Chapter 1:
Units and Dimension

1. Physical quantities
2. Units

3. Conversion of units
4. Dimension analysis

Physics is a Greek word whose origin means knowledge of nature. Itis a
science that research to study the universe with its material, energy and
their interactions, and the resulting recurring phenomena. The main
objectives of physics are to identify a limited number of fundamental
laws that govern natural phenomena and use them to develop theories
that can predict the results of future experiments. Everything we know
about this universe and the laws that govern it are reached through
measurements and observations of natural phenomena,



s

pimensivll ____—m

éé? Chapter1'.Un'|tS and
V,\%\JJ‘L}\Q\L&S)\ el —
1. Physical quantities {C\—dj ;@;/kﬂl

Lo\l Qe o\ ) @ sl o) b e\

| Physical quantities used to create the main structure of N\ o alg il
: Do e ts WM\ e K\ch-tg? o' s\ 0oy, <\ el T ah ddad
i y : Y . S \ = Y
. Physics, 1t might be used in case of find out the laws and sy e
S \\Jj\wg\o\L-u.J‘—yS\. '%0__1...-3:) w}‘s\,r‘_}\jﬂ)\.:W\ mﬂ\_, e
equation that related to physic, and can be divided to two types AL - , (__\—’92
| i ey RN ACE
- as following: BT Y
i A : d_g \_‘/;J\_- ; '\"‘*y\;‘
g \\_:_,\l\ug[ :3\}05_)\ T\'S . 4 ; [ f/
' Fundamental quantities PO ol P
2 = ' : ~ N . i
S5 K o A5 Jusdt O el Sus e e i\ @@ Y
They are not expressed in terms of other physical quantities,
BB e e\ s - tg—x-n_) SABVERVS Y
and are known only by themselves. these quantities are length,
0y 16 Voo 5\S b yiiy A Vasy o SN
mass, time, electric current intensity, temperature, intensity of
wt o By Zso oY V\oiws
{llumination, and amount of matter. =
- X = \\\—) Iy \ Q
Derived quantities
SO 5 15 s LN L S LS S So g @
They are defined in terms of the fundamental physical
: Ge 3 s Azt WSO Loyl 1 (S| Ko Aaiiitd
quantities, these derived quantities suc\h as volume, velocity,
. SN TEN s £ A gb) e TN
density, acceleration, energy, power, and other quantities. ——
s i Y
2| Unlts : \ g ]
{ N

&5 Mo SYGB Y LS 2 sl G, AL ST £ w e

~

Any physical quantity must have a unit of measurement 1n
yBc & \g-)_‘\ q’{-ﬁJ_‘L_-o) %{J%J{,\‘-j}’%‘u\\\\\\;ﬁ,u 3 = a ‘
addition to its numerical value, as it makes n\lsense fg_s_ay%t P A \
Q_g)){\)b-\:-baoc" &MJ’@S{”S;OQ X q\apﬁ)igiﬂ . S
the distance between the city of Bisha and the city of Abha 1s -

\)QD.J\ Whee DV g J\@Q\mgb)\:@,g\ﬁ O Yyl OB Jxe 3 3
300 (without mentioning the unit of measurement), Because

—
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System of Units (SI).

300 kilometres differ from 300 meters and differ from 300

of length. In this section, we will be concerned with

International system of units (SI) for measuring physical

quantities.
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Table (1.1): Prefixes for Powers of Ten.

Abbreviation Prefix Power ™~
S nano- 109 —

u micro- 10-6

m milli- 10-3

centi- 10-2

d deci- 10-1

da deka- 10!

k kilo- 103

M mega- 108

G giga- 10°

Example: 1.1
On the side board of the road, the maximum average speed s was found as

. - m .
90 f? convert this value to speed with — units.
L

Solution
km
s =90 g
_ 103 m_,cm
3600 s s

Example: 1.2
e i
How much mercury density is p in SI unit system, if it is equal to 13.6 E;%E?
________..-""
Solution
g Bl s
p=13.6
cm?3
— 1073 g
= 13.6 (10_2}3171_2' = 1.36 % 1045’% _—-._F_‘/
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Unit of amount of substance (mole - mol)

The mole is the amount of substance in a system that contains
a number of elementary units equal to the number of 12 gram
of carbon-12 atoms, and these primary units can be atoms,
molecules, ions, or it is a specific group that includes all of

these types.
3. Converting units

Perhaps, to solve problems, units from small units must be
converted into large units or vice versa in the same system, Or
from one system to another system, Unit conversion is the first
step to solving problems in order to standardize units. As the
minute is divide to the 60 seconds, we can write the following
conversion equation:

1min=60s
above equation can apply to convert from minutes to seconds
and vice versa, for example, converting 3 minutes to seconds
by multiplying both sides of the previous equation by 3, thus
obtaining:

3min=180s
Based on that, the conversion coefficient from minutes to

seconds will be 60, while the conversion coefficient from

- 1 . -
seconds to minutes become - according to the conversion

1 ED i

Thus, for the rest of the units, Table 1.1 shows conversion

coefficients for some units.




Unit of lengths (meters - m) S‘/

The meter (m) is defined as the length of distance traveljey
€

1

oht i aacuum in a time period equal to
light in a va P q m 5.

Unit of mass (kilogram - kg)

The kilogram (kg) is defined as the mass of a Specif
platinum—iridium alloy cylinder as shown in Figure 1.2, ang
this cylinder 1s kept at the International Bureau of Weights ang

Measures at Paris, France.

jeure 1.2: A kilogram Unit of time (second - s)
C}‘!t in the International
tureau of Scales and
Jeasures, Paris.

The second (s) is now defined as 9192631770 times the period

of vibration of radiation from the cesium-133 atom.

Unit of temperature (Kelvin - K)

The Kelvin (K) is defined to be of the difference

273.16

between absolute zero and the temperature of the triple point

of water.
Unit of electric current (Ampere - A)

The Ampere (A) is equivalent to 1 Coulomb of charge passing

through a surface in 1 second.
Unit of luminous intensity (candle - cd)

The candela is the luminous intensity, in a given direction, of2
light source that emits monochromatic radiation of frequency |

540 X 102 hertz and that has a radiant intensity In that

. . 1 -
direction of egs Watt per steradian. |



Chapter 1: Units and Dimension

1. Physical quantities

Physical quantities used to create the main structure of
Physics, it might be used in case of find out the laws and

equation that related to physic, and can be divided to two types

as following:
Fundamental quantities

They are not expressed in terms of other physical quantities,
and are known only by themselves. these quantities are length,
mass, time, electric current intensity, temperature, intensity of

illumination, and amount of matter.

Derived quantities

They are defined in terms of the fundamental physical
quantities, these derived quantities such as volume, velocity,

density, acceleration, energy, power, and other quantities.

2. Units

Any physical quantity must have a unit of measurement in
addition to its numerical value, as it makes no sense to say that

the distance between the city of Bisha and the city of Abha is

300 (without mentioning the unit of measurement), because

300 kilometres differ from 300 meters and differ from 300

miles, as the kilometres, meters, and miles are units of measure R Ta—
sl na

of length. In this section, we will be concerned with System of Units (SD).

International system of units (SI) for measuring physical

quantities.
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l. If you know that the gravitational
g h

cm

—

s’

2. Use dimensional theory to prove the ideal gas equation:

pyv =nRT,

where V is the volume, P is the pressurc, and T is the temperature ang n g,

number of moles, knowing that R is a constant.

3. Find the following dimensions of the physical constants: (general attracyj,,
constant (G) - Planck constant (/) - viscosity coefficient (7)) if you know g,

these constants are given by the following relationships, respectively:
F= 6mnvr,

E=hv,

M4 Mo

F=Gr—2.

4. Verify the following relationship using dimensional theory:

muv?

r

F=
5. Using the dimensional theory, deduce the Einstein's equation, which linket

the relationship between body mass, speed of light, and energy.

m g
£z

6. Find the force F = 50 in the international system units SI.

7. Find out the area of a square box in meters (m) if its side is 20 cm.

8. A cube of iron with a mass of 856 g and a length of each side equal 5.3200

Calculate the density of the cube P 1n units of SI.

LN o N e
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4. Dimensional theory

Let's focus our discussion on classical mechanics. The
Dimension of any a physical quantity is determined the nature
of this quantity, whether it is Mass, Length, or Time. The
dimensions of any physical quantity are written in terms of
mass [M], length [L] and time [T]. Dimensional theory states

that homogeneity must be in each side of mathematical

equations.

The importance of the dimensional theory is in the following:

2. Validation of physical laws.
b. Easily derive some physical laws.
c. Derive the units of the constants on which the physical

relationship depends.

Table (1.2) shows the dimensions of some physical quantities.

K

Physical Quantity Dimensions
density (p) = v:?::e el = % = ML™3
velocity(v) = dispf:::;nent [v] = % =
accelaration (a) = %’% [a] = E,;:- = i

force (F) = mass .accelaration

work (W) = force.displacement

work

power (P) = e

e

[Fl=M xLT"% = MLT?
[W]=MLT 2 x L = MI2T-2

_Mx AT

— — 27=-3
[P] T MI2T
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Ver'ifY the Vv
. : length of the pendulum thread _
the period:c time, £ 18 the g P - and g I3 :

celeration.

uravilational ac
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Solution
The left side dimension of the equation: [T] S
. : : : . Ll _ (7]
The right-side dimension of the equation: (775
So. this equation is dimensionally homogeneous. It is correct.
T
T

Example: 1.4

Using dimensional theory, derive the relationship between the periodim

a simple pendulum, the length of a thread, the mass of the sphere, and

gravitational acceleration.

Solution
T=Ff(lmyg)
= [“mﬂg}’

Where ¢ is a constant of proportionality and we use dimensional theory®

designate the three constants a, 3, y.

[T] = [L]*[M]P[LT~2]Y
= [EMBLYT=2Y
= LervrpBT—2y

A




1. Scalar and vector quantities

Scalar quantities

Sealar quantities are the physical quantities that can be defined

by knowing its magnitude only, such as distance, mass, time...
Vector quantities

Vector quantities are the physical quantities that can be
defined by knowing their magnitude and direction, such as

displacement, Velocity, acceleration, and force ...

To explain the difference between the scalar and vector
quantities, we assume that a man moves his home away from
the mosque by 30 m, as in Figure (2.1), and the man travels it
back and forth whenever he intends to pray, this distance 8
fixed and completely defined by knowing its amount only, and
the distance between the mosque and the house will not

change if he is going or returning from it.

When we talked about the displacement vector, we say that if a
man goes to the mosque, he turns east toward the mosque with
displacement of 30 m, and this vector is completely different
from the displacement vector when he goes back from the
mosque to the house, where the man moves to his house in the
direction of the west by 30 m. So, the displacement vector is
completely determined by knowing the magnitude and

direction of this vector.

displacement j
¥=30m
Jm u - = lli ﬂ'

d=30m

distance

Figure 2.1: The difference
between scalar and vector
fuantities



2. Vectors addition

A\

Assume that an object is displaced from point <3~ o

a
AV, C -+ : IRt &':I'Q,E_
‘4— the vector A and then from point “b” to “¢” acrog; the y,
T~ Ve,
- B. as shown in Figure (2.2). The resultant is the d:sma% |
Figure 2.2: Yectors addition st Db_jBCt from “a” to “c” via the vector C what - Ca“

summation of the two vectors:
C=A+58

The magnitude of vector C can be found by the cosine rule:

C=+A%2+B? —24Bcos @
While its direction can be determined by sine rule:

sina _ sinf}  sin®
A B T ¢

The magnitude of vector C in right triangle can be found by

Pythagoras theorem:

= T

The direction of vector C can be determined by angle 8:

Figure 2.3: Vectors addition
(right triangle)

g = tan"IE
A

Exam ple: 2.1

Find th
€ sum of twyg v > : i

ect =
BOrSeEA = o i East and § = 4 in North.




is 3 cm and mak
ind the two components of this vector.

Solution
| R I

A, =Acos ai
= 3:‘.’.‘0560f = 1.5?

@'—'Asinééj‘
=3sin60j=26]

We can add two vectors in the form of analytical compoung;
by equations:

A :Axf’i' ij'i‘ Azﬁ
B =B+ B,j+ B,k

A+ B= (A, + B)I + (Ay+3y)j+(AZ+BZJE

Example: 2.4
Find the resultant vector €, which is the sum of the two vectors: ———
A=4i+6f+2k B
, B =3i+ 3] — 2k
Solution i
c=A+ B ——
= (Ax + Bi " .
x I+ (Ay-l-By)J_i.(Az_i_Bz)k
=4+ 3)i+ (6 + 3)f + (2_2);2
= 71 + 9§
__...--'-"""'".




&N
Chapter 2:
Vectors

1. Scalar and vector quantities
2. Vectors addition
3, Vectors analysis
4, Vectors product

Physics deals with a lot of quantities that have a magnitude and

direction, so you need a special mathematical language called a vector

to describe these quantities. This language is also used in engineering
and other sciences and even in general speech, if you have previously
given directions such as how to get to the mosque in the neighborhood
where you live, go east 100 meters and then go right 10 meters and
find the mosque to your left, In this case we have used here the vector

language. In this chapter, we will study some of the vector propertiesn,
addition, analysis, and product.
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3, Vectors analysis .!

[igure (2.9) shows the vector 4 make an angle 0 with the y

horizontal axis x, this vector can be analy

S

zed to two vectors.

The vector (Ay) in the direction of the horizontal axis x is y

3
Y
b = -

called the horizontal component. As w

ell as, the vector (ﬁy) in g
the direction of the vertical axis y is called the v

= X

ertical Figure 2.9: Vector analysis,
cgmponﬂllt.

-

A=A, +4,

We use unit vectors (. f. k) to denote the direction of the axes i
(x.y.z), respectively, as shown in Figure (2.10). We call this 3

system a right-hand coordinate system, meaning that it applies e

the right-hand system. We write the vector 4 in the Cartesian

coordinate system on the image. Figure 2.10: Unit vectors
in Cartesian coordinates.

A= A0+ A

The magnitude of the two compounds can be calculated from

the rule of the triangle as following:
A, = Acos®
Ay, = Asin )
The vector 4 can be written as following:

A = Acos@i + Asin8]
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9. The mass of the proton is 1.6 X 10727kg and the electron mass is

-31
9.1 x 107" kg, how much these masses are equal to grams (g).

10. If you know that an electrical conductor has a charge of 1.6 X 107°uC,

how much is this charge in colum units (C).
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Snlulmn

= .‘1.2-I~B'2
=42 + 42 =57

B

-1
= tan =
g=t A

= tan™?! E = 45°

——

Example: 2.2

Two vectors, A=6 and B=9 .
Calculate their resultant C.

=l

60

Solution

First: Re-draw the vector B as shown above, then find out the resultant vector

-

L.

¢ =+JA? + B2 — 2AB cos 8
=J§2+92-2x6x9xcoseo=7.9

Second: Calculate the direction of resultant vector by sine rule

sinf} _ sin®
B ~ C

B
B =sin™? (Esinﬂ)

= sin~} (_9_. * Sin 60) = Bcl.ﬁla

i\ﬁ_ 79 e =




ics ‘ectors
Properties of vecto

Fizure 2.5: The Commutative
property,

A

Figure 2.6: Inverse of the
yYector,

Figure 2.5 Subtraction of
A Vectors,

Figure 2.3: Multipl_\'ing the
vector by a constang dmount,

N

E B are equal when they haye
rs A and
Thc two vecto

the

nitude and the same direction, as showp n Fi&;lm:
same mag

(2.4):
A=F

Figure (2.5):

A+B=B+A4
The vectors addition process is a associative (you gax ©

to prove it):

The inverse summation of vector A 1S a vector with the
same magnitude of vector A4 but in the Opposite direction,
as shown in Figure (2.6):

A+(=A) =0

We use the inverse of the vector in the vector’s subtraction

Process, as shown in Figure (2.7).

E=£~§=ﬁ+(-§)
bythescal

nAof value ngq. This vec

vector 4 if n

ar n, we get a new
tor B is in the same

1S Positive, and it is in the
Opposite direction of vector A if n

is Negative, as shown in
the Figure (2.8).
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{1

0.

I

28

when the two vectors

pmduct is:

g ; j-i=1. k -

}';‘.ﬁ::ﬂ. E*

are in the form of compounds, the g
&

A -
To find the angle between the two vectors, We use i
relationship:
5 A-B
cos® = —p
Example: 2.6
Find the standard product of the following two veclors.
i=20i+10] and B=60+2]
Solution
e
A - B= A B+ AyBy
=(20><6)+(10x2).—=140
__'___,_—-"-
___._.---"""""
Example: 2.7
_____-———-_—.‘—“.

Find out the angle between the following two vectors:

A =20+ 2f—k and B =60+ 3+ 2k
___———_"_-/

Solution

___.__——""‘"/

W I S ———

1'



Example: 2.8 N

Find the vector product of two vectors [A| = 100 and Bl = 29 '
%

angle between them is 60 °.

Solution \
R

A x B= ABsinff
— 100 % 20 % sin60 = 17321

—

If the two vectors are parallel 8 = 0°, then their direcy;q,
ng
multiplication result is zero. As for the unit vectors of
£

Cartesian axes, they have the following characteristics:

-~

txi = 0. jxf=0. kxk =0
jxk =—kxj=1t kxt=-ixk=j

ixj=—fxi=k:

When the vectors are in the analytical form, the vector produc

is calculated from the following matrix:
A=A 0+ Af+ Ak ‘

B = B,i+ B,j + B,k ‘

L A A

xB= (A, A, 4,

B, B, B,

% A, A A, A A, A
Ax =“l‘v zl—“ X Z - ,}"
g, 8| fl5. B|*k|s, B,

= f(Asz i, Asz) "j(Asz - Asz) p = E(AxBJ’ o A:’"BI)

D PRI il
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4. Vectors product

There are two types of vectors product, the first one known as

the scalar product, while the other one known as the vector

pdellCL

gealar product

Assume that we have two vectors A and B with an angle 0 as

iy the Figure (2.11), then their scalar product is calculated

.
from: 0) =
B
A+ B=ABcos@
Figure 2.11: Scalar product
of vectors.

We note that the angle between the two vectors is the angle
between them when they initiate from one point. The product
of the scalar product is a scalar quantity and not a vector. The

scalar product is a commutative.

