain your answer. 3%\
Vs \/ ' T
-3 s 2
Not drawn to scale

Not drawn to scale

25. Each curve in the family y = 2x + b is parallel to the line
y = 2x.

26. Each curve in the family y = x2 4 bx + ¢ is a translation
of the graph of y= x2. Not drawn to scale

27. If a curve passes through the point (2, 6) and y is inversely (a) (b) (c)
proportional to x, then the constant of proportionality is 3. A Figure Ex-31

28. Curves in the family y = —5 sin(Amwx) have amplitude 5 3

and period 2/|A].

y
FOCUS ON CONCEPTS 2 | 3%\ sg
L1z | \\\//‘ X A i X
T
2 _1F o E/ \\5
-5 J

Not drawn to scale

29. In each part, match the equation with one of the accom- |
panying graphs, and give the equations for the horizontal
and vertical asymptotes.

Not drawn to scale Not drawn to scale

@ y= b y= 1 @ ®) ©
x2—x =2 x2—x—6 A Figure Ex-32
9t 4 gure Ex-
© vy=—= d y= :
x*+1 (x +2)2 33. In each part, find an equation for the graph that has the

form y = yo + Asin(Bx — C).

y

WAV
\/2;:

orn -1 I/ RN

-1
Not drawn to scale
(a) () (©)

A Figure Ex-33

Not drawn to scale Not drawn to scale

34. In the United States, a standard electrical outlet supplies
sinusoidal electrical current with a maximum voltage of
V = 120+/2 volts (V) ata frequency of 60 hertz (Hz). Write
an equation that expresses V as a function of the time ¢, as-
suming that V. =0 1if t = 0. [Note: 1 Hz = 1 cycle per
second. ]

A Figure Ex-29
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M 35-36 Find the amplitude and period, and sketch at least two arise in the study of vibrations and other periodic motion.
periods of the graph by hand. If you have a graphing utility, use Express the equation

it to check your work.

x = «/Esin27t+\/gcos2m

35. (a) y =3sindx (b) y =—2cosmx in the form x = A sin(wt + ), and use a graphing utility to

(c) y =2+ cos (%)

36. (a) y=—1—4sin2x (b) y = §cos(3x —m)

(©) y = —4sin (% n 271)
[ 37. Equations of the form

confirm that both equations have the same graph.

B 38. Determine the number of solutions of x = 2 sin x, and use
a graphing or calculating utility to estimate them.

x = A;sinwt + A, cos wt

l/ QUICK CHECK ANSWERS 0.3

1. even; odd; negative 2. (—oo, +) 3. (a) [0, ) (b) (—oo, +2) (c) (0, +2) (d) (—ow,0)U (0, +x) 4. (a) algebraic
(b) polynomial (c) not algebraic (d) rational (e) rational 5. |A|; 27/|B|

m INVERSE FUNCTIONS; INVERSE TRIGONOMETRIC FUNCTIONS

y=x+1

A Figure 0.4.1

In everyday language the term “inversion” conveys the idea of a reversal. For example,
in meteorology a temperature inversion is a reversal in the usual temperature properties
of air layers, and in music a melodic inversion reverses an ascending interval to the
corresponding descending interval. In mathematics the term inverse is used to describe
functions that reverse one another in the sense that each undoes the effect of the other. In
this section we discuss this fundamental mathematical idea. In particular, we introduce
inverse trigonometric functions to address the problem of recovering an angle that could
produce a given trigonometric function value.

INVERSE FUNCTIONS

The idea of solving an equation y = f(x) for x as a function of y, say x = g(y), is one
of the most important ideas in mathematics. Sometimes, solving an equation is a simple
process; for example, using basic algebra the equation

y=x+1 y=f)
can be solved for x as a function of y:
x=Jy—1 [x=s

The first equation is better for computing y if x is known, and the second is better for
computing x if y is known (Figure 0.4.1).

Our primary interest in this section is to identify relationships that may exist between
the functions f and g when an equation y = f(x) is expressed as x = g(y), or conversely.
For example, consider the functions f(x) = x*> + 1 and g(y) = /y — I discussed above.
When these functions are composed in either order, they cancel out the effect of one another
in the sense that

g(fx)) = \3/f(x)— 1= \3/(x3+1)— 1 = x
FleON =lgMP+1=(/y—1)P+1=y

Pairs of functions with these two properties are so important that there is special terminology
for them.

ey



WARNING

If f is a function, then the —1 in the
symbol f~! always denotes an inverse
and never an exponent. That is,

1
f ’l(x) never means ——

Jx)

The results in Example 2 should make
sense to you intuitively, since the oper-
ations of multiplying by 2 and multiply-
ing by % in either order cancel the effect
of one another, as do the operations of
cubing and taking a cube root.
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0.4.1 perFINITION If the functions f and g satisfy the two conditions
g(f(x)) = x for every x in the domain of f
f(g(y)) =y for every y in the domain of g

then we say that f'is an inverse of g and g is an inverse of f or that f and g are inverse
functions.

It can be shown (Exercise 60) that if a function f has an inverse, then that inverse is
unique. Thus, if a function f has an inverse, then we are entitled to talk about “the” inverse
of f, in which case we denote it by the symbol f~'.

» Example 1 The computations in (1) show that g(y) = Yy —1 is the inverse of
f(x) = x> 4+ 1. Thus, we can express g in inverse notation as

o=Jy-1

and we can express the equations in Definition 0.4.1 as

f7'(f(x)) = x forevery x in the domain of f @
f(f7'(») =y forevery y in the domain of f~!

We will call these the cancellation equations for f and f~'. <«

CHANGING THE INDEPENDENT VARIABLE

The formulas in (2) use x as the independent variable for f and y as the independent variable
for f~!. Although it is often convenient to use different independent variables for f and
f~!, there will be occasions on which it is desirable to use the same independent variable
for both. For example, if we want to graph the functions f and f~' together in the same
xy-coordinate system, then we would want to use x as the independent variable and y as
the dependent variable for both functions. Thus, to graph the functions f(x) = x> + 1 and
f~'(y) = ¥y =T of Example 1 in the same xy-coordinate system, we would change the
independent variable y to x, use y as the dependent variable for both functions, and graph

the equations y=x34+1 and y= Ve —1

We will talk more about graphs of inverse functions later in this section, but for reference
we give the following reformulation of the cancellation equations in (2) using x as the
independent variable for both f and f~!:

f'(f(x)) =x forevery x in the domain of f

3
f(ffl(x)) =x forevery x in the domain of f~! )

» Example 2 Confirm each of the following.
(a) The inverse of f(x) =2xis f~'(x) = ix.

(b) The inverse of f(x) =x3is f~'(x) = x'/3.

Solution (a).

FUF@) = £ Qo) = L@x) =x
U @) = F(b) =2(3) =
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Solution (b). FUF) = £ @) = (x3)1/3 .

FOf7 ) = f(xl/S) = ()61/3)3 —x <

In general, if a function f has an inverse
and f(a) = b, then the procedure in
Example 3 shows that a = f~!(b);
that is, f~! maps each output of f
back into the corresponding input (Fig-
ure 0.4.2).

A Figure 0.4.2 If f maps a to b, then
£~ maps b back to a.

An alternative way to obtain a formula
for f~!(x) with x as the independent
variable is to reverse the roles of x and
y at the outset and solve the equation
x = f(y) for y as a function of x.

» Example 3 Given that the function f has an inverse and that f(3) = 5, find 715).

Solution. Apply f~' to both sides of the equation f(3) = 5 to obtain

e =176
and now apply the first equation in (3) to conclude that f~'(5) = 3. <«

DOMAIN AND RANGE OF INVERSE FUNCTIONS
The equations in (3) imply the following relationships between the domains and ranges of

and f1:
f f domain of f~! = range of f @

range of f~! = domain of f

One way to show that two sets are the same is to show that each is a subset of the other.
Thus we can establish the first equality in (4) by showing that the domain of f~! is a subset
of the range of f and that the range of f is a subset of the domain of f~'. We do this
as follows: The first equation in (3) implies that £~ is defined at f(x) for all values of x
in the domain of f, and this implies that the range of f is a subset of the domain of f~!.
Conversely, if x is in the domain of f~!, then the second equation in (3) implies that x is
in the range of f because it is the image of f~'(x). Thus, the domain of f~! is a subset of
the range of f. We leave the proof of the second equation in (4) as an exercise.

A METHOD FOR FINDING INVERSE FUNCTIONS

At the beginning of this section we observed that solving y = f(x) = x> + 1 for x as a
function of y produces x = f~'(y) = J/y — 1. The following theorem shows that this is
not accidental.

0.4.2 THEOREM Ifan equation’y = f(x) can be solved for x as a function of y, say
x = g(v), then f has an inverse and that inverse is g(y) = f~'(y).

PROOF Substituting y = f(x) intox = g(y) yields x = g(f(x)), which confirms the first
equation in Definition 0.4.1, and substituting x = g(y) into y = f(x) yields y = f(g(y)),
which confirms the second equation in Definition 0.4.1.

Theorem 0.4.2 provides us with the following procedure for finding the inverse of a
function.

A Procedure for Finding the Inverse of a Function f
Step 1. Write down the equation y = f(x).
Step 2. If possible, solve this equation for x as a function of y.

Step 3. The resulting equation will be x = f~!(y), which provides a formula for f~!
with y as the independent variable.

Step 4. If y is acceptable as the independent variable for the inverse function, then you
are done, but if you want to have x as the independent variable, then you need
to interchange x and y in the equation x = f~'(y) to obtain y = f~'(x).
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» Example 4 Find a formula for the inverse of f(x) = +/3x — 2 with x as the indepen-
dent variable, and state the domain of f -1

Solution. Following the procedure stated above, we first write

y=+3x-2
Then we solve this equation for x as a function of y:
y2=3x -2
x=30"+2)
which tells us that ) = %(y2 +2) 5)
Since we want x to be the independent variable, we reverse x and y in (5) to produce the
formula fﬁl(x) _ %(xz +2) )

We know from (4) that the domain of f~! is the range of f. In general, this need not be
the same as the natural domain of the formula for f —1 Indeed, in this example the natural
domain of (6) is (—o, +0), whereas the range of f(x) = +/3x — 21is [0, +). Thus, if we
want to make the domain of f~! clear, we must express it explicitly by rewriting (6) as

o) =1x242), x>0 «

EXISTENCE OF INVERSE FUNCTIONS
The procedure we gave above for finding the inverse of a function f was based on solving
the equation y = f(x) for x as a function of y. This procedure can fail for two reasons—the
function f may not have an inverse, or it may have an inverse but the equation y = f(x)
cannot be solved explicitly for x as a function of y. Thus, it is important to establish
conditions that ensure the existence of an inverse, even if it cannot be found explicitly.

If a function f has an inverse, then it must assign distinct outputs to distinct inputs. For
example, the function f(x) = x? cannot have an inverse because it assigns the same value
tox =2 and x = —2, namely,

f@Q)=f(=2)=4

Thus, if f(x) = x? were to have an inverse, then the equation f(2) =4 would imply
that f~'(4) = 2, and the equation f(—2) =4 would imply that f~'(4) = —2. But this
is impossible because f~'(4) cannot have two different values. Another way to see that
f(x) = x? has no inverse is to attempt to find the inverse by solving the equation y = x>
for x as a function of y. We run into trouble immediately because the resulting equation
x = £,/y does not express x as a single function of y.

A function that assigns distinct outputs to distinct inputs is said to be one-fo-one or
invertible, so we know from the preceding discussion that if a function f has an inverse,
then it must be one-to-one. The converse is also true, thereby establishing the following
theorem.

0.4.3 THEOREM A function has an inverse if and only if it is one-to-one.

Stated algebraically, a function f is one-to-one if and only if f(x;) # f(x,) whenever
X1 # Xxp; stated geometrically, a function f is one-to-one if and only if the graphof y = f(x)
is cut at most once by any horizontal line (Figure 0.4.3). The latter statement together with
Theorem 0.4.3 provides the following geometric test for determining whether a function
has an inverse.
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y Y

)
fon) = flx) /\

-

S(xp)

Sflxp

\ \

\ \

\ \

\ \

| |
X X,

One-to-one, since f(x;) # f(x,) Not one-to-one, since
if x, #x, Sf@xp) = flxy) and x; # Xy

> Figure 0.4.3

0.4.4 THEOREM (The Horizontal Line Test) A function has an inverse function if and
only if its graph is cut at most once by any horizontal line.

» Example 5 Use the horizontal line test to show that f(x) = x2 has no inverse but that
fx) = x> does.

Solution. Figure 0.4.4 shows a horizontal line that cuts the graph of y = x? more than
once, so f(x) = x? is not invertible. Figure 0.4.5 shows that the graph of y = x is cut at
most once by any horizontal line, so f(x) = x> is invertible. [Recall from Example 2 that
the inverse of f(x) = x%is f~!1(x) = x'/3.] <

!
\
\
!
!
|
-2

o ———

A Figure 0.4.4 A Figure 0.4.5

» Example 6 Explain why the function f that is graphed in Figure 0.4.6 has an inverse,
and find f~'(3).

N W

Solution. The function f has an inverse since its graph passes the horizontal line test.
. Toevaluate f ~1(3), we view £7'(3) as that number x for which f(x) = 3. From the graph
320 01 23 4 5 6 we see that f(2) =3,s0 f~'(3) =2. «
A Figure 0.4.6

1

Il INCREASING OR DECREASING FUNCTIONS ARE INVERTIBLE

A function whose graph is always rising as it is traversed from left to right is said to be an
! - i - increasing function, and a function whose graph is always falling as it is traversed from
is an example of an increasing function. -y ¢ riohy js said to be a decreasing function. If x; and x, are points in the domain of a
Give an example of a decreasing func- K o N X
fion and compute its inverse. function f, then f is increasing if

The function f(x) = x3 in Figure 0.4.5

f(x1) < f(x2) whenever x| < x»
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a

The points (a, b) and (b, a)
are reflections about y = x.

A Figure 0.4.8

y=F") e

y =/

The graphs of fand f’l are
reflections about y = x.

A Figure 0.4.9
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d fisd ing if
and f is decreasing i f(x1) > f(x2) whenever x; < x;

(Figure 0.4.7). It is evident geometrically that increasing and decreasing functions pass the
horizontal line test and hence are invertible.

y y
Increasing Decreasing
\ \
} Sxy) Sflxp }
\ \ \ \
\ \ \ \
\ \ \ \
Sl } } x } }f(xz) X
1 X g B3| %)

[ < flxy) ifx; <x, [ > flxy) ifx; <x,

> Figure 0.4.7

GRAPHS OF INVERSE FUNCTIONS

Our next objective is to explore the relationship between the graphs of f and f~!. For this
purpose, it will be desirable to use x as the independent variable for both functions so we
can compare the graphs of y = f(x) and y = f~'(x).

If (a, b) is a point on the graph y = f(x), then b = f(a). This is equivalent to the
statement that @ = f~'(b), which means that (b, a) is a point on the graph of y = f~!(x).
In short, reversing the coordinates of a point on the graph of f produces a point on the graph
of f~!. Similarly, reversing the coordinates of a point on the graph of f~! produces a point
on the graph of f (verify). However, the geometric effect of reversing the coordinates of
a point is to reflect that point about the line y = x (Figure 0.4.8), and hence the graphs of
y = f(x) and y = f~!(x) are reflections of one another about this line (Figure 0.4.9). In
summary, we have the following result.

0.4.5 THEOREM If f has an inverse, then the graphs of y = f(x) and y = f~'(x)
are reflections of one another about the line y = x; that is, each graph is the mirror
image of the other with respect to that line.

» Example 7 Figure 0.4.10 shows the graphs of the inverse functions discussed in
Examples 2 and 4. «

A Figure 0.4.10
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Il RESTRICTING DOMAINS FOR INVERTIBILITY

If a function g is obtained from a function f by placing restrictions on the domain of f,
then g is called a restriction of f. Thus, for example, the function

gy =x>, x>0
is a restriction of the function f(x) = x>. More precisely, it is called the restriction of x>
to the interval [0, +o).
Sometimes it is possible to create an invertible function from a function that is not
invertible by restricting the domain appropriately. For example, we showed earlier that
f(x) = x? is not invertible. However, consider the restricted functions

fi(x) =x2, x>0 and Hx) = X3, x<0

the union of whose graphs is the complete graph of f(x) = x> (Figure 0.4.11). These
restricted functions are each one-to-one (hence invertible), since their graphs pass the hor-
izontal line test. As illustrated in Figure 0.4.12, their inverses are

M@ =vax and f;'(x)=—Vx

y=x%x<0 hY y=x%x20 e
S5F //
7/
4+ s
y e
3 e
7/
2k yd
Va y:\/)?
4
1,
7/
| | | Z | | | | | X
y=x%x<0 y=x%x20 -3 -2 -1/ 1 2 3 4 5
X /,l,
X N o E
A Figure 0.4.11 A Figure 0.4.12

B INVERSE TRIGONOMETRIC FUNCTIONS

A common problem in trigonometry is to find an angle x using a known value of sin x,
cos x, or some other trigonometric function. Recall that problems of this type involve the
computation of “arc functions” such as arcsin x, arccos x, and so forth. We will conclude
this section by studying these arc functions from the viewpoint of general inverse functions.

The six basic trigonometric functions do not have inverses because their graphs repeat
periodically and hence do not pass the horizontal line test. To circumvent this problem
we will restrict the domains of the trigonometric functions to produce one-to-one functions
and then define the “inverse trigonometric functions” to be the inverses of these restricted
functions. The top part of Figure 0.4.13 shows geometrically how these restrictions are
made for sin x, cos x, tan x, and sec x, and the bottom part of the figure shows the graphs
of the corresponding inverse functions

(also denoted by arcsin x, arccos x, arctan x, and arcsec x). Inverses of cot x and csc x are
of lesser importance and will be considered in the exercises.
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The following formal definitions summarize the preceding discussion.

If you have trouble visualizing the cor-

respondence between the top and bot-

tom parts of Figure 0.4.13, keep in 0.4.6 DEFINITION The inverse sine function, denoted by sin™', is defined to be the

mind that a reflection about y = x . . . .
S ; inverse of the restricted sine function
converts vertical lines into horizontal

lines, and vice versa; and it converts sinx, —-m/2<x<mn/2
x-intercepts into y-intercepts, and vice
versa.

0.4.7 DEFINITION The inverse cosine function, denoted by cos™!, is defined to be
the inverse of the restricted cosine function

cosx, O0<x<m

0.4.8 DEFINITION The inverse tangent function, denoted by tan~!, is defined to be
the inverse of the restricted tangent function

tanx, —n/2<x<mn/2
WARNING
The notations sin ™" x,cos lx, ... are
reserved exclusively for the inverse 0.4.9 pEFINITION® The inverse secant function, denoted by sec™!, is defined to be
trigonometric functions and are not the inverse of the restricted secant function
used for reciprocals of the trigonomet- .
ric functions. If we want to express the secx, 0<ux <mwithx # /2

reciprocal 1/ sinx using an exponent,
we would write (sinx)~! and never
sin™! x.

"There is no universal agreement on the definition of sec”! x, and some mathematicians prefer to restrict the
domain of sec x so that 0 < x < 7/2 or w < x < 37/2, which was the definition used in some earlier editions
of this text. Each definition has advantages and disadvantages, but we will use the current definition to conform
with the conventions used by the CAS programs Mathematica, Maple, and Sage.
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TECHNOLOGY MASTERY

Refer to the documentation for your
calculating utility to determine how to
calculate inverse sines, inverse cosines,
and inverse tangents; and then confirm
Equation (9) numerically by showing
that

sin~! (0.5) ~ 0.523598775598 . ..
~ /6

If x = cos™! y is viewed as an angle
in radian measure whose cosineis y, in
what possible quadrants can x lie? An-
swer the same question for

x=tan"'y and x =sec”!y

Table 0.4.1 summarizes the basic properties of the inverse trigonometric functions we
have considered. You should confirm that the domains and ranges listed in this table are
consistent with the graphs shown in Figure 0.4.13.

Table 0.4.1
PROPERTIES OF INVERSE TRIGONOMETRIC FUNCTIONS

FUNCTION DOMAIN RANGE BASIC RELATIONSHIPS

sin”!(sinx) = x if —w/2<x<m/2

-1
s (=1, 1] [=m/2, 2] sin(sin™'x) = x if —1<x<1
—1 .
1 . cos (cosx)=xif O<x<m
cos =1.1] [0, 7] cos(cos'x)=x if —1<x<1
—1 .
] o oo . tan” (tanx) = x if —w/2 <x<7m/2
tan (zeo, +eo) (m/2, 212) tan(tan™! x) = x if —oo < x < 400
,1 _ .
sec! (oo =11 U [1.400) [0.7/2) U (/2. 7] sec (secx) =x if O<x<m x=m/2

sec(sec!x) = x if |x|=>1

Il EVALUATING INVERSE TRIGONOMETRIC FUNCTIONS

A common problem in trigonometry is to find an angle whose sine is known. For example,
you might want to find an angle x in radian measure such that

sinx = % @)

and, more generally, for a given value of y in the interval —1 < y < 1 you might want to
solve the equation sinx =y ®)
Because sin x repeats periodically, this equation has infinitely many solutions for x; how-

ever, if we solve this equation as 1

X =sin""y

then we isolate the specific solution that lies in the interval [—/2, /2], since this is the
range of the inverse sine. For example, Figure 0.4.14 shows four solutions of Equation
(7), namely, —117/6, —77/6, /6, and 57/6. Of these, /6 is the solution in the interval

[=/2, w21, s0 sin”! (L) = /6 ©)

In general, if we view x = sin~' y as an angle in radian measure whose sine is y, then
the restriction —7/2 < x < 7/2 imposes the geometric requirement that the angle x in
standard position terminate in either the first or fourth quadrant or on an axis adjacent to
those quadrants.

» Example 8 Find exact values of
(@ sin”'(1/v2) () sin”'(=1)

by inspection, and confirm your results numerically using a calculating utility.

Solution (a). Because sin~'(1/+/2) > 0, we can view x = sin~'(1/4/2) as that angle
in the first quadrant such that sin & = 1/+4/2. Thus, sin~'(1/+/2) = /4. You can confirm
this with your calculating utility by showing that sin~'(1/+/2) &~ 0.785 ~ /4.

Solution (b). Because sin~'(—1) < 0, we can view x = sin~'(—1) as an angle in the
fourth quadrant (or an adjacent axis) such that sin x = —1. Thus, sin"!(=1) = —7/2. You
can confirm this with your calculating utility by showing that sin~' (—1) &~ —1.57 &~ —7/2.

<
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Most calculators do not provide a direct method for calculating inverse secants. In such situations the

MASTERY | identity

There is little to be gained by memoriz-
ing these identities. What is important
is the mastery of the method used to
obtain them.

sin~!x

sec” ! x = cos™' (1/x) (10)
is useful (Exercise 48). Use this formula to show that
sec™1(2.25) ~ 1.11 and sec™!(—2.25) ~ 2.03

If you have a calculating utility (such as a CAS) that can find sec™! x directly, use it to check these
values.

Il IDENTITIES FOR INVERSE TRIGONOMETRIC FUNCTIONS

If we interpret sin”' x as an angle in radian measure whose sine is x, and if that angle is
nonnegative, then we can represent sin~' x geometrically as an angle in a right triangle in
which the hypotenuse has length 1 and the side opposite to the angle sin~! x has length x
(Figure 0.4.15a). Moreover, the unlabeled acute angle in Figure 0.4.15a is cos™! x, since
the cosine of that angle is x, and the unlabeled side in that figure has length +/1 — x? by
the Theorem of Pythagoras (Figure 0.4.15b). This triangle motivates a number of useful
identities involving inverse trigonometric functions that are valid for —1 < x < 1; for
example,

Ix==

sin”! x +coslx = 5 (11)

cos(sin"'x) =1 —x2 (12)
sin(cos ™' x) = 1 — x2 (13)

X
(14)

V1—x?
In a similar manner, tan~! x and sec ™! x can be represented as angles in the right triangles
shown in Figures 0.4.15¢ and 0.4.15d (verify). Those triangles reveal additional useful

identities; for example,
P sec(tan™' x) = /1 + x2 (15)

vxr—1
x

tan(sin_l x) =

1

sin(sec” x) = x=1 (16)

sin” " x tan”! x sec' x

(@)
A Figure 0.4.15

() (©) (d)

REMARK | The triangle technique does not always produce the most general form of an identity. For example, in

Exercise 59 we will ask you to derive the following extension of Formula (16) that is valid for x < —1
aswell as x > 1:

Va2 —1
| x|

sin(sec™' x) = (Ix[ =1 )

Referring to Figure 0.4.13, observe that the inverse sine and inverse tangent are odd func-
tions; that is,

sin"!(—x) = —sin"'(x) and tan~!'(—x) = —tan"'(x) (18-19)
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» Example 9 Figure 0.4.16 shows a computer-generated graph of y = sin~! (sin x).
One might think that this graph should be the line y = x, since sin”'(sinx) = x. Why
isn’t it?

Solution. The relationship sin~' (sinx) = x is valid on the interval —/2 < x < 7/2,
so we can say with certainty that the graphs of y = sin~'(sinx) and y = x coincide on
this interval (which is confirmed by Figure 0.4.16). However, outside of this interval the
relationship sin~!(sinx) = x does not hold. For example, if the quantity x lies in the
interval 7/2 < x < 37/2, then the quantity x — m lies in the interval —/2 < x < 7/2, so

sin"![sin(x — )] =x — 7

Thus, by using the identity sin(x — 77) = — sin x and the fact that sin~' is an odd function,
we can express sin"!(sin x) as

sin’l(sin X) = sin’l[— sin(x —m)] = — sinfl[sin(x —m)]=—(x—m)

This shows that on the interval 7/2 < x < 37/2 the graph of y = sin™'(sinx) coincides
with the line y = —(x — ), which has slope —1 and an x-intercept at x = . This agrees
with Figure 0.4.16. «

y

_rk
> Figure 0.4.16
VQU]CK CHECK EXERCISES 0.4  (See page 52 for answers.)
1. In each part, determine whether the function f is one-to- 4. In each part, determine the exact value without using a cal-
one. culating utility.
(a) f(¢) is the number of people in line at a movie theater (a) sin”! (- =
at time 7. ®) tan~'(H)=__
(b) f(x) is the measured high temperature (rounded to the (c) sin”! (%ﬁ ) =
nearest °F) in a city on the xth day of the year. (d) cos™! (%) _

(c) f(v) is the weight of v cubic inches of lead.

2. A student enters a number on a calculator, doubles it, adds 8
to the result, divides the sum by 2, subtracts 3 from the quo-
tient, and then cubes the difference. If the resulting number

(e) sec™ ' (=2)=___

5. In each part, determine the exact value without using a cal-
culating utility.
(@) sin"'(sinm/7) =

isx,then ____ was the student’s original number. (b) sin~ (sin 57/7) =

3. If (3, —2) is a point on the graph of an odd invertible func- (c) tan~!(tan 137/6) =
tion f, then and are points on the graph (d) cos™!(cos 127/7) =
of =1

EXERCISE SET 0.4 [ Graphing Utility

1. In (a)—(d), determine whether f and g are inverse functions. © fx)= Ix =2, gy =x3+2

(@) f(x)=4x, gx)=1x

@ fx) =x* gx)=Jx

(b) f(x)=3x+1, g(x) =3x—1



[ 2. Check your answers to Exercise 1 with a graphing utility by
determining whether the graphs of f and g are reflections
of one another about the line y = x.

3. Ineach part, use the horizontal line test to determine whether

the function f is one-to-one.
(@ f(x)=3x+2 () fx)=vx—1
@ fx)=x>

©) fx)=Ix|
(e) f(x)=x>—-2x+2 ) f(x) =sinx

[ 4. In each part, generate the graph of the function f with a

graphing utility, and determine whether f is one-to-one.
@ fx)=x>—=3x4+2 () f(x)=x>—3x>+3x—1

FOCUS ON CONCEPTS

5. In each part, determine whether the function f defined
by the table is one-to-one.

@bl 1] 23 |als|e

fo|-2(-1101]1]2]3

®F s 1 203 456

fo| 4 | 716|314

6. A face of a broken clock lies in the xy-plane with the cen-
ter of the clock at the origin and 3:00 in the direction of
the positive x-axis. When the clock broke, the tip of the
hour hand stopped on the graph of y = f(x), where f is
a function that satisfies f(0) = 0.

