theweh Application

Hacker's
Handbook

Finding and Exploiting

Security Flaws 3
Y Second
Edition
-\#‘%“.‘w“h'ﬁ'\f c:.;,. i

e o B Dafydd Stuttard MMarcus Pinto
L—] il

The Web Application
Hacker's Handbook_

Second Edition

Finding and Exploiting Security Flaws

Dafydd Stuttard
Marcus Pinto

WILEY
Wiley Publishing, Inc.

The Web Application Hacker’s Handbook: Finding and Exploiting Security Flaws, Second Edition

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Dafydd Stuttard and Marcus Pinto
Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-02647-2

ISBN: 978-1-118-17522-4 (ebk)
ISBN: 978-1-118-17524-8 (ebk)
ISBN: 978-1-118-17523-1 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http: / /www.wiley.
com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all content
that is available in standard print versions of this book may appear or be packaged in all book formats. If
you have purchased a version of this book that did not include media that is referenced by or accompanies
a standard print version, you may request this media by visiting http: //booksupport . .wiley.
com. For more information about Wiley products, visit us at www . wiley . com.

Library of Congress Control Number: 2011934639

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permission.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

About the Authors

Dafydd Stuttard is an independent security consultant, author, and software
developer. With more than 10 years of experience in security consulting, he
specializes in the penetration testing of web applications and compiled soft-
ware. Dafydd has worked with numerous banks, retailers, and other enterprises
to help secure their web applications. He also has provided security consulting to
several software manufacturers and governments to help secure their compiled
software. Dafydd is an accomplished programmer in several languages. His
interests include developing tools to facilitate all kinds of software security
testing. Under the alias “PortSwigger,” Dafydd created the popular Burp Suite
of web application hacking tools; he continues to work actively on Burp’s devel-
opment. Dafydd is also cofounder of MDSec, a company providing training and
consultancy on Internet security attack and defense. Dafydd has developed and
presented training courses at various security conferences around the world,
and he regularly delivers training to companies and governments. He holds
master’s and doctorate degrees in philosophy from the University of Oxford.

Marcus Pinto is cofounder of MDSec, developing and delivering training
courses in web application security. He also performs ongoing security con-
sultancy for financial, government, telecom, and retail verticals. His 11 years
of experience in the industry have been dominated by the technical aspects of
application security, from the dual perspectives of a consulting and end-user
implementation role. Marcus has a background in attack-based security assess-
ment and penetration testing. He has worked extensively with large-scale web
application deployments in the financial services industry. Marcus has been
developing and presenting database and web application training courses since
2005 at Black Hat and other worldwide security conferences, and for private-
sector and government clients. He holds a master’s degree in physics from the
University of Cambridge.

iv

About the Technical Editor

Dr. Josh Pauli received his Ph.D. in Software Engineering from North Dakota
State University (NDSU) with an emphasis in secure requirements engineering
and now serves as an Associate Professor of Information Security at Dakota
State University (DSU). Dr. Pauli has published nearly 20 international jour-
nal and conference papers related to software security and his work includes
invited presentations from the Department of Homeland Security and Black
Hat Briefings. He teaches both undergraduate and graduate courses in system
software security and web software security at DSU. Dr. Pauli also conducts web
application penetration tests as a Senior Penetration Tester for an Information
Security consulting firm where his duties include developing hands-on techni-
cal workshops in the area of web software security for IT professionals in the
financial sector.

MDSec: The Authors’ Company

Dafydd and Marcus are cofounders of MDSec, a company that provides training
in attack and defense-based security, along with other consultancy services. If
while reading this book you would like to put the concepts into practice, and
gain hands-on experience in the areas covered, you are encouraged to visit our
website, http: //mdsec.net. This will give you access to hundreds of interactive
vulnerability labs and other resources that are referenced throughout the book.

vi

Credits

Executive Editor
Carol Long

Senior Project Editor
Adaobi Obi Tulton

Technical Editor
Josh Pauli

Production Editor
Kathleen Wisor

Copy Editor
Gayle Johnson

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of
Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Neil Edde

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Proofreaders
Sarah Kaikini, Word One
Sheilah Ledwidge, Word One

Indexer
Robert Swanson

Cover Designer
Ryan Sneed

Cover Image
Wiley InHouse Design

Vertical Websites Project Manager

Laura Moss-Hollister

Vertical Websites Assistant Project

Manager
Jenny Swisher

Vertical Websites Associate
Producers

Josh Frank

Shawn Patrick

Doug Kuhn

Marilyn Hummel

Acknowledgments

We are indebted to the directors and others at Next Generation Security Software,
who provided the right environment for us to realize the first edition of this
book. Since then, our input has come from an increasingly wider community
of researchers and professionals who have shared their ideas and contributed
to the collective understanding of web application security issues that exists
today. Because this is a practical handbook rather than a work of scholarship,
we have deliberately avoided filling it with a thousand citations of influential
articles, books, and blog postings that spawned the ideas involved. We hope
that people whose work we discuss anonymously are content with the general
credit given here.

We are grateful to the people at Wiley — in particular, to Carol Long for
enthusiastically supporting our project from the outset, to Adaobi Obi Tulton
for helping polish our manuscript and coaching us in the quirks of “American
English,” to Gayle Johnson for her very helpful and attentive copy editing, and
to Katie Wisor’s team for delivering a first-rate production.

Alarge measure of thanks is due to our respective partners, Becky and Amanda,
for tolerating the significant distraction and time involved in producing a book
of this size.

Both authors are indebted to the people who led us into our unusual line
of work. Dafydd would like to thank Martin Law. Martin is a great guy who
first taught me how to hack and encouraged me to spend my time developing
techniques and tools for attacking applications. Marcus would like to thank his
parents for everything they have done and continue to do, including getting me
into computers. I've been getting into computers ever since.

viii

Contents at a Glance

Introduction

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Index

Web Application (In)security

Core Defense Mechanisms

Web Application Technologies
Mapping the Application

Bypassing Client-Side Controls
Attacking Authentication

Attacking Session Management
Attacking Access Controls

Attacking Data Stores

Attacking Back-End Components
Attacking Application Logic

Attacking Users: Cross-Site Scripting
Attacking Users: Other Techniques
Automating Customized Attacks
Exploiting Information Disclosure
Attacking Native Compiled Applications
Attacking Application Architecture
Attacking the Application Server
Finding Vulnerabilities in Source Code
A Web Application Hacker’s Toolkit

A Web Application Hacker’s Methodology

xxiii

17
39
73
117
159
205
257
287
357
405
431
501
571
615
633
647
669
701
747
791
853

Introduction

Chapter 1

Chapter 2

Web Application (In)security

The Evolution of Web Applications
Common Web Application Functions
Benefits of Web Applications

Web Application Security
“This Site Is Secure”

Contents

xxifi

N OO N =

The Core Security Problem: Users Can Submit

Arbitrary Input
Key Problem Factors
The New Security Perimeter
The Future of Web Application Security
Summary

Core Defense Mechanisms
Handling User Access
Authentication
Session Management
Access Control
Handling User Input
Varieties of Input
Approaches to Input Handling
Boundary Validation
Multistep Validation and Canonicalization
Handling Attackers
Handling Errors
Maintaining Audit Logs
Alerting Administrators
Reacting to Attacks

10
12
14
15

17
18
18
19
20
21
21
23
25
28
30
30
31
33
34

ix

X

Contents

Chapter 3

Chapter 4

Managing the Application
Summary
Questions

Web Application Technologies
The HTTP Protocol
HTTP Requests
HTTP Responses
HTTP Methods
URLs
REST
HTTP Headers
Cookies
Status Codes
HTTPS
HTTP Proxies
HTTP Authentication
Web Functionality
Server-Side Functionality
Client-Side Functionality
State and Sessions
Encoding Schemes
URL Encoding
Unicode Encoding
HTML Encoding
Base64 Encoding
Hex Encoding
Remoting and Serialization
Frameworks
Next Steps
Questions

Mapping the Application
Enumerating Content and Functionality
Web Spidering
User-Directed Spidering
Discovering Hidden Content
Application Pages Versus
Functional Paths
Discovering Hidden Parameters
Analyzing the Application
Identifying Entry Points for User Input
Identifying Server-Side Technologies
Identifying Server-Side Functionality
Mapping the Attack Surface
Summary
Questions

35
36
36

39
39
40
41
42
44
44
45
47
48
49
49
50
51
51
57
66
66
67
67
68
69
69

70
70
71

73
74
74
77
80

93
96
97
98
101
107
111
114
114

Contents

Chapter 5

Chapter 6

Bypassing Client-Side Controls

Transmitting Data Via the Client
Hidden Form Fields
HTTP Cookies
URL Parameters
The Referer Header
Opaque Data
The ASPNET ViewState

Capturing User Data: HTML Forms
Length Limits
Script-Based Validation
Disabled Elements

Capturing User Data: Browser Extensions
Common Browser Extension Technologies
Approaches to Browser Extensions
Intercepting Traffic from Browser Extensions
Decompiling Browser Extensions
Attaching a Debugger
Native Client Components

Handling Client-Side Data Securely
Transmitting Data Via the Client
Validating Client-Generated Data
Logging and Alerting

Summary

Questions

Attacking Authentication
Authentication Technologies
Design Flaws in Authentication
Mechanisms
Bad Passwords
Brute-Forcible Login
Verbose Failure Messages
Vulnerable Transmission of Credentials
Password Change Functionality
Forgotten Password Functionality
“Remember Me” Functionality
User Impersonation Functionality
Incomplete Validation of Credentials
Nonunique Usernames
Predictable Usernames
Predictable Initial Passwords
Insecure Distribution of Credentials
Implementation Flaws in Authentication
Fail-Open Login Mechanisms
Defects in Multistage Login Mechanisms
Insecure Storage of Credentials

117
118
118
121
121
122
123
124
127
128
129
131
133
134
135
135
139
151
153
154
154
155
156
156
157

159
160

161
161
162
166
169
171
173
176
178
180
181
182
183
184
185
185
186
190

Contents

Xi

Chapter 7

Chapter 8

Securing Authentication
Use Strong Credentials
Handle Credentials Secretively
Validate Credentials Properly
Prevent Information Leakage
Prevent Brute-Force Attacks
Prevent Misuse of the Password Change Function
Prevent Misuse of the Account Recovery Function
Log, Monitor, and Notify
Summary
Questions

Attacking Session Management

The Need for State
Alternatives to Sessions

Weaknesses in Token Generation
Meaningful Tokens
Predictable Tokens
Encrypted Tokens

Weaknesses in Session Token Handling
Disclosure of Tokens on the Network
Disclosure of Tokens in Logs
Vulnerable Mapping of Tokens to Sessions
Vulnerable Session Termination
Client Exposure to Token Hijacking
Liberal Cookie Scope

Securing Session Management
Generate Strong Tokens
Protect Tokens Throughout Their Life Cycle
Log, Monitor, and Alert

Summary

Questions

Attacking Access Controls
Common Vulnerabilities
Completely Unprotected Functionality
Identifier-Based Functions
Multistage Functions
Static Files
Platform Misconfiguration
Insecure Access Control Methods
Attacking Access Controls
Testing with Different User Accounts
Testing Multistage Processes
Testing with Limited Access
Testing Direct Access to Methods
Testing Controls Over Static Resources

191
192
192
193
195
196
199
199
201
201
202

205
206
208
210
210
213
223
233
234
237
240
241
243
244
248
248
250
253
254
255

257
258
259
261
262
263
264
265
266
267
271
273
276
277

Contents xiii
Testing Restrictions on HTTP Methods 278
Securing Access Controls 278
A Multilayered Privilege Model 280
Summary 284
Questions 284
Chapter 9 Attacking Data Stores 287
Injecting into Interpreted Contexts 288
Bypassing a Login 288
Injecting into SQL 291
Exploiting a Basic Vulnerability 292
Injecting into Different Statement Types 294
Finding SQL Injection Bugs 298
Fingerprinting the Database 303
The UNION Operator 304
Extracting Useful Data 308
Extracting Data with UNION 308
Bypassing Filters 311
Second-Order SQL Injection 313
Advanced Exploitation 314
Beyond SQL Injection: Escalating the
Database Attack 325
Using SQL Exploitation Tools 328
SQL Syntax and Error Reference 332
Preventing SQL Injection 338
Injecting into NoSQL 342
Injecting into MongoDB 343
Injecting into XPath 344
Subverting Application Logic 345
Informed XPath Injection 346
Blind XPath Injection 347
Finding XPath Injection Flaws 348
Preventing XPath Injection 349
Injecting into LDAP 349
Exploiting LDAP Injection 351
Finding LDAP Injection Flaws 353
Preventing LDAP Injection 354
Summary 354
Questions 354
Chapter 10 Attacking Back-End Components 357
Injecting OS Commands 358
Example 1: Injecting Via Perl 358
Example 2: Injecting Via ASP 360
Injecting Through Dynamic Execution 362
Finding OS Command Injection Flaws 363
Finding Dynamic Execution Vulnerabilities 366

xiv Contents

Preventing OS Command Injection 367
Preventing Script Injection Vulnerabilities 368
Manipulating File Paths 368
Path Traversal Vulnerabilities 368
File Inclusion Vulnerabilities 381
Injecting into XML Interpreters 383
Injecting XML External Entities 384
Injecting into SOAP Services 386
Finding and Exploiting SOAP Injection 389
Preventing SOAP Injection 390
Injecting into Back-end HTTP Requests 390
Server-side HTTP Redirection 390
HTTP Parameter Injection 393
Injecting into Mail Services 397
E-mail Header Manipulation 398
SMTP Command Injection 399
Finding SMTP Injection Flaws 400
Preventing SMTP Injection 402
Summary 402
Questions 403
Chapter 11 Attacking Application Logic 405
The Nature of Logic Flaws 406
Real-World Logic Flaws 406
Example 1: Asking the Oracle 407
Example 2: Fooling a Password Change Function 409
Example 3: Proceeding to Checkout 410
Example 4: Rolling Your Own Insurance 412
Example 5: Breaking the Bank 414
Example 6: Beating a Business Limit 416
Example 7: Cheating on Bulk Discounts 418
Example 8: Escaping from Escaping 419
Example 9: Invalidating Input Validation 420
Example 10: Abusing a Search Function 422
Example 11: Snarfing Debug Messages 424
Example 12: Racing Against the Login 426
Avoiding Logic Flaws 428
Summary 429
Questions 430
Chapter 12 Attacking Users: Cross-Site Scripting 431
Varieties of XSS 433
Reflected XSS Vulnerabilities 434
Stored XSS Vulnerabilities 438
DOM-Based XSS Vulnerabilities 440
XSS Attacks in Action 442

Real-World XSS Attacks 442

Contents

Payloads for XSS Attacks 443
Delivery Mechanisms for XSS Attacks 447
Finding and Exploiting XSS Vulnerabilities 451
Finding and Exploiting Reflected XSS Vulnerabilities 452
Finding and Exploiting Stored XSS Vulnerabilities 481
Finding and Exploiting DOM-Based XSS Vulnerabilities 487
Preventing XSS Attacks 492
Preventing Reflected and Stored XSS 492
Preventing DOM-Based XSS 496
Summary 498
Questions 498
Chapter 13 Attacking Users: Other Techniques 501
Inducing User Actions 501
Request Forgery 502
UI Redress 511
Capturing Data Cross-Domain 515
Capturing Data by Injecting HTML 516
Capturing Data by Injecting CSS 517
JavaScript Hijacking 519
The Same-Origin Policy Revisited 524
The Same-Origin Policy and Browser Extensions 525
The Same-Origin Policy and HTML5 528
Crossing Domains with Proxy Service Applications 529
Other Client-Side Injection Attacks 531
HTTP Header Injection 531
Cookie Injection 536
Open Redirection Vulnerabilities 540
Client-Side SQL Injection 547
Client-Side HTTP Parameter Pollution 548
Local Privacy Attacks 550
Persistent Cookies 550
Cached Web Content 551
Browsing History 552
Autocomplete 552
Flash Local Shared Objects 553
Silverlight Isolated Storage 553
Internet Explorer userData 554
HTMLS5 Local Storage Mechanisms 554
Preventing Local Privacy Attacks 554
Attacking ActiveX Controls 555
Finding ActiveX Vulnerabilities 556
Preventing ActiveX Vulnerabilities 558
Attacking the Browser 559
Logging Keystrokes 560

Stealing Browser History and Search Queries 560

xvi Contents

Enumerating Currently Used Applications 560
Port Scanning 561
Attacking Other Network Hosts 561
Exploiting Non-HTTP Services 562
Exploiting Browser Bugs 563
DNS Rebinding 563
Browser Exploitation Frameworks 564
Man-in-the-Middle Attacks 566
Summary 568
Questions 568
Chapter 14 Automating Customized Attacks 571
Uses for Customized Automation 572
Enumerating Valid Identifiers 573
The Basic Approach 574
Detecting Hits 574
Scripting the Attack 576
JAttack 577
Harvesting Useful Data 583
Fuzzing for Common Vulnerabilities 586
Putting It All Together: Burp Intruder 590
Barriers to Automation 602
Session-Handling Mechanisms 602
CAPTCHA Controls 610
Summary 613
Questions 613
Chapter 15 Exploiting Information Disclosure 615
Exploiting Error Messages 615
Script Error Messages 616
Stack Traces 617
Informative Debug Messages 618
Server and Database Messages 619
Using Public Information 623
Engineering Informative Error Messages 624
Gathering Published Information 625
Using Inference 626
Preventing Information Leakage 627
Use Generic Error Messages 628
Protect Sensitive Information 628
Minimize Client-Side Information Leakage 629
Summary 629
Questions 630
Chapter 16 Attacking Native Compiled Applications 633
Buffer Overflow Vulnerabilities 634
Stack Overflows 634

Heap Overflows 635

Contents

Xvi

Chapter 17

Chapter 18

Chapter 19

“Off-by-One” Vulnerabilities

Detecting Buffer Overflow Vulnerabilities
Integer Vulnerabilities

Integer Overflows

Signedness Errors

Detecting Integer Vulnerabilities
Format String Vulnerabilities

Detecting Format String Vulnerabilities
Summary
Questions

Attacking Application Architecture
Tiered Architectures
Attacking Tiered Architectures
Securing Tiered Architectures
Shared Hosting and Application Service Providers
Virtual Hosting
Shared Application Services
Attacking Shared Environments
Securing Shared Environments
Summary
Questions

Attacking the Application Server
Vulnerable Server Configuration
Default Credentials
Default Content
Directory Listings
WebDAV Methods
The Application Server as a Proxy
Misconfigured Virtual Hosting
Securing Web Server Configuration
Vulnerable Server Software
Application Framework Flaws
Memory Management Vulnerabilities
Encoding and Canonicalization
Finding Web Server Flaws
Securing Web Server Software
Web Application Firewalls
Summary
Questions

Finding Vulnerabilities in Source Code

Approaches to Code Review
Black-Box Versus White-Box Testing
Code Review Methodology

Signatures of Common Vulnerabilities
Cross-Site Scripting

636
639
640
640
641
642
643
644
645
645

647
647
648
654
656
657
657
658
665
667
667

669
670
670
671
677
679
682
683
684
684
685
687
689
694
695
697
699
699

701
702
702
703
704
704

xviii Contents

Chapter 20

SQL Injection
Path Traversal
Arbitrary Redirection
OS Command Injection
Backdoor Passwords
Native Software Bugs
Source Code Comments
The Java Platform
Identifying User-Supplied Data
Session Interaction
Potentially Dangerous APIs
Configuring the Java Environment
ASPNET
Identifying User-Supplied Data
Session Interaction
Potentially Dangerous APIs
Configuring the ASPNET Environment
PHP
Identifying User-Supplied Data
Session Interaction
Potentially Dangerous APIs
Configuring the PHP Environment
Perl
Identifying User-Supplied Data
Session Interaction
Potentially Dangerous APIs
Configuring the Perl Environment
JavaScript
Database Code Components
SQL Injection
Calls to Dangerous Functions
Tools for Code Browsing
Summary
Questions

A Web Application Hacker’s Toolkit
Web Browsers
Internet Explorer
Firefox
Chrome
Integrated Testing Suites
How the Tools Work
Testing Work Flow
Alternatives to the Intercepting Proxy
Standalone Vulnerability Scanners
Vulnerabilities Detected by Scanners
Inherent Limitations of Scanners

705
706
707
708
708
709
710
711
711
712
713
716
718
718
719
720
723
724
724
727
727
732
735
735
736
736
739
740
741
741
742
743
744
744

747
748
748
749
750
751
751
769
771
773
774
776

Contents

Chapter 21

Technical Challenges Faced by Scanners
Current Products
Using a Vulnerability Scanner
Other Tools
Wikto/Nikto
Firebug
Hydra
Custom Scripts
Summary

A Web Application Hacker’s Methodology
General Guidelines
1 Map the Application’s Content
1.1 Explore Visible Content
1.2 Consult Public Resources
1.3 Discover Hidden Content
14 Discover Default Content
1.5 Enumerate Identifier-Specified Functions
1.6 Test for Debug Parameters
2 Analyze the Application
2.1 Identify Functionality
2.2 Identify Data Entry Points
2.3 Identify the Technologies Used
2.4 Map the Attack Surface
3 Test Client-Side Controls
3.1 Test Transmission of Data Via the Client
3.2 Test Client-Side Controls Over User Input
3.3 Test Browser Extension Components
4 Test the Authentication Mechanism
4.1 Understand the Mechanism
4.2 Test Password Quality
4.3 Test for Username Enumeration
4.4 Test Resilience to Password Guessing
4.5 Test Any Account Recovery Function
4.6 Test Any Remember Me Function
4.7 Test Any Impersonation Function
4.8 Test Username Uniqueness
49 Test Predictability of Autogenerated Credentials
410 Check for Unsafe Transmission of Credentials
411 Check for Unsafe Distribution of Credentials
4.12 Test for Insecure Storage
4.13 Test for Logic Flaws
4.14 Exploit Any Vulnerabilities to Gain Unauthorized Access
5 Test the Session Management Mechanism
5.1 Understand the Mechanism
5.2 Test Tokens for Meaning
5.3 Test Tokens for Predictability

778
781
783
785
785
785
785
786
789

791
793
795
795
796
796
797
797
798
798
798
799
799
800
800
801
801
802
805
805
806
806
807
807
808
808
809
809
810
810
811
811
813
814
814
815
816

XX

Contents

54 Check for Insecure Transmission of Tokens
5.5 Check for Disclosure of Tokens in Logs
5.6 Check Mapping of Tokens to Sessions
5.7 Test Session Termination
5.8 Check for Session Fixation
59 Check for CSRF
5.10 Check Cookie Scope
6 Test Access Controls
6.1 Understand the Access Control Requirements
6.2 Test with Multiple Accounts
6.3 Test with Limited Access
6.4 Test for Insecure Access Control Methods
7 Test for Input-Based Vulnerabilities
71 Fuzz All Request Parameters
7.2 Test for SQL Injection
7.3 Test for XSS and Other Response Injection
74 Test for OS Command Injection
7.5 Test for Path Traversal
7.6 Test for Script Injection
7.7 Test for File Inclusion
8 Test for Function-Specific Input Vulnerabilities
8.1 Test for SMTP Injection
8.2 Test for Native Software Vulnerabilities
8.3 Test for SOAP Injection
8.4 Test for LDAP Injection
8.5 Test for XPath Injection
8.6 Test for Back-End Request Injection
8.7 Test for XXE Injection
9 Test for Logic Flaws
9.1 Identify the Key Attack Surface
9.2 Test Multistage Processes
9.3 Test Handling of Incomplete Input
9.4 Test Trust Boundaries
9.5 Test Transaction Logic
10 Test for Shared Hosting Vulnerabilities
10.1 Test Segregation in Shared Infrastructures
10.2 Test Segregation Between ASP-Hosted Applications
11 Test for Application Server Vulnerabilities
11.1 Test for Default Credentials
11.2 Test for Default Content
11.3 Test for Dangerous HTTP Methods
114 Test for Proxy Functionality
11.5 Test for Virtual Hosting Misconfiguration
11.6 Test for Web Server Software Bugs
11.7 Test for Web Application Firewalling

817
817
818
818
819
820
820
821
821
822
822
823
824
824
827
829
832
833
835
835
836
836
837
839
839
840
841
841
842
842
842
843
844
844
845
845
845
846
846
847
847
847
847
848
848

Contents

12 Miscellaneous Checks 849
12.1 Check for DOM-Based Attacks 849
12.2 Check for Local Privacy Vulnerabilities 850
12.3 Check for Weak SSL Ciphers 851
12.4 Check Same-Origin Policy Configuration 851

13 Follow Up Any Information Leakage 852

Index 853

Introduction

This book is a practical guide to discovering and exploiting security flaws in
web applications. By “web applications” we mean those that are accessed using
a web browser to communicate with a web server. We examine a wide variety
of different technologies, such as databases, file systems, and web services, but
only in the context in which these are employed by web applications.

If you want to learn how to run port scans, attack firewalls, or break into serv-
ers in other ways, we suggest you look elsewhere. But if you want to know how
to hack into a web application, steal sensitive data, and perform unauthorized
actions, this is the book for you. There is enough that is interesting and fun to
say on that subject without straying into any other territory.

Overview of This Book

The focus of this book is highly practical. Although we include sufficient back-
ground and theory for you to understand the vulnerabilities that web applications
contain, our primary concern is the tasks and techniques that you need to master
to break into them. Throughout the book, we spell out the specific steps you need
to follow to detect each type of vulnerability, and how to exploit it to perform
unauthorized actions. We also include a wealth of real-world examples, derived
from the authors’ many years of experience, illustrating how different kinds of
security flaws manifest themselves in today’s web applications.

Security awareness is usually a double-edged sword. Just as application
developers can benefit from understanding the methods attackers use, hackers
can gain from knowing how applications can effectively defend themselves.
In addition to describing security vulnerabilities and attack techniques, we
describe in detail the countermeasures that applications can take to thwart an

XXiv

Introduction

attacker. If you perform penetration tests of web applications, this will enable
you to provide high-quality remediation advice to the owners of the applica-
tions you compromise.

Who Should Read This Book

This book’s primary audience is anyone who has a personal or professional
interest in attacking web applications. It is also aimed at anyone responsible for
developing and administering web applications. Knowing how your enemies
operate will help you defend against them.

We assume that you are familiar with core security concepts such as logins
and access controls and that you have a basic grasp of core web technologies
such as browsers, web servers, and HTTP. However, any gaps in your current
knowledge of these areas will be easy to remedy, through either the explana-
tions contained in this book or references elsewhere.

In the course of illustrating many categories of security flaws, we provide
code extracts showing how applications can be vulnerable. These examples are
simple enough that you can understand them without any prior knowledge
of the language in question. But they are most useful if you have some basic
experience with reading or writing code.

How This Book Is Organized

This book is organized roughly in line with the dependencies between the dif-
ferent topics covered. If you are new to web application hacking, you should read
the book from start to finish, acquiring the knowledge and understanding you
need to tackle later chapters. If you already have some experience in this area,
you can jump straight into any chapter or subsection that particularly interests you.
Where necessary, we have included cross-references to other chapters, which
you can use to fill in any gaps in your understanding.

We begin with three context-setting chapters describing the current state of
web application security and the trends that indicate how it is likely to evolve
in the near future. We examine the core security problem affecting web appli-
cations and the defense mechanisms that applications implement to address
this problem. We also provide a primer on the key technologies used in today’s
web applications.

The bulk of the book is concerned with our core topic — the techniques
you can use to break into web applications. This material is organized around
the key tasks you need to perform to carry out a comprehensive attack. These
include mapping the application’s functionality, scrutinizing and attacking its
core defense mechanisms, and probing for specific categories of security flaws.

Introduction

The book concludes with three chapters that pull together the various strands
introduced in the book. We describe the process of finding vulnerabilities in
an application’s source code, review the tools that can help when you hack web
applications, and present a detailed methodology for performing a comprehen-
sive and deep attack against a specific target.

Chapter 1, “Web Application (In)security,” describes the current state of secu-
rity in web applications on the Internet today. Despite common assurances, the
majority of applications are insecure and can be compromised in some way with
a modest degree of skill. Vulnerabilities in web applications arise because of a
single core problem: users can submit arbitrary input. This chapter examines the
key factors that contribute to the weak security posture of today’s applications.
It also describes how defects in web applications can leave an organization’s
wider technical infrastructure highly vulnerable to attack.

Chapter 2, “Core Defense Mechanisms,” describes the key security mechanisms
that web applications employ to address the fundamental problem that all user
input is untrusted. These mechanisms are the means by which an application
manages user access, handles user input, and responds to attackers. These
mechanisms also include the functions provided for administrators to manage
and monitor the application itself. The application’s core security mechanisms
also represent its primary attack surface, so you need to understand how these
mechanisms are intended to function before you can effectively attack them.

Chapter 3, “Web Application Technologies,” is a short primer on the key
technologies you are likely to encounter when attacking web applications. It
covers all relevant aspects of the HTTP protocol, the technologies commonly
used on the client and server sides, and various schemes used to encode data. If
you are already familiar with the main web technologies, you can skim through
this chapter.

Chapter 4, “Mapping the Application,” describes the first exercise you need
to perform when targeting a new application — gathering as much information
as possible to map its attack surface and formulate your plan of attack. This
process includes exploring and probing the application to catalog all its content
and functionality, identifying all the entry points for user input, and discover-
ing the technologies in use.

Chapter 5, “Bypassing Client-Side Controls,” covers the first area of actual
vulnerability, which arises when an application relies on controls implemented
on the client side for its security. This approach normally is flawed, because
any client-side controls can, of course, be circumvented. The two main ways
in which applications make themselves vulnerable are by transmitting data
via the client on the assumption that it will not be modified, and by relying on
client-side checks on user input. This chapter describes a range of interesting
technologies, including lightweight controls implemented within HTML, HTTP,
and JavaScript, and more heavyweight controls using Java applets, ActiveX
controls, Silverlight, and Flash objects.

xXxvi

Introduction

Chapters 6, 7, and 8 cover some of the most important defense mechanisms
implemented within web applications: those responsible for controlling user
access. Chapter 6, “Attacking Authentication,” examines the various functions by
which applications gain assurance of their users’ identity. This includes the main
login function and also the more peripheral authentication-related functions such
as user registration, password changing, and account recovery. Authentication
mechanisms contain a wealth of different vulnerabilities, in both design and
implementation, which an attacker can leverage to gain unauthorized access.
These range from obvious defects, such as bad passwords and susceptibility to
brute-force attacks, to more obscure problems within the authentication logic.
We also examine in detail the types of multistage login mechanisms used in
many security-critical applications and describe the new kinds of vulnerabilities
these frequently contain.

Chapter 7, “Attacking Session Management,” examines the mechanism by which
most applications supplement the stateless HTTP protocol with the concept of
a stateful session, enabling them to uniquely identify each user across several
different requests. This mechanism is a key target when you are attacking a
web application, because if you can break it, you can effectively bypass the login
and masquerade as other users without knowing their credentials. We look at
various common defects in the generation and transmission of session tokens
and describe the steps you can take to discover and exploit these.

Chapter 8, “Attacking Access Controls,” looks at the ways in which applica-
tions actually enforce access controls, relying on authentication and session
management mechanisms to do so. We describe various ways in which access
controls can be broken and how you can detect and exploit these weaknesses.

Chapters 9 and 10 cover a large category of related vulnerabilities, which
arise when applications embed user input into interpreted code in an unsafe
way. Chapter 9, “Attacking Data Stores,” begins with a detailed examination of
SQL injection vulnerabilities. It covers the full range of attacks, from the most
obvious and trivial to advanced exploitation techniques involving out-of-band
channels, inference, and time delays. For each kind of vulnerability and attack
technique, we describe the relevant differences between three common types
of databases: MS-SQL, Oracle, and MySQL. We then look at a range of similar
attacks that arise against other data stores, including NoSQL, XPath, and LDAP.