A-B=EB-4

Example: 2.5

Find the scalar product of the two vectors |A] = 100 and |B] = 20, with an

angle between them is 60 %

Solution

A B=ABcosb

= 100 x 20 X cos 60 = 1000

If the two vectors are orthogonal 8 = 90, then their scalar

ectors of the Cartesian axes,

Product is zero, and for the unit v

they have the following properties:
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_,_.-—-"’"'-_7__3
0s0="7F

1. .8= x6)+ (2 x3)+ (-1 x2)= 16

A= J2)° 4 22+ (—1)2=3

g =62+ B2 +(2)=7

LA B
§=cos” g
= cos™t 16 =40.1"
3 %7 :

vector product

Suppose we have two vectors A and B with an angle 0 as in
_ ) )  E=lix®
Figure (2. 12), then their vector product 1s calculated from the "‘»\4

H s

relationship:

—- —

=4 x B=ABsin8i
Figure 2.12: Directional
multiplication

between the two vectors is the angle

We note that the angle
ate from the same point. The

between them when they initi

resultant vector C is perpendicular on both vectors A and B.

vector C indicates by unit vector # according to the right hand

rule as shown in Figure (2.12), sO that vector A is the thumb

sented by the index finger, and the

ector . Also, the vector

while the vector B is repre
middle is the direction of the third v

product process is not a commutative process:

A % F=-B x4

@
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b. 1Al 150°
. |Al = 10m, 6 = 235°

= 4m, @

7. If we have two vectors A =2i+2j and B = 4i + 4j, Calculate the

following:

-

a. A'B
I b. Angle 8 between two vectors,
|'

¢. Vector C in which C=A4A+2F

8. Find the vector product of two vectors |A| = 50 and |B| = 20, with an angle

between them 1s 45°.

9. Prove that the two vectors A =30+3j+3k and B =2i+j— 3k are

orthogonal.

10. Find the vector product of two vectors A=31- 4j+ 2k and
B=-20+3j+3k




Chapter 3:

Motion in one dimension

1. Displacement
2. Velocity

3. Acceleration
4. Motion with constant acceleration

Motion of objectsare one of the most important physical phenomena,
in which we must understand its basic principles. These simple
principles have enabled us to predict the motion of objectsand know

the causes of their movement. The science that examines the motion
of objects and their static is called mechanics, and the study of this

science is an excellent start to the study of physics, because of the

clarity of experiments. In this section, we will learn about the concept
of displacement, velocity and acceleration.
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1ct

)

le: 2.9

'ﬁﬁmctor product of two vectors:

A=3t—4f and B = —2i+3jf

t ] k
3 -4 0
~z = ®

= [(3x3) + (—4x -2k
=17 kK

a——

Chapter 2:Vectors
—— i
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|
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Exercises

1.

1

Vccmrﬁ is 10 units in positive X-axis direction and, Vector g is 7 un;
; 2 : .
its direction make an angle of 30° from x-axis direction, fing the re |a:l:
u kan

vectors of the summation of the two vectors |A + B.

Point P have Cartesian coordinates as (-2, -4) located in the leve] (x, Y). Dy
- Dpy,

this point.

If A represents a displacement of 3m with a direction making 30° wj b

positive horizontal direction of the x-axis, while the vector B represents g,

distance of 3m with a positive direction of the y-axis. Find the following:

+B

=
oYy

=
2
S]]

-

c. B—

d 34A—B

W

If you have two vectors the first have the magnitude A = 6 units and makes |
an angle of 36 ° with the positive horizontal axis x and the second vector of

B = 7 units along the negative horizontal axis x. Find the following:

a. ﬁ+§
b.

2y
{os]

Find the vector AB that connect between the point A (2,1) and point
B (-1, 2)

If the 1 mak :
vector A makes an angle of 6 with the positive horizontal direction of

the x-axis. Fj =
x1s. Find the compounds of vector 4 in the following cases:

—_— 0
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prqclical life we also deal with concept of averag
[+ I¢

of change of distance d

In ©
spe°

3
with 1€
ample, the amount of average speed that appears on the car

[0 .
eedometer and is calculated from:
sp

5 which is defined as the rate

pect to time, the average speed is g scalar qQuantity. For

where d is the distance travelled during the time period At

[nstantaneous velocity

The instantaneous velocity ¥, is defined as the limit of the

average velocity Uy, as At approaches zero:

i Ax dx
P; = M0 At dt (3.3)

The position of a vehicle moving in a straight line according to the following

|
I
|
| Example: 3.2
|
! relationship;

x(t)=6t2—t+1
Where x is measured in meters and t in seconds. Calculate:

3. The position at the moment t =0 s.

b. The Position at the moment t = 3 s.

® The displacement of vehicle during this time period.

-~ Instantaneqys velocity at moment t=0s.
’ﬂStantanemls velocity at moment t =3 s.

" The Average velocity during this time period.

\




_.3+1=52m

l . l r.l dl

ﬂf::}fz"'xl
= B Q0]

d. Instantaneous velocity at moment t = 0 s.

dx

m
Ux(t=0)=12><0—1=:_-1;.

e. Instantaneous velocity at moment t =3 s.
m
v(t=3)=12x3—-1=35 —
S

f. The average velocity during this time period.

A — Y
av At tz__rl

51 i

=
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[. Displacement

Displacement is defined as the change in the position of an
object relative to a reference point. It is a vector quantity and
depends on the starting and ending points, meaning that the
path the body follows between the two points has no effect on

displacement.

The displacement differs from the distance, where the distance '
represents the actual length of the path the body is taking, N "

1 i : : e F]
which is a scalar quantity, while the displacement represents ..h-_g_‘_"‘“ a8

the shortest distance connecting the two points. Assume an [ gure3-1: Different between
distance and displacement
object moving from point A to point B through the ACDEFB
path shown in Figure 3.1. The amount of the displacement
vector (AB) represent the shortest distance between the starting
and ending points of movement and equal to 10 m while the
direction of the displacement vector is in the positive direction
of the x-axis. The distance between points A and B across the
ACDEFB motion path represents the sum of the distances

traveled between the two points and equal to 17.5 m.
Suppose an object whose position changed from x, at time &,

to x, at time t,, then the displacement is:

(.1)

AXx =x; —x3

Example: 3.1

A group of runners set off from the starting point O towards point A, which is

located 1320 m east. From point

940 m west, then to point C, 320 m east, as sh

e

A. runners head towards point B, which is

own in the figure. Determine the




vueneral rnysics

v ‘QW
: i the ending point C

1t between the starting point and S P

displacemel

l?
distance travelled between them?*

Solution

The distance ocC:
oc = 0A- AB + BC

1320 — 940 + 320 = 700m

—

The displacement between the starting point O and the end point C is:

Aj'.:xc'_xg
=700—0=?00m

The traveled distance is the actual length of the total traveled path, which is:

d = 1320 + 940 + 320 = 2580m

2. Velocity

|

|
Average velocity
Suppose an object whose position changed from x; at time |
t; to x, at time t;. We know the average velocity as the rate of
change of displacement relative to time, which is a vector and

has the same direction of displacement.

AX gt
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is the position of the object at

here X0 the beginning of the

ovement 1€ 2t £=0. The last equation links the fhree
n

_iables (@ 1, x). Another equation that relates variables (x
varke

p.@) can be deduced by using the definition of acceleration to

for time, then offset time in the position equation:
i

S Vrp —
U=t
0= ¢ a

1 2
=Xy +yit+sat

Xf 2

1
(= x)a = ve(vy —v,) + 70 = v,)’

1
= vpv; — v} s (v +v2 - 2v,1)

B2 o

(4~ x)a == (v? + v?)

vi = v} + 2a(x, — x;)

= v? + 2alAx

30, we have three equations for linear motion with a constant

%celeration, which are:

Uf =at + v; (36)

1
| =sat? vyt +x, (3.7)
Uf = v} + 2aAx (3.8)




Example: 3.4 i it s
aight line with a constant acce

om static on a sti

/

IEI- . \
-. a
i oAl = " iy, 0

gziaey
2.5 i L':IIIEII[HIC the fO”O\\-’lllE.
=952

The time needed to travel 50 m.

a- L] -
at the end of this period.

b. The velocity of the car

Solution \

= The car moves from static with initial velocity equal Zem

. mE
required to travel a 50 m distance can be calculated from:

1 2
xfz-iat + vt + Xx;

1
5{]:5)(2-5?({2

_ 50 2

tE

t = V40 = 6325

b. To find the vehicle velocity after a time of 6 32 s:

vfg = viz + 2alAx

:2X2.5X50=250

D= 15.81 E
Y
________-__—-—-___ l

FrEEI}:

Falling Objceys




//

» £=6f2"6t+2

vf:dt
= .--_f.f_.tz= 12(1""6
x = dt
30m
ar(t:3)=12><3“6'— 52
e

4. Motion with constant acceleration

If an object moves at an increasing or decreasing velocity a;
with a constant rate and direction, the motion of the object s
a constant acceleration. Suppose that the velocity of an objeq
at the start of movement, that is at time t; = 0 s is v;. The

velocity of the object becomes vy at time L, the acceleration |

of an object can be written as

Av ve—v; v-—1
At te—t;

By this formula the object will move at an initial velocity Vi

|
|
|
with a constant acceleration a: ‘

Uf=ﬂf+vi

While their position can calculate from:

Xp = f vdt = f(at = U;)dt

1

E xf=-§at2+v,t+xn



i
1

3 .\ccclcruli{m
\verage acceleration

when the velocity of the particle changes from Uy at time ¢, to

i, at time t2, the average acceleration d,,, is defined as the

rate of velocity change in time.

Ty (34)
[nstantancous acceleration

The instantaneous acceleration d, is defined as the limiting

. AU
value of the ratio A as At approaches zero:

AV dvU
2 :
d. = li

—=— 3.5
M—n}n At dt 3.5)

Ifa, is positive, the acceleration is in the positive x direction,

we say that the particle is accelerating and its velocity will be

Increasing.

if a, 1s negative, the acceleration is in the negative x direction,
the negative acceleration does not necessarily mean that an
object is slowing down (deceleration). If the acceleration is

fegative and the velocity is negative, the object is speeding up.

e ——

e Chapter 3: Motion in one dimension

Example: 3.3

‘--"‘-—-_——.__ = 5 . .
An object moving in a straight line according to the following relationship:

x(t) = 2t3 —3t2 + 2t

C ; )
alculﬂle the instant acceleration att =3 s.
‘\‘w-..___‘__.__-___
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ad
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[xercises

. Throwing a stone verti
ertically upwards f;
: rom the top of a 34.3
o m

eneral

——

1D Rl ——— ’ L

; ard with a velocity of 500 2
,'Dodgn bo 5? pHSSinﬁ
&

ick v
A bullet hit a 20 cm thick

and existin

moment of it €

m
ty of 360.6 = Calculate the acce]el.aﬁun )

gata veloct

the board
«its the board.

the pullet at the

ven in the morning from Bisha towards Makka}, ,

at s€
een them equal 450 km, and arriveq i

A car moved
the distance betw

h-lukarrmnah,
I-i‘vtukarramzth at four 1
and time it took to travel this distance.

\Makkah a n the evening. Calculate the averag,
1 « €

velocity of the vehicle

; ; . Z m
A train is moving in a straight line with a velocity of 30 ’e and then slowgg

down until it stops after at time of 44 s, calculate the following:

a. The train accelerated.
b. The distance covered during this period until completely stopped.

A plane landed on the runway of an airport at an acceleration of 8 =, and
g%2

stopped at the end of the runway after a time of 25 s, calculate the following:

a. The velocity of the plane when it touches the ground.

b. The length of the runway on which the plane landed.

I 1
aunch an up arrow and reach a height of 122.5 m, calculate the following:

a. Total flight time.

b. 'hi
The speed at which the arrow reached the surface of the earth

@~

- -
-
-

ln(}s i l} L ]
by

figure. Calculate the following:




L':ﬂ:i) l'-"'----—--._..Ch‘:'“““‘-" 3: Motion in one dimension
] \
//_:D—:'

v ]
¢ /

2 -
uf =v; + 290y —y))

Vi
tmar = _E
tmax = gg = 6115

Flight time: The time required for the object to retumn

to its original position,
equal to the sum of the time of the rise and fall.

trotal = 2 X tmax = 2X 6,11 =12.22




W——
e ————— : 5 it reaches the earth is calculate \\
< The velocity of the object whe ated fiop,

t =5s

v; = 60 H’I/S .

vr = V; +gt
It

=60+ 9.8 XS:IOQ'S_

Example: 3.6 T
Throw an object up from the surface ofa2l0m ; - 'I‘"'ﬁ
-..,--mu..-'...',_;_i_,“__ ¥ =183 7,
high building at 60 '?" calculate the following: Eas.
___!_=__3_'_‘__ ,.,_,__“___yz 5.
. = o = Topsa,
a. The velocity of the object after at time of 3 s.
b. The distance in which the body travels to the
surface of the Earth after a time of 3s. ‘i‘ 3%
c. The maximum height that object can reach it. 2 ,'f;iﬂ',’};’;, fi

d. The time needed for the object to reach its
maximum height.

e. Flight time.

Solution
m m™m
U,'=6'U :, ‘g=9'85’_2.’ y[=0m
a 1T=35s,
ve=v;+ gt

m
=60 —9.8 ><3=30.6-§-
b. t=3s,

1
}*f=y.-+v.-r+zgt2

1
=6O><3—:~2-><9.8x(3)2= 1359 m

@ | |
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ith @ constant acceleration equal to the gravitational

ceele ration g. This acceleration does not depend on body

prOPL‘nieS' such as mass, density, or shape. Its value near the

- 2 1 I i — + . .
surface of the carth is equal to g = 9.8 m/s2? anq its direction

is always toward the center of the earth. To study the motion

of objects under the influence of gravity, equations of motion

can be used with constant acceleration, taking into account the

replacement of the horizontal axis x with the vertical axis Y.

Wa: 3.5

ms thrown down by v; = 60 ’_:. ‘ =
Calculate the following: L s=0s
'—zﬁ‘ g e
a The velocity of the object after 2 s of its -
thrown. @ | v =79.6m/s
b. The height from which the object was thrown,
knowing that it reached the ground 5 s after it
was thrown, |
¢. The velocity of the object when it reaches the . PN T
surface of the earth. . S
Solution

a. Falling an object down at an imtial velocity v; = 60 ? To calculate the

velocity of the object 2 s after it is thrown:

v;=vi+gt

m
=604+98 x2 = 79.6?

b. To calculate the height from which the object was thrown, we use the

equation:

= i
yf*)’s+vit+igt2

| =U+60x5+%x9.8x(5)2=422'5m

L= o
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y, Force
ﬂ]mugh our daily practices, we know that

an object can be
od through the muscular
mod

activity that the human body can

performs: such as applying force on a ball when kicked in the

- also know that the Earth aff; ects
biects with a force called gravity.
0

{ or thrown in the hand. We

This force pulls objects

,oward the center of the Earth, and a force must be projected to

aise any object to the top.

fFrom the examples we have seen, forces can be divided into

a The forces of contact that have physical contact between

objects, such as kicking or throwing a ball, pushing a cart,

and stretching your spring.

b. Field forces and there is no physical contact between
objects, such as the force of gravity, which is the force of
attraction between the Earth and any other body that has
mass. The force of gravity plays an important role in our
daily life as it keeps objects on Earth and the moon in orbit

around the Earth and planets around the sun.

From our experience, we know that force is a vector. Where
the direction of the force with which a person is placed on a
box placed on the ground is determined if the person pushes
the object away from it or pulls it toward it. A group of forces
tan affect an object simultaneously. These forces can be in the

“me direction or in different directions.

O Understand the nature of the force vector, we will study the

*formation that occurs when you force it spring. Suppose a




1]
@
M
Eix
3 1 o1
' i
A "Il + f
prpuee -1 The et o
force on the spring

ing the amount of l[/ Q W
indicating elongam:
¢ an indi icator ind g,

a0 10
sprlﬂb h R of how much force the spring affec, lh
«

shows the origina
d when the mass (m; = 1kg)

| length of the Origi,

I3

= ] Cm) An
e spnnu 1S ﬁlongate

going down by zem.

spring (

l d under the influence of h,
Suspendt?d th

weight strength Fy

epeat the experiment and attach the spring two blogk
If wer

=1kgand mp = 1 kg, the spring will extend twice ¢,

first elongation, i.€ 4 ¢, under the effect of the forces F1 and
IT5

F. The resulting force F that perform the same elongation s
2.

the total of the forces Ff‘} + ﬁz. Since force is a vector quantity,
we must use the rules of vector addition that we studied in the

second chapter to obtain the resultant force affecting an object.

Example: 4.1
Find the direction and amount of the & - P
resultant forces as shown in figure. ﬁ W=
} »
e\

Solution -
To find the force + ect

or, assume the dir mer
the right ection of the positive horizontal axis t0
ZF = 2001~ 795




Chapter 4:
laws of Motion

]. FOrce
> Newtomns first law of Motion

3. Newtons second law of Motion
4. Newtoms third law of Motion

In previous chapters we were studied the motion of objects while
ignoring the causes of motion. In this chapter we will study how to
generate an acceleration as a result of a force effect, and we will discuss
Newtonss three laws of motion. These laws were first published before
than three centuries by the focusing on @ scientist Isaac Newton,
in a summary entitled «Basic Principles of Natural Philosophy», in
which Newton presented the concepts of mass and power and their
relationship to acceleration. In this section we study the concept of

Mass and force and Newtons three laws.



Chapter 3: Motion in one dimension

—

. The speed of impact of the stone on the ground at point C

A car moves 1n a straight line so that its position changes at every moment

according to the following relationship:

Note that ¢ 1s in seconds and x is in meters. Calculate the following;

A car position at t = 1s, 2s, 3s, 45

a.
| p. The displacement of the car between the moments t = 25 and t = 4s.
| .
| ¢. The average velocity of the car between moments t = 25 and t = 4s.
~ The instantaneous velocity of the car at t = 35

§ A passenger bus runs on a straight line at a velocity of 45 X% and at one
kR’

[=9

point the driver saw another car in front of him, which led to pressure on the
brakes to stop the bus, but he collision with it after a time of 4 s from the
beginning of his use of the brakes. If the car is 40 m from the front of the bus.
Calculate the following:

a The deceleration of the bus accelerated before the collision.

b. Bus speed at the moment of collision.

9. A plane accelerates from static until it reaches the required take-off speed of

360 E:E Calculate the necessary acceleration for this, if the runway length is
1

1200 m.

10. Clarify the type of acceleration, positive (increase) or negative (deceleration)

| in each of the following cases.

a. Depress the accelerator pedal in the car.

a mountain towards the ground.

d then stopped.

r take off.

©. An object falls from the top of
¢. The moved a ball on the floor of a room an

- A plane is moving on the airport floor in preparation fo

f=H

(g

- The 100-meter race runner is starting run.
a red-light signal.