(a) Are there any times of the day that cannot appear in
such a configuration? Explain.

(b) How does your answer to part (a) change if f must
be an invertible function?

(c) How do your answers to parts (a) and (b) change if
it was the tip of the minute hand that stopped on the
graph of f?

7. (a) The accompanying figure shows the graph of a func-

tion f over its domain —8 < x < 8. Explain why
f has an inverse, and use the graph to find f~1(2),
£ (=1), and £~ (0).

(b) Find the domain and range of f~!.

(c) Sketch the graph of f~!.

-8-7-6-5-4-3-2-1 01 23456738
A Figure Ex-7

8. (a) Explain why the function f graphed in the accompa-
nying figure has no inverse function on its domain
-3 <x<4
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(b) Subdivide the domain into three adjacent intervals on
each of which the function f has an inverse.

y

A

-3 4

< Figure Ex-8

9-16 Find a formula for f~!(x).
1
10. fo =%
x—1

12. f(x) = J4x +2
4. f(x)=5/x*+1), x>0

9. fx)=7x—6

11. f(x) =3x>-5
13. f(x) =3/x% x<0

15. ()= {5/2 —x, x<2
1/x, x>2
2x, x<0

16. f() = {xz, x>0

17-20 Find a formula for f ~I(x), and state the domain of the
function f~!.

17. f)=(x+2)* x>0

18. f(x) =+/x+3 19. f(x) = —/3—2x

20. f(x)=3x>+5x—-2, x>0

21. Let f(x) = ax>+bx +c¢,a > 0. Find f~! if the domain

of f is restricted to
(@) x = —b/(2a)

FOCUS ON CONCEPTS

22. The formula F = 3C + 32, where C > —273.15 ex-
presses the Fahrenheit temperature F as a function of
the Celsius temperature C.
(a) Find a formula for the inverse function.
(b) In words, what does the inverse function tell you?
(c) Find the domain and range of the inverse function.

23. (a) One meter is about 6.214 x 10~* miles. Find a for-
mula y = f(x) that expresses a length y in meters
as a function of the same length x in miles.

(b) Find a formula for the inverse of f.
(c) Describe what the formula x = f~!(y) tells you in
practical terms.

24. Let f(x) = x%, x > 1, and g(x) = /x.

(a) Show that f(g(x)) =x, x > 1, and g(f(x)) = x,
x> 1.

(b) Show that f and g are not inverses by showing that
the graphs of y = f(x) and y = g(x) are not reflec-
tions of one another about y = x.

(c) Do parts (a) and (b) contradict one another? Ex-
plain.

(b) x < —b/(2a).
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25. (a) Show that f(x) = (3 — x)/(1 — x) is its own in-
Verse.
(b) What does the result in part (a) tell you about the
graph of f?
26. Sketch the graph of a function that is one-to-one on
(—o0, +0), yet not increasing on (—oo, +o0) and not de-
creasing on (—oo, +0).

27. Let f(x) = 2x3 + 5x + 3. Find x if f~1(x) = 1.
3

28. Let f(x) = ——. Find x if f~'(x) = 2.
X

+1
29. Prove that if a® 4+ bc # 0, then the graph of
ax +b
fx) =
cx —a

is symmetric about the line y = x.

30. (a) Prove: If f and g are one-to-one, then so is the compo-
sition fog.
(b) Prove: If f and g are one-to-one, then

(fog) ' =g lof!

31-34 True-False Determine whether the statement is true or
false. Explain your answer.

31. If f is an invertible function such that f(2) =2, then

=14
32. If f and g are inverse functions, then f and g have the same
domain.

33. A one-to-one function is invertible.

34. The range of the inverse tangent function is the interval
—n/2 <y <mn/2.

35. Given that § = tan~! (%), find the exact values of sin 9,
cos B, cotf, secO, and csc .

36. Given that = sec™! 2.6, find the exact values of sin9,
cos @, tan 6, cotd, and cscH.

37. For which values of x is it true that
(a) cos~!(cosx) = x (b) cos(cos™' x) =x
(c) tan~!(tanx) = x (d) tan(tan—'x) = x?

1

38-39 Find the exact value of the given quantity.
38. sec [sinfl (—%)] 39. sin [2 cos™! (%)]

40-41 Complete the identities using the triangle method (Fig-

ure 0.4.15).

40. (a) sin(cos™'x) =?
(c) csc(tan~! x) =7

41. (a) cos(tan"! x) =?
(c) sin(sec™!x) =?

(b) tan(cos™! x) =?
(d) sin(tan™' x) =?
(b) tan(cos™! x) =?
(d) cot(sec™'x) =2

[ 42. (a) Use a calculating utility set to radian measure to make

tables of values of y =sin~' x and y = cos™' x for
x=-1,-0.8, —0.6,...,0,0.2,...,1. Round your
answers to two decimal places.

(b) Plot the points obtained in part (a), and use the points to
sketch the graphsof y = sin”! x and y = cos~!' x. Con-
firm that your sketches agree with those in Figure 0.4.13.

(c) Use your graphing utility to graph y = sin~'x and
y = cos™! x; confirm that the graphs agree with those
in Figure 0.4.13.

[ 43. In each part, sketch the graph and check your work with a

graphing utility.
(a) y=sin"'2x (b) y=tan"!1x
44. The law of cosines states that

c? = a*+ b* — 2abcos b

where a, b, and c are the lengths of the sides of a triangle and
0 is the angle formed by sides a and b. Find 0, to the nearest
degree, for the triangle witha = 2, b = 3, and ¢ = 4.

FOCUS ON CONCEPTS

45. (a) Use a calculating utility to evaluate the expressions
sin”!(sin™' 0.25) and sin ! (sin"' 0.9), and explain
what you think is happening in the second calcula-
tion.

(b) For what values of x in the interval —1 < x < 1 will
your calculating utility produce a real value for the
function sin~!(sin~! x)?

46. A soccer player kicks a ball with an initial speed of 14
m/s at an angle § with the horizontal (see the accom-
panying figure). The ball lands 18 m down the field.
If air resistance is neglected, then the ball will have a
parabolic trajectory and the horizontal range R will be
given by ’

R="sin20
8
where v is the initial speed of the ball and g is the ac-
celeration due to gravity. Using g = 9.8 m/s?, approx-
imate two values of 6, to the nearest degree, at which
the ball could have been kicked. Which angle results in
the shorter time of flight? Why?

0 S ~
a9 24 \\\
R 0 ~
7R Y:3) \
l R !

A Figure Ex-46

47-48 The function cot™! x is defined to be the inverse of
the restricted cotangent function

cotx, O<x<m

and the function csc~' x is defined to be the inverse of the
restricted cosecant function

cscx, —-m/2<x<m/2, x#O

Use these definitions in these and in all subsequent exercises
that involve these functions.




47. (a) Sketch the graphs of cot™! x and csc™! x.

48. Show that

(b) Find the domain and range of cot™! x and csc™! x.

tan~'(1/x), ifx >0
(a) cot™lx = .

m+tan~'(1/x), ifx <0
(b) sec™'x =cos™! —, if x| >1

() esclx = sin~!

LI B ST RS

. if x| > 1.

49.

50.

51.

Most scientific calculators have keys for the values of only
sin"'x, cos™' x, and tan~!x. The formulas in Exercise
48 show how a calculator can be used to obtain values of
cot~!x, sec™!x, and csc! x for positive values of x. Use
these formulas and a calculator to find numerical values for
each of the following inverse trigonometric functions. Ex-
press your answers in degrees, rounded to the nearest tenth
of a degree.

(a) cot=10.7 (b) sec™'1.2 (c) csc12.3

An Earth-observing satellite has horizon sensors that can
measure the angle 6 shown in the accompanying figure.
Let R be the radius of the Earth (assumed spherical) and &

the distance between the satellite and the Earth’s surface.
R

(a) Show that sinf = Rih
(b) Find 6, to the nearest degree, for a satellite that is 10,000
km from the Earth’s surface (use R = 6378 km).

I
h

Earth < Figure Ex-50

The number of hours of daylight on a given day at a given
point on the Earth’s surface depends on the latitude A of the
point, the angle y through which the Earth has moved in its
orbital plane during the time period from the vernal equinox
(March 21), and the angle of inclination ¢ of the Earth’s
axis of rotation measured from ecliptic north (¢ ~ 23.45°).
The number of hours of daylight z can be approximated by
the formula

24, D=>1
h={12+ Zsin"' D, |D|<1
0, D<-1

where sin ¢ sin y tan A

V'1 — sin? ¢ sin? y

and sin~' D is in degree measure. Given that Fairbanks,

Alaska, is located at a latitude of A = 65° N and also that

y = 90° on June 20 and y = 270° on December 20, ap-

proximate

(a) the maximum number of daylight hours at Fairbanks to
one decimal place
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52,

53.

54.

5S.

56.

(b) the minimum number of daylight hours at Fairbanks to
one decimal place.

Source: This problem was adapted from TEAM, A Path to Applied Mathematics,
The Mathematical Association of America, Washington, D.C., 1985.

A camera is positioned x feet from the base of a missile
launching pad (see the accompanying figure). If a missile
of length a feet is launched vertically, show that when the
base of the missile is b feet above the camera lens, the angle
6 subtended at the lens by the missile is

0 = cot™!

X |
Can‘wera

Launchpad < Figure Ex-52

An airplane is flying at a constant height of 3000 ft above
water at a speed of 400 ft/s. The pilot is to release a sur-
vival package so that it lands in the water at a sighted point
P. If air resistance is neglected, then the package will fol-
low a parabolic trajectory whose equation relative to the
coordinate system in the accompanying figure is
y = 3000 — %xz

where g is the acceleration due to gravity and v is the speed
of the airplane. Using g = 32 ft/s2, find the “line of sight”
angle 6, to the nearest degree, that will result in the package
hitting the target point.

T

3000 ft

Parabolic
trajectory
of object

P < Figure Ex-53

Prove:
(@) sin”'(=x) = —sin"'x
(b) tan~!(—x) = —tan"! x.
Prove:

(a) cos~!'(—=x) =m—cos~'x

(b) sec™!(—x) = 7 —sec”! x.

Prove: X
(@ sin"'x =tan! —— (x| < 1)
V1—x2
(b) cos~!x = g — tan™! (x| < 1).
1—x
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57. Prove: 58. Use the result in Exercise 57 to show that
(a) tan~! % + tan™! % =n/4
tan™' x + tan~! y= tan~! ( Xty ) (b) 2tan! % + tan~! % = /4.
L=xy 59. Use identities (10) and (13) to obtain identity (17).
provided —7/2 < tan~! x 4+ tan~! y < 7/2. [Hint: Use an 60. Prove: A one-to-one function f cannot have two different
identity for tan(o + B).] inverses.

VQUICK CHECK ANSWERS 0.4

1. (a) not one-to-one (b) not one-to-one (c) one-to-one 2. Jx —1 3. (=2,3); (2,-3) 4. (a) —7/2(b) n/4 (c) n/3
(d) /3 (e) 2x/3 5. (a) /7 (b) 2n/7 (¢) #w/6 (d) 27/7

m EXPONENTIAL AND LOGARITHMIC FUNCTIONS

When logarithms were introduced in the seventeenth century as a computational tool, they
provided scientists of that period computing power that was previously unimaginable.
Although computers and calculators have replaced logarithm tables for numerical
calculations, the logarithmic functions have wide-ranging applications in mathematics
and science. In this section we will review some properties of exponents and logarithms
and then use our work on inverse functions to develop results about exponential and
logarithmic functions.

Il IRRATIONAL EXPONENTS
Recall from algebra that if b is a nonzero real number, then nonzero integer powers of b

are defined by 1
b"=bxbx---xb and b7"=—

n factors b

and if n = 0, then b° = 1. Also, if p/q is a positive rational number expressed in lowest

terms, then 1
b4 = Ybr = (V)P and b7 = 7

If b is negative, then some fractional powers of b will have imaginary values—the quantity
(=22 = /=2, for example. To avoid this complication, we will assume throughout this
section that b > 0, even if it is not stated explicitly.

There are various methods for defining irrational powers such as

om, V2 VT
One approach is to define irrational powers of b via successive approximations using rational
Table 0.5.1 powers of b. For example, to define 27 consider the decimal representation of
N o 3.1415926. ..

3 .000000 From this decimal we can form a sequence of rational numbers that gets closer and closer
3.1 8.574188 (o 7, namely, 3.1, 3.14, 3.141, 3.1415, 3.14159
3.14 8.815241 .
3141 8.821353 and from these we can form a sequence of rational powers of 2:
3.1415 8.824411 231 9314 p3I4L - H3MIS 9314159
3.14159 8.824962 , o , ,
3141592 §.824974 Since the exponents of the terms in this sequence get successively closer to , it seems
31415926  8.824977 plausible that the terms themselves will get successively closer to some number. It is that

number that we define to be 27. This is illustrated in Table 0.5.1, which we generated using
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Use a calculating utility to verify the re-

sults in Table 0.5.1, and then verify (1)

by using the utility to compute 27 di-

rectly.
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a calculator. The table suggests that to four decimal places the value of 27 is
2" ~ 8.8250 (H

With this notion for irrational powers, we remark without proof that the following familiar
laws of exponents hold for all real values of p and g:
bP

bPb? = pPT, b_q = pPa, (bp)‘l — pPi

THE FAMILY OF EXPONENTIAL FUNCTIONS
A function of the form f(x) = b*, where b > 0, is called an exponential function with
base b. Some examples are

fo =2 fo=01)", fo=x

Note that an exponential function has a constant base and variable exponent. Thus, functions
such as f(x) = x? and f(x) = x™ would not be classified as exponential functions, since
they have a variable base and a constant exponent.

Figure 0.5.1 illustrates that the graph of y = b* has one of three general forms, depending
on the value of b. The graph of y = b* has the following properties:

e The graph passes through (0, 1) because »° = 1.

e Ifb > 1, the value of b* increases as x increases. As you traverse the graph of y = b*
from left to right, the values of b* increase indefinitely. If you traverse the graph from
right to left, the values of b* decrease toward zero but never reach zero. Thus, the
x-axis is a horizontal asymptote of the graph of b*.

e If 0 < b < 1, the value of b* decreases as x increases. As you traverse the graph
of y = b* from left to right, the values of b* decrease toward zero but never reach
zero. Thus, the x-axis is a horizontal asymptote of the graph of 5*. If you traverse
the graph from right to left, the values of b* increase indefinitely.

e If b =1, then the value of b* is constant.

Some typical members of the family of exponential functions are graphed in Figure
0.5.2. This figure illustrates that the graph of y = (1/b)* is the reflection of the graph of
y = b* about the y-axis. This is because replacing x by —x in the equation y = b* yields

y=b""=(1/b)*

The figure also conveys that for b > 1, the larger the base b, the more rapidly the function
f(x) = b* increases for x > 0.

<o“‘<’7,lil1) Y ()b:>li) (%)X (%)x(lo)x Yo10% 3r 27

4
3
2
/ -Z/‘/ | | 5
| 1 2

A Figure 0.5.1 A Figure 0.5.2 The family
y=b*(b>0)
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The domain and range of the exponential function f(x) = b* can also be found by
examining Figure 0.5.1:

e Ifb > 0, then f(x) = b* is defined and has a real value for every real value of x, so
the natural domain of every exponential function is (—oo, +0).

e If b > 0and b # 1, then as noted earlier the graph of y = b* increases indefinitely
as it is traversed in one direction and decreases toward zero but never reaches zero
as it is traversed in the other direction. This implies that the range of f(x) = b* is
(0, +00).”

» Example 1 Sketch the graph of the function f(x) =1 — 2* and find its domain and
range.

Solution. Start with a graph of y = 2. Reflect this graph across the x-axis to obtain
the graph of y = —2%, then translate that graph upward by 1 unit to obtain the graph of
y =1 — 2" (Figure 0.5.3). The dashed line in the third part of Figure 0.5.3 is a horizontal
asymptote for the graph. You should be able to see from the graph that the domain of f is
(—o0, +0) and the range is (—o, 1). «

y y= 2x y y

v =
<
Il
—

y=-2%

A Figure 0.5.3

I THE NATURAL EXPONENTIAL FUNCTION
Among all possible bases for exponential functions there is one particular base that plays
The use of the letter e is in honor of a special role in calculus. That base, denoted by the letter e, is a certain irrational number

the Swiss mathematician Leonhard Eu- (1) 5ce yalye to six decimal places is
ler (biography on p. 3) who is credited

with recognizing the mathematical im- e~ 2718282 2)
portance of this constant.

This base is important in calculus because, as we will prove later, b = e is the only base
for which the slope of the tangent line™” to the curve y = b* at any point P on the curve is

y y=e' equal to the y-coordinate at P. Thus, for example, the tangent line to y = e* at (0, 1) has
slope 1 (Figure 0.5.4).
Slope =1 The function f(x) = e* is called the natural exponential function. To simplify typog-

raphy, the natural exponential function is sometimes written as exp(x), in which case the

—/ ©. D relationship e ™2 = ¢"1¢*2 would be expressed as
X

exp(x; + x2) = exp(x1) exp(x2)

A Figure 0.5.4 The tangent line to the
graph of y = ¢* at (0, 1) has slope 1.

“We are assuming without proof that the graph of y = b* is a curve without breaks, gaps, or holes.
“*The precise definition of a tangent line will be discussed later. For now your intuition will suffice.
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Your technology utility should have keys or commands for approximating ¢ and for graphing the natural
exponential function. Read your documentation on how to do this and use your utility to confirm (2)
and to generate the graphs in Figures 0.5.2 and 0.5.4.

The constant e also arises in the context of the graph of the equation

1 X
y=(1+—)
X

As shown in Figure 0.5.5, y = e is a horizontal asymptote of this graph. As a result, the
value of e can be approximated to any degree of accuracy by evaluating (3) for x sufficiently
large in absolute value (Table 0.5.2).

3

Table 0.5.2

APPROXIMATIONS OF ¢ BY (1 + l/x)x
FOR INCREASING VALUES OF x

Y X
6 X lh=r )l_c (l * )1_6)
Z (i) I 2 ~ 2.000000
B 10 11 2593742
—_ 3F Y7 100 1.01 2704814
2 /”_ 1000 1.001 2716924
16 i 10,000 1.0001 2718146
B i 100,000 1.00001 2718268
1,000,000 1.000001 2718280

A Figure 0.5.5

M LOGARITHMIC FUNCTIONS

Logarithms with base 10 are called
common logarithms and are often
written without explicit reference to the
base. Thus, the symbol log x generally
denotes log; x.

Recall from algebra that a logarithm is an exponent. More precisely, if b > 0 and b # 1,
then for a positive value of x the expression

log, x

(read “the logarithm to the base b of x”’) denotes that exponent to which b must be raised
to produce x. Thus, for example,

log,, 100 = 2, log,,(1/1000) = —3, log,16 =4, log,1 =0, log,b=1

102 = 100 103 = 1/1000 24 =16 B =1 b =b
We call the function f(x) = log,, x the logarithmic function with base b.

Logarithmic functions can also be viewed as inverses of exponential functions. To
see why this is so, observe from Figure 0.5.1 that if » > 0 and b # 1, then the graph of
f(x) = b* passes the horizontal line test, so b* has an inverse. We can find a formula for

this inverse with x as the independent variable by solving the equation
x=b"

for y as a function of x. But this equation states that y is the logarithm to the base b of x,

so it can be rewritten as
y = log, x

Thus, we have established the following result.

0.5.1 THEOREM Ifb > 0andb # 1, then b* and log, x are inverse functions.
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y y:bx
v
v
v
v
v
v
v
v
v
v
bl s y=log, x
L
| 7
M~ x
//1 b .
%
v
%
7/

A Figure 0.5.6
y=log,x.
y y=logx.
4 y=log,x
3 y =log,x-
2
1

I I I I I |
_1V2345678910

A Figure 0.5.7 The family
y =log,x (b >1)

TECHNOLOGY MASTERY

Use your graphing utility to generate
the graphs of y = Inx and y = log x.

It follows from this theorem that the graphs of y = b* and y = log, x are reflections of
one another about the line y = x (see Figure 0.5.6 for the case where b > 1). Figure 0.5.7
shows the graphs of y = log,, x for various values of b. Observe that they all pass through
the point (1, 0).

The most important logarithms in applications are those with base e. These are called
natural logarithms because the function log, x is the inverse of the natural exponential
function e*. It is standard to denote the natural logarithm of x by In x (read “ell en of x”),
rather than log, x. For example,

Inl =0, Ine =1, Inl/e=—1, In(e?) =2
Since ¢ = 1 Sincee! = ¢ Since e ! = 1/e Since % = €2
In general,
y=Inx ifandonlyif x =¢"

As shown in Table 0.5.3, the inverse relationship between b* and log, x produces a
correspondence between some basic properties of those functions.

Table 0.5.3
CORRESPONDENCE BETWEEN PROPERTIES OF
LOGARITHMIC AND EXPONENTIAL FUNCTIONS

PROPERTY OF b* PROPERTY OF logbx

=1 log,1=0

bl=b log,b=1

Range is (0, +o0) Domain is (0, 4+o0)

Domain is (—oo, +o0)

Range is (—oo, +o0)

x-axis is a
horizontal asymptote

y-axis is a
vertical asymptote

It also follows from the cancellation properties of inverse functions [see (3) in Section
0.4] that

log,(b*) = x for all real values of x

4
bt —x forx >0 @
In the special case where b = e, these equations become
In(e*) = x for all real values of x )

e =x forx >0

In words, the functions b* and log, x cancel out the effect of one another when composed
in either order; for example,
Ine’> =5, e""=gx

IOg lox =x, lologx =x, In ex =x, elnx =x,
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Il SOLVING EQUATIONS INVOLVING EXPONENTIALS AND LOGARITHMS
You should be familiar with the following properties of logarithms from your earlier studies.

0.5.2 THEOREM (Algebraic Properties of Logarithms) Ifb > 0,b # 1,a > 0,c > 0, and
r is any real number, then:

(a) log,(ac) =log,a+log,c Product property

(b) lOgb (a/c) = IOgb a — IOgb Cc Quotient property

(C) IOgb (Clr) =r lOgb a Power property
(d) IOgb(l/C) = — logb c Reciprocal property
WARNING These properties are often used to expand a single logarithm into sums, differences, and

multiples of other logarithms and, conversely, to condense sums, differences, and multiples

Expressions of the form log, (u + v R . i K
P & ) of logarithms into a single logarithm. For example,

and log, (u — v) have no useful sim-

plifications. In particular, 5
X
logy ( + v) # log, () + log, (v) log % = logxy’ — log /z = logx +log y* — logz'/* = logx + 5logy — $ logz

log;, (u — v) # log, (u) — log, (v)

3
S5log2 4 log3 —log 8 =1log 32 4 log3 — log 8 = log =log12

Sx(x+3)?

Iinx—InG? = D+2In(x +3) =Inx' —In(> = 1) +In(x +3)> =In ~—; .
2 _

An equation of the form log;, x = k can be solved for x by rewriting it in the exponential
form x = b*, and an equation of the form b* = k can be solved by rewriting it in the
logarithm form x = log,, k. Alternatively, the equation b* = k can be solved by taking any
logarithm of both sides (but usually log or In) and applying part (c) of Theorem 0.5.2. These
ideas are illustrated in the following example.

» Example 2 Find x such that
(@logx=+v2 ®)Ihx+D)=5 (©5=7

Solution (a). Converting the equation to exponential form yields

x =10Y2 ~25.95
Solution (b). Converting the equation to exponential form yields

x+l=¢ o x=¢ —1~14741

Solution (c). Converting the equation to logarithmic form yields

x =logs 7~ 1.21

Alternatively, taking the natural logarithm of both sides and using the power property of
logarithms yields

In7
xIn5=In7 or x=—=x121 «
In5
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Erik Simonsen/Getty Images
Power to satellites can be supplied by
batteries, fuel cells, solar cells, or radio-
isotope devices.

» Example 3 A satellite that requires 7 watts of power to operate at full capacity is
equipped with a radioisotope power supply whose power output P in watts is given by the
equation P — 7501125
where ¢ is the time in days that the supply is used. How long can the satellite operate at full
capacity?
Solution. The power P will fall to 7 watts when
7 — 75 €7t /125

The solution for ¢ is as follows:

7/75 = e7/1%

In(7/75) = In(e"/125)

In(7/75) = —t/125

t = —1251n(7/75) ~ 296.4

so the satellite can operate at full capacity for about 296 days. «

Here is a more complicated example.

X —X

» Example 4 Solve % = 1 for x.

Solution. Multiplying both sides of the given equation by 2 yields

or equivalently,

Multiplying through by e* yields
e —1=2¢ or ¥ —2-1=0
This is really a quadratic equation in disguise, as can be seen by rewriting it in the form
() —2¢" —1=0
and letting u = ¢* to obtain
u>—2u—1=0
Solving for u by the quadratic formula yields

2+44+4 2+ 48
= te_ leiﬁ

u

2 2
or, since u = e*,
& =1+2
But ¢* cannot be negative, so we discard the negative value 1 — ﬁ; thus,
=142

Ine* =In(l ++2)
x =In(1++2)~0.881 <
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B CHANGE OF BASE FORMULA FOR LOGARITHMS

Table 0.5.4
B (dB) 11,
0 109=1
10 10" =10
20 10% = 100
30 103 = 1000
40 10* = 10,000
50 10° = 100,000
120 10'? = 1,000,000,000,000

Scientific calculators generally have no keys for evaluating logarithms with bases other
than 10 or e. However, this is not a serious deficiency because it is possible to express
a logarithm with any base in terms of logarithms with any other base (see Exercise 42).
For example, the following formula expresses a logarithm with base b in terms of natural
logarithms:

In x

1 = — 6
0gy, X Inb (6)

We can derive this result by letting y = log,, x, from which it follows that 5* = x. Taking
the natural logarithm of both sides of this equation we obtain y In b = In x, from which (6)
follows.

» Example 5 Use a calculating utility to evaluate log, 5 by expressing this logarithm in
terms of natural logarithms.

Solution. From (6) we obtain

In5

— & 2.321928 «
In2

log, 5 =

LOGARITHMIC SCALES IN SCIENCE AND ENGINEERING

Logarithms are used in science and engineering to deal with quantities whose units vary
over an excessively wide range of values. For example, the “loudness” of a sound can
be measured by its intensity I (in watts per square meter), which is related to the energy
transmitted by the sound wave—the greater the intensity, the greater the transmitted energy,
and the louder the sound is perceived by the human ear. However, intensity units are
unwieldy because they vary over an enormous range. For example, a sound at the threshold
of human hearing has an intensity of about 10~'> W/m?, a close whisper has an intensity that
is about 100 times the hearing threshold, and a jet engine at 50 meters has an intensity that
is about 10,000,000,000,000 = 10'3 times the hearing threshold. To see how logarithms
can be used to reduce this wide spread, observe that if

y =logx
then increasing x by a factor of 10 adds 1 unit to y since
log 10x =log10+logx =1+

Physicists and engineers take advantage of this property by measuring loudness in terms of
the sound level B, which is defined by

B = 10log(1/Iy)

where Iy = 10712 W/m? is a reference intensity close to the threshold of human hearing.
The units of S are decibels (dB), named in honor of the telephone inventor Alexander
Graham Bell. With this scale of measurement, multiplying the intensity I by a factor of 10
adds 10 dB to the sound level 8 (verify). This results in a more tractable scale than intensity
for measuring sound loudness (Table 0.5.4). Some other familiar logarithmic scales are
the Richter scale used to measure earthquake intensity and the pH scale used to measure
acidity in chemistry, both of which are discussed in the exercises.
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» Example 6 A space shuttle taking off generates a sound level of 150 dB near the launch
pad. A person exposed to this level of sound would experience severe physical injury. By
comparison, a car horn at one meter has a sound level of 110 dB, near the threshold of pain
for many people. What is the ratio of sound intensity of a space shuttle takeoft to that of a
car horn?

Solution. Let I} and B; (= 150 dB) denote the sound intensity and sound level of the
space shuttle taking off, and let /, and 8, (= 110 dB) denote the sound intensity and sound
level of a car horn. Then
I/ L = (1I1/Ip)/ (I/ 1y)
log(11/ 1) = log(11/1y) — log(12/Ip)
101og(1;/ 1) = 101og(1;/1y) — 101log(L»/1y) = B1 — >
10log(1,/1) = 150 — 100 = 40
log(I/1,) =4

Regina Mitchell-Ryall, Tony Gray/NASA/Getty Images  Thus, I;/1, = 10*, which tells us that the sound intensity of the space shuttle taking off is

The roar of a space shuttle near the 10,000 times greater than a car horn! <
launch pad would damage your hearing ’

without ear protection.