Chapter 10, “Attacking Back-End Components,” describes several other cate-
gories of injection vulnerabilities, including the injection of operating system
commands, injection into web scripting languages, file path traversal attacks,
file inclusion vulnerabilities, injection into XML, SOAP, back-end HTTP requests,
and e-mail services.

Chapter 11, “Attacking Application Logic,” examines a significant, and fre-
quently overlooked, area of every application’s attack surface: the internal logic
it employs to implement its functionality. Defects in an application’s logic are
extremely varied and are harder to characterize than common vulnerabilities

Introduction xxvii

such as SQL injection and cross-site scripting. For this reason, we present a
series of real-world examples in which defective logic has left an application
vulnerable. These illustrate the variety of faulty assumptions that application
designers and developers make. From these different individual flaws, we derive
a series of specific tests that you can perform to locate many types of logic flaws
that often go undetected.

Chapters 12 and 13 cover a large and very topical area of related vulnerabili-
ties that arise when defects within a web application can enable a malicious
user of the application to attack other users and compromise them in vari-
ous ways. Chapter 12, “Attacking Users: Cross-Site Scripting,”, examines the
most prominent vulnerability of this kind — a hugely prevalent flaw affecting
the vast majority of web applications on the Internet. We examine in detail all the
different flavors of XSS vulnerabilities and describe an effective methodology
for detecting and exploiting even the most obscure manifestations of these.

Chapter 13, “Attacking Users: Other Techniques,” looks at several other types
of attacks against other users, including inducing user actions through request
forgery and Ul redress, capturing data cross-domain using various client-side
technologies, various attacks against the same-origin policy, HTTP header
injection, cookie injection and session fixation, open redirection, client-side SQL
injection, local privacy attacks, and exploiting bugs in ActiveX controls. The
chapter concludes with a discussion of a range of attacks against users that do
not depend on vulnerabilities in any particular web application, but that can be
delivered via any malicious web site or suitably positioned attacker.

Chapter 14, “Automating Customized Attacks,” does not introduce any new
categories of vulnerabilities. Instead, it describes a crucial technique you need
to master to attack web applications effectively. Because every web application
is different, most attacks are customized in some way, tailored to the applica-
tion’s specific behavior and the ways you have discovered to manipulate it to
your advantage. They also frequently require issuing a large number of similar
requests and monitoring the application’s responses. Performing these requests
manually is extremely laborious and prone to mistakes. To become a truly
accomplished web application hacker, you need to automate as much of this
work as possible to make your customized attacks easier, faster, and more effec-
tive. This chapter describes in detail a proven methodology for achieving this.
We also examine various common barriers to the use of automation, including
defensive session-handling mechanisms and CAPTCHA controls. Furthermore,
we describe tools and techniques you can use to overcome these barriers.

Chapter 15, “Exploiting Information Disclosure,” examines various ways in
which applications leak information when under active attack. When you are
performing all the other types of attacks described in this book, you should
always monitor the application to identify further sources of information dis-
closure that you can exploit. We describe how you can investigate anomalous
behavior and error messages to gain a deeper understanding of the application’s

xxviii Introduction

internal workings and fine-tune your attack. We also cover ways to manipulate
defective error handling to systematically retrieve sensitive information from
the application.

Chapter 16, “Attacking Native Compiled Applications,” looks at a set of impor-
tant vulnerabilities that arise in applications written in native code languages
such as C and C++. These vulnerabilities include buffer overflows, integer vul-
nerabilities, and format string flaws. Because this is a potentially huge topic,
we focus on ways to detect these vulnerabilities in web applications and look
at some real-world examples of how these have arisen and been exploited.

Chapter 17, “Attacking Application Architecture,” examines an important area
of web application security that is frequently overlooked. Many applications
employ a tiered architecture. Failing to segregate different tiers properly often
leaves an application vulnerable, enabling an attacker who has found a defect
in one component to quickly compromise the entire application. A different
range of threats arises in shared hosting environments, where defects or mali-
cious code in one application can sometimes be exploited to compromise the
environment itself and other applications running within it. This chapter also
looks at the range of threats that arise in the kinds of shared hosting environ-
ments that have become known as “cloud computing.”

Chapter 18, “Attacking the Application Server,” describes various ways in
which you can target a web application by targeting the web server on which
it is running. Vulnerabilities in web servers are broadly composed of defects in
their configuration and security flaws within the web server software. This topic
is on the boundary of the subjects covered in this book, because the web server
is strictly a different component in the technology stack. However, most web
applications are intimately bound up with the web server on which they run.
Therefore, attacks against the web server are included in the book because they
can often be used to compromise an application directly, rather than indirectly
by first compromising the underlying host.

Chapter 19, “Finding Vulnerabilities in Source Code,” describes a completely
different approach to finding security flaws than those described elsewhere
within this book. In many situations it may be possible to review an applica-
tion’s source code, not all of which requires cooperation from the application’s
owner. Reviewing an application’s source code can often be highly effective in
discovering vulnerabilities that would be difficult or time-consuming to detect
by probing the running application. We describe a methodology, and provide
alanguage-by-language cheat sheet, to enable you to perform an effective code
review even if you have limited programming experience.

Chapter 20, “A Web Application Hacker’s Toolkit,” pulls together the various
tools described in this book. These are the same tools the authors use when attack-
ing real-world web applications. We examine the key features of these tools and
describe in detail the type of work flow you generally need to employ to get the
best out of them. We also examine the extent to which any fully automated tool

Introduction

can be effective in finding web application vulnerabilities. Finally, we provide
some tips and advice for getting the most out of your toolkit.

Chapter 21, “A Web Application Hacker’s Methodology,” is a comprehensive
and structured collation of all the procedures and techniques described in this
book. These are organized and ordered according to the logical dependencies
between tasks when you are carrying out an actual attack. If you have read
about and understood all the vulnerabilities and techniques described in this
book, you can use this methodology as a complete checklist and work plan
when carrying out an attack against a web application.

What's New in This Edition

In the four years since the first edition of this book was published, much has
changed, and much has stayed the same. The march of new technology has, of
course, continued apace, and this has given rise to specific new vulnerabilities
and attacks. The ingenuity of hackers has also led to the development of new
attack techniques and new ways of exploiting old bugs. But neither of these
factors, technological or human, has created a revolution. The technologies
used in today’s applications have their roots in those that are many years old.
And the fundamental concepts involved in today’s cutting-edge exploitation
techniques are older than many of the researchers who are applying them so
effectively. Web application security is a dynamic and exciting area to work in,
but the bulk of what constitutes our accumulated wisdom has evolved slowly
over many years. It would have been distinctively recognizable to practitioners
working a decade or more ago.

This second edition is not a complete rewrite of the first. Most of the material
in the first edition remains valid and current today. Approximately 30% of the
content in this edition is either new or extensively revised. The remaining 70%
has had minor modifications or none at all. If you have upgraded from the first
edition and feel disappointed by these numbers, you should take heart. If you
have mastered all the techniques described in the first edition, you already have
the majority of the skills and knowledge you need. You can focus on what is
new in this edition and quickly learn about the areas of web application security
that have changed in recent years.

One significant new feature of the second edition is the inclusion through-
out the book of real examples of nearly all the vulnerabilities that are covered.
Wherever you see a “Try It!” link, you can go online and work interactively
with the example being discussed to confirm that you can find and exploit the
vulnerability it contains. There are several hundred of these labs, which you
can work through at your own pace as you read the book. The online labs are
available on a subscription basis for a modest fee to cover the costs of hosting
and maintaining the infrastructure involved.

XXX

Introduction

If you want to focus on what’s new in the second edition, here is a summary
of the key areas where material has been added or rewritten:

Chapter 1, “Web Application (In)security,” has been partly updated to reflect
new uses of web applications, some broad trends in technologies, and the ways
in which a typical organization’s security perimeter has continued to change.

Chapter 2, “Core Defense Mechanisms,” has had minor changes. A few
examples have been added of generic techniques for bypassing input valida-
tion defenses.

Chapter 3, “Web Application Technologies,” has been expanded with some
new sections describing technologies that are either new or that were described
more briefly elsewhere within the first edition. The topics added include REST,
Ruby on Rails, SQL, XML, web services, CSS, VBScript, the document object
model, Ajax, JSON, the same-origin policy, and HTML5.

Chapter 4, “Mapping the Application,” has received various minor updates
to reflect developments in techniques for mapping content and functionality.

Chapter 5, “Bypassing Client-Side Controls,” has been updated more exten-
sively. In particular, the section on browser extension technologies has been
largely rewritten to include more detailed guidance on generic approaches to
bytecode decompilation and debugging, how to handle serialized data in com-
mon formats, and how to deal with common obstacles to your work, including
non-proxy-aware clients and problems with SSL. The chapter also now covers
Silverlight technology.

Chapter 6, “Attacking Authentication,” remains current and has only minor
updates.

Chapter 7, “Attacking Session Management,” has been updated to cover new
tools for automatically testing the quality of randomness in tokens. It also contains
new material on attacking encrypted tokens, including practical techniques for
token tampering without knowing either the cryptographic algorithm or the
encryption key being used.

Chapter 8, “Attacking Access Controls,” now covers access control vulner-
abilities arising from direct access to server-side methods, and from platform
misconfiguration where rules based on HTTP methods are used to control
access. It also describes some new tools and techniques you can use to partially
automate the frequently onerous task of testing access controls.

The material in Chapters 9 and 10 has been reorganized to create more man-
ageable chapters and a more logical arrangement of topics. Chapter 9, “Attacking
Data Stores,” focuses on SQL injection and similar attacks against other data
store technologies. As SQL injection vulnerabilities have become more widely
understood and addressed, this material now focuses more on practical situa-
tions where SQL injection is still found. There are also minor updates through-
out to reflect current technologies and attack methods. A new section on using
automated tools for exploiting SQL injection vulnerabilities is included. The
material on LDAP injection has been largely rewritten to include more detailed

Introduction

coverage of specific technologies (Microsoft Active Directory and OpenLDAP),
as well as new techniques for exploiting common vulnerabilities. This chapter
also now covers attacks against NoSQL.

Chapter 10, “Attacking Back-End Components,” covers the other types of
server-side injection vulnerabilities that were previously included in Chapter 9.
New sections cover XML external entity injection and injection into back-end
HTTP requests, including HTTP parameter injection/pollution and injection
into URL rewriting schemes.

Chapter 11, “Attacking Application Logic,” includes more real-world examples of
common logic flaws in input validation functions. With the increased usage
of encryption to protect application data at rest, we also include an example of
how to identify and exploit encryption oracles to decrypt encrypted data.

The topic of attacks against other application users, previously covered in
Chapter 12, has been split into two chapters, because this material was becom-
ing unmanageably large. Chapter 12, “Attacking Users: Cross-Site Scripting,”
focuses solely on XSS. This material has been extensively updated in various
areas. The sections on bypassing defensive filters to introduce script code have
been completely rewritten to cover new techniques and technologies, includ-
ing various little-known methods for executing script code on current brows-
ers. There is also much more detailed coverage of methods for obfuscating
script code to bypass common input filters. The chapter includes several new
examples of real-world XSS attacks. A new section on delivering working XSS
exploits in challenging conditions covers escalating an attack across application
pages, exploiting XSS via cookies and the referer header, and exploiting XSS
in nonstandard request and response content such as XML. There is a detailed
examination of browsers’ built-in XSS filters and how these can be circumvented
to deliver exploits. New sections discuss specific techniques for exploiting XSS
in webmail applications and in uploaded files. Finally, there are various updates
to the defensive measures that can be used to prevent XSS attacks.

The new Chapter 13, “Attacking Users: Other Techniques,” unites the remain-
der of this huge area. The topic of cross-site request forgery has been updated to
include CSRF attacks against the login function, common defects in anti-CSRF
defenses, Ul redress attacks, and common defects in framebusting defenses. A
new section on cross-domain data capture includes techniques for stealing data
by injecting text containing nonscripting HTML and CSS, and various tech-
niques for cross-domain data capture using JavaScript and E4X. A new section
examines the same-origin policy in more detail, including its implementation
in different browser extension technologies, the changes brought by HTMLS5,
and ways of crossing domains via proxy service applications. There are new
sections on client-side cookie injection, SQL injection, and HTTP parameter pol-
lution. The section on client-side privacy attacks has been expanded to include
storage mechanisms provided by browser extension technologies and HTML5.
Finally, a new section has been added drawing together general attacks against

xxxii Introduction

web users that do not depend on vulnerabilities in any particular application.
These attacks can be delivered by any malicious or compromised web site or
by an attacker who is suitably positioned on the network.

Chapter 14, “Automating Customized Attacks,” has been expanded to cover
common barriers to automation and how to circumvent them. Many applications
employ defensive session-handling mechanisms that terminate sessions, use
ephemeral anti-CSRF tokens, or use multistage processes to update application
state. Some new tools are described for handling these mechanisms, which let
you continue using automated testing techniques. A new section examines
CAPTCHA controls and some common vulnerabilities that can often be exploited
to circumvent them.

Chapter 15, “Exploiting Information Disclosure,” contains new sections about
XSS in error messages and exploiting decryption oracles.

Chapter 16, “Attacking Native Compiled Applications,” has not been updated.

Chapter 17, “Attacking Application Architecture,” has a new section about
vulnerabilities that arise in cloud-based architectures, and updated examples
of exploiting architecture weaknesses.

Chapter 18, “Attacking the Application Server,” contains several new examples
of interesting vulnerabilities in application servers and platforms, including Jetty,
the JMX management console, ASP.NET, Apple iDisk server, Ruby WEBrick web
server, and Java web server. It also has a new section on practical approaches
to circumventing web application firewalls.

Chapter 19, “Finding Vulnerabilities in Source Code,” has not been updated.

Chapter 20, “A Web Application Hacker’s Toolkit,” has been updated with
details on the latest features of proxy-based tool suites. It contains new sections
on how to proxy the traffic of non-proxy-aware clients and how to eliminate SSL
errors in browsers and other clients caused by the use of an intercepting proxy.
This chapter contains a detailed description of the work flow that is typically
employed when you test using a proxy-based tool suite. It also has a new dis-
cussion about current web vulnerability scanners and the optimal approaches
to using these in different situations.

Chapter 21, “A Web Application Hacker’s Methodology,” has been updated
to reflect the new methodology steps described throughout the book.

Tools You Will Need

This book is strongly geared toward hands-on techniques you can use to attack
web applications. After reading the book, you will understand the specifics of
each individual task, what it involves technically, and why it helps you detect
and exploit vulnerabilities. The book is emphatically not about downloading
a tool, pointing it at a target application, and believing what the tool’s output
tells you about the state of the application’s security.

Introduction xxxiii

That said, you will find several tools useful, and sometimes indispensable,
when performing the tasks and techniques we describe. All of these are avail-
able on the Internet. We recommend that you download and experiment with
each tool as you read about it.

What’s on the Website

The companion website for this book at http: //mdsec.net/wahh, which you can
also link to from www/wiley.com/go/webhacker2e, contains several resources
that you will find useful in the course of mastering the techniques we describe
and using them to attack actual applications. In particular, the website contains
access to the following:

m Source code for some of the scripts we present in the book

m A list of current links to all the tools and other resources discussed in
the book

m A handy checklist of the tasks involved in attacking a typical application
m Answers to the questions posed at the end of each chapter

m Hundreds of interactive vulnerability labs that are used in examples
throughout this book and that are available on a subscription basis to
help you develop and refine your skills

Bring It On

Web application security remains a fun and thriving subject. We enjoyed writ-
ing this book as much as we continue to enjoy hacking into web applications
on a daily basis. We hope that you will also take pleasure from learning about
the different techniques we describe and how you can defend against them.

Before going any further, we should mention an important caveat. In most
countries, attacking computer systems without the owner’s permission is against
the law. The majority of the techniques we describe are illegal if carried out
without consent.

The authors are professional penetration testers who routinely attack web
applications on behalf of clients to help them improve their security. In recent
years, numerous security professionals and others have acquired criminal
records — and ended their careers — by experimenting on or actively attack-
ing computer systems without permission. We urge you to use the information
contained in this book only for lawful purposes.

Web Application (In)security

There is no doubt that web application security is a current and newsworthy
subject. For all concerned, the stakes are high: for businesses that derive increas-
ing revenue from Internet commerce, for users who trust web applications with
sensitive information, and for criminals who can make big money by stealing
payment details or compromising bank accounts. Reputation plays a critical role.
Few people want to do business with an insecure website, so few organizations
want to disclose details about their own security vulnerabilities or breaches.
Hence, it is not a trivial task to obtain reliable information about the state of
web application security today.

This chapter takes a brief look at how web applications have evolved and the
many benefits they provide. We present some metrics about vulnerabilities in
current web applications, drawn from the authors” direct experience, demon-
strating that the majority of applications are far from secure. We describe the
core security problem facing web applications — that users can supply arbitrary
input — and the various factors that contribute to their weak security posture.
Finally, we describe the latest trends in web application security and how these
may be expected to develop in the near future.

Chapter 1 = Web Application (In)security

The Evolution of Web Applications

In the early days of the Internet, the World Wide Web consisted only of web
sites. These were essentially information repositories containing static docu-
ments. Web browsers were invented as a means of retrieving and displaying
those documents, as shown in Figure 1-1. The flow of interesting information
was one-way, from server to browser. Most sites did not authenticate users,
because there was no need to. Each user was treated in the same way and was
presented with the same information. Any security threats arising from host-
ing a website were related largely to vulnerabilities in web server software (of
which there were many). If an attacker compromised a web server, he usually
would not gain access to any sensitive information, because the information
held on the server was already open to public view. Rather, an attacker typically
would modify the files on the server to deface the web site’s contents or use the
server’s storage and bandwidth to distribute “warez.”

@ Paul Wrights Future Employer Page - Mozilla Firefox
File Edit View History Bookmarks Tools Help

@ > C 72t | | http://www.ukcert.org.uk/paul i

|| Paul Wrights Future Employer Page ok -

Dear prospective future employer,

This 15 the CV site of Paul Wichael Wright, Oracle Security Consultant, Developer and Forensic Analyst for TGS
Software in Sutton, Surrey (South London) where T have worked for the last twe years and previously in a similar
role for Pentest Ttd of Cheshire T am a non-smoking, British, 38 vear old, married man, relocatable with no criminal
record, disabilities or health problems and can be identified by this phetograph of my wife and T

Introductory summary:

-Consulting to top banks and technelogy companies on the subject of Oracle securtty and general IT security.
-Responsible for writing the Oracle security checks i NGE S 0uirel for Cracle.

-Currently the most qualified 3AM3-GIAC person outside of TI3 and Spain with @ certs ncluding the G
specialised in Oracle Forensics.

-Credited by Oracle in their April 2007 CPTT with finding and ethically reporting a security wilnerability in the Oracle
EDEMSE. Thave five more to come in fiture CPT's,

-Author of Oracle Forensics by Rampant Techpress. ISBI 0-9776715-2-6

-Teacher for SANS of Oracle securnty, Incident Handling and Ietasplott courses,

-Author of many papers including a IISE paper on Oracle passwords (in Japanese), Oracle forensics for
vulnerability detection in the SATTS Eeading Eoom and the first paper published on the subject of Oracle Forensics at
GLAC.

Done

Figure 1-1: A traditional website containing static information

Today, the World Wide Web is almost unrecognizable from its earlier form.
The majority of sites on the web are in fact applications (see Figure 1-2). They
are highly functional and rely on two-way flow of information between the
server and browser. They support registration and login, financial transactions,

Chapter 1 = Web Application (In)security

search, and the authoring of content by users. The content presented to users
is generated dynamically on the fly and is often tailored to each specific user.
Much of the information processed is private and highly sensitive. Security,
therefore, is a big issue. No one wants to use a web application if he believes
his information will be disclosed to unauthorized parties.

(3 Wikipedia, the free encyclopedia - Moszilla Firefox =
File Edit Miew History Bookmarks Tools Help
@ - c Q W http://en.wikipedia.org/wiki/Main_Page E._ﬂ o B -.l v Google 2

W Wikipedia, the free encyclopedia s =

e,
o |
2 *ﬂ\\ & I3
By Q

T Main Page Discussion Read View source ¥ earc Q |
wm
T
WIKIPEDIA Welcome to Wikipedia, o As » History * Society
The Free Encyclopedia the free encyclopedia that anyone can edit. = Biography e Mathematics « Technology
3,656,962 articles in English * Geography e Science ¢ All portals
Main page
STRELE Today's featured article In the news
Featured content
Ll The Norte Chico « In basketball, the Dallas
Random article civilization was a Mavericks defeat the
Donate to Wikipedia complex Pre-Columbian Miami Heat to win their
e p——— society that included as first NBA championship
Help many as 30 major (Finals MVP Dirk
About Wikipedia population centers in what Nowitzki pictured).
Community portal is now the Norte Chico region of north-central * In the Turkish general election,
Recent changes coastal Peru. It is the oldest known civilization in Prime Minister Recep Tayyip
Contact Wikipedia the Americas and one of the six sites where Erdogan is elected for a third term
civilization separately originated in the ancient and the AK Party retains its majority
b Toolbox world. It flourished between the 30th century BC in parliament. -

Done

Figure 1-2: A typical web application

Web applications bring with them new and significant security threats. Each
application is different and may contain unique vulnerabilities. Most applica-
tions are developed in-house — many by developers who have only a partial
understanding of the security problems that may arise in the code they are
producing. To deliver their core functionality, web applications normally require
connectivity to internal computer systems that contain highly sensitive data and
that can perform powerful business functions. Fifteen years ago, if you wanted
to make a funds transfer, you visited your bank, and the teller performed the
transfer for you; today, you can visit a web application and perform the transfer
yourself. An attacker who compromises a web application may be able to steal
personal information, carry out financial fraud, and perform malicious actions
against other users.

Chapter 1 = Web Application (In)security

Common Web Application Functions

Web applications have been created to perform practically every useful function
you could possibly implement online. Here are some web application functions
that have risen to prominence in recent years:

m Shopping (Amazon)

m Social networking (Facebook)
m Banking (Citibank)

m Web search (Google)

m Auctions (eBay)

m Gambling (Betfair)

m Web logs (Blogger)

m Web mail (Gmail)

m Interactive information (Wikipedia)

Applications that are accessed using a computer browser increasingly overlap
with mobile applications that are accessed using a smartphone or tablet. Most
mobile applications employ either a browser or a customized client that uses
HTTP-based APIs to communicate with the server. Application functions and
data typically are shared between the various interfaces that the application
exposes to different user platforms.

In addition to the public Internet, web applications have been widely adopted
inside organizations to support key business functions. Many of these provide
access to highly sensitive data and functionality:

m HR applications allowing users to access payroll information, give and
receive performance feedback, and manage recruitment and disciplinary
procedures.

m Administrative interfaces to key infrastructure such as web and mail
servers, user workstations, and virtual machine administration.

m Collaboration software used for sharing documents, managing work-
flow and projects, and tracking issues. These types of functionality often
involve critical security and governance issues, and organizations often
rely completely on the controls built into their web applications.

m Business applications such as enterprise resource planning (ERP) software,
which previously were accessed using a proprietary thick-client applica-
tion, can now be accessed using a web browser.

Chapter 1 = Web Application (In)security

m Software services such as e-mail, which originally required a separate
e-mail client, can now be accessed via web interfaces such as Outlook
Web Access.

m Traditional desktop office applications such as word processors and spread-
sheets have been migrated to web applications through services such as
Google Apps and Microsoft Office Live.

In all these examples, what are perceived as “internal” applications are increas-
ingly being hosted externally as organizations move to outside service providers
to cut costs. In these so-called cloud solutions, business-critical functionality
and data are opened to a wider range of potential attackers, and organizations
are increasingly reliant on the integrity of security defenses that are outside of
their control.

The time is fast approaching when the only client software that most com-
puter users will need is a web browser. A diverse range of functions will have
been implemented using a shared set of protocols and technologies, and in so
doing will have inherited a distinctive range of common security vulnerabilities.

Benefits of Web Applications

It is not difficult to see why web applications have enjoyed such a dramatic rise
to prominence. Several technical factors have worked alongside the obvious
commercial incentives to drive the revolution that has occurred in how we use
the Internet:

m HTTP, the core communications protocol used to access the World Wide
Web, is lightweight and connectionless. This provides resilience in the
event of communication errors and avoids the need for the server to
hold open a network connection to every user, as was the case in many
legacy client/server applications. HTTP can also be proxied and tunneled
over other protocols, allowing for secure communication in any network
configuration.

m Every web user already has a browser installed on his computer and
mobile device. Web applications deploy their user interface dynamically
to the browser, avoiding the need to distribute and manage separate
client software, as was the case with pre-web applications. Changes to
the interface need to be implemented only once, on the server, and take
effect immediately.

m Today’s browsers are highly functional, enabling rich and satisfying
user interfaces to be built. Web interfaces use standard navigational and

6

Chapter 1 = Web Application (In)security

input controls that are immediately familiar to users, avoiding the need
to learn how each individual application functions. Client-side scripting
enables applications to push part of their processing to the client side, and
browsers’ capabilities can be extended in arbitrary ways using browser
extension technologies where necessary.

m The core technologies and languages used to develop web applications are
relatively simple. A wide range of platforms and development tools are
available to facilitate the development of powerful applications by relative
beginners, and a large quantity of open source code and other resources
is available for incorporation into custom-built applications.

Web Application Security

As with any new class of technology, web applications have brought with them
anew range of security vulnerabilities. The set of most commonly encountered
defects has evolved somewhat over time. New attacks have been conceived
that were not considered when existing applications were developed. Some
problems have become less prevalent as awareness of them has increased. New
technologies have been developed that have introduced new possibilities for
exploitation. Some categories of flaws have largely gone away as the result of
changes made to web browser software.

The most serious attacks against web applications are those that expose
sensitive data or gain unrestricted access to the back-end systems on which
the application is running. High-profile compromises of this kind continue
to occur frequently. For many organizations, however, any attack that causes
system downtime is a critical event. Application-level denial-of-service attacks
can be used to achieve the same results as traditional resource exhaustion
attacks against infrastructure. However, they are often used with more subtle
techniques and objectives. They may be used to disrupt a particular user or
service to gain a competitive edge against peers in the realms of financial trad-
ing, gaming, online bidding, and ticket reservations.

Throughout this evolution, compromises of prominent web applications have
remained in the news. There is no sense that a corner has been turned and that
these security problems are on the wane. By some measure, web application
security is today the most significant battleground between attackers and those
with computer resources and data to defend, and it is likely to remain so for
the foreseeable future.

Chapter 1 = Web Application (In)security

“This Site Is Secure”

There is a widespread awareness that security is an issue for web applications.
Consult the FAQ page of a typical application, and you will be reassured that
it is in fact secure.

Most applications state that they are secure because they use SSL. For example:

This site is absolutely secure. It has been designed to use 128-bit Secure Socket
Layer (SSL) technology to prevent unauthorized users from viewing any of your
information. You may use this site with peace of mind that your data is safe with us.

Users are often urged to verify the site’s certificate, admire the advanced
cryptographic protocols in use, and, on this basis, trust it with their personal
information.

Increasingly, organizations also cite their compliance with Payment Card
Industry (PCI) standards to reassure users that they are secure. For example:

We take security very seriously. Our web site is scanned daily to ensure that we
remain PCI compliant and safe from hackers. You can see the date of the latest scan
on the logo below, and you are guaranteed that our web site is safe to use.

In fact, the majority of web applications are insecure, despite the widespread
usage of SSL technology and the adoption of regular PCI scanning. The authors
of this book have tested hundreds of web applications in recent years. Figure 1-3
shows what percentage of applications tested during 2007 and 2011 were found
to be affected by some common categories of vulnerability:

m Broken authentication (62%) — This category of vulnerability encom-
passes various defects within the application’s login mechanism, which
may enable an attacker to guess weak passwords, launch a brute-force
attack, or bypass the login.

m Broken access controls (71%) — This involves cases where the application
fails to properly protect access to its data and functionality, potentially
enabling an attacker to view other users’ sensitive data held on the server
or carry out privileged actions.

m SQL injection (32%) — This vulnerability enables an attacker to submit
crafted input to interfere with the application’s interaction with back-end
databases. An attacker may be able to retrieve arbitrary data from the
application, interfere with its logic, or execute commands on the database
server itself.

Chapter 1 = Web Application (In)security

m Cross-site scripting (94%) — This vulnerability enables an attacker to
target other users of the application, potentially gaining access to their
data, performing unauthorized actions on their behalf, or carrying out
other attacks against them.

m Information leakage (78%) — This involves cases where an application
divulges sensitive information that is of use to an attacker in developing
an assault against the application, through defective error handling or
other behavior.

m Cross-site request forgery (92%) — This flaw means that application
users can be induced to perform unintended actions on the application
within their user context and privilege level. The vulnerability allows a
malicious web site visited by the victim user to interact with the applica-
tion to perform actions that the user did not intend.

Broken authentication

Broken access controls

SQL injection

Cross-site scripting 94%

Information leakage

Cross-site request

forgery 92%

30% 40% 50% 60% 70% 80% 90% 100%

Incidence in recently tested applications

0% 10% 20%
Figure 1-3: The incidence of some common web application vulnerabilities in
applications recently tested by the authors (based on a sample of more than 100)

SSL is an excellent technology that protects the confidentiality and integrity
of data in transit between the user’s browser and the web server. It helps defend
against eavesdroppers, and it can provide assurance to the user of the identity of
the web server he is dealing with. But it does not stop attacks that directly target
the server or client components of an application, as most successful attacks do.
Specifically, it does not prevent any of the vulnerabilities just listed, or many
others that can render an application critically exposed to attack. Regardless of
whether they use SSL, most web applications still contain security flaws.

Chapter 1 = Web Application (In)security

The Core Security Problem: Users Can Submit
Arbitrary Input

As with most distributed applications, web applications face a fundamental
problem they must address to be secure. Because the client is outside of the
application’s control, users can submit arbitrary input to the server-side appli-
cation. The application must assume that all input is potentially malicious.
Therefore, it must take steps to ensure that attackers cannot use crafted input
to compromise the application by interfering with its logic and behavior, thus
gaining unauthorized access to its data and functionality.
This core problem manifests itself in various ways:

m Users can interfere with any piece of data transmitted between the client
and the server, including request parameters, cookies, and HTTP head-
ers. Any security controls implemented on the client side, such as input
validation checks, can be easily circumvented.

m Users can send requests in any sequence and can submit parameters at a
different stage than the application expects, more than once, or not at all.
Any assumption developers make about how users will interact with the
application may be violated.

m Users are not restricted to using only a web browser to access the application.
Numerous widely available tools operate alongside, or independently of,
a browser to help attack web applications. These tools can make requests
that no browser would ordinarily make and can generate huge numbers
of requests quickly to find and exploit problems.

The majority of attacks against web applications involve sending input to the
server that is crafted to cause some event that was not expected or desired by
the application’s designer. Here are some examples of submitting crafted input
to achieve this objective:

m Changing the price of a product transmitted in a hidden HTML form field
to fraudulently purchase the product for a cheaper amount

m Modifying a session token transmitted in an HTTP cookie to hijack the
session of another authenticated user

m Removing certain parameters that normally are submitted to exploit a
logic flaw in the application’s processing

m Altering some input that will be processed by a back-end database to inject
a malicious database query and access sensitive data

Needless to say, SSL does nothing to stop an attacker from submitting crafted
input to the server. If the application uses SSL, this simply means that other users
on the network cannot view or modify the attacker’s data in transit. Because

10

Chapter 1 = Web Application (In)security

the attacker controls her end of the SSL tunnel, she can send anything she likes
to the server through this tunnel. If any of the previously mentioned attacks
are successful, the application is emphatically vulnerable, regardless of what
its FAQ may tell you.

