Atoms, molecules, Ions and Periodicity الذرات, الجزيئات, الايونات, والجدول الدوري

Atomic theory and atomic structure النظرية الذرية وتركيب الذرة

There are 3 laws that led to	يوجد 3 قوانين ادت الى تطور وقبول
the development and	النظرية الذرية, وهم:
acceptance of atomic theory,	
they are:	
1-Law of conservation of	1-قانون حفظ الكتلة.
mass.	2-قانون النسب المحددة.
2-Law of definite proportions.	3-قانون النسب المضاعفة.
3-Law of multiple proportions	

The law that states matter is	يسمى القانون الذي ينص انه لا يمكن
neither created nor destroyed	استحداث الكتلة او افناءها خلال
in chemical reaction called:	التفاعل الكيميائي:
The law of conservation of	قانون حفظ الكتلة.
mass.	
The law of conservation of	تم اكتشاف قانون حفظ الكتلة من قبل
mass was discovered by:	العالم:
Antoine Lavoisier.	أنطوان لافوازييه.
The law of conservation of	يعني قانون حفظ الكتلة:
mass means:	
Total mass of used reactants =	الكتلة الكلية للمواد المتفاعلة المستخدمة =
total mass of products produced	الكتلة الكلية للمواد النواتجة.
Or total number of reactant	او العدد الكلي لذرات المتفاعلات = العدد
atoms = total number of product	الكلي لذرات المواد الناتجة.
atoms.	

The law which states that all	القانون الذي ينص على ان كل عينات
samples of a given compound	مركب ما تملك نفس النسب للعناصر
have the same proportions of	المكونة له (بغض النظر عن
their constituent elements	مصدر ها):
(regardless of their source):	
Law of defined proportions.	قانون النسب المحددة.
The law of defined	اكتشف قانون النسب المحددة من قبل:
proportions was discovered	
by:	
Joseph Proust.	<u>جوزیف بروست.</u>

The law which states that	القانون الذي ينص على انه عند اتحاد
when 2 elements combine in	عنصرين بنسب مختلفة, تتكون عناصر
different proportions,	مختلفة:
different compounds will be	
formed:	
Law of multiple proportions.	قانون النسب المضاعفة.
Who discovered the law of	من هو مكتشف قانون النسب
multiple proportions:	المضاعفة:
John Dalton.	جون دالتون.

In sodium chloride (NaCl)	في كلوريد الصوديوم (NaCl) دائما ما
always there is definite mass	يكون هناك نسبة كتلة الى كتلة محددة
to mass ratio of chlorine and	للكلور والصوديوم, هذا مثال على:
sodium, this is example of:	
Law of definite proportions.	قانون النسب المحددة.
Carbon and Oxygen atoms	ذرات الكربون والاكسجين تنتج
form different compound	مركبات مختلفة عند تغير نسبة الذرات
when their atom to atom	بینهما, ان هذا مثال علی:
ratio changes, this is example	
of:	
Law of multiple proportions.	قانون النسب المضاعفة.

Dalton's atomic theory of matter

Each element is composed of	كل عنصر مكون من جسيمات صغيرة
tiny indestructible particles	جدا و غير قابلة للتفكك تسمى:
called:	
Atoms.	الذرات.
An element's atoms are in	ذرات العنصر الواحد في الحجم
size, mass and all other	والكتلة وكل الخصائص الاخرى:
properties:	
Identical.	متطابقة.
They are simple whole-	هم ارقام صحيحة بسيطة من النسب
number ratios of the	للعناصر المترابطة (المركبات):
combined elements	
(compound):	
Molecules.	الجزيئات.
Atoms of one element	ذرات العنصر الواحد الى
into atoms of another	ذرات عنصر اخر:
element:	
Cannot change.	لا يمكن تغيير ها.

J.J Thomson cathode ray tube experiment:

تجربة انبوبة اشعة الكاثود لطومسون:

The cathode ray tube	ادت تجربة انبوبة اشعة الكاثود الى:
experiment led to:	
1-The discovery of the	1-اكتشاف الالكترون.
electron.	2-تحديد نسبة شحنة الالكترون الى
2-Determined the electron's	كتلته.
charge to mass ratio.	
Who discovered the electron:	من هو مكتشف الالكترون:
J.J Thomson.	طومسون
Due to the discovery of	بسبب اكتشاف الالكترون من قبل العالم
electron by J.J Thomson, he	طومسون, وضع:
made:	

Plum-pudding model of the	نموذج البودينج للذرة.
atom.	