Il EXPONENTIAL AND LOGARITHMIC GROWTH
The growth patterns of ¢* and In x illustrated in Table 0.5.5 are worth noting. Both functions
Table 0.5.5 increase as x increases, but they increase in dramatically different ways—the value of e*

e e oz increases extremely rapidly and that of In x increases extremely slowly. For example, the
| 270 0.00 value of e* atx = 10isover 22,000, butat x = 1000 the value of In x has not even reached 7.
> 7'39 0' 69 A function f is said to increase without bound as x increases if the values of f(x)
3 20'09 1'1 0 eventually exceed any specified positive number M (no matter how large) as x increases
4 54.60 139 indefinitely. Table 0.5.5 strongly suggests that f(x) = e¢* increases without bound, which
3 148.41 161 is consistent with the fact that the range of this function is (0, +). Indeed, if we choose
6 403.43 179 any positive number M, then we will have ¢* = M when x = In M, and since the values
7 1096.63 1.95 of e increase as x increases, we will have
8 2980.96 2.08 e >M if x>InM
9 8103.08 2.20
10 22026.47 2.30 (Figure 0.5.8). It is not clear from Table 0.5.5 whether In x increases without bound as x
100 | 2.69x10% | 4.61 increases because the values grow so slowly, but we know this to be so since the range of this
1000 | 1.97 x 104% | 6.91 function is (—oo, +20). To see this algebraically, let M be any positive number. We will have
Inx = M when x = ¢, and since the values of In x increase as x increases, we will have
Inx >M if x>eM
(Figure 0.5.9).
y y
y=e
y= M y= M y= Inx
\ \
_/ | . /T/x
InM / oM

A Figure 0.5.8 The value of y = e* A Figure 0.5.9 The value of y = Inx
will exceed an arbitrary positive value will exceed an arbitrary positive value
of M whenx > InM. of M when x > M
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(See page 63 for answers.)
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1. The function y = (3)" has domain and range

2. The function y = In(1 — x) has domain andrange
3. Express as a power of 4:

@1 ®m2 ©f V8 (@S5

EXERCISE SET 0.5 [ Graphing utility

4. Solve each equation for x.

(a) ef = % (b) 10* = 1,000,000
(c) 7€* =56

5. Solve each equation for x.
(@A Inx =3 (b) log(x —1) =2

(c) 2logx —log(x + 1) =log4 —log3

1-2 Simplify the expression without using a calculating utility.

(©) 8—2/3
(© 9703

(b) (=8)*3
(b) 4!

1. (a) —8%3
2. (a) 274

3-4 Use a calculating utility to approximate the expression.
Round your answer to four decimal places.

3. (@ 2" (b) 57!
4. (2) V24 (b) V0.6

5-6 Find the exact value of the expression without using a cal-
culating utility.

5. (a) log, 16 (b) log, (35)

(c) log, 4 (d) logy3
6. (a) log,,(0.001) (b) log10(104)
(c) In(e?) (d) In(y/e)

7-8 Use a calculating utility to approximate the expression.
Round your answer to four decimal places.

7. (a) log23.2 (b) In0.74
8. (a) log0.3 () Inm

9-10 Use the logarithm properties in Theorem 0.5.2 to rewrite
the expression in terms of r, s, and ¢, where r =Ina, s =Inb,
andt =Inc.

9. (a) Ina*vbc (b) ln%
a’c
3 3
10. (a) In ¥° (b) In ab’
ab c?

11-12 Expand the logarithm in terms of sums, differences, and
multiples of simpler logarithms.

23
11. (2) log(10x+/x = 3) (b) In 220X
x2+1
\3/x +2 241

12. (a) 1 b) In,/
(@) log cos 5x (®) In x345

13-15 Rewrite the expression as a single logarithm.

13. 4log2 —log3 +log 16
14. 1logx — 3log(sin2x) + 2
15. 2In(x + 1) + 1 Inx — In(cos x)

16-23 Solve for x without using a calculating utility.
16. log;((1 +x) =3 17. log,(v/x) = —1
18. In(x?) =4 19. In(1/x) = -2
20. log;(3%) =7 21. logs(5%) =8
22. In4x —31In(x?) =In2

23. In(1/x) +In(2x*) =1n3

24-29 Solve for x without using a calculating utility. Use the
natural logarithm anywhere that logarithms are needed.

24. 3* =2 25. 5% =3

26. 3¢ =5 27. 2e¥ =7

28. ¢* —2xe* =0 29. xe™" +2eF =0

30. Solve e=2* — 3¢~* = —2 for x without using a calculating

utility. [Hint: Rewrite the equation as a quadratic equation
inu =e*.]

FOCUS ON CONCEPTS

31-34 In each part, identify the domain and range of the
function, and then sketch the graph of the function without
using a graphing utility.

x—1

3. (@ f()=(3) -1
32. (@) f(x)=1+In(x—2)
33. (@) f(x) =In(x?)

4. (@) f(x)=1—e*

(b) g(x) =1In|x]|

(b) g(x) =3 +¢"2
(b) g(x) =

(b) g(x) =3InJYx—1

35-38 True-False Determine whether the statement is true or
false. Explain your answer.

3

35. The function y = x° is an exponential function.

36. The graph of the exponential function with base b passes
through the point (0, 1).

37. The natural logarithm function is the logarithmic function
with base e.
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38. The domain of a logarithmic function is the interval x > 1.

39. Use a calculating utility and the change of base formula (6)
to find the values of log, 7.35 and logs 0.6, rounded to four
decimal places.

M 40-41 Graph the functions on the same screen of a graphing
utility. [Use the change of base formula (6), where needed.]

40. Inx, ¢*, logx, 10*
41. log, x, Inx, logsx, logx
42. (a) Derive the general change of base formula

log, x
log, b

(b) Use the result in part (a) to find the exact value of
(log, 81)(log; 32) without using a calculating utility.

™ 43. (a) Isthe curve in the accompanying figure the graph of

an exponential function? Explain your reasoning.

(b) Find the equation of an exponential function that
passes through the point (4, 2).

(c) Find the equation of an exponential function that
passes through the point (2, %)

(d) Use a graphing utility to generate the graph of an
exponential function that passes through the point
2,95).

y

| < Figure Ex-43

M 44. (a) Make a conjecture about the general shape of the
graph of y =log(logx), and sketch the graph of
this equation and y = log x in the same coordinate
system.

(b) Check your work in part (a) with a graphing utility.

1.

Multiply both sides of the inequality 3 > 2 by log % to

get

45. Find the fallacy in the following “proof” that é >

3log % > 210g%
3 2
log (3)” > log (3)
log % > log %

1

§>

=

46. Prove the four algebraic properties of logarithms in Theo-
rem 0.5.2.

47. If equipment in the satellite of Example 3 requires 15 watts
to operate correctly, what is the operational lifetime of the
power supply?

48. The equation Q = 12795 gives the mass Q in grams of
radioactive potassium-42 that will remain from some initial
quantity after ¢ hours of radioactive decay.

(a) How many grams were there initially?

(b) How many grams remain after 4 hours?

(c) How long will it take to reduce the amount of radioac-
tive potassium-42 to half of the initial amount?

49. The acidity of a substance is measured by its pH value,
which is defined by the formula

pH = —log[H™"]
where the symbol [ H ] denotes the concentration of hydro-
gen ions measured in moles per liter. Distilled water has a
pH of 7; a substance is called acidic if it has pH < 7 and

basic if it has pH > 7. Find the pH of each of the following
substances and state whether it is acidic or basic.

SUBSTANCE [HT

3.9 % 1078 mol/L
6.3 x 107 mol/L
4.0 x 1077 mol/L
1.2%107% mol/L

(a)  Arterial blood
(b) Tomatoes

(¢) Milk

(d) Coffee

50. Use the definition of pH in Exercise 49 to find [H™] in a
solution having a pH equal to
(a) 2.44 (b) 8.06.

51. The perceived loudness § of a sound in decibels (dB) is re-
lated to its intensity I in watts per square meter (W/ m2) by
the equation

B = 101log(1/1p)
where Iy = 10712 W/m?. Damage to the average ear occurs
at 90 dB or greater. Find the decibel level of each of the
following sounds and state whether it will cause ear damage.

SOUND 1

1.0 x 102 W/m?

1.0 W/m?

1.0 x 107 W/m?
3.2%107 W/m?

(a) Jet aircraft (from 50 ft)

(b)  Amplified rock music

(c)  Garbage disposal

(d) TV (mid volume from 10 ft)

52-54 Use the definition of the decibel level of a sound (see
Exercise 51).

52. If one sound is three times as intense as another, how much
greater is its decibel level?

53. According to one source, the noise inside a moving automo-
bile is about 70 dB, whereas an electric blender generates 93
dB. Find the ratio of the intensity of the noise of the blender
to that of the automobile.

54. Suppose that the intensity level of an echo is % the intensity
level of the original sound. If each echo results in another



echo, how many echoes will be heard from a 120 dB sound
given that the average human ear can hear a sound as low
as 10 dB?

55. On the Richter scale, the magnitude M of an earthquake is
related to the released energy E in joules (J) by the equation

logE =444+ 15M
(a) Findtheenergy E of the 1906 San Francisco earthquake
that registered M = 8.2 on the Richter scale.

i/ QUICK CHECK ANSWERS 0.5
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(b) If the released energy of one earthquake is 10 times that
of another, how much greater is its magnitude on the
Richter scale?

56. Suppose that the magnitudes of two earthquakes differ by 1
on the Richter scale. Find the ratio of the released energy
of the larger earthquake to that of the smaller earthquake.
[Note: See Exercise 55 for terminology.]

1. (=0, +); (0, +%) 2. (—»,1); (—o0, +o0)
() In2 5. (a) ¢ (b) 101 (c) 2
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3. (a) 40 (b) 41/2 (c) 42 () 43/4 (e) 4log, 5

4. (@ Ini=-In2 (b) 2

1. Sketch the graph of the function

-1, x <-5
f(x) =34/25—x2, -5<x<5
x —5, x>5

2. Use the graphs of the functions f and g in the accompanying
figure to solve the following problems.
(a) Find the values of f(—2) and g(3).
(b) For what values of x is f(x) = g(x)?
(c) For what values of x is f(x) < 2?
(d) What are the domain and range of f?
(e) What are the domain and range of g?
(f) Find the zeros of f and g.

< Figure Ex-2

3. A glass filled with water that has a temperature of 40°F
is placed in a room in which the temperature is a constant
70°F. Sketch a rough graph that reasonably describes the
temperature of the water in the glass as a function of the
elapsed time.

4. You want to paint the top of a circular table. Find a formula
that expresses the amount of paint required as a function
of the radius, and discuss all of the assumptions you have
made in finding the formula.

5. A rectangular storage container with an open top and a
square base has a volume of 8 cubic meters. Material for
the base costs $5 per square meter and material for the sides
$2 per square meter.

(a) Find a formula that expresses the total cost of materials
as a function of the length of a side of the base.

(b) What is the domain of the cost function obtained in
part (a)?

6. A ball of radius 3 inches is coated uniformly with plastic.

(a) Express the volume of the plastic as a function of its
thickness.

(b) What is the domain of the volume function obtained in
part (a)?

7. A box with a closed top is to be made from a 6 ft by 10

ft piece of cardboard by cutting out four squares of equal

size (see the accompanying figure), folding along the dashed

lines, and tucking the two extra flaps inside.

(a) Find a formula that expresses the volume of the box as a
function of the length of the sides of the cut-out squares.

(b) Find an inequality that specifies the domain of the func-
tion in part (a).

(c) Use the graph of the volume function to estimate the
dimensions of the box of largest volume.

e S5f s —]

< Figure Ex-7

1 8. Let C denote the graph of y = 1/x,x > 0.

(a) Express the distance between the point P(1,0) and a
point Q on C as a function of the x-coordinate of Q.

(b) What is the domain of the distance function obtained in
part (a)? (cont.)
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

(c) Use the graph of the distance function obtained in part
(a) to estimate the point Q on C that is closest to the
point P.

. Sketch the graph of the equation x> — 4y? = 0.

~ 10.

Generate the graph of f(x) = x* — 24x3 — 25x? in two dif-
ferent viewing windows, each of which illustrates a different
property of f. Identify each viewing window and a char-
acteristic of the graph of f that is illustrated well in the
window.

Complete the following table.

x |4 |3 |2 |-1]0|1]2]3]4
f |0 -1 | 2] 1|32 |-3|4]|-4
gy |3 2| 1|3 |-11]-4|4|21]0
(fog)(x)

(gof)x)

A Table Ex-11

Let f(x) = —x?and g(x) = 1//x. Find formulas for fog
and go f and state the domain of each composition.

Given that f(x) = x> + 1 and g(x) = 3x + 2, find all val-
ues of x such that f(g(x)) = g(f(x)).

Let f(x) = 2x —1)/(x+ 1D and g(x) = 1/(x — 1).

(2) Find f(g(x)).

(b) Is the natural domain of the function h(x) = (3 — x)/x
the same as the domain of f o g? Explain.

Given that

x h(x) = x> — 1

1
f&x) = , gx) =—,
X

x—1

find a formula for f o g o h and state the domain of this com-

position.

Given that f(x) = 2x + 1 and h(x) = 2x> + 4x + 1, find

a function g such that f(g(x)) = h(x).

In each part, classify the function as even, odd, or neither.

(@ x%sinx (b) sin’x  (c) x +x% (d) sinxtanx

(a) Write an equation for the graph that is obtained by re-
flecting the graph of y = |x — 1| about the y-axis, then
stretching that graph vertically by a factor of 2, then
translating that graph down 3 units, and then reflecting
that graph about the x-axis.

(b) Sketch the original graph and the final graph.

In each part, describe the family of curves.

@ —a)P+@y-a)=1

(b) y=a+(x-2a)

Find an equation for a parabola that passes through the
points (2, 0), (8, 18), and (-8, 18).

21.

22,

23.

24,

Suppose that the expected low temperature in Anchorage,
Alaska (in °F), is modeled by the equation

T = 50sin 2% (1 — 101) + 25
YT

where ¢ is in days and ¢ = 0 corresponds to January 1.

(a) Sketch the graph of T versus ¢ for 0 <t < 365.

(b) Use the model to predict when the coldest day of the
year will occur.

(c) Based on this model, how many days during the year
would you expect the temperature to be below 0°F?

The accompanying figure shows a model for the tide varia-
tionin aninlet to San Francisco Bay during a 24-hour period.
Find an equation of the form y = yg + y; sin(at + b) for the
model, assuming that ¢+ = O corresponds to midnight.

35
30
25
20
15
10

5

Height of water y (ft)

Noon  p.M.

Time 7 (h) < Figure Ex-22

The accompanying figure shows the graphs of the equa-
tions y = 1 + 2sinx and y = 2sin(x/2) + 2 cos(x/2) for
—2m < x < 2m. Without the aid of a calculator, label each
curve by its equation, and find the coordinates of the points
A, B, C, and D. Explain your reasoning.

M\
T,

The electrical resistance R in ohms (£2) for a pure metal
wire is related to its temperature 7 in °C by the formula
R = Ro(1 +kT)

in which Ry and k are positive constants.

(a) Make a hand-drawn sketch of the graph of R versus T,
and explain the geometric significance of Ry and k for
your graph.

(b) In theory, the resistance R of a pure metal wire drops
to zero when the temperature reaches absolute zero
(T = —273°C). What information does this give you
about k?

(c) A tungsten bulb filament has a resistance of 1.1 Q ata
temperature of 20°C. What information does this give
you about Ry for the filament?

—-2r

< Figure Ex-23

(cont.)



25.

26.

27.

28.

29.

i~ 30.

31.

32.

33.

(d) At what temperature will the tungsten filament have a
resistance of 1.5 ©?

(a) State conditions under which two functions, f and g,
will be inverses, and give several examples of such
functions.

(b) In words, what is the relationship between the graphs
of y = f(x) and y = g(x) when f and g are inverse
functions?

(c) What is the relationship between the domains and
ranges of inverse functions f and g?

(d) What condition must be satisfied for a function f to
have an inverse? Give some examples of functions that
do not have inverses.

(a) State the restrictions on the domains of sinx, cosux,
tan x, and sec x that are imposed to make those func-
tions one-to-one in the definitions of sin™! x, cos™! x,
tan~! x, and sec™! x.

(b) Sketch the graphs of the restricted trigonometric func-

tions in part (a) and their inverses.

In each part, find f~'(x) if the inverse exists.
(@ f(x)=8x3—1 b) fx)=x>-2x+1

(©) fx)=(e)+1 @ fx)=@@+2)/x—-1)
(1 —=2x 2 2
O] f(x)=sm< e ) <x=

O = e

Let f(x) = (ax + b)/(cx + d). What conditions on a, b,
¢, and d guarantee that f~! exists? Find f~!(x).

In each part, find the exact numerical value of the given
expression.

(a) cos[cos™!(4/5) + sin~!(5/13)]

(b) sin[sin~!(4/5) + cos™1(5/13)]

In each part, sketch the graph, and check your work with a
graphing utility.

(@) f(x)=23sin"'(x/2)

(b) f(x) =cos~'x —m/2

(©) f(x) =2tan"!(-3x)

d f(x)=cos'x+ sin”!'x

Suppose that the graph of y = logx is drawn with equal
scales of 1 inch per unit in both the x- and y-directions. If a
bug wants to walk along the graph until it reaches a height
of 5 ft above the x-axis, how many miles to the right of the
origin will it have to travel?

Suppose that the graph of y = 10" is drawn with equal scales
of 1 inch per unit in both the x- and y-directions. If a bug
wants to walk along the graph until it reaches a height of
100 mi above the x-axis, how many feet to the right of the
origin will it have to travel?

Express the following function as a rational function of x:

31In (62" (e")3) +2exp(In1)

34.

N 3s.

~ 36.

~ 37.

38.

~ 39.

~ 40.
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Suppose that y = Ce*’, where C and k are constants, and
let Y =Iny. Show that the graph of Y versus ¢ is a line,
and state its slope and Y -intercept.

(a) Sketch the curves y = +e~/2 and y= e™/2 sin 2x for

—m/2 < x < 37/2 in the same coordinate system, and
check your work using a graphing utility.

Find all x-intercepts of the curve y = e~*/2 sin 2x in the
stated interval, and find the x-coordinates of all points
where this curve intersects the curves y = +e2,

(b)

Suppose that a package of medical supplies is dropped from
a helicopter straight down by parachute into a remote area.
The velocity v (in feet per second) of the package ¢ seconds
after it is released is given by v = 24.61(1 — ¢~!3").

(a) Graph v versus .

(b) Show that the graph has a horizontal asymptote v = c.
(c) The constant c is called the terminal velocity. Explain
what the terminal velocity means in practical terms.

(d) Can the package actually reach its terminal velocity?

Explain.
(e) How long does it take for the package to reach 98% of
its terminal velocity?

A breeding group of 20 bighorn sheep is released in a pro-
tected area in Colorado. It is expected that with careful
management the number of sheep, N, after ¢ years will be
given by the formula
220
N=—""
1+ 10(0.837)
and that the sheep population will be able to maintain itself
without further supervision once the population reaches a
size of 80.
(a) Graph N versus t.
(b) How many years must the state of Colorado maintain a
program to care for the sheep?
(c) How many bighorn sheep can the environment in the
protected area support? [Hint: Examine the graph of
N versus ¢ for large values of 7.]

An oven is preheated and then remains at a constant temper-

ature. A potato is placed in the oven to bake. Suppose that

the temperature 7' (in °F) of the potato ¢ minutes later is

givenby T' = 400 — 325(0.97"). The potato will be consid-

ered done when its temperature is anywhere between 260°F

and 280°F.

(a) During what interval of time would the potato be con-
sidered done?

(b) How long does it take for the difference between the
potato and oven temperatures to be cut in half?

(a) Show that the graphs of y = In x and y = x%? intersect.

(b) Approximate the solution(s) of the equation In x = x°?2
to three decimal places.

(a) Show that for x > 0 and k # 0 the equations

Inx 1

and — = —
X k

xk=¢"

have the same solutions. (cont.)
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(b) Use the graph of y = (In x)/x to determine the values [ 41. Consider f(x) = x?tanx +Inx,0 < x < /2.
grap

of k for which the equation x* = ¢* has two distinct (a) Explain why f is one-to-one.
positive solutions. (b) Use a graphing utility to generate the graph of f. Then
(c) Estimate the positive solution(s) of x® = e*. sketch the graphs of f and f~! together. What are the

asymptotes for each graph?
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Air resistance prevents the velocity
of a skydiver from increasing
indefinitely. The velocity
approaches a limit, called the

Joe McBride/Stone/Getty Images

“terminal velocity.”

LIMITS AND
CONTINUITY

The development of calculus in the seventeenth century by Newton and Leibniz provided
scientists with their first real understanding of what is meant by an “instantaneous rate of
change” such as velocity and acceleration. Once the idea was understood conceptually,
efficient computational methods followed, and science took a quantum leap forward. The
fundamental building block on which rates of change rest is the concept of a “limit,” an idea
that is so important that all other calculus concepts are now based on it.

In this chapter we will develop the concept of a limit in stages, proceeding from an
informal, intuitive notion to a precise mathematical definition. We will also develop theorems
and procedures for calculating limits, and we will conclude the chapter by using the limits to
study “continuous” curves.

m LIMITS (AN INTUITIVE APPROACH)

Tangent at P

P(x()s )’0)

The concept of a “limit” is the fundamental building block on which all calculus concepts
are based. In this section we will study limits informally, with the goal of developing an
intuitive feel for the basic ideas. In the next three sections we will focus on computational
methods and precise definitions.

A Figure 1.1.1

Many of the ideas of calculus originated with the following two geometric problems:

THE TANGENT LINE PROBLEM Given a function f and a point P (xq, y) on its graph,
find an equation of the line that is tangent to the graph at P (Figure 1.1.1).

THE AREA PROBLEM Given a function f, find the area between the graph of f and
an interval [a, b] on the x-axis (Figure 1.1.2).

Traditionally, that portion of calculus arising from the tangent line problem is called

differential calculus and that arising from the area problem is called integral calculus.
However, we will see later that the tangent line and area problems are so closely related
that the distinction between differential and integral calculus is somewhat artificial.

67
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Y
y =)
—
X
a b
A Figure 1.1.2
(a) )

[\
INJ N\

A Figure 1.1.3

> Figure 1.1.4

Why are we requiring that P and Q be
distinct?

Il TANGENT LINES AND LIMITS

In plane geometry, a line is called tangent to a circle if it meets the circle at precisely one
point (Figure 1.1.3a). Although this definition is adequate for circles, it is not appropriate
for more general curves. For example, in Figure 1.1.3b, the line meets the curve exactly
once but is obviously not what we would regard to be a tangent line; and in Figure 1.1.3c,
the line appears to be tangent to the curve, yet it intersects the curve more than once.

To obtain a definition of a tangent line that applies to curves other than circles, we must
view tangent lines another way. For this purpose, suppose that we are interested in the
tangent line at a point P on a curve in the xy-plane and that Q is any point that lies on the
curve and is different from P. The line through P and Q is called a secant line for the curve
at P. Intuition suggests that if we move the point Q along the curve toward P, then the
secant line will rotate toward a limiting position. The line in this limiting position is what
we will consider to be the fangent line at P (Figure 1.1.4a). As suggested by Figure 1.1.4D,
this new concept of a tangent line coincides with the traditional concept when applied to
circles.

Tangent
line

Secant
line

Secant
line

\

(@) (b)

» Example 1 Find an equation for the tangent line to the parabola y = x? at the point
P(1,1).

Solution. 1f we can find the slope m,, of the tangent line at P, then we can use the point
P and the point-slope formula for a line (Web Appendix G) to write the equation of the
tangent line as

y—1=mgkx -1 (D
To find the slope my,,, consider the secant line through P and a point Q(x, x?) on the
parabola that is distinct from P. The slope m. of this secant line is

x2—1
x—1

Mgec = 2

Figure 1.1.4a suggests that if we now let Q move along the parabola, getting closer and
closer to P, then the limiting position of the secant line through P and Q will coincide with
that of the tangent line at P. This in turn suggests that the value of m.. will get closer and
closer to the value of m,, as P moves toward Q along the curve. However, to say that
Q(x, x?) gets closer and closer to P (1, 1) is algebraically equivalent to saying that x gets
closer and closer to 1. Thus, the problem of finding m,, reduces to finding the “limiting
value” of mg.. in Formula (2) as x gets closer and closer to 1 (but with x 7 1 to ensure that
P and Q remain distinct).



A Figure 1.1.5

A Figure 1.1.6

4
Ay
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We can rewrite (2) as

x2—1 =Dl +1)
x—1  (x=1
where the cancellation of the factor (x — 1) is allowed because x # 1. It is now evident

that mg gets closer and closer to 2 as x gets closer and closer to 1. Thus, m,, = 2 and (1)
implies that the equation of the tangent line is

x+1

Mgec =

y—1=2(x —1) orequivalently y=2x —1

Figure 1.1.5 shows the graph of y = x? and this tangent line. <

AREAS AND LIMITS

Just as the general notion of a tangent line leads to the concept of limit, so does the general
notion of area. For plane regions with straight-line boundaries, areas can often be calculated
by subdividing the region into rectangles or triangles and adding the areas of the constituent
parts (Figure 1.1.6). However, for regions with curved boundaries, such as that in Figure
1.1.7a, a more general approach is needed. One such approach is to begin by approximating
the area of the region by inscribing a number of rectangles of equal width under the curve
and adding the areas of these rectangles (Figure 1.1.7b). Intuition suggests that if we repeat
that approximation process using more and more rectangles, then the rectangles will tend
to fill in the gaps under the curve, and the approximations will get closer and closer to the
exact area under the curve (Figure 1.1.7¢). This suggests that we can define the area under
the curve to be the limiting value of these approximations. This idea will be considered in
detail later, but the point to note here is that once again the concept of a limit comes into play.

/

(@)
A Figure 1.1.7

© James Oakley/Alamy

This figure shows a region called the
Mandelbrot Set. It illustrates how
complicated a region in the plane can be
and why the notion of area requires
careful definition.

(b) ()

DECIMALS AND LIMITS
Limits also arise in the familiar context of decimals. For example, the decimal expansion

of the fraction % is

1
3 =033333.. A3)

in which the dots indicate that the digit 3 repeats indefinitely. Although you may not have
thought about decimals in this way, we can write (3) as

1
3= 0.33333... = 0.3+ 0.03 4 0.003 4- 0.0003 + 0.00003 +- - - - “

which is a sum with “infinitely many” terms. As we will discuss in more detail later, we
interpret (4) to mean that the succession of finite sums

0.3, 0.340.03, 0.340.03 +0.003, 0.3 4 0.03 +0.003 + 0.0003, ...

gets closer and closer to a limiting value of % as more and more terms are included. Thus,
limits even occur in the familiar context of decimal representations of real numbers.
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B LIMITS

Now that we have seen how limits arise in various ways, let us focus on the limit concept

itself.

The most basic use of limits is to describe how a function behaves as the independent
variable approaches a given value. For example, let us examine the behavior of the function

f(x)=x2—x+1

for x-values closer and closer to 2. It is evident from the graph and table in Figure 1.1.8
that the values of f(x) get closer and closer to 3 as values of x are selected closer and closer
to 2 on either the left or the right side of 2. We describe this by saying that the “limit of

2

x* —x + 11is 3 as x approaches 2 from either side,” and we write

lim x> —x+1) =3 (5)
x—2
AY
JO 9
y=fx) =x>—x+1
34
S0
X
X 1.0 1.5 1.9 1.95 1.99 1.995 1.999 |2 | 2.001 2.005 2.01 2.05 2.1 2.5 3.0
f(x) |1.000000(1.750000|2.710000{2.852500(2.970100{2.985025|2.997001 3.003001(3.015025 (3.030100{3.152500(3.310000|4.750000 | 7.000000
Left side . - Right side

A Figure 1.1.8

This leads us to the following general idea.

1.1.1 LIMITS (AN INFORMAL VIEW) If the values of f(x) can be made as close as
we like to L by taking values of x sufficiently close to a (but not equal to a), then we

write
lim f(x) =L

X—a

Since x is required to be different from
a in (6), the value of f at a, or even
whether f is defined at g, has no bear-
ing on the limit L. The limit describes
the behavior of f close to a but not
ata.