Key Problem Factors

The core security problem faced by web applications arises in any situation
where an application must accept and process untrusted data that may be mali-
cious. However, in the case of web applications, several factors have combined
to exacerbate the problem and explain why so many web applications on the
Internet today do such a poor job of addressing it.

Underdeveloped Security Awareness

Although awareness of web application security issues has grown in recent
years, it remains less well-developed than in longer-established areas such as
networks and operating systems. Although most people working in IT security
have a reasonable grasp of the essentials of securing networks and hardening
hosts, widespread confusion and misconception still exist about many of the
core concepts involved in web application security. A web application devel-
oper’s work increasingly involves weaving together tens, or even hundreds,
of third-party packages, all designed to abstract the developer away from the
underlying technologies. It is common to meet experienced web application
developers who make major assumptions about the security provided by their
programming framework and to whom an explanation of many basic types of
flaws comes as a revelation.

Custom Development

Most web applications are developed in-house by an organization’s own staff
or third-party contractors. Even where an application employs well-established
components, these are typically customized or bolted together using new code.
In this situation, every application is different and may contain its own unique
defects. This stands in contrast to a typical infrastructure deployment, in which
an organization can purchase a best-of-breed product and install it in line with
industry-standard guidelines.

Deceptive Simplicity

With today’s web application platforms and development tools, it is possible for
a novice programmer to create a powerful application from scratch in a short
period of time. But there is a huge difference between producing code that is

Chapter 1 = Web Application (In)security

functional and code that is secure. Many web applications are created by well-
meaning individuals who simply lack the knowledge and experience to identify
where security problems may arise.

A prominent trend in recent years has been the use of application frameworks
that provide ready-made code components to handle numerous common areas
of functionality, such as authentication, page templates, message boards, and
integration with common back-end infrastructure components. Examples of these
frameworks include Liferay and Appfuse. These products make it quick and
easy to create working applications without requiring a technical understanding
of how the applications work or the potential risks they may contain. This also
means many companies use the same frameworks. Thus, when a vulnerability
is discovered, it affects many unrelated applications.

Rapidly Evolving Threat Profile

Research into web application attacks and defenses continues to be a thriving
area in which new concepts and threats are conceived at a faster rate than is now
the case for older technologies. Particularly on the client side, it is common for
the accepted defenses against a particular attack to be undermined by research
that demonstrates a new attack technique. A development team that begins a
project with a complete knowledge of current threats may have lost this status
by the time the application is completed and deployed.

Resource and Time Constraints

Most web application development projects are subject to strict constraints on
time and resources, arising from the economics of in-house, one-off develop-
ment. In most organizations, it is often infeasible to employ dedicated security
expertise in the design or development teams. And due to project slippage,
security testing by specialists is often left until very late in the project’s life
cycle. In the balancing of competing priorities, the need to produce a stable and
functional application by a deadline normally overrides less tangible security
considerations. A typical small organization may be willing to pay for only a
few man-days of consulting time to evaluate a new application. A quick pen-
etration test will often find the low-hanging fruit, but it may miss more subtle
vulnerabilities that require time and patience to identify.

Overextended Technologies

Many of the core technologies employed in web applications began life when
the landscape of the World Wide Web was very different. They have since been
pushed far beyond the purposes for which they were originally conceived, such
as the use of JavaScript as a means of data transmission in many AJAX-based

12

Chapter 1 = Web Application (In)security

applications. As the expectations placed on web application functionality have
rapidly evolved, the technologies used to implement this functionality have
lagged behind the curve, with old technologies stretched and adapted to meet
new requirements. Unsurprisingly, this has led to security vulnerabilities as
unforeseen side effects emerge.

Increasing Demands on Functionality

Applications are designed primarily with functionality and usability in mind.
Once-static user profiles now contain social networking features, allowing upload-
ing of pictures and wiki-style editing of pages. A few years ago an application
designer may have been content with implementing a username and password
challenge to create the login functionality. Modern sites may include password
recovery, username recovery, password hints, and an option to remember the
username and password on future visits. Such a site would undoubtedly be
promoted as having numerous security features, yet each one is really a self-
service feature adding to the site’s attack surface.

The New Security Perimeter

Before the rise of web applications, organizations’ efforts to secure themselves
against external attack were largely focused on the network perimeter. Defending
this perimeter entailed hardening and patching the services it needed to expose
and firewalling access to others.

Web applications have changed all this. For an application to be accessible
by its users, the perimeter firewall must allow inbound connections to the
server over HTTP or HTTPS. And for the application to function, the server
must be allowed to connect to supporting back-end systems, such as databases,
mainframes, and financial and logistical systems. These systems often lie at
the core of the organization’s operations and reside behind several layers of
network-level defenses.

If a vulnerability exists within a web application, an attacker on the public
Internet may be able to compromise the organization’s core back-end systems
solely by submitting crafted data from his web browser. This data sails past all
the organization’s network defenses, in the same way as does ordinary, benign
traffic to the web application.

The effect of widespread deployment of web applications is that the security
perimeter of a typical organization has moved. Part of that perimeter is still
embodied in firewalls and bastion hosts. But a significant part of it is now occupied
by the organization’s web applications. Because of the manifold ways in which
web applications receive user input and pass this to sensitive back-end systems,
they are the potential gateways for a wide range of attacks, and defenses against
these attacks must be implemented within the applications themselves. A single

Chapter 1 = Web Application (In)security

13

line of defective code in a single web application can render an organization’s
internal systems vulnerable. Furthermore, with the rise of mash-up applications,
third-party widgets, and other techniques for cross-domain integration, the
server-side security perimeter frequently extends well beyond the organization
itself. Implicit trust is placed in the services of external applications and services.
The statistics described previously, of the incidence of vulnerabilities within
this new security perimeter, should give every organization pause for thought.

.ma For an attacker targeting an organization, gaining access to the net-
work or executing arbitrary commands on servers may not be what he wants
to achieve. Often, and perhaps typically, what an attacker really wants is to
perform some application-level action such as stealing personal informa-
tion, transferring funds, or making cheap purchases. And the relocation of the
security perimeter to the application layer may greatly assist an attacker in
achieving these objectives.

For example, suppose that an attacker wants to “hack in” to a bank’s systems
and steal money from users’ accounts. In the past, before the bank deployed
a web application, the attacker might have needed to find a vulnerability

in a publicly reachable service, exploit this to gain a toehold on the bank’s
DMZ, penetrate the firewall restricting access to its internal systems, map the
network to find the mainframe computer, decipher the arcane protocol used
to access it, and guess some credentials to log in. However, if the bank now
deploys a vulnerable web application, the attacker may be able to achieve the
same outcome simply by modifying an account number in a hidden field of an
HTML form.

A second way in which web applications have moved the security perimeter
arises from the threats that users themselves face when they access a vulner-
able application. A malicious attacker can leverage a benign but vulnerable web
application to attack any user who visits it. If that user is located on an internal
corporate network, the attacker may harness the user’s browser to launch an
attack against the local network from the user’s trusted position. Without any
cooperation from the user, the attacker may be able to carry out any action that
the user could perform if she were herself malicious. With the proliferation of
browser extension technologies and plug-ins, the extent of the client-side attack
surface has increased considerably.

Network administrators are familiar with the idea of preventing their users
from visiting malicious web sites, and end users themselves are gradually becom-
ing more aware of this threat. But the nature of web application vulnerabilities
means that a vulnerable application may present no less of a threat to its users
and their organization than a web site that is overtly malicious. Correspondingly,
the new security perimeter imposes a duty of care on all application owners
to protect their users from attacks against them delivered via the application.

14

Chapter 1 = Web Application (In)security

A further way in which the security perimeter has partly moved to the cli-
ent side is through the widespread use of e-mail as an extended authentication
mechanism. A huge number of today’s applications contain “forgotten password”
functions that allow an attacker to generate an account recovery e-mail to any
registered address, without requiring any other user-specific information. This
allows an attacker who compromises a user’s web mail account to easily escalate
the attack and compromise the victim’s accounts on most of the web applications
for which the victim is registered.

The Future of Web Application Security

Over a decade after their widespread adoption, web applications on the Internet
today are still rife with vulnerabilities. Understanding of the security threats
facing web applications, and effective ways of addressing these, are still underde-
veloped within the industry. There is currently little indication that the problem
factors described in this chapter will disappear in the near future.

That said, the details of the web application security landscape are not static.
Even though old and well-understood vulnerabilities such as SQL injection
continue to appear, their prevalence is gradually diminishing. Furthermore,
the instances that remain are becoming more difficult to find and exploit. New
research in these areas is generally focused on developing advanced techniques
for attacking more subtle manifestations of vulnerabilities that a few years ago
could be easily detected and exploited using only a browser.

A second prominent trend has been a gradual shift in attention from attacks
against the server side of the application to those that target application users.
The latter kind of attack still leverages defects within the application itself, but
it generally involves some kind of interaction with another user to compromise
that user’s dealings with the vulnerable application. This is a trend that has
been replicated in other areas of software security. As awareness of security
threats matures, flaws in the server side are the first to be well understood and
addressed, leaving the client side as a key battleground as the learning process
continues. Of all the attacks described in this book, those against other users
are evolving the most quickly, and they have been the focus of most research
in recent years.

Various recent trends in technology have somewhat altered the landscape of
web applications. Popular consciousness about these trends exists by means of
various rather misleading buzzwords, the most prominent of which are these:

m Web 2.0 — This term refers to the greater use of functionality that enables
user-generated content and information sharing, and also the adoption
of various technologies that broadly support this functionality, including
asynchronous HTTP requests and cross-domain integration.

Chapter 1 = Web Application (In)security

15

m Cloud computing — This term refers to greater use of external service
providers for various parts of the technology stack, including applica-
tion software, application platforms, web server software, databases, and
hardware. It also refers to increased usage of virtualization technologies
within hosting environments.

As with most changes in technology, these trends have brought with them
some new attacks and variations on existing attacks. Notwithstanding the hype,
the issues raised are not quite as revolutionary as they may initially appear. We
will examine the security implications of these and other recent trends in the
appropriate locations throughout this book.

Despite all the changes that have occurred within web applications, some
categories of “classic” vulnerabilities show no sign of diminishing. They continue
to arise in pretty much the same form as they did in the earliest days of the
web. These include defects in business logic, failures to properly apply access
controls, and other design issues. Even in a world of bolted-together applica-
tion components and everything-as-a-service, these timeless issues are likely
to remain widespread.

Summary

In a little over a decade, the World Wide Web has evolved from purely static
information repositories into highly functional applications that process sensitive
data and perform powerful actions with real-world consequences. During this
development, several factors have combined to bring about the weak security
posture demonstrated by the majority of today’s web applications.

Most applications face the core security problem that users can submit arbi-
trary input. Every aspect of the user’s interaction with the application may be
malicious and should be regarded as such unless proven otherwise. Failure to
properly address this problem can leave applications vulnerable to attack in
numerous ways.

All the evidence about the current state of web application security indicates
that although some aspects of security have indeed improved, entirely new
threats have evolved to replace them. The overall problem has not been resolved
on any significant scale. Attacks against web applications still present a serious
threat to both the organizations that deploy them and the users who access them.

Core Defense Mechanisms

The fundamental security problem with web applications — that all user input
is untrusted — gives rise to a number of security mechanisms that applica-
tions use to defend themselves against attack. Virtually all applications employ
mechanisms that are conceptually similar, although the details of the design
and the effectiveness of the implementation vary greatly.

The defense mechanisms employed by web applications comprise the following
core elements:

m Handling user access to the application’s data and functionality to prevent
users from gaining unauthorized access

m Handling user input to the application’s functions to prevent malformed
input from causing undesirable behavior

m Handling attackers to ensure that the application behaves appropriately
when being directly targeted, taking suitable defensive and offensive
measures to frustrate the attacker

m Managing the application itself by enabling administrators to monitor its
activities and configure its functionality

Because of their central role in addressing the core security problem, these
mechanisms also make up the vast majority of a typical application’s attack
surface. If knowing your enemy is the first rule of warfare, then understanding
these mechanisms thoroughly is the main prerequisite for being able to attack

17

18

Chapter 2 = Core Defense Mechanisms

applications effectively. If you are new to hacking web applications (and even
if you are not), you should be sure to take time to understand how these core
mechanisms work in each of the applications you encounter, and identify the
weak points that leave them vulnerable to attack.

Handling User Access

A central security requirement that virtually any application needs to meet is
controlling users” access to its data and functionality. A typical situation has
several different categories of user, such as anonymous users, ordinary authenti-
cated users, and administrative users. Furthermore, in many situations different
users are permitted to access a different set of data. For example, users of a web
mail application should be able to read their own e-mail but not other people’s.

Most web applications handle access using a trio of interrelated security
mechanisms:

m Authentication
m Session management

m Access control

Each of these mechanisms represents a significant area of an application’s
attack surface, and each is fundamental to an application’s overall security
posture. Because of their interdependencies, the overall security provided by
the mechanisms is only as strong as the weakest link in the chain. A defect in
any single component may enable an attacker to gain unrestricted access to the
application’s functionality and data.

Authentication

The authentication mechanism is logically the most basic dependency in an
application’s handling of user access. Authenticating a user involves establishing
that the user is in fact who he claims to be. Without this facility, the application
would need to treat all users as anonymous — the lowest possible level of trust.

The majority of today’s web applications employ the conventional authen-
tication model, in which the user submits a username and password, which
the application checks for validity. Figure 2-1 shows a typical login function.
In security-critical applications such as those used by online banks, this basic
model is usually supplemented by additional credentials and a multistage login
process. When security requirements are higher still, other authentication mod-
els may be used, based on client certificates, smartcards, or challenge-response
tokens. In addition to the core login process, authentication mechanisms often
employ a range of other supporting functionality, such as self-registration,
account recovery, and a password change facility.

Chapter 2 = Core Defense Mechanisms

19

i ETTTR
Login)

Flease log in below by completing the details requested, then select 'Log In'.

For security reasons, you have a limited number of atternpts to provide the correct infarmation. If you dao
not pravide the carrect infarmation, access to your Intelligent Finance plan will be suspended. If this
happens, please call 0845 609 4343 and we will send you a new Plan Security Code. You will then be
able to access your plan by following the reactivation process

Ifyou are not sure ahout your login details or require help, please call us.

Online Username I This must be gt least 6 characlers long and

can have lafters and/or numbers, but no
spaces.

Online Password I This must be gt least 6 characlers long and

must have both letters and numbers, but
no SHECEs

Figure 2-1: A typical login function

Despite their superficial simplicity, authentication mechanisms suffer from a
wide range of defects in both design and implementation. Common problems
may enable an attacker to identify other users” usernames, guess their pass-
words, or bypass the login function by exploiting defects in its logic. When
you are attacking a web application, you should invest a significant amount of
attention to the various authentication-related functions it contains. Surprisingly
frequently, defects in this functionality enable you to gain unauthorized access
to sensitive data and functionality.

Session Management

The next logical task in the process of handling user access is to manage the
authenticated user’s session. After successfully logging in to the application, the
user accesses various pages and functions, making a series of HTTP requests from
his browser. At the same time, the application receives countless other requests
from different users, some of whom are authenticated and some of whom are
anonymous. To enforce effective access control, the application needs a way to
identify and process the series of requests that originate from each unique user.

Virtually all web applications meet this requirement by creating a session for
each user and issuing the user a token that identifies the session. The session
itself is a set of data structures held on the server that track the state of the user’s
interaction with the application. The token is a unique string that the applica-
tion maps to the session. When a user receives a token, the browser automati-
cally submits it back to the server in each subsequent HTTP request, enabling
the application to associate the request with that user. HTTP cookies are the
standard method for transmitting session tokens, although many applications
use hidden form fields or the URL query string for this purpose. If a user does
not make a request for a certain amount of time, the session is ideally expired,
as shown in Figure 2-2.

20

Chapter 2 = Core Defense Mechanisms

Your Account Session has ended

Sorry - for your own protection we have had to log you out of your online account
because you did not use the service for more than 10 minutes. To re-enter your account,
please log in again.

Would you like to log in now?

Figure 2-2: An application enforcing session timeout

In terms of attack surface, the session management mechanism is highly
dependent on the security of its tokens. The majority of attacks against it seek to
compromise the tokens issued to other users. If this is possible, an attacker can
masquerade as the victim user and use the application just as if he had actually
authenticated as that user. The principal areas of vulnerability arise from defects
in how tokens are generated, enabling an attacker to guess the tokens issued to
other users, and defects in how tokens are subsequently handled, enabling an
attacker to capture other users’ tokens.

A small number of applications dispense with the need for session tokens by
using other means of reidentifying users across multiple requests. If HTTP’s
built-in authentication mechanism is used, the browser automatically resubmits
the user’s credentials with each request, enabling the application to identify the
user directly from these. In other cases, the application stores the state infor-
mation on the client side rather than the server, usually in encrypted form to
prevent tampering.

Access Control

The final logical step in the process of handling user access is to make and enforce
correct decisions about whether each individual request should be permitted or
denied. If the mechanisms just described are functioning correctly, the applica-
tion knows the identity of the user from whom each request is received. On this
basis, it needs to decide whether that user is authorized to perform the action,
or access the data, that he is requesting, as shown in Figure 2-3.

The access control mechanism usually needs to implement some fine-grained
logic, with different considerations being relevant to different areas of the
application and different types of functionality. An application might support
numerous user roles, each involving different combinations of specific privileges.
Individual users may be permitted to access a subset of the total data held within
the application. Specific functions may implement transaction limits and other
checks, all of which need to be properly enforced based on the user’s identity.

Because of the complex nature of typical access control requirements, this
mechanism is a frequent source of security vulnerabilities that enable an attacker

Chapter 2 = Core Defense Mechanisms

21

to gain unauthorized access to data and functionality. Developers often make
flawed assumptions about how users will interact with the application and
frequently make oversights by omitting access control checks from some appli-
cation functions. Probing for these vulnerabilities is often laborious, because
essentially the same checks need to be repeated for each item of functionality.
Because of the prevalence of access control flaws, however, this effort is always
a worthwhile investment when you are attacking a web application. Chapter
8 describes how you can automate some of the effort involved in performing
rigorous access control testing.

Home» Access Denied [403

Access Denied [403]

We're sorry...
You are not authorized to access this page.
« Login to the site.
» If you typed the page url, check the spelling.

» Click your browser's back button and try another link.
» Consider telling us about the broken link that led you to this page.

We apologize for the inconvenience, and hope we'll see you again soon.

Figure 2-3: An application enforcing access control

Handling User Input

Recall the fundamental security problem described in Chapter 1: All user input
is untrusted. A huge variety of attacks against web applications involve submit-
ting unexpected input, crafted to cause behavior that was not intended by the
application’s designers. Correspondingly, a key requirement for an application’s
security defenses is that the application must handle user input in a safe manner.

Input-based vulnerabilities can arise anywhere within an application’s func-
tionality, and in relation to practically every type of technology in common use.
“Input validation” is often cited as the necessary defense against these attacks.
However, no single protective mechanism can be employed everywhere, and
defending against malicious input is often not as straightforward as it sounds.

Varieties of Input

A typical web application processes user-supplied data in many different forms.
Some kinds of input validation may not be feasible or desirable for all these
forms of input. Figure 2-4 shows the kind of input validation often performed
by a user registration function.

22 Chapter 2 = Core Defense Mechanisms

First Name

a Must contain at least 4 characters

Last Name

a Must contain at least 4 characters

Email

a Please provide a valid email address

Phone number
a Must contain only numbers

Figure 2-4: An application performing input validation

In many cases, an application may be able to impose very stringent valida-
tion checks on a specific item of input. For example, a username submitted to a
login function may be required to have a maximum length of eight characters
and contain only alphabetical characters.

In other cases, the application must tolerate a wider range of possible input.
For example, an address field submitted to a personal details page might legiti-
mately contain letters, numbers, spaces, hyphens, apostrophes, and other char-
acters. However, for this item, restrictions still can be feasibly imposed. The data
should not exceed a reasonable length limit (such as 50 characters) and should
not contain any HTML markup.

In some situations, an application may need to accept arbitrary input from
users. For example, a user of a blogging application may create a blog whose
subject is web application hacking. Posts and comments made to the blog may
quite legitimately contain explicit attack strings that are being discussed. The
application may need to store this input in a database, write it to disk, and display
it back to users in a safe way. It cannot simply reject the input just because it
looks potentially malicious without substantially diminishing the application’s
value to some of its user base.

In addition to the various kinds of input that users enter using the browser
interface, a typical application receives numerous items of data that began their
life on the server and that are sent to the client so that the client can transmit
them back to the server on subsequent requests. This includes items such as
cookies and hidden form fields, which are not seen by ordinary users of the
application but which an attacker can of course view and modify. In these cases,
applications can often perform very specific validation of the data received. For
example, a parameter might be required to have one of a specific set of known
values, such as a cookie indicating the user’s preferred language, or to be in a
specific format, such as a customer ID number. Furthermore, when an applica-
tion detects that server-generated data has been modified in a way that is not
possible for an ordinary user with a standard browser, this often indicates
that the user is attempting to probe the application for vulnerabilities. In these

Chapter 2 = Core Defense Mechanisms

23

cases, the application should reject the request and log the incident for potential
investigation (see the “Handling Attackers” section later in this chapter).

Approaches to Input Handling

Various broad approaches are commonly taken to the problem of handling
user input. Different approaches are often preferable for different situations
and different types of input, and a combination of approaches may sometimes
be desirable.

“Reject Known Bad”

This approach typically employs a blacklist containing a set of literal strings or
patterns that are known to be used in attacks. The validation mechanism blocks
any data that matches the blacklist and allows everything else.

In general, this is regarded as the least effective approach to validating user
input, for two main reasons. First, a typical vulnerability in a web applica-
tion can be exploited using a wide variety of input, which may be encoded or
represented in various ways. Except in the simplest of cases, it is likely that a
blacklist will omit some patterns of input that can be used to attack the applica-
tion. Second, techniques for exploitation are constantly evolving. Novel methods
for exploiting existing categories of vulnerabilities are unlikely to be blocked
by current blacklists.

Many blacklist-based filters can be bypassed with almost embarrassing ease
by making trivial adjustments to the input that is being blocked. For example:

m If sELECT is blocked, try seLect
m If or 1=1--isblocked, try or 2=2--

- Ifalert(‘xss‘)iskﬂocked,h37prompt('xss')

In other cases, filters designed to block specific keywords can be bypassed by
using nonstandard characters between expressions to disrupt the tokenizing
performed by the application. For example:

SELECT/*foo*/username, password/*foo*/FROM/*foo* /users

<img%09onerror=alert (1) src=a>

Finally, numerous blacklist-based filters, particularly those implemented in
web application firewalls, have been vulnerable to NULL byte attacks. Because
of the different ways in which strings are handled in managed and unmanaged
execution contexts, inserting a NULL byte anywhere before a blocked expression
can cause some filters to stop processing the input and therefore not identify
the expression. For example:

%00<script>alert (1l)</script>

24

Chapter 2 = Core Defense Mechanisms

Various other techniques for attacking web application firewalls are described
in Chapter 18.

.m Attacks that exploit the handling of NULL bytes arise in many areas
of web application security. In contexts where a NULL byte acts as a string
delimiter, it can be used to terminate a filename or a query to some back-
end component. In contexts where NULL bytes are tolerated and ignored
(for example, within HTML in some browsers), arbitrary NULL bytes can be
inserted within blocked expressions to defeat some blacklist-based filters.
Attacks of this kind are discussed in detail in later chapters.

“Accept Known Good”

This approach employs a whitelist containing a set of literal strings or patterns,
or a set of criteria, that is known to match only benign input. The validation
mechanism allows data that matches the whitelist and blocks everything else.
For example, before looking up a requested product code in the database, an
application might validate that it contains only alphanumeric characters and is
exactly six characters long. Given the subsequent processing that will be done
on the product code, the developers know that input passing this test cannot
possibly cause any problems.

In cases where this approach is feasible, it is regarded as the most effective
way to handle potentially malicious input. Provided that due care is taken in
constructing the whitelist, an attacker will be unable to use crafted input to
interfere with the application’s behavior. However, in numerous situations an
application must accept data for processing that does not meet any reasonable
criteria for what is known to be “good.” For example, some people’s names contain
an apostrophe or hyphen. These can be used in attacks against databases, but
it may be a requirement that the application should permit anyone to register
under his or her real name. Hence, although it is often extremely effective, the
whitelist-based approach does not represent an all-purpose solution to the
problem of handling user input.

Sanitization

This approach recognizes the need to sometimes accept data that cannot be
guaranteed as safe. Instead of rejecting this input, the application sanitizes it
in various ways to prevent it from having any adverse effects. Potentially mali-
cious characters may be removed from the data, leaving only what is known to
be safe, or they may be suitably encoded or “escaped” before further processing
is performed.

Approaches based on data sanitization are often highly effective, and in many
situations they can be relied on as a general solution to the problem of malicious

Chapter 2 = Core Defense Mechanisms

25

input. For example, the usual defense against cross-site scripting attacks is to
HTML-encode dangerous characters before these are embedded into pages of the
application (see Chapter 12). However, effective sanitization may be difficult to
achieve if several kinds of potentially malicious data need to be accommodated
within one item of input. In this situation, a boundary validation approach is
desirable, as described later.

Safe Data Handling

Many web application vulnerabilities arise because user-supplied data is pro-
cessed in unsafe ways. Vulnerabilities often can be avoided not by validating
the input itself but by ensuring that the processing that is performed on it is
inherently safe. In some situations, safe programming methods are available
that avoid common problems. For example, SQL injection attacks can be pre-
vented through the correct use of parameterized queries for database access
(see Chapter 9). In other situations, application functionality can be designed
in such a way that inherently unsafe practices, such as passing user input to an
operating system command interpreter, are avoided.

This approach cannot be applied to every kind of task that web applications
need to perform. But where it is available, it is an effective general approach to
handling potentially malicious input.

Semantic Checks

The defenses described so far all address the need to defend the application against
various kinds of malformed data whose content has been crafted to interfere
with the application’s processing. However, with some vulnerabilities the input
supplied by the attacker is identical to the input that an ordinary, nonmalicious
user may submit. What makes it malicious is the different circumstances under
which it is submitted. For example, an attacker might seek to gain access to
another user’s bank account by changing an account number transmitted in a
hidden form field. No amount of syntactic validation will distinguish between
the user’s data and the attacker’s. To prevent unauthorized access, the applica-
tion needs to validate that the account number submitted belongs to the user
who has submitted it.

Boundary Validation

The idea of validating data across trust boundaries is a familiar one. The core
security problem with web applications arises because data received from users
is untrusted. Although input validation checks implemented on the client side
may improve performance and the user’s experience, they do not provide any
assurance about the data that actually reaches the server. The point at which

26

Chapter 2 = Core Defense Mechanisms

user data is first received by the server-side application represents a huge trust
boundary. At this point the application needs to take measures to defend itself
against malicious input.

Given the nature of the core problem, it is tempting to think of the input
validation problem in terms of a frontier between the Internet, which is “bad”
and untrusted, and the server-side application, which is “good” and trusted. In
this picture, the role of input validation is to clean potentially malicious data on
arrival and then pass the clean data to the trusted application. From this point
onward, the data may be trusted and processed without any further checks or
concern about possible attacks.

As will become evident when we begin to examine some actual vulnerabili-
ties, this simple picture of input validation is inadequate for several reasons:

m Given the wide range of functionality that applications implement, and the
different technologies in use, a typical application needs to defend itself
against a huge variety of input-based attacks, each of which may employ
a diverse set of crafted data. It would be very difficult to devise a single
mechanism at the external boundary to defend against all these attacks.

m Many application functions involve chaining together a series of different
types of processing. A single piece of user-supplied input might result in
a number of operations in different components, with the output of each
being used as the input for the next. As the data is transformed, it might
come to bear no resemblance to the original input. A skilled attacker
may be able to manipulate the application to cause malicious input to be
generated at a key stage of the processing, attacking the component that
receives this data. It would be extremely difficult to implement a valida-
tion mechanism at the external boundary to foresee all the possible results
of processing each piece of user input.

m Defending against different categories of input-based attack may entail
performing different validation checks on user input that are incompat-
ible with one another. For example, preventing cross-site scripting attacks
may require the application to HTML-encode the > character as > ;, and
preventing command injection attacks may require the application to
block input containing the & and ; characters. Attempting to prevent all
categories of attack simultaneously at the application’s external boundary
may sometimes be impossible.

A more effective model uses the concept of boundary validation. Here, each
individual component or functional unit of the server-side application treats
its inputs as coming from a potentially malicious source. Data validation is
performed at each of these trust boundaries, in addition to the external frontier
between the client and server. This model provides a solution to the problems
just described. Each component can defend itself against the specific types of
crafted input to which it may be vulnerable. As data passes through different

Chapter 2 = Core Defense Mechanisms

27

components, validation checks can be performed against whatever value the data
has as a result of previous transformations. And because the various validation
checks are implemented at different stages of processing, they are unlikely to
come into conflict with one another.

Figure 2-5 illustrates a typical situation where boundary validation is the
most effective approach to defending against malicious input. The user login
results in several steps of processing being performed on user-supplied input,
and suitable validation is performed at each step:

1. The application receives the user’s login details. The form handler vali-
dates that each item of input contains only permitted characters, is within
a specific length limit, and does not contain any known attack signatures.

2. The application performs a SQL query to verify the user’s credentials.
To prevent SQL injection attacks, any characters within the user input
that may be used to attack the database are escaped before the query is
constructed.

3. If the login succeeds, the application passes certain data from the user’s
profile to a SOAP service to retrieve further information about her account.
To prevent SOAP injection attacks, any XML metacharacters within the
user’s profile data are suitably encoded.

4. The application displays the user’s account information back to the user’s
browser. To prevent cross-site scripting attacks, the application HTML-
encodes any user-supplied data that is embedded into the returned page.

1. General checks ,

Y

A

User Application

D E— server D \

. ! 3. Encode XML
_____ 4 Sanmzeoutput / metacharacters

SOAP
message

SOAP service

Figure 2-5: An application function using boundary validation at multiple stages of
processing

28

Chapter 2 = Core Defense Mechanisms

The specific vulnerabilities and defenses involved in this scenario will be
examined in detail in later chapters. If variations on this functionality involved
passing data to further application components, similar defenses would need
to be implemented at the relevant trust boundaries. For example, if a failed
login caused the application to send a warning e-mail to the user, any user
data incorporated into the e-mail may need to be checked for SMTP injection
attacks.

Multistep Validation and Canonicalization

A common problem encountered by input-handling mechanisms arises when
user-supplied input is manipulated across several steps as part of the valida-
tion logic. If this process is not handled carefully, an attacker may be able to
construct crafted input that succeeds in smuggling malicious data through the
validation mechanism. One version of this problem occurs when an application
attempts to sanitize user input by removing or encoding certain characters or
expressions. For example, an application may attempt to defend against some
cross-site scripting attacks by stripping the expression:

<script>

from any user-supplied data. However, an attacker may be able to bypass the
filter by supplying the following input:

<scr<script>ipt>

When the blocked expression is removed, the surrounding data contracts
to restore the malicious payload, because the filter is not being applied
recursively.

Similarly, if more than one validation step is performed on user input, an
attacker may be able to exploit the ordering of these steps to bypass the filter.
For example, if the application first removes . . / recursively and then removes
. . \ recursively, the following input can be used to defeat the validation:

\/

A related problem arises in relation to data canonicalization. When input
is sent from the user’s browser, it may be encoded in various ways. These
encoding schemes exist so that unusual characters and binary data may be
transmitted safely over HTTP (see Chapter 3 for more details). Canonicalization
is the process of converting or decoding data into a common character set. If
any canonicalization is carried out after input filters have been applied, an
attacker may be able to use a suitable encoding scheme to bypass the valida-
tion mechanism.