Plum pudding model of the atom stated that:	ينص نموذج البودينج للذرة على ان:
Atom is composed of a positive cloud of matter in which electrons are embedded.	الذرة مكونة من سحابة موجبة من المادة وتكون الالكترونات مضمنة بداخلها.

Who discovered the charge of	من هو مكتشف قيمة شحنة الالكترون:
electron:	
Millikan.	میلکان.
Millikan discovered the	اكتشف ميليكان قيمة شحنة الالكترون
charge of electron by:	عن طريق:
Oil drop experiment.	تجربة قطرة الزيت.

By gold foil experiment, the	عن طريق تجربة شريحة الذهب, تم
atom's discovered and -	اكتشاف الذرة, و نموذج
the plum pudding model:	البودنج للذرة ::
Protons / disapproved.	بروتونات / وتم نقض.
Who discovered protons by	من اكتشف البروتونات عن طريق
gold foil experiment:	تجربة شريحة الذهب:
Rutherford.	راذر فورد.

The results of Rutherford's gold foil experiment:

نتائج تجربة شريحة الذهب لرذرفورد:

The atom has a tiny, dense	تحتوي الذرة على جسيم صغير وكثيف
center particle and this	في وسطها ولهذا الجسيم كتلة الذرة
particle has the entire mass of	باكملها ويسمى:
the atom, this particle called:	
Nucleus.	النواة.
The has practically no	تقريبا ليس لها كتلة في الذرة:
mass in the atom:	
Electrons.	الالكترونات.
Nucleus is charged,	النواة شحنتها والالكترونات
electrons are charged	شحنتها والنواة
and the atom is	
Positively / negatively /	موجبة / سالبة / متعادلة الشحنة.
electrically neutral.	

The amount of positive	تسمى كمية الشحنة الموجبة في النواة
charge in the nucleus named:	<u>ب</u> :
Protons.	البروتونات.
Electron are dispersed in the	الالكترونات منتشرة في للذرة:
of the atom:	
Empty space (vacuum).	الفراغ. المحيط بالنواة.
Surrounding the nucleus.	
Most of the volume of the	غالبية حجم الذرة عبارة عن:
atom is:	
Vacuum (empty space).	فراغ.

They are neutral particles	تسمى الجسيمات المتعادلة بداخل نواة
within the nucleus of the	الذرة ب:
atom called:	
Neutrons.	النيوترونات.
Who discovered the	من هو مكتشف النيوترونات:
neutrons:	

J.Chadwick	شاندويك.

The discovery which has explained why the dense nucleus of the atom contains over 99.99% of the mass of	الاكتشاف الذي شرح لنا سبب النواة الكثيفة للذرة والتي تحتوي على اكثر من كتلة الذرة هي:
the atom, is:	
The discovery of neutrons.	اكتشاف النيوترونات.

Protons, electrons, and neutrons summary ملخص البروتونات والالكترونات والنيوترونات:

Particle الجسيم	Charge الشحنة	Location الموقع	Discovered by اکتشفت من قبل
Electron	negative -1 سالبة	Outside nucleus (surround nucleus) بخارج النواة (محيطة بالنواة)	J.J. Thomson's Cathode ray tube. Electron's charge discovered by Millikan's oil drop experiment. lique imas italia in i
Proton	+1 positive موجبة	Inside nucleus بداخل النواة	Rutherford gold foil experiment. تجربة شريحة الذهب لرذرفورد.
Neutron	neutral 0 متعادلة	Within nucleus بداخل النواة	J.Chadwick تشادویك.

Elements العناصر

It determines the element's identity:	يحدد هوية العنصر:
The number of protons.	عدد البروتونات.

It's the number of protons	هو عدد البروتونات وتعتبر بصمة اي
and is considered as the	عنصر:
fingerprint of any element:	
Atomic number (referred as	العدد الذري (ويرمز لها Z).
Z).	

Each element has a:	لكل عنصر:
Unique name, symbol and	اسم ورمز وعدد ذري خاص به.
atomic number.	
The elements are arranged in	تم ترتيب العناصر في الجدول الدوري
the periodic table in order of:	بترتیب:
Increasing of atomic number.	زيادة العدد الذري.

