Lecture Slides

Chapter 3
 Statistics for Describing, Exploring, and Comparing Data

3-1 Review and Preview
3-2 Measures of Center
3-3 Measures of Variation
3-4 Measures of Relative Standing and Boxplots

Section 3-1 Review and Preview

Created by Tom Wegleitner, Centreville, Virginia
$\frac{\text { PEARSON }}{\frac{\text { Addison }}{\text { Wesley }}} \boldsymbol{\sim}$

Review

Chapter 1
Distinguish between population and sample, parameter and statistic Good sampling methods: simple random sample, collect in appropriate ways

Chapter 2
Frequency distribution: summarizing data Graphs designed to help understand data Center, variation, distribution, outliers, changing characteristics over time

Preview

* Important Statistics
 Mean, median, standard deviation, variance

Understanding and Interpreting

these important statistics

Preview

Descriptive Statistics

In this chapter we'll learn to summarize or describe the important characteristics of a known set of data

Inferential Statistics

In later chapters we'll learn to use sample data to make inferences or generalizations about a population

Section 3-2 Measures of Center

Key Concept

> Characteristics of center. Measures of center, including mean and median, as tools for analyzing data. Not only determine the value of each measure of center, but also interpret those values.

Part 1

Basics Concepts of Measures of Center

Measure of Center

* Measure of Center
 the value at the center or middle of a data set

Arithmetic Mean

Arithmetic Mean (Mean) the measure of center obtained by adding the values and dividing the total by the number of values

What most people call an average.

Notation

Σ denotes the sum of a set of values.

x is the variable usually used to represent the individual data values.
n represents the number of data values in a sample.
N represents the number of data values in a population.

Notation

${ }^{-} x$ is pronounced ' x-bar' and denotes the mean of a set of sample values

$$
\bar{x}=\frac{\boldsymbol{\Sigma}}{\boldsymbol{\eta}}
$$

μ is pronounced 'mu' and denotes the mean of all values in a population

Mean

Advantages

Is relatively reliable, means of samples drawn from the same population don't vary as much as other measures of center

Takes every data value into account

Disadvantage Is sensitive to every data value, one extreme value can affect it dramatically; is not a resistant measure of center

Median

Median

the middle value when the original data values are arranged in order of increasing (or decreasing) magnitude

often denoted by $x^{\sim}($ pronounced ' x-tilde')

is not affected by an extreme value - is a resistant measure of the center

Finding the Median

First sort the values (arrange them in order), the follow one of these

1. If the number of data values is odd, the median is the number located in the exact middle of the list.
2. If the number of data values is even, the median is found by computing the mean of the two middle numbers.

\[

\]

(in order - even number of values - no exact middle shared by two numbers)
$0.73+1.10$
2

MEDIAN is 0.915

5.40
1.10
0.420 .73
0.48
1.10
0.66
$\begin{array}{lllllll}0.42 & 0.48 & 0.66 & 0.73 & 1.10 & 1.10 & 5.40\end{array}$ (in order - odd number of values)
exact middle MEDIAN is 0.73

Mode

Mode

the value that occurs with the greatest frequency

Data set can have one, more than one, or no mode

Bimodal two data values occur with the same greatest frequency
Multimodal more than two data values occur with the same greatest frequency
No Mode no data value is repeated that can be used with nominal data

Mode-Examples

a. $5.40 \quad 1.10 \quad 0.42 \quad 0.73 \quad 0.481 .10$
b. 272727555555888899
C. $1 \begin{array}{llllllll} & 2 & 3 & 6 & 7 & 8 & 9 & 10\end{array}$
Mode is 1.10
Bimodal - 27 \& 55
\checkmark No Mode

Definition

Midrange the value midway between the maximum and minimum values in the original data set

maximum value + minimum value

Midrange =
2

Midrange

Sensitive to extremes because it uses only the maximum and minimum values, so rarely used

Redeeming Features
(1) very easy to compute
(2) reinforces that there are several ways to define the center
(3) Avoids confusion with median

Round-off Rule for Measures of Center

Carry one more decimal place than is present in the original set of values.

Critical Thinking

Think about whether the results are reasonable.

Think about the method used to collect the sample data.

Part 2

Beyond the Basics of Measures of Center

Mean from a Frequency Distribution

Assume that all sample values in each class are equal to the class midpoint.

Mean from a Frequency Distribution

use class midpoint of classes for variable \boldsymbol{x}

$$
\bar{x}=\frac{\Sigma(f \cdot x)}{\Sigma f}
$$

Weighted Mean

When data values are assigned different weights, we can compute a weighted mean.

$$
\bar{x}=\frac{\Sigma(w \cdot}{\underline{x})_{w}}
$$

Best Measure of Center

The median is often a good choice if there are some extreme values.

Skewed and Symmetric

Symmetric

distribution of data is symmetric if the left half of its histogram is roughly a mirror image of its right half

* Skewed
distribution of data is skewed if it is not symmetric and extends more to one side than the other

Skewed Left or Right

Skewed to the left

(also called negatively skewed) have a longer left tail, mean and median are to the left of the mode
Skewed to the right
(also called positively skewed) have a longer right tail, mean and median are to the right of the mode

Shape of the Distribution

The mean and median cannot always be used to identify the shape of the distribution.