For example, an application may attempt to defend against some SQL injec-
tion attacks by blocking input containing the apostrophe character. However, if

Chapter 2 = Core Defense Mechanisms

29

the input is subsequently canonicalized, an attacker may be able to use double
URL encoding to defeat the filter. For example:

%2527

When this input is received, the application server performs its normal URL
decode, so the input becomes:

%27

This does not contain an apostrophe, so it is permitted by the application’s filters.
But when the application performs a further URL decode, the input is converted
into an apostrophe, thereby bypassing the filter.

If the application strips the apostrophe instead of blocking it, and then per-
forms further canonicalization, the following bypass may be effective:

%%2727

It is worth noting that the multiple validation and canonicalization steps
in these cases need not all take place on the server side of the application. For
example, in the following input several characters have been HTML-encoded:

<iframe src=javascript:alert(1) >

If the server-side application uses an input filter to block certain JavaScript
expressions and characters, the encoded input may succeed in bypassing the
filter. However, if the input is then copied into the application’s response, some
browsers perform an HTML decode of the src parameter value, and the embed-
ded JavaScript executes.

In addition to the standard encoding schemes that are intended for use in
web applications, canonicalization issues can arise in other situations where a
component employed by the application converts data from one character set
to another. For example, some technologies perform a “best fit” mapping of
characters based on similarities in their printed glyphs. Here, the characters «
and » may be converted into < and >, respectively, and ¥ and A are converted
into v and a. This behavior can often be leveraged to smuggle blocked characters
or keywords past an application’s input filters.

Throughout this book, we will describe numerous attacks of this kind, which
are effective in defeating many applications” defenses against common input-
based vulnerabilities.

Avoiding problems with multistep validation and canonicalization can some-
times be difficult, and there is no single solution to the problem. One approach is
to perform sanitization steps recursively, continuing until no further modifications
have been made on an item of input. However, where the desired sanitization
involves escaping a problematic character, this may result in an infinite loop.
Often, the problem can be addressed only on a case-by-case basis, based on the
types of validation being performed. Where feasible, it may be preferable to avoid
attempting to clean some kinds of bad input, and simply reject it altogether.

30

Chapter 2 = Core Defense Mechanisms

Handling Attackers

Anyone designing an application for which security is remotely important must
assume that it will be directly targeted by dedicated and skilled attackers. A key
function of the application’s security mechanisms is being able to handle and
react to these attacks in a controlled way. These mechanisms often incorporate
a mix of defensive and offensive measures designed to frustrate an attacker as
much as possible and give the application’s owners appropriate notification and
evidence of what has taken place. Measures implemented to handle attackers
typically include the following tasks:

m Handling errors
m Maintaining audit logs
m Alerting administrators

m Reacting to attacks

Handling Errors

However careful an application’s developers are when validating user input, it
is virtually inevitable that some unanticipated errors will occur. Errors resulting
from the actions of ordinary users are likely to be identified during functional-
ity and user acceptance testing. Therefore, they are taken into account before
the application is deployed in a production context. However, it is difficult to
anticipate every possible way in which a malicious user may interact with the
application, so further errors should be expected when the application comes
under attack.

A key defense mechanism is for the application to handle unexpected errors
gracefully, and either recover from them or present a suitable error message
to the user. In a production context, the application should never return any
system-generated messages or other debug information in its responses. As
you will see throughout this book, overly verbose error messages can greatly
assist malicious users in furthering their attacks against the application. In some
situations, an attacker can leverage defective error handling to retrieve sensi-
tive information within the error messages themselves, providing a valuable
channel for stealing data from the application. Figure 2-6 shows an example of
an unhandled error resulting in a verbose error message.

Most web development languages provide good error-handling support
through try-catch blocks and checked exceptions. Application code should
make extensive use of these constructs to catch specific and general errors and
handle them appropriately. Furthermore, most application servers can be con-
tigured to deal with unhandled application errors in customized ways, such as

Chapter 2 = Core Defense Mechanisms

31

by presenting an uninformative error message. See Chapter 15 for more details
on these measures.

i o e
File Edit View History Bookmarks Tools Help

@ = C oy mhtt“pSH'rn"mdSEC.FIEU‘EddrESSbODkf R -'l— Google p
| | https:y//mdsec.net/addressbook/ ok =
[07/05/22 08:25:18.702] 2
java lang Exception:

[[o7/05¢22 02:25.19.687] SQL Exception
IORA-OU921' unexpected end of SQL command 3QL3tate: 42000 VendorError: 921

e

|select price_cale from contentowners where ownernbr=

S0QLat orgapache. jsp. dStore_jsp._jsplervice(dStore_jsp javal2d); at

org.apache jaspertuntime HitpJspBase service(HttplspBase java: 137); at

avax servlet hitp Hitp Servlet service(Http Servlet java 853); at

org.apache jasper. servlet Jsp ServletWrapper service(Jsp ServletWrapper java: 204), at
org.apache jasper. servlet Jsp Servlet servicelspFilelTsp Servlet java: 295,

juva Jng, Encception:

|[071’05!22 08:25:19.687] 3QL Exzception
ORA-00921: unexpectediencrirorfisralr, command
S0L3tate: 42000 VendotError: 921

|select price_calc from contentowners where ownembr=

org.apache jasper.tuntime HitpJspBase service(HttplspBase java: 137); at

avaz servilet hitp Hitp Servlet. service(Hitp Servlet java 853, at

org apache jasper servlet Tsp ServletWrapper service(Tsp ServletWrapper java 204); at
org.apache jasper. servlet JspServlet sermcelspFilelTsp Servlet java 2950,

Done

Figure 2-6: An unhandled error

Effective error handling is often integrated with the application’s logging
mechanisms, which record as much debug information as possible about unan-
ticipated errors. Unexpected errors often point to defects within the application’s
defenses that can be addressed at the source if the application’s owner has the
required information.

Maintaining Audit Logs

Audit logs are valuable primarily when investigating intrusion attempts against
an application. Following such an incident, effective audit logs should enable
the application’s owners to understand exactly what has taken place, which
vulnerabilities (if any) were exploited, whether the attacker gained unauthorized
access to data or performed any unauthorized actions, and, as far as possible,
provide evidence of the intruder’s identity.

32

Chapter 2 = Core Defense Mechanisms

In any application for which security is important, key events should be logged
as a matter of course. At a minimum, these typically include the following:

m All events relating to the authentication functionality, such as successful
and failed login, and change of password

m Key transactions, such as credit card payments and funds transfers
m Access attempts that are blocked by the access control mechanisms

m Any requests containing known attack strings that indicate overtly mali-
cious intentions

In many security-critical applications, such as those used by online banks,
every client request is logged in full, providing a complete forensic record that
can be used to investigate any incidents.

Effective audit logs typically record the time of each event, the IP address
from which the request was received, and the user’s account (if authenticated).
Such logs need to be strongly protected against unauthorized read or write
access. An effective approach is to store audit logs on an autonomous system
that accepts only update messages from the main application. In some situa-
tions, logs may be flushed to write-once media to ensure their integrity in the
event of a successful attack.

In terms of attack surface, poorly protected audit logs can provide a gold mine
of information to an attacker, disclosing a host of sensitive information such as
session tokens and request parameters. This information may enable the attacker
to immediately compromise the entire application, as shown in Figure 2-7.

(3 Moilla Firefox e [0 |]

File Edit View History Bookmarks Tools Help

@ S c ﬁ @https:_f_r"mdsec.netflogs_.-’ B T

__| https://mdsec.net/logs/ ™

[05/Mar/2007:19:31:25 +0100] "POST /lx-office-erp/admin.pl HTTP/1.1™ 200 1085 "ht -+
[05/Mar/2007:19:34:39 +0100] "GET /lx-office-erp/admin.pl?action=edit&login=andre
[05/Mar/2007:19:34:56 +0100] "POST /lx-office-srpdadmin.pl HTTP/1.1" 200 2858 "ht: -
[05/Mar/2007:19:35:09 +0100] "POST /lx-office-erp/login.pl HTTR/1.1" 200 5365 "hti®
[05/Mar/2007:19:35:22 +0100] "GET /lx-office-erp/menuvi.pl?login=andreasfpassword
[05/Mar/2007:19:35:23 +4+0100] "GET /lx-office-erp/css/menuvd.css?id=94273 HTTP/1.1
[05/Mar/2007:19:35:23 +0100] "GET /lx-office-erp/image/bg titel.gif HTTP/1.1" 200
[05/Mar/2007:19:35:23 +0100] "GET /lx-office-erp/image/bg cos_menu.pny HTTPAL1.1"
[05/Mar/2007:19:35:23 +0100] "GET /lwx-office-erp/login.pl?login=andreasipassword=
[05/Mar/2007:19:35:25 +0100] "GET /lx-office-erp/image/right.gif HTTP/1.1™ Z00 &0
[05/Mar/2007:19:35:268 +0100] "GET /lx-office-erp/ct.pl?action=searchs&level=Haster
[05/Mar/2007:19:35:31 +0100] "POST /lux-office-erpfet.pl HTTES1.1"™ 200 14703 "http
[05/Mar/2007:19:35:38 +0100] "GET /lx-office-erp/ar.pl?action=search&level=AR--Re
[05/Mar/2007:19:35:39 +0100] "GET /lx-office-erp/js/jscalendar/calendar-winZk-1.ci+

Done

Figure 2-7: Poorly protected application logs containing sensitive information
submitted by other users

Chapter 2 = Core Defense Mechanisms

33

Alerting Administrators

Audit logs enable an application’s owners to retrospectively investigate intrusion
attempts and, if possible, take legal action against the perpetrator. However, in
many situations it is desirable to take much more immediate action, in real time,
in response to attempted attacks. For example, administrators may block the IP
address or user account an attacker is using. In extreme cases, they may even
take the application offline while investigating the attack and taking remedial
action. Even if a successful intrusion has already occurred, its practical effects
may be mitigated if defensive action is taken at an early stage.

In most situations, alerting mechanisms must balance the conflicting objec-
tives of reporting each genuine attack reliably and of not generating so many
alerts that these come to be ignored. A well-designed alerting mechanism can
use a combination of factors to diagnose that a determined attack is under way
and can aggregate related events into a single alert where possible. Anomalous
events monitored by alerting mechanisms often include the following:

m Usage anomalies, such as large numbers of requests being received from
a single IP address or user, indicating a scripted attack

m Business anomalies, such as an unusual number of funds transfers being
made to or from a single bank account

m Requests containing known attack strings

m Requests where data that is hidden from ordinary users has been modified

Some of these functions can be provided reasonably well by off-the-shelf
application firewalls and intrusion detection products. These typically use a
mixture of signature- and anomaly-based rules to identify malicious use of
the application and may reactively block malicious requests as well as issue
alerts to administrators. These products can form a valuable layer of defense
protecting a web application, particularly in the case of existing applications
known to contain problems but where resources to fix these are not immedi-
ately available. However, their effectiveness usually is limited by the fact that
each web application is different, so the rules employed are inevitably generic
to some extent. Web application firewalls usually are good at identifying the
most obvious attacks, where an attacker submits standard attack strings in
each request parameter. However, many attacks are more subtle than this. For
example, perhaps they modify the account number in a hidden field to access
another user’s data, or submit requests out of sequence to exploit defects in the
application’s logic. In these cases, a request submitted by an attacker may be

34

Chapter 2 = Core Defense Mechanisms

identical to that submitted by a benign user. What makes it malicious are the
circumstances under which it is made.

In any security-critical application, the most effective way to implement real-
time alerting is to integrate this tightly with the application’s input validation
mechanisms and other controls. For example, if a cookie is expected to have
one of a specific set of values, any violation of this indicates that its value has
been modified in a way that is not possible for ordinary users of the application.
Similarly, if a user changes an account number in a hidden field to identify a
different user’s account, this strongly indicates malicious intent. The application
should already be checking for these attacks as part of its primary defenses,
and these protective mechanisms can easily hook into the application’s alert-
ing mechanism to provide fully customized indicators of malicious activity.
Because these checks have been tailored to the application’s actual logic, with
a fine-grained knowledge of how ordinary users should be behaving, they
are much less prone to false positives than any off-the-shelf solution, however
configurable or easy-to-learn that solution may be.

Reacting to Attacks

In addition to alerting administrators, many security-critical applications con-
tain built-in mechanisms to react defensively to users who are identified as
potentially malicious.

Because each application is different, most real-world attacks require an
attacker to probe systematically for vulnerabilities, submitting numerous requests
containing crafted input designed to indicate the presence of various common
vulnerabilities. Effective input validation mechanisms will identify many of
these requests as potentially malicious and block the input from having any
undesirable effect on the application. However, it is sensible to assume that
some bypasses to these filters exist and that the application does contain some
actual vulnerabilities waiting to be discovered and exploited. At some point, an
attacker working systematically is likely to discover these defects.

For this reason, some applications take automatic reactive measures to frus-
trate the activities of an attacker who is working in this way. For example, they
might respond increasingly slowly to the attacker’s requests or terminate the
attacker’s session, requiring him to log in or perform other steps before con-
tinuing the attack. Although these measures will not defeat the most patient
and determined attacker, they will deter many more casual attackers and will
buy additional time for administrators to monitor the situation and take more
drastic action if desired.

Chapter 2 = Core Defense Mechanisms

35

Reacting to apparent attackers is not, of course, a substitute for fixing any
vulnerabilities that exist within the application. However, in the real world, even
the most diligent efforts to purge an application of security flaws may leave
some exploitable defects. Placing further obstacles in the way of an attacker
is an effective defense-in-depth measure that reduces the likelihood that any
residual vulnerabilities will be found and exploited.

Managing the Application

Any useful application needs to be managed and administered. This facility
often forms a key part of the application’s security mechanisms, providing a
way for administrators to manage user accounts and roles, access monitoring
and audit functions, perform diagnostic tasks, and configure aspects of the
application’s functionality.

In many applications, administrative functions are implemented within
the application itself, accessible through the same web interface as its core
nonsecurity functionality, as shown in Figure 2-8. Where this is the case, the
administrative mechanism represents a critical part of the application’s attack
surface. Its primary attraction for an attacker is as a vehicle for privilege esca-
lation. For example:

m Weaknesses in the authentication mechanism may enable an attacker
to gain administrative access, effectively compromising the entire
application.

m Many applications do not implement effective access control of some of
their administrative functions. An attacker may find a means of creating
a new user account with powerful privileges.

m Administrative functionality often involves displaying data that originated
from ordinary users. Any cross-site scripting flaws within the administra-
tive interface can lead to compromise of a user session that is guaranteed
to have powerful privileges.

m Administrative functionality is often subjected to less rigorous security
testing, because its users are deemed to be trusted, or because penetration
testers are given access to only low-privileged accounts. Furthermore, the
functionality often needs to perform inherently dangerous operations,
involving access to files on disk or operating system commands. If an
attacker can compromise the administrative function, he can often lever-
age it to take control of the entire server.

36

Chapter 2 = Core Defense Mechanisms

PHP-Nuke Powered Site - Administration Menu - Mozilla Firefox El
File Edit View History Bookmarks Tools Help
@ = C o E https://mdsec.net/phpnuke/admin.php ¢ ~| [*8~ Google P

[[] PHP-Nuke Powered Site - Administra...| | =

S — e
Your Account | Downloads | Submit News

m Administration System Login
Haorne

" AvantGao

+ Downloads Adrmin ID I—

" FAQ

Feoiibaal Passwnrdl

+ Journal Login

" Private Messages
" Recommend Us
* Search

 Statistics -

Dane

Figure 2-8: An administrative interface within a web application

Summary

Despite their extensive differences, virtually all web applications employ the
same core security mechanisms in some shape or form. These mechanisms rep-
resent an application’s primary defenses against malicious users and therefore
also comprise the bulk of the application’s attack surface. The vulnerabilities
we will examine later in this book mainly arise from defects within these core
mechanisms.

Of these components, the mechanisms for handling user access and user input
are the most important and should receive most of your attention when you are
targeting an application. Defects in these mechanisms often lead to complete
compromise of the application, enabling you to access data belonging to other
users, perform unauthorized actions, and inject arbitrary code and commands.

Questions

Answers can be found at http://mdsec.net/wahh.

1. Why are an application’s mechanisms for handling user access only as
strong as the weakest of these components?

2. What is the difference between a session and a session token?

3. Why is it not always possible to use a whitelist-based approach to input
validation?

Chapter 2 = Core Defense Mechanisms 37

4. You are attacking an application that implements an administrative func-
tion. You do not have any valid credentials to use the function. Why should
you nevertheless pay close attention to it?

5. An input validation mechanism designed to block cross-site scripting
attacks performs the following sequence of steps on an item of input:

Strip any <script> expressions that appear.
Truncate the input to 50 characters.

Remove any quotation marks within the input.
URL-decode the input.

If any items were deleted, return to step 1.

SRS e

Can you bypass this validation mechanism to smuggle the following data
past it?

"><gcript>alert ("foo")</script>

Web Application Technologies

Web applications employ a myriad of technologies to implement their function-
ality. This chapter is a short primer on the key technologies that you are likely
to encounter when attacking web applications. We will examine the HTTP
protocol, the technologies commonly employed on the server and client sides,
and the encoding schemes used to represent data in different situations. These
technologies are in general easy to understand, and a grasp of their relevant
features is key to performing effective attacks against web applications.

If you are already familiar with the key technologies used in web applications,
you can skim through this chapter to confirm that it offers you nothing new. If
you are still learning how web applications work, you should read this chapter
before continuing to the later chapters on specific vulnerabilities. For further
reading on many of the areas covered, we recommend HTTP: The Definitive
Guide by David Gourley and Brian Totty (O’Reilly, 2002), and also the website
of the World Wide Web Consortium at www.w3 . org.

The HTTP Protocol

Hypertext transfer protocol (HTTP) is the core communications protocol used to
access the World Wide Web and is used by all of today’s web applications. It is
a simple protocol that was originally developed for retrieving static text-based
resources. It has since been extended and leveraged in various ways to enable
it to support the complex distributed applications that are now commonplace.

39

40

Chapter 3 = Web Application Technologies

HTTP uses a message-based model in which a client sends a request mes-
sage and the server returns a response message. The protocol is essentially
connectionless: although HTTP uses the stateful TCP protocol as its transport
mechanism, each exchange of request and response is an autonomous transac-
tion and may use a different TCP connection.

HTTP Requests

All HTTP messages (requests and responses) consist of one or more headers,
each on a separate line, followed by a mandatory blank line, followed by an
optional message body. A typical HTTP request is as follows:

GET /auth/488/YourDetails.ashx?uid=129 HTTP/1.1

Accept: application/x-ms-application, image/jpeg, application/xaml+xml,
image/gif, image/pjpeg, application/x-ms-xbap, application/x-shockwave-
flash, */*

Referer: https://mdsec.net/auth/488/Home.ashx

Accept-Language: en-GB

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64;
Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR
3.0.30729; .NET4.0C; InfoPath.3; .NET4.0E; FDM; .NET CLR 1.1.4322)
Accept-Encoding: gzip, deflate

Host: mdsec.net

Connection: Keep-Alive

Cookie: SessionId=5B70C71F3FD4968935CDB6682E545476

The first line of every HTTP request consists of three items, separated by spaces:

m A verb indicating the HTTP method. The most commonly used method
is GeET, whose function is to retrieve a resource from the web server. GET
requests do not have a message body, so no further data follows the blank
line after the message headers.

m The requested URL. The URL typically functions as a name for the resource
being requested, together with an optional query string containing param-
eters that the client is passing to that resource. The query string is indicated
by the 2 character in the URL. The example contains a single parameter
with the name uid and the value 129.

m The HTTP version being used. The only HTTP versions in common use
on the Internet are 1.0 and 1.1, and most browsers use version 1.1 by
default. There are a few differences between the specifications of these
two versions; however, the only difference you are likely to encounter
when attacking web applications is that in version 1.1 the Host request
header is mandatory.

Chapter 3 = Web Application Technologies

Here are some other points of interest in the sample request:

m The Referer header is used to indicate the URL from which the request
originated (for example, because the user clicked a link on that page).
Note that this header was misspelled in the original HTTP specification,
and the misspelled version has been retained ever since.

m The user-agent header is used to provide information about the browser
or other client software that generated the request. Note that most brows-
ers include the Mozilla prefix for historical reasons. This was the user-
agent string used by the originally dominant Netscape browser, and other
browsers wanted to assert to websites that they were compatible with this
standard. As with many quirks from computing history, it has become so
established that it is still retained, even on the current version of Internet
Explorer, which made the request shown in the example.

m The Host header specifies the hostname that appeared in the full URL
being accessed. This is necessary when multiple websites are hosted on
the same server, because the URL sent in the first line of the request usu-
ally does not contain a hostname. (See Chapter 17 for more information
about virtually hosted websites.)

m The cookie header is used to submit additional parameters that the server
has issued to the client (described in more detail later in this chapter).

HTTP Responses
A typical HTTP response is as follows:

HTTP/1.1 200 OK

Date: Tue, 19 Apr 2011 09:23:32 GMT
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET

Set-Cookie: tracking=tI8rk7joMx44S2Uu85nSWc
X-AspNet-Version: 2.0.50727
Cache-Control: no-cache

Pragma: no-cache

Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 1067

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd"><html xmlns="http://
www.w3.0rg/1999/xhtml" ><head><title>Your details</title>

42 Chapter 3 » Web Application Technologies

The first line of every HTTP response consists of three items, separated by
spaces:

m The HTTP version being used.

m A numeric status code indicating the result of the request. 200 is the most
common status code; it means that the request was successful and that
the requested resource is being returned.

m A textual “reason phrase” further describing the status of the response. This
can have any value and is not used for any purpose by current browsers.

Here are some other points of interest in the response:

m The server header contains a banner indicating the web server software
being used, and sometimes other details such as installed modules and
the server operating system. The information contained may or may not
be accurate.

m The set-cookie header issues the browser a further cookie; this is sub-
mitted back in the cookie header of subsequent requests to this server.

m The Pragma header instructs the browser not to store the response in its
cache. The Expires header indicates that the response content expired
in the past and therefore should not be cached. These instructions are
frequently issued when dynamic content is being returned to ensure
that browsers obtain a fresh version of this content on subsequent
occasions.

m Almost all HTTP responses contain a message body following the blank
line after the headers. The content-Type header indicates that the body
of this message contains an HTML document.

m The content-Length header indicates the length of the message body in
bytes.

HTTP Methods

When you are attacking web applications, you will be dealing almost exclusively
with the most commonly used methods: GET and posT. You need to be aware
of some important differences between these methods, as they can affect an
application’s security if overlooked.

The GeT method is designed to retrieve resources. It can be used to send
parameters to the requested resource in the URL query string. This enables
users to bookmark a URL for a dynamic resource that they can reuse. Or other
users can retrieve the equivalent resource on a subsequent occasion (as in a
bookmarked search query). URLs are displayed on-screen and are logged in
various places, such as the browser history and the web server’s access logs.
They are also transmitted in the referer header to other sites when external

Chapter 3 = Web Application Technologies

43

links are followed. For these reasons, the query string should not be used to
transmit any sensitive information.

The posT method is designed to perform actions. With this method, request
parameters can be sent both in the URL query string and in the body of the
message. Although the URL can still be bookmarked, any parameters sent in
the message body will be excluded from the bookmark. These parameters will
also be excluded from the various locations in which logs of URLs are main-
tained and from the rReferer header. Because the rosT method is designed for
performing actions, if a user clicks the browser’s Back button to return to a
page that was accessed using this method, the browser does not automatically
reissue the request. Instead, it warns the user of what it is about to do, as shown
in Figure 3-1. This prevents users from unwittingly performing an action more
than once. For this reason, posT requests should always be used when an action
is being performed.

Confirm @

To display this page, Firefox must send information that will repeat any action (such as a search or
order confirmation) that was performed earlier,

| Cancel |

Figure 3-1: Browsers do not automatically reissue POST requests made by
users, because these might cause an action to be performed more than once

In addition to the GET and posT methods, the HTTP protocol supports numer-
ous other methods that have been created for specific purposes. Here are the
other ones you are most likely to require knowledge of:

m HEAD functions in the same way as a GET request, except that the server
should not return a message body in its response. The server should return
the same headers that it would have returned to the corresponding GET
request. Hence, this method can be used to check whether a resource is
present before making a GET request for it.

m TRACE is designed for diagnostic purposes. The server should return in the
response body the exact contents of the request message it received. This
can be used to detect the effect of any proxy servers between the client
and server that may manipulate the request.

m OPTIONS asks the server to report the HTTP methods that are available for
a particular resource. The server typically returns a response containing
an Allow header that lists the available methods.

m PUT attempts to upload the specified resource to the server, using the con-
tent contained in the body of the request. If this method is enabled, you
may be able to leverage it to attack the application, such as by uploading
an arbitrary script and executing it on the server.

44

Chapter 3 = Web Application Technologies

Many other HTTP methods exist that are not directly relevant to attacking
web applications. However, a web server may expose itself to attack if certain
dangerous methods are available. See Chapter 18 for further details on these
methods and examples of using them in an attack.

URLs

A uniform resource locator (URL) is a unique identifier for a web resource through
which that resource can be retrieved. The format of most URLs is as follows:

protocol://hostname[:port]/[path/]file[?param=value]

Several components in this scheme are optional. The port number usually is
included only if it differs from the default used by the relevant protocol. The
URL used to generate the HTTP request shown earlier is as follows:

https://mdsec.net/auth/488/YourDetails.ashx?uid=129

In addition to this absolute form, URLs may be specified relative to a particular
host, or relative to a particular path on that host. For example:

/auth/488/YourDetails.ashx?uid=129
YourDetails.ashx?uid=129

These relative forms are often used in web pages to describe navigation within
the website or application itself.

l'mﬂj You may encounter the term UR/ (or uniform resource identifier)
being used instead of URL, but it is really only used in formal specifications
and by those who want to exhibit their pedantry.

REST

Representational state transfer (REST) is a style of architecture for distributed
systems in which requests and responses contain representations of the current
state of the system’s resources. The core technologies employed in the World
Wide Web, including the HTTP protocol and the format of URLSs, conform to
the REST architectural style.

Although URLs containing parameters within the query string do themselves
conform to REST constraints, the term “REST-style URL" is often used to signify
a URL that contains its parameters within the URL file path, rather than the
query string. For example, the following URL containing a query string:

http://wahh-app.com/search?make=ford&model=pinto

corresponds to the following URL containing “REST-style” parameters:

http://wahh-app.com/search/ford/pinto

Chapter 3 = Web Application Technologies

45

Chapter 4 describes how you need to consider these different parameter styles
when mapping an application’s content and functionality and identifying its
key attack surface.

HTTP Headers

HTTP supports a large number of headers, some of which are designed for
specific unusual purposes. Some headers can be used for both requests and
responses, and others are specific to one of these message types. The following
sections describe the headers you are likely to encounter when attacking web
applications.

General Headers

m Connection tells the other end of the communication whether it should
close the TCP connection after the HTTP transmission has completed or
keep it open for further messages.

m Content-Encoding specifies what kind of encoding is being used for the
content contained in the message body, such as gzip, which is used by
some applications to compress responses for faster transmission.

m Content-Length specifies the length of the message body, in bytes (except
in the case of responses to HEAD requests, when it indicates the length of
the body in the response to the corresponding GET request).

m Content-Type specifies the type of content contained in the message body,
such as text/html for HTML documents.

m Transfer-Encoding specifies any encoding that was performed on the
message body to facilitate its transfer over HTTP. It is normally used to
specify chunked encoding when this is employed.

Request Headers

m Accept tells the server what kinds of content the client is willing to accept,
such as image types, office document formats, and so on.

m Accept-Encoding tells the server what kinds of content encoding the client
is willing to accept.

m Authorization submits credentials to the server for one of the built-in
HTTP authentication types.

m Cookie submits cookies to the server that the server previously issued.

m Host specifies the hostname that appeared in the full URL being requested.

46

Chapter 3 = Web Application Technologies

m If-Modified-Since specifies when the browser last received the requested

resource. If the resource has not changed since that time, the server may
instruct the client to use its cached copy, using a response with status code 304.

If-None-Match specifies an entity tag, which is an identifier denoting the
contents of the message body. The browser submits the entity tag that
the server issued with the requested resource when it was last received.
The server can use the entity tag to determine whether the browser may
use its cached copy of the resource.

originisused in cross-domain Ajax requests to indicate the domain from
which the request originated (see Chapter 13).

Referer specifies the URL from which the current request originated.

User-Agent provides information about the browser or other client soft-
ware that generated the request.

Response Headers

m Access-Control-Allow-Origin indicates whether the resource can be

retrieved via cross-domain Ajax requests (see Chapter 13).

Cache-Control passes caching directives to the browser (for example,

no-cache).

ETag specifies an entity tag. Clients can submit this identifier in future
requests for the same resource in the 1£-None-Match header to notify the
server which version of the resource the browser currently holds in its cache.

Expires tells the browser for how long the contents of the message body
are valid. The browser may use the cached copy of this resource until
this time.

Location is used in redirection responses (those that have a status code
starting with 3) to specify the target of the redirect.

Pragma passes caching directives to the browser (for example, no-cache).
server provides information about the web server software being used.

Set-Cookie issues cookies to the browser that it will submit back to the
server in subsequent requests.

m WWW-Authenticate is used in responses that have a 401 status code to

provide details on the type(s) of authentication that the server supports.

m X-Frame-Options indicates whether and how the current response may

be loaded within a browser frame (see Chapter 13).

Chapter 3 = Web Application Technologies

47

Cookies

Cookies are a key part of the HTTP protocol that most web applications rely
on. Frequently they can be used as a vehicle for exploiting vulnerabilities. The
cookie mechanism enables the server to send items of data to the client, which
the client stores and resubmits to the server. Unlike the other types of request
parameters (those within the URL query string or the message body), cookies
continue to be resubmitted in each subsequent request without any particular
action required by the application or the user.

A server issues a cookie using the set-cookie response header, as you
have seen:

Set-Cookie: tracking=tI8rk7joMx44S2Uu85nSWc

The user’s browser then automatically adds the following header to subsequent
requests back to the same server:

Cookie: tracking=tI8rk7joMx44S2Uu85nSwWc

Cookies normally consist of a name/value pair, as shown, but they may consist
of any string that does not contain a space. Multiple cookies can be issued by
using multiple set-cookie headers in the server’s response. These are submit-
ted back to the server in the same cookie header, with a semicolon separating
different individual cookies.

In addition to the cookie’s actual value, the set-cookie header can include
any of the following optional attributes, which can be used to control how the
browser handles the cookie:

m expires sets a date until which the cookie is valid. This causes the browser
to save the cookie to persistent storage, and it is reused in subsequent
browser sessions until the expiration date is reached. If this attribute is
not set, the cookie is used only in the current browser session.

m domain specifies the domain for which the cookie is valid. This must be
the same or a parent of the domain from which the cookie is received.

m path specifies the URL path for which the cookie is valid.

m secure — If this attribute is set, the cookie will be submitted only in HTTPS
requests.

m Httponly — If this attribute is set, the cookie cannot be directly accessed
via client-side JavaScript.

Each of these cookie attributes can impact the application’s security. The
primary impact is on the attacker’s ability to directly target other users of the
application. See Chapters 12 and 13 for more details.

Chapter 3 = Web Application Technologies

Status Codes

Each HTTP response message must contain a status code in its first line, indi-
cating the result of the request. The status codes fall into five groups, according
to the code’s first digit:

1xx — Informational.

2xx — The request was successful.

3xx — The client is redirected to a different resource.
4xx — The request contains an error of some kind.

5xx — The server encountered an error fulfilling the request.

There are numerous specific status codes, many of which are used only in
specialized circumstances. Here are the status codes you are most likely to
encounter when attacking a web application, along with the usual reason phrase
associated with them:

100 Continue is sent in some circumstances when a client submits a
request containing a body. The response indicates that the request headers
were received and that the client should continue sending the body. The
server returns a second response when the request has been completed.

200 ok indicates that the request was successful and that the response
body contains the result of the request.