Isotopes النظائر

Mass number is:	العدد الكتلي هو:
Protons + neutrons.	البروتونات + النيوترونات.
They are atoms of one	هي ذرات عنصر واحد لها نفس العدد
element have the same	الذري (عدد البروتونات) لكنها تختلف
atomic number but different	في العدد الكتلي (تختلف في عدد
mass number (number of	النيوترونات):
neutrons):	
Isotopes.	النظائر.
Isotopes are identical.	النظائر متطابقة
Chemically.	كيميائيا.
Isotopes identified by:	تعرف النظائر عن طريق:
Their mass number.	العدد الكتلي.

lons الايونات

It's an atom or group of	هي ذرة او مجموعة من الذرات تحمل
atoms has positive or	شحنة موجبة او سالبة:
negative charge:	
The Ion.	الايون.

Taking away an electron from	اخذ الكترون من الذرة يكون:
an atom forms:	
A cation. (+)	كاتيون. (+)
Cation has protons in the	يملك الكاتيون بروتونات في النواة: النواة من الالكترونات المحيطة بالنواة:
nucleus than electrons	النواة من الالكترونات المحيطة بالنواة:
surrounding nucleus:	
More.	اكثر <u>.</u>
tend to form cation:	تميل لتشكيل الكاتيون:
Metals	الفلزات.

Adding an electron gives an:	اضافة الكترون تعطي:
Anion. With negative charge.	انيون. مع شحنة سالبة (-).
Anion has protons in the	تحتوي الانيونات على بروتونات
nucleus than electrons	في النواة من الالكترونات المحيطة
surrounding nucleus:	بالنواة:
Fewer.	اقل.
Non-metals tend to form:	تميل اللافلزات الى تشكيل:
Anions.	الانيونات.

Cation and Anion

	Form when متی یتم تکوینها	Charge الشحنة	Which tend to form it ما هي المواد التي تميل لتكوينها:
Cation	It forms when atom loses one or more electrons in its outer shell. تتكون عندما تفقد الذرة الكترون او اكثر من مستوى الطاقة الخارجي.	Positive +. موجبة.	Metals الفئزات

Anion	It forms when		
	an atom gains	Negative (-).	Non-metals
	one or more	سالبة.	اللافلزات
	electrons in its		
	outer shell.		
	تتكون عندما تكتسب		
	الذرة الكترونا او		
	اكثر في مستوى		
	الطاقة الخارجي.		

Periodic table الجدول الدوري

The first scientist who	العالم الاول الذي رتب العناصر في
arranged the elements in	جدول هو:
table is:	
Dmitri Mendeleev.	ديمتري مندليف.
Dmitri Mendeleev arranged	رتب ديمتري مندليف جدوله بترتيب:
his table in order of:	
The increasing of atomic	بزيادة الكتلة الذرية للعناصر.
mass.	

The term which means to	المصطلح الذي يعني عرض انماط
exhibit a repeating patterns	متكررة هو:
is:	
Periodic.	دوري.

After he arranged his table,	بعد ان رتب مندایف جدوله للعناصر,
Mendeleev summarised his	لخص مندليف ملاحظاته في:
observations in the:	
Periodic law.	القانون الدوري.

When the elements are	عندما يتم ترتيب الالكترونات حسب
arranged in order of	مجموعات معينة من الخصائص
certain sets of properties	تتكرر دوريا يسمى هذا القانون ب
recur periodically this law	:
called :	
Atomic mass / the periodic	الكتلة الذرية / القانون الدوري.
law.	
Mendeleev arranged rows so	رتب مندليف صفوف الجدول بحيث
that elements with fall	تكون العناصر تقع في نفس
in the same :	:
Similar properties / vertical	المتشابهة الصفات / العمود الرأسي.
columns.	

The scientist who proposed	العالم الذي اقترح الجدول الدوري
the modern periodic table is:	الحديث هو:
Henry Moseley.	هنري موسلي.
The main difference between	الفرق الرئيسي بين جدول مندليف
Mendeleev's table and	وجدول هنري هو:
Henry's table is:	
Henry arranged his table by	ان هنري رتب جدوله بزيادة العدد الذري بدلا من الكتلة الذرية.
increasing of atomic number	الذري بدلا من الكتلة الذرية.
instead of atomic mass.	

The modern periodic table consists of:

يتكون الجدول الدوري الحديث من:

7 Rows: referred as periods. 7 صفوف: تعرف بالدورات.

18 Columns: referred as المجموعات او 18 Columns

groups or families. العائلات.