Skewness

Median
(a) Skewed to the Left (Negatively)

Median
(c) Skewed to the Right (Positively)

Recap

In this section we have discussed:

* Types of measures of center

Mean
Median

- Mean from a frequency distribution
* Weighted means

Best measures of center
Skewness

Key Concept

Discuss characteristics of variation, in particular, measures of variation, such as standard deviation, for analyzing data.

Make understanding and interpreting the standard deviation a priority.

Part 1

Basics Concepts of Measures of Variation

Definition

The range of a set of data values is the difference between the maximum data value and the minimum data value.

Range $=$ (maximum value) $\boldsymbol{-}$ (minimum value)

It is very sensitive to extreme values; therefore not as useful as other measures of variation.

Round-Off Rule for Measures of Variation

When rounding the value of a measure of variation, carry one more decimal place than is present in the original set of data.

Round only the final answer, not values in the middle of a calculation.

Definition

The standard deviation of a set of sample values, denoted by s, is a measure of variation of values about the mean.

Sample Standard Deviation Formula

Sample Standard Deviation (Shortcut Formula)

Standard Deviation Important Properties

The standard deviation is a measure of variation of all values from the mean.

The value of the standard deviation s is usually positive.

The value of the standard deviation s can increase dramatically with the inclusion of one or more outliers (data values far away from all others).

The units of the standard deviation s are the same as the units of the original data values.

Comparing Variation in Different Samples

It's a good practice to compare two sample standard deviations only when the sample means are approximately the same.

When comparing variation in samples with very different means, it is better to use the coefficient of variation, which is defined later in this section.

Population Standard Deviation

This formula is similar to the previous formula, but instead, the population mean and population size are used.

Variance

The variance of a set of values is a measure of variation equal to the square of the standard deviation.

Sample variance: s^{2} - Square of the sample standard deviation s

Population variance: σ^{2} - Square of the population standard deviation σ

Unbiased Estimator

The sample variance s^{2} is an unbiased estimator of the population variance σ^{2}, which means values of s^{2} tend to target the value of σ^{2} instead of systematically tending to overestimate or underestimate σ^{2}.

Variance - Notation

$\boldsymbol{s}=$ sample standard deviation
$s^{2}=$ sample variance
$\sigma=$ population standard deviation
$\sigma^{2}=$ population variance

Part 2

Beyond the Basics of Measures of Variation

Range Rule of Thumb

is based on the principle that for many data sets, the vast majority (such as 95%) of sample values lie within two standard deviations of the mean.

Range Rule of Thumb for Interpreting a Known Value of the Standard Deviation

Informally define usual values in a data set to be those that are typical and not too extreme. Find rough estimates of the minimum and maximum "usual" sample values as follows:

Minimum "usual" value $=($ mean $)-2 \times($ standard deviation $)$

Maximum "usual" value = (mean) + $2 \times$ (standard deviation)

Range Rule of Thumb for Estimating a Value of the Standard Deviation s

To roughly estimate the standard deviation from a collection of known sample data use

$$
s \approx \frac{\text { range }}{4}
$$

where
range $=$ (maximum value) - (minimum value)

Properties of the Standard Deviation

- Measures the variation among data values
- Values close together have a small standard deviation, but values with much more variation have a larger standard deviation
- Has the same units of measurement as the original data

Properties of the Standard Deviation

- For many data sets, a value is unusual if it differs from the mean by more than two standard deviations
- Compare standard deviations of two different data sets only if the they use the same scale and units, and they have means that are approximately the same

Empirical (or 68-95-99.7) Rule

For data sets having a distribution that is approximately bell shaped, the following properties apply:

About 68\% of all values fall within 1 standard deviation of the mean.

About 95\% of all values fall within 2 standard deviations of the mean.

About 99.7\% of all values fall within 3 standard deviations of the mean.

The Empirical Rule

The Empirical Rule

The Empirical Rule

Chebyshev's Theorem

The proportion (or fraction) of any set of data lying within K standard deviations of the mean is always at least $1-1 / K^{2}$, where K is any positive number greater than 1.

> For $K=2$, at least 3/4 (or 75\%) of all values lie within 2 standard deviations of the mean.

> For $K=3$, at least 8/9 (or 89\%) of all values lie within 3 standard deviations of the mean.

Rationale for using $\boldsymbol{n}-1$ versus n

There are only $n-1$ independent values. With a given mean, only $n-1$ values can be freely assigned any number before the last value is determined.

Dividing by $n-1$ yields better results than dividing by n. It causes \boldsymbol{s}^{2} to target σ^{2} whereas division by n causes s^{2} to underestimate σ^{2}.

Coefficient of Variation

The coefficient of variation (or CV) for a set of nonnegative sample or population data, expressed as a percent, describes the standard deviation relative to the mean.