201 Created is returned in response to a puT request to indicate that the
request was successful.

301 Moved Permanently redirects the browser permanently to a different
URL, which is specified in the Location header. The client should use the
new URL in the future rather than the original.

302 Found redirects the browser temporarily to a different URL, which is
specified in the Location header. The client should revert to the original
URL in subsequent requests.

304 Not Modified instructs the browser to use its cached copy of the
requested resource. The server uses the I£-Modified-Since and If-None-
Match request headers to determine whether the client has the latest version
of the resource.

400 Bad Request indicates that the client submitted an invalid HTTP request.
You will probably encounter this when you have modified a request in
certain invalid ways, such as by placing a space character into the URL.

401 Unauthorized indicates that the server requires HTTP authentication
before the request will be granted. The www-authenticate header contains
details on the type(s) of authentication supported.

Chapter 3 = Web Application Technologies

49

m 403 Forbidden indicates that no one is allowed to access the requested
resource, regardless of authentication.

m 404 Not Found indicates that the requested resource does not exist.

m 405 Method Not Allowed indicates that the method used in the request is
not supported for the specified URL. For example, you may receive this
status code if you attempt to use the pur method where it is not supported.

m 413 Request Entity Too Large — If you are probing for buffer overflow
vulnerabilities in native code, and therefore are submitting long strings
of data, this indicates that the body of your request is too large for the
server to handle.

m 414 Request URI Too Long is similar to the 413 response. It indicates that
the URL used in the request is too large for the server to handle.

m 500 Internal Server Error indicates that the server encountered an
error fulfilling the request. This normally occurs when you have submit-
ted unexpected input that caused an unhandled error somewhere within
the application’s processing. You should closely review the full contents
of the server’s response for any details indicating the nature of the error.

m 503 Service Unavailable normally indicates that, although the web
server itself is functioning and can respond to requests, the application
accessed via the server is not responding. You should verify whether this
is the result of any action you have performed.

HTTPS

The HTTP protocol uses plain TCP as its transport mechanism, which is unen-
crypted and therefore can be intercepted by an attacker who is suitably posi-
tioned on the network. HTTPS is essentially the same application-layer protocol
as HTTP but is tunneled over the secure transport mechanism, Secure Sockets
Layer (SSL). This protects the privacy and integrity of data passing over the
network, reducing the possibilities for noninvasive interception attacks. HTTP
requests and responses function in exactly the same way regardless of whether
SSL is used for transport.

.m SSL has strictly been superseded by transport layer security (TLS), but
the latter usually still is referred to using the older name.

HTTP Proxies

An HTTP proxy is a server that mediates access between the client browser and
the destination web server. When a browser has been configured to use a proxy

50

Chapter 3 = Web Application Technologies

server, it makes all its requests to that server. The proxy relays the requests to
the relevant web servers and forwards their responses back to the browser.
Most proxies also provide additional services, including caching, authentica-
tion, and access control.

You should be aware of two differences in how HTTP works when a proxy
server is being used:

m When a browser issues an unencrypted HTTP request to a proxy server, it
places the full URL into the request, including the protocol prefix http://,
the server’s hostname, and the port number if this is nonstandard. The
proxy server extracts the hostname and port and uses these to direct the
request to the correct destination web server.

m When HTTPS is being used, the browser cannot perform the SSL hand-
shake with the proxy server, because this would break the secure tunnel
and leave the communications vulnerable to interception attacks. Hence,
the browser must use the proxy as a pure TCP-level relay, which passes
all network data in both directions between the browser and the destina-
tion web server, with which the browser performs an SSL handshake as
normal. To establish this relay, the browser makes an HTTP request to the
proxy server using the connEcT method and specifying the destination
hostname and port number as the URL. If the proxy allows the request,
it returns an HTTP response with a 200 status, keeps the TCP connection
open, and from that point onward acts as a pure TCP-level relay to the
destination web server.

By some measure, the most useful item in your toolkit when attacking web
applications is a specialized kind of proxy server that sits between your browser
and the target website and allows you to intercept and modify all requests and
responses, even those using HTTPS. We will begin examining how you can use
this kind of tool in the next chapter.

HTTP Authentication

The HTTP protocol includes its own mechanisms for authenticating users using
various authentication schemes, including the following;:

m Basic is a simple authentication mechanism that sends user credentials as
a Base64-encoded string in a request header with each message.

m NTLM is a challenge-response mechanism and uses a version of the
Windows NTLM protocol.

m Digest is a challenge-response mechanism and uses MD5 checksums of
a nonce with the user’s credentials.

Chapter 3 = Web Application Technologies

51

It is relatively rare to encounter these authentication protocols being used
by web applications deployed on the Internet. They are more commonly used
within organizations to access intranet-based services.

COMMON MYTH

“Basic authentication is insecure.”

Because basic authentication places credentials in unencrypted form within
the HTTP request, it is frequently stated that the protocol is insecure and
should not be used. But forms-based authentication, as used by numerous
banks, also places credentials in unencrypted form within the HTTP request.

Any HTTP message can be protected from eavesdropping attacks by using HTTPS
as a transport mechanism, which should be done by every security-conscious
application. In relation to eavesdropping, at least, basic authentication in itself
is no worse than the methods used by the majority of today’s web applications.

Web Functionality

In addition to the core communications protocol used to send messages between
client and server, web applications employ numerous technologies to deliver
their functionality. Any reasonably functional application may employ dozens
of distinct technologies within its server and client components. Before you can
mount a serious attack against a web application, you need a basic understand-
ing of how its functionality is implemented, how the technologies used are
designed to behave, and where their weak points are likely to lie.

Server-Side Functionality

The early World Wide Web contained entirely static content. Websites con-
sisted of various resources such as HTML pages and images, which were
simply loaded onto a web server and delivered to any user who requested
them. Each time a particular resource was requested, the server responded
with the same content.

Today’s web applications still typically employ a fair number of static resources.
However, a large amount of the content that they present to users is generated
dynamically. When a user requests a dynamic resource, the server’s response
is created on the fly, and each user may receive content that is uniquely custom-
ized for him or her.

Dynamic content is generated by scripts or other code executing on the server.
These scripts are akin to computer programs in their own right. They have vari-
ous inputs, perform processing on these, and return their outputs to the user.

52

Chapter 3 = Web Application Technologies

When a user’s browser requests a dynamic resource, normally it does not
simply ask for a copy of that resource. In general, it also submits various
parameters along with its request. It is these parameters that enable the server-
side application to generate content that is tailored to the individual user.
HTTP requests can be used to send parameters to the application in three
main ways:

m In the URL query string
m In the file path of REST-style URLs
m In HTTP cookies

m In the body of requests using the posT method

In addition to these primary sources of input, the server-side application may
in principle use any part of the HTTP request as an input to its processing. For
example, an application may process the User-agent header to generate content
that is optimized for the type of browser being used.

Like computer software in general, web applications employ a wide range of
technologies on the server side to deliver their functionality:

m Scripting languages such as PHP, VBScript, and Perl

m Web application platforms such as ASP.NET and Java

m Web servers such as Apache, IIS, and Netscape Enterprise
m Databases such as MS-SQL, Oracle, and MySQL

m Other back-end components such as filesystems, SOAP-based web services,
and directory services

All these technologies and the types of vulnerabilities that can arise in rela-
tion to them are examined in detail throughout this book. Some of the most
common web application platforms and technologies you are likely to encounter
are described in the following sections.

COMMON MYTH

“Our applications need only cursory security review, because they employ a
well-used framework.”

Use of a well-used framework is often a cause for complacency in web
application development, on the assumption that common vulnerabilities
such as SQL injection are automatically avoided. This assumption is mistaken
for two reasons.

First, a large number of web application vulnerabilities arise in an applica-
tion’s design, not its implementation, and are independent of the development
framework or language chosen.

Chapter 3 = Web Application Technologies

53

Second, because a framework typically employs plug-ins and packages
from the cutting edge of the latest repositories, it is likely that these packages
have not undergone security review. Interestingly, if a vulnerability is later
found in the application, the same proponents of the myth will readily swap
sides and blame their framework or third-party package!

The Java Platform

For many years, the Java Platform, Enterprise Edition (formerly known as J2EE)
was a de facto standard for large-scale enterprise applications. Originally devel-
oped by Sun Microsystems and now owned by Oracle, it lends itself to multitiered
and load-balanced architectures and is well suited to modular development and
code reuse. Because of its long history and widespread adoption, many high-
quality development tools, application servers, and frameworks are available to
assist developers. The Java Platform can be run on several underlying operating
systems, including Windows, Linux, and Solaris.

Descriptions of Java-based web applications often employ a number of poten-
tially confusing terms that you may need to be aware of:

m An Enterprise Java Bean (E]B) is a relatively heavyweight software com-
ponent that encapsulates the logic of a specific business function within the
application. E]Bs are intended to take care of various technical challenges
that application developers must address, such as transactional integrity.

m A Plain Old Java Object (POJO) is an ordinary Java object, as distinct
from a special object such as an E]B. A POJO normally is used to denote
objects that are user-defined and are much simpler and more lightweight
than E]Bs and those used in other frameworks.

m A Java Servlet is an object that resides on an application server and receives
HTTP requests from clients and returns HTTP responses. Servlet imple-
mentations can use numerous interfaces to facilitate the development of
useful applications.

m A Java web container is a platform or engine that provides a runtime
environment for Java-based web applications. Examples of Java web con-
tainers are Apache Tomcat, BEA WebLogic, and JBoss.

Many Java web applications employ third-party and open source components
alongside custom-built code. This is an attractive option because it reduces
development effort, and Java is well suited to this modular approach. Here are
some examples of components commonly used for key application functions:

m Authentication — JAAS, ACEGI
m Presentation layer — SiteMesh, Tapestry

54

Chapter 3 = Web Application Technologies

m Database object relational mapping — Hibernate

m Logging — Log4J

If you can determine which open source packages are used in the application
you are attacking, you can download these and perform a code review or install
them to experiment on. A vulnerability in any of these may be exploitable to
compromise the wider application.

ASP.NET

ASPNET is Microsoft’s web application framework and is a direct competitor
to the Java Platform. ASP.NET is several years younger than its counterpart but
has made significant inroads into Java’s territory.

ASPNET uses Microsoft’s NET Framework, which provides a virtual machine
(the Common Language Runtime) and a set of powerful APIs. Hence, ASPNET
applications can be written in any .NET language, such as C# or VB.NET.

ASPNET lends itself to the event-driven programming paradigm that is
normally used in conventional desktop software, rather than the script-based
approach used in most earlier web application frameworks. This, together with
the powerful development tools provided with Visual Studio, makes devel-
oping a functional web application extremely easy for anyone with minimal
programming skills.

The ASPNET framework helps protect against some common web application
vulnerabilities such as cross-site scripting, without requiring any effort from
the developer. However, one practical downside of its apparent simplicity is that
many small-scale ASPNET applications are actually created by beginners who
lack any awareness of the core security problems faced by web applications.

PHP

The PHP language emerged from a hobby project (the acronym originally stood
for “personal home page”). It has since evolved almost unrecognizably into
a highly powerful and rich framework for developing web applications. It is
often used in conjunction with other free technologies in what is known as the
LAMP stack (composed of Linux as the operating system, Apache as the web
server, MySQL as the database server, and PHP as the programming language
for the web application).

Numerous open source applications and components have been developed
using PHP. Many of these provide off-the-shelf solutions for common application
functions, which are often incorporated into wider custom-built applications:

m Bulletin boards — PHPBB, PHP-Nuke
m Administrative front ends — PHPMyAdmin

Chapter 3 = Web Application Technologies

55

m Web mail — SquirrelMail, IlohaMail

m Photo galleries — Gallery

m Shopping carts — osCommerce, ECW-Shop
m Wikis — MediaWiki, WakkaWikki

Because PHP is free and easy to use, it has often been the language of choice
for many beginners writing web applications. Furthermore, the design and
default configuration of the PHP framework has historically made it easy for
programmers to unwittingly introduce security bugs into their code. These
factors have meant that applications written in PHP have suffered from a dis-
proportionate number of security vulnerabilities. In addition, several defects
have existed within the PHP platform itself that often could be exploited via
applications running on it. See Chapter 19 for details on common defects aris-
ing in PHP applications.

Ruby on Rails

Rails 1.0 was released in 2005, with strong emphasis on Model-View-Controller
architecture. A key strength of Rails is the breakneck speed with which
fully fledged data-driven applications can be created. If a developer follows the
Rails coding style and naming conventions, Rails can autogenerate a model
for database content, controller actions for modifying it, and default views for
the application user. As with any highly functional new technology, several
vulnerabilities have been found in Ruby on Rails, including the ability to bypass
a “safe mode,” analogous to that found in PHP.
More details on recent vulnerabilities can be found here:

www . ruby-lang.org/en/security/

sQL

Structured Query Language (SQL) is used to access data in relational databases,
such as Oracle, MS-SQL server and MySQL. The vast majority of today’s web
applications employ SQL-based databases as their back-end data store, and nearly
all application functions involve interaction with these data stores in some way.

Relational databases store data in tables, each of which contains a number
of rows and columns. Each column represents a data field, such as “name” or
“e-mail address,” and each row represents an item with values assigned to some
or all of these fields.

SQL uses queries to perform common tasks such as reading, adding, updat-
ing, and deleting data. For example, to retrieve a user’s e-mail address with a
specified name, an application might perform the following query:

select email from users where name = 'daf'

56

Chapter 3 = Web Application Technologies

To implement the functionality they need, web applications may incorporate
user-supplied input into SQL queries that are executed by the back-end data-
base. If this process is not carried out safely, attackers may be able to submit
malicious input to interfere with the database and potentially read and write
sensitive data. These attacks are described in Chapter 9, along with detailed
explanations of the SQL language and how it can be used.

XML

Extensible Markup Language (XML) is a specification for encoding data in a
machine-readable form. Like any markup language, the XML format sepa-
rates a document into content (which is data) and markup (which annotates
the data).

Markup is primarily represented using tags, which may be start tags, end
tags, or empty-element tags:

<tagname>
</tagname>
<tagname />

Start and end tags are paired into elements and may encapsulate document
content or child elements:

<pet>ginger</pet>
<pets><dog>spot</dog><cat>paws</cat></pets>

Tags may include attributes, which are name/value pairs:

<data version="2.l1"><pets>...</pets></data>

XML is extensible in that it allows arbitrary tag and attribute names. XML
documents often include a Document Type Definition (DTD), which defines
the tags and attributes used in the documents and the ways in which they can
be combined.

XML and technologies derived from it are used extensively in web applica-
tions, on both the server and client side, as described in later sections of this
chapter.

Web Services

Although this book covers web application hacking, many of the vulnerabilities
described are equally applicable to web services. In fact, many applications are
essentially a GUI front-end to a set of back-end web services.

Chapter 3 = Web Application Technologies

57

Web services use Simple Object Access Protocol (SOAP) to exchange data.
SOAP typically uses the HTTP protocol to transmit messages and represents
data using the XML format.

A typical SOAP request is as follows:

POST /doTransfer.asp HTTP/1.0
Host: mdsec-mgr.int.mdsec.net
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 891
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope">
<soap:Body>
<pre:Add xmlns:pre=http://target/lists soap:encodingStyle=
"http://www.w3.0rg/2001/12/soap-encoding">
<Account>
<FromAccount>18281008</FromAccount>
<Amount>1430</Amount>
<ClearedFunds>False</ClearedFunds>
<ToAccount>08447656</ToAccount>
</Account>
</pre:Add>
</soap:Body>
</soap:Envelope>

In the context of web applications accessed using a browser, you are most
likely to encounter SOAP being used by the server-side application to com-
municate with various back-end systems. If user-supplied data is incorporated
directly into back-end SOAP messages, similar vulnerabilities can arise as for
SQL. These issues are described in detail in Chapter 10.

If a web application also exposes web services directly, these are also worthy
of examination. Even if the front-end application is simply written on top of the
web service, differences may exist in input handling and in the functionality
exposed by the services themselves. The server normally publishes the available
services and parameters using the Web Services Description Language (WSDL)
format. Tools such as soapUI can be used to create sample requests based on a
published WSDL file to call the authentication web service, gain an authentica-
tion token, and make any subsequent web service requests.

Client-Side Functionality

For the server-side application to receive user input and actions and present
the results to the user, it needs to provide a client-side user interface. Because
all web applications are accessed via a web browser, these interfaces all share a

58

Chapter 3 = Web Application Technologies

common core of technologies. However, these have been built upon in various,
diverse ways, and the ways in which applications leverage client-side technol-
ogy has continued to evolve rapidly in recent years.

HTML

The core technology used to build web interfaces is hypertext markup language
(HTML). Like XML, HTML is a tag-based language that is used to describe the
structure of documents that are rendered within the browser. From its simple
beginnings as a means of providing basic formatting for text documents, HTML
has developed into a rich and powerful language that can be used to create
highly complex and functional user interfaces.

XHTML is a development of HTML that is based on XML and that has a stricter
specification than older versions of HTML. Part of the motivation for XHTML
was the need to move toward a more rigid standard for HTML markup to avoid
the various compromises and security issues that can arise when browsers are
obligated to tolerate less-strict forms of HTML.

More details about HTML and related technologies appear in the following
sections.

Hyperlinks

A large amount of communication from client to server is driven by the user’s
clicking on hyperlinks. In web applications, hyperlinks frequently contain preset
request parameters. These are items of data that the user never enters; they are
submitted because the server places them into the target URL of the hyperlink
that the user clicks. For example, a web application might present a series of
links to news stories, each having the following form:

What's happening?
When a user clicks this link, the browser makes the following request:

GET /news/8/?redir=/updates/update29.html HTTP/1.1
Host: mdsec.net

The server receives the redir parameter in the query string and uses its value
to determine what content should be presented to the user.

Forms

Although hyperlink-based navigation is responsible for a large amount of client-
to-server communications, most web applications need more flexible ways
to gather input and receive actions from users. HTML forms are the usual

Chapter 3 = Web Application Technologies

59

mechanism for allowing users to enter arbitrary input via their browser. A
typical form is as follows:

<form action="/secure/login.php?app=quotations" method="post">
username: <input type="text" name="username">

password: <input type="password" name="password">

<input type="hidden" name="redir" value="/secure/home.php">
<input type="submit" name="submit" value="log in">

</form>

When the user enters values into the form and clicks the Submit button, the
browser makes a request like the following:

POST /secure/login.php?app=quotations HTTP/1.1
Host: wahh-app.com

Content-Type: application/x-www-form-urlencoded
Content-Length: 39

Cookie: SESS=GTnrpx2ss2tSWSnhXJGyGOLJ47MXRsjcFM6BA

username=daf&password=foo&redir=/secure/home.php&submit=1log+in

In this request, several points of interest reflect how different aspects of the
request are used to control server-side processing;:

m Because the HTML form tag contains an attribute specifying the post
method, the browser uses this method to submit the form and places the
data from the form into the body of the request message.

m In addition to the two items of data that the user enters, the form contains
a hidden parameter (redir) and a submit parameter (submit). Both of
these are submitted in the request and may be used by the server-side
application to control its logic.

m The target URL for the form submission contains a preset parameter (app),
as in the hyperlink example shown previously. This parameter may be
used to control the server-side processing.

m The request contains a cookie parameter (sess), which was issued to the
browser in an earlier response from the server. This parameter may be
used to control the server-side processing.

The preceding request contains a header specifying that the type of content in
the message body is x-www-form-urlencoded. This means that parameters are
represented in the message body as name/value pairs in the same way as they
are in the URL query string. The other content type you are likely to encoun-
ter when form data is submitted is multipart/form-data. An application can
request that browsers use multipart encoding by specifying this in an enctype
attribute in the form tag. With this form of encoding, the content-Type header
in the request also specifies a random string that is used as a separator for the

60 Chapter 3 « Web Application Technologies

parameters contained in the request body. For example, if the form specified
multipart encoding, the resulting request would look like the following:

POST /secure/login.php?app=quotations HTTP/1.1

Host: wahh-app.com

Content-Type: multipart/form-data; boundary=--------—---- 7d71385d0ala
Content-Length: 369

Cookie: SESS=GTnrpx2ss2tSWSnhXJGyGOLJ47MXRsjcFM6BA

———————————— 7d71385d0ala
Content-Disposition: form-data; name="username"

———————————— 7d71385d0ala
Content-Disposition: form-data; name="password"

———————————— 7d71385d0ala
Content-Disposition: form-data; name="redir"

/secure/home.php
———————————— 7d71385d0ala
Content-Disposition: form-data; name="submit"

———————————— 7d71385d0ala--

Ccss

Cascading Style Sheets (CSS) is a language used to describe the presentation of a
document written in a markup language. Within web applications, it is used to
specify how HTML content should be rendered on-screen (and in other media,
such as the printed page).

Modern web standards aim to separate as much as possible the content of a
document from its presentation. This separation has numerous benefits, includ-
ing simpler and smaller HTML pages, easier updating of formatting across a
website, and improved accessibility.

CSS is based on formatting rules that can be defined with different levels
of specificity. Where multiple rules match an individual document element,
different attributes defined in those rules can “cascade” through these rules so
that the appropriate combination of style attributes is applied to the element.

CSS syntax uses selectors to define a class of markup elements to which
a given set of attributes should be applied. For example, the following
CSS rule defines the foreground color for headings that are marked up using
<h2> tags:

h2 { color: red; }

Chapter 3 = Web Application Technologies

61

In the earliest days of web application security, CSS was largely overlooked
and was considered to have no security implications. Today, CSS is increasingly
relevant both as a source of security vulnerabilities in its own right and as a
means of delivering effective exploits for other categories of vulnerabilities (see
Chapters 12 and 13 for more information).

JavaScript

Hyperlinks and forms can be used to create a rich user interface that can easily
gather most kinds of input that web applications require. However, most appli-
cations employ a more distributed model, in which the client side is used not
simply to submit user data and actions but also to perform actual processing
of data. This is done for two primary reasons:

m [t can improve the application’s performance, because certain tasks can
be carried out entirely on the client component, without needing to make
a round trip of request and response to the server.

m It can enhance usability, because parts of the user interface can be dynami-
cally updated in response to user actions, without needing to load an
entirely new HTML page delivered by the server.

JavaScript is a relatively simple but powerful programming language that
can be easily used to extend web interfaces in ways that are not possible using
HTML alone. It is commonly used to perform the following tasks:

m Validating user-entered data before it is submitted to the server to avoid
unnecessary requests if the data contains errors

m Dynamically modifying the user interface in response to user actions — for
example, to implement drop-down menus and other controls familiar
from non-web interfaces

m Querying and updating the document object model (DOM) within the
browser to control the browser’s behavior (the browser DOM is described
in a moment)

VBScript

VBScript is an alternative to JavaScript that is supported only in the Internet
Explorer browser. It is modeled on Visual Basic and allows interaction with
the browser DOM. But in general it is somewhat less powerful and developed
than JavaScript.

Due to its browser-specific nature, VBScript is scarcely used in today’s web
applications. Its main interest from a security perspective is as a means of
delivering exploits for vulnerabilities such as cross-site scripting in occasional
situations where an exploit using JavaScript is not feasible (see Chapter 12).

62

Chapter 3 = Web Application Technologies

Document Object Model

The Document Object Model (DOM) is an abstract representation of an HTML
document that can be queried and manipulated through its APL

The DOM allows client-side scripts to access individual HTML elements by
their id and to traverse the structure of elements programmatically. Data such
as the current URL and cookies can also be read and updated. The DOM also
includes an event model, allowing code to hook events such as form submission,
navigation via links, and keystrokes.

Manipulation of the browser DOM is a key technique used in Ajax-based
applications, as described in the following section.

Ajax

Ajax is a collection of programming techniques used on the client side to create
user interfaces that aim to mimic the smooth interaction and dynamic behavior
of traditional desktop applications.

The name originally was an acronym for “Asynchronous JavaScript and
XML,” although in today’s web Ajax requests need not be asynchronous and
need not employ XML.

The earliest web applications were based on complete pages. Each user action,
such as clicking a link or submitting a form, initiated a window-level navigation
event, causing a new page to be loaded from the server. This approach resulted
in a disjointed user experience, with noticeable delays while large responses
were received from the server and the whole page was rerendered.

With Ajax, some user actions are handled within client-side script code and
do not cause a full reload of the page. Instead, the script performs a request “in
the background” and typically receives a much smaller response that is used to
dynamically update only part of the user interface. For example, in an Ajax-based
shopping application, clicking an Add to Cart button may cause a background
request that updates the server-side record of the user’s shopping cart and a
lightweight response that updates the number of cart items showing on the
user’s screen. Virtually the entire existing page remains unmodified within the
browser, providing a much faster and more satisfying experience for the user.

The core technology used in Ajax is xMLHt tpRequest. After a certain consolida-
tion of standards, this is now a native JavaScript object that client-side scripts can
use to make “background” requests without requiring a window-level naviga-
tion event. Despite its name, XMLHt tpRequest allows arbitrary content to be sent
in requests and received in responses. Although many Ajax applications do use
XML to format message data, an increasing number have opted to exchange data
using other methods of representation. (See the next section for one example.)

Note that although most Ajax applications do use asynchronous communica-
tions with the server, this is not essential. In some situations, it may actually make

Chapter 3 = Web Application Technologies

63

more sense to prevent user interaction with the application while a particular
action is carried out. In these situations, Ajax is still beneficial in providing a
more seamless experience by avoiding the need to reload an entire page.

Historically, the use of Ajax has introduced some new types of vulnerabili-
ties into web applications. More broadly, it also increases the attack surface of
a typical application by introducing more potential targets for attack on both
the server and client side. Ajax techniques are also available for use by attack-
ers when they are devising more effective exploits for other vulnerabilities. See
Chapters 12 and 13 for more details.

JSON

JavaScript Object Notation (JSON) is a simple data transfer format that can
be used to serialize arbitrary data. It can be processed directly by JavaScript
interpreters. It is commonly employed in Ajax applications as an alternative to
the XML format originally used for data transmission. In a typical situation,
when a user performs an action, client-side JavaScript uses XMLHt tpRequest to
communicate the action to the server. The server returns a lightweight response
containing data in JSON format. The client-side script then processes this data
and updates the user interface accordingly.

For example, an Ajax-based web mail application may contain a feature to
show the details of a selected contact. When a user clicks a contact, the browser
uses xXMLHttpRequest to retrieve the details of the selected contact, which are
returned using JSON:

{

"name": "Mike Kemp",
"id": "8041148671",
"email": "fkwitt@layerone.com"

The client-side script uses the JavaScript interpreter to consume the JSON
response and updates the relevant part of the user interface based on its contents.

A further location where you may encounter JSON data in today’s applications
is as a means of encapsulating data within conventional request parameters. For
example, when the user updates the details of a contact, the new information
might be communicated to the server using the following request:

POST /contacts HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 89

Contact={"name":"Mike Kemp", "id":"8041148671","email": "pikey@
clappymonkey.com" }
&submit=update

Chapter 3 = Web Application Technologies

Same-Origin Policy

The same-origin policy is a key mechanism implemented within browsers that
is designed to keep content that came from different origins from interfering
with each other. Basically, content received from one website is allowed to read
and modify other content received from the same site but is not allowed to
access content received from other sites.

If the same-origin policy did not exist, and an unwitting user browsed to a
malicious website, script code running on that site could access the data and
functionality of any other website also visited by the user. This may enable the
malicious site to perform funds transfers from the user’s online bank, read his
or her web mail, or capture credit card details when the user shops online. For
this reason, browsers implement restrictions to allow this type of interaction
only with content that has been received from the same origin.

In practice, applying this concept to the details of different web features and
technologies leads to various complications and compromises. Here are some
key features of the same-origin policy that you need to be aware of:

m A page residing on one domain can cause an arbitrary request to be made
to another domain (for example, by submitting a form or loading an
image). But it cannot itself process the data returned from that request.

m A page residing on one domain can load a script from another domain and
execute this within its own context. This is because scripts are assumed
to contain code, rather than data, so cross-domain access should not lead
to disclosure of any sensitive information.

m A page residing on one domain cannot read or modify the cookies or
other DOM data belonging to another domain.

These features can lead to various cross-domain attacks, such as inducing
user actions and capturing data. Further complications arise with browser
extension technologies, which implement same-origin restrictions in different
ways. These issues are discussed in detail in Chapter 13.

HTML5

HTMLS is a major update to the HTML standard. HTML5 currently is still under
development and is only partially implemented within browsers.

From a security perspective, HTMLS5 is primarily of interest for the follow-
ing reasons:

m It introduces various new tags, attributes, and APIs that can be lever-
aged to deliver cross-site scripting and other attacks, as described in
Chapter 12.

Chapter 3 = Web Application Technologies

65

m [t modifies the core Ajax technology, XMLHt tpRequest, to enable two-way
cross-domain interaction in certain situations. This can lead to new cross-
domain attacks, as described in Chapter 13.

m [t introduces new mechanisms for client-side data storage, which can lead
to user privacy issues, and new categories of attack such as client-side SQL
injection, as described in Chapter 13.

“Web 2.0”

This buzzword has become fashionable in recent years as a rather loose and
nebulous name for a range of related trends in web applications, including the
following;:

m Heavy use of Ajax for performing asynchronous, behind-the-scenes requests
m Increased cross-domain integration using various techniques

m Use of new technologies on the client side, including XML, JSON, and Flex
m More prominent functionality supporting user-generated content, infor-

mation sharing, and interaction

As with all changes in technology, these trends present new opportunities
for security vulnerabilities to arise. However, they do not define a clear subset
of web application security issues in general. The vulnerabilities that occur in
these contexts are largely the same as, or closely derived from, types of vulner-
abilities that preceded these trends. In general, talking about “Web 2.0 Security”
usually represents a category mistake that does not facilitate clear thinking
about the issues that matter.

Browser Extension Technologies

Going beyond the capabilities of JavaScript, some web applications employ
browser extension technologies that use custom code to extend the browser’s
built-in capabilities in arbitrary ways. These components may be deployed as
bytecode that is executed by a suitable browser plug-in or may involve installing
native executables onto the client computer itself. The thick-client technologies
you are likely to encounter when attacking web applications are

m Java applets

m ActiveX controls
m Flash objects

m Silverlight objects

These technologies are described in detail in Chapter 5.

66

Chapter 3 = Web Application Technologies

State and Sessions

The technologies described so far enable the server and client components of
a web application to exchange and process data in numerous ways. To imple-
ment most kinds of useful functionality, however, applications need to track the
state of each user’s interaction with the application across multiple requests. For
example, a shopping application may allow users to browse a product catalog,
add items to a cart, view and update the cart contents, proceed to checkout, and
provide personal and payment details.

To make this kind of functionality possible, the application must maintain a
set of stateful data generated by the user’s actions across several requests. This
data normally is held within a server-side structure called a session. When a
user performs an action, such as adding an item to her shopping cart, the server-
side application updates the relevant details within the user’s session. When the
user later views the contents of her cart, data from the session is used to return
the correct information to the user.

In some applications, state information is stored on the client component
rather than the server. The current set of data is passed to the client in each
server response and is sent back to the server in each client request. Of course,
because the user may modify any data transmitted via the client component,
applications need to protect themselves from attackers who may change this
state information in an attempt to interfere with the application’s logic. The
ASPNET platform makes use of a hidden form field called viewstate to store
state information about the user’s web interface and thereby reduce overhead
on the server. By default, the contents of the viewstate include a keyed hash
to prevent tampering.

Because the HTTP protocol is itself stateless, most applications need a way to
reidentify individual users across multiple requests for the correct set of state
data to be used to process each request. Normally this is achieved by issuing
each user a token that uniquely identifies that user’s session. These tokens may
be transmitted using any type of request parameter, but most applications use
HTTP cookies. Several kinds of vulnerabilities arise in relation to session han-
dling, as described in detail in Chapter 7.