(6)

which is read “the limit of f(x) as x approaches a is L” or “ f(x) approaches L as x
approaches a.” The expression in (6) can also be written as

fx)—L as x—a

(N
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Use a graphing utility to generate the
graph of the equation y = f(x) for the
function in (9). Find a window contain-
ing x = 1 in which all values of f(x)
are within 0.5 of y =2 and one in
which all values of f(x) are within 0.1
of y= 2.

1.1 Limits (An Intuitive Approach) 71

» Example 2 Use numerical evidence to make a conjecture about the value of

fim ! (8)
m
x—1 ﬁ —1
Solution. Although the function
foy = 21 ©)
X) =
Jx =1

is undefined at x = 1, this has no bearing on the limit. Table 1.1.1 shows sample x-values
approaching 1 from the left side and from the right side. In both cases the corresponding
values of f(x), calculated to six decimal places, appear to get closer and closer to 2, and
hence we conjecture that x—1
lim
x—>1.Jx — 1

=2

This is consistent with the graph of f shown in Figure 1.1.9. In the next section we will
show how to obtain this result algebraically. «

A Figure 1.1.9

Use numerical evidence to determine
whether the limit in (11) changes if x
is measured in degrees.

Table 1.1.2
X sin x
(RADIANS) Y=

+1.0 0.84147
+0.9 0.87036
+0.8 0.89670
+0.7 0.92031
+0.6 0.94107
+0.5 0.95885 u
+0.4 0.97355
+0.3 0.98507
+0.2 0.99335
+0.1 0.99833
+0.01 0.99998

Table 1.1.1
X 0.99 0.999 0.9999 0.99999 1.00001 1.0001 1.001 1.01
f(x) | 1.994987 1.999500 1.999950 1.999995 2.000005 | 2.000050 | 2.000500 | 2.004988
y > <
o Left side . Right side
N y=f)= N
i I / » Example 3 Use numerical evidence to make a conjecture about the value of
2 ———0
| [ } . sinx
Nz lim (10)
. x—0 X
o
\ \
| } L ‘ x  Solution. With the help of a calculating utility set in radian mode, we obtain Table 1.1.2.
x> lex 2 3 The data in the table suggest that

. sinx
lim

x—0 X

=1 (11)

The result is consistent with the graph of f(x) = (sin x)/x shown in Figure 1.1.10. Later
in this chapter we will give a geometric argument to prove that our conjecture is correct. <

As x approaches 0 from the left

or right, approaches 1.
» Figure 1.1.10 gnt, fx) app

SAMPLING PITFALLS

Numerical evidence can sometimes lead to incorrect conclusions about limits because of
roundoff error or because the sample values chosen do not reveal the true limiting behavior.
For example, one might incorrectly conclude from Table 1.1.3 that

. . Y
lim sin (—) =0
x—0 X
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The fact that this is not correct is evidenced by the graph of f in Figure 1.1.11. The graph
reveals that the values of f oscillate between —1 and 1 with increasing rapidity as x — 0
and hence do not approach a limit. The data in the table deceived us because the x-values
selected all happened to be x-intercepts for f(x). This points out the need for having
alternative methods for corroborating limits conjectured from numerical evidence.

Table 1.1.3

x % Jf(x) = sin (%) e y = sin (%)
x==1 +7T sin(xm) =0
x==0.1 +107 sin(+107) =0 X
x ==0.01 +1007 sin(+100m) = 0 1 1
x ==0.001 +10007 sin(+10007) = 0
x==0.0001 +10,000r sin(+10,0007) =0

. . . _1 [

A Figure 1.1.12

As with two-sided limits, the one-sided
limits in (14) and (15) can also be writ-

ten as

f@)—>L as x—a"

and
f(x)—>L as x—a~

respectively.

A Figure 1.1.11

Il ONE-SIDED LIMITS

The limit in (6) is called a two-sided limit because it requires the values of f(x) to get
closer and closer to L as values of x are taken from either side of x = a. However, some
functions exhibit different behaviors on the two sides of an x-value a, in which case it is
necessary to distinguish whether values of x near a are on the left side or on the right side
of a for purposes of investigating limiting behavior. For example, consider the function

x| { 1, x>0 (12)

FO="T=1-1 x<o
which is graphed in Figure 1.1.12. As x approaches O from the right, the values of f(x)
approach a limit of 1 [in fact, the values of f(x) are exactly 1 for all such x], and similarly,
as x approaches 0 from the left, the values of f(x) approach a limit of —1. We denote these
limits by writing
. x] ]
Iim — =1 and Im — =-—1 (13)
x—>0t Xx x—=0" X
With this notation, the superscript “+” indicates a limit from the right and the superscript
“—" indicates a limit from the left.
This leads to the general idea of a one-sided limit.

1.1.2 ONE-SIDED LIMITS (AN INFORMAL VIEW) If the values of f(x) can be made
as close as we like to L by taking values of x sufficiently close to a (but greater than a),

then we write
_lim+ fx)=L (14)

and if the values of f(x) can be made as close as we like to L by taking values of x
sufficiently close to a (but less than a), then we write

lim f(x)=1L 15)

X—a~

Expression (14) is read “the limit of f(x) as x approaches a from the right is L” or
“f(x) approaches L as x approaches a from the right.” Similarly, expression (15) is
read “the limit of f(x) as x approaches a from the left is L” or “ f(x) approaches L as
x approaches a from the left.”
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B THE RELATIONSHIP BETWEEN ONE-SIDED LIMITS AND TWO-SIDED LIMITS

In general, there is no guarantee that a function f will have a two-sided limit at a given
point a; that is, the values of f(x) may not get closer and closer to any single real number
L as x — a. In this case we say that

lim f(x) does not exist
X—a

Similarly, the values of f(x) may not get closer and closer to a single real number L as
x—a"’ oras x—a. In these cases we say that

lim+ f(x) does not exist

X—a
or that lim f(x) does not exist
X—>a-
In order for the two-sided limit of a function f(x) to exist at a point a, the values of f(x)
must approach some real number L as x approaches a, and this number must be the same
regardless of whether x approaches a from the left or the right. This suggests the following
result, which we state without formal proof.

1.1.3 THE RELATIONSHIP BETWEEN ONE-SIDED AND TWO-SIDED LIMITS The two-
sided limit of a function f(x) exists at @ if and only if both of the one-sided limits exist
at a and have the same value; that is,

lim f(x) =L ifandonlyif lim f(x)=L= lim+ f(x)

» Example 4 Explain why
x|
x—=0 Xx
does not exist.

Solution. As x approaches 0, the values of f(x) = |x|/x approach —1 from the left and
approach 1 from the right [see (13)]. Thus, the one-sided limits at O are not the same. <

» Example 5 For the functions in Figure 1.1.13, find the one-sided and two-sided limits
at x = a if they exist.

Solution. The functions in all three figures have the same one-sided limits as x — a,
since the functions are identical, except at x = a. These limits are

lim f(x)=3 and Ilim f(x)=1
x—>at x—a-

In all three cases the two-sided limit does not exist as x — a because the one-sided limits
are not equal. <
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The symbols 40 and —c here are not
real numbers; they simply describe par-
ticular ways in which the limits fail to
exist. Do not make the mistake of ma-
nipulating these symbols using rules of
algebra. For example, it is incorrect to
write (4-00) — (4o0) = 0.

» Example 6 For the functions in Figure 1.1.14, find the one-sided and two-sided limits

at x = a if they exist.

Solution. As in the preceding example, the value of f at x = a has no bearing on the
limits as x — a, so in all three cases we have

lim f(x)=2 and

X—a

lim f(x) =2

Since the one-sided limits are equal, the two-sided limit exists and

y =/

lim f(x) =2 <

X—>a

y =

AN

A Figure 1.1.14

INFINITE LIMITS

Sometimes one-sided or two-sided limits fail to exist because the values of the function
increase or decrease without bound. For example, consider the behavior of f(x) = 1/x for
values of x near 0. It is evident from the table and graph in Figure 1.1.15 that as x-values
are taken closer and closer to 0 from the right, the values of f(x) = 1/x are positive and
increase without bound; and as x-values are taken closer and closer to O from the left, the
values of f(x) = 1/x are negative and decrease without bound. We describe these limiting

behaviors by writing

1 1

=+ and lim — = —

X x—0" Xx

A Figure 1.1.15

Increases
without
bound
1
X x
?
\ 1
il
* Decreases
without
bound
X -1 -0.1 -0.01 | —0.001 [-0.0001 |0 | 0.0001 0.001 0.01 0.1 1
% -1 -10 -100 —1000 | —10,000 10,000 1000 100 10 1
Left side T Right side
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1.1.4 INFINITE LIMITS (AN INFORMAL VIEW) The expressions

lim f(x) =+ and lim+ f(x) =4

denote that f(x) increases without bound as x approaches a from the left and from the
right, respectively. If both are true, then we write

lim f(x) =+
X—>a
Similarly, the expressions

lim f(x) =—c and lim f(x) = —»
x—>a- x—>at

denote that f(x) decreases without bound as x approaches a from the left and from the
right, respectively. If both are true, then we write
lim f(x) = —

X—>da

» Example 7 For the functions in Figure 1.1.16, describe the limits at x = a in appro-
priate limit notation.

Solution (a). In Figure 1.1.16a, the function increases without bound as x approaches

a from the right and decreases without bound as x approaches a from the left. Thus,
1

lim =40 and lim = —
x—at X —a x—a X —da

Solution (b). InFigure 1.1.16b, the function increases without bound as x approaches a
from both the left and right. Thus,

1 1 1
lim — = lim —— = lim —— =+
x>a(x —a)?  x—at (x —a)?  x—a (x —a)? *

Solution (¢). In Figure 1.1.16¢, the function decreases without bound as x approaches
a from the right and increases without bound as x approaches a from the left. Thus,
—1 —1

lim = —o and lim = 4o
x—at X —a x—a- X —d

Solution (d). In Figure 1.1.16d, the function decreases without bound as x approaches
a from both the left and right. Thus,
—1 . -1 . —1

lim —— = lim —— = lim — = —» <«
x—a (x —a)? x—oa (x —a)? x-a (x —a)?

(a) (b) (©) (d)
A Figure 1.1.16
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B VERTICAL ASYMPTOTES
Figure 1.1.17 illustrates geometrically what happens when any of the following situations
occur:

lim f(x) =+, lim f(x) =+, lim f(x)=—w, lim f(x) = —x
x—a~ x—at x—a~ x—>at
In each case the graph of y = f(x) either rises or falls without bound, squeezing closer
and closer to the vertical line x = a as x approaches a from the side indicated in the limit.

The line x = a is called a vertical asymptote of the curve y = f(x) (from the Greek word
asymptotos, meaning “‘nonintersecting”).

y y y y

: | | | |

\ I \ \

| | | |

/N | x | /X /N1 |
N AR U A T =

\ \ \

\ } \ \

\ I \ \

\ | \ \

\ I I \
lim f(x) =+o0 X1L1r1u+f(x) =+oo lim f(x) = —oco lim+f(x) = —o0

A Figure 1.1.17

» Example 8 Referring to Figure 0.5.7 we see that the y-axis is a vertical asymptote for
y =log, x if b > 1 since

lim log,x = —
x—0F &b *
For the function in (16), find expres- and referring to Figure 0.3.11 we see that x = —1 and x = 1 are vertical asymptotes of the
sions for the left- and right-hand limits graph of 5
2x
at each asymptote. X) = X+ < 16
fo) =5 (16)
VQUICK CHECK EXERCISES 1.1 (See page 80 for answers.)
1. We write lim,_, f(x) =L provided the values of (b) lim f(x)=
can be made as close to ________ as desired, by © X17n21 Fx) =
taking valuesof ____ sufficientlycloseto____ but x—>2%
n @ lm fx)=_—
ot x—3"
2. Wewritelim, _, ,- f(x) = 4+ooprovided________increases y
withoutbound,as ___ approaches _____ from the oL \
left. 1 |
3. State what must be true about L i\, =
lim f(x) and lim f(x) R
xX—a- x—at |
in order for it to be the case that -2F | <«Figure Ex-4

lim f(x) = L

o 5. The slope of the secant line through P (2, 4) and Q(x, x?)

4. Use the accompanying graphof y = f(x) (—o < x < 3)to on the parabola y = x? is mg. = x + 2. It follows that the
determine the limits. slope of the tangent line to this parabola at the point P is
(@) )}i_r)n() fx)y=—
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1-10 In these exercises, make reasonable assumptions about
the graph of the indicated function outside of the region de-
picted.

1. For the function g graphed in the accompanying figure, find
(@) lir% g(x) (b) lim g(x)
x—>0" X

— 0+

(©) lim g(x) (@ g(0).
AY y=8()

\ i ]

\ /

\ /.

N iy

N et

- < Figure Ex-1

2. For the function G graphed in the accompanying figure, find
(a) lim G(x) (b) lim G(x)
x—0" x—0+
(c) lin% G(x) (d) G(0).

o y=G6W

AN

—
~

- < Figure Ex-2

3. For the function f graphed in the accompanying figure, find
@ lim f(x) (b) lim_f(x)

© lim f(x) @ ().
% y =/
3 )\
1 ; 1IO;
o] ‘
“FLETT

<A Figure Ex-3

4. For the function f graphed in the accompanying figure, find
@ lim f(x) (b) lim f(x)
(© lim f(x) @ /).

¥ y=fx)

r < Figure Ex-4

5. For the function F graphed in the accompanying figure, find
(a) lim2 F(x) (b) lim2+ F(x)
x—=2" x——

(o) linle(x) d) F(-2).

B < Figure Ex-5

6. For the function G graphed in the accompanying figure, find
(a) lin(} G(x) (b) lin(}Jr G(x)
X I~ X —>

() li%rn0 G(x) (d) G(0).
) 7,\’ y=G(x)
TN
| // \\ | X
-3 - 3
e N
-2F < Figure Ex-6

7. For the function f graphed in the accompanying figure, find
@ lim f(x) (b) lim f(x)
© lim f(x) @ f3).

<

y=f(
4

_/—\

YA

3

\\\\\\/\\\\

< Figure Ex-7

8. For the function ¢ graphed in the accompanying figure, find
@ lim $(x) (b) lim ¢(x)
(© )}@4 ¢ (x) (d) ¢(4).

y Y=o

———rT | | | |
L 4

X
S I S A I |

- < Figure Ex-8

9. For the function f graphed in the accompanying figure on
the next page, find

(@ lim f(x)
© lim f(x)

(b) lim f(x)
@ f(0).
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Yy =f)

< Figure Ex-9

10. For the function g graphed in the accompanying figure, find

(@) linllfg(x) (b) linlgg(X)
(©) lim g(x) (d) g(1).
y
y=2gx

1 N

-1 2

< Figure Ex-10

M 11-12 (i) Complete the table and make a guess about the limit
indicated. (ii) Confirm your conclusions about the limit by
graphing a function over an appropriate interval. [Note: For
the inverse trigonometric function, be sure to put your calculat-
ing and graphing utilities in radian mode.]

ef —1

1. f(x) = —— lim f(x)

X -0.01 | =0.001 | —0.0001 | 0.0001 | 0.001 | 0.01

S
A Table Ex-11

sin™!' 2x

12, f() = =1 lim f(x)

x | -0.1|-0.01| -0.001 | 0.001 | 0.01 | 0.1

S
A Table Ex-12

[c] 13-16 (i) Make a guess at the limit (if it exists) by evaluating the
function at the specified x-values. (ii) Confirm your conclusions
about the limit by graphing the function over an appropriate in-
terval. (iii) If you have a CAS, then use it to find the limit. [Note:
For the trigonometric functions, be sure to put your calculating
and graphing utilities in radian mode.]

-1
13. (@) lim =——; x =2, 1.5, 1.1,1.01, 1.001,0,0.5, 0.9,

m S
0.99, 0.999
1
(b) lim %; x=2,1.5,1.1,1.01, 1.001, 1.0001
x—>1t x> —1
1
© lim %; x =0,0.5,0.9,0.99, 0.999, 0.9999
x—>1- x> =1
Viti-1
14. (a) 1im0x7; x = +0.25, +0.1, £0.001,
X —> X
£0.0001
ViFi+1
() lim, Nt 025.0.1,0.001,0.0001
X — X
Viti41
© tim XXt 025 0.1, —0.001,
x— 0" X
—0.0001
sin 3x

15. (a) limo ; x = £0.25, £0.1, £0.001, £0.0001

X
®) lim 2%, v 20,05, -0.9, —0.99, —0.999,
x—>—-1x4+1
—1.5,—1.1, —1.01, —1.001

t 1
@+ D0, 0.5, -0.9, ~0.99, ~0.999,

-1.5,-1.1,-1.01, —1.001
x = %£0.25, £0.1, £0.001, £0.0001

16. (a) lim

--1 x+1

® lim sin(5x)
x—0 sin(2x) ’

17-20 True-False Determine whether the statement is true or
false. Explain your answer.

17. If f(a) = L, then lim, _, , f(x) = L.

18. If lim,_, f(x) exists, then so do lim,_ ., f(x) and
lil’nxa(fr f(x)

19. If lim,_ .- f(x) and lim,_ ,+ f(x) exist, then so does
lim, , , f(x).

20. If lim, _, 4+ f(x) = +oo, then f(a) is undefined.

21-26 Sketch a possible graph for a function f with the speci-
fied properties. (Many different solutions are possible.)

21. (i) the domain of fis[—1, 1]
() f(=D=f0)=f1)=0
(iii) hIPH flx) = hmo fx) = linll, fx)y=1
22. (i) the domain of fis[—2, 1]
(i) f(=2)=f0O)=f1)=0
(iii) 1ir112+ flx)=2, lim0 f(x) =0, and
hmx—)l’ f(x) =1
23. (i) the domain of f is (—oo, 0]
() f(=2)=f0) =1
(iii) linl2 f(x) =+
24. (i) the domain of f is (0, +)
i f1)=0
(iii) the y-axis is a vertical asymptote for the graph of f
(iv) f(x) <0if0<x <1



25. () f(=3)=fO0O=f2=0
(i) lir£127 f(x) = 4o and lirllz+ f(x) = —oo
(iii) lim1 f(x) =4
® f-D=0,f0O=1r1)=0
(ii) hrfll_ f(x) =0and lir£11+ f(x) =+

(iii) lim f(r)=1Tand lim f(x) = 4o

26.

27-30 Modify the argument of Example 1 to find the equation
of the tangent line to the specified graph at the point given.

217.
28.
29.
30.

the graph of y = x% at (-1, 1)
the graph of y = x? at (0, 0)
the graph of y = x* at (1, 1)
the graph of y = x* at (—1, 1)

FOCUS ON CONCEPTS

31. Inthe special theory of relativity the length / of a narrow
rod moving longitudinally is a function / = I(v) of the
rod’s speed v. The accompanying figure, in which c de-
notes the speed of light, displays some of the qualitative
features of this function.

(a) What is the physical interpretation of /y?
(b) Whatis lim,_, .- /(v)? What is the physical signif-
icance of this limit?

l

Iy [=1@)

Length

Speed
A Figure Ex-31
32. Inthe special theory of relativity the mass m of a moving
object is a function m = m(v) of the object’s speed v.
The accompanying figure, in which ¢ denotes the speed
of light, displays some of the qualitative features of this
function.
(a) What is the physical interpretation of m(?
(b) What is lim,_, .- m(v)? What is the physical sig-
nificance of this limit?

m

Mass

ny

A Figure Ex-32
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33. Whatdo the graphs in Figure 0.5.4 imply about the value

of Lot —1

x—0 X
Explain your answer.

[c] 34.

i~ 3s.

36.

37.

Let —sinx

X
fo) =%

X
(a) Make a conjecture about the limit of f as x — 0" by
completing the table.

X 0.5
S

0.1 | 0.05 | 0.01

(b) Make another conjecture about the limit of f as x — 0
by evaluating f(x) at x = 0.0001, 0.00001, 0.000001,
0.0000001, 0.00000001, 0.000000001.

(c) The phenomenon exhibited in part (b) is called cata-
strophic subtraction. What do you think causes cata-
strophic subtraction? How does it put restrictions on the
use of numerical evidence to make conjectures about
limits?

(d) If you have a CAS, use it to show that the exact value
of the limit is .

Let L1/

f@) = (1+x%)

(a) Graph f in the window

[—1,1] x [2.5,3.5]
and use the calculator’s trace feature to make a conjec-
ture about the limit of f(x) as x — 0.
Graph f in the window

[—0.001, 0.001] x [2.5, 3.5]
and use the calculator’s trace feature to make a conjec-
ture about the limit of f(x) as x — 0.
Graph f in the window
[—0.000001, 0.000001] x [2.5, 3.5]

and use the calculator’s trace feature to make a conjec-
ture about the limit of f(x) as x — 0.
Later we will be able to show that

. oy 1.1/x2
lim (1+x%) """ ~ 3.00416602

What flaw do your graphs reveal about using numerical
evidence (as revealed by the graphs you obtained) to
make conjectures about limits?

(b)

(©)

(d

Writing Two students are discussing the limit of /X as
x approaches 0. One student maintains that the limit is 0,
while the other claims that the limit does not exist. Write
a short paragraph that discusses the pros and cons of each
student’s position.

Writing Given a function f and a real number a, explain
informally why

lim f(x +a) = lim f(x)

x—0 x—a
(Here “equality” means that either both limits exist and are
equal or that both limits fail to exist.)
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t/ QUICK CHECK ANSWERS 1.1

1. f(x); L;x;a 2. f(x);x;a 3. Both one-sided limits must exist and equal L. 4. (a) 0 (b) 1 (¢) +o (d) —= 5. 4

m COMPUTING LIMITS

In this section we will discuss techniques for computing limits of many functions. We
base these results on the informal development of the limit concept discussed in the
preceding section. A more formal derivation of these results is possible after Section 1.4.

Il SOME BASIC LIMITS
Our strategy for finding limits algebraically has two parts:

¢ First we will obtain the limits of some simple functions.

e Then we will develop a repertoire of theorems that will enable us to use the limits
of those simple functions as building blocks for finding limits of more complicated
functions.

We start with the following basic results, which are illustrated in Figure 1.2.1.

1.2.1 THEOREM Let a and k be real numbers.

1 1
(@) limk =k ®) limx=a (¢) lim - = - (d) lim — = 4o
x—a xX—a x—>0" X x—=0t X

y y=x
fO=x¢-———————
! | !
Y } l
k —> <« Y=k arT \ *
— 4 | | T,
\ \ ‘ fx)=xé — \ \ =
o L !
Py
\ £ \ f X —» ad «— X L
X —» a «— X
. 1 . 1
lim k =k lim x=a lim — = -0 lim + = +oo
x—a x—a x—0" x—0"
A Figure 1.2.1

The following examples explain these results further.

» Example 1 If f(x) =k is a constant function, then the values of f(x) remain fixed
5 e e (e e e e at k as x varies, which explains why f(x)— k as x — a for all values of a. For example,

number with its closeness to zero. For lim 3 =3,
positive numbers, the smaller the num- x— =25

ber the closer it is to zero, but for neg-
ative numbers, the larger the number
the closer it is to zero. For example,
—2 is larger than —4, but it is closer to

zero. lim x =0, lim x = -2, limx=m «

x—0 x— =2 xX—>1

1in103:3, Iim3=3 «

X—>T

» Example2 If f(x) = x,thenasx — aitmustalsobe true that f(x) — a. Forexample,



Theorem 1.2.2(e) remains valid for n
even and L; =0, provided f(x) is
nonnegative for x near a with x # a.

1.2 Computing Limits 81

» Example 3 You should know from your experience with fractions that for a fixed
nonzero numerator, the closer the denominator is to zero, the larger the absolute value of
the fraction. This fact and the data in Table 1.2.1 suggest why 1/x — +o as x — 0" and
why 1/x — —ccas x — 0. <«

Table 1.2.1
VALUES CONCLUSION
X -1 -0.1 -0.01 -0.001 -=0.0001 ---| As x — 0 the value of 1/x
1/x | -1 -10 =100 —-1000 -—10,000 --- | decreases without bound.
x 1 0.1 0.01 0.001 0.0001 --- | As x — 07 the value of 1/x
1/x 1 10 100 1000 10,000 --- | increases without bound.

The following theorem, parts of which are proved in Appendix D, will be our basic tool
for finding limits algebraically.

1.2.2 THEOREM Let a be a real number, and suppose that
lim f(x)=L; and lim g(x)= L,
X—a X—a
That is, the limits exist and have values Ly and L,, respectively. Then:

(@ lim [£(0)+g(0] = lim f(x)+ lim g(x) = Ly + Lo
() lim [£(r) = g(0)] = lim f(x) = lim g(r) = L — L,

© lim [F0ge0] = (lim 7(0) (Jim g(0) = L1Ls

0 F0 I

x=ag() i g(x) Ly’

provided L, # 0

(e) xhir}l (Z/f(x) = \%{hﬁma f(x) = /Ly, provided Ly > 0ifn is even.

Moreover, these statements are also true for the one-sided limitsas x —a~ orasx — a™.

This theorem can be stated informally as follows:

(a) The limit of a sum is the sum of the limits.
(b) The limit of a difference is the difference of the limits.
(c) The limit of a product is the product of the limits.

(d) The limit of a quotient is the quotient of the limits, provided the limit of the denom-
inator is not zero.

(e) The limit of an nth root is the nth root of the limit.

For the special case of part (¢) in which f(x) = k is a constant function, we have

lim (kg(x)) = lim k- lim g(x) = k lim g(x) €))]
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and similarly for one-sided limits. This result can be rephrased as follows:

A constant factor can be moved through a limit symbol.

Although parts (a) and (c) of Theorem 1.2.2 are stated for two functions, the results hold
for any finite number of functions. Moreover, the various parts of the theorem can be used
in combination to reformulate expressions involving limits.

» Example 4

Iim[f(x) — g(x) 4+ 2h(x)] = lim f(x) — lim g(x) 4+ 2 lim A(x)

Tim [/(0)g(0R(0] = (Jim f()) (lim g(0) ( lim hx))

3
lim [f(x)]3 = ( lim f(x)) Take g(x) = h(x) = f(x) in the last equation.
x—>a x—>a

n

: n o__ : The extension of Theorem 1.2.2(c) in which
Xh_l;na[f(x)] - (xll_)nla f(x)) there are n factors, each of which is f(x)
n

lim x" = ( lim )C) =a" Apply the previous result with f(x) =x. <
x—a x—a

B LIMITS OF POLYNOMIALS AND RATIONAL FUNCTIONS AS x —> a

» Example 5 Find lim, (x? —4x +3).

Solution.
lim (x2 —4x +3) = lim x% — lim 4x + lim 3 Theorem 1.2.2(a), (b)
x—5 x—5 x—5 x—5
= lim x2 — 4 lim x 4+ lim 3 A constant can be moved
x—5 x— x—5 through a limit symbol.
=52 4(5)+3 The last part of Example 4
=8 «

Observe that in Example 5 the limit of the polynomial p(x) = x> —4x +3 as x > 5
turned out to be the same as p(5). This is not an accident. The next result shows that, in
general, the limit of a polynomial p(x) as x — a is the same as the value of the polynomial
at a. Knowing this fact allows us to reduce the computation of limits of polynomials to
simply evaluating the polynomial at the appropriate point.

1.2.3 THEOREM For any polynomial
px) =co+cix + -+ cpx"
and any real number a,

lim p(x) = co+cia+--- +c,a" = p(a)

X—>a
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PROOF lim p(x) = lim (co ‘x4 4+ c,,x”)

X—a

= lim ¢p + lim ¢;x + --- + lim ¢, x"
X—a

X—a X—a

= lim ¢y + ¢y lim x + -+ + ¢, lim x"

X—a X—a X—a

=cy+cia+---+c,a" =pa) m

» Example 6 Find liml(x7 —2x° + )%,

Solution. The function involved is a polynomial (why?), so the limit can be obtained by
evaluating this polynomial at x = 1. This yields

liml(x7 —2°+D)¥ =0 «

Recall that a rational function is a ratio of two polynomials. The following example
illustrates how Theorems 1.2.2(d) and 1.2.3 can sometimes be used in combination to
compute limits of rational functions.