IS -

oA motorcycle heading towards

e



tin .
. b defined iy the international system of units (S1),

located on a horizontal surface level with

a force two times smaller than the first force on the
et i will move at an acceleration equal to half of the
e

: accelcmtioﬂ. but if we apply a force two times bigger on

first ) 3
vody it will move at an acceleration equal to twice the first

|hi5

|eration a8 shown in Figure 4.2,
3oce

e repeat the experiment and apply a force twice as large as

Ef on @ Mass twice as large as 2 m  then the object will move
sith the same d. To obtain the same acceleration, the
magnitude of force acting must increase with the same
pagnitude of increase in mass as shown in Figure 4.3. These
ohservations from practical experiments are summarized in

vewton's second law.

Newton's second law: When viewed from an inertial reference
frame, the acceleration of an object is directly proportional to

the net force acting on it and inversely proportional to its mass.

PF=m3i (4.2)

Where §. F represents the sum of the forces acting on the body,
s avector of all forces affecting the body, m is the mass of

the bk, - :
body, and represents the acceleration.

Fr .
o the definition of Newton's second law the unit of force
which

BNy,
- Monand symbolized by N, as follows: Whena force of

S

F na’
_2?? nza‘
T‘??n'slz

Figure 4.2: The force is
propertional  te the

acceleration when the
mass is fixed.

et
oF @

Lo

Figure 4.3: The force is
proportional to the mass
when the aceeleration is
fixed.

—



as the force affects a body of Mags | \ !
k

on is deﬁncd

NE“"t . 1 I.'_’.
cceleration of1 7

reSll]fS in a

B, IH

Quiz

Choose the correct answers.

elocity:

1. an object move ata constant v

a There is only one force that affects this body.

b. The sum of the forces acting on the body is not equal zero.

c. The sum of the forces acting on the body is equal zero.

9 . . :
2. If we push an object whose mass is m onto a frictionless surface ung
X nder th
influen . :
ce of the force of F, the result is that the acceleration is a. If
AT we

> a 3 m

block. What is the value of acceleration?

a. The same acceleration
b. a/3

c. 3a

____‘_-_‘__'__—-——

|




olution ' it i l to zern i
: i static, the resultant force acting on it 1s equal to zer, in

As long as the object ‘
both the vertical and horizont

al components.

£ = Fyc058 — Facosp = 0

_Ficosp _10c0s60_ ooy

37 cos@

cos30

ZFTV' = Fysing + Fysind — F, = 0

F, = F,;sing + F3sinf
= 10sin60 + 58s5in30 = 11.6 N

3. Newton’s Second Law of Motion

the body ar
‘ Y are equal to zero for equilibrium, as this object
remains static or dynamic ip a

strai ' t
velocity. ght line at a constan

Newton's
first law cannot describe the state of the

un— 1

changing the magnitude O

light objecy *¥ Object is more gifficult than ?

If we 3
ppl ;
y a hOl‘lZOIltal f{)r(:e ﬁ to an Object “ri[h




1 \-cwtﬂ"'-“ First Law of Motion

on's first law states that: in the absence of external forces
New

st rea
. potie® with

EF:U (4.1)

¥ F is resultant force acting on the object.

q viewed from an inertial reference frame, an object at

ins at rest and an object in motion continues in

a constant velocity.

Wh

cewton's 1aw confirms the principle of inertia of the object, as
e object cannot change its state of static or motion at a

constant velocity unless it is affected by an external force.

It is important to note that the concept of inertia is used to
define mass. Suppose we bush two wooden boxes, for the first
block m and the second block 2m. The second box needs
more effort to move it. If the mass of the body increase, its
resist to change in its state of movement or rest is increase.
The mass can then be defined as a property of the object that

determines the amount of its resistance to change its state, 1.¢.

the amount of its inertia.

The unit of mass in the international system of units (SI) is the
tlogram and jts symbol is kg. The mass m and weight F,
“ould not be confused as they are two different physical
Wantities The weight of an object depends on how much the
seen from Newton's
For example, a person with a mass of 100 kg

371 N
¢igh 980 N on Earth, 162 N on the Moon, and 371

& ;
e gravity affects it, as will be
®ong law.

" Marg

Isaac Newton lived
in the period 1642-
1727




In all cases, the forces of action and reaction that affect

different objects are of the same type. For example, as shown
in Figure (4.4), the sun affects the force of gravity F|, on the
Earth, and the Earth affects the force Fy, on the sun equal in

magnitude to the force F,,and its opposite direction.

As a second example, let us assume that a young man in a state
of static stands on the roof of a house, as shown in Figure
(4.5). The Earth's gravitational force F, =mg pulls the
young man downward, but he does not accelerate because he is
fixed on the roof of the building. The building exerts on the
young man the reaction force F,,, this force prevents the
young man from falling. Since the young man is constant, his
acceleration is equal to zero, and by applying the second
Newton's law to the young man, we find that: SF=F+
mg = 0 ie Fyj—mgj= 0 and thus the reaction force is

Fg]_ = mg

; ' d.%;,) Chaptef 4 1aves e -

(2)

— A

Fiz, ~ Fz21

1

(1)
Figure 4.4 The force of
action and reaction

between the sun and the

earth.

Figure 4.5: The force of
action and reaction of a
young man standing on
the roof of his house.

Example: 4.5

A static object lying on a table as shown in the

figure, how much reaction force 7 is the object
F2

1

Fi=350N

exposed to?

W=200N
Solution
n=W =200

reaction force fi exposed on the object is 200 N
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Exercises

2

i D

e velocity diagram of the

. b2 e What is the —
motion of an object in straight line “

ce exerted on -

3 =1 &1 ‘l
The figure represents tl

1 I for
magnitude and direction of the

the body?

A block of ice with a mass of m = 10g slides without friction,

incli =20F;
inclined surface at an angle of g =2

a. Find the magnitude and direction of acceleration of the ice cube.
b. If the cube leave the top of the inclined surface with an initjg velog,
equal to zero, what is the time taken for the cube to reach the epg (}flhl:
slope and what is its velocity at this point, knowing that the length of the

slope d = 50cm.

10 kg block body hanging with two strings making angles

- - - - T
of 60° and 30° as shown. Find the tension in string T; :

and T5.

Find the acceleration and tension force of the two objects,

as shown in the figure. The pulley is frictionless.

A person weighs himself in an elevator as shown

in the figure. Find the valye of its weight, if this

person has a mass of 80 kg and the acceleration
ay = +£3m/s?,




r r//
/cu"’ﬁnn affecting the child i -
P jponent of forces ¢ 18 the child in the x direction:
C('Iﬂ ;
1he

_ Fyz + sz
gfe ~ gcﬂﬂ(ﬁo) + 12 cos(30°) = 14.89N

omponent of forces affecting the child in the y direction:

The €

F;[y * FZJ"

sy =
_ 95in(60) — 12sin(30°) = 1.8N

ving Newton’s second law to find acceleration components on the x

py apply
.89
BT HEmR
ax = 1 30
1.8
& =.Z.:—Fl =——=0.1m/s?
Y m 0

Direction of acceleration components on x axis:
a
f=tan"? (—y)
ax
tan™1 (0 1) 11.3°
= tan =
0.5

Itis magnitude:

=

@ = 0.5m/s*

- SRS




eEnLyrde v W L 1
m— g N
___———= ¢ of the Eartl

ace O 124 4
" 4.4 _.,r-—-'"'fi on the SLII'f AC 4 N')
Example: e F weigh

< of abo
What 15 the mass of \

e
Solution e

e, = 4
}'W m

b
m=—_
l
4,

24.4 ’
B i, R

4. Newton’s Third Law of Motion

all, you will find that the wall is Pushing ,,
Yoy

If you push the w
L and if you kick a ball with a certain force, yoy fo .

bac
return that the ball is affecting your foot strongly i, e
opposite direction, and as another example 1f you put book
on the table it will push it down while the table pushes ;
upward. By studying many of the situations that we Mmeetiny
daily, Newton came to the conclusion of his third law, if g
object affects the force of ﬁ12 on another body, then the second
body affects with a force F,; on the first body equal to th

force Fy, in the magnitude and opposite to it in the direction:

Flz — —le (43]

One of ;
these two forces js called the force of action and

other is called the force of reaction

Newton's third law:
€xerted by object ]
OPposite ip direction
object |- (Every actio

If two objects interact, the force Fy

: , 4
on object 2 s equal in magnitude a

s 0
to the force 5, exerted by ob_]ect -

S €qual and opposite reaction)




Uhapter 9 Work and tnergy o),

2 USE the word work in our daily life and work ha
b S

W S a very
e tion in physics. We ¢ :
-ific connota - We say that we :
e ; Y that we did work if we
mf]ufﬂwd a constant force on a body and caused it 1o move in

g certain direction. If this force did not cause a displacement of

e

e body. then 1n this case we would not do work on the body
There are many different forms of work in nature, such as

" schanical work, electrical work, thermal work, and others.
work Done by a Constant Force

we will study the effect of force on a body in the three cases F
25 shown in Figure (5.1). If we want to know how the force ﬂ
effect on motion of the body, consideration must be given not -
only to the magnitude of force but also its direction. Assuming E
that the magnitude of the force is constant in the three cases. (b)
We find that the horizontal force component influence on the _ﬂi_
car in the state (b) is greater than the state (a). On the contrary, =
we find that the force in the state (c) does not cause any

Figure 5.1: The effect of

movement of the body since the force is perpendicular to the  force direction on work

direction of motion.

It is clear from the above that to study the effect of force on
e into account the vector

sed by this

the body, it is necessary to tak
direction of the force / and the displacement cau

force A7, Suppose we have a force of F that affects an object
the angle between the

-

Figure 5.2: Work done by

irection of the force F and the displacement AF is 0 as In force F.
defined as

Figure (5.2), so the work done by this force can be
I";‘uﬂ‘!u".'s:

ad causes it to displace AT and




General Physics

lerg=1x107]
[ eV =1.602 <1077 |

Sometimes we use other
units like erg and electron

volts (¢V).

one on 2 system by an agent exerting \1
|

The work W d
o 3 roduct of the ' 4
the system is the P magntude o

A7 of the displacement of 1, -
ﬁl]]1
of

and cos@, where 8 g the

force on

force, the magnitude

prce.,

application of the f :

petween the force and displacement vectors: ;
e Ril=Ar Peosd

W = F-AF =47 .

As is shown from equation (5.1), the work is a scalar Quanti

resulting from multiplying two vectors. When the foree Vecly

is perpendicular to the displacement vector, that is,§ = g

the magnitude of work 1
also depends on the direction of F relative to A7

s equal to zero, as c0s 90 = 0.The gy,
of the work
The work done by the applied force on a system is positive
when the projection of F onto AT is in the same direction

the displacement. When the projection of F onto AT is in the
direction opposite the displacement, W is negative. Workn

the international system is measured in units of Joule and s

equal to Newtons. meter.

: o
Joule is defined as the work done by a force of on° New

- : , . it
when influencing a displacement of one meter of the direc

of the force.

o

Rather : Sy
» we find that the work is a transfer of ener® ¥

fi . 5
rom the system, that is, when the work done on the ?
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Chapter 5: |
Work and Energy

1. Work
2. Kinetic Energy

3. Potential Energy
4. Work and Energy theory

5. Power

Universe in various forms. Every physical process

that occurs in the Universe involves energy and energy transfers or
transformations. Unfortunately, despite its extreme importance, energy
cannot be easily defined. The variables in previous chapters were
relatively concrete; we have everyday experience with velocities and
forces, for example.Although we have experiences with energy, such as
running out of gasoline or losing our electrical Service following a violent
storm, the notion of energy is more abstract.In this section, we will learn
about the concept of work, kinetic energy,potential energy and power.

Energy is present in the




Chapter 4:laws of Motion B

e Acman pushes a 100 kg box with a force that creates a 20 ° angle with the
horizontal plane

a. How much force is needed to move the box?
p. 1f a man continues to push the box

with the same force, what is its
acceleration,

7. Suppose a spring is pressed into a cylinder
and connected to two rollers, of the same size m
and having two different masses, on a smooth

frictionless table top. A cylinder have been

opened from both sides at the same time, and . .
the spring pushes the balls in opposite E

directions. Which of the two balls will move

away more quickly?

8. Car with mass of 1200 kg, start to £0 on straight path from static to reach a

velocity of 100 %‘- during the 10 s. What is the necessary force for that?

9. A person pushes a box of 50 kg on a frictionless surface at an angle of 30°
and a length of 50 m with an acceleration of 0.05 E% . How much the
magnitude of force needed to move the box with this acceleration?

10.

Choose the correct answer: A chair is placed on a rug. Then a book is placed
on the chair. The floor exerts a normal force
C. on all three,

d. only on the book.

€. only on the rug.

f. upwards on the rug and downwards on the chair.

only on the objects you have defined to be part of the system.




Solution
The horizontal component of the force 1s the one that cayuseg the e
rk
d%

because the motion is in the horizontal direction only.

= (5 + 4f) x 4 =20

As the work is equal to the change in the kinetic energy:

W = KE, — KE,
= 20-5 = 15]

—

A car of mass of 1200 kg moves at an initial velocity of 20 ff Find g,

Example: 5.6

required work done by car's brakes for stopping completely within a distance

of 30 m.

Solution
Since the car has stopped completely, its final kinetic energy is zero, and the

work done by the car’s brakes equals the change in its kinetic energy:

———

L. .. 1L .
W=§m1?f—§mvf
s=)

1
— =% 1200 x 202 = —240000 ]

2 L ——

3. Potential Energy |

. thet!
There are some objects can produce a work because EEEe

: ' work
kinetic energy, but there are other objects that can sho% )
gaﬂt‘d

due to the change of it is position and this energy 1S »
5$ 0

potential energy PE. If a man raises a body with a ™ |




Chapter 5: Work and Energy —

ma, , where m is

gy substituting the magnitude of force | =

the mass o the cart, a, is (e

ienitude of acceleration with
which the cart moves:

W=ma,x

4 L9 kS F o 1 i G
From the laws of motion with 4 constant acceleration

v = Vi + 20, X here v, s the initial velocity of the cant, vy

is the final velocity, we find that:

1
== 2 _1 2

By substituting the value of a, x into the work equation, we

get:

1 1
W=*§ mvf~§-mvf

That is, the work done W on the cart by horse has appear in

the form of kinetic energy equal to AKE. Calculate the amount

of KE of a moving object at velocity v at any point in time
from the equation:

KE = % mup? (5.2)

Example: 5.5
A force F =51+4f N affected an object of y

mass Skg and moved it in a horizontal -
y
displacement of 4 m Find:
@. The work done on the body by this force. F,

&l

b.If the body’s initial kinetic energy is equal to

5], find it is final kinetic energy.

\




P

Example: 5.3 ' \
I 7 ot he dircction of making a 60"\\
1

A force of 200 N affected
al to push the stroller. Calculate

anele with the horizont | * | = |
L e cart 10 m 10 the direction of .

the work done to move th

force.

Solution

W = Ar F cos @
= 200 x 10 X cos60 = 1000 ]

Example: 5.4
b 4 o

Two forces of 200 N each affect an object as well

as to move it 2 m in the positive direction of the y s Fr
Cevie B ork ' the two forces. 8=60
x-axis. Find the total work done by the tv 1 -
ar
"
Solution

Since the force F is perpendicular to the direction of movement of ﬂEFb-jE}I

it does not perform a work and the work done only by the force Fy.

W =ArFcos @
= 200x 2 xcos 60 = 200]

2. Kinetic Energy

it is able®

Body is said to have a kinetic energy KE if
phss*

produce a work, so everybody can move at a velocity ;
. bt line. ¥
amount of KE. Suppose a horse pulls a cart 1n straight !

f]'!:
: - e n|aced
work done by the horse on the cart to move 1t 4 disp!

Figure 5.3: A horse pulling

a cart to gain mobility. :
X, 18 equal to:

@ I

<
il
"
=y
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positive, the energy is transferred tgo it, and when the work is

negative, the energy is transferred from the system

Work 15 absent even in the Presence of

an applied force, as
energy has not been transmitteq to

and from the system, such
as the centrifugal force in the case of the rotational motion of a

body, For example, the movement of the Earth's rotation in its

orbit around the sun, it does not work because the kinetic

energy of the body has not changed, and the direction of force

is perpendicular to the direction of movement.

Example: 5.1

Calculate the work done by a horizontal force of 2 N

Yy
and refer to the positive direction of the x-axis on an I Fl=2N B =0
-
object whose displacement is 2 m in the positive [ — x
L. ) |ar] = 2m
direction of the x-axis.

Solution
W = Ar F cos @
=2X2Xcos0 = 4]

Example: 5.2

A man raises a bucket of 100 N at a constant velocity from a vertical well. 1f

the work done to get the bucket out of the hole is 1000 J. Find the depth of the
well,

Solution

W= Ar F cosB

Ar = _.E__
Fcos@

1000

= = Om
100 % cos 60 1

e —— ERN
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"ﬂ:ﬁﬁple: 5.8 B
The force of F =101 4 20f N

plane at position 1y

a. Find the work done on the particle by

affected a static particle of 2 kg in

R, " the x
=2014+1] m ang ‘

moved it to position 1, = 4§ + 3 Jm

the force I

b. Find the potential energy.

¢c. Find the final velocity,

e

Solution
AT Tz_rl=(4i‘+3j)—(2i+1f)=2f+2f
w = ﬁ'ﬂ?

=(10ix20§)-2i+2j) =60

b. APE = mg(y, — y;)

=2 %X 9.8 x(3—1)=392]

c. AKE =% mvf , where v; =0

w

60

=AKE+ APE

1 2
==X 2X v} +392

HER
'I'.?f = b =

Example: 5.9

A force that exertonab

distance given as a function

where

ody of 6 kg in mass and that it moves in a horizontal
of time in relation to: x(t) = 5t — 6t + 10

v in meters. f in seconds. Find the work done by force during the first

five seconds if the body moves from static.

S



General Fhysics
_'_-_._.---F__

s

24'}—

During five second V =

© WE hat:
Using work and energy theory, W€ find the

w =AKE+ A PE

Since the body 15 moving horizontally, then: A PE= 0

wherev; =0

W=ﬂKE:-1-mufl
2

1
W=-2—>< 6x(24)3=1723]

5. Power

Power is defined as the rate of work done, measured in units of

watt

v 1~
:q-
Q
3

dw
dt 59




vertical to a higher distance Ah = hf —-h

_ i » Where h; is the
top level and A; is the lower jey

el. the work done to raise the
body is W =mgAh, this work ;¢ stored in the body in

patcmial energy form, as in Figure (5.4):

Figure 5.4: A player who raise a heavy ball and gain some
potential energy relative to the surface of the field.