Encoding Schemes

Web applications employ several different encoding schemes for their data. Both
the HTTP protocol and the HTML language are historically text-based, and dif-
ferent encoding schemes have been devised to ensure that these mechanisms
can safely handle unusual characters and binary data. When you are attacking
a web application, you will frequently need to encode data using a relevant

Chapter 3 = Web Application Technologies

67

scheme to ensure that it is handled in the way you intend. Furthermore, in many
cases you may be able to manipulate the encoding schemes an application uses
to cause behavior that its designers did not intend.

URL Encoding

URLs are permitted to contain only the printable characters in the US-ASCII
character set — that is, those whose ASCII code is in the range 0x20 to 0x7e,
inclusive. Furthermore, several characters within this range are restricted because
they have special meaning within the URL scheme itself or within the HTTP
protocol.

The URL-encoding scheme is used to encode any problematic characters
within the extended ASCII character set so that they can be safely transported
over HTTP. The URL-encoded form of any character is the % prefix followed by
the character’s two-digit ASCII code expressed in hexadecimal. Here are some
characters that are commonly URL-encoded:

$3d — =
%25 — %

%20 — Space

%$0a — New line

m 300 — Null byte

A further encoding to be aware of is the + character, which represents a
URL-encoded space (in addition to the $20 representation of a space).

.m For the purpose of attacking web applications, you should URL-
encode any of the following characters when you insert them as data into an
HTTP request:

space % ? & = ; + #

(Of course, you will often need to use these characters with their special
meaning when modifying a request — for example, to add a request parameter
to the query string. In this case, they should be used in their literal form.)

Unicode Encoding

Unicode is a character encoding standard that is designed to support all of the
world’s writing systems. It employs various encoding schemes, some of which
can be used to represent unusual characters in web applications.

16-bit Unicode encoding works in a similar way to URL encoding. For
transmission over HTTP, the 16-bit Unicode-encoded form of a character is

Chapter 3 = Web Application Technologies

the %u prefix followed by the character’s Unicode code point expressed in
hexadecimal:

m 2u2215 —/
m 2u00e9 — &

UTEF-8 is a variable-length encoding standard that employs one or more bytes
to express each character. For transmission over HTTP, the UTF-8-encoded form
of a multibyte character simply uses each byte expressed in hexadecimal and
preceded by the % prefix:

m $c2%a9 —©
m %22%89%a0 — #

For the purpose of attacking web applications, Unicode encoding is primarily
of interest because it can sometimes be used to defeat input validation mecha-
nisms. If an input filter blocks certain malicious expressions, but the component
that subsequently processes the input understands Unicode encoding, it may
be possible to bypass the filter using various standard and malformed Unicode
encodings.

HTML Encoding

HTML encoding is used to represent problematic characters so that they can be
safely incorporated into an HTML document. Various characters have special
meaning as metacharacters within HTML and are used to define a document’s
structure rather than its content. To use these characters safely as part of the
document’s content, it is necessary to HTML-encode them.

HTML encoding defines numerous HTML entities to represent specific literal
characters:

"

m " —
W ' —
m samp; — &
m &l —<
m > — >

In addition, any character can be HTML-encoded using its ASCII code in deci-
mal form:

m " —"

m s#39; —'

or by using its ASCII code in hexadecimal form (prefixed by an x):

Chapter 3 = Web Application Technologies

69

m " — "

m s&Hx27; —

When you are attacking a web application, your main interest in HTML
encoding is likely to be when probing for cross-site scripting vulnerabilities. If
an application returns user input unmodified within its responses, it is prob-
ably vulnerable, whereas if dangerous characters are HTML-encoded, it may
be safe. See Chapter 12 for more details on these vulnerabilities.

Base64 Encoding

Base64 encoding allows any binary data to be safely represented using only
printable ASCII characters. It is commonly used to encode e-mail attachments
for safe transmission over SMTP. It is also used to encode user credentials in
basic HTTP authentication.

Base64 encoding processes input data in blocks of three bytes. Each of these
blocks is divided into four chunks of six bits each. Six bits of data allows for 64
different possible permutations, so each chunk can be represented using a set
of 64 characters. Base64 encoding employs the following character set, which
contains only printable ASCII characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/

If the final block of input data results in fewer than three chunks of output
data, the output is padded with one or two = characters.

For example, here is the Base64-encoded form of The Web Application Hacker’s
Handbook:

VGh1lIFdlYiBBcHBsaWNhdGlvbiBIYWNrZXIncyBIYWS5kYmOvaw==

Many web applications use Base64 encoding to transmit binary data within
cookies and other parameters, and even to obfuscate (that is, to hide) sensitive
data to prevent trivial modification. You should always look out for, and decode,
any Base64 data that is issued to the client. Base64-encoded strings can often
be easily recognized by their specific character set and the presence of padding
characters at the end of the string,.

Hex Encoding

Many applications use straightforward hexadecimal encoding when transmit-
ting binary data, using ASCII characters to represent the hexadecimal block.
For example, hex-encoding the username “daf” within a cookie would result
in this:

646166

70

Chapter 3 = Web Application Technologies

As with Base64, hex-encoded data is usually easy to spot. You should always
attempt to decode any such data that the server sends to the client to understand
its function.

Remoting and Serialization Frameworks

In recent years, various frameworks have evolved for creating user interfaces in
which client-side code can remotely access various programmatic APIs imple-
mented on the server side. This allows developers to partly abstract away from
the distributed nature of web applications and write code in a manner that is
closer to the paradigm of a conventional desktop application. These frameworks
typically provide stub APIs for use on the client side. They also automatically
handle both the remoting of these API calls to the relevant server-side functions
and the serialization of any data that is passed to those functions.

Examples of these kinds of remoting and serialization frameworks include
the following;:

m Flex and AMF
m Silverlight and WCF

m Java serialized objects

We will discuss techniques for working with these frameworks, and the kinds
of security issues that can arise, in Chapters 4 and 5.

Next Steps

So far, we have described the current state of web application (in)security, exam-
ined the core mechanisms by which web applications can defend themselves,
and taken a brief look at the key technologies employed in today’s applications.
With this groundwork in place, we are now in a position to start looking at the
actual practicalities of attacking web applications.

In any attack, your first task is to map the target application’s content and
functionality to establish how it functions, how it attempts to defend itself, and
what technologies it uses. The next chapter examines this mapping process
in detail and shows how you can use it to obtain a deep understanding of an
application’s attack surface. This knowledge will prove vital when it comes to
finding and exploiting security flaws within your target.

Chapter 3 = Web Application Technologies

71

Questions

Answers can be found at http: //mdsec.net/wahh.

1.
2.

What is the oprroNs method used for?

What are the 1f-Modified-Since and If-None-Match headers used for?
Why might you be interested in these when attacking an application?

3. What is the significance of the secure flag when a server sets a cookie?

4. What is the difference between the common status codes 301 and 302?

5. How does a browser interoperate with a web proxy when SSL is being

used?

Mapping the Application

The first step in the process of attacking an application is gathering and examin-
ing some key information about it to gain a better understanding of what you
are up against.

The mapping exercise begins by enumerating the application’s content and
functionality in order to understand what the application does and how it
behaves. Much of this functionality is easy to identify, but some of it may be
hidden, requiring a degree of guesswork and luck to discover.

After a catalog of the application’s functionality has been assembled, the
principal task is to closely examine every aspect of its behavior, its core secu-
rity mechanisms, and the technologies being employed (on both the client and
server). This will enable you to identify the key attack surface that the application
exposes and hence the most interesting areas where you should target subse-
quent probing to find exploitable vulnerabilities. Often the analysis exercise can
uncover vulnerabilities by itself, as discussed later in the chapter.

As applications get ever larger and more functional, effective mapping is a
valuable skill. A seasoned expert can quickly triage whole areas of functionality,
looking for classes of vulnerabilities as opposed to instances, while investing
significant time in testing other specific areas, aiming to uncover a high-risk issue.

This chapter describes the practical steps you need to follow during application
mapping, various techniques and tricks you can use to maximize its effective-
ness, and some tools that can assist you in the process.

73

74

Chapter 4 = Mapping the Application

Enumerating Content and Functionality

In a typical application, the majority of the content and functionality can be
identified via manual browsing. The basic approach is to walk through the
application starting from the main initial page, following every link, and navi-
gating through all multistage functions (such as user registration or password
resetting). If the application contains a “site map,” this can provide a useful
starting point for enumerating content.

However, to perform a rigorous inspection of the enumerated content, and
to obtain a comprehensive record of everything identified, you must employ
more advanced techniques than simple browsing.

Web Spidering

Various tools can perform automated spidering of websites. These tools work
by requesting a web page, parsing it for links to other content, requesting these
links, and continuing recursively until no new content is discovered.

Building on this basic function, web application spiders attempt to achieve
a higher level of coverage by also parsing HTML forms and submitting these
back to the application using various preset or random values. This can enable
them to walk through multistage functionality and to follow forms-based navi-
gation (such as where drop-down lists are used as content menus). Some tools
also parse client-side JavaScript to extract URLs pointing to further content.
Numerous free tools are available that do a decent job of enumerating applica-
tion content and functionality, including Burp Suite, WebScarab, Zed Attack
Proxy, and CAT (see Chapter 20 for more details).

m Many web servers contain a file named robots. txt in the web root that
contains a list of URLs that the site does not want web spiders to visit or search
engines to index. Sometimes, this file contains references to sensitive func-
tionality, which you are certainly interested in spidering. Some spidering tools
designed for attacking web applications check for the robots. txt file and use
all URLs within it as seeds in the spidering process. In this case, the robots. txt
file may be counterproductive to the security of the web application.

This chapter uses a fictional application, Extreme Internet Shopping (EIS), to
provide examples of common application mapping actions. Figure 4-1 shows
Burp Spider running against EIS. Without logging on, it is possible to map out the
/shop directory and two news articles in the /media directory. Also note that
the robots. txt file shown in the figure references the directories /mdsecportal
and /site-old. These are not linked from anywhere in the application and would
not be indexed by a web spider that only followed links from published content.

m Applications that employ REST-style URLs use portions of the URL file
path to uniquely identify data and other resources used within the application

Chapter 4 = Mapping the Application

75

(see Chapter 3 for more details). The traditional web spider’s URL-based view
of the application is useful in these situations. In the EIS application, the
/shop and /pub paths employ REST-style URLs, and spidering these areas eas-
ily provides unique links to the items available within these paths.

burp suite professional = | 1. | S

burp intruder repeater window help

target | prowy | spider | scanner [intruder | repeater | sequencer | decoder | comparer | options | alers |

site map | scope |

| Filter: hiding CSS, image and general binary content; hiding 4xx responses

o hitp:feis == host | method | URL | params| status | |
! hitp:/ieis |GET |irobots.bd |] J200 ag
9 3 auth
[FergotPassword
o= % Login
o [Egb
¢ ‘23 home
I
= (] Ii [
o= 1 icons
o (23 images response rrequest |
';‘ raw | headers | hex
I
‘:] HTTP/1.1 200 OK =
¥ i pub Date: Mon, 24 dan 2011 16:24:29 GHT
! i Server: Apache
7 123 media = ||Last-Modified: Mon, 24 Jan 2011 16:24:11 GMT
o I:]‘IEI[] ETag: "Z66cZ-de-49a%a07a900cO"
- @17 Lotiee ne
robots. it Vary: Accept-Encoding
{3 shop Connesction: close
o-@r Content-Types: text/plain
¢ {3 browse ies
& [books # robots.txt for htop://feis
*gclmmng User-agent: *
@] electronics Disallow: /mdsecportal/ # Admin Portal Site.
o= 1 home Dizallow: /=ite-old/ # these will soon disappear
@Domce but needed for partner companies
o-f'_“jsoﬂware Disallow: /shop # Mo old pricing should be indexed
o (73 tools B
D browse
o % search |
o (3 static =
] el |1 I | 0matches

L

Figure 4-1: Mapping part of an application using Burp Spider

Although it can often be effective, this kind of fully automated approach to
content enumeration has some significant limitations:

m Unusual navigation mechanisms (such as menus dynamically created
and handled using complicated JavaScript code) often are not handled
properly by these tools, so they may miss whole areas of an application.

m Links buried within compiled client-side objects such as Flash or Java
applets may not be picked up by a spider.

m Multistage functionality often implements fine-grained input validation
checks, which do not accept the values that may be submitted by an auto-
mated tool. For example, a user registration form may contain fields for
name, e-mail address, telephone number, and zip code. An automated

76

Chapter 4 = Mapping the Application

application spider typically submits a single test string in each editable
form field, and the application returns an error message saying that one
or more of the items submitted were invalid. Because the spider is not
intelligent enough to understand and act on this message, it does not
proceed past the registration form and therefore does not discover any
more content or functions accessible beyond it.

Automated spiders typically use URLs as identifiers of unique content.
To avoid continuing spidering indefinitely, they recognize when linked
content has already been requested and do not request it again. However,
many applications use forms-based navigation in which the same URL
may return very different content and functions. For example, a bank-
ing application may implement every user action via a POST request to
/account . jsp and use parameters to communicate the action being per-
formed. If a spider refuses to make multiple requests to this URL, it will
miss most of the application’s content. Some application spiders attempt
to handle this situation. For example, Burp Spider can be configured to
individuate form submissions based on parameter names and values.
However, there may still be situations where a fully automated approach
is not completely effective. We discuss approaches to mapping this kind
of functionality later in this chapter.

Conversely to the previous point, some applications place volatile data
within URLs that is not actually used to identify resources or functions (for
example, parameters containing timers or random number seeds). Each
page of the application may contain what appears to be a new set of URLs
that the spider must request, causing it to continue running indefinitely.

Where an application uses authentication, an effective application spider
must be able to handle this to access the functionality that the authen-
tication protects. The spiders mentioned previously can achieve this by
manually configuring the spider either with a token for an authenticated
session or with credentials to submit to the login function. However, even
when this is done, it is common to find that the spider’s operation breaks
the authenticated session for various reasons:

m By following all URLs, at some point the spider will request the logout
function, causing its session to break.

m If the spider submits invalid input to a sensitive function, the applica-
tion may defensively terminate the session.
m If the application uses per-page tokens, the spider almost certainly will

fail to handle these properly by requesting pages out of their expected
sequence, probably causing the entire session to be terminated.

Chapter 4 = Mapping the Application

77

m In some applications, running even a simple web spider that
parses and requests links can be extremely dangerous. For example, an applica-

tion may contain administrative functionality that deletes users, shuts down a
database, restarts the server, and the like. If an application-aware spider is used,
great damage can be done if the spider discovers and uses sensitive functional-
ity. The authors have encountered an application that included some Content
Management System (CMS) functionality for editing the content of the main
application. This functionality could be discovered via the site map and was not
protected by any access control. If an automated spider were run against this
site, it would find the edit function and begin sending arbitrary data, resulting in
the main website’s being defaced in real time while the spider was running.

User-Directed Spidering

This is a more sophisticated and controlled technique that is usually prefer-
able to automated spidering. Here, the user walks through the application in
the normal way using a standard browser, attempting to navigate through all
the application’s functionality. As he does so, the resulting traffic is passed
through a tool combining an intercepting proxy and spider, which monitors
all requests and responses. The tool builds a map of the application, incorpo-
rating all the URLs visited by the browser. It also parses all the application’s
responses in the same way as a normal application-aware spider and updates
the site map with the content and functionality it discovers. The spiders
within Burp Suite and WebScarab can be used in this way (see Chapter 20
for more information).

Compared with the basic spidering approach, this technique offers numer-
ous benefits:

m Where the application uses unusual or complex mechanisms for navigation,
the user can follow these using a browser in the normal way. Any functions
and content accessed by the user are processed by the proxy/spider tool.

m The user controls all data submitted to the application and can ensure
that data validation requirements are met.

m The user can log in to the application in the usual way and ensure that the
authenticated session remains active throughout the mapping process. If
any action performed results in session termination, the user can log in
again and continue browsing.

m Any dangerous functionality, such as deleteUser. jsp, is fully enumer-
ated and incorporated into the proxy’s site map, because links to it will be
parsed out of the application’s responses. But the user can use discretion
in deciding which functions to actually request or carry out.

Chapter 4 = Mapping the Application

In the Extreme Internet Shopping site, previously it was impossible for the
spider to index any content within /home, because this content is authenticated.
Requests to /home result in this response:

HTTP/1.1 302 Moved Temporarily

Date: 24 Jan 2011 16:13:12 GMT
Server: Apache
/auth/Login?ReturnURL=/home/

Mon,

Location:

With user-directed spidering, the user can simply log in to the application
using her browser, and the proxy/spider tool picks up the resulting session and
identifies all the additional content now available to the user. Figure 4-2 shows
the EIS site map when the user has successfully authenticated to the protected

areas of the application.

.

\+ burp suite professional =
burp intruder repeater window help
l’larget rpmxy r’ spider r scanner rlmruder rrepeater r sequencer r decoder r comparer r options r alerts |
site map scope
| Filter: hiding C5S, image and general binary content, hiding 4xx responses]
¢ hitp:/leis = host | method| URL | params | status | |
[l hitp:iieis GET |home/] oo |oF
¢ 23 auth
[ForgotPassword
o= % Login
¢- 53 core
¢ B3 sitestats
[2] pagelD=mome&display=rank]hitg
] Il [[»
o= [] games
o [E3 gb response |/ request ‘
¢ 4 home =||[raw | headers | hex [himl | render
Dﬂ
 -
) myaccount —
[partner

D register private
o search profile</as<hr /=
o {2 icons public profile

. account
o (3 images information</as

@ register a card with
[index EIS</a»

] |l <2 href="/home/search">search the store

o 53 pub partners

D J leave feedbacks

9 24 media s
o 3100 SiteSpeed 2.0 Statout
o 117 fie ; ; 3
¢ &3 user href=" :ffeis/core/sitestate ?pageID=/homesdisplay |
=rank| time">stats
[i L
robots
¢ 3 shop </div> —
- I . fl</html> -
= o | [N | 0matches
4] Il [Dl
&

Figure 4-2: Burp's site map after user-guided spidering has been performed

This reveals some additional resources within the home menu system. The
figure shows a reference to a private profile that is accessed through a JavaScript
function launched with the onClick event handler:

private profile

Chapter 4 = Mapping the Application

A conventional web spider that simply follows links within HTML is likely to
miss this type of link. Even the most advanced automated application crawlers
lag way behind the numerous navigational mechanisms employed by today’s
applications and browser extensions. With user-directed spidering, however,
the user simply needs to follow the visible on-screen link using her browser,
and the proxy/spider tool adds the resulting content to the site map.

Conversely, note that the spider has successfully identified the link to /core/
sitestats contained in an HTML comment, even though this link is not shown
on-screen to the user.

m In addition to the proxy/spider tools just described, another range
of tools that are often useful during application mapping are the various
browser extensions that can perform HTTP and HTML analysis from within the
browser interface. For example, the IEWatch tool shown in Figure 4-3, which
runs within Microsoft Internet Explorer, monitors all details of requests and
responses, including headers, request parameters, and cookies. It analyzes
every application page to display links, scripts, forms, and thick-client compo-
nents. Of course, all this information can be viewed in your intercepting proxy,
but having a second record of useful mapping data can only help you better
understand the application and enumerate all its functionality. See Chapter 20
for more information about tools of this kind.

- =8 e |
g‘ 1|2 nttpsy/jmdsecnet/auth/4/Default.ashx D~ Ceificateeror B X | {1 77 0%
| & Login ‘ |

Username:

Password: [Login |

Register ”
*lew x| ¢aB-2 | 17|B| @& a
Time Duration Size Method IP Address Status Content Type URL Note (f *
1251:23729 0156s 1189 GET 200 text/html; c.. https//mdsecnet/auth/4/Default.ashx Login
12:51:38.041 0000s 7571 GET (Cac.. image/png https//mdsec.net/wahh.png Login |=
12:51:38.057 1157s 1635 GET 404 tet/html https://mdsec.net/favicon.ico Login
12:51:42885 0688s 140 PpOST 302 text/html; c.. hitps//mdsec.net/auth/4/Default.ashx Login
12:51:48.307 0125s 1009 GET 200 text/html; c... https://mdsec.net/auth/4/Home.ashx Legin ~
4 i 3
% | Request Header Name Request Header Valus #||X| Response Header Name Response Headsr Valus -
f._, [Method-Line] POST fauth/4/Detault ashe HTTR/1.1 ; [Status-Ling] HTTP/1.1 302 Found
5:‘7 Accept texthtml, applicationshiml+=ml, = _g Date Mon. 13 Jun 2011 11:51:48 GMT
& | Referer https:¢/mdsec.net/auth’4/Default ashy 5 | server Wicrosoft15/6.0
_n; Accept-Language enGB L “% MicrozaftOfficeWebServer 5.0_Pub £
2 | Userdgent Mozilla/5 0 [compatible; MSIE 9.0: Wi " 7| %PoweredBy ASPNET
@

i ||# || Content-Type application/s-ww-formeurlencoded 5| RebspNetWersion 2080727

2 AcceptEncoding gzip, deflate Location fauth/4/Home ashe

75 Huast mdsec.net Set-Cookie Sessiond_test login_4=E16CCF7414. .

E Content-Length 27 Cache-Contral no-cache

“é Connection Kespdlive o Pragma no-cache =

o o =

i E Request Headers J‘g Request Co... _:,_, Post... | QuerySt.. 3 Response Headers | 4# Response Cookies | @ Content

=

E @ HTTP Analysis |F8] HTML Analysis

Figure 4-3: IEWatch performing HTTP and HTML analysis from within the browser

Chapter 4 = Mapping the Application

1. Configure your browser to use either Burp or WebScarab as a local proxy
(see Chapter 20 for specific details about how to do this if you're unsure).

2. Browse the entire application normally, attempting to visit every link/URL
you discover, submitting every form, and proceeding through all multi-
step functions to completion. Try browsing with JavaScript enabled and
disabled, and with cookies enabled and disabled. Many applications can
handle various browser configurations, and you may reach different con-
tent and code paths within the application.

3. Review the site map generated by the proxy/spider tool, and identify
any application content or functions that you did not browse manually.
Establish how the spider enumerated each item. For example, in Burp
Spider, check the Linked From details. Using your browser, access the item
manually so that the response from the server is parsed by the proxy/spi-
der tool to identify any further content. Continue this step recursively until
no further content or functionality is identified.

4. Optionally, tell the tool to actively spider the site using all of the already
enumerated content as a starting point. To do this, first identify any URLs
that are dangerous or likely to break the application session, and config-
ure the spider to exclude these from its scope. Run the spider and review
the results for any additional content it discovers.

The site map generated by the proxy/spider tool contains a wealth of infor-
mation about the target application, which will be useful later in identifying
the various attack surfaces exposed by the application.

Discovering Hidden Content

It is common for applications to contain content and functionality that is not
directly linked to or reachable from the main visible content. A common example
is functionality that has been implemented for testing or debugging purposes
and has never been removed.

Another example arises when the application presents different functionality
to different categories of users (for example, anonymous users, authenticated
regular users, and administrators). Users at one privilege level who perform
exhaustive spidering of the application may miss functionality that is visible to
users at other levels. An attacker who discovers the functionality may be able
to exploit it to elevate her privileges within the application.

There are countless other cases in which interesting content and functionality
may exist that the mapping techniques previously described would not identify:

m Backup copies of live files. In the case of dynamic pages, their file extension
may have changed to one that is not mapped as executable, enabling you

Chapter 4 = Mapping the Application

to review the page source for vulnerabilities that can then be exploited
on the live page.

Backup archives that contain a full snapshot of files within (or indeed
outside) the web root, possibly enabling you to easily identify all content
and functionality within the application.

New functionality that has been deployed to the server for testing but not
yet linked from the main application.

Default application functionality in an off-the-shelf application that has
been superficially hidden from the user but is still present on the server.

Old versions of files that have not been removed from the server. In the
case of dynamic pages, these may contain vulnerabilities that have been
fixed in the current version but that can still be exploited in the old version.

Configuration and include files containing sensitive data such as database
credentials.

Source files from which the live application’s functionality has been
compiled.

Comments in source code that in extreme cases may contain information
such as usernames and passwords but that more likely provide information
about the state of the application. Key phrases such as “test this function”
or something similar are strong indicators of where to start hunting for
vulnerabilities.

Log files that may contain sensitive information such as valid usernames,
session tokens, URLs visited, and actions performed.

Effective discovery of hidden content requires a combination of automated and
manual techniques and often relies on a degree of luck.

Brute-Force Techniques

Chapter 14 describes how automated techniques can be leveraged to speed up
just about any attack against an application. In the present context of informa-
tion gathering, automation can be used to make huge numbers of requests to the
web server, attempting to guess the names or identifiers of hidden functionality.

For example, suppose that your user-directed spidering has identified the
following application content:

http

http:
http:
http:
http:
http:

://eis/auth/Login
//eis/auth/ForgotPassword
//eis/home/
//eis/pub/media/100/view
//eis/images/eis.gif
//eis/include/eis.css

82 Chapter 4 - Mapping the Application

The first step in an automated effort to identify hidden content might involve
the following requests, to locate additional directories:

http://eis/About/
http://eis/abstract/
http://eis/academics/
http://eis/accessibility/
http://eis/accounts/
http://eis/action/

Burp Intruder can be used to iterate through a list of common directory
names and capture details of the server’s responses, which can be reviewed to
identify valid directories. Figure 4-4 shows Burp Intruder being configured to
probe for common directories residing at the web root.

" burp suite professional = o =52 .

burp intruder repeater window help

[target | prowy | spider | scanner | intruder | repeater | sequencer | decoder | comparer | options | alerts |

(1 [z
|' target | positions rpay\oads romions ‘

attack type |sniper |~

1 payload position length: 321
GET /88/ HTTP/L.1 Kol add §
Host: eis

User—Agent: Mozilla/5.0 (Windows: U; Windows NT E.l; =n-GB:; rv:l.9.2.13)
Gecko/20101203 Firefox/3.8.13 clear §
hoeepr: text/html,application/zhtml+4xml, applicacion/xml;q=0.9, ¥/ *;q=0.8
Accept-lLanguage: en-gh,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-B;qg=0.7,%*;q=0.7

auto §

refresh

11

=] clear

Lellsliz]l | 0matches

]

Figure 4-4: Burp Intruder being configured to probe for common directories

When the attack has been executed, clicking column headers such as “status”
and “length” sorts the results accordingly, enabling you to quickly identify a
list of potential further resources, as shown in Figure 4-5.

Having brute-forced for directories and subdirectories, you may then want
to find additional pages in the application. Of particular interest is the /auth
directory containing the Login resource identified during the spidering pro-
cess, which is likely to be a good starting point for an unauthenticated attacker.
Again, you can request a series of files within this directory:

Chapter 4 = Mapping the Application

83

http://eis/auth/About/
http://eis/auth/Aboutus/
http://eis/auth/AddUser/
http://eis/auth/Admin/
http://eis/auth/Administration/
http://eis/auth/Admins/

r B
. intruder attack 9 l‘:‘ = ﬂ
aftack save columns
| Filter: showing all items I

results | target r positions rpa}f\uads r oplions ‘

request payload status | error [imeo..| length comment

0 ™| L] |2096 baseline request =

479 games 1200]] [1938 =
2265 shop ™ [{3508
2708 images 1200 ™ [l [1728
482 gb 301 ™ L] [228
2716 home 302 O | O [399
996 server-status 403 ™] [403
1500 auth 403 ™| L] [394
1539 core 1403 ™ [l [394
1881 include 403 ™ el [397
2683 auth 403 O [OO 394
1 About 404 ™ O [391
2 about-us 404 = [[394
3 about_us 404 ™ L] [394 =

headers

params

GET /shop/ HTTP/1.1
Host: eis

rv:l.9.2.13) Gecko/2Z0lD1203 Firefox/3.6.13
Accept:

.B
Accept-Language: en-gb,en;gq=0.5

User-Agent: Mozilla/5.0 (Windows: U; Windows NT £.1: en-GE: =

text/html, application/xheml+uml, application/xml; g=0.9, %/ *; q=0

sl sl ea] |

| 0matches

finished |

Figure 4-5: Burp Intruder showing the results of a directory brute-force attack

Figure 4-6 shows the results of this attack, which has identified several resources

within the /auth directory:

Login
Logout
Register
Profile

Note that the request for profile returns the HTTP status code 302. This
indicates that accessing this link without authentication redirects the user to
the login page. Of further interest is that although the Login page was discov-
ered during spidering, the Register page was not. It could be that this extra
functionality is operational, and an attacker could register a user account on

the site.

84 Chapter 4 » Mapping the Application

intruder attack 7

= [B] |

attack save columns

Filter: showing all items

l’resu\ts "target r positions rpayloacfs rophons

status comment

00
200
200
302
403
404
404
404
404
404
404
404

reqguest
158
241
242
222

payload
Register
Login
Logout
Profile

error _limeo.

baseline request

About
Aboutus
Adduser
Admin
Administration
Admins

Ads

Advertise

0 App

@[~ & w Mo

[»

request |’response |

params | headers | hex |

raw

GET /auth/Register HTTF/L.1
Host:
Accept:
Accept-Language: en

User—-Agent: Mozilla/4.0 (compatible;
Connection: close

Content-Length: £

eis
niw

MSIE 7.0; Windows NT £.0)

-

L lC=0=l

| 0 maiches

finished |

b

Figure 4-6: Burp Intruder showing the results of a file brute-force attack

m Do not assume that the application will respond with 200 oxif a
requested resource exists and 404 Not Found if it does not. Many applica-
tions handle requests for nonexistent resources in a customized way, often
returning a bespoke error message and a 200 response code. Furthermore,
some requests for existent resources may receive a non-200 response. The fol-
lowing is a rough guide to the likely meaning of the response codes that you
may encounter during a brute-force exercise looking for hidden content:

B 302 Found — If the redirect is to a login page, the resource may be
accessible only by authenticated users. If the redirect is to an error mes-
sage, this may indicate a different reason. If it is to another location, the
redirect may be part of the application’s intended logic, and this should

be investigated further.

400 Bad Request — The application may use a custom naming scheme

for directories and files within URLs, which a particular request has not
complied with. More likely, however, is that the wordlist you are using
contains some whitespace characters or other invalid syntax.

401 Unauthorized or 403 Forbidden — This usually indicates that

the requested resource exists but may not be accessed by any user,

Chapter 4 = Mapping the Application

85

regardless of authentication status or privilege level. It often occurs when
directories are requested, and you may infer that the directory exists.

B 500 Internal Server Error — During content discovery, this usually
indicates that the application expects certain parameters to be submitted
when requesting the resource.

The various possible responses that may indicate the presence of interesting
content mean that is difficult to write a fully automated script to output a list-
ing of valid resources. The best approach is to capture as much information as
possible about the application’s responses during the brute-force exercise and
manually review it.

1. Make some manual requests for known valid and invalid resources, and
identify how the server handles the latter.

2. Use the site map generated through user-directed spidering as a basis for
automated discovery of hidden content.

3. Make automated requests for common filenames and directories within
each directory or path known to exist within the application. Use Burp
Intruder or a custom script, together with wordlists of common files and
directories, to quickly generate large numbers of requests. If you have iden-
tified a particular way in which the application handles requests for invalid
resources (such as a customized “file not found” page), configure Intruder
or your script to highlight these results so that they can be ignored.

4. Capture the responses received from the server, and manually review
them to identify valid resources.

5. Perform the exercise recursively as new content is discovered.

Inference from Published Content

Most applications employ some kind of naming scheme for their content and
functionality. By inferring from the resources already identified within the
application, it is possible to fine-tune your automated enumeration exercise to
increase the likelihood of discovering further hidden content.