5x3 44
> Example 7 Find lim 2>~
x—=2 X — 3
Solution. ' s
5x3 14 lun2 5x7 4+ 4)
lim == Theorem 1.2.2(d)
x—>2 x—3 11m2(x—3)
5.-2244
= —+ = —44 Theorem 1.2.3 <«
2-3

The method used in the last example will not work for rational functions in which the
limit of the denominator is zero because Theorem 1.2.2(d) is not applicable. There are
two cases of this type to be considered—the case where the limit of the denominator is
zero and the limit of the numerator is not, and the case where the limits of the numerator
and denominator are both zero. If the limit of the denominator is zero but the limit of the
numerator is not, then one can prove that the limit of the rational function does not exist
and that one of the following situations occurs:

e The limit may be —oo from one side and +oo from the other.
¢ The limit may be +oo.
e The limit may be —c.

Figure 1.2.2 illustrates these three possibilities graphically for rational functions of the form
1/(x —a), 1/(x —a)?, and —1/(x — a)2.

» Example 8 Find

(@) li e ®) i Z;x (©) li Z;X
VR T Hx+2 e a-dHa+2 NG —Hr+2

Solution. In all three parts the limit of the numerator is —2, and the limit of the denom-
inator is 0, so the limit of the ratio does not exist. To be more specific than this, we need



84 Chapter 1 / Limits and Continuity

+++‘————(‘)++‘———x
-2 2 4
’ 2—x
S f—-
B G+
A Figure 1.2.3

In Example 9(a), the simplified function
x — 3 is defined at x = 3, but the orig-
inal function is not. However, this has
no effect on the limit as x approaches
3 since the two functions are identical
if x # 3 (Exercise 50).

A Figure 1.2.2

to analyze the sign of the ratio. The sign of the ratio, which is given in Figure 1.2.3, is
determined by the signs of 2 — x, x — 4, and x + 2. (The method of test points, discussed
in Web Appendix E, provides a way of finding the sign of the ratio here.) It follows from
this figure that as x approaches 4 from the right, the ratio is always negative; and as x
approaches 4 from the left, the ratio is eventually positive. Thus,
. 2—x . 2—x
lim —— — =—-» and lm —— = 4w
=>4t (x —4H(x +2) =4 (x—4Hx+2)

Because the one-sided limits have opposite signs, all we can say about the two-sided limit
is that it does not exist. <«

In the case where p(x)/qg(x) is a rational function for which p(a) = 0 and ¢(a) = 0, the
numerator and denominator must have one or more common factors of x — a. In this case
the limit of p(x)/g(x) as x — a can be found by canceling all common factors of x — a
and using one of the methods already considered to find the limit of the simplified function.
Here is an example.

» Example 9 Find

Coxr—6x+4+9 . 2x + 8 o x2=3x—-10
(a) Im ——— (b) lim ——— (¢) im ———
x—3 x—3 x—>—4x2+x—12 x—>5x2—10x+25

Solution (a). The numerator and the denominator both have a zero at x = 3, so there is
a common factor of x — 3. Then

x2—6x+9 o (x=3)?
—— = lim ————

lim = 1irr13(x—3):0

x—3 X — 3 x—=3 X — 3
Solution (b). The numerator and the denominator both have a zero at x = —4, so there
is a common factor of x — (—4) = x 4+ 4. Then
. 2x +8 . 2(x +4) . 2 2
Iim —— = lim —————— = lim ==
xo—4x24+x—12 i>-4x+Hx—-3) 1—>-4x-3 7

Solution (c¢). The numerator and the denominator both have a zero at x = 5, so there is
a common factor of x — 5. Then
oo x2=3x-10 o x=5Kx+2) Cox+2
lim ————— = lim ————~ = lim
x=>5x2—=10x+25 x->5(x—=5x—5) 1-5x—5




A Figure 1.24

Discuss the logical errors in the follow-
ing statement: An indeterminate form
of type 0/0 must have a limit of zero be-
cause zero divided by anything is zero.
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However,
lims(x—l—2)=7750 and lims(x—5)=0
xX— x—

SO
x2=3x—-10 Coox+2

lim = lim
x=>5x2—10x+25 x>5x—35
does not exist. More precisely, the sign analysis in Figure 1.2.4 implies that

x2=3x—10 . x+2_

li - = —
e i S TP T My
and
. x2—=3x—10 o ox+2
11m —_—_— = = — <

= m
o5 X2 —10x+25 o5 x—5

A quotient f(x)/g(x) in which the numerator and denominator both have a limit of zero
as x — a is called an indeterminate form of type 0/0. The problem with such limits is that
it is difficult to tell by inspection whether the limit exists, and, if so, its value. Informally
stated, this is because there are two conflicting influences at work. The value of f(x)/g(x)
would tend to zero as f(x) approached zero if g(x) were to remain at some fixed nonzero
value, whereas the value of this ratio would tend to increase or decrease without bound as
g(x) approached zero if f(x) were to remain at some fixed nonzero value. But with both
f(x) and g(x) approaching zero, the behavior of the ratio depends on precisely how these
conflicting tendencies offset one another for the particular f and g.

Sometimes, limits of indeterminate forms of type 0/0 can be found by algebraic simpli-
fication, as in the last example, but frequently this will not work and other methods must
be used. We will study such methods in later sections.

The following theorem summarizes our observations about limits of rational functions.

1.2.4 THEOREM Let

be a rational function, and let a be any real number.
(@) Ifq(a) #0, then lim f(x) = f(a).
() Ifq(a) =0 but p(a) # 0, then lim f(x) does not exist.

LIMITS INVOLVING RADICALS

» Example 10 Find lim .
x—=1/x —1

Solution. 1In Example 2 of Section 1.1 we used numerical evidence to conjecture that

this limit is 2. Here we will confirm this algebraically. Since this limit is an indeterminate

form of type 0/0, we will need to devise some strategy for making the limit (if it exists)

evident. One such strategy is to rationalize the denominator of the function. This yields
x—1 (x—D(/x+1) _(x—l)(«/EJrl):ﬁJrl

G DEED T xd v
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Therefore,
Confirm the limit in Example 10 by fac-
toring the numerator.

coox—1 :
—_— = 4
A T (D =2

B LIMITS OF PIECEWISE-DEFINED FUNCTIONS

For functions that are defined piecewise, a two-sided limit at a point where the formula
changes is best obtained by first finding the one-sided limits at that point.

» Example 11 Let
1/(x+2), x<-2

fx)={x*-5, —2<x<3
Vx +13, x >3

Find
@ lim f( (0 lim () (© lim £(0)

Solution (a). We will determine the stated two-sided limit by first considering the cor-
responding one-sided limits. For each one-sided limit, we must use that part of the formula
that is applicable on the interval over which x varies. For example, as x approaches —2
from the left, the applicable part of the formula is

1
0=
and as x approaches —2 from the right, the applicable part of the formula near —2 is
fx)=x>-=5
Thus,
li = lim ——=—
x—}lzl2* f(X) x—irIIZ* x+2 *

. _ . 2 M2 _
lim f) = lim (=5 = (-2’ =5 =1

from which it follows that lim2 f(x) does not exist.

Solution (b). The applicable part of the formula is f(x) = x> — 5 on both sides of 0, so
there is no need to consider one-sided limits here. We see directly that

lim f(x) = limo(x2 -5 =0-5=-5

y Solution (c). Using the applicable parts of the formula for f(x), we obtain

lim f(x) = lim (* =5)=3"-5=4

lim f(x)= lim v/x+13= /lim (x +13) =+3+13=4
x—3t x—3t x—3t
Since the one-sided limits are equal, we have

lim3 fx) =4

We note that the limit calculations in parts (a), (b), and (c) are consistent with the graph of
A Figure 1.2.5 Jf shown in Figure 1.2.5. «
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(See page 88 for answers.)
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1. In each part, find the limit by inspection. 3. Find the limits.
(@ lim7 = (b) 1im+ Ry=___ (@) lim 1(x3 +x24+x)0 =
©) hm X (d) hm el =_ (b) lim @—-Dx-2 —
[x] -5 |w| x—>2- x+1
1 —Dx -2
© lim o = © tim % -
_ _ xX—— X
= 1 = 2 - ]6
2. C.}1V.en thatlim, ,, f(x) = landlim,_,, g(x) = 2, find the (d) lim X _
limits. x—>4 x —4
(@ lim[3f(x)+2g(x)]=— 4. Let
x—a fx) = x+1, x<I1
2f(x)+1 x—1, x>1
®) lim ———— =
roal = fl)gx) Find the limits that exist.
(©) lim Y/ 3 _ (@ lim f() =
x=a  g(x) (b) lim f(x) =
x— 1t
(© lim f(x) =
x—1
EXERCISE SET 1.2
1. Given that 3. lim x(x = D(x+1) 4. lim x? —3x% 4+ 9x
lim f(x) =2, limgkx)=-4, 1limh(x)=0 X2 2x 6x —9
X—a X—a X—a 5. llm 6- m 37
find the limits. x—>3 X4+1 xﬁ0x3— 12x +3
(@ lim [£(x) +2g(x)] 7 lim L 8. fim _t8
(b) hm [h(x) _ 3g(x) + 1] x—1t xz— 1 t— =2 ;+2
X—a
: . 2 . Xx“+6x+5 . o x-—4x+4
(© lim [f(x)g(x)] (d) lim [g(zx)] 9. xlinll PR —I 10. Xh_)mz Trr_6
(e) lim Y6+ f(x) (f) lim —— 2x2+x—1 . 3xr—x-2
x—a x—>a g(x) 11. _ 12. lim ——
2. Use th h ff deinth . q ‘ x——1 x+1 x—>12x?4+x—3
. Use the graphs of f and g in the accompanying figure to 3 2 3,0
find the limits that exist. If the limit does not exist, explain 13. lim rt 3t — 12 +4 14. lim rArostt3
why. t—2 — 4t -1 3 =342
(a) lim [f(x)+ g(x)] (b) lim [f(x) 4+ g(x)] 15. lim 16. lim
x—2 x—0 x—=3tx —3 x—=3"x—3
(©) xlln(; [f(x) +g(x0)] (d) xllf% [f(x) + g(x)] 7. lim 18, lim —
f( ) . 1+g(x) x—>3x—3 x—2+ x2 —4
(e) lim f) lim ———— .
=21+ g0 =2 f) R S 200 a
(&) lim V/F(x) () tim V/f(x) y+6 y+6
x—=0" 21. linr61+ a6 22. linr61 a6
y— — — 6~ —
Yy =1 T y=g §+6 e 3y
i i 23. lim — 24. lim —
| y—>6 y2—36 x4+t x2 —2x — 8
3—x 3—x
- T 25. lim — 26. lim —
L] ‘ / X /\ X x—4-x2—2x —8 x1—>4x2 2x — 8
|| HEN 27. lim 28. lim
x—2t |2—x| x—3- |x—3|
B x—=9 4—y
29, lim —— 30. 1i
g g 0 X =3 Va2 — )y
- ; 31. Let
A Figure Ex-2 = 1, x<3
S 3x -7, x>3 (cont)

3-30 Find the limits.
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Find
(a) 1in317 Fx) (b) lirr31+ f&x)y (0 lim3 fx).
32. Let t — 2’ t < 0
g = {12, 0<t=<?2
2t, t>2
Find
(a) lim g(¢) (b) lim g(r) (c) lim g(¢).
t—0 t—1 t—2

33-36 True-False Determine whether the statement is true or
false. Explain your answer.

33. If lim,_, f(x) and lim,_, g(x) exist, then so does
limy o[ f(x) + g(x)].

34. If lim,_,g(x)=0 and Ilim,_, f(x) exists, then
lim, _, ,[ f(x)/g(x)] does not exist.

35. If lim, _,, f(x) and lim, _, , g(x) both exist and are equal,
then lim, _, ,[ f(x)/g(x)] = 1.

36. If f(x) is a rational function and x = a is in the domain of
f,thenlim, ., f(x) = f(a).

37-38 First rationalize the numerator and then find the limit.

Jit4-2 V2 +4-2
37, fim X0 38, lim Y2 T2
x—0 X x—0 X
39. Let ¥$_1

fx) =
x—1

(a) Find lim, . f(x).
(b) Sketch the graph of y = f(x).

40. Let ¥2_9 L 3
I x£—

fx)=1 x+3
k, x=-3

(a) Find k so that f(—3) = lim,_, _3 f(x).
(b) With k assigned the value lim,_, _3 f(x), show that
f(x) can be expressed as a polynomial.

FOCUS ON CONCEPTS

41. (a) Explain why the following calculation is incorrect.

. 1 1 .1 . 1
Iim (-——= )= lim — — lim —
x—>0t \ x x2 x—>0t X x—0+ x2

x—>0t \ x

1 1
(b) Show that lim (7 — —2> = —oo,
X

t/ QUICK CHECK ANSWERS 1.2

42. (a) Explain why the following argument is incorrect.

43. Find all values of a such that

44. (a) Explain informally why

45. Let p(x) and g (x) be polynomials, with g (xo) = 0. Dis-

. 1 2 o1 2
Iim(-————)=Ilim—(1-—
x—=>0\ X x2 + 2x x—>0Xx x+2

=0 -0=0

. 1 2 1
(b) Show that lim | - — — | = —.
x—>0\ X x2+2x 2

. 1 a
lim -
x=>1\x —1 x2—1
exists and is finite.
. 1 1
lim <f + 7) = 4o
x—=0" \ x X
(b) Verify the limit in part (a) algebraically.

cuss the behavior of the graph of y = p(x)/q(x) in the
vicinity of x = x¢. Give examples to support your con-
clusions.

47.

48.

50.

. Suppose that f and g are two functions such that

lim, ., f(x) exists but lim, _, ,[ f(x) + g(x)] does not ex-
ist. Use Theorem 1.2.2. to prove that lim, _, , g(x) does not
exist.

Suppose that f and g are two functions such that both
lim, ., f(x) and lim, _, ,[ f(x) + g(x)] exist. Use Theo-
rem 1.2.2 to prove that lim, _, , g(x) exists.

Suppose that f and g are two functions such that
lim g(x) =0 and lim L0
x—a x—a g ( x)

exists. Use Theorem 1.2.2 to prove that lim, _, , f(x) = 0.

. Writing According to Newton’s Law of Universal Grav-

itation, the gravitational force of attraction between two
masses is inversely proportional to the square of the dis-
tance between them. What results of this section are useful
in describing the gravitational force of attraction between
the masses as they get closer and closer together?

Writing Suppose that f and g are two functions that are
equal except at a finite number of points and that @ denotes
a real number. Explain informally why both

lim f(x) and lim g(x)

X—>a
exist and are equal, or why both limits fail to exist. Write a
short paragraph that explains the relationship of this result
to the use of “algebraic simplification” in the evaluation of
a limit.

1. (@A) 7 (b) 36 (c) —1 (d) 1 (e) +» 2. (a) 7 (b) =3 (c) 1
4. (a) 2 (b) 0 (c) does not exist

3.

(@) =1 (b) 0 (c) + (d) 8
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m LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION

<«
= —

lim L 0
X—>+oo

A Figure 1.3.1

Up to now we have been concerned with limits that describe the behavior of a function
f(x) as x approaches some real number a. In this section we will be concerned with the
behavior of f(x) as x increases or decreases without bound.

Il LIMITS AT INFINITY AND HORIZONTAL ASYMPTOTES
If the values of a variable x increase without bound, then we write x — 400, and if the
values of x decrease without bound, then we write x — —oo. The behavior of a function
f(x) as x increases without bound or decreases without bound is sometimes called the end
behavior of the function. For example,

1 1
lim — =0 and Iim — =0 (1-2)

X—> —0 X X—+o X

are illustrated numerically in Table 1.3.1 and geometrically in Figure 1.3.1.

Table 1.3.1
VALUES CONCLUSION
X -1 -10 -100 -1000 -10,000 --- | As x — —oo the value of 1/x
1/x | -1 -0.1 -0.01 -0.001 -0.0001 --- | increases toward zero.
X 1 10 100 1000 10,000 --- | As x — +oo the value of 1/x
1/x 1 0.1 0.01 0.001 0.0001 - -- | decreases toward zero.

In general, we will use the following notation.

1.3.1 LIMITS AT INFINITY (AN INFORMAL VIEW) If the values of f(x) eventually
get as close as we like to a number L as x increases without bound, then we write

linl f(x)=L or f(x)—Lasx— -+ 3)
y X —> T+
\ ~ Horizontal asymptote  y =L Similarly, if the values of f(x) eventually get as close as we like to a number L as x
decreases without bound, then we write
y=fx)
lim f(x)=L or f(x)—>Lasx— —x (@]
X
lim f(x)=L Figure 1.3.2 illustrates the end behavior of a function f when
lirpF fx)=L or lim f(x)=1L
y X— 4w X —> —0w
In the first case the graph of f eventually comes as close as we like to the line y = L as x
increases without bound, and in the second case it eventually comes as close as we like to
the line y = L as x decreases without bound. If either limit holds, we call the line y = L

\,

a horizontal asymptote for the graph of f.

lim f(x)=L

X——oo

A Figure 1.3.2

» Example 1 It follows from (1) and (2) that y = 0 is a horizontal asymptote for the
graph of f(x) = 1/x in both the positive and negative directions. This is consistent with
the graph of y = 1/x shown in Figure 1.3.1. <«
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y =tan~

A Figure 1.3.3

' x

y= (l +
A Figure 1.34

» Example 2 Figure 1.3.3 is the graph of f(x) = tan~! x. As suggested by this graph,

. 1 4
lim tan™ x = ——
X —> —o© 2

. _ T
lim tan~'x = = and
X —> o0 2

(5-6)

so the line y = /2 is a horizontal asymptote for f in the positive direction and the line
y = —7n/2 is a horizontal asymptote in the negative direction. <

» Example 3 Figure 1.3.4 is the graph of f(x) = (1 + 1/x)*. As suggested by this

graph,
1\* 1\*
lim (1 + —) =e¢ and lim (1 + —) =e
X —> 40 X X — —o0 X

so the line y = e is a horizontal asymptote for f in both the positive and negative directions.
<

(7-8)

LIMIT LAWS FOR LIMITS AT INFINITY

It can be shown that the limit laws in Theorem 1.2.2 carry over without change to limits at
o0 and —co. Moreover, it follows by the same argument used in Section 1.2 thatif n is a
positive integer, then

lim (f(x)" = < lim f(x)) lim (f(x)" = < lim f(x)) (9-10)
X — 4+ X — 4+ X —> —oo X —> —0
provided the indicated limit of f(x) exists. It also follows that constants can be moved
through the limit symbols for limits at infinity:
linl kf(x) =k lin_lF fx) lim kf(x) =k lim f(x) (11-12)
provided the indicated limit of f(x) exists.
Finally, if f(x) = k is a constant function, then the values of f do not change as x — +oo
or as x — —, SO
lim k=k

X —> +o©

Iim k=k

X — —©

(13-14)

» Example 4

(a) It follows from (1), (2), (9), and (10) that if n is a positive integer, then

. 1 . 1\"
11m—=<11m —) =0
x— —oo x xX—>—o X

(b) It follows from (7) and the extension of Theorem 1.2.2(e) to the case x — oo that

1 ¥ | 2 1/2
li 14+ — li 14+ —
x—lﬁlkoc( +2x> x—l>r20c |:< + 2x> :|

1 2x 1/2
|:1im <1+—> } =2 = /e «
X — 4o 2x

. 1 . 1\"
lim —:(hm —) =0 and

x— 4o xN xX— 4o X

INFINITE LIMITS AT INFINITY

Limits at infinity, like limits at a real number a, can fail to exist for various reasons. One
such possibility is that the values of f(x) increase or decrease without bound as x — +oo
or as x — —oo. We will use the following notation to describe this situation.
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1.3.2 INFINITE LIMITS AT INFINITY (AN INFORMAL VIEW) If the values of f(x)
increase without bound as x — +o or as x — —oo, then we write
lim f(x) =4 or Ilim f(x)=-4x
x— +o X — —
as appropriate; and if the values of f(x) decrease without bound as x — 4 or as
x — —oo, then we write

lin+1 f(x)=—0 or lim f(x)=—o

as appropriate.

B LIMITS OF x" AS x — +
Figure 1.3.5 illustrates the end behavior of the polynomials x” forn = 1, 2, 3, and 4. These
are special cases of the following general results:

. . —o, n=1,3,5,...
lim x"=+4w, n=1,2,3,... lim x" = ’ T (15-16)
X — +o X —> —© —+o0, n=2,4,6,...
y AY y y
_ 4
8 8 S y =x3 gL [ Y=X
L y —x L y :xz L L
X X X X
| | | | | | | |
-4 4 -4 4 —4 4 -4 4
8 -8 -8 -8
lim x = +oo lim x2 = 4oo lim x3 = 400 lim x* = 400
X—>+o0 xX—+o0 X—>+oo X—>+o0
lim x = —oo lim x2 = +oo lim x3 = —oo lim x* =400
X——o0 X——o0 X——o0 X——o0
A Figure 1.3.5

Multiplying x" by a positive real number does not affect limits (15) and (16), but mul-
tiplying by a negative real number reverses the sign.

» Example 5

lim 2x° = +oo, lim 2x° = —
X — 4o X —> —

lim —7x% = —oo, lim —7x% = —» <«
X — +o© X — —

B LIMITS OF POLYNOMIALS AS x — +x
There is a useful principle about polynomials which, expressed informally, states:

The end behavior of a polynomial matches the end behavior of its highest degree term.
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More precisely, if ¢, # 0, then

lim (co +cx+---+ c,,x") = lim c¢,x" (17)
X —> —0o0 X —> —
linl (co +cix+---+ c,,x") = liIE cpx” (18)

We can motivate these results by factoring out the highest power of x from the polynomial
and examining the limit of the factored expression. Thus,

€o C1
+

c0+c1x+~-~+cnx”:x"( +~-~+cn)

xn el
As x — —oo or x — oo, it follows from Example 4(a) that all of the terms with positive
powers of x in the denominator approach 0, so (17) and (18) are certainly plausible.

» Example 6

lim (7x° —4x° 4+2x —9) = lim 7x° = —o

X —> —x

lim (—4x®+17x* =5x + 1) = lim —4x® = - «

X — —% X —> —©

LIMITS OF RATIONAL FUNCTIONS AS x — +

One technique for determining the end behavior of a rational function is to divide each term
in the numerator and denominator by the highest power of x that occurs in the denomi-
nator, after which the limiting behavior can be determined using results we have already
established. Here are some examples.

— 3x +5
> Example 7 Find lim >
x—+o 6x — 8

Solution. Divide each term in the numerator and denominator by the highest power of
x that occurs in the denominator, namely, x! = x. We obtain

5
x5 3T
lim = lim Divide each term by x.
x—>+40o Ox — 8 X — 4o
X
lim (3 + —)
_ x> 4o X Limit of a quotient is the
- 8 quotient of the limits.
lim (6 — —
X — 4o X

5
lim 3+ lim —
X —> 4 X—>to X Limit of a sum is the
sum of the limits.

lim 6 — lim —
X =+ X—> 4w X

1
34+5 lim —
X—>+ox 340 _ 1 A constant can be moved through a
. - 6+0 - 2 limit symbol; Formulas (2) and (13).

6—8 lim —

x—+0w X
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» Example 8 Find

2 3 2
— 5x° =2 1
* a (b) lim o]
x——2x3 =5 x—>4ee 1 —3x

Solution (a). Divide each term in the numerator and denominator by the highest power
of x that occurs in the denominator, namely, x3. We obtain

4 1
4x? — x . x x2
im = lim Divide each term by x3.
x>—02x3 =5 x> -o 5
x3
(41
lim |- — =
R X Limit of a quotient is the
- 5 quotient of the limits.
lim (2 — =
X— — X
. . 1
lim — — lim —
_ o= Xx X—>—*X Limit of a difference is the
. . 5 difference of the limits.
lim 2— lim —
X —> —© X— —w X
1 o1
4 . lirgx )_C -, EII}x ; 0—-0 A c?orTstant can be moved through
= 1 = ) 0 =0 a limit symbol; Formula (14) and
2-5 lim — Example 4.

X— —0 X

Solution (b). Divide each term in the numerator and denominator by the highest power
of x that occurs in the denominator, namely, x! = x. We obtain

1
3 2 5x2—2x + —
i o (19)

In this case we cannot argue that the limit of the quotient is the quotient of the limits because
the limit of the numerator does not exist. However, we have

1 1
lim 5x*>—2x =40, lim — =0, lim (- - 3) =-3
X — +oo X —+oe x X =+ \ X

Thus, the numerator on the right side of (19) approaches +cc and the denominator has a
finite negative limit. We conclude from this that the quotient approaches —oo; that is,

1
503 —2x2 4 1 5x%—2x+
lim =——— = lim ——— % = —» «
X — 4 1—3x X — 4o 1
--3
X

B A QUICK METHOD FOR FINDING LIMITS OF RATIONAL FUNCTIONS AS x — +x
OR X — —0
Since the end behavior of a polynomial matches the end behavior of its highest degree term,
one can reasonably conclude:

The end behavior of a rational function matches the end behavior of the quotient of
the highest degree term in the numerator divided by the highest degree term in the
denominator.
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» Example 9 Use the preceding observation to compute the limits in Examples 7 and 8.

Solution.
3x+5 oy 3x . 1 1

— =1l _ = —

im = lim
x—>+obx —8 x—>+wbx x—+o2 2

. 4x2 — x . 4x2 . 2
Iim —— = lim — = lim — =0
x—>-»2x3 —5§ x— —o 2x3 X—>—w X

. Sxd—2xr+1 . 5x3 . 5,
lim —— = lim = lim —=X = —oo 4
x — +oo 1 —3x x>0 (=3x) x>+ 3

B LIMITS INVOLVING RADICALS

» Example 10 Find

VxZ+2 Vxz+2
@ lim Y2 () fim LT
x>+ 3x — 6 x—>—» 3x —6
In both parts it would be helpful to manipulate the function so that the powers of x are
transformed to powers of 1/x. This can be achieved in both cases by dividing the numerator

and denominator by |x| and using the fact that v/x2 = |x|.

Solution (a). As x — +oo, the values of x under consideration are positive, so we can
replace |x| by x where helpful. We obtain

x242 VxZ 42

+

. x2 42 . x| . Vx2
xgnlw 3x — 6 —XLHEOO 3x —6 _xgn-ll»w 3x —6
|x] X
2 2
1+—2 lim 1+—2
= lim X _ X — 4o X
X — 4o 6 . 6
- = lim {3 - -
X X —> +0 X

JI+20) 1

T 3—-(6-00 3

Solution (b). As x — —ox, the values of x under consideration are negative, so we can

replace |x| by —x where helpful. We obtain

It follows from Example 10 that the
function X242 x2 42
2 2
fay= Y2 lim VA2 lim —Vx*
3x -6 x—>—» 3x — X — —® 3x —6 X — —®© 3x —6
=1 f
has.fm a'sym.ptote of y= 3 in the x| (—x)
positive direction and an asymptote of
y= —% in the negative direction. 2
Confirm this using a graphing utility. ) 1+ F 1
= lim —— =—— <«



y:\)x°+5x3—x3,x20

D)
A Figure 1.3.6

We noted in Section 1.1 that the stan-
dard rules of algebra do not apply to
the symbols 4o and —cc. Part (b) of
Example 11 illustrates this. The terms
~/x6 + 5x3 and x both approach +
as x — +oo, but their difference does
not approach 0.

There is no limit as

X — +00 Or X — —oo.

A Figure 1.3.7
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» Example 11 Find

() 1in+1 (Vx6+5—x%) (b) 1in+1 (Vx6 +5x3 — x3)

Solution. Graphs of the functions f(x) = v/x%4+5 — x3, and g(x) = v/x° 4 5x3 — x*
forx > 0, are shown in Figure 1.3.6. From the graphs we might conjecture that the requested
limits are 0 and %, respectively. To confirm this, we treat each function as a fraction with a
denominator of 1 and rationalize the numerator.

VX0 +5+x
Jim (Vxb+5—x%) = lim (Va®+5— 3
1m( X x) 1m( X X)(«/x6—+x3)

x®+5) —x . 5
= m —— = llm —
x— +o /x6+5+x3 X — +o /x6+5+x3
5
= lim Vx0 =x3forx >0
X — 4o 5
I+ —=+1
X
0
=0

Vx6 4+ 5x3 423
lim (vVx6 +5x3 —x°) = lim (Vx645x3 —x%) | —=——"
X —> +o X —> +o© /x6+5x3 +x3

. (x® 4+ 5x3) — x° . 5x3
= lim —— = lim ———
x>t fx0 4 5x3 4 x3 ¥t (/x0 4 5x3 4 3
. 5
= lim ——— Vxb =x3forx >0
X —> +oo 5
‘/1+—3+1
X
5 5
= 4

Il END BEHAVIOR OF TRIGONOMETRIC, EXPONENTIAL,

AND LOGARITHMIC FUNCTIONS
Consider the function f(x) = sinx that is graphed in Figure 1.3.7. For this function the
limits as x — 40 and as x — —oo fail to exist not because f(x) increases or decreases
without bound, but rather because the values vary between —1 and 1 without approaching
some specific real number. In general, the trigonometric functions fail to have limits as
x — +oo0 and as x — —oo because of periodicity. There is no specific notation to denote this
kind of behavior.