W = mgAh=mg (h; — h;)

Il

APE =m g Ah (39

The absolute value of potential energy cannot be set because it
depends on the vertical position of a reference point. The
Potential energy is also measured in joules, and is positive if
the body is higher than the reference level, and negative if the
b"d}' is below this level, but the change in the potential energy

APE is a fixed amount that does not depend on the reference
leve].




of 3m from the (

o |

Farth's gurfacc
i the body ¢ raised to @ height of 5 m, calculate the . 5
e in 118 mtenliul encrgy Im l |
b I:"l::i:}:‘ti‘c!i falls to @ height of 1 m, calculate the llm .
| change 1N its;mtentia[ energy- Groung—~ 1}
3

Solution

APE = I?Ig(h;’ - hf)

APE = mg(hy — i)
=(2><9.8)><(1-5)=

—78.4]

~

I
ﬂ.’- o) %
L

Figure 5.5: Photo of
differcnt energy.

4. Work and Energy theory ‘
"Energy is neither destroyed nor created from scratch” this |

term is called the law of conserv
e form to another. The Energy conservation

ation of energy, but energyis

transferred from on
Law can be written extensively for work and energy theory:

The work done of any system is equal to the sum of the chang¢

in the kinetic and potential energy.

W =AKE+ APE (54

- 1 1

F-Ar ==
o (zmvf—gmvf)Jr(mgh,—mgﬁi) |
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!

a. Find the work done on the body by force.

b. Find the final velocity of the particle.

10. 10 kg body moves as a function of time by relation:
¥(t) =123 352 =43

Where x in meters, t in seconds, find the kinetic Energy during the first three

seconds if the body moves from static.




-

Elasticity and Fluid Mechanics

1. €Elasticity
2. Density
3. Pressure
4, Fluid flow

In this chapter, we will study some of the properties of the material,
whether in its solid state, such as the study of elasticity coefficients, or
in its liquid and gaseous state, which we call fluids.



I xercises

L

(52

Lit:._{mra! Physics

— e o~ — ———— T

A body subjected to force of 10 N and if it moves about 5 Caley,
g g tc

work done of the body if the force and distance are in the same din}ctian :
Calculate the work required to raise a 2 kg block to a height of 2 py,

A force equal to F = 151 + 25] N affects an object that moye it
Om

position r; = (2,7) to position 73 = (5,9), determine the work done o "
3
body by force.

If the displacement vector of the body X =1 + 2j m and the veco, of the
force acting on it F = 2i + 5f N, calculate the work that is applieq ¢, the
body.

If the displacement vector of an object is x = 15 m, and the force of the
influence affecting it is F = 12 N, and the angle between them is equal to

= 30°, find the work done on the body by that force.

A body with a mass of 50 kg move horizontally at an initial velocity v;, then

" . m .
its velocity decreased to 1 = under the affecting of an external force, and the

work done on the body by this force was 3000 J, compute its initial velocity.

A man pulls a 30 kg particle to the top of the inclined surface at an angle of

30°, if the applied force is parallel to the surface, find out the work needed 0

pull the particle to the highest distance of 4 m.

An elevator of 500 kg climbed from the first floor at a height of 3 m 10 the

fourth floor at a height of 12 m. Find the change in potential energy-

A particle with a mass of 10 kg is move with the initial veloe

; rect
v, =5 ? from the point r; = (5,3) to the positionr, = (8,5), after sub)

to a force of F=1201 + 50f N. =
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Examplc: 5- l “

A particle of mass 2 kg was raised to the higher distance of 3 m

from the Earth’s surface at a time of power of 5 5

a. Calculate the work done 1o raise the body. 3m

b. Calculate the power to lift the particle.

Ground
Solution

Ww=F.x
=mg.x =2X98x3 = 588]

w
g

—_.--5—83—8-:: 11.76 W




Chapter 6: Elasticity and Filuid Mechanics .

w61

WEOU N affected a metal wire 10 m long and 3.5 mm in diameter,

extending by 0.5 cm find:

a. Stress.
b. Strain.

c. Young modulus

“Solution
- F
Stress =H
2500 s g N
= Ex75x 109z ~8x10°o5
_ _AL
Strain = T
05x%x 1072
= = ~4
10 5x10
_ Stress
~ Strain
2.6 x 108 N
g2 = 11
=T 52x10 —

Bulk modulus: Elasticity of volume

When affecting a cube object with pressure (stress) from all
sides as in Figure (6.3), this body will have a volume strain

and decrease in size as a result of pressure from all directions

50 that;
Figure 6.3: Pressure affected
. by a cube from all directions
Av
3=-B (6.2)

———_ 0




ulus, and the negative sjgp.; . \ ‘

i
5 ﬂi"l"l.:d a BII“\ mot mditﬂ[ﬂs
L]

Bi

decr

a result of increased presgy,

easc in body S17€ as

e
with a side length of 5 X 107° cm, 1I we am

A copper cube
: ced by 5 X 1076 i3
vertical force of 1.5 X 10° N, its volume redu y e, Caloyly,

the Bulk modulus for this cube?

. __-—__‘--___\
Solution
F_ g2 .
AV
-y
ALV
. 2 x 107° N
_ 15x10°x 125 A
25 x 10~* x 5x 107° m?
Shear modulus: Elasticity of shape
O i Y If an object is exposed to a tangential force on its surface asin
3 // '/ Figure (6.4), it causes%stress. A slippage in the body layes
' .y .
02} are causing a small shear strain in the body at an angle o

~ % . ; . 2 v
Figure 6.4: Shear strain = This strain proportional with the affecting Stress.

affected an object

(63)

S represents the shear modulus. 4—4

= [
I
%)

== =
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[N
1. Elasticity

Elasticity coefficients measure the rigidity or elasticity of the

material 10 (erms of changing its length, size o shape as a

cesult of affecting it with external force.
Young's modulus: Elasticity of length

If a solid material is exposed to the influence of an external
force, a change occurs in its shape, depending on the amount
and direction of the force. To simplify the idea, we begin with l

a metal wire has L length suspended from one end as in Figure |

(6.1). The vertical force F working down on this wire. By '
increasing the force affecting the wire, the elongation that A
occurs with the wire increases, where AL is the elongation in
this wire. F=mg
Figure 6.1: Tension of a
F < AL ml:tal_\\i.n: affected by
force F.
F=kAL

The constant of proportionality in the previous law is known
as the hook constant, which depends on the nature of the
material as well as the dimensions of the material. To obtain a
characteristic constant of the material which does not depend
on its dimensions we replace the force affecting the wire with

stress, and replace the elongation of the incident of the wire

with strain.

:, Stress: Defined as the force affecting the unit of areas from the
. Wire

F

N .
e measured by = units.

P ——




General Physics —
-_'__-_'"'-_-_F_- =

P e

as the amount of expansion of g
£

Strain: It 18 known Wi
- ¢ 8 whichisus; Ire

relative to its original length 0 —, Which is unitlegg

F AL

s 4 L 61

The Y is called the Young’s modulus or longitudinal elastiiy

coefficient: it is known as the ratio between stress and stray

The Young's modulus is a characteristic amount of ;e

material and does not depend on its geometric dimensions

N
measured by — units.

The material goes through several stages when influenced by

longitudinal stress as shown in the Figure (6.2), on which three

basic points appear.

The first point is the elasticity limit. This elasticity limit is the

maximum stress that can be applied to the wire before it does

EI A.t_g-f.n_if:,ctm:z paint
bréaking point ; o ) ; ,
------ R - not return to its original length, even if the stress 13 removed.
The second point is the point of acquiescence: at this point 2
1 san  large elongation of the wire occurs when a small stress ®

Figure 6.2: Curves the stress  exerted and the distortion of the wire remains. The last point®

and strain of a wire.
the breaking point at which the wire is cut from its weakes!

point.

.
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Ws

'gm{ﬁnc at a depth of 30 m below sea level. Find

ceawaler pressure affects on a cover

o m?. The density of seawater is 1025 kg/m3.

the amount of force that

at the top of the submarine with area

.--"'--4—_-_
Solution
-

F=AP, P=hpg+Pp,

F:ﬂ (hpg +Pﬂ)
= 2 x [(30 X 1025 X 9.8) + 105] = 802700 N

——

From the Equation (6.6) it is clear that the pressure inside the
liquid varies according to the depth of the liquid and is not
affected by the shape of the container containing the liquid,
and that any increase in pressure on the liquid will be

transferred to all parts of the liquid, and this result is known as

Pascal's law.

Pascal's Law: It states that if any part of a balanced liquid falls
into a limited space under the influence of a pressure, the

pressure is transferred to all parts of the liquid.

One of the applications of this law is hydraulic presses. A
small piston is used whose area a affects a small force fofa

liquid. So, the pressure of the liquid on the piston is p = % -

shown in Figure (6.7). At the other end of the tube is a large

Piston whose area A and the fluid affects it with a strong force
F. the pressure on it is also p = %, and as a result of the

ransfer of the entire pressure from the small piston to the large
Piston we find that:

.

Figure 6.7: Transfer
pressure to all parts of
the container

ERD
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.
EE a5 A
That is, the strength at the other end is multiply by g,
’ ) € ratjq
between the two areas of the ends of the tube.
Example: 6.6 e
s of the small and large piston is 2 cm, 2 o
: m

In the hydraulic piston, the radiu

respectively. A force of 2000 N is generated on the large piston. Calculate ip,

force acting on the small piston.

Solution ~rTE
f F -y
a A
f=F =

= A

2000 x 7 (2 X 1072)?
= =20N
T (20 x 10-2)?

Pressure gauges

1. The Barometer

The mercury barometer is used to measure atmospheri¢

pressure. It is composed of a long glass tube, which s filled

=r=0
| | :
T; ! with mercury and placed inverted, in a cup of mercury, 50 the
_l,'l',' A, column of mercury fell in the tube, and its top became 0.76m
ALB| above the surface of the mercury in the cup, a5 shown

i
|' :
| Figure (6.8). So, the pressure of the mercury column at the

point inside the tube is equal to the atmospheric press
i

Fi 68: A ; 1
igure mercury  point at the same level outside the tube in the €Y

barometer
calculating the atmospheric pressure from the relationshiP’

m Py = pgh :
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mﬂl‘lc: -
L'I_{i_émf‘fccled by a tangential force of its upper surface of 10° N,

ube . 2
¢ v displacement of 0.03 cm for the upper side related to the lower side.
cﬂllsﬂ Ty

eulate the value of the shear modulus.
Caictli

e —

mn
g, T

_-_'____...--"_

10° x (10 x 1072)
=10 x 102)% x (0.03 x 10-2)

N
= 3.3 %1019 e
m

2. Density

Density p is defined as mass per unit volume, measured by the

) k
unit of —‘gz.
m

_m
2= v (6.4)

M represents body mass and V represents body size. High-

Mass material is higher density than those with low mass of the

Same size, Figure (6.5) shows some of fluids, with the highest

Figure 6.5: A group of

den: ; : ;
“hsity fluids at the bottom of the cylinder and low-density different liquids of density

ﬂ "
uds at the top of the cylinder. The density of any substance

Most|y, .
tly decreases gs the temperature increase.

I SEN—



e har iy il

[ 4 m——

Example: 6.4

~foulate the density of Glycerol if the size of 100 amm
3

cm’.
-—-——___———__——-—-——-—4___ \
Solution

m \
=V

03 k
_100x10° _ o ke
79.3x10°°

3. Pressure

Pressure at point: defined as the perpendicular force g,

affects the unit of the spaces around that point, the pressye j

measured by the Pascal unit B, = %

F
Figure 6.6: Colum liquid P = H (6.3)
pressure onto the bottom
of the container

To calculate the pressure generated by a column of liqud
placed in a closed container its depth h and the area of its bis
A has been filled to the end by a liquid density p, as is in
Figure (6.6). The force at the bottom of the container is ¢4

to the weight of the liquid above it and therefore:

(68
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PV = pv,

pﬂivldt = pszzdr

gt = 42¥2 (6.7)

This is the continuity equation, and from this equation we
conclude that: the larger area of the tube section has the lower
i fow velocity. The amount A v is also a constant, and is called

the flow rate R.

Fluid flow rate R = Av: Defined as the size of the fluid that

crosses the fluid stream section area in the unit of time,
. . m?
measured in aunit =

Example: 6.9

__..-—-—______ . Fl " -
The water flows by pressure 3 x 10° P, into a horizontal tube with velocity

™ The radius of tube is narrows from 0.2 m to 0.1 m. Calculate the flow
5

speed in the narrow part of the tube.

Solution

Bernoulli's Equation
i :quid ins be as
Now we study the movement of an ideal liquid inside a tu

1), we assume that the area of the

fepresented in Figure (6.1




SN
I =

height of the g.round ata «b is (,11_ 1) .
[ 1C12 _
section and the g h

(31 l]ﬂ lll’.lllld at th

o ,{I and pI'ESSlll'ﬁ' t em
1 d hﬂl lhc 5!’

(ﬂz.hzl an !

P «(vs, P2) respectively. From the conservation of
(Ull 1 E 2:727

; : 12l to the totg]
.roy at the point a 1s eqt ’
energy law, the total encrgy

' chasaorb
energy at the point b. Energy at any point su i

three factors:

Fz L Pa.l‘;
S

=R

hy

L

a b

Figure 6.11: Fluid flow in an unequal section and height

I- The potential energy obtained by the liquid because of its
height h from the earth's surface and equal m g h, where m
is the mass of the liquid that passes in the time dt.

2- The kinetic energy obtained by the liquid because of its

speed v and equal to % m 2,

3- Mechanical work exerted to push the liquid into the pipes
and equal to the resyly of

multiplying the force by the
distance P A p (¢

By applying the conservation of energy law:

1
mgh, +-2-1n‘r114=i‘3+}31,,¢|1 v, dt

= 1
= mgh2+5mvg+pzsz2 dt

By “OMmpensating for the Massm =p 4 dt we get:

4
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& & Temperature — 3§
L} -

'It-_ll minimum

Chromosphere ™
i Transitionregion ©

'apter (:

Heat

1. Temperature scales
2. Thermal expansion
3. Specific heat

4, Heat transfer

Heat is a type of energy, just like the potential energy and kinetic energy.

In our daily life we are exposed to many natural phenomena th;:;r.t can

be explained according to the laws of heat and thermodynamics. In
this section, we will study some basic concepts about heat: we start
by recognizing the temperaturé measurements, then we dlscussdthe
expansion of solids and liquids as @ result of exposure to he-a;t, a:d \,:Z
address the concept of the quantity of heat and fﬁat ;;?:2”{ :’ays ©
conclude our study in this section by identifying the

heat transfer.
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Figure 6.10: Fluid flow in
an asymmetric tube

&
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4. Fluid Tow
imited 10 the ideal fluid that flows jing, ]

he ﬂuld flow s
h oth
e on top of eac er. Let's explaip

ol fluid in the following points-

y will bel S
peed is low and lh““qum

Our stud

(s size does not change if 1t remains unge,

nt tempcrature and pressure, an

constant, its density doesn
. Viscosity €xXpre

Non-viscosit)'-
ayers during flow, an

n-viscosity, i_e. no friction between ity

d since its size j

consta
ot change-

sses the forces of frictign

d the ideal fluid is

t

petween the fluid ]
cterized by a no

a flow.
1e speed of fluid particles at a certain point

chara
layers durin

Regular flow: tl

tad

is fixed over time, the velocity varies from point to point,

and each part of the fluid is m
t change the shape of the str

ovement along a constant line
that does no eam and 1s called
the flow line.
4 Its non-circular flaw: the parts of the fluid have no torque

around the point at which they pass.

Equation of Continuity

We assume that an ideal liquid has its density pna variable
d we assumé

section tube as described in the Figure (6.10), an
The amou!

that the fluid velocity at A, is v; and at Az 15 V2.
of
mass that enters through the section area A, 1n @ time d"
equa
qual to the amount of mass that comes out of the section &

A3 in the same time period dt

ny; = m;
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9. Hydraulic piston small ang large cy

- linders with diameters (60, 180)
respectively. Calculate the force generated by the

affecting the small piston is 10 N

large piston if the force

{0.It turns out there is a hole in one side of the tank filled with water and it is
open to space. The hole is located 16 m below the water level. If the water

flow rate is 2.5 X 107> m¥/min calculate:

a. The speed of the rush of water from the hole.

b. The diameter of the hole.

11. Natural gas pipe diameter of 0.25m gives 1.55 m? of gas per second.

calculate the gas speed?

-
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apter 6: Elasticity and Fluid Mechanics

2. The Manometer

The manometer shape is in the form of 3 letter U that

contains r,

a liquid and one of its ends js connected to the cop

tainer to (/" T
| o - ]
which the pressure is intended to be measured P, so the other G = I
. : ) a - A= ¥ ap

end is open to the air ag shown in Figure (6.9). The gas \

pressure in the container ig calculated from:
Figure 6.9: A mercurial
manometer

P =Py + pgh

"Example: 6.7

“How long is the tube that we need to make a water barometer?

Note: (Atmospheric pressure is 1x105pq - gravitational acceleration

m 4 kg
g= 98 -2 - water density 1000 = )

Solution

Fa=pgh
P

h=—"2
Pg
1x 105
" 1000 x 9.8

=102 m

Example: 6.8

“The height of mercury in open branch of the manometer relative to the

surface of mercury in container branch is 40 cm, the mercury density is

: 5 itati lerati
13600 i;%, atmospheric pressure 1 X 10°Pa and the gravitational acceleration

§=9.8 5— . Calculate the pressure of the trapped gas in the container.

‘“'l—-.______
Solution

e e
P:Pn+p9h

=1x10% + (13600 x 9.8 x 0.4) = 153312 Pa
"--._______-_-__

. __ o




[Exercises
- . long and O,
. A force of 1000 N affected a metal wire 100 m long : 003 m ip dl'lm

extending by 0.5 m. Find the Young modulus of this metal.

Liquid in a 0.5 m3 cylinder with a mass of 10 kg. Calculate the deﬂsit}- of

'_h.t

the liquid.

. . 3 3 "
If you know that the water density 18 1000 kg/m>, the mercury densny is

W

13600 kg/m* and the atmospheric pressure value 1.03x10° N/m? Calculage

the amount of pressure on the bottom of the pot 40 cm deep when it is fiy]|.

a. With water .

b. With mercury.
4. Parallelogram dimensions (2, 3, 4) m and its mass 5000 kg calculate the

largest and smallest pressure affects the parallelogram on the ground.