In the EIS application, note that all resources in /auth start with a capital letter.
This is why the wordlist used in the file brute forcing in the previous section
was deliberately capitalized. Furthermore, since we have already identified a
page called Forgotpassword in the /auth directory, we can search for similarly
named items, such as the following;:

http://eis/auth/ResetPassword

86

Chapter 4 = Mapping the Application

Additionally, the site map created during user-directed spidering identified
these resources:

http://eis/pub/media/100
http://eis/pub/media/117
http://eis/pub/user/11

Other numeric values in a similar range are likely to identify further resources
and information.

m Burp Intruder is highly customizable and can be used to target any por-
tion of an HTTP request. Figure 4-7 shows Burp Intruder being used to per-
form a brute-force attack on the first half of a filename to make the requests:

http://eis/auth/AddPassword
http://eis/auth/ForgotPassword
http://eis/auth/GetPassword
http://eis/auth/ResetPassword
http://eis/auth/RetrievePassword
http://eis/auth/UpdatePassword

~
. burp suite professional lilﬂlg

purp intruder repeater window help

[target | prowy | spider | scanner | intruder | repeater | sequencer | decoder | comparer | options | alerts |
[112]
target | positions | payloads | options |

[

attack type ‘sniper |'|

1 payload position length: 167

GET /auth/§S§Password HTTF/Ll.1 (2] add§
Host: eis

hocept: A/ F
Accept-Languags: =n clear§ 1

User—Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT £.0)

Connection: close auto §

— refresh

= clear

[t el [z | 0matches

Figure 4-7: Burp Intruder being used to perform a customized brute-force attack on
part of a filename

Chapter 4 = Mapping the Application

87

Review the results of your user-directed browsing and basic brute-force
exercises. Compile lists of the names of all enumerated subdirectories, file
stems, and file extensions.

Review these lists to identify any naming schemes in use. For example, if
there are pages called AddDocument . jsp and ViewDocument . jsp, there
may also be pages called EditDocument . jsp and RemoveDocument . jsp.
You can often get a feel for developers’ naming habits just by reading a
few examples. For example, depending on their personal style, develop-
ers may be verbose (addaNewUser.asp), succinct (Adduser.asp), use
abbreviations (Addusr . asp), or even be more cryptic (addu.asp). Getting
a feel for the naming styles in use may help you guess the precise names
of content you have not already identified.

Sometimes, the naming scheme used for different content employs
identifiers such as numbers and dates, which can make inferring hidden
content easy. This is most commonly encountered in the names of static
resources, rather than dynamic scripts. For example, if a company’s web-
site links to AnnualReport2009.pdf and AnnualReport2010.pdf,

it should be a short step to identifying what the next report will be called.
Somewhat incredibly, there have been notorious cases of companies
placing files containing financial reports on their web servers before they
were publicly announced, only to have wily journalists discover them
based on the naming scheme used in earlier years.

Review all client-side code such as HTML and JavaScript to identify any
clues about hidden server-side content. These may include HTML com-
ments related to protected or unlinked functions, HTML forms with dis-
abled suBMIT elements, and the like. Often, comments are automatically
generated by the software that has been used to generate web content,
or by the platform on which the application is running. References to
items such as server-side include files are of particular interest. These
files may actually be publicly downloadable and may contain highly sensi-
tive information such as database connection strings and passwords. In
other cases, developers’ comments may contain all kinds of useful tidbits,
such as database names, references to back-end components, SQL query
strings, and so on. Thick-client components such as Java applets and
ActiveX controls may also contain sensitive data that you can extract. See
Chapter 15 for more ways in which the application may disclose informa-
tion about itself.

Continued

Chapter 4 = Mapping the Application

HACK STEPS (continued)

5. Add to the lists of enumerated items any further potential names con-
jectured on the basis of the items that you have discovered. Also add to
the file extension list common extensions such as txt, bak, src, inc,
and o1d, which may uncover the source to backup versions of live pages.
Also add extensions associated with the development languages in use,
such as .java and .cs, which may uncover source files that have been
compiled into live pages. (See the tips later in this chapter for identifying
technologies in use.)

6. Search for temporary files that may have been created inadvertently by
developer tools and file editors. Examples include the .Ds_store file,
which contains a directory index under OS X, file.php~1, which is a
temporary file created when £ile.php is edited, and the . tmp file exten-
sion that is used by numerous software tools.

7. Perform further automated exercises, combining the lists of directories,
file stems, and file extensions to request large numbers of potential
resources. For example, in a given directory, request each file stem com-
bined with each file extension. Or request each directory name as a subdi-
rectory of every known directory.

8. Where a consistent naming scheme has been identified, consider perform-
ing a more focused brute-force exercise. For example, if AddDocument
.jisp and ViewDocument . jsp are known to exist, you may create
a list of actions (edit, delete, create) and make requests of the form
XxxDocument . j sp. Alternatively, create a list of item types (user, account,
file) and make requests of the form addxxx.jsp.

9. Perform each exercise recursively, using new enumerated content and
patterns as the basis for further user-directed spidering and further auto-
mated content discovery. You are limited only by your imagination, time
available, and the importance you attach to discovering hidden content
within the application you are targeting.

.m You can use the Content Discovery feature of Burp Suite Pro to auto-
mate most of the tasks described so far. After you have manually mapped an
application’s visible content using your browser, you can select one or more
branches of Burp’s site map and initiate a content discovery session on those
branches.

Burp uses the following techniques when attempting to discover new
content:

B Brute force using built-in lists of common file and directory names

B Dynamic generation of wordlists based on resource names observed
within the target application

B Extrapolation of resource names containing numbers and dates

Chapter 4 = Mapping the Application

89

B Testing for alternative file extensions on identified resources

B Spidering from discovered content

B Automatic fingerprinting of valid and invalid responses to reduce false
positives

All exercises are carried out recursively, with new discovery tasks being
scheduled as new application content is discovered. Figure 4-8 shows a con-
tent discovery session in progress against the EIS application.

content discovery: http://eis/pub/media/100/ | = ‘ o x

control r config | site map |

[_] session running

requests made: 58
bytes transferred: 37,045
errors]

tasks queued: 13
spider requests queued: 0
responses gueued for analysis 1]

queued tasks:

path task requests
/pub/mediat00/ [Test observed file names with custom extensions 14
/pub/medial100/ |[Test observed directory names
/pub/imedia/100/ [Test shortfile list with custom extensions
Ipub/medial100/ [Test short directory list
/pub/medial100/ [Test extension variants on histery
/pub/medial100/ |[Test extension variants on add
/pub/media/100/ |Test extension variants on delete

L

Figure 4-8: A content discovery session in progress against the EIS application

The DirBuster project from OWASP is also a useful resource when per-
forming automated content discovery tasks. It includes large lists of directory
names that have been found in the wild, ordered by frequency of occurrence.

Use of Public Information

The application may contain content and functionality that are not presently linked
from the main content but that have been linked in the past. In this situation,
it is likely that various historical repositories will still contain references to the
hidden content. Two main types of publicly available resources are useful here:

m Search engines such as Google, Yahoo, and MSN. These maintain a fine-
grained index of all content that their powerful spiders have discovered,
and also cached copies of much of this content, which persists even after
the original content has been removed.

m Web archives such as the WayBack Machine, located at www.archive.org/.
These archives maintain a historical record of a large number of websites.
In many cases they allow users to browse a fully replicated snapshot of a
given site as it existed at various dates going back several years.

90

Chapter 4 = Mapping the Application

In addition to content that has been linked in the past, these resources are
also likely to contain references to content that is linked from third-party sites,
but not from within the target application itself. For example, some applications
contain restricted functionality for use by their business partners. Those part-
ners may disclose the existence of the functionality in ways that the application
itself does not.

1. Use several different search engines and web archives (listed previously)
to discover what content they indexed or stored for the application you
are attacking.

2. When querying a search engine, you can use various advanced techniques
to maximize the effectiveness of your research. The following suggestions
apply to Google. You can find the corresponding queries on other engines
by selecting their Advanced Search option.

m site:www.wahh-target.com returns every resource within the target
site that Google has a reference to.

m site:www.wahh-target.com login returns all the pages containing the
expression login. In a large and complex application, this technique can
be used to quickly home in on interesting resources, such as site maps,
password reset functions, and administrative menus.

m link:www.wahh-target.com returns all the pages on other websites
and applications that contain a link to the target. This may include links
to old content, or functionality that is intended for use only by third par-
ties, such as partner links.

m related:www.wahh-target.com returns pages that are “similar” to the
target and therefore includes a lot of irrelevant material. However, it may
also discuss the target on other sites, which may be of interest.

3. Perform each search not only in the default Web section of Google, but
also in Groups and News, which may contain different results.

4. Browse to the last page of search results for a given query, and select
Repeat the Search with the Omitted Results Included. By default, Google
attempts to filter out redundant results by removing pages that it believes
are sufficiently similar to others included in the results. Overriding this
behavior may uncover subtly different pages that are of interest to you
when attacking the application.

5. View the cached version of interesting pages, including any content that is
no longer present in the actual application. In some cases, search engine
caches contain resources that cannot be directly accessed in the applica-
tion without authentication or payment.

Chapter 4 = Mapping the Application

91

6. Perform the same queries on other domain names belonging to the same
organization, which may contain useful information about the application
you are targeting.

If your research identifies old content and functionality that is no longer
linked to within the main application, it may still be present and usable. The
old functionality may contain vulnerabilities that do not exist elsewhere
within the application.

Even where old content has been removed from the live application, the
content obtained from a search engine cache or web archive may contain
references to or clues about other functionality that is still present within the
live application and that can be used to attack it.

Another public source of useful information about the target application is
any posts that developers and others have made to Internet forums. There are
numerous such forums in which software designers and programmers ask
and answer technical questions. Often, items posted to these forums contain
information about an application that is of direct benefit to an attacker, including
the technologies in use, the functionality implemented, problems encountered
during development, known security bugs, configuration and log files submit-
ted to assist in troubleshooting, and even extracts of source code.

1. Compile a list containing every name and e-mail address you can discover
relating to the target application and its development. This should include
any known developers, names found within HTML source code, names found
in the contact information section of the main company website, and any
names disclosed within the application itself, such as administrative staff.

2. Using the search techniques described previously, search for each identi-
fied name to find any questions and answers they have posted to Internet
forums. Review any information found for clues about functionality or vul-
nerabilities within the target application.

Leveraging the Web Server

Vulnerabilities may exist at the web server layer that enable you to discover
content and functionality that are not linked within the web application itself.
For example, bugs within web server software can allow an attacker to list the
contents of directories or obtain the raw source for dynamic server-executable
pages. See Chapter 18 for some examples of these vulnerabilities and ways in
which you can identify them. If such a bug exists, you may be able to exploit it to
directly obtain a listing of all pages and other resources within the application.

92

Chapter 4 = Mapping the Application

Many application servers ship with default content that may help you attack
them. For example, sample and diagnostic scripts may contain known vul-
nerabilities or functionality that may be leveraged for a malicious purpose.
Furthermore, many web applications incorporate common third-party com-
ponents for standard functionality, such as shopping carts, discussion forumes,
or content management system (CMS) functions. These are often installed to a
fixed location relative to the web root or to the application’s starting directory.

Automated tools lend themselves naturally to this type of task, and many
issue requests from a large database of known default web server content, third-
party application components, and common directory names. While these tools
do not rigorously test for any hidden custom functionality, they can often be
useful in discovering other resources that are not linked within the application
and that may be of interest in formulating an attack.

Wikto is one of the many free tools that performs these types of scans, addi-
tionally containing a configurable brute-force list for content. As shown in
Figure 4-9, when used against the Extreme Internet Shopping site, it identifies
some directories using its internal wordlist. Because it has a large database of
common web application software and scripts, it has also identified the fol-
lowing directory, which an attacker would not discover through automated or
user-driven spidering;:

http://eis/phpmyadmin/

Type Weight Trgger Reguest
& 0.00233608744447042 200 fizans!
) 0426242424242424 200 f2uth/
@ 0 200 Ihama!
& 0.0211267605633603 200 Iphpmyzdminy
& 0.0485867768585041 200 fpub
& 0.0228126882128278 200 Izhag!
() 0424242424242424 200 [——
8 0 200 Igblindex. phpZlogin=trus
) 0.424242424242424 200 fheip/
& 0 200 findex. php?=FHPESSESF .
- [200 findex. php?=PHPESSEEF..
& 0 200 findex. php?=PHPESSEEF .
@ 0.00504625735812532 200 findex php?=PHPESESF2. .
] 0.0108685652173913 200 findex php?module=My_..
a 0.01 TRACE/HTTRA. '
L] 001 Index of fimages!

Figure 4-9: Wikto being used to discover content and some known vulnerabilities
Additionally, although the /gb directory had already been identified via
spidering, Wikto has identified the specific URL:

/gb/index.php?login=true

Wikto checks for this URL because it is used in the gbook PHP application,
which contains a publicly known vulnerability.

Chapter 4 = Mapping the Application

93

m Like many commercial web scanners, tools such as Nikto and
Wikto contain vast lists of default files and directories and consequently appear
to be industrious at performing a huge number of checks. However, a large
number of these checks are redundant, and false positives are common. Worse
still, false negatives may occur regularly if a server is configured to hide a ban-
ner, if a script or collection of scripts is moved to a different directory, or if
HTTP status codes are handled in a custom manner. For this reason it is often
better to use a tool such as Burp Intruder, which allows you to interpret the raw
response information and does not attempt to extract positive and negative
results on your behalf.

Several useful options are available when you run Nikto:

1. If you believe that the server is using a nonstandard location for interest-
ing content that Nikto checks for (such as /cgi/cgi-bin instead of
/cgi-bin), you can specify this alternative location using the option -root
/cgi/. For the specific case of CGI directories, these can also be specified
using the option -cgidirs.

2. If the site uses a custom “file not found” page that does not return the
HTTP 404 status code, you can specify a particular string that identifies
this page by using the -404 option.

3. Be aware that Nikto does not perform any intelligent verification of
potential issues and therefore is prone to report false positives. Always
check any results Nikto returns manually.

Note that with tools like Nikto, you can specify a target application using its
domain name or IP address. If a tool accesses a page using its IP address, the
tool treats links on that page that use its domain name as belonging to a dif-
ferent domain, so the links are not followed. This is reasonable, because some
applications are virtually hosted, with multiple domain names sharing the
same IP address. Ensure that you configure your tools with this fact in mind.

Application Pages Versus Functional Paths

The enumeration techniques described so far have been implicitly driven by one
particular picture of how web application content may be conceptualized and
cataloged. This picture is inherited from the pre-application days of the World
Wide Web, in which web servers functioned as repositories of static informa-
tion, retrieved using URLs that were effectively filenames. To publish some web
content, an author simply generated a bunch of HTML files and copied these
into the relevant directory on a web server. When users followed hyperlinks,

94

Chapter 4 = Mapping the Application

they navigated the set of files created by the author, requesting each file via its
name within the directory tree residing on the server.

Although the evolution of web applications has fundamentally changed the
experience of interacting with the web, the picture just described is still appli-
cable to the majority of web application content and functionality. Individual
functions are typically accessed via a unique URL, which is usually the name
of the server-side script that implements the function. The parameters to the
request (residing in either the URL query string or the body of a posT request)
do not tell the application what function to perform; they tell it what information
to use when performing it. In this context, the methodology of constructing a
URL-based map can be effective in cataloging the application’s functionality.

In applications that use REST-style URLs, parts of the URL file path contain
strings that in fact function as parameter values. In this situation, by map-
ping URLs, a spider maps both the application functions and the list of known
parameter values to those functions.

In some applications, however, the picture based on application “pages”
is inappropriate. Although it may be possible to shoehorn any application’s
structure into this form of representation, in many cases a different picture,
based on functional paths, is far more useful for cataloging its content and
functionality. Consider an application that is accessed using only requests of
the following form:

POST /bank.jsp HTTP/1.1
Host: wahh-bank.com
Content-Length: 106

servlet=TransferFunds&method=confirmTransfer&fromAccount=10372918&to
Account=
3910852&amount=291.23&Submit=0k

Here, every request is made to a single URL. The parameters to the request
are used to tell the application what function to perform by naming the Java
servlet and method to invoke. Further parameters provide the information to
use in performing the function. In the picture based on application pages, the
application appears to have only a single function, and a URL-based map does
not elucidate its functionality. However, if we map the application in terms of
functional paths, we can obtain a much more informative and useful catalog of
its functionality. Figure 4-10 is a partial map of the functional paths that exist
within the application.

Chapter 4 = Mapping the Application

95

WahhBank.
login
WahhBank.
home
TransferFunds. BillPayment. BillPayment. WahhBank.
selectAccounts addPayee selectPayee logout
TransferFunds. BillPayment.
enterAmount enterAmount
TransferFunds. BillPayment.
confirmTransfer confirmPayment

Figure 4-10: A mapping of the functional paths within a web application

Representing an application’s functionality in this way is often more useful
even in cases where the usual picture based on application pages can be applied
without any problems. The logical relationships and dependencies between
different functions may not correspond to the directory structure used within
URLs. It is these logical relationships that are of most interest to you, both in
understanding the application’s core functionality and in formulating possible
attacks against it. By identifying these, you can better understand the expec-
tations and assumptions of the application’s developers when implementing
the functions. You also can attempt to find ways to violate these assumptions,
causing unexpected behavior within the application.

In applications where functions are identified using a request parameter, rather
than the URL, this has implications for the enumeration of application content.
In the previous example, the content discovery exercises described so far are
unlikely to uncover any hidden content. Those techniques need to be adapted
to the mechanisms actually used by the application to access functionality.

96

Chapter 4 = Mapping the Application

1. Identify any instances where application functionality is accessed not by
requesting a specific page for that function (such as /admin/editUser.jsp)
but by passing the name of a function in a parameter (such as
/admin.jsp?action=editUser).

2. Modify the automated techniques described for discovering URL-specified
content to work on the content-access mechanisms in use within the
application. For example, if the application uses parameters that spec-
ify servlet and method names, first determine its behavior when an
invalid servlet and/or method is requested, and when a valid method is
requested with other invalid parameters. Try to identify attributes of the
server's responses that indicate “hits” — valid servlets and methods. If
possible, find a way of attacking the problem in two stages, first enumer-
ating servlets and then methods within these. Using a method similar to
the one used for URL-specified content, compile lists of common items,
add to these by inferring from the names actually observed, and generate
large numbers of requests based on these.

3. If applicable, compile a map of application content based on functional
paths, showing all the enumerated functions and the logical paths and
dependencies between them.

Discovering Hidden Parameters

A variation on the situation where an application uses request parameters to
specify which function should be performed arises where other parameters
are used to control the application’s logic in significant ways. For example, an
application may behave differently if the parameter debug=true is added to the
query string of any URL. It might turn off certain input validation checks, allow
the user to bypass certain access controls, or display verbose debug informa-
tion in its response. In many cases, the fact that the application handles this
parameter cannot be directly inferred from any of its content (for example, it
does not include debug=false in the URLs it publishes as hyperlinks). The effect
of the parameter can only be detected by guessing a range of values until the
correct one is submitted.

Chapter 4 = Mapping the Application

97

1. Using lists of common debug parameter names (debug, test, hide, source,
etc.) and common values (true, yes, on, 1, etc.), make a large number of
requests to a known application page or function, iterating through all
permutations of name and value. For POST requests, insert the added
parameter to both the URL query string and the message body.

Burp Intruder can be used to perform this test using multiple payload
sets and the “cluster bomb” attack type (see Chapter 14 for more details).

2. Monitor all responses received to identify any anomalies that may indicate
that the added parameter has had an effect on the application’s processing.

3. Depending on the time available, target a number of different pages or
functions for hidden parameter discovery. Choose functions where it is
most likely that developers have implemented debug logic, such as login,
search, and file uploading and downloading.

Analyzing the Application

Enumerating as much of the application’s content as possible is only one ele-
ment of the mapping process. Equally important is the task of analyzing the
application’s functionality, behavior, and technologies employed to identify the
key attack surfaces it exposes and to begin formulating an approach to probing
the application for exploitable vulnerabilities.

Here are some key areas to investigate:

m The application’s core functionality — the actions that can be leveraged
to perform when used as intended

m Other, more peripheral application behavior, including off-site links, error
messages, administrative and logging functions, and the use of redirects

m The core security mechanisms and how they function — in particular,
management of session state, access controls, and authentication mecha-
nisms and supporting logic (user registration, password change, and
account recovery)

98

Chapter 4 = Mapping the Application

m All the different locations at which the application processes user-supplied
input — every URL, query string parameter, item of posT data, and cookie

m The technologies employed on the client side, including forms, client-
side scripts, thick-client components (Java applets, ActiveX controls, and
Flash), and cookies

m The technologies employed on the server side, including static and dynamic
pages, the types of request parameters employed, the use of SSL, web
server software, interaction with databases, e-mail systems, and other
back-end components

m Any other details that may be gleaned about the internal structure and
functionality of the server-side application — the mechanisms it uses
behind the scenes to deliver the functionality and behavior that are vis-
ible from the client perspective

Identifying Entry Points for User Input

The majority of ways in which the application captures user input for server-
side processing should be obvious when reviewing the HTTP requests that are
generated as you walk through the application’s functionality. Here are the key
locations to pay attention to:

m Every URL string up to the query string marker

m Every parameter submitted within the URL query string

m Every parameter submitted within the body of a posT request
m Every cookie

m Every other HTTP header that the application might process — in particu-
lar, the User-Agent, Referer, Accept, Accept-Language, and Host headers

URL File Paths

The parts of the URL that precede the query string are often overlooked as entry
points, since they are assumed to be simply the names of directories and files
on the server file system. However, in applications that use REST-style URLs,
the parts of the URL that precede the query string can in fact function as data
parameters and are just as important as entry points for user input as the query
string itself.

A typical REST-style URL could have this format:

http://eis/shop/browse/electronics/iPhone3G/

Chapter 4 = Mapping the Application

In this example, the strings electronics and iPhone3G should be treated as
parameters to store a search function.
Similarly, in this URL:

http://eis/updates/2010/12/25/my-new-iphone/

each of the URL components following updates may be being handled in a
RESTful manner.

Most applications using REST-style URLs are easy to identify given the URL
structure and application context. However, no hard-and-fast rules should be
assumed when mapping an application, because it is up to the application’s
authors how users should interact with it.

Request Parameters

Parameters submitted within the URL query string, message body, and HTTP
cookies are the most obvious entry points for user input. However, some appli-
cations do not employ the standard name=value format for these parameters.
They may employ their own custom scheme, which may use nonstandard query
string markers and field separators, or they may embed other data schemes such
as XML within parameter data.

Here are some examples of nonstandard parameter formats that the authors
have encountered in the wild:

/dir/file; foo=bar&foo2=bar2
/dir/file?foo=bar$foo2=bar?2
/dir/file/foo%3dbar%26foo2%3dbar2
/dir/foo.bar/file

/dir/foo=bar/file

/dir/file?param=foo:bar

m /dir/file?data=%3cfoo%3ebar$3c%2ffoo%3e33cfoo2%3ebar2%3c%2ffoo2%3e

If a nonstandard parameter format is being used, you need to take this into
account when probing the application for all kinds of common vulnerabilities.
For example, suppose that, when testing the final URL in this list, you ignore the
custom format and simply treat the query string as containing a single parameter
called data, and therefore submit various kinds of attack payloads as the value
of this parameter. You would miss many kinds of vulnerabilities that may exist
in the processing of the query string. Conversely, if you dissect the format and
place your payloads within the embedded XML data fields, you may immediately
discover a critical bug such as SQL injection or path traversal.

100

Chapter 4 = Mapping the Application

HTTP Headers

Many applications perform custom logging functions and may log the contents
of HTTP headers such as Referer and User-agent. These headers should always
be considered as possible entry points for input-based attacks.

Some applications perform additional processing on the referer header. For
example, an application may detect that a user has arrived via a search engine,
and seek to provide a customized response tailored to the user’s search query.
The application may echo the search term or may attempt to highlight matching
expressions within the response. Some applications seek to boost their search
rankings by dynamically adding content such as HTML keywords, containing
strings that recent visitors from search engines have been searching for. In this
situation, it may be possible to persistently inject content into the application’s
responses by making a request numerous times containing a suitably crafted
Referer URL.

An important trend in recent years has been for applications to present dif-
ferent content to users who access the application via different devices (laptop,
cell phone, tablet). This is achieved by inspecting the user-agent header. As well
as providing an avenue for input-based attacks directly within the user-agent
header itself, this behavior provides an opportunity to uncover an additional
attack surface within the application. By spoofing the user-agent header for
a popular mobile device, you may be able to access a simplified user interface
that behaves differently than the primary interface. Since this interface is gener-
ated via different code paths within the server-side application, and may have
been subjected to less security testing, you may identify bugs such as cross-site
scripting that do not exist in the primary application interface.

m Burp Intruder contains a built-in payload list containing a large number
of user agent strings for different types of devices. You can carry out a simple
attack that performs a GET request to the main application page supplying
different user agent strings and then review the intruder results to identify
anomalies that suggest a different user interface is being presented.

In addition to targeting HTTP request headers that your browser sends by
default, or that application components add, in some situations you can per-
form successful attacks by adding further headers that the application may
still process. For example, many applications perform some processing on the
client’s IP address to carry out functions such as logging, access control, or
user geolocation. The IP address of the client’s network connection typically
is available to applications via platform APIs. However, to handle cases where
the application resides behind a load balancer or proxy, applications may use
the IP address specified in the x-Forwarded-For request header if it is present.
Developers may then mistakenly assume that the IP address value is untainted
and process it in dangerous ways. By adding a suitably crafted x-Forwarded-For

Chapter 4 = Mapping the Application

header, you may be able to deliver attacks such as SQL injection or persistent
cross-site scripting.

Out-of-Band Channels

A final class of entry points for user input includes any out-of-band channel
by which the application receives data that you may be able to control. Some
of these entry points may be entirely undetectable if you simply inspect the
HTTP traffic generated by the application, and finding them usually requires
an understanding of the wider context of the functionality that the application
implements. Here are some examples of web applications that receive user-
controllable data via an out-of-band channel:

m A web mail application that processes and renders e-mail messages received
via SMTP

m A publishing application that contains a function to retrieve content via
HTTP from another server

m An intrusion detection application that gathers data using a network
sniffer and presents this using a web application interface

m Any kind of application that provides an API interface for use by non-
browser user agents, such as cell phone apps, if the data processed via
this interface is shared with the primary web application

Identifying Server-Side Technologies

Normally it is possible to fingerprint the technologies employed on the server
via various clues and indicators.

Banner Grabbing

Many web servers disclose fine-grained version information, both about the
web server software itself and about other components that have been installed.
For example, the HTTP server header discloses a huge amount of detail about
some installations:

Server: Apache/1.3.31 (Unix) mod_gzip/1.3.26.1la mod_auth_passthrough/

1.8 mod_log_bytes/1.2 mod_bwlimited/1.4 PHP/4.3.9 FrontPage/
5.0.2.2634a mod_ssl1/2.8.20 OpenSSL/0.9.7a

In addition to the server header, the type and version of software may be dis-
closed in other locations:

m Templates used to build HTML pages
m Custom HTTP headers

m URL query string parameters

102

Chapter 4 = Mapping the Application

HTTP Fingerprinting

In principle, any item of information returned by the server may be customized
or even deliberately falsified, and banners like the server header are no excep-
tion. Most application server software allows the administrator to configure the
banner returned in the server HTTP header. Despite measures such as this, it is
usually possible for a determined attacker to use other aspects of the web server’s
behavior to determine the software in use, or at least narrow down the range of
possibilities. The HTTP specification contains a lot of detail that is optional or left
to an implementer’s discretion. Also, many web servers deviate from or extend
the specification in various ways. As a result, a web server can be fingerprinted
in numerous subtle ways, other than via its server banner. Httprecon is a handy
tool that performs a number of tests in an attempt to fingerprint a web server’s
software. Figure 4-11 shows Httprecon running against the EIS application and
reporting various possible web servers with different degrees of confidence.

. httprecon 7.3 - http://eis:B0/ | =aae X
File Configuration Fingerprinting Reporting Help

Target [Apache 2.0.54)

|http:ts =] [eis A Analyze

GET existing]GET lomg request | GET nnn-exist\ng] GET wrong prnlncnl} HEAD existing} OPTION A ¥

HITP;

m

P I 3

Fingerprint Details] Report Preview 1

| Mame | Hits | Malchzl -
W, Apache 2054 104 100
W, Apache 2055 9 9423
W, Apache 224 a1 875
W Apache 221 a0 86.53...
W Microsait 115 6.0 a0 85.53..
. Apache 2046 a8 2461,
W, fpache 223 5 8269, .
b Y L aaan o PRt

Generate HTML Repart... Dane.

Figure 4-11: Httprecon fingerprinting the EIS application

File Extensions

File extensions used within URLs often disclose the platform or programming
language used to implement the relevant functionality. For example:

m asp — Microsoft Active Server Pages
m aspx — Microsoft ASP.NET

Chapter 4 = Mapping the Application

103

jsp — Java Server Pages

cfm — Cold Fusion

php — The PHP language

d2w— WebSphere

pl — The Perl language

py — The Python language

d11 — Usually compiled native code (C or C++)

nsf or ntf — Lotus Domino

Even if an application does not employ a particular file extension in its published
content, it is usually possible to verify whether the technology supporting that
extension is implemented on the server. For example, if ASPNET is installed,
requesting a nonexistent . aspx file returns a customized error page generated
by the ASPNET framework, as shown in Figure 4-12. Requesting a nonexistent
file with a different extension returns a generic error message generated by the
web server, as shown in Figure 4-13.

@ The resource cannot be found. - Mozilla Firefox | (=5 @
File Edit Wiew History Bookmarks Tools Help
@ - c Q || http://mdsec.net/foo.aspx T ek -.l’ Google P

|| The resource cannot be found.

Server Error in '/' Application.

1

The resource cannot be found.

Description: HTTP 404. The resource you are looking for (or one of its dependencies) could have been removed, had its name changed, or is temporarily unavailable.
Please review the following URL and make sure that i is spelled correctly.

Requested URL: /foo.aspx

Done

Figure 4-12: A customized error page indicating that the ASP.NET platform is present on
the server

Using the automated content discovery techniques already described, it
is possible to request a large number of common file extensions and quickly
confirm whether any of the associated technologies are implemented on the
server.

The divergent behavior described arises because many web servers map
specific file extensions to particular server-side components. Each different
component may handle errors (including requests for nonexistent content) dif-
ferently. Figure 4-14 shows the various extensions that are mapped to different
handler DLLs in a default installation of IIS 5.0.

104 Chapter 4 = Mapping the Application

(@) The page cannot be found - Mozilla Firefox =N Eoh =<
File Edit View History Bookmarks Tools Help
@ - 4% | hitp/fmdsecnet/foo.asp 2 - 1|28~ Google b

|| The page cannot be found | -

The page cannot be found

The page you are looking for might have been removed, had its name changed, or
is temporarily unavailable.

in

Please try the following:

* Make sure that the Web site address displayed in the address bar of your

browser is spelled and formatted correctly. —!
» If you reached this page by clicking a link, contact the Web site

administrator to alert them that the link is incorrectly formatted.
e Click the Back button to try another link.

HTTP Error 404 - File or directory not found.
Internet Information Services (I15)

Done

Figure 4-13: A generic error message created when an unrecognized file extension is
requested

Application Configuration x|

App Mappings | App Dptionsl &pp Debugging I

- Application M apping:

Extenzion | Executable Fath | Werbs -
b CWw NN TS pstem32webhits. dil GET HEAD
.ida Cw NN TS pstem324idg. dil GET HEAD
.idg o IMM THS patem324idg. di GET HEAD
azp C:AWAMN T S pstem32hinetsrhasp dil GET HEAD
.cer CAWINNT S pstem324inetsrsasp. dl GET HEAD
.cdx i IMMTY S patem324inetaryazp. dil GET HEAD
Laza C:AwAMN TS patem32hinetsrhazp. dil GET HEAD
hir CAWIMN T apstem32hinetsr asp.dil GET POST—
.idz CAWAMN TS patem32hinetsrvshitpadbe. dil OPTIONS, T
.zhtm Cw MM T4 S patem32%inetarazing. di GET FOST
_ghtml C:AwAMN TS patem32hinetsrhasing. di GET POST =
h AR TS Cisbarm T Minatord ooime dl GET PRCT,
a |
Add | Edt Hemove |

o]

Cancel | Apply | Help |

Figure 4-14: File extension mappings in IIS 5.0

It is possible to detect the presence of each file extension mapping via the
different error messages generated when that file extension is requested. In
some cases, discovering a particular mapping may indicate the presence of a
web server vulnerability. For example, the .printer and .ida/.idq handlers
in IIS have in the past been found vulnerable to buffer overflow vulnerabilities.