In the modern periodic table,	في الجدول الدوري الحديث, يطلق على
columns are commonly called	الأعمدة بالعائلات وذلك لان:
families because:	
The elements within the	العناصر التي بداخل الاعمدة تملك
columns have similar physical	خصائص فيزيائية وكيميائية متشابهة.
and chemical properties.	

Elements in the periodic table are classified into 3 major divisions:

تقسم العناصر في الجدول الدوري الى 3 اقسام رئيسية:

Metals.	الفلزات.
Metalloids.	اشباه الفلزات.
Non-metals.	اللافلزات.

	Location الموقع	Heat and electricity الحرارة والكهرباء	State at room temperature الحالة في درجة حرارة الغرفة
Metals الفلزات	Lie on the lower left side and middle of the periodic table. تقع في الجانب الاسفل الايسر ومنتصف الجدول الدوري.	They are good conductors of heat and electricity. موصلات جيدة للحرارة والكهرباء.	All solids except mercury (Hg) which is liquid. جمیعها صلبة في درجة حرارة الغرفة ما عدا الزئبق فهو سائل
Metalloids اشباه الفلزات	Lie along the zigzag line dividing metals and non-metals. تقع بجانب الخط المتعرج الذي يفصل الفلزات واللافلزات.	Semiconductor for electricity. Poor conductor for heat. شبه موصلة للكهرباء موصل ضعيف للحرارة.	All solids at room temperature. جميعها صلبة في درجة حرارة الغرفة.
Non-metals اللافلز ات	Upper right side of the periodic table.	They are poor conductors of	Can be found in all states.

الجانب الاعلى الايمن من الجدول		موجودة بكل الحالات.
الدوري.	موصلات رديئة للحرارة والكهرباء.	

	Malleability قابلية الطرق	Ductility المرونة (قابلية السحب)	Tend to form تمیل لتشکیل
Metals	They can be pounded into flat sheet. يمكن طرقها الى اوراق مسطحة.	They can be drawn into wires. يمكن سحبها الى اسلاك.	They lose electron so they tend to form cation. افقد الكترونات لذا تميل لتشكيل الكاتيون
Metalloids			
Non-metals	Not ductile. غير قابل للطرق.	Not malleable. غير قابل للسحب.	They tend to gain electron to form to anion. تميل لكسب الكترونات لتشكل الانيون.

About 75% of elements in the	75% من عناصر الجدول الدوري
periodic table are:	هي:
Metals.	فلزات.

Main-group elements and transition elements

المجموعات الرئيسية والانتقالية:

The elements'	العناصر تملك صفات يمكن
properties are largely	التنبؤ بها بشكل كبير:
predictable.	
Main groups.	مجموعات العناصر الرئيسية.
Transition elements'	خواص العناصر الانتقالية:
properties are:	
Less predictable.	اقل قابلية للتنبؤ بها.

Transition elements also	يطلق على العناصر الانتقالية ب:
called:	
Transition metals.	الفلزات الانتقالية.

Main group elements عناصر المجموعات الرئيسية

The group 1A elements are	عناصر المجموعة 1A تسمى:
called:	
Alkali metals.	الفلزات القلوية.
The most common property	الخاصية الشائعة للفازات القلوية هي:
for alkali metals that:	
They all are highly reactive	انهم فلزات نشيطة جدا كيميائيا.
metals.	

The alkaline earth metals are	الفلزات القلوية الارضية تقع في:
located in:	
Group 2A	المجموعة 2A
Alkaline earth metals are:	الفلزات القلوية الارضية:
Fairly reactive (but not as	نشطة بشكل جيد (لكنها ليست نشطة
reactive as the alkali metals).	مثل الفلزات القلوية).

The group 7A elements are	تسمى عناصر المجموعة 7A / 17:
called:	
The halogens.	الهالوجينات.
The halogens are	الهالوجينات لافلزية:
non-metals:	
Very reactive.	نشطة جدا:
The halogens are always	الهالوجينات دائما ما توجد في الطبيعة
found in nature as:	على شكل:
Salts.	املاح.

The group 8A elements are	تسمى عناصر المجموعة A8/8A:
called:	

The noble gases.	الغازات النبيلة.
The noble gases are mostly:	الغازات النبيلة هي غالبا:
Unreactive.	غير نشطة.