5. Student his mass 65 kg and the area below the surface of one of his feet is

250 cm. calculate the pressure on the ground in both cases:

a. When he's standing still on one of his feet.
b. When he stands still on both feet.
6. If the mass of a planet is 5.64 X 1016 kg and the radius of this planet is

6.0 X 107 m. Calculate the density of the planet. 4

7. A cylindrical vase with a radius of 3m and 1m high is filled with oil with 2

density of 900 kg/m? if the atmospheric pressure is 1.03x10° N/m? and the

acceleration of gravity 9.8 m/s? Calculate:

a. Pressure of the oil on the bottom of the pot .
b. Total pressure on the bottom of a pot .

o ; 10
8. Hydraulic piston with two cylinders half diameters (20,40) cm find the &

between the two forces Fa:F,.

N
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1
+=pvi = p 1
p+hpPadTs3 1 2% hpg ..|...§, p v2 (6.8)

This relationship is known ag the Bemouly;

€quation, which
can be formulated that

at all points oy the flow

line, the
1
amount P +hp g +3 pv?

remains constant,

Ifthe fluid 1s static, i.e. v, = V2 = 0, the Bernoullj equation is

This is the relationship between Pressure and height within a

static flmd. If the fluid is moving in a horizontal tube at one

height, the Bemoulli equation is:

1
Pl'_PZ = 59(!?%—1:%')

For Bernoulli’s equation are many applications such as

perfume spray and planes wing design.

Example: 6.10

An irregular horizontal tube in which the water flows, so if the pressure

1332.8 P, is in the part where the speed of the water is 0.5 ”f- Calculate the

. i T
pressure 1n the part where the speed is 0.8 :n

Solution

p 1 2 2

< Pz‘— ‘E p (Uz — vl)
1

fg = P1'-§ p Wi — vi)

f—

E 13800 103 x [(0.8)* — (0.5)*]=1137.8 N/m?
- 2

.
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5
— — (Tpg —32
_.Q(F )

le (7.1)

To convert from the Kelvin scale to the Celsiys scale
, We use

the relationship:

=T~ 4+ 273
T =Te (7.2)

Example: 7.1

If the room temperature on a summer dav is 10D:°F . ther howrmueh & i on

the Celsius and on the Kelvin scale?

Solution

“First on the Celsius scale:

5
Te= g (Tr — 32)

5
= 5 (100 — 32) = 37.8°C
Second, on the Kelvin scale:

Ty = Te + 273
=37.8+273 =3108K

Example: 7.2
At what degree does the Fahrenheit thermometer reading become twice the

Celsius thermometer?

Solution
If x is the Celsius thermom

eter, the Fahrenheit thermometer reading is 2Xx,

X 2x — 32
100 180




P

20 x = 3200
0
x = E_Z.E—- = 160°
will be 320 °F at Fahrenheit

That is, the Celst

thermometer.

- o
us thermometer reading at 160

[

Figure 7.4: The effect of
thermal expansion on
railways and bridges

108

2. Thermal expansion

the vibration energy of the atoms in matter increases with

ature, SO an increase in
ge in the dimensions of the matenal

increasing temper the distance between

atoms occurs and a chan

results. So, in most case, the dimensions of the material 1S

increases with increasing temperature and decreases with its

decrease. This phenomenon is known as thermal expansion. In
the case of the solid material the amount of expansion is VerY

small, while in the state of fluids is large, and we find the
difference

fore,

expansion very large in the case of gases due to the
in the bonding forces in each case of the material. There
this phenomenon must be taken into consideration WHe
constructing metal bridges, railways, gas pipelines and minerdl

fluids as in Figure (7.4),




ﬁ pature scales

g a measurce of a heat of the body. We often

T{nt}?c - concept of temperature with the amount of heat

e feel when we touch an object. There are several
g tha

s  gauges known as thermometers. Thermometers
gaug

cmPe iferent types, but all depend on the principle of

id yolume at constant pressure,
iqu
1. L1

Gas volume at constant pressure.
L

" pressure at a fixed volume.
» GasP ‘
o dimensions of the solid body.

1 Th ‘ :
rical resistance of the conductive material.

5 Elec
¢ The radioactive wavelength has changed with the

emperature of the hot body.
[tis possible to design a thermometer that depends on any of
e previous physical properties.

e C

Celsius Scale

I___-J

= o
the scientist Celsius is invented this scale, in which he divides t - \LJ
__ :

tie range between two points into a hundred equal parts. The
Figure 7.1: Centenary

lower point is called the melting point of ice, and the upper gradient divided by 100
- . . . degrees between freezing
pomt 15 the boiling point of water at standard atmospheric and boiling points of

N water
Messure, as shown in Figure 7.1.

fahrenhejt Scale

¢ F : : — -
Wh “hrenheit scale is relative to the scientist Fahrenheit,
bich .
considereq the degree of freezing water at the standard

a‘mlgs - .
Pheric Pressure is 32° Fahrenheit and the boiling point of

N~ S— lios3




General Physics

27315

Figure 7.2: The relationship
between pressure and
temperature when volume is
constant

mre 100 C nrF

the meitng .

posntof .

wated

0o 100 180°

The boilng » . ¥

poent of

water Fal 1o | K

Figure 7.3: Various
thermometers

; . 'l
: . rnrenheit, thus the difference betw it
water is 212° Fahrenhe D the tyy
o e ¥ i .J.-
degrees is 1807 Fahrenhett. 4o
Kelvin Scale P
r"
The physicist Kelvin who used the international syster, g .
measuring temperature which is called by his name (Kelvin)
The smallest point is the melting point of ice and given Al

273.15°K. The greatest point is the boiling point of water ang /5
given 373.15°K. The number of graduation sections is giyen
by one hundred. Each section is called the degree of Kelyiy,
When the pressure of any system decreases when the volume
is established, the temperature decreases until it reaches ¢

—273.15 degrees Celsius, as shown in Figure 7.2, so it is

equal to zero degree on the absolute scale in Kelvin. (0
3
The relationship between thermometric scales =;’[Wﬂ
The different thermometers are indicating a single temperature i gn|
when placed in one medium. We are comparing of a different
temperature scale for water in ice melts point and water boils et
point under the standard atmospheric pressure, as in Figure E

(7.3),

The following equation is used to convert from one of these

Wle,
scale to the other: ko
" “:‘al
Tc Tx—273 Tp—32 iﬁf
100 100 180 iy

To convert from the Fahrenheit scale to the Celsius scalé: we

use the relationship: | t\
f
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v, = vl[1+3aﬂT+3(adT)z+(aﬁT)3]

The Jast two parts may be neglected due to their small size and

V=V [143a4T]
V, = V,[1+pBAT] (71.5)

Note that the coefficient of volume expansion equals three

times the coefficient of linear expansion (8 = 3a).

Volume expansion coefficient B: defined as the relative change
in slide size when the temperature changes by one-degree

Kelvin.
Abnormal behaviour of water

The liquid takes the form of a container in which it is placed, il
and therefore the liquid only has a volume expansion
coefficient. It is known to us that the fluids expand by the heat

and increase in volume, but water is the only liquid that

- : s ) L = Tec
deviates from this base in a certain range of temperature. R R

Figure 6.7: The volume

of water changes with

temperature degree.

When we raise the temperature of a certain volume of water

from 0°C to 4°C, we find that the volume of water decreases

rather than increases as in other liquids, and this decrease in
volume continues until the water reaches a temperature, after
which the volume of water increases with increasing
temperature. That is, the volume of a certain amount of water
iS minimal when its temperature rises to 4°C, as shown in

Figure 7.6,
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,:F ----- =

T T T

enomenon called water anomaly is of great jp, Q
0

This ph

in cold re is a layer of ice on the Surf.

gions where there

es Celsius, while below this layer we finq i L8
) ; . ey
4°C and thus aquatic organisms cap, e s

"N thy,

Example: 7.3 \
A length of copper bar is 10 m at zero Celsius, raising its tempery
- Ura

to 500°C. calculate the following:

zero degre
temperature

medium.

a. Final length of the copper bar.

b. The volume expansion coefficient of the copper.

Note that the coefficient of longitudinal expansion of copper « ig equal
0.

LB 10 .05k

Solution |
a 2;=2,(1+ adT) 2
=10 [1+(1.8 x 105 x 500) ] = 10.09 m
b. f=3a
=3X18x10"5 = 54 x 105 ¢c°-1
Example: 7.4 |

Slice of metal in the form of

@ square, the length of its side ———— %" —.

100 i ' ]
- c.m, in zero Celsius degree, in the middle of which there —"_I’
is a

circular hole, half 5 drop 10 ¢m If the length of th d O !
of the square increases by 1 cm o -
a. Calculate the tem

peraty i

" € causing thig INCrease

f l ﬂ i

that the longit:
gitud .
% =1.25%105 ¢ 3
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ength and width become

' . caised to T the |
slice temperature 1s raised to Tz !
nensions of the slice become:

W, €5, then the new dit

¢, =0 (1+ adl)

Wy (14 & AT)

The slice area shall be S5, =W before heating and

S, = £, wpafier heating

52 = Fz Wy
_ 5, [1+2adT +(adT)?]

The last term of the previous relationship can be neglected,

because « is a small amount and therefore:
Sz= 51[1+2adT]

S, =85, [1+yA4T] (7.4)

Note that the coefficient of surface expansion y equals twice

the coefficient of longitudinal expansion (y = 2a).

Surface expansion coefficient y: defined as the relative change

in the area of a slide when its temperature changes by one-

degree Kelvin.

Yolume expansion coefficient

Suppose a solid box have dimensions w,, #,, h,, at
temperature Ty, and heated until it reaches a temperature T,.
We find that the size of the box increases due to the expansion
of its dimensions to become its dimensions wy« €, ¢k, after
heating, Thus the size of the slide after heating is: AA
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Longitudinal expansion coefficient

Suppose @ metal bar as shown

in Figure (7.5), the length of
|

INCrease in temperature. [y -

| ' 4 - "Mi
practice, we found that the Increase in length was directly b

proportional to the original length, Thus,

which 1s extended due to the

the amount of Figure 7.5: The effect of

1 the increase in both width and ::::;',";:g“"‘“‘m“ S

increase in length is greater thar

thickness. Suppose that the original length of the body is #,,

and when the temperature is raised by an amount AT, we

notice an increase in the length by the amount A€, Tt has been

found that the increase in length is directly proportional to the

original length and temperature difference as follows-
Al =a b, AT
t—€=ad AT
;=4 (1+ adT) 73)

Where £, is the final length after stretching. The
proportionality constant @ is called the longitudinal expansion

coefficient of the material.

Longitudinal expansion coefficient: a defined as the amount of
change in length for each temperature change of one-degree

Kelvin,
Surface expansion coefficient

When you raise the temperature of a slice of solid material, its
length and width increase, so if the height and width before

hcaﬁng are w,« £,, in order, at a temperature Ty, then 1if the

R
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Q = CAT
(7.7)

The amount of heat gained or lost can be calculated using t
using the

previous equation provided that the material does not change
from phase to another. If the material is transformed fromjpa
phase to another, the previous relationship cannot be used
during the transformation process, because the temperature
during this process will remain constant, thus calculating the
amount of heat gained or lost during the transformation

process from the following relationship:
g=mlL .

L is the latent heat that is known as the amount of heat needed
to convert one gram of material from a phase to another phase,

when the temperature is constant.

Example: 7.6
Calculate the amount of heat needed to change the 720 gm of ice at —10° C to

0° C. Note that the specific heat of the ice ¢ = 2220 J/kg K.

Solution
Q =mcAT
=0.72 x 2220 x [0 — (—10)] = 15984 J

Example: 7.7
liquid water and ice with mass equal
melted, how much should it be gained during the presence of

5 : :
A system of 720 gm is heated until the

ice is completely

the liquid and ice phase in the system?

Note that the latent heat of the ice melt is 333 kl/kg

Solution

——

N
Q:mL

= .72 %X 333 >

103 = 239760 |




// S
L ~mperature to 312°C \
: “I:]l P’[?Lr 51:11]1[:. raised 118 temperature to 27 C, and thep I}iac-&din
AT & . and water mass 2 1
lass container (Watet temperatuire 12° €. an Sl 2 Calculat¢ |
H r |
: final temperature of mixture, if the thermal balance is reached,
the nne
|
Note that the specific heat of copper i 0. 092 , the specific heat Of g
IS 15_‘!_1 and the heat capacity of glass 18 45"!}‘ : |
———
Qcopper = Cwater + Qgiﬂss
[mc,'opper Ccopper (Tf =T )]
[mwmer Cwater (Tf i Ti)] + [Cgmss (Tf = TI)]
75 x 0.092 (312 — Tp) = 220x1 (Tf — 12) + 45 (Tr —12)
2152.8 — 69 Tf = 220 T, = 2640 + 45 Tr — 540
53328 = 27197
Tr = 19.6 °C
4. Heat transfer
:ﬁ' 2 comsn " Heat is transferred in three ways: conduction, load and
3 2 y

radiation as described in the Figure (7.7)

A { o ‘."\-
&y 2 e
Thermal Conduction

Figure 7.7: Heat transfer

methods
rer of materd

The amount of heat Q that passes through a lay
directh

has two flat and parallel surfaces and thickness %
the
which

proportional to the area of the surface A through

o
heat passes, the difference between the temperature of ¢
sides of the layer T,,T,, the time of heat Tfﬁmfe

inversely proportional to the thickness of the 18y




_ its mass m and change in
or lost by a system is proportional to 1ts mas

temperature of the AT

Q < mAT

The constant proportionality is called the specific heat of the

material.

Q =cmAT %S

Specific heat of material ¢ is defined as the amount of heat
needed to raise the temperature of one gram of the material
1°C.

The amount of heat is measured by the calorie, which is the
amount of heat needed to raise the temperature of one gram of

water 1°C.

The scientist joule has conducted an experiment in which he
proved the possibility of converting thermal energy into
mechanical energy and vice versa, thus proving that thermal
energy or heat is only a type of energy can be expressed in

joule units, if W is the work done by joule which resulted in

the amount of heat Q calorie, then:

W (Joule) = J x Q (Calorie)

Where a constant J called mechanical heat equivalent has been

proven by practical experiments that:

1 Calorie =418 Joule

Heat capacity is the amount of heat needed to raise the

temperature of the material 1°C, and it ;
symbol C,

)
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Solution
a £2=%1(14+ adT)
‘fl a
101 — 100

= T00x1.25x10-5_ 200°¢C

b. £ =%, (1+ a4T)
=20 (1 + 125 x 1075 x 800) = 202 cm

Example: 7.5

—

A size of metal box 1i 3
s 0.55 m? at a temperature 20°C. if the temperature

increases to 100°C , what is the box size after expansion?

Note that the coefficient of longitudinal expansion a@ = 1.7 X 16-F 2%

Solution
B=3«a
=3 x 1,7%x10°% = 51 X 105 ¢° 1

— 055 [1 + (51x107°) (100 — 20)] = 0.552 m?

3. Specific Heat

like other types of energy such as

Heat is a type of energy
cal energy, chemical

kinetic energy, potential energy: electri

hotovoltaic energy. If heat 1s
k involved in generating it. Energy in all its

d, i.e. it does not peris

energy, and p generated, it is as

much as the wo
h and 1s not created

forms is conserve
ansformed from one form to another.

from nowhere, but it s tr
tion rule states that: the total energy in

The energy conservd
f heat Q acquired

any closed system is conserved. an amount O




Radiation

Heat is transmitted by radiation outside th,e bt

= : ; Obje
] through the surrounding medium, whether Vacuyy, %2
g G

p , p
medium and this is how heat travels from the un 1o ” ¥sigy
e ¢
as shown in Figure (7.9). Heat radiation i electy,
Magn ety

*! ! waves that move at the speed of light, also g laws S thay,
to electromagnetic waves also apply to thermg] Tadiatigy,

Figure 7.9: Heat transfer by
radiation Scientist Stefan suggested that the total radiatiop frs;

body is proportional to the fourth exponent 1o its ﬂbsnl
temperature. Boltzmann was then able to theoret:cau
Stefan's law of thermodynamics, and found hy me I
applied only to ideal black objects, and was colleq the

Stéphane-Boltzmann rule, which states:

Where:

Q : The total energy of radiation per second of square meters

of a black object.

T : The absolute temperature of the surface(K).

& : Stefan Boltzmann constant o = 5.67 X 107° mez k!

A : The area of the radioactive surface (mz)

__.__._______..--""

Example: 7.9

A sheet of metal whose surface area 200 cm? and thickness 2 €™ ﬁ”{'}
e of 1 min. !

Dﬂ aﬂd T'l:

amount of heat that travels through the plate in a tim

difference in the temperature of the opposite surfaces is 10

thermal ivi i - |
ermal conductivity of the plate is 0.2 - //




> 5'1
temperaturc on a Cf‘:isju
5 jf .

gen freezing
it
"y

L 1
"

[ xerciscs

|. Find the value of OX¥Y

=H8V .

e valuc of temperature on the Fahrenheit when the s

al —10 o°c

eded to convert 0.1 kg from ice to Wi
J Vapg,

kg’ the latem h

Calculate th D
€r
at% 1.

on the Celsius €qu

b

Find the amount of heat n¢

the latent heat of fus

)

ion of water is 3.33 x 105

(Note that
: J
tion of water 18 2.26 X 10655).

of vaporiza
If an amount of heat Q@ = 150 cal is given to 100 gm of aluminjyy,

per. Which one is hotter element?

gm of cop

) z cal
Not that: the specific heat of copper 15 0.092 gm-K and the specific heat

cal
S

aluminium is 0.2 —
gm°C

: 2 . !
meter length and 2 cm*® section area, one end of iy

5 A copper bar has a one-
bar is put in water its temperature 100 °C and the other end put in ice at 0% |
|

Calculate how much heat is transferred from the hot end to the cold end n:

time of 10 minutes.