In Section 0.5 we showed that the functions e* and In x both increase without bound as
x — oo (Figures 0.5.8 and 0.5.9). Thus, in limit notation we have

lim Inx = 4o lim e = 4w (20-21)

x— 4o X — +o0

For reference, we also list the following limits, which are consistent with the graphs in

Figure 1.3.8:
lim e =0 lim Inx = —oo (22-23)

X —> —x x— 0t
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/| /1
/
/
/
/

A Figure 1.3.8 A Figure 1.3.9

Finally, the following limits can be deduced by noting that the graph of y = e is the
reflection about the y-axis of the graph of y = ¢* (Figure 1.3.9).

lim e =0 lim e = 4w (24-25)

X — +o X—> —®

VQU]CK CHECK EXERCISES 1.3  (See page 100 for answers.)

1. Find the limits. 3. Given that
(@ lim 3—x)=
X —> —0

' 1 xl_l)nlm f(x) =2 and xngg(x) =-3
®) lim (5——-)=_____
o ° find the limits that exist.
© lim () - @ lim [3f()— gl =—
X — 00 x X — 00
1 (b) lim @ _
(@ x1—1>n-}1-oog_x - X — 4% g(x)
2. Find the limits that exist (c) lim 2/ 3800 _
« 1N ¢ I1mits that exist. - =
2x2 4+ x +e 3 f(x) +2g(x)

@ fm 3= —— @ tim 10— fogo=—

) 1
(b) 1_1)12 T snar 4. Consider the graphs of 1/x, sinx, Inx, ¢*, and e*. Which
Tsinx of these graphs has a horizontal asymptote?

1 X
(¢) lim (l + —) =_
X —> 4o X

EXERCISE SET 1.3 I Graphing utility

1-4 In these exercises, make reasonable assumptions about the 2. For the function ¢ graphed in the accompanying figure, find
end behavior of the indicated function. (a) lim ¢(x)
X — —
1. For the function g graphed in the accompanying figure, find (b)) lim ¢(x).
. . X — +oo
(@) lim g(x) (b) lim g(x).
X—> —x X —> +oo
- v =800 T

| \

4 3

< Figure Ex-1 < Figure Ex-2
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3. For the function ¢ graphed in the accompanying figure, find (b) Use Figure 1.3.3 to find the exact value of the limit in
(a) lim ¢(x) (b) lin+1 ¢ (x). part (a).
xX— —o X — 4o
8. Complete the table and make a guess about the limit indi-
y y =) cated.

fay=x" o dim fo)

N X 10 | 100 | 1000 | 10,000 | 100,000 | 1,000,000
—— = | | | N Y I I |

EENEE VB £
< Figure Ex-3

4. For the function G graphed in the accompanying figure, find 9-40 Find the limits.
(@ lim G(x) (b) lim G(x). 9. lim (14 2x —3x%) 10. lim (2x* — 100x + 5)
X—> —x X —> 4w X — +ow X —> 4o
y y = G(x) 11. lim /x 12. lim +/5—x
4 : X =+ xX— —®
1 24
3. lim 2T 4. lim
x—>+o2x — 5 x>+ 2x2 43
15. lim 3 16. lim
< Figure Ex-4 yo-—=y+4 x—>4e x — 12
. x—2 . 5x2+7
5. Given that 17. Xl_l)rgx x242x+1 18. xl—l>m+oc 3x2 —x
lim f(x)=3, lim gx)=-5lim A(x)=0 7 — 6x3 5243
X — 4o X — +o0o X — o 19. lim al 20. lim 3
find the limits that exist. If the limit does not exist, explain x—fe x+3 t—>—= 241
why. . 6—13 . x + 4x3
@ lim [£() +3g()] 2L lim o3 2. m e
®) lim_ [h(x) —4gx) + 1] 23 g Y2t 3r -5 st pim 3354
. . . lim [ ———— . lim ————
© lim [f0)g()] @ lim [gCoP S T s e
3
(e) lim 5+ f(x) (f) lim — o V5x2 =2 ) 5x2—2
X — 4% X — 4o g(x) 25. lim 73 26. lim 73
_ 3h(x) +4 _ 6£(x) Fooe Xt Fote X+t
(9 lim == ) lim ——to 2y 2y
x> oo X x—~>+= 5 f(x) +3g(x) 27. lim ——— 28. lim

6. Given that Y= =2 T+ 6y? y=+e ST 4 6y?
Jlim f(x)=7 and  lim g(x)=—6 o VB3xtx o VB3xttx

29. lim — 30. lim 3
find the limits that exist. If the limit does not exist, explain x—>-w x> —8 x—>4w x*—8

why. 31. liIE WVx24+3—x) 32. lim (vVx%2—3x—x)
X — 4o )

@ lim [2f(x) —g()] (b) lim [6f(x)+7g(x)]

1—¢* 1—e¢*
: 2 . 2 . .
(© lim [x*+g(x)] (@) lim [x*g(x)] 3. lim SAL L prp:
(e) xl—ljgoo v f(X)g(X) (f) xErEoo % 35’ lim < +67X 36. lim 76)( +€7X
x—4w et —e X x——w e¥ —e™X
. g(x) . xf(x)
1 Shuia h) lim — 22 2 2
(® [lim [f @+ = ] ® e 37. lim In <7> 38. lim In (—2>
X =+ X x—0t X

7. (a) Complete the table and make a guess about the limit (x+ 1) 1\~
indicated. 39. lim 40. lim (1 + 7>
1 xX—> +oo xx X —> +oo X
f(x) = tan™! (7) lim f(x)
X x—0F

41-44 True-False Determine whether the statement is true or
false. Explain your answer.

X 0.1 | 0.01 | 0.001 | 0.0001 | 0.00001 | 0.000001 2
41. We h li 1+ - =1+ =1=1
£ ¢ aV%i“L( +x> 1+0)
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42,

43.

4.

FOCUS ON CONCEPTS

45. Assume that a particle is accelerated by a constant force.

If y = L is a horizontal asymptote for the curve y = f(x),
then

lim f(x)=L and lim f(x)=1L
X — —o x— +o»

If y = L is a horizontal asymptote for the curve y = f(x),
then it is possible for the graph of f to intersect the line
y = L infinitely many times.

If arational function p(x)/q(x) has a horizontal asymptote,
then the degree of p(x) must equal the degree of g (x).

The two curves v = n(¢) and v = e(¢) in the accompa-
nying figure provide velocity versus time curves for the
particle as predicted by classical physics and by the spe-
cial theory of relativity, respectively. The parameter ¢
represents the speed of light. Using the language of lim-
its, describe the differences in the long-term predictions
of the two theories.

’ v =n(t)
(Classical)
v =e(t)
(Relativity)

G

*
|
|

Velocity

Time < Figure Ex-45

48.

50.

51.

52.

FOCUS ON CONCEPTS

Let
243t
Zr ¢ < 1,000,000
o = 5t2+6
8= e — 100
Y . > 1,000,000
5—¢
Find

(a) ,En}mg(’) (b) tglgmg(t)-

. Discuss the limits of p(x) = (1 —x)" as x — 4o and

x — —oo for positive integer values of 7.

In each part, find examples of polynomials p(x) and g(x)
that satisfy the stated condition and such that p(x) — 4o
and g (x) — o0 as x — 0.

@ lim P Ex; =1 (b) lim P Ex; —0
x—>+o g(x X—> 4w g(x
. opx) . _
(©) Xlinlm 0 oo (@ xlil}lm[l’(x) —q(x)] =3

(a) Do any of the trigonometric functions sin x, cos x, tan x,
cot x, sec x, and csc x have horizontal asymptotes?

(b) Do any of the trigonometric functions have vertical
asymptotes? Where?

Find ) C0+C1X+"'+Cnxn
lim

x =+ do+d1x+ +dmx’"

where ¢, # 0and d,, # 0. [Hint: Your answer will depend
on whetherm <n,m =n,orm > n.]

46. Let T = f(t) denote the temperature of a baked potato
¢t minutes after it has been removed from a hot oven.
The accompanying figure shows the temperature versus
time curve for the potato, where r is the temperature of
the room.

(a) What is the physical significance of lim, _, o+ f(¢)?
(b) What is the physical significance of lim, _, 1, f(¢)?

T
& 400
L
§_ T=f(1)
IS
Y S ——— e
t
Time (min) < Figure Ex-46
47. Let
2x% + 5, x <0
— 5,3
fx) = 3 —5x x>0
1+ 4x + x3 -
Find

@ lim f(x) (b) lim f(x).

53-54 These exercises develop some versions of the sub-
stitution principle, a useful tool for the evaluation of limits.

53. (a) Explain why we can evaluate lim, _, 4, e’ by mak-

ing the substitution t = x? and writing

lim ¢ = lim ¢ = 4o

X =+ t— +oo
(b) Suppose g(x)— +w as x— 4. Given any
function f(x), explain why we can evaluate
lim, 4., f[g(x)] by substituting t = g(x) and
writing

Jlim flg] = lim f()

(Here, “equality” is interpreted to mean that either
both limits exist and are equal or that both limits fail
to exist.)

(c) Why does the result in part (b) remain valid
if lim,_, ;. is replaced everywhere by one of
lim, _, _., lim, _, ., lim, _, .—, or lim, _, .+?

54. (a) Explain why we can evaluate lim,_, . e by
making the substitution ¢ = —x? and writing

2 .
= lim e’ =0 (cont.)

> —o

lim e~
X —> 4o




(b) Suppose g(x)— —o as x—+4ow. Given any
function f(x), explain why we can evaluate
lim, 4 f[g(x)] by substituting t = g(x) and
writing

Jim flg(ol = lim f(r)

(Here, “equality” is interpreted to mean that either
both limits exist and are equal or that both limits fail
to exist.)

(c) Why does the result in part (b) remain valid
if lim,_, 4, is replaced everywhere by one of
lim, _, _, lim, _, ¢, lim, _, .-, or lim, _, o+ ?

55-
55.

57.

59.
60.

61.

62.
63.

64.

i~ 6s5.

~ 66.

62 Evaluate the limit using an appropriate substitution.

lim ¢!/~ 56. lim €'/~
x—0t x—0-
lim e 58. lim ¢
x—0t x—>0-
. n2x .
lim [Hint: t = Inx]
x—+= In3x
mE [In(x* = 1) — In(x + D] [Hint: t = x — 1]
X —> +o

1 —X
lim (1 — 7> [Hint: t = —x]

X — 4o X

. 2\

lim <1 + f) [Hint: t = x/2]

X —> 4o X

Let f(x) = b*, where 0 < b. Use the substitution principle

to verify the asymptotic behavior of f that is illustrated in

Figure 0.5.1. [Hint: f(x) = b* = (e™?)* = ¢Inb)¥]

Prove that lim,_, o(1 + x)'/* = ¢ by completing parts (a)

and (b).

(a) Use Equation (7) and the substitution ¢ = 1/x to prove
that lim, _ o+ (1 + x)1/* = e.

(b) Use Equation (8) and the substitution = 1/x to prove
that lim, .o~ (1 +x)/* =e.

Suppose that the speed v (in ft/s) of a skydiver ¢ sec-
onds after leaping from a plane is given by the equation
v =190(1 — ¢=0-1687),

(a) Graph v versus .

(b) By evaluating an appropriate limit, show that the graph
of v versus ¢ has a horizontal asymptote v = ¢ for an
appropriate constant c.

(c) What is the physical significance of the constant ¢ in
part (b)?

The population p of the United States (in millions) in year

t may be modeled by the function

3 50371.7
T 151.3 + 181.626¢~0031636(~1950)

p

(a) Based on this model, what was the U.S. population in
19507

(b) Plot p versus ¢ for the 200-year period from 1950 to
2150.
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(c) By evaluating an appropriate limit, show that the graph
of p versus ¢ has a horizontal asymptote p = ¢ for an
appropriate constant c.

(d) What is the significance of the constant ¢ in part (b) for
population predicted by this model?

67. (a) Compute the (approximate) values of the terms in the
sequence

10119, 1,001, 1.0001°%!, 1.00001 10000t
1.000001 1900001 "1 0000001 10000001 .

What number do these terms appear to be approaching?
(b) Use Equation (7) to verify your answer in part (a).
(c) Let1 < a < 9 denote a positive integer. What number
is approached more and more closely by the terms in
the following sequence?

1.019% 1.,0019%%,1.00019%%%, 1.0000140000
1000001400000 1 0000001000000

(The powers are positive integers that begin and end
with the digit a and have 0’s in the remaining positions).

68. Let f(x) = (1 + %) .
(a) Prove the identity
flx) = -1
x—1

(b) Use Equation (7) and the identity from part (a) to prove
Equation (8).

[ 69-73 The notion of an asymptote can be extended to include

curves as well as lines. Specifically, we say thatcurves y = f(x)
and y = g(x) are asymptotic as x — + o provided

Aim [f(x) —g()]=0
and are asymptotic as x — — o provided

i [f(x) = g()] =0
In these exercises, determine a simpler function g(x) such that
y = f(x) is asymptotic to y = g(x) as x — 4w or x — —o.

Use a graphing utility to generate the graphs of y = f(x) and
y = g(x) and identify all vertical asymptotes.

2
-2
69. f(x) = ol > [Hint: Divide x — 2 into x2 — 2.]
X —
3
— 3
70. f(x):g
X
—x34+3xr+x -1
. flr) = L T EX
x—3
x> —x34+3
72. fx) = —F5—7
x2—1

1
73. f(x) =sinx + ——
x—1

74. Writing Insome models for learning a skill (e.g., juggling),
it is assumed that the skill level for an individual increases
with practice but cannot become arbitrarily high. How do
concepts of this section apply to such a model?
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75. Writing In some population models it is assumed that a capacity tend to increase toward L. Explain why these as-
given ecological system possesses a carrying capacity L. sumptions are reasonable, and discuss how the concepts of
Populations greater than the carrying capacity tend to de- this section apply to such a model.

cline toward L, while populations less than the carrying

VQUICK CHECK ANSWERS 1.3

1. (a) +% (b) 5 (¢) — (d) 0 2. (a) 5 (b) doesnotexist (c) e 3. (a) 9 (b) —3 (c) does not exist (d) 4
4. 1/x, e*, and e~ each has a horizontal asymptote.

m LIMITS (DISCUSSED MORE RIGOROUSLY)

In the previous sections of this chapter we focused on the discovery of values of limits,
either by sampling selected x-values or by applying limit theorems that were stated
without proof. Our main goal in this section is to define the notion of a limit precisely,
thereby making it possible to establish limits with certainty and to prove theorems about
them. This will also provide us with a deeper understanding of some of the more subtle
properties of functions.

H MOTIVATION FOR THE DEFINITION OF A TWO-SIDED LIMIT

The statement lim, _, , f(x) = L can be interpreted informally to mean that we can make the
value of f(x) as close as we like to the real number L by making the value of x sufficiently
close to a. It is our goal to make the informal phrases “as close as we like to L” and
“sufficiently close to a” mathematically precise.

To do this, consider the function f graphed in Figure 1.4.1a for which f(x)— L as
x — a. For visual simplicity we have drawn the graph of f to be increasing on an open
interval containing a, and we have intentionally placed a hole in the graph at x = a to
emphasize that f need not be defined at x = a to have a limit there.

f(x): 7777777 y=f® L ,y,,,,,,,,fzﬂx)
v | (&) |
L= \' | o i |

b F/ | L-e / |

\ ‘ ‘ X \ ‘ \ x
T a—— Yo 4 ¥ 0
(@) (b) ()
A Figure 1.4.1

Next, let us choose any positive number € and ask how close x must be to a in order
for the values of f(x) to be within € units of L. We can answer this geometrically by
drawing horizontal lines from the points L + € and L — € on the y-axis until they meet the
curve y = f(x), and then drawing vertical lines from those points on the curve to the x-axis
(Figure 1.4.1b). As indicated in the figure, let x¢ and x; be the points where those vertical
lines intersect the x-axis.



X

ra 2 5 A A}

€ o
Xy a-8 a a+d X,

A Figure 1.4.2

The definitions of one-sided limits re-
quire minor adjustments to Defini-
tion 1.4.1. For example, for a limit from
the right we need only assume that
f(x) is defined on an interval (a, b)
extending to the right of a and that
the e condition is met for x in an in-
terval a < x < a + § extending to the
right of a. A similar adjustment must
be made for a limit from the left. (See
Exercise 27.)
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Now imagine that x gets closer and closer to a (from either side). Eventually, x will
lie inside the interval (xg, x1), which is marked in green in Figure 1.4.1c¢; and when this
happens, the value of f(x) will fall between L — € and L + €, marked in red in the figure.
Thus, we conclude:

If f(x)— L as x — a, then for any positive number €, we can find an open interval
(x0, x1) on the x-axis that contains a and has the property that for each x in that
interval (except possibly for x = a), the value of f(x) is between L — € and L + €.

What is important about this result is that it holds no matter how small we make €.
However, making € smaller and smaller forces f(x) closer and closer to L—which is
precisely the concept we were trying to capture mathematically.

Observe that in Figure 1.4.1 the interval (x, x;) extends farther on the right side of a
than on the left side. However, for many purposes it is preferable to have an interval that
extends the same distance on both sides of a. For this purpose, let us choose any positive
number § that is smaller than both x; — a and a — x(, and consider the interval

(a—6,a+9d)

This interval extends the same distance § on both sides of a and lies inside of the interval
(x0, x1) (Figure 1.4.2). Moreover, the condition

L—e< f(x)<L+e (1)

holds for every x in this interval (except possibly x = a), since this condition holds on the
larger interval (xg, x1).
Since (1) can be expressed as

|f(x) =Ll <e
and the condition that x lies in the interval (a — 8, a + §), but x # a, can be expressed as
O<|x—al<$

we are led to the following precise definition of a two-sided limit.

1.4.1 viMiT DEFINITION Let f(x) be defined for all x in some open interval con-
taining the number a, with the possible exception that f(x) need not be defined at a.
We will write

lim f(x) =L

X—a

if given any number € > 0 we can find a number § > 0 such that

|[f(x)— Ll <e if O<|x—al<$

This definition, which is attributed to the German mathematician Karl Weierstrass and
is commonly called the “epsilon-delta” definition of a two-sided limit, makes the transition
from an informal concept of a limit to a precise definition. Specifically, the informal phrase
“as close as we like to L” is given quantitative meaning by our ability to choose the positive
number € arbitrarily, and the phrase “sufficiently close to a” is quantified by the positive
number 4.

In the preceding sections we illustrated various numerical and graphical methods for
guessing at limits. Now that we have a precise definition to work with, we can actually
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confirm the validity of those guesses with mathematical proof. Here is a typical example
of such a proof.

» Example 1 Use Definition 1.4.1 to prove that lim2 (Bx —5) = 1.

Solution. 'We must show that given any positive number €, we can find a positive number
§ such that )
[Bx =5 —1]<e if O<|x—2|<3$ 2)
—— ~ ~
S L a

There are two things to do. First, we must discover a value of § for which this statement
holds, and then we must prove that the statement holds for that §. For the discovery part
we begin by simplifying (2) and writing it as

Bx—6l<e if O<|x—2]<$

Next we will rewrite this statement in a form that will facilitate the discovery of an appro-
priate §: .
3x -2l <e if O0<|x—2|<$

, (3)
x -2l <e€/3 if O<|x—2] <8
It should be self-evident that this last statement holds if § = €/3, which completes the
discovery portion of our work. Now we need to prove that (2) holds for this choice of §.
However, statement (2) is equivalent to (3), and (3) holds with § = €/3, so (2) also holds
with § = €/3. This proves that liﬁm2 Bx—5=1. «

This example illustrates the general form of a limit proof: We assume that we are given a positive
number ¢, and we try to prove that we can find a positive number § such that

|[f(x)—Ll<e if 0<|x—a|l<3$ “)

This is done by first discovering 8, and then proving that the discovered § works. Since the argument
has to be general enough to work for all positive values of ¢, the quantity § has to be expressed as a
function of €. In Example 1 we found the function § = ¢/3 by some simple algebra; however, most
limit proofs require a little more algebraic and logical ingenuity. Thus, if you find our ensuing discussion
of “e-3" proofs challenging, do not become discouraged; the concepts and techniques are intrinsically
difficult. In fact, a precise understanding of limits evaded the finest mathematical minds for more than
150 years after the basic concepts of calculus were discovered.

Karl Weierstrass (1815-1897) Weierstrass, the son of a
customs officer, was born in Ostenfelde, Germany. As a
youth Weierstrass showed outstanding skills in languages
and mathematics. However, at the urging of his domi-
nant father, Weierstrass entered the law and commerce
program at the University of Bonn. To the chagrin of his
family, the rugged and congenial young man concentrated instead

was ignored because he was a secondary schoolteacher and not a
college professor. Then, in 1854, he published a paper of major
importance that created a sensation in the mathematics world and
catapulted him to international fame overnight. He was immediately
given an honorary Doctorate at the University of Konigsberg and
began a new career in college teaching at the University of Berlin
in 1856. In 1859 the strain of his mathematical research caused

on fencing and beer drinking. Four years later he returned home
without a degree. In 1839 Weierstrass entered the Academy of
Miinster to study for a career in secondary education, and he met
and studied under an excellent mathematician named Christof Gud-
ermann. Gudermann’s ideas greatly influenced the work of Weier-
strass. After receiving his teaching certificate, Weierstrass spent the
next 15 years in secondary education teaching German, geography,
and mathematics. In addition, he taught handwriting to small chil-
dren. During this period much of Weierstrass’s mathematical work

a temporary nervous breakdown and led to spells of dizziness that
plagued him for the rest of his life. Weierstrass was a brilliant
teacher and his classes overflowed with multitudes of auditors. In
spite of his fame, he never lost his early beer-drinking congeniality
and was always in the company of students, both ordinary and bril-
liant. Weierstrass was acknowledged as the leading mathematical
analyst in the world. He and his students opened the door to the
modern school of mathematical analysis.



In Example 2 the limit from the left
and the two-sided limit do not exist at
x = 0 because /x is defined only for
nonnegative values of x.

X

Loy
a-8 a-86, a a+d a+d

A Figure 1.4.3

If you are wondering how we knew
to make the restriction § < 1, as op-
posedto§ < 5ord < %, for example,
the answer is that 1 is merely a con-
venient choice—any restriction of the
form 8 < ¢ would work equally well.
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» Example 2 Prove that lin(}+\/_ =0.

Solution. Note that the domain of /x is 0 < x, so it is valid to discuss the limit as
x — 0%, We must show that given € > 0, there exists a § > 0 such that
[Vx—0<e if 0<x—0<3$
or more simply,
Jrx<e if 0<x<3$ (@)

But, by squaring both sides of the inequality \/x < €, we can rewrite (5) as
x<e if 0<x<3$§ (6)

It should be self-evident that (6) is true if § = €2; and since (6) is a reformulation of (5),
we have shown that (5) holds with § = €2. This proves that lin&+ Jx=0. <

THE VALUE OF § IS NOT UNIQUE

In preparation for our next example, we note that the value of § in Definition 1.4.1 is not
unique; once we have found a value of ¢ that fulfills the requirements of the definition, then
any smaller positive number §; will also fulfill those requirements. That is, if it is true that

|f(x) =L <e if O<|x—a|l<$§
then it will also be true that
|[f(x) =Ll <e if O0<|x—al<d

This is because {x : 0 < |[x —a| < §;} is a subset of {x : 0 < |x — a| < §} (Figure 1.4.3),
and hence if | f(x) — L| < € is satisfied for all x in the larger set, then it will automatically
be satisfied for all x in the subset. Thus, in Example 1, where we used § = ¢/3, we could
have used any smaller value of § such as § = €/4,8 = €/5,0r§ = €/6.

» Example 3 Prove that lim x*> = 9.

x—3

Solution. 'We must show that given any positive number €, we can find a positive number
8 such that
W2 —9 <e if O<|x—3] <8 0)

Because |x — 3| occurs on the right side of this “if statement,” it will be helpful to factor the
left side to introduce a factor of |x — 3|. This yields the following alternative form of (7):

lx+3|lx =3 <e if O<|x—-3]<é ®)

We wish to bound the factor |x + 3|. If we knew, for example, that § < 1, then we would
have —1 <x -3 < 1,505 <x +3 <7, and consequently |x + 3| < 7. Thus, if § <1
and 0 < |[x — 3| < 4, then

lx +3]lx =3] <76

It follows that (8) will be satisfied for any positive § such that § < 1 and 7§ < €. We can
achieve this by taking § to be the minimum of the numbers 1 and €/7, which is sometimes
written as § = min(1, €/7). This proves that lim3 x>=9. «

LIMITS AS x -+«
In Section 1.3 we discussed the limits

lim f(x)=L and linl fx)=1L

X — 4
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from an intuitive point of view. The first limit can be interpreted to mean that we can make
the value of f(x) as close as we like to L by taking x sufficiently large, and the second can
be interpreted to mean that we can make the value of f(x) as close as we like to L by taking
x sufficiently far to the left of 0. These ideas are captured in the following definitions and

are illustrated in Figure 1.4.4.

1.4.2 peEFINITION Let f(x) be defined for all x in some infinite open interval ex-
tending in the positive x-direction. We will write

JAm for) =L

if given any number € > 0, there corresponds a positive number N such that

|[fx) =Ll <e if x>N

1.4.3 DpEFINITION Let f(x) be defined for all x in some infinite open interval ex-
tending in the negative x-direction. We will write

lirE fx)=1L

if given any number € > 0, there corresponds a negative number N such that

To see how these definitions relate to our informal concepts of these limits, suppose
that f(x)— L as x — oo, and for a given € let N be the positive number described in
Definition 1.4.2. If x is allowed to increase indefinitely, then eventually x will lie in the
interval (N, 4o0), which is marked in green in Figure 1.4.4a; when this happens, the value
of f(x) will fall between L — € and L + €, marked in red in the figure. Since this is true
for all positive values of € (no matter how small), we can force the values of f(x) as close
as we like to L by making N sufficiently large. This agrees with our informal concept of

|[f(x) =Ll <e if x<N

this limit. Similarly, Figure 1.4.4b illustrates Definition 1.4.3.

L+e

Jx)
L

[f)—L|<eifx>N

A Figure 1.44

|f(x)-L|<eifx <N

(b

- . 1
» Example 4 Prove that lim — =0.

X—> 4w X



(@)

fO)<Mif0O<|x-a|<¥d

(b)

A Figure 1.4.5

How would you define these limits?

lim_f(x) =+

X—a

lim f(x) = 4o

xX—a-

i f() =+

lim f(x) = +oo
X—> —w

lim_f(x) = oo
lim f(x)=—o

xX—>a-

m - fx) = —

Jim f(x) = —oo
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Solution. Applying Definition 1.4.2 with f(x) = 1/x and L = 0, we must show that
given € > 0, we can find a number N > 0 such that

1
-—0
X

<e if x>N ©)]

Because x — +oo we can assume that x > 0. Thus, we can eliminate the absolute values in
this statement and rewrite it as

1 .
—<e if x>N
X

or, on taking reciprocals,

1
x>—- if x>N (10)
€

Itis self-evident that N = 1/e satisfies this requirement, and since (10) and (9) are equivalent
for x > 0, the proof is complete. <«

INFINITE LIMITS
In Section 1.1 we discussed limits of the following type from an intuitive viewpoint:

lim f(x) = 4o, lim f(x) = —o (11)
lim f(x) = o0, lim f(x) = —o0 (12)
lim f(x) =+,  lim f(x)=—o (13)

Recall that each of these expressions describes a particular way in which the limit fails to
exist. The 4+ indicates that the limit fails to exist because f(x) increases without bound,
and the —oo indicates that the limit fails to exist because f(x) decreases without bound.
These ideas are captured more precisely in the following definitions and are illustrated in
Figure 1.4.5.