The noble gas which used to	الغاز النبيل الذي يستخدم في تعبئة
fill buoyant balloons is:	بالونات المنطاد هو:
Helium.	الهيليوم.
The noble gas which used in	الغاز النبيل المستخدم في الاشارات
electronic sign is:	الالكترونية هو:
Neon.	النيون.

lons and main groups الايونات والمجموعات الرئيسية

The main group metals tend	تميل فلزات المجموعة الرئيسية الى:
to:	
Lose an electron or more to	فقد الكترون او اكثر لتشكيل الكاتيون.
form cation.	
The main group non-metals	تميل الفلزات المجموعة الرئيسية الى:
tend to:	
Gain an electron or more to	اكتساب الكترون او اكثر مشكلة
form anion.	الانيون.
Elements gain or lose	تكتسب العناصر الكترونات او تفقدها
electrons with the same	بنفس عدد الكترونات:
number of electrons as:	
The nearest noble gas.	اقرب غاز نبيل.

Main group elements and ions عناصر المجموعة الرئيسية والايونات

The main group elements	للعناصر التي تكون الكاتيون (الفلزات) شحنة الايون مساوية ل:
that form cation (metals) the	شحنة الايون مساوية ل:
charge of ion is equal to:	
Group number.	رقم المجموعة.
For the main group elements	لعناصر المجموعة الرئيسية التي تكون
that form anion (non-metals)	الانيون (اللافلزات) شحنة ايوناتها
the charge of ion is equal to:	مساوية ل:
Group number – 8.	رقم المجموعة - 8 .
Transition elements may form	العناصر الانتقالية تكون ايونات مختلفة
different ions with:	ب:
Variable charges.	شحنات مختلفة.

Examples امثلة

Elements العناصر	Group number رقم المجموعة	Element type نوع العنصر	lon charge شحنة الايون
Sodium (Na) الصوديوم	1A	Metal فلز	+1
Magnesium (Mg) المغنسيوم	2A	Metal فلز	+2
Nitrogen (N) النيتروجين	15 / 5A	Non metal لافل <i>ز ي</i>	5 – 8 = -3
Florine (F) الفلور	17 / 7A	Non-metal لا فلز <i>ي</i>	7 – 8 = -1
Iron (Fe) الحديد	8 / 8B	Transition انتقالي	+2 / +3
Cupper (Cu) النحاس	11 / 1B	Transition انتقالي	+1/+2

Atomic mass الكتلة الذرية

Atomic mass called:	تسمى الكتلة الذرية ب:
Atomic weight.	الوزن الذري.
The atomic mass represents:	تمثل الكتلة الذرية:

The average mass of all the	متوسط الكتلة لكل النظائر التي تكون
isotopes that compose that	العنصر:
element.	
The atomic mass weighted	تم حساب الكتلة الذرية بناء على:
according to:	
The natural abundance of	الوفرة الطبيعية لكل نظير.
each isotope.	

The atomic mass can be	يمكن حساب الكتلة الذرية عن طريق
calculated by this equation:	المعادلة التالية:
Atomic mass = (fraction of	الكتلة الذرية (نسبة النظير x 1 كتلة
isotope 1 X mass of isotope 1)	النظير 1) + (نسبة النظير 2 x كتلة
+ (fraction of isotope 2 X mass	النظير 2) +
of isotope 2) +	
Fraction of each isotope	نسبة كل نظير تعني:
means:	
Its natural abundance % /	وفرته في الطبيعة % / 100
100.	

The electron configuration التوزيع الالكتروني

The model that states that	النموذج الذي ينص على ان
electrons move in spherical	الالكُترونات تتحرك في مدارات
orbits at fixed distances from	بيضاوية في مسافات ثابتة من النواة:
the nucleus:	
Niels Bohr's model.	نموذج نیل بور.
The Niels Bohr's model is	نموذج نیل بور مشابه ل:
similar to:	
Structure of solar system.	تركيب النظام الشمسي (المجموعة
	الشمسية).

Who develops mathematical	من هو الذي طور عمليات حسابية
equations to describe the	لشرح حركّة الالكترونات:
motion of electrons:	
Erwin Schrödinger.	اروین شرودنجر.

Electron location around the atom's nucleus is described	موقع الالكترون حول نواة الذرة تم شرحة بناء على:
by:	
4 quantum numbers.	4 ارقام كمية.

4 quantum numbers

N = principle energy level.	N = مستوى الطاقة الرئيسي.
I = orbital type (s,p,d,f)	ا = نوع المدار (s,p,d,f)
m _I = orientation of orbital	m _i = اتجاه المدار.
m_s = spin of electron in orbital	m _s = دوران الالكترون في المدار.