Note that: the coefficient of thermal conductivity of the bar is 0.2 =
= emstC

6. What i
at is the amount of heat released when 20 gm of water cools from

temperature 90 °C to 30 °C?

cal
gm=C’

Note that: the specific heat of water is 1

7. An insul :

: ated : . g
aluminium container, its weight 20 gm contains 150 g™ watt

oc and ¥

at 20 °C. A pi '
prece of metal with mass 30 gm was heated to 100

dropped into
the
water. If the final temperature of the water, the bowl &

piece of metal is 25 ©
C, find the specific heat capacity Dfﬂj{u




b. Electrification of an uncharged object by ¢o
Ntacy

another charged object:

If a conductive object charged with an electricg] charg

into contact with another uncharged conductjy,
; ; = Obje
(electrically equivalent), the conductive object chargeq i

aﬂa

result of the conduct loses part of its charge tq the o
Othe,

equivalent conductor body, generating electrical Charges of th
¥ . * E

same type. The total charge is distributed on them sq that ¢
¢

total electrical charge remains constant.

c. Electrifying an uncharged object without contacy with

another charged object:

If a charged object approaches another electrically equivajen

) = conductor object, the even object will be affected by the

*  charged object, with two different charges. A shipment close

- *

to the moving object is contrary to its charge and is called a

restricted charge. The shipment away from the moving object

Figure 8.2: How to electrify
by influence between a
charged ohject and another
neutral object. Figure (8_2}‘

is similar to its shipment and is called a loose charge as in

2. Coulomb’s Law

Scientist Charles Coulomb conducted many praclical
experiments in the laboratory to study the behavior of

electrically charged objects, to determine the relationsii?

between the amount of electrical charges and the amount of
entist

attractive force and repulsive between them. The ¢t

. . and
Coulomb relied on the concept of point charge in his study &%
experiments, where we consider the body charg® ¥




=T

QoCd —=—=x
X

The pmponinnality constant is called a thermal conductivity

coem(:“:nt kC

g B

t

T1 s Tz
X

H = .’\"A (7.9)

The amount H =% is called the heat transfer rate, and the
L% s called di
amount —— 15 calle temperature gradient. The thermal

conductivity coefficient k. is measured by a unit “;W

Thermal conductivity factor k.: Defines as the rate of heat

transfer through a layer of two parallel surfaces, the area of its

section is 1 m? and has a thermal gradient 1 -:—;

Convection

Heat is transferred by the movement of molecules from hot to
cold positions carrying thermal energy, when these molecules

collide with other molecules, we see the spread of heat through

fluid, and this occurs only in the case of fluids. For example,

heat transfer through water, when heated, the water near the

bottom is hotter than above it and therefore its density
decreases, as a result the hot water rises up and cold water falls  Figure 7.8: Heat transfer

by convection

downwards. In other words, convection is the movement of hot

liquid during the pot as in the Figure (7.8).
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1. properties of Electric Charges

[n Nature there are two types of electrical charges, the first
being negative charges such as those carried by the electron
and others positive charges such as proton charges. An object
can be shipped by transferring some electrons from one

substance to another substance with the massage, thus
generating on the material from which the electrons are

transmitted a positive charge @ = + N e, and the material to

which the electrons moved is generated a negative charge

Q = —N e, and these charges generated are equal to the true
number n of a single electron charge estimated at 1.6 x 10" C.

The electrical charge measurement unit is the C- Coolum.
Ways to get a charged body:

a. Electrification of an uncharged object with friction with

another object:

When two electrically equivalent objects come into contact
from two different substances, some valence electrons (the last
orbit electrons in an atom) move from one object to the other.
The number of electrons lost by one body is exactly the same
as the number of electrons that the other body acquires. In this
way, we have shipped the bodies with two charges of equal
amount and different in type. For example, a rod of Aponite
was charged with a negative charge when a piece of wool cloth
was massaged, as well as a glass rod with a positive charge

when it was massaged with a piece of silk cloth as shown in

Figure (8.1).

(Glass ==]

Silk

............

------------

Glass+++ 44 4+++ 241 vv4]

Figure 8.1: How to charge
a glass stem by rubbing it
with a piece of silk.

(125



Chapter S:
Static Electricity

1. Properties of electric charges
2. Coolum»s law

3, Electric field

4. €Electric Potential

5. Capacitors

including laser

Static electricity has many applications in our daily lives,
electrocution and paper cameras. We will study the basic

printers,
olurms law, electric field, electric

concepts of point electrical charge, Co

voltage, and at the end of the chapter we will study the capacitors.



B

——t

Ge.nerarPh},sits

EE—
-

..__.___._“—u—FH_._——r-"__—-__ "\
. “qa - 9c \3
["(':A = he 2

3x107¢)-(12X 107%)

o =1
= (9 x 107) (0.05)? 296 N

The direction of this force in the negative direction of the (x) axj,

So. the result of the two forces Fa 18

Fﬂ = FB.FL — Fcﬂ. = 33?5 - 129-6 = 207.9 N

The force obtained is in the positive direction of (x) axis.

Figure 8.5: Shows the
direction of the electric 1, qq at that point. Charge Q affects the t

field strength of a positive

=

3. Electric field

The Electric Field, which is generated by an electricy] i
2,

can be defined as the space around that charge in whig ;
= It

effect appears.

The electrical field at a point: is defined as the electrical fore

affecting a positive point-test charge of the unit placed at tha

point. |

To calculate the power field strength of 2 q charge at a porrt
all positive g test charge

far away r. We suppose that a sm
est charge g WihF

and negative charge force, calculated by the Coolum law
q-9q:
F=ke—

8%




—— Chapter 1: Units and Dimension -_—1

- am-c and the specific heat of
water 1 gm-C

3. What is the amount of heat requireq 1o convert 30 gm from ice at
ice at a

—5°Cio
water its temperature 20 °C9

Note that: the specific heat of w cal _
f water 1 Cgm = the specific heat of ice 0.5

ca!
he latent h o
— _the cat of melting ice gg <2 P

9. The copper calorimeter has a specific heat 0,20 2L "“‘T, and its mass 70 gm

contains 400 gm water and 100 gm ice in a state of thermal equilibrium.

Added to the contents of the calorimeter is a hot piece of metal whose

: cal
specific temperature 0.1 gmec> Mass 300 gm, and temperature is unknown,

if the final temperature of the mixture is 10°C . What is the initial

temperature of the metal?

Note that the latent heat of melting ice is 80 ;;: the specific heat of water

cal

1

gm*eC’

10.A copper rod, with a section area of 2 cm? and one-meter length. one end of
this rod is put in boiling water at 100 °C and the other end put on a plate of
ice at 0 °C . Calculate the amount of heat that moves from the hot end to the

cold end in a time of 10 minutes.

Cal

Note that: the coefficient of thermal conductivity of copper is 0.2 s

D
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ed that the direction of electrical force b
e

be not

It should :
— utward (repulsive force 3

ilar charges s 0 ). whij

tweg,

s1m _ b _ & By
ctrical force between the differen &
5 i HI'Q
) as shown 1n Figure (8.4) Ble ey
- leica]

tion of the ele

4 Fay 'FI.'- - -
. ; direc
qtractive force

Fufee (e tue jnward ( ,
force 15 measured by newton. The proportionality CONStapy

r g In

. Tati is called the Coul

Figure B.4:  shows l!ll; the previous relationship 18 omb CONstany (k)
direction af the gravitationa ittivi '
e and the forces of  This constant depends on the permittivity of free Space i
ol

clectrical repulsion hetween ‘ | |
The value of the coulomb's constant vacuum is equal to;

charmes.

1 ~ 9 x 10° N -m?/C?

k —_—— =
—— o

¢ 4ng,
“Example: 8.1 R,
Find the amount of electrical force between the charge —
of the nucleus of the sodium atom and the electron in Fu, E@

one of the orbits of the atom away from the nucleus

1.2 x 10-1! m. Atomic number of sodium Z=11.

Solution
The forces between the nucleus of the sodium atom and the electron are

attractive force.
. N9
F=ky=s
= (9 x 10%) (11x1.6 x107*%) x 1.6 x 10~1?
(1.2 x 10-11)2 =1.76 x 10°N
Example: 8.2

Find _
d the amount of electrica] charge affecting anotl - e ch __ﬁ;f
and 25 cm awa 1er positive charge 0
y from b S
oth are putting in the vacuum, with the electrical for®

between them
equal

unkn M 10 24 N for the outsid i of
own charge, e, and determine the 1yF¢

\
e




//",' fh q2 'H-_M\ 1
iz — ré e
![“12 g E_‘

T i
ql ke ' q: e s

2.4 % (0.25)2
d (E?x 10°)(5 x fo““rr))

- 3-33 X ID“GC

gince the force 1s out (repulsive) the two ch
a

TEes are simijjar

we find that the required charge is positive » and from there

—_—
—_—

‘Example: 8.3

‘Calculate the magnitude and direction

Fu

of the force affecting the point charge Fm . e
placed at point A. Note that the

—

amount of charges is: (q4 = 3uC, 5 cm 2em

gg = 5HC, g¢c = 12 pC)
Solution

First, we calculate the magnitude of force by which charge B affects charge A.

Ja * 4B

- -6
(3x107%)-(5x10 )=337.5N
(0.02)?

= (9 x10%)

The direction of this force in the positive direction of the (x) axis.

' harge A.
Second, we calculate the amount of force by which charge C affects charge

-‘-""--—_
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Electrical voltage for point charge

The voltage difference between two points B and A j, the

\ electric field for a positive point charge along the line betweey
o the two points and the center of the charge is shown ip Figure

{ +
L] ']\l q
/ (8.8), where the electric field of the positive point charge
spreads outward in all directions, so the field is irregular in the
RE T ) @ surrounding area of the charge. The voltage difference
| — : .
y I .I Fe—qf between the two points is calculated in the irregular field from
| .
0 g the] the relation:
\E o
&V=VAB=VA—VB=_I Ed‘g
Figure 8.8: Voltage of eg

the positive point charge

Where d? is a differential element of the displacement vector

that the charge g, moved in the electrical field from point B to

point A, this vector is the opposite direction of the vector E

L]

S0.

—

df=-dit , T =-7 , f5=-T;
By compensating for the electric field vector E in the equation:

i

E =k,

f

Where P represents a unit vector in the direction of the

electrical field.

St g -radr
w=-[ "Lt can=ka| 7
=g T8
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od at a physical point withoy dimensiop,

ci‘“"ﬂt . S (some
oo s are called particles).

en
elef

rical poWer is divided into twq types:
gle

pe Power of Repulsion

T
3
L od of the glass charged with 4 Positive charge is
I : :

speﬂd*?d and left free to move as in Figure (83). then ———
su

her rod 1s rounded from the glass charged with 5 positive
an

charge of the suspended rod. Note that the free-mgving
qspended rod begins to move and rotate away from the other

«od. We conclude from this that objects charged with similar

Linds are incompatible.

b. The power of Attraction

Ifarod of aboniet charged with a negative electrical charge is

suspended and left free-to-move as in Figure (8.3), then

another rod 1s rounded from the glass charged with a positive

L

repulsion
charge of the suspended rod. Note that the free-moving

suspended rod begins to move and rotate closer to the other  Figure 8.3: shows the forces

of repulsion between similar
rod. From this, we conclude that objects charged with different  ¢lectrical charges, and the

forces of attraction between
' different electric charges,
kinds of charges are attracted. ifferent electric charyges

Coulomb's Law: States that the magnitude of electrical force

between two charged particles 1s directly proportional to the
Product of multiplying the amount of two charges (q1.q2) and

Versely with the square of the distance between them ()

d:.92
F 2
Fsp 219, (8.1)
rz




art calculating tj
et's star £ the amount of v
oltag& differe
I ‘ nce
petween points A and B by the force F=— E
> whi
ca!culatcd as: q “

W=F.d

. -'QtE: ' &. = ntd
Clearly, the voltage at point A is higher than the voltage at
point B, and from the definition of the voltage difference of

the potential VoltageAV:

W,

q.Ed
qe

AV =

AV =Ed (3.4)

The voltage or voltage difference is measured by a unit called
volt v.

1]

1V=-i—'

2 Chapter 8: Static Electricity -

Example: 8.5

Calculate the voltage difference be

between the plates is 0.2 cm, if the ele

rween capacitive plates where the distance

ctric field strength inside the capacitor is

equal to 1000 %r-

[

Solution /

AV = Ed

= 1000 x 0.002 ﬂ/"”,'
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. rork ed on it to raise
cnergy as a result of the mechanical work exert

w k W is exerted

it and is equal to mgh . Similarly, when a wor |
" i electrical

by an external F force to transport a positive small ¢

. . e 1S moves
test charge q, in electric filed E. The test charge

displacement d , from point B to point A. This charge

i i iti i ar from
acquires an electrical position energy, as is cle
Figure 8.7.

Figure 8.7: shows a comp

arison between the gravitational field and jts effect
on objects. The intensity

of the electric field and jts effect on the charges,

Electric Potential V at a point: is known as the amount of work

the small positive electrical charge equal to

unity, from infinity to these point in reverse direction to the
electrical field,

exerted to moving

The voltage difference AV between two poins is defined by

10 moving the small
charge equal to unity, between

the amount of work exerted positive

these two points in reverse
direction of the electrical field.

- ® |



A

.

- of the electric field vector is the same as the
dir
The

of the electrical force in which the q charge affects

| i charge qe 33 shown in Figure (8.5), and the electric
P et N
| eld 15 measured by ¢
1€
£![‘Clric ]Ti{f]{l Lines
we are visualized the electrical field with a schematic
;;gw . ‘ |
rescnta*i‘-”“- The best way to visualize electric field models
1ep

s to draw lines known as electric field lines. The first to
roduce this idea was the scientist Faraday. The numerical
gensity of the electric field lines is proportional to the
magnitude of the electric field. The electric field lines go
outward from positive charges, and inbound to negative

charges as shown in Figure (8.6).

Chapter 8 Static Electricity

N
N

N

/ :q-\
Figure #8.6: shows the
direction of the electric

field lines of positive and
nepative charges

“Example: 8.3

point charge of 10 pe.

Find the magnitude of the electric field at a point 5 m away from a positive

Solution
q
E =ker—2
=9x10° HOFRTO = 3600 X
N 52 C

4. Electric Potential

The potential energy of an object in the field of gravity 1s
clearly similar to the power of the electrical position of a
harged object located in an electric field. When the object of

dmass m i raised to a distance h vertically on the surface of
E & _ ;
' ¢ earth, we say that this object has gained some potential




P UﬂnerarPh},siCs

e e
T T

Solution

_ g4

e d

(8.85 x 107*%) x (0.1 X 0.1) _ 442 x 10-11 F
0.002

S

Connecting the capacitors

Capacitors can be connected in different ways, in order 1,
obtain large or small values compared to the origina] values of

the available capacitors capacitance.

Connect the capacitors in series

Capacitors are connected in series to obtain a small toy
& G

-

[ . : ‘ ‘
’[ capacitance less than the smallest capacitor in the circuit, If we

have a group of capacitors connected in series and their

v vy

i " capacitances are C1, C2 and C3 and a V voltage difference is
applied to them as in Figure (8.10). As all capacitors will be

Figure 8.10: shows  the

f“““'i“i"" of three capacitors  oharoed with the same value of the electrical charge, we notice
in Scrics

that:

V=V1+V2+V3

Q=Q1=0:=Qs

Compensating for the potential difference from the

relationship (8-6):

LY.
Ceq Cl Cz C3

By dividing by (Q) we find:

! 1 Sl (8.8)

e i —

Cq C G G ,
@ —— l




Chapter 8: Static Electricity

I,,I||,;,[-Plnn: Capacitors
pars

F,{failef'l’]mﬂ capacitors consist of two paralje] plates metal.

plates is A, Separating the two plates
| a distance d as shown in Figure (8-9). An isol

+Q

The ared of capacitors
&

fron
paterial is placed between the capacitor plates.

ated

The capacitor capacitance is directly proportional to the k.

2 - g Figure 89: shows the
citance plate area and inversely to the distan , ; I
capa ce betw cen installation of an electrical
e capﬂmtm platest capacitor consisting of two
metal plates

A
c ——,
~

The proportionality constant depends on the nature of the
isolation medium between the capacitor plates. When the
isolation medium is the vacuum, the proportionality constant is

the electrical permittivity of the vacuum.

CZ
— =12
£, = 885% 10 T
C= -—“Eﬂ‘lril‘llfI (8.7)

S0, the capacitance of any capacitor depends only on the
dimensions of the capacitor and the type of dielectric between
the capacitor plates only.

i

Emmple; 8.7

‘-‘-—--—__-____ . . 5
Parllel plates capacitor has a surface dimension of 10 cm x 10 cm, and the

distance between plates is 0.2 em. Calculate the capacitance of the capacitor if

YO know that the isolation medium between the capacitor plates is the

Yacuum

\\_\_"—‘—-—h

-

157




—3x 105 +11.23 x 105 =8.23 x10°V

5. Capacitors

Capacitors are constructed in the simplest form of two surfaceg
of a conductive material between them a dielectric. The
capacitor is an important element in electrical and electronie
circuits as it is used in storing electrical energy in most of it

connection cases. It is also used in alternating current circuits

and resonance and filter circuits and many uses.

When the capacitor is connected to a constant voltage source,
electrical charges accumulate on the capacitor plates, so that
the amount of electrical charge stored on the capacitor is

proportional to the amount of voltage difference on both ends
of the capacitor:
QxV

Q=CV (8.6)

Capacitance C: defined as the amount of electrical charge
accumulated on the capacitor plate when a unit difference of

voltage is applied to it, measured in units of Farad F.




— General Physics —

IExercises
-5 iy
Two electric charges of g, = 3x107°C, _Fi
qy = 3X 10-5 Cand the distance between 4y @ Jﬂz hj—’f
acuum. Find _T"—_"TT“‘_

)

.l.d

them 6 m were placed in a Vv
the location at which the electrical power

on the positive charge g3 is zero.

Find the electric field affecting the point at a distance of 3.5 cm from the

positive point charge of + 2uC and it was placed in a vacuum. Draw the

direction of the field lines of that charge?

Calculate the electrical force affected by a point charge of + 10pnC on a point

charge of -6uC, placed in a vacuum, and the distance between them is 0.5

cm. Explain if it is an attraction or repulsive force.

>

When moving a positive electric charge of 25uC

between two points, the distance between them
10cm in a regular electrical field parallel to the line |, o Vi
connecting the two points, and in the direction of .

reversing the charge’s movement, its electric power |
capacity increased by 4 mJ. Find the difference in

voltage between the two points and the intensity of the affecting electric

field?

Calculate the voltage of an 8uC point charge, placed in a vacuum, at a point

I m away from it.