1.4.4 DpEFINITION Let f(x) be defined for all x in some open interval containing a,
except that f(x) need not be defined at a. We will write

lim f(x) = +oo
if given any positive number M, we can find a number § > 0 such that f(x) satisfies

fx)y>M if O<|x—al<$

1.4.5 DEFINITION Let f(x) be defined for all x in some open interval containing a,
except that f(x) need not be defined at a. We will write
lim f(x) = —o

X—>a

if given any negative number M, we can find a number § > 0 such that f(x) satisfies

fx)y <M if O<|x—al<$

To see how these definitions relate to our informal concepts of these limits, suppose
that f(x) — +o as x — a, and for a given M let § be the corresponding positive number
described in Definition 1.4.4. Next, imagine that x gets closer and closer to a (from ei-
ther side). Eventually, x will lie in the interval (a — §, a + §), which is marked in green
in Figure 1.4.5a; when this happens the value of f(x) will be greater than M, marked in red in
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the figure. Since this is true for any positive value of M (no matter how large), we can force
the values of f(x) to be as large as we like by making x sufficiently close to a. This agrees
with our informal concept of this limit. Similarly, Figure 1.4.5b illustrates Definition 1.4.5.

1
» Example 5 Prove that lin}) — =+
x—0X

Solution. Applying Definition 1.4.4 with f(x) = 1/x? and a = 0, we must show that
given a number M > 0, we can find a number 6 > O such that

1
S >M if 0<|x—0]<$§ (14)
X

or, on taking reciprocals and simplifying,

1
<— if 0<|x|<3$ (15)
M

But x> < 1/M if |x| < 1/+/M, so that § = 1/+/M satisfies (15). Since (14) is equivalent
to (15), the proof is complete. <«

VQU]CK CHECK EXERCISES 1.4  (See page 109 for answers.)

1. The definition of a two-sided limit states: lim, _,, f(x) = L 4. The definition of limit at 4oo states: lim,_, 1. f(x) =L

if given any number _______ there is a number
suchthat | f(x) — L] <eif .

. Suppose that f(x) is a function such that for any given
€ > 0, the condition 0 < |x — 1| < €/2 guarantees that
| f(x) — 5| < €. What limit results from this property?

. Suppose that € is any positive number. Find the largest value
of § such that |[5Sx — 10| < €if 0 < |[x — 2| < .

EXERCISE SET 1.4 [ Graphing Utility

if given any number there is a positive number
_ suchthat|f(x)—L|<eif .

. Find the smallest positive number N such that for each

x > N, the value of f(x) = 1/ﬁ is within 0.01 of 0.

1. (a) Find the largest open interval, centered at the origin on

the x-axis, such that for each x in the interval the value
of the function f(x) = x + 2 is within 0.1 unit of the
number f(0) = 2.

(b) Find the largest open interval, centered at x = 3, such
that for each x in the interval the value of the func-
tion f(x) =4x — 5 is within 0.01 unit of the number
f3 =1

(c) Find the largest open interval, centered at x = 4, such
that for each x in the interval the value of the func-
tion f(x) = x? is within 0.001 unit of the number

f4) = 16.

. In each part, find the largest open interval, centered at
x =0, such that for each x in the interval the value of
f(x) = 2x 4 3 is within € units of the number f(0) = 3.
(a) e =0.1 (b) € =0.01

(c) € =0.0012

. (a) Find the values of xj and x; in the accompanying figure.

(b) Find a positive number § such that |,/x — 2| < 0.05 if
0<|x—4]|<3d.

24005} —————————————— —

2-005F—————=

Not drawn to scale
A Figure Ex-3

. (a) Find the values of xj and x; in the accompanying figure

on the next page.
(b) Find a positive number § such that |(1/x) — 1| < 0.1 if
0<|x—1] <.



14+0.1}—

1-0.1

Not drawn to scale

< Figure Ex-4

[ 5. Generate the graph of f(x) = x> — 4x 4+ 5 with a graph-
ing utility, and use the graph to find a number § such
that | f(x) — 2| < 0.05 if 0 < |x — 1] < §. [Hint: Show
that the inequality |f(x) — 2| < 0.05 can be rewritten as
1.95 < x3 —4x 4+ 5 < 2.05, and estimate the values of x
for which x* —4x +5 = 1.95 and x* — 4x + 5 = 2.05.]
[~ 6. Use the method of Exercise 5 to find a number 8 such that
[v/5x4+1—-4] <05if 0 < |x — 3| <.

7. Let f(x) = x + J/x withL = lim,_,| f(x)andlete = 0.2.
Use a graphing utility and its trace feature to find a positive
number § such that | f(x) — L] < €if 0 < [x — 1] < 4.

1 8. Let f(x) = (sin2x)/x and use a graphing utility to conjec-
ture the value of L = lim, o f(x). Then let ¢ = 0.1 and
use the graphing utility and its trace feature to find a positive
number § such that | f(x) — L] < €if 0 < |x| < 8.

FOCUS ON CONCEPTS

9. What is wrong with the following “proof” that
lim, _, 3 2x = 6? Suppose thate = 1 and § = % Then
if |[x —3| < % we have

2x —6]=2lx —3| <2(3)=1=¢

Therefore, lim, _, 3 2x = 6.

10. What is wrong with the following “proof” that
lim, ,32x = 6? Given any § > 0, choose € = 24.
Then if |[x — 3] < &, we have

2x —6]=2|x —3| <26 =¢
Therefore, lim, _, 3 2x = 6.

11. Recall from Example 1 that the creation of a limit proof
involves two stages. The first is a discovery stage in
which § is found, and the second is the proof stage
in which the discovered § is shown to work. Fill in
the blanks to give an explicit proof that the choice of
8 = €/3 in Example 1 works. Suppose that € > 0. Set
8 = €/3 and assume that 0 < |x — 2| < §. Then

BGx =5 —1l=] —|
=3  |<3.____ =€
12. Suppose that f(x) = c is a constant function and that a

is some fixed real number. Explain why any choice of
8 > 0 (e.g., 6 = 1) works to prove lim, _, , f(x) = c.
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13-22 Use Definition 1.4.1 to prove that the limit is correct.
13. lin123 =3 14. 1im4(x+2) =6

15. lim5 3x =15 16. lim1(7x +5)==2
x— X— —
2x? ’-9
17. lim 25 18. lim ~—— =6
x—0 X x—-3 x+3
. _ _fx+2, x#1
19. xh_)rnl f(x) =3, where f(x) = 10, 1
. . ]9 —2x, x#2
20. )}1_)1112 f(x) =5, where f(x) = 49, =9
21. lim |[x| =0
x—0
. 9—-2x, x<2
22. )}1_)m2 f(x) =5, where f(x) = dr—1. x>2

23-26 True—False Determine whether the statement is true or

false. Explain your answer.

23. Suppose that f(x) =mx+b,m #0. To prove that
lim, _,, f(x) = f(a), we can take § = €/|m|.

24. Suppose that f(x) =mx+b,m #0. To prove that
lim,_,, f(x) = f(a), we can take § = €/(2|m]).

25. For certain functions, the same § will work for all € > 0 in
a limit proof.

26. Suppose that f(x) > O for all x in the interval (—1, 1). If
lim, ¢ f(x) = L, then L > 0.

FOCUS ON CONCEPTS

27. Give rigorous definitions of lim,_, ,+ f(x) = L and
lim, .- f(x) = L.
28. Consider the statement that lim, _, , | f(x) — L| = 0.
(a) Using Definition 1.4.1, write down precisely what
this limit statement means.
(b) Explain why your answer to part (a) shows that

lim |f(x) — L| =0 ifandonlyif lim f(x)=L
29. (a) Show that
|(3x% + 2x — 20) — 300| = [3x + 32| - |x — 10|

(b) Find an upper bound for [3x 4+ 32| if x satisfies
lx —10] < 1.
(c) Fill in the blanks to complete a proof that

lim [3x% + 2x — 20] = 300
x—10

Suppose thate > 0. Set§ = min(1l, ) and
assume that 0 < |x — 10| < §. Then

|(3x* +2x — 20) — 300| = [3x + 32| - |x — 10]

“Jx — 10|

AN

I
m
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30. (a) Show that

=2

3x+1 ‘3 +1

(b) Is [12/(3x + 1)| bounded if |x — 2| < 4? If not,
explain; if so, give a bound.

(¢) Is |12/(3x + 1)| bounded if |x —2| < 1? If not,
explain; if so, give a bound.

(d) Fill in the blanks to complete a proof that

. 28
lim =
x—2 [3x + 1i|

Suppose thate > 0. Set§ = min(l, ) and
assume that 0 < |x — 2| < §. Then
28 12
—4| = lx =2
3x+1 3x+1
< - x =2
<
=€

31-36 Use Definition 1.4.1 to prove that the stated limit is
correct. In each case, to show that lim,_,, f(x) = L, factor
| f(x) — L] in the form

| f(x) — L| = |“something”| - |x — a|
and then bound the size of |“something”| by putting restrictions
on the size of §.

31. lim 2x> =2 [Hint: Assume § < 1.]

x—1

32. 111113 (x> 4+x) =12 [Hint: Assume § < 1.]
xX—

2 3
33. lim =1 34, lim — 0 3
x—»-2x+1 x—1/2 X
35. lim Jx=2 36. lim =8
37. Let 0, if x is rational
fx) = e
x, if x is irrational
Use Definition 1.4.1 to prove that lim, _, o f(x) = 0.
38. Let 0, if x is rational
fx) = e
1, if x is irrational

Use Definition 1.4.1 to prove that lim, ¢ f(x) does not
exist. [Hint: Assume lim, _ o f(x) = L and apply Defi-
nition 1.4.1 with € = 1 to conclude that |1 — L| < § and
IL| =10—L| < 1. Then show I < |1 — L| + |L| and de-
rive a contradiction.]

39. (a) Findthe values of x; and x; in the accompanying figure.

(b) Find a positive number N such that

x2

— —1| <€
14 x2
forx > N.

(c) Find a negative number N such that

x2

T2 =€

forx < N.

Not drawn to scale

< Figure Ex-39

40. (a) Find the values of x| and x; in the accompanying figure.
(b) Find a positive number N such that

forx > N.
(c) Find a negative number N such that

forx < N.

< Figure Ex-40

41-44 Apositive number € and the limit L of a function f at 4o
are given. Find a positive number N such that | f(x) — L| < €
ifx > N.

1
41. lim = =0; € =0.01
X—> 4w X

1
42. lim =0; € =0.005
x—>4o x + 2

43. lim —— =1; € = 0.001
x—>+e x 4+ 1

dx — 1
4. lim -
x>+ 2x +5

=2;€=0.1

45-48 Apositive number € and the limit L of a function f at —
are given. Find a negative number N such that | f(x) — L| < €
ifx < N.

1
45. lim > =0; € =0.005

X—>—x X +

1
46. lim — =0; € =0.01

Xx— —ow x2

4x — 1

47. lim

=2;¢=0.1
x—>-»2x +5 €



48. lim —- - =1 € =0.001

X—)—xx—"—

49-54 Use Definition 1.4.2 or 1.4.3 to prove that the stated limit
is correct.

1
49. lim - = 0 50. lim =
X —>too X x—>+4o x 4+ 2
4x — 1 . X
51. lim =2 52. lim =1
x—>-»2x +5 x—-wx 4+ 1
2
53. vx =2 54. lim 2* =0
x—+4w J/x — 1 X— —%

55. (a) Find the largest open interval, centered at the origin on
the x-axis, such that for each x in the interval, other
than the center, the values of f(x) = 1/x? are greater
than 100.

(b) Find the largest open interval, centered at x = 1, such
that for each x in the interval, other than the center,
the values of the function f(x) = 1/|x — 1| are greater
than 1000.

(c) Find the largest open interval, centered at x = 3, such
that for each x in the interval, other than the center,
the values of the function f(x) = —1/(x — 3)? are less
than —1000.

(d) Find the largest open interval, centered at the origin on
the x-axis, such that for each x in the interval, other
than the center, the values of f(x) = —1/x* are less
than —10,000.

56. Ineach part, find the largest open interval centered at x = 1,
such that for each x in the interval, other than the center, the
value of f(x) = 1/(x — 1)?is greater than M.

(a) M =10 (b) M = 1000 (c) M = 100,000

57-62 Use Definition 1.4.4 or 1.4.5 to prove that the stated limit
is correct.

1 —
57. im —— = 58. lim —— — —
XLIT% (x — 3)2 te xg (x - 3)2
1
59. lim — = 4 60. lim =+
xa0|x| X~>l|x—1|
. 1 o
61. lim <——4) = — 62. lim - =t
x—0 X x—=>0x

63-68 Use the definitions in Exercise 27 to prove that the stated
one-sided limit is correct.

63. lim (x+1)=3 64. lim (Gx +2) =5
65. lim Vx —4=0 66. lim /=x =0

X, x>2

67. XILH%Jr f(x) = 2, where f(x) = {3)6, x <2

l/ QUICK CHECK ANSWERS 1.4
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. x, x>2
68. Xlglzl— f(x) = 6, where f(x) = {3x, <2
69-72 Write out the definition for the corresponding limit in
the marginal note on page 105, and use your definition to prove
that the stated limit is correct.
1 1
69. (a) lim —— = — (b) lim —— =4

x—>1t1—x x—>1-1—x
1
b)) lim — = —x
x—=>0" X
) lim (x+1) = -
X— —w

1
70. (a) lim — = 4o

x—0t x

71. (a) xgnlw (x+1) =+

72. (a) xgrgw (x2=3)=+4x (b) lim x3+5) = -

73. According to Ohm’s law, when a voltage of V volts is ap-
plied across a resistor with a resistance of R ohms, a current
of I = V/R amperes flows through the resistor.

(a) How much current flows if a voltage of 3.0 volts is ap-
plied across a resistance of 7.5 ohms?

(b) If the resistance varies by £0.1 ohm, and the voltage
remains constant at 3.0 volts, what is the resulting range
of values for the current?

(c) If temperature variations cause the resistance to vary
by £4 from its value of 7.5 ohms, and the voltage re-
mains constant at 3.0 volts, what is the resulting range
of values for the current?

(d) If the current is not allowed to vary by more than
€ = £0.001 ampere at a voltage of 3.0 volts, what vari-
ation of &4 from the value of 7.5 ohms is allowable?

(e) Certain alloys become superconductors as their tem-
perature approaches absolute zero (—273°C), meaning
that their resistance approaches zero. If the voltage
remains constant, what happens to the current in a su-
perconductor as R — 01?

74. Writing Compare informal Definition 1.1.1 with Definition

1.4.1.

(a) What portions of Definition 1.4.1 correspond to the ex-
pression “values of f(x) can be made as close as we
like to L” in Definition 1.1.1? Explain.

(b) What portions of Definition 1.4.1 correspond to the ex-
pression “taking values of x sufficiently close to a (but
not equal to @)” in Definition 1.1.1? Explain.

75. Writing Compare informal Definition 1.3.1 with Definition

1.4.2.

(a) What portions of Definition 1.4.2 correspond to the ex-
pression “values of f(x) eventually get as close as we
like to a number L” in Definition 1.3.1? Explain.

(b) What portions of Definition 1.4.2 correspond to the ex-
pression “as x increases without bound” in Definition
1.3.1? Explain.

1. e>0;6>0;0<|x —a|l <8 2. lim; f(x)=5

3.8=¢/5

4. e >0;N;x >N 5. N =10,000
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m CONTINUITY
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A baseball moves along a "continu-
ous" trajectory after leaving the
pitcher's hand.

/

d

%

A thrown baseball cannot vanish at some point and reappear someplace else to continue
its motion. Thus, we perceive the path of the ball as an unbroken curve. In this section, we
translate “unbroken curve” into a precise mathematical formulation called continuity,
and develop some fundamental properties of continuous curves.

., Il DEFINITION OF CONTINUITY

Intuitively, the graph of a function can be described as a “continuous curve” if it has no
breaks or holes. To make this idea more precise we need to understand what properties of
a function can cause breaks or holes. Referring to Figure 1.5.1, we see that the graph of a
function has a break or hole if any of the following conditions occur:

e The function f is undefined at ¢ (Figure 1.5.1a).
e The limit of f(x) does not exist as x approaches ¢ (Figures 1.5.1b, 1.5.1c).
e The value of the function and the value of the limit at ¢ are different (Figure 1.5.1d).

|

| y=f()
‘, . /
| { /
| |
| |
|

| |
C C

(@)
A Figure 1.5.1

The third condition in Definition 1.5.1
actually implies the first two, since it is
tacitly understood in the statement

lim () = f(©)

that the limit exists and the function is
defined at ¢. Thus, when we want to
establish continuity at ¢ our usual pro-
cedure will be to verify the third condi-
tion only.

(b) () (d)

This suggests the following definition.

1.5.1 DEFINITION A function f is said to be continuous at x = ¢ provided the
following conditions are satisfied:

1. f(c) is defined.

2. lim f(x) exists.

3. lim f(x) = f(o).

If one or more of the conditions of this definition fails to hold, then we will say that f has
a discontinuity at x = ¢. Each function drawn in Figure 1.5.1 illustrates a discontinuity
at x = c¢. In Figure 1.5.1a, the function is not defined at ¢, violating the first condition
of Definition 1.5.1. In Figure 1.5.1b, the one-sided limits of f(x) as x approaches ¢ both
exist but are not equal. Thus, lim, _, . f(x) does not exist, and this violates the second
condition of Definition 1.5.1. We will say that a function like that in Figure 1.5.1b has a
Jump discontinuity at c. In Figure 1.5.1c¢, the one-sided limits of f(x) as x approaches
c are infinite. Thus, lim, . f(x) does not exist, and this violates the second condition
of Definition 1.5.1. We will say that a function like that in Figure 1.5.1¢ has an infinite
discontinuity at c. In Figure 1.5.1d, the function is defined at ¢ and lim, _, . f(x) exists,
but these two values are not equal, violating the third condition of Definition 1.5.1. We will
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say that a function like that in Figure 1.5.1d has a removable discontinuity at c. Exercises
33 and 34 help to explain why discontinuities of this type are given this name.

» Example 1 Determine whether the following functions are continuous at x = 2.

2_4 x2_4
24 r- 2 - 2
f@ =" gm={x-2’ * ho=1x-2 *7
* 3, x =2, 4, x=2

Solution. 1In each case we must determine whether the limit of the function as x — 2 is
the same as the value of the function at x = 2. In all three cases the functions are identical,
except at x = 2, and hence all three have the same limit at x = 2, namely,
. . . . xt— .
Jm, ) = im, 809 = lim ) = fiy T2 = i e+ =4

The function f is undefined at x = 2, and hence is not continuous at x = 2 (Figure 1.5.2a).
The function g is defined at x = 2, but its value there is g(2) = 3, which is not the same as
the limit as x approaches 2; hence, g is also not continuous at x = 2 (Figure 1.5.2b). The
value of the function & at x = 2 is £(2) = 4, which is the same as the limit as x approaches
2; hence, h is continuous at x = 2 (Figure 1.5.2¢). (Note that the function 4 could have
been written more simply as 2(x) = x + 2, but we wrote it in piecewise form to emphasize
its relationship to f and g.) <«

A Figure 1.5.2

CONTINUITY IN APPLICATIONS

In applications, discontinuities often signal the occurrence of important physical events.
For example, Figure 1.5.3a is a graph of voltage versus time for an underground cable that
is accidentally cut by a work crew at time ¢ = f (the voltage drops to zero when the line is
cut). Figure 1.5.3b shows the graph of inventory versus time for a company that restocks
its warehouse to y; units when the inventory falls to yy units. The discontinuities occur at
those times when restocking occurs.

V (Voltage) y (Amount of inventory)

W\/\/\fj‘
\
\
\

Chris Hondros/Getty Images

A poor connection in a transmission
cable can cause a discontinuity in the
electrical signal it carries.

Line—"ty
cut Restocking occurs

(@) (b)

A Figure 1.5.3
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A Figure 1.5.4

Modify Definition 1.5.2 appropriately
so that it applies to intervals of the form
[a, +), (=<, b], (a, b], and [a, b).

Y
2,
l,
¥ § | | | | & X
-3 -2 -1 1 2 3
f) =9 -

A Figure 1.5.5

Il CONTINUITY ON AN INTERVAL

If a function f is continuous at each number in an open interval (a, b), then we say that f is
continuous on (a, b). This definition applies to infinite open intervals of the form (a, +),
(—o0, b), and (—oo, 4+o0). In the case where f is continuous on (—oe, 4+o0), we will say that
f is continuous everywhere.

Because Definition 1.5.1 involves a two-sided limit, that definition does not generally
apply at the endpoints of a closed interval [a, b] or at the endpoint of an interval of the
form [a, b), (a, b], (—=, b], or [a, +). To remedy this problem, we will agree that a
function is continuous at an endpoint of an interval if its value at the endpoint is equal
to the appropriate one-sided limit at that endpoint. For example, the function graphed in
Figure 1.5.4 is continuous at the right endpoint of the interval [a, b] because

Tim f() = £(b)
but it is not continuous at the left endpoint because
lim_f(x) # f(a)
X—>da
In general, we will say a function f is continuous from the left at c if
Jim f(x) = f(e)
and is continuous from the right at c if
Jlim f(x) = f(e)

Using this terminology we define continuity on a closed interval as follows.

1.5.2 DEFINITION A function f is said to be continuous on a closed interval |a, b]
if the following conditions are satisfied:

1. f is continuous on (a, b).
2. f is continuous from the right at a.

3. f is continuous from the left at b.

» Example 2 What can you say about the continuity of the function f(x) = v9 — x2?

Solution. Because the natural domain of this function is the closed interval [—3, 3], we
will need to investigate the continuity of f on the open interval (—3, 3) and at the two
endpoints. If ¢ is any point in the interval (—3, 3), then it follows from Theorem 1.2.2(e)

that
a lim f(x) = lim \/9—x2=\/lim O—x2) =v9—c2 = f(c)

which proves f is continuous at each point in the interval (—3, 3). The function f is also
continuous at the endpoints since

lim f(x) = lim V9 —x2= lim (9 —x?) =0= /()

lim f(0) = lim V9 —x2= / lim (9 —x%)=0=f(-3)

Thus, f is continuous on the closed interval [—3, 3] (Figure 1.5.5). <«



1.5 Continuity 113

Il SOME PROPERTIES OF CONTINUOUS FUNCTIONS
The following theorem, which is a consequence of Theorem 1.2.2, will enable us to reach
conclusions about the continuity of functions that are obtained by adding, subtracting,
multiplying, and dividing continuous functions.

1.5.3 THEOREM [fthe functions f and g are continuous at c, then
(@) f + g is continuous at c.

(b) f — g is continuous at c.

(c¢) fgis continuous at c.

(d) f/gis continuous at c if g(c) # 0 and has a discontinuity at c if g(c) = 0.

We will prove part (d ). The remaining proofs are similar and will be left to the exercises.

PROOF  First, consider the case where g(c) = 0. In this case f(c)/g(c) is undefined, so
the function f/g has a discontinuity at c.
Next, consider the case where g(c) # 0. To prove that f/g is continuous at ¢, we must

show that fx)  f(o)
lim =

x~cgx)  g()

(1)
Since f and g are continuous at c,

lim f(x) = f(¢) and lim g(x) = g(c)
Thus, by Theorem 1.2.2(d)

fo M@ e

1m = -
x—>c g(x) gl_)mcg(x) g(o)

which proves (1). |

Il CONTINUITY OF POLYNOMIALS AND RATIONAL FUNCTIONS
The general procedure for showing that a function is continuous everywhere is to show that
it is continuous at an arbitrary point. For example, we know from Theorem 1.2.3 that if
p(x) is a polynomial and a is any real number, then

Xlig]a p(x) = p(a)

This shows that polynomials are continuous everywhere. Moreover, since rational functions
are ratios of polynomials, it follows from part (d) of Theorem 1.5.3 that rational functions
are continuous at points other than the zeros of the denominator, and at these zeros they
have discontinuities. Thus, we have the following result.

1.5.4 THEOREM
(a) A polynomial is continuous everywhere.

(b) A rational function is continuous at every point where the denominator is nonzero,
and has discontinuities at the points where the denominator is zero.
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TECHNOLOGY MASTERY

» Example 3 For what values of x is there a discontinuity in the graph of

If you use a graphing utility to generate x> -9

the graph of the equation in Example 3, y =
there is a good chance you will see

_ 7
x2—-5x+6

the discontinuity at x = 2 but not at . . . . . . . .
x =3. Try it, and explain what you Solution. The function being graphed is a rational function, and hence is continuous at

think is happening. every number where the denominator is nonzero. Solving the equation

x2—5x4+6=0

~

yields discontinuities at x = 2 and at x = 3 (Figure 1.5.6). «

81
{3
4 E } \\ » Example 4 Show that |x| is continuous everywhere (Figure 0.1.9).
2
[ SR } Lii i ¥ Solution. We can write |x| as
-8 6 -4 -2~ 2 4 6 38 )
\ x if x>0
| Ix]=4 0 if x=0
} —x if x<0O
‘ so |x| is the same as the polynomial x on the interval (0, +o) and is the same as the
polynomial —x on the interval (—o, 0). But polynomials are continuous everywhere, so
= 2"2 -9 x = 0 is the only possible discontinuity for |x|. Since |0] = 0, to prove the continuity at
AR x = 0 we must show that .
lim |x] =0 2)
A Figure 1.5.6 x—0
Because the piecewise formula for |x| changes at 0, it will be helpful to consider the one-
sided limits at O rather than the two-sided limit. We obtain
Iim |x| = lim x=0 and Ilim |x|]= lim (—x) =0
x—0t x—0t x—0- x—0"
Thus, (2) holds and |x| is continuous at x = 0. <«
Il CONTINUITY OF COMPOSITIONS
The following theorem, whose proof is given in Appendix D, will be useful for calculating
limits of compositions of functions.
In words, Theorem 1.5.5 states that a 1.5.5 THEOREM [flim,_ . g(x) = L and if the function f is continuous at L, then
limit symbol can be moved through a lim, . f(g(x)) = f(L). Thatis,
function sign provided the limit of the
expression inside the function sign ex- lim f(g(x)) = f ( lim g(x))
X—C X—C

ists and the function is continuous at

this limit.

This equality remains valid if lim, . is replaced everywhere by one of lim, _ .+,
lim, ., limy _ 4o, or lim, _, ..

In the special case of this theorem where f(x) = |x|, the fact that |x| is continuous
everywhere allows us to write

lim |g(0)] = [lim g(x)| 3)

provided lim, _, . g(x) exists. Thus, for example,

lim |5 —x? = )lim%(S —x2)| =|-4|=4



Can the absolute value of a function
that is not continuous everywhere be
continuous everywhere? Justify your
answer.

AY y:|4—x2|

[
-4 -3 -2 -1 1 2 3 4

A Figure 1.5.7

fof————————————

f@ [~

A Figure 1.5.8
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The following theorem is concerned with the continuity of compositions of functions;
the first part deals with continuity at a specific number and the second with continuity
everywhere.

1.5.6 THEOREM

(a) Ifthe function g is continuous at c, and the function f is continuous at g(c), then
the composition f o g is continuous at c.

(b) If'the function g is continuous everywhere and the function f is continuous every-
where, then the composition f o g is continuous everywhere.

PROOF We will prove part (a) only; the proof of part (b) can be obtained by applying part
(a) at an arbitrary number c¢. To prove that f o g is continuous at ¢, we must show that the
value of f og and the value of its limit are the same at x = ¢. But this is so, since we can
write

lim (fog)(x) = lim f(g(x)) = f (lim g()) = f(g() = (fog)(c) m
Theorem 1.5.5 g is continuous at c.

We know from Example 4 that the function |x| is continuous everywhere. Thus, if g(x)
is continuous at ¢, then by part (a) of Theorem 1.5.6, the function |g(x)| must also be
continuous at ¢; and, more generally, if g(x) is continuous everywhere, then so is |g(x)|.
Stated informally:

The absolute value of a continuous function is continuous.

For example, the polynomial g(x) = 4 — x? is continuous everywhere, so we can conclude
that the function |4 — x?| is also continuous everywhere (Figure 1.5.7).

B THE INTERMEDIATE-VALUE THEOREM

Figure 1.5.8 shows the graph of a function that is continuous on the closed interval [a, b].
The figure suggests that if we draw any horizontal line y = k, where k is between f(a)
and f(b), then that line will cross the curve y = f(x) at least once over the interval [a, b].
Stated in numerical terms, if f is continuous on [a, b], then the function f must take on
every value k between f(a) and f(b) at least once as x varies from a to b. For example,
the polynomial p(x) = x> — x + 3 has a value of 3 at x = 1 and a value of 33 at x = 2.
Thus, it follows from the continuity of p that the equation x> — x 4+ 3 = k has at least one
solution in the interval [1, 2] for every value of k between 3 and 33. This idea is stated
more precisely in the following theorem.