Quantum number الرقم الكمي	Name الاسم	Definition التعريف	Range of values مدى الاعداد
n	Principle quantum number. الرقم الكمي الرئيسي	Describes the energy level on which the orbital resides. یصف مستوی الطاقة الذي يوجد فيه المدار.	n > 0 n = 1,2,3,4,5,6,7
I	Angular momentum quantum number. الرقم الكمي للزخم الزاوي.	It defines the shape of the orbital يعرف شكل المدار	0 to n-1 s = 0 p = 1 d = 2 f = 3
mı	Magnetic quantum number.	Describes the 3 dimensional orientation of the orbital.	-l≤ m _l ≤l

	الرقم الكمي المغناطيسي.	يصف الاتجاه ثلاثي الابعاد للمدار.	
m _s	Spin quantum number. الرقم الكمي للدوران.	It designated the direction of the electron spin. تحدد اتجاه دوران الالكترون.	+ 1/2 or ↑ - 1/2 or ↓

The significance of the	اهمية الرقم الكمي لدوران الالكترون
electron spin quantum	هي:
number is:	
determination of an atom's	تحديد قدرة الذرة على توليد مجال
ability to generate a magnetic	مغناطيسي او لا.
field or not.	

Number of orbitals and maximum number of electron in each sublevel:

عدد المدارات والعدد الاقصى من الالكترونات في كل مستوى فرعي:

Each orbital in any sublevel	كل مدار في اي مستوى فرعي يستطيع
hold a maximum of:	حمل كحد اقصى:
2 electrons.	الكترونين.

(I) Sublevel المستوى الفرعي	Orbital number عدد المدارات	Maximum of electrons الحد الاقصى من الالكترونات
S	1	2
р	3	6
d	5	10
f	7	14

The maximum number of electrons that can occupy a specific energy level can be calculated by:	يمكن حساب العدد الاقصى من الالكترونات في كل مستوى طاقة عن طريق:
Electron capacity = $2n^2$	$2n^2 = 2$ سعة الالكترونات
n = the number of energy	n= رقم مستوى الطاقة (الرقم الكمي
level (principle quantum	الرئيسي).
number).	

The electron configuration of	التوزيع الالكتروني للهيليوم
helium (2e) is:	(الكترونين) هو:
1s ² where:	1s ² حيث ان:
1 = energy level (n)	1 = مستوى الطاقة (n)
s= orbital type (I).	s= نوع المدار (۱)
2 = number of electrons.	2 = عدد الالكترونات.

The principle that states that	المبدأ الذي ينص على انه في نفس
in the same atom, there is no	الذرة لا يمّكن لالكترونين انّ يملكًا نفس
2 electrons can have the	الاربعة الارقام الكمية:
same 4 quantum numbers:	
Pauli Exclusion Principle.	مبدأ استبعاد باولي.
Pauli exclusion principle	يعني مبدأ استبعاد باولي:
means:	
Each orbital can hold no more	كل مدار لا يمكن ان يحمل اكثر من
than 2 electrons and their	الكترونين ويجب ان يكونا في اتجاهين
spins must be opposite.	مختلفين.

Aufbau principle states:	ينص مبدأ اوفباو:	
Lower energy orbitals fill before	تملئ المدارات الاقل طاقة قبل	
higher energy orbitals.	المدارات الاعلى في الطاقة.	
According to the Aufbau	بناء على مبدأ افباو يتم ملئ	
principle, orbitals fill in the	المدارات بالترتيب التالي:	
following order:		
1s,2s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d,7p		

Hund's rule states:	ينص قانون هوند:
For orbitals of identical	للمدارات التي تملك نفس الطاقة,
energy, electrons first occupy	الالكترونات تُملأ اولا هذه المدارُات
these orbitals singly with	فرديا باتجاهات متعامدة.
parallel spins rather than in	
pairs.	
Another statement:	تعبير اخر:
When filling identical orbitals,	عند تعبئة مدارات متطابقة,
the electrons fill them singly	الالكترونات تملأ هذه المدارات فدريا
first with parallel spins.	اولا في اتجاهات متعامدة.