Calculate the capacitance of a plate area of 0.1 m?, the distance between them

0.01 m, isolated into a vacuum. Electrical permittivity of vacuum

£ = 8.85x 107125

2
N.m?2

B - B
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I\ —r
(D1 k({2
—..rA = — ))
B
— k{,i —_ k,_, E.
TA g

when the charge i1s moved from the inﬁnity s = oo to tl
o= e

: — 1 the voltage at thj o «
poit 12 rt g this point ig calculated from the
| lationship:
|
| F q
| lv=key (8.5)
|

Example: 8.5

WCOWESPO“dinS Figure, the charge q, = - 2 uC
located at the origin point 4cm from which the charge
q: = + 9 nC was placed on the y axis. Find the total |

voltage generated by these charges at point P, which

is located on the x axis and 6 cm away from the origin @,-_
Etm

point.

Solution

The voltage at the P point resulting from the q charge is equal:

it
(=2x107%) _ sy 105V
0.06

= (9 % 10%)

The voltage at the P point resulting from the Q2 charge is equal:

|
| 1{?2:]{92
| Tq.
i 5
| (9x107°) _ _1123x10°V
| = 9 9 e
| (9 x 10%)

(0.06)2 + (0.04)°

— PR i




aci in parallel:
cting capacitors in parallel

s are connected in parallel to obtain a large total r___ _4—]
al to the sum of the capacitance of capacitors

Conn®

aPﬂcimncc equ
arallel in the circuit. If we have a group of

COHDEGIEd in p
cted in parallel whose capacities are C1, C2

capacitors conne

i €3 and a difference of voltage V is applied to them as
|L 'L

own in Figure (8.11). Note that the voltage difference on the B B

sh

¢ capacitors is equal to the source voltage:
Figure R.11: shows the

connection  of  three
V= Vl = Vz = V3 capacitors in parallel.

thre

The total charge is distributed among the three capacitors

according to the capacity of each capacitor, so that:
Q=Q1+ Q2+Q3

By compensation for the charge of each capacitor from the

Equation (6.8):
CEQV= C1V+sz+ C;V
By dividing by (V), we find that:

CEq = Cl + Cz + C3 (Sg}

The electrical energy stored in the capacitor

Su '
Ppose that the charge on the two surfaces of the capacitor at
S0 . . .
me instant is Q, and the voltage difference between the two
Surfaces
ces is V. If a small charge dQ passes between the two

surfa : : ] :
Ces of the capacitor via the difference in voltage V, the

nﬁ:e .
: ssary work for this is:




| SolutTT .
/ﬁg‘m the capacitance of the
9.

L T ™ Llltﬂ_‘f
1

Fam“l.‘:]i
= Ci+Ci=64%46= 12 uF

Total capacitance (C,, = G+, Connecteq 4y ;

3 1N serjeg
1 1 1
1 - j-—-+— e s __2_‘___
E: Cl?. C3 12 12 12
12
b. The total

electrical charge is calculateq from:

% = C;. Ve=(6 x 10 =y, (S'D) =3 x 104 C

¢. To calculate the electrical charge on e

ach capacitor, we find the voltage
difference fi

Ist on each capacitor.

. The total voltage difference will

obtained Cizand the

equal

be distributed evenly over the capacitor

capacitor C; because they are connected ip series and

n Capacitance C,, = Cs =12pF. If

the voltage difference on them
12 = 25 volt

The first and second capacitors are connected in

Paralle], that i1s, the voltage difference is equal in both capacitors:

V, = V, = 25 volt

The electricg] charge on each capacitor:

_4C
9= ‘-1 = (6 x 1076).25 = 1.5 x 10 ‘i
QZ = 2V2=(6X1Uq6)-25=1'5)<10

& <

-d C
C3.V3=(12x1076).25 =3 x 10

-




L w=[vag

dW = V. dQ

voltage  difference frop, the

Compensating for  the

Equation (86):

The work done of charging the capacitor is equal to the energy

stored in the capacitor,

1Q% 1 1
L =SV2C=3Q.V (8.10)

U=2_F— 2

Example: 8.8
capacitor has a capacitance of 20 pF, and the difference in voltage between the

two terminals is 1000 V. Calculate the electrical energy stored in it.

Solution
1
e
U—2V o
= 2 (1000)? -6

Example: 8.9

Three capacitors connected, as shown in the F igur
C,=6pF
a. Calculate the total capacitance in the circle, ”c,=12uF_
b. Calculate the total electrical charge ”
. =6uF
¢. Calculate the electrica charge generated on 1 i

it L T

cach capacitor,




If electrical charges move in an electric circuit from the
Positive voltage end to the negative voltage end through 3
regular-form conductor, then free electrons will move at a

speed (v) in a direction that reverses to the direction of the
electrical field (E)

If the numerical density of free electrons in the volume unit of
the conductor is n, the amount of charge that passes through

the wire section (A) in the time period At is equal to:

Ag=nevAAt

From the definition of the current we find that:

I=nevAa (9.2)

The density of the electric current (J) is defined as the amount
of electricity passing through the vertical unit area of the

conductor cross-section.

j:%:neu (9.3)

It should be noted that the density of free electrons (n) in an
element in which each atom shares g single free electron is

given in the equation:

P Ny

n=-—-

A

Where p the density of the element, A mass number,
Na = 6.02 x 10% is the Avogadro number.




Current and Resistance

1, Electric Current

2. Ohmys Law

3, Electric Power

4, Connecting resistors

This chapter is concerned with studying the movement of electrical
tharges. We will study how the electric current flows and the factofs
that affect it, and the factors that impede its movement, and we \f«.ull
learn about Ohm»s Law and know the specific resistance and electrical
tnductivity of materials, electrical work and e1ec.tricai power, and at
the end of the section we will study electrical resistances and how to

tnnect them in electrical circuits.



' i .. current

f |‘1(3L'tr|£‘l"”
. : "

. yod clectrical charges (negative of Positive) moye

St

e

jace to another due to their impact on ap electrical
ne Pk

ol

!

: caused by 2 difference in voltage between the two
E i
ﬁeIL'l(

The movement of these charges is calleg the electric
e 5.
51[1"3“

tich is a standard quantity. In conductive substances
EﬂL w
curf

there are toq many free
el s, i.¢. they are not bound by their atoms. Free electrong
| n.ﬂn , Lk - N
elec ffected by electrical force if placed
gre @

copper and aluminum,
as

In an electric field, if

Jductor is in the form of a closed trajectory, the electron
I‘]‘f cOr

es. causing the electric current.
moves,

Flectric current is defined as the rate at which charge which
ec
harge flows through this surface, in another word, it is

defined as that amount of electrical charge Aq that passes

through a section of the conductor per unit time.

: (9.1)
arElﬁ At dt

The unit the current is ampere A,

1

(@

1A=

|

b
15}

-"""--...____

The direction of the current

Figure 9.1: The movement

of positive charges and the
direction of the

current is placed.

clectric

Example; 9.1

-..___‘____-__——___'_
How much electrical ¢

urrent is generated by the passage of an electrical
harge of 10 ¢ in a 50-ms time period .
Snluﬁun
\di\k
=9 o 10
wﬁ_s = 2004

-'__Eﬂ==_——
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Solution

We find the amount of resistance before and after dOUb“"Mﬁ"‘u
ang

radius as follows:

of
11"'|
We first find the resistance of the wire before the change as a f'unction in ! W
0
length (L) and radius (r) 4 P ;
:ﬂ.ql Chg,f:
i l &
R=PA=Prre
Then we find the resistance of the wire after doubling the length (2L) ang
doubling the radius (2r) y (e
5
.ﬂ"{
e 21 2l i
TP AT PRz T Pamrzr T P2nre Lo
e
LaW
From the above equations, resistance decreases and amounts to half of its S
amount before the change, and this by calculates the ratio between the two
resistances before and after the change. <Vl
“dlectr
Example: 9.5
Nickel chrome alloy wirel m long, 0.2 mm diameter, and its quality resistance
1x107°2-m
[Ilmm
a. Calculate the resistance of the wire. --J;T
: . el ¢
b. If the voltage difference of 20 V between the ends of the wire is affected. ey
How much current 1s passing? El._____
utj
——
Solution Nefy
¢ £
. RHPI _'o:rr'z va
- -6y 3
=(@1x10 )n(0.2x10‘3)2 =796 0 l:
v )
b. I= =
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& .\‘3 —— Chapter 8 Static Electricity

. Three capacttors, the second Capacitor’g

, ; 1 E, .
capacitance and  the thjrq s
1

B
. CGi=5¢
Capacitor’g o
capacitance are cqual five timeg the firg }__
1.*
i

capacilol-'s capacitance. These capacitors v, y

-

30 Valy .
respCC‘i"CI}' connected to g voltage source 30 vyt

Find the voltage
difference between the ends of each capacitor,

g. Two capacitors were connected in serjeg In a circuit, so the total electrical
capacitance was 10uF. On their parallel connection again, the total electrical

capacitance was 45 nF. Calculate the Capacity of each capacitor individually?

9. Three capacitors connected in series, if each capacitor’s capacitance is equal

to 10 pF calculate their total capacitance.
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Figure 9.2: The effect of the
potential difference on the
currenf passing through

the conductor.

2. Ohm’s law
gh a conductor is proportional to h,

irent passing throu
o conductor ends when i

d between the tw
ant, and this law is called the Ohm’s [ay,

The ct

electrical f 1el

temperature is const

JxE
| =oE

constant in the previous relationship

Where the proportionality
the value of electrical

called electrical conductivity o,

15
termines the nature of the material 1n terms of

conductivity de

electrical conductivity. There are conductive, semi-conductive

and insulation materials. Electrical conductivity corresponds to

another quantity called specific resistance to the material p:

P=;

The specific resistance p is associated with the conductor
resistance R, which originates from the free electron
movement within the conductive material, and is accompanied
by the loss of energy as a result of collisions with conductor
atoms, manifested in the form of heat energy. The electrical

resistance is directly proportional to the length of the

conductor and inversely proportional to the area of the
conductor cross section.
£
{9,4}

We are now trying to write the Ohm’s law in another P“’Ctica]

form, illustrating the relationship between the VoIt




Ch :
apter 9: Cyrrent and Resistance

Conductor and the

nt 1 pass through it. We assume we 1,

curre B
fength 1- and a Cross section area A, a5 in 1 onductor wit,
- ” ] In .]‘ ru
ihe Law of Ohm we find that: gure (9.2), From
B = ‘.!_ e __L _ E

when the conductor is connected to 5 voltage diffe
rence of V

petween the ends, an electrical fielq arises withi
: ithin the

conductor:

V=RI (9.5)

This means that the voltage difference between the two ends of
a conductor is directly proportional to the intensity of the
electrical current passing through it, when its temperature is

constant. This is another version of the Ohm law.

Electrical resistance is measured by the ohm Q.

et

1
1

l

10=

=

Example: 9.4

____——-———____'__-____ 4 ¥
Cylindrical wire in the shape of a radius of r and L long. If each of its length

and radius is doubled, do the wire resistance:

a. Increase.
b. Decreased.
¢. Stay the same.

d. Unrecognizable. R




tion for the voltage difference of the Ohm’s Law:

ens

anﬂ?
Ruql = Ry 1+ Rol + Ryl

_ R+ i+ Rs ©.7)

Rea

Three resistances amounting to 18 Q, 12 Q, 6 Q connected in series, how

much of the equivalent resistance?

Solution
Requ=R1 + Rzt Ra

=18+ 12+ 6 = 36Q

Connecting resistors in parallel

The resistance i1s linked so that the end of all resistors 1s

together and begins together as well, as shown in the Figure

(9.4). The characteristics of this type of connection include:

1. The voltage difference is equal to all resistor and equal to

the total voltage difference.

2. The electric current is distributed to the resistors.

Note that: the total current is equal to the sum of currents

Passing through all resistor:

Figure 9.4: The resistors are
connected in parallel.

It=fl+12+f3

Si : . .
ince the voltage difference is the same for all resistor and

e
Qual to the total voltage difference:

g &




Chapter 9: Current and Resistance B
R ———

W
Wensuy of the electric current is generated by

the passage of an

gleclﬁcal current of 2 A'in a 0.1 cm cross-section area of the conductor.
Suiﬂtiﬂ“

G P — A

}ﬂ‘;{:{}.lxlﬂ‘z m2

L e

Frample: 93

e * -
cross-section area of copper wire is equal to 2x10° mZ2, with an clectric current

g A. If the density of the charge carriers in copper is equal to 8 x 1028 eter;r_
m

Calculate the electrical current density and speed of the charge carriers inside

the conductor.

Solution

Current density:

_[
I-—E
8
S gm0 = Al o

Speed of the charge carriers:

U:-).r_.
ne
- 4 x 106 ., m
- hﬁ_x 1028) (]]-.06 x 10-19) =3.13x107* goe
i T y

- . o
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S W

Then we compensate in the Law of power as follows:

(120)2
~~ = 1800 Watt

d. Connecting resistors

Resistors can be connected in different ways to obtain large or

1
M AW ;s _
, small values compared to the original values of available

2 resistors.

:{ ® Connecting resistors in series

VY ———

It is to connect the resistors in the form of a series, so that the

Figure 9.3: The resistors are
connected in series end of the first resistor is with the beginning of the second

resistor and so on as described in the Figure (9.3)
The characteristics of this type of connection include:

1. The electrical current is equal in the circuit.
2. The total voltage difference is distributed on the resistors.

In order to calculate the equivalent resistance collected for a
set of series resistors, as shown in Figure (9.3). Note that the

total voltage difference equals the voltage difference on the

resistors:

Vi=W+W,+V;

Since the electric current I passing in all resistances 1S the

same:
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Compensation for the current of the Ohm Law:

V V
% __V_+__+__

_—

Reg Ri Rz Rs

Wil ol 9.8)

———

Example: 9.8

o __-__—-—-___
Three resistances amounting to 18 Q, 12 Q, 6 Q connected in parrlel, how
much of the equivalent resistance?

Solution -
1 1 1 1 o
Regi R R 'R,
1 1 1 11
ETRETRE
Requ =331
Example: 9.9
Four resistant conducting as in the Figure. Ry =50 py=5p
a. Find the equivalent resistance betweep the R =10 sz
points a and ¢? ’ T 'i&h .
b. How much of the current in each resistance Wy

if a total voltage difference of |5 V is

applied between points 3 and c?

-




Exercises

1.

]

P - ¥ N

an electrical load with a Current of

s
A battery with a charge of 40 Ah, fueling to exhaust its charge?
; : tc]-}" O e [4 i

it take for the bat

(0.5A). How long does i
—80m, how much is the ;
If the specific resistance to iron p = 10 X 1074 iron

conductivity?
A mass of silver length 10cm placed between the two ends of the vo]tage

difference equal to 20V find the strength of the electric field and the density

of the current if the specific resistance of silver p = 1.59 X 107%0m,

A copper wire, cut by a circular radius1mm, with an electric current equal tg

4A. How much current density is and how fast are electrons if the density of
electrons is in copper (g, = 8.5 x 1028 /m?)

480 Q resistant light bulb when operated from an voltage source of 240V
How much electrical power is consumed in the lamp?

Electric oven with power 1800W. If it is powered from a 240V voltage
source, how much current is withdrawn? And how much is the resistance of
the oven equal to?

Regular Wire resistance 50 Q divided into five equal lengths. If the five parts

connected in parallel, how much resistance is equivalent?

withdrawn?

. Find the equivalent resistance between the g and ¢

& &N
* N "ﬂ !*..
points in the corresponding shape. And calculate -——*B.ﬂﬂ ‘?f-l"f“‘
the current in the system e Lot
n w A

if the voltage difference
42 V is applied between g and ¢ applijes?




——— Chﬂpter 9: Current and Resistance =

¢ power

1:|cctfical power P is the Cnergy or work d

_ One 1o transfer
ectrical charges 1n a conductor per
¢l

unit tim(_-_

That is, the electrical power s equal to the Product of the

voltage difference by the intensily of the electrical cutrent

passing through the conductor. With Compensation from

Ohm's Law we obtain:

V2
P=VI or P=RI]%2 or P=-E- (9.6)

The electrical power is measured in units of watt, as:

1]

1 sec

1 watt =

—F_J‘.l_aample: 9.6

nickel chrome heater has an 8 Q resistant, works on a 120 V

voltage. Find the
current and electrical power th

at passes through the heater wire.

Solution

We f;

nd the strength of the current first.




Light

1. Nature of Light

2 Reflection
3, Refractive

This section begins by introducing the nature of light, and then study the
phenomenon of geometric optics such as the reflection of rays from the
surfaces and their refraction when light crosses the boundaries between

different media.




Fov e

(. Nafure of Light

a the past. light was considered a torrent of smal particles
pited from visible objects or from the eye of the beholder.
Newton Was the main designer of the particle nature model of
light, considering that light is a particle emitted from the light
source. Newton used this idea and explained the phenomena of
reflection and refraction, and most scientists of his time

German physicist Huygens
accﬂptﬁd thiS panl'CUIﬂte n‘lﬁch But desplte thls acc&ptancc, lives biween 1629-1695

another model was proposed during Newton's lifetime,

considering that light is a kind of wave movement.

In 1678, the German physicist Huygens showed that the
waveform of light could also explain the phenomena of
reflection and refraction. In 1801, young was able to explain
the phenomenon of interference by the waveform of light. The
discovery of the phenomena of diffraction and polarization in
the 19th century led to the general acceptance of the
waveform, where Newton's particulate model was unable to
explain any of these phenomena. In 1887 Hertz experimentally

generated electromagnetic waves,

Although traditional electromagnetic theory, as well as
classical mechanics, was able to explain most natural
phenomena until the early 20th century, they could not explain
Some phenomena, Such as the phenomenon of black body
radiation and the phenomenon of photoelectric effect. In 1905,
Einstein proposed an explanation of the phenomenon of
Photoelectric effect using a model based on quantum

hypothesis developed by Max Plank in 1900, and Einstein

. =ik




g0° and back to its source when the angle between

1
e 0 i
gl s 90°) i known as the phenomenon of Retro

e m
7 f E-Cliﬂ'n'
tical mirror

And it has many applications and when a third

is placed on the first two,

., phenomenon was used in rear car lamps to reflect the
This

1t falling on it to its source. It is also used in traffic signs as
Jigh

in the dark.

d in the shoes and clothes of athletes to be seen

[t should be noted that the general law of the total deviation
angle of a beam reflected respectively from two flat mirrors

petween them an angle () equal to (360 — 2¢).