1.5.7 THEOREM (Intermediate-Value Theorem) If f is continuous on a closed interval
[a, b] and k is any number between f(a) and f(b), inclusive, then there is at least one
number x in the interval [a, b] such that f(x) = k.

Although this theorem is intuitively obvious, its proof depends on a mathematically precise
development of the real number system, which is beyond the scope of this text.
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fla)>0—
| >
/

O

A Figure 1.5.9

y=x

A Figure 1.5.10

-x-1

Il APPROXIMATING ROOTS USING THE INTERMEDIATE-VALUE THEOREM

A variety of problems can be reduced to solving an equation f(x) = 0 for its roots. Some-
times it is possible to solve for the roots exactly using algebra, but often this is not possible
and one must settle for decimal approximations of the roots. One procedure for approxi-
mating roots is based on the following consequence of the Intermediate-Value Theorem.

1.5.8 THEOREM [f f is continuous on [a, b], and if f(a) and f(b) are nonzero and
have opposite signs, then there is at least one solution of the equation f(x) = 0 in the
interval (a, b).

This result, which is illustrated in Figure 1.5.9, can be proved as follows.

PROOF Since f(a) and f(b) have opposite signs, 0 is between f(a) and f(b). Thus, by
the Intermediate-Value Theorem there is at least one number x in the interval [a, b] such
that f(x) = 0. However, f(a) and f(b) are nonzero, so x must lie in the interval (a, b),
which completes the proof. m

Before we illustrate how this theorem can be used to approximate roots, it will be helpful
to discuss some standard terminology for describing errors in approximations. If x is an
approximation to a quantity x,, then we call

€ = |x — xol

the absolute error or (less precisely) the error in the approximation. The terminology in
Table 1.5.1 is used to describe the size of such errors.

Table 1.5.1
ERROR DESCRIPTION
[x—x0| 0.1 X approximates x with an error of at most 0.1.
|x —xo| <0.01 X approximates x( with an error of at most 0.01.
|x = x| < 0.001 X approximates x with an error of at most 0.001.

|x —xp| <0.0001  x approximates xy with an error of at most 0.0001.

|[x—2x0| 0.5 X approximates x to the nearest integer.

|x = xo| < 0.05 X approximates x to 1 decimal place (i.e., to the nearest tenth).

|x = xo| < 0.005 X approximates x, to 2 decimal places (i.e., to the nearest hundredth).
|x —xp| <£0.0005  x approximates x; to 3 decimal places (i.e., to the nearest thousandth).

» Example 5 The equation X
x> —=x—-1=0

cannot be solved algebraically very easily because the left side has no simple factors.
However, if we graph p(x) = x* — x — 1 with a graphing utility (Figure 1.5.10), then we
are led to conjecture that there is one real root and that this root lies inside the interval
[1,2]. The existence of a root in this interval is also confirmed by Theorem 1.5.8, since
p(l) = —1and p(2) = 5 have opposite signs. Approximate this root to two decimal-place
accuracy.
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Solution. Our objective is to approximate the unknown root xy with an error of at most
0.005. It follows that if we can find an interval of length 0.01 that contains the root, then the
midpoint of that interval will approximate the root with an error of at most % (0.01) = 0.005,
which will achieve the desired accuracy.

We know that the root x lies in the interval [1, 2]. However, this interval has length
1, which is too large. We can pinpoint the location of the root more precisely by dividing
the interval [1, 2] into 10 equal parts and evaluating p at the points of subdivision using
a calculating utility (Table 1.5.2). In this table p(1.3) and p(1.4) have opposite signs, so
we know that the root lies in the interval [1.3, 1.4]. This interval has length 0.1, which is
still too large, so we repeat the process by dividing the interval [1.3, 1.4] into 10 parts and
evaluating p at the points of subdivision; this yields Table 1.5.3, which tells us that the root
is inside the interval [1.32, 1.33] (Figure 1.5.11). Since this interval has length 0.01, its
midpoint 1.325 will approximate the root with an error of at most 0.005. Thus, xo ~ 1.325
to two decimal-place accuracy. <

Table 1.5.2

X 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
px)| -1 |-0.77|-047|-0.10| 0.34 | 0.88 | 1.50 | 2.21 | 3.03 | 3.96 5

Table 1.5.3

0.02 F y:P(x)=X3—X—1
0.01 |- /
LAt ! ! ! L X
1.322 4 1.326 1.328 1.330
—-0.01 -
-0.02

A Figure 1.5.11

REMARK

TECHNOLOGY MASTERY

Use a graphing or calculating utility to
show that the root x( in Example 5
can be approximated as xp ~ 1.3245
to three decimal-place accuracy.

X 1.3 131 1.32| 1.33| 1.34 | 1.35 | 1.36 | 1.37 | 1.38 | 1.39 1.4
p(x) [—0.103|-0.062|-0.020| 0.023 | 0.066 | 0.110 | 0.155 | 0.201 | 0.248 | 0.296 | 0.344

To say that x approximates x, to n decimal places does not mean that the first n decimal places of x
and xo will be the same when the numbers are rounded to n decimal places. For example, x = 1.084
approximates x, = 1.087 to two decimal places because |x — xy| = 0.003 (< 0.005). However, if we
round these values to two decimal places, then we obtain x ~ 1.08 and x, ~ 1.09. Thus, if you
approximate a number to n decimal places, then you should display that approximation to at least
n + 1 decimal places to preserve the accuracy.

VQUICK CHECK EXERCISES 1.5  (See page 120 for answers.)

1. What three conditions are satisfied if f is continuous at 4. For what values of x, if any, is the function
x=c? x2—16
2. Suppose that f and g are continuous functions such that fo = x2—5x+4
f(@2)=1and }1_)1112 [f(x) +4g(x)] = 13. Find discontinuous?
(a) g(2) 5. Suppose that a function f is continuous everywhere and

(b) lim2 g(x).

that f(=2) =3, f(—1)=—1, f(0) = —4, f(1) =1, and
f(2) = 5. Does the Intermediate-Value Theorem guarantee

3. Suppose that f and g are continuous functions such that that f has a root on the following intervals?
lim g(x) =5 and f(3) = —2. Find lim [f(x)/g(0)]. (@ [-2,-1]1 () [-1,0]1 (o) [-1,1] (d) [0,2]
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EXERCISE SET 1.5 [ Graphing Utility

1-4 Let f be the function whose graph is shown. On which of
the following intervals, if any, is f continuous?

(@ [1,3] (b (1,3) (o [1,2]

(@ (1,2) (o) [2,3] () 2,3)

For each interval on which f is not continuous, indicate which
conditions for the continuity of f do not hold.

1. Y 2. Y
>~ /.
o
*—0
1 1 1 X 1 1 1 X
12 3 12 3
3 y 4 y
\ \
| |
| |
| |
| |
| |
| |
| |
‘ ‘ X X
| I | I I
1 2 3 12 3
5. Consider the functions
1, x#4 _ [4x—10, x#4
f(x)—{—L x =4 g(x)_{—6, x =4
In each part, is the given function continuous at x = 47
(@) f(x) (b) g(x) (©) —g(x) (D) [f(0)]

(&) fx)gx) () g(f(x) (&) gx) —6f(x)
6. Consider the functions

P
In each part, is the given function continuous at x = 0?
(@) f(x) (b) g(x) (© f(=x) (d) 8]
(&) f)gx) (f) g(f(x)) (&) f(x)+gx)

FOCUS ON CONCEPTS

7. Ineach part sketch the graph of a function f that satisfies
the stated conditions.

(a) f is continuous everywhere except at x = 3, at
which point it is continuous from the right.

(b) f has a two-sided limit at x = 3, but it is not con-
tinuous at x = 3.

(c) fisnotcontinuousatx = 3, butifits valueatx = 3
is changed from f(3) = 1to f(3) = 0, it becomes
continuous at x = 3.

(d) f is continuous on the interval [0, 3) and is defined
on the closed interval [0, 3]; but f is not continuous
on the interval [0, 3].

8. Assume that a function f is defined at x = ¢, and, with
the aid of Definition 1.4.1, write down precisely what

condition (involving € and &) must be satisfied for f
to be continuous at x = ¢. Explain why the condition
0 < |x — ¢| < & can be replaced by |x — ¢| < §.

9. A student parking lot at a university charges $2.00 for
the first half hour (or any part) and $1.00 for each sub-
sequent half hour (or any part) up to a daily maximum
of $10.00.

(a) Sketch a graph of cost as a function of the time
parked.

(b) Discuss the significance of the discontinuities in the
graph to a student who parks there.

10. In each part determine whether the function is continu-

ous or not, and explain your reasoning.

(a) The Earth’s population as a function of time.

(b) Your exact height as a function of time.

(c) The cost of a taxi ride in your city as a function of
the distance traveled.

(d) The volume of a melting ice cube as a function of
time.

11-22 Find values of x, if any, at which f is not continuous.

1. f(x)=5x*—-3x+7 12. f(x)=x—38

x+2 x+2
13. = 14. =
fo =527 f@ =5
X 2x +1
15. = —F 16. = —-—
F0 = s = T ax+s
3 x—1 5 2x
17. = — 18, = —
f&) x+x2—1 f&) x+x+4
x24+6x+9 8
19. = 20. =4 -
f) = f@) ’ T
2x+3, x<4
21 f(x) = 16
f T+ —, x>4
x
, 1
2 fo=lro1 7
3, x=1

23-28 True-False Determine whether the statement is true or
false. Explain your answer.

23. If f(x) is continuous at x = c, then so is | f(x)|.

24. If | f(x)| is continuous at x = c, then so is f(x).

25. If f and g are discontinuous at x = ¢, then sois f + g.
26. If f and g are discontinuous at x = ¢, then so is fg.
27. If \/f(x) is continuous at x = ¢, then so is f(x).

28. If f(x) is continuous at x = c, then so is v/ f(x).



29-30 Find a value of the constant k, if possible, that will make
the function continuous everywhere.

®o@ =0 T
o fo= {8, 152
30. (@) f(x) = z/;;fz’ ii:g
o o =170 120

31. Find values of the constants k and m, if possible, that will
make the function f continuous everywhere.

x2+5, x>2
fy=imx+1D+k —-1<x<2
233+ x +7, x< -1

32. On which of the following intervals is

Jx) =

x—2
continuous?
(@) [2,+%) (b) (=, +») (c) (2,+») (d) [1,2)

33-36 A function f is said to have a removable discontinuity
at x = ciflim,_ . f(x) exists but f is not continuous at x = c,
either because f is not defined at ¢ or because the definition for
f(c) differs from the value of the limit. This terminology will
be needed in these exercises.

33. (a) Sketch the graph of a function with a removable dis-
continuity at x = ¢ for which f(c) is undefined.
(b) Sketch the graph of a function with a removable dis-
continuity at x = ¢ for which f(c) is defined.

34. (a) The terminology removable discontinuity is appropri-
ate because a removable discontinuity of a function f
at x = ¢ can be “removed” by redefining the value of
f appropriately at x = ¢. What value for f(c) removes
the discontinuity?

(b) Show that the following functions have removable dis-
continuities at x = 1, and sketch their graphs.

£2_ 1, x>1

fx) = and g(x)=140, x=1
x—1

1, x<1

(c) What values should be assigned to f(1) and g(1) to
remove the discontinuities?

35-36 Find the values of x (if any) at which f is not contin-
uous, and determine whether each such value is a removable
discontinuity.

_ _x?43x
35. (a) f(x)—7 b) fx)= 13
x—2
©) flx)=

x| —2
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2_4 _
%o fw=5"g o sw={37Y 15
2
(©) f(x):{zx +3 ii}

] 37. (a) Use a graphing utility to generate the graph of the func-

tion f(x) = (x + 3)/(2x*> + 5x — 3), and then use the
graph to make a conjecture about the number and loca-
tions of all discontinuities.

(b) Check your conjecture by factoring the denominator.

[ 38. (a) Use a graphing utility to generate the graph of the func-

tion f(x) = x/(x® — x + 2), and then use the graph to
make a conjecture about the number and locations of
all discontinuities.

(b) Use the Intermediate-Value Theorem to approximate
the locations of all discontinuities to two decimal places.

39. Prove that f(x) = x%/5 is continuous everywhere, carefully
justifying each step.

40. Prove that f(x) = 1/v/x*+ 7x2 + 1 is continuous every-

where, carefully justifying each step.

41. Prove:
(a) part (a) of Theorem 1.5.3
(b) part (b) of Theorem 1.5.3
(c) part (c) of Theorem 1.5.3.

42. Prove part (b) of Theorem 1.5.4.

43. (a) Use Theorem 1.5.5 to prove that if f is continuous at
x = ¢, then lim;, o f(c + h) = f(c).
(b) Prove that if lim,_, ¢ f(c + h) = f(c), then f is con-
tinuous at x = c¢. [Hint: What does this limit tell you
about the continuity of g(h) = f(c + h)?]
(c) Conclude from parts (a) and (b) that f is continuous at
x = cifand only if lim, ¢ f(c + h) = f(c).

44. Prove: If f and g are continuouson [a, b], and f(a) > g(a),
f(b) < g(b), then there is at least one solution of the equa-
tion f(x) = g(x) in (a, b). [Hint: Consider f(x) — g(x).]

FOCUS ON CONCEPTS

45. Give an example of a function f that is defined on a
closed interval, and whose values at the endpoints have
opposite signs, but for which the equation f(x) = 0 has
no solution in the interval.

46. Let f be the function whose graph is shown in Exercise
2. For each interval, determine (i) whether the hypoth-
esis of the Intermediate-Value Theorem is satisfied, and
(ii) whether the conclusion of the Intermediate-Value
Theorem is satisfied.

(a) [1,2] (b) [2,3] (©) [1,3]

47. Show that the equation x* + x2 — 2x = 1 has at least one
solution in the interval [—1, 1].
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48.

49.

50.

51.

Prove: If p(x) is a polynomial of odd degree, then the equa-
tion p(x) = 0 has at least one real solution.

The accompanying figure shows the graph of the equation
y = x* 4+ x — 1. Use the method of Example 5 to approxi-
mate the x-intercepts with an error of at most 0.05.

[-5, 4] x [-3, 6]
xScl =1, yScl =1 <A Figure Ex-49
The accompanying figure shows the graph of the equation
y=5—x—x* Use the method of Example 5 to ap-
proximate the roots of the equation 5 — x — x* = 0 to two
decimal-place accuracy.

[=5, 4] x[-3, 6]
xScl =1, yScl =1 < Figure Ex-50
Use the fact that +/5 is a solution of x2 — 5 = 0 to approx-

imate +/5 with an error of at most 0.005.

52. A sprinter, who is timed with a stopwatch, runs a hundred

53.

yarddashin 10s. The stopwatchis reset to 0, and the sprinter
is timed jogging back to the starting block. Show that there
is at least one point on the track at which the reading on
the stopwatch during the sprint is the same as the reading
during the return jog. [Hint: Use the result in Exercise 44.]

Prove that there exist points on opposite sides of the equator
that are at the same temperature. [Hint: Consider the ac-
companying figure, which shows a view of the equator from
a point above the North Pole. Assume that the temperature
T (9) is a continuous function of the angle 6, and consider
the function f(0) =T + ) — T(6).]

‘/QUICK CHECK ANSWERS 1.5

54.

5S.

56.

57.

58.

Temperature at this
point is T(0)

P Intersection of the
equator and the
prime meridian

A Figure Ex-53

Let R denote an elliptical region in the xy-plane, and de-
fine f(z) to be the area within R that is on, or to the left
of, the vertical line x = z. Prove that f is a continu-
ous function of z. [Hint: Assume the ellipse is between
the horizontal lines y =a and y = b, a < b. Argue that
1f(z) = fe)| = b —a)-|z1 — z2l.]

Let R denote an elliptical region in the plane. For any line
L, prove there is a line perpendicular to L that divides R in
half by area. [Hint: Introduce coordinates so that L is the
x-axis. Use the result in Exercise 54 and the Intermediate-
Value Theorem.]

Suppose that f is continuous on the interval [0, 1] and that

0 < f(x) <1 for all x in this interval.

(a) Sketchthe graphof y = x together with a possible graph
for f over the interval [0, 1].

(b) Use the Intermediate-Value Theorem to help prove that
there is at least one number c in the interval [0, 1] such
that f(c) = c.

Writing It is often assumed that changing physical quan-

tities such as the height of a falling object or the weight of

a melting snowball, are continuous functions of time. Use

specific examples to discuss the merits of this assumption.

Writing The Intermediate-Value Theorem (Theorem 1.5.7)
is an example of what is known as an “existence theorem.”
In your own words, describe how to recognize an existence
theorem, and discuss some of the ways in which an existence
theorem can be useful.

1. f(c) is defined; lim, _, . f(x) exists; lim, . f(x) = f(c)
5. (a) yes (b) no (c) yes (d) yes

2. (a) 3 (b) 3

3. -2/5 4.x=1,4
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CONTINUITY OF TRIGONOMETRIC, EXPONENTIAL,
AND INVERSE FUNCTIONS

///" Q(cos ¢, sin ¢)
c P(cos x, sin x)

"X

As x approaches ¢ the point
P approaches the point Q.

A Figure 1.6.1

Theorem 1.6.1 implies that the six basic
trigonometric functions are continuous
on their domains. In particular, sin x
and cos x are continuous everywhere.

In this section we will discuss the continuity properties of trigonometric functions,
exponential functions, and inverses of various continuous functions. We will also discuss
some important limits involving such functions.

CONTINUITY OF TRIGONOMETRIC FUNCTIONS

Recall from trigonometry that the graphs of sin x and cos x are drawn as continuous curves.
We will not formally prove that these functions are continuous, but we can motivate this fact
by letting c be a fixed angle in radian measure and x a variable angle in radian measure. If, as
illustrated in Figure 1.6.1, the angle x approaches the angle c, then the point P (cos x, sin x)
moves along the unit circle toward Q(cos c, sin ¢), and the coordinates of P approach the
corresponding coordinates of Q. This implies that

lim cos x = cosc €))]

X—>cC

lim sinx = sinc and

X—>cC

Thus, sin x and cos x are continuous at the arbitrary point c; that is, these functions are con-
tinuous everywhere.

The formulas in (1) can be used to find limits of the remaining trigonometric functions
by expressing them in terms of sin x and cos x; for example, if cos ¢ # 0, then

sin x sin ¢

lim tan x = lim =
xX—>c xX—c COSX

=tanc

cos ¢
Thus, we are led to the following theorem.

1.6.1 THEOREM [fc is any number in the natural domain of the stated trigonometric
function, then

lim sinx = sinc¢ lim cosx = cosc lim tan x = tanc

X—C X—>C X—C
lim cscx = cscce lim sec x = secc lim cotx = cotc
X—C X—>C X—C

» Example 1 Find the limit

. x> -1
lim cos
x—1 x—1
Since the cosine function is continuous everywhere, it follows from Theorem

lim1 cos(g(x)) = cos <lim1 g(x))

Solution.
1.5.5 that

provided lim1 g(x) exists. Thus,

2
lim cos (x 7 ) = lim1 cos(x + 1) = cos <lim1 (x + 1)) =cos2 «

x—1 X —

CONTINUITY OF INVERSE FUNCTIONS

Since the graphs of a one-to-one function f anditsinverse ! are reflections of one another
about the line y = x, it is clear geometrically that if the graph of f has no breaks or holes
in it, then neither does the graph of f~!. This, and the fact that the range of f is the domain
of f~!, suggests the following result, which we state without formal proof.
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To paraphrase Theorem 1.6.2, the in-
verse of a continuous function is con-
tinuous.

A Figure 1.6.2

1.6.2 THEOREM If f is a one-to-one function that is continuous at each point of its
domain, then =" is continuous at each point of its domain; that is, =" is continuous
at each point in the range of f.

» Example 2 Use Theorem 1.6.2 to prove that sin™' x is continuous on the interval
[—1,1].

Solution. Recall that sin~' x is the inverse of the restricted sine function whose domain
is the interval [—m/2, /2] and whose range is the interval [—1, 1] (Definition 0.4.6 and
Figure 0.4.13). Since sin x is continuous on the interval [—7/2, 7r/2], Theorem 1.6.2 implies
sin”! x is continuous on the interval [—1,1]. «

Arguments similar to the solution of Example 2 show that each of the inverse trigono-
metric functions defined in Section 0.4 is continuous at each point of its domain.

When we introduced the exponential function f(x) = b* in Section 0.5, we assumed
that its graph is a curve without breaks, gaps, or holes; that is, we assumed that the graph
of y = b* is a continuous curve. This assumption and Theorem 1.6.2 imply the following
theorem, which we state without formal proof.

1.6.3 THEOREM Letb > 0,b # 1.

(a) The function b* is continuous on (—o, 4.

(b) The function log,, x is continuous on (0, 4-o0).

: . tan~' x + Inx )
» Example 3 Where is the function f(x) = -7 continuous?
x2 —

Solution. The fraction will be continuous at all points where the numerator and denom-
inator are both continuous and the denominator is nonzero. Since tan~! x is continuous
everywhere and In x is continuous if x > 0, the numerator is continuous if x > 0. The
denominator, being a polynomial, is continuous everywhere, so the fraction will be contin-
uous at all points where x > 0 and the denominator is nonzero. Thus, f is continuous on
the intervals (0, 2) and (2, +x). <

OBTAINING LIMITS BY SQUEEZING
In Section 1.1 we used numerical evidence to conjecture that
. sinx
lim
x—0 X

=1 2)

However, this limit is not easy to establish with certainty. The limit is an indeterminate
form of type 0/0, and there is no simple algebraic manipulation that one can perform to
obtain the limit. Later in the text we will develop general methods for finding limits of
indeterminate forms, but in this particular case we can use a technique called squeezing.

The method of squeezing is used to prove that f(x)— L as x — c by “trapping” or
“squeezing” f between two functions, g and /&, whose limits as x — ¢ are known with
certainty to be L. As illustrated in Figure 1.6.2, this forces f to have a limit of L as well.
This is the idea behind the following theorem, which we state without proof.
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1.6.4 THEOREM (The Squeezing Theorem) Let f, g, and h be functions satisfying
gx) = f(x) = h(x)

for all x in some open interval containing the number c, with the possible exception that
The Squeezing Theorem also holds for the inequalities need not hold at c. If g and h have the same limit as x approaches c,
one-sided limits and limits at +oc and say
—co. How do you think the hypotheses

would change in those cases?

lim.g(x) = lim.h(x) =L

then f also has this limit as x approaches c, that is,

lim f(x) =L

To illustrate how the Squeezing Theorem works, we will prove the following results,

];y\‘ sin x which are illustrated in Figure 1.6.3.
Y=
—), | 1 | 1 | I X

’: 2r

-2
1.6.5 THEOREM

. . sinx 1 —cosx
lim S0X _ 4 (a) lim =1 (b) lim =
oo X x—0 Xx x—>0 X
y
y= 1—cosx
1 * . PROOF (a) In this proof we will interpret x as an angle in radian measure, and we will
_;&_‘/ — 2‘71 assume to start that 0 < x < /2. As illustrated in Figure 1.6.4, the area of a sector with
r central angle x and radius 1 lies between the areas of two triangles, one with area % tan x
and the other with area % sin x. Since the sector has area %x (see marginal note), it follows
lim l_iﬁ =0 that
x—0

—tanx > —x > —sinx
A Figure 1.6.3 2 2 2
Multiplying through by 2/(sin x) and using the fact that sin x > 0 for 0 < x < 7/2, we

obtain 1 X
> —
COS X sin x

>1

Next, taking reciprocals reverses the inequalities, so we obtain
sin x
cosx < — <1 3)
X

which squeezes the function (sinx)/x between the functions cos x and 1. Although we
derived these inequalities by assuming that 0 < x < 7/2, they also hold for —7/2 < x < 0
[since replacing x by —x and using the identities sin(—x) = — sin x, and cos(—x) = cos x

(1, tan x)

I .
/e (COs x, sin x)

| \ A\
\\ | \ } \\ sin x
X M (1, 0) Nx X x|

" 1 1 1
! Area of triangle > Areaof sector >  Area of triangle
tan x X sin x
> = >
2 2 2

> Figure 1.6.4
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leaves (3) unchanged]. Finally, since
Recall that the area A of a sector of ra-

dius r and central angle 6 is limo cosx =1 and lim() 1=1
x= x—
1, . . .
A= 7 the Squeezing Theorem implies that
This can be derived from the relation- . sinx
hi lim =1
ship x—>0 X
A 0

= PROOF (b) For this proof we will use the limit in part (a), the continuity of the sine

=
nr 2 . . .. . . .

T e o e D function, and the trigonometric identity sin® x = 1 — cos? x. We obtain

is to the area of the circle as the central 1 —cosx ) 1 —cosx 1+4cosx ) sin? x
angle of the sector is to the central an- lim —— = lim . =lm —
gle of the circle. x>0 X x=>0 x 14 cosx x=0 (1 4 cosx)x

tim 20 (i ) — ) (-2 ) =0 m
- =(1 m-—— | = T 7=
Area = A x—0 X x—0 1+ cosx 1+1

» Example 4 Find

= in 26 in 3
@ lim X (b lim o () lim 2222
x—0 X 6—0 x—0 sin Sx
Solution (a).
. tanx . sin x 1 . sinx . 1
lim —— = lim . = | lim lim =) =1
x—=0 X x—0 X COS Xx x—=0 X x—>0 COSX
Solution (b). The trick is to multiply and divide by 2, which will make the denominator
the same as the argument of the sine function [ just as in Theorem 1.6.5(a)]:
. sin20 . sin 20 . sin20
lim = lim 2 - =2 lim
60 60 20 6—-0 20
Now make the substitution x = 26, and use the fact that x — 0 as 6 — 0. This yields
sin 20 . sin20 . sinx
lim =2 lim =2 lim =2(1)=2
-0 6 N x—0
TECHNOLOGY MASTERY Solution (c)‘
Use a graphing utility to confirm the sin 3x 3 sin 3x
limits in Example 4, and if you have a _ sin3x ) X . ' 3x 3.1 3
CAS, use it to obtain the limits. lim — = lim — =lm ——=—=- <
x—>0sin5x  x—0 sinSx x—>05 sin 5x 5.1 5
X Sx
y
» Example 5 Discuss the limits
.1 . (1
(a) lim sin | — (b) lim xsin | —
‘ ‘ X x—0 X x—0 X
-1 1
Solution (a). Let us view 1/x as an angle in radian measure. As x — 0T, the angle
Jl 1/x approaches oo, so the values of sin(1/x) keep oscillating between —1 and 1 without
approaching a limit. Similarly, as x — 0=, the angle 1/x approaches —co, so again the

values of sin(1/x) keep oscillating between —1 and 1 without approaching a limit. These
y = sin (%) conclusions are consistent with the graph shown in Figure 1.6.5. Note that the oscillations
become more and more rapid as x — 0 because 1/x increases (or decreases) more and more

A Figure 1.6.5 rapidly as x approaches 0.
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Solution (b). Since 1
—1 <sin (—) <1

Confirm (4) by considering the cases
x > 0 and x < 0 separately.

\

it follows that if x # 0, then

¥

—lx| < xsin (1> < x| @)
X

y=|x]

Since |x| — 0 as x — 0, the inequalities in (4) and the Squeezing Theorem imply that
/.X

1
lim x sin (—) =0
> x—0 X

This is consistent with the graph shown in Figure 1.6.6. <

y ==
y = xsin (%)
A Figure 1.6.6 REMARK | It follows from part (b) of this example that the function
_ fxsin(l/x), x#0
flo) = {0’ P

is continuous at x = 0, since the value of the function and the value of the limit are the same at 0.
This shows that the behavior of a function can be very complex in the vicinity of x = ¢, even though
the function is continuous at c.

I/ QUICK CHECK EXERCISES 1.6  (See page 128 for answers.)

1. Ineach part, is the given function continuous on the interval 3. Suppose a function f has the property that for all real num-
[0, /2)? bers x _
(a) sinx (b) cosx (c) tanx (d) cscx 3l = f) =3+ 1x
2. Evaluate From this we can conclude that f(x)—>__ as x—
sin x
(a) l