Electron configuration and orbital box diagrams

التوزيع الالكتروني ومخططات المربع المداري (Lithium (Li) الليثيوم

Electron configuration: $1s^22s^1$ Orbital box diagrams: $1s^22s^1$

The main difference between	الاختلاف الرئيسي بين التوزيع
electron configuration and	الالكتروني والمخططات المدارية هي:
orbital diagrams is:	
That orbital diagrams show	ان المخططات المدارية تظهر اتجاه
the direction of electron spin	دوران الالكترون (الرقم الكمي للدوران
(spin quantum number m _s).	.(m _s

Violations of orbital filling rules امثلة على تعديات (اخطاء) حسب قوانين التعبئة

Example of Pauli exclusion principle's violation. (Electrons' spins must be opposite)

مثال على خطأ (تعدي) بحسب مبدأ باولي. لان الكترونات 1s في نفس الاتجاه.

Nitrogen (N)

2p <u>†</u> <u>†</u> <u>†</u>

1s **1**

Example of violation of the	Carbon (C)
Aufbau principle.	2p <u>†</u> <u>†</u> <u>†</u>
(Lower energy orbitals fill	2s
before higher energy orbitals)	1s <u>†</u>
مثال لتعدي على مبدأ افباو.	
لانه تم تعبئة 2s قبل 1s.	
Example of violation of	Nitrogen (N)
Hund's rule. (electrons fill	2p 1 1
them singly first).	2s <u>1</u>
مثال لتعدي على قانون هوند.	1s <u>1</u>

Valence electrons الالكترونات الخارجية

Electrons in all the sublevels	تسمى الالكترونات في جميع المستويات
within the highest principle	الفرعية لاعلى مستوى طاقة رئيسي
energy level (n) are called:	:(n)
Valence electrons.	الالكترونات الخارجية.
The valance electrons is	الالكترونات الخارجية عامل ل:
factor for:	
The way an atom behaves	طريقة سلوك الذرة كيميائيا وفيزيائيا.
both chemically and	
physically.	

The highest principle energy	يسمى اعلى مستوى طاقة رئيسي:
level is also known as:	
The valence shell.	المستوى الخارجي.
The electrons which	الالكترونات التي تشارك في الارتباط
participate in bonding,	وتكوين الكاتيونات (خسارة الكترون)
making cations (losing e) and	و تكوين انيونات (اكتساب الكترون)
making anions (gaining e) are:	هي:
The valence electrons.	الالكترونات الخارجية.

The electrons in all lower	تسمى الالكترونات في كل مستويات
energy levels (all shell except	الطاقة السفلية (كل المستويات ما عدا
the valence shell) are called:	المستوى الخارجي):
Core electrons.	الالكترونات الداخلية.

Determine the valence electrons from the group number

تحديد الالكترونات الخارجية من رقم المجموعة

تحديد عدد الالكترونات الم طريق:
رقم المجموعة الرئيسية (ا
',

Examples of determining the valence electrons

امثلة لتحديد عدد الالكترونات الخارجية

Element العنصر	Main group number رقم المجموعة الرئيسي	The valence electrons الالكترونات الخارجية
(Lithium (Li ليثيوم	1A	1
Calcium (Ca) كالسيوم	2A	2
Aluminium (Al) الومنيوم	3A	3
Tin (Sn) القصدير	4A	4
Arsenic (As) الزرنيخ	5A	5
Sulfur (S) کبریت	6A	6
lodine (۱) اليود	7A	7
Neon (Ne) النيون	8A	8

Electron configuration and ions التوزيع الالكتروني والايونات

Atoms gain or lose electrons	تفقد الذرة الكترونات او تكتسبها مكونة
forming ions to:	ايونات ل:
Have electrons as same as the	تملك الكترونات مثل اقرب غاز نبيل.
nearest noble gas.	
Ions have different electron	التوزيع الالكتروني للايونات يختلف
configuration from atoms	من الذرات بسبب:
because:	
Ions have more or less	تملك الايونات الكترونات اكثر او اقل
electrons than atoms.	من الذرات.

Examples of atoms and ions امثلة للذرات والايونات

Atom الذرة	Electron configuration التوزيع الإلكتروني	lon الايون	Electron configuration التوزيع الإلكتروني
Li	$1s^22s^1$	Li^{1+}	$1s^2$
F	$1s^22s^22p^5$	F^{1-}	$1s^22s^22p^6$

+ ion means lose electron.	ايون موجب يعني اكتساب الكترون.
- ion means gain electron.	ايون سالب يعني فقد الكترون.