3. Refractive

When light ray’s incident on a boundary line between two
different mediums in terms of light density, part of the light
intensity is reflected and the rest is refracted as shown in

Ficure (10.5). Refraction is also governed by two laws:

1. The incident ray, the reflected ray, the refracted ray and the

Figure 10.5: Relraction of light

normal lie in the same plane. inside a transparent medium,

[

The refracted beam changes its direction and is launched at
an angle 0, called the refractive angle depending on the
characteristics of the two mediums and the angle of the

incident 6, according to the relationship:

Sing, Uy
h—._'-'_‘ = —
sing, Ve (10.2)

Where v, is the speed of light in the first medium and v; is the

s oy ; :
Peed of light in the second medium. It is worth noting that the

L &
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/ﬁ/ﬁndlent resistance:

RcsiSIﬂﬂﬂﬂ (R23) equivalent to Rs and R; is equal to

-—-R2+R3

R23
_50+5Q=

= 10Q

jstance (Ry3s) equivalent to R, and R; and R: is equal to

Res

i 4 a1 2
#3‘6+10* 10 10
Ryzs = = 512

alent to Ry and Rs and Rz and R between the two points

Resistance (Rac) €QUIV

aand €

Ry = Ri + Ra3a
=10+5= 15Q

b. Total current I in the resistance systent.

divided into two

A. At point b, this current is
two branches

agnitude of 0.5A, because the
g in the Re. R, and Ry resistors 1S

So, the total current is equal t0 1

equal parts I, and I3, each witham

have equal resistance. The current passm

assing in Ri resistance 18 equal to 1A,

equal to 0.5A, while the current p

e
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(10.2) The phenomenon of reflection is govemned
. pieure L1570
a FIE

tion of the reflected ray is at the same plane as the
1

( The di[’ﬁc

¢ ray and perpendicular to the reflected surface.
.nmden i

gle at which the ray incident on the surface is equal
7. The an

o the angle at w ‘hich it is reflected.
10

{he incident ray and the reflected ray make the angles of the
If the

4 the 8, with the normal on the surface respectively, as in
g, an

Iururi: {lﬂ -7‘]
cident ray and the reflected ray at their meeting point

A normal is a line that draws at the same plane

a5 the 111
on the reflecting surface. The second law of reflection can be

drafted as follows:
8,=0, (10.1)

The reflection of light from the flat surfaces is called a regular
reflection, such as the reflection from the surface of the flat
mirTor as in Figure (10.3), but if the surface is irregular so that
the roughness on its surface is greater than the wavelength of
the incident light rays, the images of the object do not appear
 aresult of the reflection of light from the rough surfaces.
The reflection of light from the bathroom mirror is a regular

ref]
¢ction, while the reflection of light from the surface of the

book
theetis an irregular reflection.

% de '|

Figure 10.3: the incident
ray angle is equal to the
of reflection angle.

Figure 10.4: reflected light
from a rough surface.




le: 10.1
angle, as

Examp
at create 4 right

at MIIrors th
on the
r
0,?@

Two fl
shown in the Figure. The incident ray
first mirror My is at an angle € from the 0,
normal . 902
90 —-@
7,
ﬂd@’”«"‘e g 8 G

1 Find the direction of the reflected ray from

the second mirror M, .

2 Calculate the total deviation angle .
“Solution /
- cident ray reflects from the first mirror and

m the Figure we find that the 1
econd mirror and falls on it and then reflects from it as well.

Fro
goes to the s
ates an angle 0 with the

n, the first reflected ray cre
am after the first

From the law of reflectio
angle of deviation of the be

al as well, so we find that the

norm
) is equal to 180 — 26

reflection (reflection of M,

on M, is equal to (90 — @) by exchange, the reflection

Since the angle of fall

angle of M3 is equal to (90 — a).
e second reflection (reflection

So, the angle of deviation of the beam after th
from M) is equal to

180 — 2(90 — 6)

So, the total deviation angle is equal to

180 — 26 + 180 — 2 x 90 + 28 = 180°

For exam
- ‘ple “0 1), we conclude that the incident ray reverses
irection if it falls at an angle on two perpendicular flat

mirr '
ors. This phenomenon (the deviation of the beam at ai

/
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Where n is the refractive index in the medium

wavelength is 4, and the wavelength in the vacuum i €qual y
the A
Example: 10.2 ]

A light ray incident from the air on the water at an angle of 30° wm
Part of the incident ray was reflected and another part was refracted into the

water, as the water refraction index (1.33).

I. Find the reflection angle.

2. Find the refractive angle.

Solution

I. Since the reflection angle is equal to the incident angle, then the reflection

angle is equal to 30°.
2. We apply the Snell law.

ny Sin( 61) = n,; 5!:71(92)

. ny .
sin(0;) = n—zsm(ﬁ'])

133 sin(30) = 0.375

6, = sin~1(0.375) = 22°

Example: 10.3

A 589 nm wavelength beam travels through the air, falling on a flat surface of

the glass panel at a 30° fall angle with the vertical, where the glass refractive
index (n=1.52).

. Find the refractive angle.

-2

. Find the speed of light in the glass.

3. How long is the wavelength in the glass?

st eememereeeeresene




Wave front

/Lmﬂ’ﬂ

source

™~ =

Figure 10.1: The light rays.

Figure 10.2: reflection bicycle
picture on water surface.

i2

considered light made up of particles named photop Wi

specific amounts of energy

In light of the developments of modern physics, we have ¢,
consider that light is of a dual nature. It sometimeg Showsg

wave characteristics and particle properties at other timeg,

Light rays

Light rays are used in the study of light flow. Light rays shoy
light moving in a straight-line direction as it passes through 4
unified medium of light properties. To understand the waye
approximation, we must note that the rays of any wave are
straight lines indicating the direction of the wave's flow, and
fall vertically on the wave front as shown in Figure (10.1). The
wave front is a point in the middle where the wave disturbance
has the same phase (such as waves of the surface of the water
in the static pond when a stone 1is thrown). wave
approximation is used in the study of mirrors and lenses and in

the design of optical instruments such as binoculars, cameras

and eyeglasses.

2. Reflection

Reflection is a change in the direction of the wave's front when
it falls on a reflective surface so that the wave's front bounces
back from the reflecting surface, such as the reflection of water
waves at the edge of the stalactite, and the reflection of waves
along a tendon or rope at the edge of the fixation. The
reflection of sound waves also causes the phenomenon of echo

and the reflection of light waves from the surface of the Wat!
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S0
5 ce 8,{61 because the speed of light in g|
ass Is sm

. e ot o aller than its speed in
apply the refraction law only af
y after we

rearrange the Snell law to find 6,

g, = sin"(P—lsine )
i N5 1

sin30°) =19.2°

1§
g !
= sin (152

Speed of light in glass:

72,
c
p=-
n
3.00 X 108ms™* _ -
SRS - =197 19Tms
3. wavelength of this ray in the glass.
A
A’H = ;
g89nm
_ 289 _ 3g8nm
1.52 -

Example: 10.4
+th in the vacuum (5 X 10~7m) entered a glass

A green light ray with waveleng

panel of the refraction index n=1 5).

gl ass?

of light in the glass?

|. What is the speed of light in the

2. What is the wavelength

Solution

I The speed of light in the glass:




Chapter 10:Light e

vhere © the speed of light in the vacuum and v the speed of
i

o in the middle concerned. n is a relative number larger
e

, one because ¢ is always greater than v,
that

when the light moves from one medium 1o another, its
requency does not change because the energy of the incident l i
ay does not change from that of the refracted ray, but the |.

. . 3 | |
length of its wave A. Given the Figure (10.7) we find that the r: |
- ﬂp’ z

incident ray from the first medium has the same frequency as 2%,

{he refracted ray in the second medium. If we code the light b

2

fr.gquenC}' with the 5y mbol f; we find that: Figure 10.7: Refraction of

light in different mediums

v, =A4f
v, = Aof

And since vy # V3 50 4 # A, , we can find the relationship

between the refractive index and the wavelengths.

Compensation in the equation (10.2) we find that:

nising; = n,sind, (10.3)

This law is known as the Snell law. We can also conclude:
nma;, =npd,

S0, if the first medium is the vacuum (n; = 1), we come to the
€Quation:

A
n_‘ln
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Normal

Figure 10.6: The light
refracted into the glass and
then exits to the space

path of the beam of light through the two mediumg is
reversible. We can also add that the light when Moving from
the medium of its velocity is greater to the medium of its
velocity less as in Figure (10.6), the refractive angle of the ray
in glass 8 is less than the angle of incident of the ray from the
air 8; and the ray refracted close to the vertical. When it moyeg
from the medium of its velocity less to the medium of s
velocity greater as in the Figure (10.6), the refractive angle of
the rat out into the air 8, is greater than the angle of incident

into the glass &; and the ray refracted away from the normal,

The behaviour of light when it moves from air, for example, 1o
another medium and then going out into the air again is a
source of confusion for students. The light goes in the air at a

™ ¥
speed of 3 X 103-?, but slows down to 2 X 103-; when it

enters a refracted of glass. When it comes out into the air
again, its velocity jumps to 3 x 108 ? This behavior is very
different from the behavior of particles in the media. For
example, if a shot is fired through multiple circles, it never
increases after it is reduced within different circles, but it

continues to decrease until it is exhausted.
Refractive index (n)

In general, the speed of light in any medium is less than its
speed in the vacuum. It is appropriate to define the Refraction

index for any medium using the following ratio:




Figure 10.10: Total internal
refraction.

¥ N

Total Internal Reflection

When light incident from the medium of a larger refractiop
index to another less refractive index, the light refraction away
from the normal. The refraction angle is greater than g,
incident angle. When the refractive angle is 90°, the ray
refracts parallel to the surface separating the two mediums s

in Figure (10.10). The incident angle in this case is calleg

critical angle 6, where:

3 n;
sinf, = E (10.4)

All the ray’s incident at an angle greater than the critical angle

are reflected entirely internally in what is known as total

internal reflection.

Example: 10.5

Find the critical

angle for a light ray move from the glass to the air, where the

glass refraction index is n=1.5.

Solution

; Ny
sin(8;) = a

n;
0. =sin"1(—=
e = sin”i(2)

] 1
= sin~1(—=) = 42°

1.5




impﬂna"t characteristic of the refractive index (n) for
"fr}r

| edium is that the refractive index changes with the
gach

ength of the light ray that passes through the medium
\\-’3\"': = '

b propesty results in dispersion. Since (n) depends on the
Thi ;

qelﬂﬂgth‘ the Snell refractive law confirms that light with
wa

iferent wavelengths refractive at different angles.
|

The red wavelength refraction index is smaller than the violet
savelength refraction index. This shows that the refractive
index decreases as the wavelength increases. If we assume that
2 white light pack (a mixture of all visible colours) fell on a
prism as in Figure (10.8). The angle of dispersion depends on
the wavelength, 1.e. each wavelength refractives at a different
angle. The rays coming out of the prism are also arranged by

colour as follows (red, orange, yellow, green, blue and violet),

in what is known as the visible spectrum.

These two rays
are seen by
observer (mol
W swwaley

L1

Violet E‘cg,-"r e’

Figure 10.9: The visible spectrum.

The dispersion of light in a visible spectrum is often seen in
Natyre ; , i

UT¢ In what is known as the Rainbow, which is usually seen
b .
Y the viewer when it is placed between the sun and the place

of ¢o: . .
( fan and looks in the direction of the latter as in Figure
lD.9]

Wall or et
sCTeen

Figure 10.8: Light dispersion
during prism




Exercises

LA monochromatic light source that emits a wavelength in the air 2=495 nm.

when the light passes through a liquid, its wavelength is decrease to 434nm.
what is the refraction index of that fluid?

7. What happens to the light wave when it travels from air to glass?

a. The speed remains constant.
b. Speed increases.
c. Wavelength increases.

d. Wavelength remains constant,

w

. frequency remains constant.

3. Light goes from air to water, some possible paths

of light beam in water as in Figure. What paths is

taken by the light beam?

4. The wavelength of the helium-neon laser beam equals 632.8nm in the air.

How much is the frequency?

5. If the wavelength of the helium-neon laser beam is equal to 632.8nm 1n the
air. How long is the wavelength in the glass if the light refraction index in

the glass is equal to 1.57

6. Find the speed of light in the glass, if you know that the light refraction

index in the glass is n=1.66.

7. Find the speed of light in the water, if you know that the light refraction

index in water is n=1.333.

{73




nd dimensions of some physic

Appendix I

al quantities

s Quantity Dimension Units
Distance (L] m meter
Time [T] s second
Mass [M] kg kilogram
Velocity [LT-1] m/s i
Acceleration [LT-2] m/s? .
Force [MLT-2] kg.m/s? newton
Stress/Pressure [ML-1T-2) kg/m.s? pascal
Density [ML~3] kg/m?3 =
Energy/Work [MI2T-2] kg.m?[s? joule
Power [ML2T-3) kg.m?/s? watt




c
v=—-
n

3x 108

=——=2x10%ns™1
1.5

2. The wavelength of this beam in the glass:

A
>
A
An=;
5x1077 i
= 15 =3.33%x10""m

The Higgins Principle

The laws of reflection and refraction were mentioned without
proof, they were developed using geometric methods
suggested by Higgins. Higgins' principle is to develop a
geometric method for using the front the wave to locate
subsequent waves. All points on the wave's front are a source
for the production of secondary spherical waves that travel in

the medium with the same characteristics as the source wave.

The Higgins principle Mmay not seem important now because
predicting future wave release sites may not be useful, but later
in the study of interference, wave release sites are essential to
determine the constructive  interference of destructive

interference.

-




Appen dix

—— Appendix

{nits of Measurement of some phygjeq) Quantities

‘Lﬂlph
et G S
e 1 “}"' __‘__'_‘——E-_.___ in. ft
1 meter 10-3 90 97
| centimetes 10-* 1 16-3 ;] !].g‘ 3.281
J kilometer 10* 10% : %-;ﬁ:" i 3.281 X 10-
- - -~ (25 T ® I“l bt k!
Linch 2.540 X 10 2,540 250% 10 | 3.281 X 10
0.3048 3048 B.333 x 1072
| foot 3.048 % 1p-4 12 1
i 1609 1.609 x 10
| mile 609 x 10 1609 6.336 X 10¢ 5 280
Mass
_ kg E slug u
1 kilogram 1 . 10° 6.832% 1077 6,024 x 10
1gram 10~ l 6852 X 10 6024 x 102
Iﬂug 14.59 ) 1459 » 100 1 B780 % 1027
] atomic mass unit  1.660 X 107*" 1,660 x 10~ 1.137 X 1p-=* i
Nedr: | metric ton = § M) kg,
Time
s min h day yr
| second 1 1.667 x 1072 2718 x 107 1.157 % 10-* 3169 x 107
1 mimne GO 1 1.667 x 10-* 6.994 X 1074 1,901 x 10°*
| hour 3 600 6O 1 4.167 X 1072 L4} % 1074
I day 8.640 x 10Y 1440 24 1 2738 % 10"
1 vear 3156 x 107 5.259 x 10° 8.766 x 10* 165.2 |
Speed
m/s cm/s ft/s mi‘h
| meter per second | 10° 3.281 2.2%
I centimeter per second 10-* ! 9.281 X 1072 2.237x 10
| foot per second 0.304 8 30.48 ! 0.681 8
I mile per hour 04470 44.70 1467 1
Note: | mi/min = 60 mi/ N = B8 [1/s.
Force
N Ib
1 newion 1 0.2248
I pound 4448 1




Energy, Energy Transfer
J ft-Ib &
Ll =3 -__-—___'_—\—-
1 joule 1 0.737 6 6.242 x 1
1 foot-pound 1.356 1 . 8464 x Jm
I electron volt 1.602 x 107" 1.182 X 107" 1
4.186 3.087 2.613 X 1gm

I calorie
I British thermal unit

1 kilowatt-hour

1.055 X 10°
3.600 X 10°

7.779 X 10?
2,655 X 10°

6.585 x 10%
2.247 X 102

—

cal Btu kWh
1 joule 0.238 9 9.481 x 10~ 2778 X 107
0.3239 1.285 x 107* 3.766 X 10-7

1 foot-pound

1 electron volt

I calorie

1 British thermal unit
1 kilowatt-hour

3.827 X 107*°
1

2.520 X 10°
8.601 x 10°

i)

1.519 X 107=
3.968 x 107"
1

3.413 x 10°

4.450 X |0~
1.163 X 10°6
2930 x 10~
1

Pressure

Pa

1 pascal
1 atmosphere
1 centimeter mercury”

I pound per square inch

1 pound per square foot

|

1.013 x 10°
1.333 x 10*
6.895 X 10°
47.88

9,869 X 107°
1

1.316 X 107
6.805 X 10*
4,725 X 10~

cm Hg Ib/in.2 Ib/ft?
1 pascal 7.501 X 104 1.450 X 104 2.089 X 107
1 atmosphere 76 14.70 2.116 x 10°
| centimeter mercury? 1 0.194 3 27.85
1 pound per square inch 5.171 1 144
1 pound per square foot 3.591 x 10~ 6.944 X 10~ 1

*At0°Cand ata location where the free-fall acceleration has its “standard ™ value, 9.806 63 m/s2




. ey 1.
=

14 The Cambnidge 1

andbook of Physics Formulas, Graham Woan, Cillllhtidgc
unmversity press, UK. 2000
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8. A beam of light moved from the air to another medium at an incident angle

of 0,=45°. Find a refractive angle 02, if you know that the light refraction

index in this medium is n=1.458.

9. How much angle of deviation in the direction of a light beam that incident 5
an angle on a flat mirror, reflecting on it to incident on another flat mirror,

and the angle between the two mirrors at the beam level was equal to 12007

10. How much is the critical angle when the air-water separation of a light beam

emanated from the bottom of a water tank? Note that the light refraction

index in water is n=1.33.




Some physical constants

= )
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Quantity Symbol Yillue —__—
Avogadro’s number NA 6.022 141 99 (47) X 1023 particles/mo|
Boltzmann’s constant kg 1.380 650 3 (24) X 10-23 j/k
Coulomb constant k, 8087551788 X 109 N-m2/c2
Electron mass m, 9.109 38188 (72) X 1031 kg o
Proton mass m, 1.672621 58 (13) X 1027 kg o
Elementary charge e 1.602 176 462 (63) X 10-19 C
Gas constant R 8.314 472 (15) J/K - mol
Gravitational constant G 6.673 (10) X 10-!1 N- m2/kg2
Neutron mass m, 1.674927 16 (13) X 10-27 kg
Permeability of free space Ho 4 X 10-7 T-m/A
Permittivity of free space € 8.854 187817 X 10-12 C2Z/N - m?2
Planck’s constant h 6.626 068 76 (52) X 10-34 1 -5
Speed of light in vacuum c 2.997 924 58 X 108 m/s
Gravitational acceleration o 9.807 m/s?
Thermomechanical equivalent ] 4.1855 J/cal

Standard atmospheric pressure

1.0132 x 105 N/m?
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