Sample

$$
c V=\frac{S}{\bar{X}} \cdot 100 \%
$$

Population

$$
C V=\frac{\sigma}{\mu} \cdot \underset{\%}{100}
$$

Recap

In this section we have looked at:

Range
Standard deviation of a sample and population
Variance of a sample and population Range rule of thumb
Empirical distribution
Chebyshev's theorem
Coefficient of variation (CV)

Section 3-4
 Measures of Relative Standing and Boxplots

Key Concept

This section introduces measures of relative standing, which are numbers showing the location of data values relative to the other values within a data set. They can be used to compare values from different data sets, or to compare values within the same data set. The most important concept is the z score. We will also discuss percentiles and quartiles, as well as a new statistical graph called the boxplot.

Part 1

Basics of z Scores, Percentiles, Quartiles, and Boxplots

Z score

z Score (or standardized value) the number of standard deviations that a given value x is above or below the mean

Measures of Position z Score

Sample

Population

$$
z=\frac{x-\bar{x}}{s} \quad z=\frac{x-\mu}{\sigma}
$$

Round \mathbf{z} scores to 2 decimal places

Interpreting Z Scores

Whenever a value is less than the mean, its corresponding z score is negative
Ordinary values: $-\mathbf{2} \leq z$ score ≤ 2
Unusual Values: \quad z score <-2 or z score >2

Percentiles

are measures of location. There are 99 percentiles denoted $P_{1}, P_{2}, \ldots P_{99}$, which divide a set of data into 100 groups with about 1\% of the values in each group.

Finding the Percentile of a Data Value

Percentile of value $x=\frac{\text { number of values less than } x}{\text { total number of values }} \cdot 100$

Converting from the kth Percentile to the Corresponding Data Value

Notation

n total number of values in the data set

$$
L=\frac{k}{100} \cdot n \quad \begin{aligned}
& k \quad \begin{array}{l}
\text { percentile being used } \\
L \begin{array}{l}
\text { locator that gives the position } \\
\text { of a value }
\end{array}
\end{array}
\end{aligned}
$$

$P_{k} \quad k$ th percentile

Quartiles

Are measures of location, denoted Q_{1}, Q_{2}, and Q_{3}, which divide a set of data into four groups with about 25% of the values in each group.
Q_{1} (First Quartile) separates the bottom 25% of sorted values from the top 75%.

- Q_{2} (Second Quartile) same as the median; separates the bottom 50% of sorted values from the top 50%.
Q_{3} (Third Quartile) separates the bottom 75% of sorted values from the top 25%.

Quartiles

Q_{1}, Q_{2}, Q_{3}
 divide ranked scores into four equal parts

Some Other Statistics

Interquartile Range (or IQR): $Q_{3}-Q_{1}$

Semi-interquartile Range:

2
Midquartile:

$$
Q_{3}+Q_{1}
$$

2
10-90 Percentile Range: $P_{90}-P_{10}$

5-Number Summary

For a set of data, the 5 -number summary consists of the minimum value; the first quartile Q_{1}; the median (or second quartile Q_{2}); the third quartile, \mathbf{Q}_{3}; and the maximum value.

Boxplot

A boxplot (or box-and-whiskerdiagram) is a graph of a data set that consists of a line extending from the minimum value to the maximum value, and a box with lines drawn at the first quartile, Q_{1}; the median; and the third quartile, \mathbf{Q}_{3}.

Boxplots

Boxplot of Movie Budget Amounts

Boxplots - Normal Distribution

Normal Distribution: Heights from a Simple Random Sample of Women

Boxplots - Skewed Distribution

Skewed Distribution:
Salaries (in thousands of dollars) of NCAA Football Coaches

Part 2

Outliers and Modified Boxplots

Outliers

An outlier is a value that lies very far away from the vast majority of the other values in a data set.

Important Principles

An outlier can have a dramatic effect on the mean.

An outlier can have a dramatic effect on the standard deviation.

An outlier can have a dramatic effect on the scale of the histogram so that the true nature of the distribution is totally obscured.

Outliers for Modified Boxplots

For purposes of constructing modified boxplots, we can consider outliers to be data values meeting specific criteria.

In modified boxplots, a data value is an outlier if it is . . .
above Q_{3} by an amount greater than $1.5 \times$ IQR
or

> below Q_{1} by an amount greater than $1.5 \times \operatorname{lQR}$

Modified Boxplots

Boxplots described earlier are called skeletal (or regular) boxplots. Some statistical packages provide modified boxplots which represent outliers as special points.

Modified Boxplot Construction

A modified boxplot is constructed with these specifications:

A special symbol (such as an asterisk) is used to identify outliers.
The solid horizontal line extends only as far as the minimum data value that is not an outlier and the maximum data value that is not an outlier.

Modified Boxplots - Example

Pulse rates of females listed in Data Set 1 in Appendix B.

Recap

In this section we have discussed:

z Scores
z Scores and unusual values
Percentiles
Quartiles
Converting a percentile to corresponding data values

Other statistics
5-number summary
Boxplots and modified boxplots
Effects of outliers

Putting It All Together

Always consider certain key factors:
Context of the data
Source of the data
Sampling Method
Measures of Center
Measures of Variation
Distribution
Outliers
Changing patterns over time
Conclusions
Practical Implications
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

