Workshop Solutions to Section 2.5

How to find the domain and range of the exponential function $f(x) = a^x$?

1- If
$$f(x) = c$$
. $a^{\pm x} \pm k$ where c and k are positive constants, then

$$D_f = \mathbb{R}$$
 and $R_f = (\pm k, \infty)$

2- If
$$f(x) = -c$$
. $a^{\pm x} \pm k$ where c and k are positive constants, then

$$D_f = \mathbb{R}$$
 and $R_f = (-\infty, \pm k)$

3- If
$$f(x) = c \cdot e^{\pm x} \pm k$$
 where c and k are positive constants, then

$$D_f = \mathbb{R}$$
 and $R_f = (\pm k, \infty)$

4- If
$$f(x) = -c.e^{\pm x} \pm k$$
 where c and k are positive constants, then

$$D_f = \mathbb{R}$$
 and $R_f = (-\infty, \pm k)$

,	,
1) Find the domain of the function $f(x) = 4^x$.	2) Find the range of the function $f(x) = 4^x$.
Solution:	Solution:
From Step (1) above, we deduce that	From Step (1) above, we deduce that
$D_f = \mathbb{R}$ 3) Find the domain of the function $f(x) = 4^x - 3$.	$R_f = (0, \infty)$ 4) Find the range of the function $f(x) = 4^x - 3$.
3) Find the domain of the function $f(x) = 4^x - 3$.	4) Find the range of the function $f(x) = 4^x - 3$.
Solution:	Solution:
From Step (1) above, we deduce that	From Step (1) above, we deduce that
$D_f = \mathbb{R}$	$R_f = (-3, \infty)$
5) Find the domain of the function $f(x) = 5 - 3^x$.	6) Find the range of the function $f(x) = 5 - 3^x$.
Solution:	Solution:
From Step (2) above, we deduce that	From Step (2) above, we deduce that
$D_f = \mathbb{R}$	$R_f = (-\infty, 5)$
7) Find the domain of the function $f(x) = 3^{-x} + 1$.	8) Find the range of the function $f(x) = 3^{-x} + 1$.
Solution:	Solution:
From Step (1) above, we deduce that	From Step (1) above, we deduce that
$D_f = \mathbb{R}$	$R_f = (1, \infty)$
9) Find the domain of the function $f(x) = e^x$.	10) Find the range of the function $f(x) = e^x$.
Solution:	Solution:
From Step (3) above, we deduce that	From Step (3) above, we deduce that
$D_f = \mathbb{R}$ 11) Find the domain of the function $f(x) = e^x - 3$.	$R_f = (0, \infty)$
11) Find the domain of the function $f(x) = e^x - 3$.	$R_f = (0, \infty)$ 12) Find the range of the function $f(x) = e^x - 3$.
Solution:	Solution:
From Step (3) above, we deduce that	From Step (3) above, we deduce that
$D_f = \mathbb{R}$ 13) Find the domain of the function $f(x) = e^x + 1$.	$R_f = (-3, \infty)$
13) Find the domain of the function $f(x) = e^x + 1$.	14) Find the domain of the function $f(x) = \frac{1}{1 - e^x}$.
Solution:	Solution:
From Step (3) above, we deduce that	$f(x)$ is defined when $1 - e^x \neq 0$
$D_f = \mathbb{R}$	$\Leftrightarrow e^x \neq 1 \Leftrightarrow \ln e^x \neq \ln 1$
	$\Leftrightarrow x \neq 0$
	$\therefore D_f = \mathbb{R} \setminus \{0\}$

15) Find the domain of the function $f(x) = \frac{1}{1+e^x}$.	16) Find the domain of the function $f(x) = \sqrt{1+3^x}$.
Solution:	Solution:
$f(x)$ is defined when $1 + e^x \neq 0$.	$f(x)$ is defined when $1+3^x \ge 0$.
But there is no value of x makes $1 + e^x = 0$. Therefore,	But $1 + 3^x > 0$ always. Therefore,
$D_f = \mathbb{R}$	$D_f=\mathbb{R}$
17) If $4^{(x+1)} = 8$, then $x =$	18) If $4^{(x-1)} = 8$, then $x =$
Solution:	Solution:
$4^{(x+1)} = 8$	$4^{(x-1)} = 8$
$(2^2)^{(x+1)} = 2^3$	$(2^2)^{(x-1)} = 2^3$
$2^{2(x+1)} = 2^3$	$2^{2(x-1)} = 2^3$
2(x+1)=3	2(x-1)=3
2x + 2 = 3	2x - 2 = 3
2x = 3 - 2 = 1	2x = 3 + 2 = 5
$\therefore x = \frac{1}{2}$	$\therefore x = \frac{5}{2}$
19) If $9^{(x+1)} = 27$, then $x =$	20) If $9^{(x-1)} = 27$, then $x =$
Solution: $9^{(x+1)} = 27$	Solution: $9^{(x-1)} = 27$
_·	· —·
$(3^2)^{(x+1)} = 3^3$	$(3^2)^{(x-1)} = 3^3$
$3^{2(x+1)} = 3^3$	$3^{2(x-1)} = 3^3$
2(x+1) = 3	2(x-1)=3
2x + 2 = 3	2x - 2 = 3
2x = 3 - 2 = 1	2x = 3 + 2 = 5
$\therefore x = \frac{1}{2}$	$\therefore x = \frac{5}{2}$
21) If $5^{2(x-1)} = 125$, then $x = $	22) If $5^{2(x+1)} = 125$, then $x =$
Solution:	Solution:
${5^{2(x-1)}} = 125$	$5^{2(x+1)} = 125$
$5^{2(x-1)} = 5^3$	$5^{2(x+1)} = 5^3$
2(x-1)=3	2(x+1) = 3
2x - 2 = 3	2x + 2 = 3
2x = 3 + 2 = 5	2x = 3 - 2 = 1
$\therefore x = \frac{5}{2}$	1
$\therefore x = \frac{1}{2}$	$\therefore x = \frac{1}{2}$