Another common fingerprint to be aware of are URLs that look like this:

https://wahh-app/news/0,,2-421206,00.html

Chapter 4 = Mapping the Application

105

The comma-separated numbers toward the end of the URL are usually gener-
ated by the Vignette content management platform.

Directory Names

It is common to encounter subdirectory names that indicate the presence of an
associated technology. For example:

m servlet — Java servlets
m pls — Oracle Application Server PL/SQL gateway
cfdocs or cfide — Cold Fusion

|

m SilverStream— The SilverStream web server

m WebObjects Or {function}.woa — Apple WebObjeCtS
|

rails — Ruby on Rails

Session Tokens

Many web servers and web application platforms generate session tokens by default
with names that provide information about the technology in use. For example:

m JSESSTONID — The Java Platform

m ASPSESSIONID — Microsoft IIS server

m ASP.NET_SessionId— Microsoft ASP.NET
m CFID/CFTOKEN — Cold Fusion

m PHPSESSID — PHP

Third-Party Code Components

Many web applications incorporate third-party code components to implement
common functionality such as shopping carts, login mechanisms, and message
boards. These may be open source or may have been purchased from an external
software developer. When this is the case, the same components often appear
within numerous other web applications on the Internet, which you can inspect to
understand how the component functions. Often, other applications use different
features of the same component, enabling you to identify additional behavior and
functionality beyond what is directly visible in the target application. Also, the
software may contain known vulnerabilities that have been discussed elsewhere,
or you may be able to download and install the component yourself and perform
a source code review or probe it for defects in a controlled way.

106 Chapter 4 = Mapping the Application

1. Identify all entry points for user input, including URLs, query string param-
eters, PosT data, cookies, and other HTTP headers processed by the
application.

2. Examine the query string format used by the application. If it does not
employ the standard format described in Chapter 3, try to understand
how parameters are being transmitted via the URL. Virtually all custom
schemes still employ some variation on the name/value model, so try to
understand how name/value pairs are being encapsulated into the non-
standard URLs you have identified.

3. ldentify any out-of-bound channels via which user-controllable or other
third-party data is being introduced into the application’s processing.

4. View the HTTP Server banner returned by the application. Note that in
some cases, different areas of the application are handled by different
back-end components, so different server headers may be received.

6. Check for any other software identifiers contained within any custom
HTTP headers or HTML source code comments.

Run the httprint tool to fingerprint the web server.

8. If fine-grained information is obtained about the web server and other
components, research the software versions in use to identify any vulner-
abilities that may be exploited to advance an attack (see Chapter 18).

9. Review your map of application URLs to identify any interesting-looking
file extensions, directories, or other sub-sequences that may provide clues
about the technologies in use on the server.

10. Review the names of all session tokens issued by the application to iden-
tify the technologies being used.

11. Use lists of common technologies, or Google, to establish which technolo-
gies may be in use on the server, or discover other websites and applica-
tions that appear to employ the same technologies.

12. Perform searches on Google for the names of any unusual cookies,
scripts, HTTP headers, and the like that may belong to third-party software
components. If you locate other applications in which the same compo-
nents are being used, review these to identify any additional functionality
and parameters that the components support, and verify whether these
are also present in your target application. Note that third-party compo-
nents may look and feel quite different in each implementation, due to
branding customizations, but the core functionality, including script and
parameter names, is often the same. If possible, download and install the
component and analyze it to fully understand its capabilities and, if pos-
sible, discover any vulnerabilities. Consult repositories of known vulner-
abilities to identify any known defects with the component in question.

Chapter 4 = Mapping the Application 107

Identifying Server-Side Functionality

It is often possible to infer a great deal about server-side functionality and struc-
ture, or at least make an educated guess, by observing clues that the application
discloses to the client.

Dissecting Requests
Consider the following URL, which is used to access a search function:

https://wahh-app.com/calendar.jsp?name=new%20applicants&isExpired=
O&startDate=22%2F09%2F2010&endDate=22%2F03%2F2011&0rderBy=name

As you have seen, the . jsp file extension indicates that Java Server Pages are
in use. You may guess that a search function will retrieve its information from
either an indexing system or a database. The presence of the orderBy parameter
suggests that a back-end database is being used and that the value you submit
may be used as the orDER BY clause of a SQL query. This parameter may well
be vulnerable to SQL injection, as may any of the other parameters if they are
used in database queries (see Chapter 9).

Also of interest among the other parameters is the isExpired field. This
appears to be a Boolean flag specifying whether the search query should include
expired content. If the application designers did not expect ordinary users to
be able retrieve any expired content, changing this parameter from 0 to 1 could
identify an access control vulnerability (see Chapter 8).

The following URL, which allows users to access a content management
system, contains a different set of clues:

https://wahh-app.com/workbench.aspx?template=NewBranch.tpl&loc=
/default&ver=2.31&edit=false

Here, the . aspx file extension indicates that this is an ASPNET application. It also
appears highly likely that the template parameter is used to specify a filename,
and the loc parameter is used to specify a directory. The possible file extension
.tpl appears to confirm this, as does the location /default, which could very
well be a directory name. It is possible that the application retrieves the template
file specified and includes the contents in its response. These parameters may
well be vulnerable to path traversal attacks, allowing arbitrary files to be read
from the server (see Chapter 10).

Also of interest is the edit parameter, which is set to false. It may be that
changing this value to true will modify the registration functionality, poten-
tially enabling an attacker to edit items that the application developer did not
intend to be editable. The ver parameter does not have any readily guessable
purpose, but it may be that modifying this will cause the application to perform
a different set of functions that an attacker could exploit.

108

Chapter 4 = Mapping the Application

Finally, consider the following request, which is used to submit a question
to application administrators:

POST /feedback.php HTTP/1.1
Host: wahh-app.com
Content-Length: 389

from=user@wahh-mail.com&to=helpdesk@wahh-app.com&subject=
Problem+logging+in&message=Please+help. ..

As with the other examples, the .php file extension indicates that the function
is implemented using the PHP language. Also, it is extremely likely that the
application is interfacing with an external e-mail system, and it appears that
user-controllable input is being passed to that system in all relevant fields of
the e-mail. The function may be exploitable to send arbitrary messages to any
recipient, and any of the fields may also be vulnerable to e-mail header injec-
tion (see Chapter 10).

m It is often necessary to consider the whole URL and application context
to guess the function of different parts of a request. Recall the following URL
from the Extreme Internet Shopping application:

http://eis/pub/media/117/view

The handling of this URL is probably functionally equivalent to the
following:

http://eis/manager?schema=pub&type=media&id=117&action=view

While it isn’t certain, it seems likely that resource 117 is contained in the
collection of resources media and that the application is performing an action
on this resource that is equivalent to view. Inspecting other URLs would help
confirm this.

The first consideration would be to change the action from view to a possi-
ble alternative, such as edit or add. However, if you change it to add and this
guess is right, it would likely correspond to an attempt to add a resource with
an id of 117. This will probably fail, since there is already a resource with an
id of 117. The best approach would be to look for an add operation with an
id value higher than the highest observed value or to select an arbitrary high
value. For example, you could request the following:

http://eis/pub/media/7337/add

It may also be worthwhile to look for other data collections by altering
media while keeping a similar URL structure:

http://eis/pub/pages/1l/view
http://eis/pub/users/1l/view

Chapter 4 = Mapping the Application

109

1. Review the names and values of all parameters being submitted to the
application in the context of the functionality they support.

2. Try to think like a programmer, and imagine what server-side mechanisms
and technologies are likely to have been used to implement the behavior
you can observe.

Extrapolating Application Behavior

Often, an application behaves consistently across the range of its functionality.
This may be because different functions were written by the same developer
or to the same design specification, or share some common code components.
In this situation, it may be possible to draw conclusions about server-side func-
tionality in one area and extrapolate these to another area.

For example, the application may enforce some global input validation checks,
such as sanitizing various kinds of potentially malicious input before it is pro-
cessed. Having identified a blind SQL injection vulnerability, you may encounter
problems exploiting it, because your crafted requests are being modified in
unseen ways by the input validation logic. However, other functions within the
application might provide good feedback about the kind of sanitization being
performed — for example, a function that echoes some user-supplied data to
the browser. You may be able to use this function to test different encodings and
variations of your SQL injection payload to determine what raw input must be
submitted to achieve the desired attack string after the input validation logic
has been applied. If you are lucky, the validation works in the same way across
the application, enabling you to exploit the injection flaw.

Some applications use custom obfuscation schemes when storing sensitive
data on the client to prevent casual inspection and modification of this data
by users (see Chapter 5). Some such schemes may be extremely difficult to
decipher given access to only a sample of obfuscated data. However, there may
be functions within the application where a user can supply an obfuscated
string and retrieve the original. For example, an error message may include the
deobfuscated data that led to the error. If the same obfuscation scheme is used
throughout the application, it may be possible to take an obfuscated string from
one location (such as a cookie) and feed it into the other function to decipher its
meaning. It may also be possible to reverse-engineer the obfuscation scheme by
submitting systematically varying values to the function and monitoring their
deobfuscated equivalents.

Finally, errors are often handled inconsistently within the application. Some
areas trap and handle errors gracefully, and other areas simply crash and return

110

Chapter 4 = Mapping the Application

verbose debugging information to the user (see Chapter 15). In this situation,
it may be possible to gather information from the error messages returned in
one area and apply it to other areas where errors are handled gracefully. For
example, by manipulating request parameters in systematic ways and monitor-
ing the error messages received, it may be possible to determine the internal
structure and logic of the application component. If you are lucky, aspects of
this structure may be replicated in other areas.

1. Try to identify any locations within the application that may contain clues
about the internal structure and functionality of other areas.

2. It may not be possible to draw any firm conclusions here; however, the
cases identified may prove useful at a later stage of the attack when
you're attempting to exploit any potential vulnerabilities.

Isolating Unique Application Behavior

Sometimes the situation is the opposite of that just described. In many well-
secured or mature applications, a consistent framework is employed that pre-
vents numerous types of attacks, such as cross-site scripting, SQL injection,
and unauthorized access. In these cases, the most fruitful areas for hunting
vulnerabilities generally are the portions of the application that have been added
retrospectively, or “bolted on,” and hence are not handled by the application’s
general security framework. Additionally, they may not be correctly tied into
the application through authentication, session management, and access control.
These are often identifiable through differences in GUI appearance, parameter
naming conventions, or explicitly through comments in source code.

1. Make a note of any functionality that diverges from the standard GUI
appearance, parameter naming, or navigation mechanism used within the
rest of the application.

2. Also make a note of functionality that is likely to have been added retro-
spectively. Examples include debug functions, CAPTCHA controls, usage
tracking, and third-party code.

3. Perform a full review of these areas, and do not assume that the standard
defenses used elsewhere in the application apply.

Chapter 4 = Mapping the Application

Mapping the Attack Surface

The final stage of the mapping process is to identify the various attack surfaces
exposed by the application and the potential vulnerabilities that are commonly
associated with each one. The following is a rough guide to some key types
of behavior and functionality that you may identify, and the kinds of vulner-
abilities that are most commonly found within each one. The remainder of this
book is concerned with the practical details of how you can detect and exploit
each of these problems:

m Client-side validation — Checks may not be replicated on the server
m Database interaction — SQL injection

m File uploading and downloading — Path traversal vulnerabilities, stored
cross-site scripting

m Display of user-supplied data — Cross-site scripting
m Dynamic redirects — Redirection and header injection attacks

m Social networking features — username enumeration, stored cross-site
scripting

m Login — Username enumeration, weak passwords, ability to use brute
force

m Multistage login — Logic flaws

m Session state — Predictable tokens, insecure handling of tokens
m Access controls — Horizontal and vertical privilege escalation
m User impersonation functions — Privilege escalation

m Use of cleartext communications — Session hijacking, capture of creden-
tials and other sensitive data

m Off-site links — Leakage of query string parameters in the referer
header

m Interfaces to external systems — Shortcuts in the handling of sessions
and/or access controls

m Error messages — Information leakage

m E-mail interaction — E-mail and /or command injection

m Native code components or interaction — Buffer overflows

m Use of third-party application components — Known vulnerabilities

m Identifiable web server software — Common configuration weaknesses,
known software bugs

112

Chapter 4 = Mapping the Application

Mapping the Extreme Internet Shopping Application

Having mapped the content and functionality of the EIS application, many paths

could be followed to attack the application, as shown in Figure 4-15.

* burp suite professional

= =

burp intruder repeater window help

l’larget I’pmxy [’sp\der rscanner [’lmruder rrepeater rsequencer rdecnder | comparer roptmns | aterts |

site map scope

l Filter: hiding notfound items; hiding CSS, image and general binary content; hiding 4xx responses; hiding empty folders]

[Mp.Iers
¢ 53 auth
D ForgotPassword
o @ Login
[Profile
D ResetPassword
D register
¢ =4 core
¢ sitestats
pagelD=/home&display=ranklhits[time
- @b
o 3% gbook php
o=] home
o= (3 icons
¢~ (I images
7 &3 pub
o= (2] media
¢ H user
[711
[RE!
(118
robots fxt
¢ {2 shop
o/
¢ {35 browse
¢ Z3 books
¢ (/Autohiating-eDating_Burp|
o [Codec-Hacking_my-story
o= [Pentesting-Thailand-Edition

-

host | method | URL | params| s

hittp:/leis |GET |ishoplbrowse/books/AutoMating-e..| [|20

4] Il | D

response rrequest |

raw headers hex html render

<h3>All > books >
AutoMating-eDating Burp</h3>

<hS>AutoMating-eDating Burp (£35)</L5>Run
through thousands of online users at high
speed using methods including Siper,
Battering Ram, or even Pitchfork.

»

<input type=button walues="Back"
onClick="document. location.replace ('/shop'):"
clags="btn">

</fdivs
o [C] SQL-Injection-Again B Bt =
o [Security-Jokes-vol-3_Perl | |
o= (23 WAHH_v2 |
& [clothing =1 | === | 0matches
A el e b =

L

Figure 4-15: The attack surface exposed by the EIS application

The /auth directory contains authentication functionality. A full review of
all authentication functions, session handling, and access control is worthwhile,
including further content discovery attacks.

Within the /core path, the sitestats page appears to accept an array of param-
eters delimited by the pipe character (|). As well as conventional input-based
attacks, other values could be brute-forcible, such as source, location, and
1p, in an attempt to reveal more information about other users or about the
page specified in pageID. It may also be possible to find out information about

Chapter 4 = Mapping the Application

113

inaccessible resources or to try a wildcard option in pageIn, such as pageIp=all
or pageID=*. Finally, because the observed pageID value contains a slash, it may
indicate a resource being retrieved from the file system, in which case path
traversal attacks may be a possibility.

The /gb path contains the site’s guestbook. Visiting this page suggests it is
used as a discussion forum, moderated by an administrator. Messages are mod-
erated, but the login bypass login=true means that an attacker can attempt to
approve malicious messages (to deliver cross-site scripting attacks, for example)
and read other users’ private messages to the administrator.

The /home path appears to hold authenticated user content. This could make
a good basis for attempts to launch a horizontal privilege escalation attack to
access another user’s personal information and to ensure that access controls
are present and enforced on every page.

A quick review shows that the /icons and /images paths hold static content.
It may be worth brute-forcing for icon names that could indicate third-party
software, and checking for directory indexing on these directories, but they are
unlikely to be worth significant effort.

The /pub path contains REST-style resources under /pub/media and /pub/
user. A brute-force attack could be used to find the profile pages of other appli-
cation users by targeting the numeric value in /pub/user/11. Social networking
functionality such as this can reveal user information, usernames, and other
users’ logon status.

The /shop path contains the online shopping site and has a large number of
URLs. However, they all have a similar structure, and an attacker could probably
probe all of the relevant attack surface by looking at just one or two items. The
purchasing process may contain interesting logic flaws that could be exploited
to obtain unauthorized discounts or avoid payment.

1. Understand the core functionality implemented within the application and
the main security mechanisms in use.

2. Identify all features of the application’s functionality and behavior that
are often associated with common vulnerabilities.

3. Check any third-party code against public vulnerability databases such as
www.osvdb.org to determine any known issues.

4. Formulate a plan of attack, prioritizing the most interesting-looking func-
tionality and the most serious of the associated potential vulnerabilities.

114

Chapter 4 = Mapping the Application

Summary

Mapping the application is a key prerequisite to attacking it. It may be tempting
to dive in and start probing for bugs, but taking time to gain a sound under-
standing of the application’s functionality, technologies, and attack surface will
pay dividends down the line.

As with almost all of web application hacking, the most effective approach
is to use manual techniques supplemented where appropriate by controlled
automation. No fully automated tool can carry out a thorough mapping of the
application in a safe way. To do this, you need to use your hands and draw on
your own experience. The core methodology we have outlined involves the
following:

m Manual browsing and user-directed spidering to enumerate the applica-
tion’s visible content and functionality

m Use of brute force combined with human inference and intuition to dis-
cover as much hidden content as possible

m Anintelligent analysis of the application to identify its key functionality,
behavior, security mechanisms, and technologies

m An assessment of the application’s attack surface, highlighting the most
promising functions and behavior for more focused probing into exploit-
able vulnerabilities

Questions

Answers can be found at http://mdsec.net/wahh.

1. While mapping an application, you encounter the following URL:
https://wahh-app.com/CookieAuth.dl1?GetLogon?curl=Z2Fdefault.

aspx

What information can you deduce about the technologies employed on
the server and how it is likely to behave?

2. The application you are targeting implements web forum functionality.
Here is the only URL you have discovered:

http://wahh-app.com/forums/ucp.php?mode=register

How might you obtain a listing of forum members?

Chapter 4 = Mapping the Application

115

3. While mapping an application, you encounter the following URL:

https://wahh-app.com/public/profile/Address.
asp?action=view&location
=default

What information can you infer about server-side technologies? What
can you conjecture about other content and functionality that may exist?

4. A web server’s responses include the following header:

Server: Apache-Coyote/1l.1

What does this indicate about the technologies in use on the server?

5. You are mapping two different web applications, and you request the URL
/admin.cpf from each application. The response headers returned by each
request are shown here. From these headers alone, what can you deduce
about the presence of the requested resource within each application?

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Expires: Mon, 20 Jun 2011 14:59:21 GMT

Content-Location: http://wahh-
app.com/includes/error.htm?404;http://wahh-app.com/admin.cpf
Date: Mon, 20 Jun 2011 14:59:21 GMT

Content-Type: text/html

Accept-Ranges: bytes

Content-Length: 2117

HTTP/1.1 401 Unauthorized

Server: Apache-Coyote/1.1

WWw-Authenticate: Basic realm="Wahh Administration Site"
Content-Type: text/html;charset=utf-8

Content-Length: 954

Date: Mon, 20 Jun 2011 15:07:27 GMT

Connection: close

Bypassing Client-Side Controls

Chapter 1 described how the core security problem with web applications arises
because clients can submit arbitrary input. Despite this fact, a large proportion
of web applications, nevertheless, rely on various measures implemented on
the client side to control the data that they submit to the server. In general, this
represents a fundamental security flaw: the user has full control over the client
and the data it submits and can bypass any controls that are implemented on
the client side and are not replicated on the server.

An application may rely on client-side controls to restrict user input in two
broad ways. First, an application may transmit data via the client component
using a mechanism that it assumes will prevent the user from modifying that
data when the application later reads it. Second, an application may implement
measures on the client side that control the user’s interaction with his or her
own client, with the aim of restricting functionality and/or applying controls
around user input before it is submitted. This may be achieved using HTML
form features, client-side scripts, or browser extension technologies.

This chapter looks at examples of each kind of client-side control and describes
ways in which they can be bypassed.

118

Chapter 5 = Bypassing Client-Side Controls

Transmitting Data Via the Client

It is common to see an application passing data to the client in a form that the
end user cannot directly see or modify, with the expectation that this data
will be sent back to the server in a subsequent request. Often, the application’s
developers simply assume that the transmission mechanism used will ensure
that the data transmitted via the client will not be modified along the way.

Because everything submitted from the client to the server is within the
user’s control, the assumption that data transmitted via the client will not be
modified is usually false and often leaves the application vulnerable to one or
more attacks.

You may reasonably wonder why;, if the server knows and specifies a particular
item of data, the application would ever need to transmit this value to the client
and then read it back. In fact, writing applications in this way is often easier for
developers for various reasons:

m [t removes the need to keep track of all kinds of data within the user’s
session. Reducing the amount of per-session data being stored on the
server can also improve the application’s performance.

m If the application is deployed on several distinct servers, with users poten-
tially interacting with more than one server to perform a multistep action,
it may not be straightforward to share server-side data between the hosts
that may handle the same user’s requests. Using the client to transmit data
can be a tempting solution to the problem.

m If the application employs any third-party components on the server,
such as shopping carts, modifying these may be difficult or impossible, so
transmitting data via the client may be the easiest way of integrating these.

m In some situations, tracking a new piece of data on the server may entail
updating a core server-side API, thereby triggering a full-blown formal
change-management process and regression testing. Implementing a more
piecemeal solution involving client-side data transmission may avoid this,
allowing tight deadlines to be met.

However, transmitting sensitive data in this way is usually unsafe and has
been the cause of countless vulnerabilities in applications.

Hidden Form Fields

Hidden HTML form fields are a common mechanism for transmitting data via
the client in a superficially unmodifiable way. If a field is flagged as hidden,
it is not displayed on-screen. However, the field’s name and value are stored
within the form and are sent back to the application when the user submits
the form.

Chapter 5 = Bypassing Client-Side Controls

119

The classic example of this security flaw is a retailing application that stores
the prices of products within hidden form fields. In the early days of web appli-
cations, this vulnerability was extremely widespread, and by no means has it
been eliminated today. Figure 5-1 shows a typical form.

Please enter the required quantity:

Product: iPhone Ultimate
Price: 449

Quantity: (Maximum quantity is 50)

Buy

Figure 5-1: A typical HTML form

The code behind this form is as follows:

<form method="post" action="Shop.aspx?prod=1">

Product: iPhone 5

Price: 449

Quantity: <input type="text" name="quantity"> (Maximum quantity is 50)

<input type="hidden" name="price" value="449">

<input type="submit" value="Buy">

</form>

Notice the form field called price, which is flagged as hidden. This field is sent
to the server when the user submits the form:

POST /shop/28/Shop.aspx?prod=1 HTTP/1.1

Host: mdsec.net

Content-Type: application/x-www-form-urlencoded
Content-Length: 20

quantity=1&price=449

TRY IT!

http://mdsec.net/shop/28/

Although the price field is not displayed on-screen, and the user cannot edit
it, this is solely because the application has instructed the browser to hide the
field. Because everything that occurs on the client side is ultimately within
the user’s control, this restriction can be circumvented to edit the price.

One way to achieve this is to save the source code for the HTML page, edit
the field’s value, reload the source into a browser, and click the Buy button.
However, an easier and more elegant method is to use an intercepting proxy to
modify the desired data on-the-fly.

120

Chapter 5 = Bypassing Client-Side Controls

An intercepting proxy is tremendously useful when attacking a web applica-
tion and is the one truly indispensable tool you need. Numerous such tools are
available. We will use Burp Suite, which was written by one of this book’s authors.

The proxy sits between your web browser and the target application. It inter-
cepts every request issued to the application, and every response received back,
for both HTTP and HTTPS. It can trap any intercepted message for inspection
or modification by the user. If you haven't used an intercepting proxy before,
you can read more about how they function, and how to get them configured
and working, in Chapter 20.

Once an intercepting proxy has been installed and suitably configured, you

can trap the request that submits the form and modify the price field to any
value, as shown in Figure 5-2.

gt burp suite professional = =)

burp intruder repeater window help

| target |'uruxy " spider | scanner | intruder i repeater i'sequerwcer i decoder | comparer | options | alers |

[intercept | options | history |

requestto hitp:imdsec.net80 [172,16,50.129]

| forward || drop || interceptis on H action

[(raw | params | neaders | nex | viewstate |

POST /shop/Z8/Shop.aspx?prod=1 HTTE/L.1l -
Host: mdsesc.nst

User-Agent: Mozilla/5.0 (Windows; U; Windows NT £.1; en-GB;
Firefox/3.£.8

Accept: text/html,application/xhtml+4xml,application/xml;q=0.9,*/*;q=0.8
Acecept-Language: en-gb,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-BB59-1,utf-8:c¢=0.7,*:q=0.7

Keep-Aliwve: 115

Proxy-Connection: keep-alive

Referer: http://mdsec.net/shop/28/Shop.aspx?prod=1

Content-Type: application/x—www-form-urlencoded

Content-Length: Z0

rv:1.9.2.8) Gecko/ZDLlDD72Z

gquantity=l&price=44¢%

-

[I [

| 0 matches

Figure 5-2: Modifying the values of hidden form fields using an intercepting proxy

If the application processes the transaction based on the price submitted, you
can purchase the product for the price of your choice.

m If you find an application that is vulnerable in this way, see whether you
can submit a negative amount as the price. In some cases, applications have
actually accepted transactions using negative prices. The attacker receives a

refund to his credit card and also the item he ordered — a win-win situation, if
ever there was one.

Chapter 5 = Bypassing Client-Side Controls

121

HTTP Cookies

Another common mechanism for transmitting data via the client is HTTP cook-
ies. As with hidden form fields, normally these are not displayed on-screen, and
the user cannot modify them directly. They can, of course, be modified using
an intercepting proxy, by changing either the server response that sets them or
subsequent client requests that issue them.

Consider the following variation on the previous example. After the customer
has logged in to the application, she receives the following response:

HTTP/1.1 200 OK
Set-Cookie: DiscountAgreed=25
Content-Length: 1530

This piscountagreed cookie points to a classic case of relying on client-side
controls (the fact that cookies normally can’t be modified) to protect data trans-
mitted via the client. If the application trusts the value of the Discountagreed
cookie when it is submitted back to the server, customers can obtain arbitrary
discounts by modifying its value. For example:

POST /shop/92/Shop.aspx?prod=3 HTTP/1.1
Host: mdsec.net

Cookie: DiscountAgreed=25
Content-Length: 10

quantity=1

TRY IT!

http://mdsec.net/shop/92/

URL Parameters

Applications frequently transmit data via the client using preset URL param-
eters. For example, when a user browses the product catalog, the application
may provide him with hyperlinks to URLs like the following:

http://mdsec.net/shop/?prod=3&pricecode=32

When a URL containing parameters is displayed in the browser’s location bar,
any parameters can be modified easily by any user without the use of tools.
However, in many instances an application may expect that ordinary users
cannot view or modify URL parameters:

m Where embedded images are loaded using URLs containing parameters

m Where URLs containing parameters are used to load a frame’s contents

122

Chapter 5 = Bypassing Client-Side Controls

m Where a form uses the posT method and its target URL contains preset
parameters

m Where an application uses pop-up windows or other techniques to conceal
the browser location bar

Of course, in any such case the values of any URL parameters can be modified
as previously discussed using an intercepting proxy.

The Referer Header

Browsers include the referer header within most HTTP requests. It is used to
indicate the URL of the page from which the current request originated — either
because the user clicked a hyperlink or submitted a form, or because the page
referenced other resources such as images. Hence, it can be leveraged as a
mechanism for transmitting data via the client. Because the URLs processed by
the application are within its control, developers may assume that the Referer
header can be used to reliably determine which URL generated a particular
request.

For example, consider a mechanism that enables users to reset their password
if they have forgotten it. The application requires users to proceed through
several steps in a defined sequence before they actually reset their password’s
value with the following request:

GET /auth/472/CreateUser.ashx HTTP/1.1
Host: mdsec.net
Referer: https://mdsec.net/auth/472/Admin.ashx

The application may use the referer header to verify that this request origi-
nated from the correct stage (admin.ashx). If it did, the user can access the
requested functionality.

However, because the user controls every aspect of every request, including
the HTTP headers, this control can be easily circumvented by proceeding directly
to createUser.ashx and using an intercepting proxy to change the value of the
Referer header to the value that the application requires.

The referer header is strictly optional according to w3.org standards. Hence,
although most browsers implement it, using it to control application functional-
ity should be regarded as a hack.

TRY IT!

http://mdsec.net/auth/472/

Chapter 5 = Bypassing Client-Side Controls

123

COMMON MYTH

It is often assumed that HTTP headers are somehow more “tamper-proof”
than other parts of the request, such as the URL. This may lead developers to
implement functionality that trusts the values submitted in headers such as
Cookie and Referer while performing proper validation of other data such
as URL parameters. However, this perception is false. Given the multitude of
intercepting proxy tools that are freely available, any amateur hacker who
targets an application can change all request data with ease. It is rather like
supposing that when the teacher comes to search your desk, it is safer to hide
your water pistol in the bottom drawer, because she will need to bend down
farther to discover it.

1. Locate all instances within the application where hidden form fields,
cookies, and URL parameters are apparently being used to transmit data
via the client.

2. Attempt to determine or guess the role that the item plays in the applica-
tion’s logic, based on the context in which it appears and on clues such as
the parameter’s name.

3. Modify the item’s value in ways that are relevant to its purpose in the
application. Ascertain whether the application processes arbitrary values
submitted in the parameter, and whether this exposes the application to
any vulnerabilities.

Opaque Data

Sometimes, data transmitted via the client is not transparently intelligible
because it has been encrypted or obfuscated in some way. For example, instead
of seeing a product’s price stored in a hidden field, you may see a cryptic value
being transmitted:

<form method="post" action="Shop.aspx?prod=4">

Product: Nokia Infinity

Price: 699

Quantity: <input type="text" name="quantity"> (Maximum quantity is 50)

<input type="hidden" name="price" value="699">

<input type="hidden" name="pricing_token"
value="E76D213D291B8F216D694A34383150265C989229">

<input type="submit" value="Buy">

</form>

124 Chapter 5 = Bypassing Client-Side Controls

When this is observed, you may reasonably infer that when the form is sub-
mitted, the server-side application checks the integrity of the opaque string, or
even decrypts or deobfuscates it to perform some processing on its plaintext
value. This further processing may be vulnerable to any kind of bug. However, to
probe for and exploit this, first you need to wrap up your payload appropriately.

TRY IT!

http://mdsec.net/shop/48/

IIEEE Opaque data items transmitted via the client are often part of the
application’s session-handling mechanism. Session tokens sent in HTTP cook-
ies, anti-CSRF tokens transmitted in hidden fields, and one-time URL tokens
for accessing application resources, are all potential targets for client-side
tampering. Numerous considerations are specific to these kinds of tokens, as
discussed in depth in Chapter 7.

Faced with opaque data being transmitted via the client, several avenues of
attack are possible:

1. If you know the value of the plaintext behind the opaque string, you can
attempt to decipher the obfuscation algorithm being employed.

2. As described in Chapter 4, the application may contain functions else-
where that you can leverage to return the opaque string resulting from a
piece of plaintext you control. In this situation, you may be able to directly
obtain the required string to deliver an arbitrary payload to the function
you are targeting.

3. Even if the opaque string is impenetrable, it may be possible to replay
its value in other contexts to achieve a malicious effect. For example, the
pricing token parameter in the previously shown form may contain
an encrypted version of the product’s price. Although it is not possible to
produce the encrypted equivalent for an arbitrary price of your choosing,
you may be able to copy the encrypted price from a different, cheaper
product and submit this in its place.

4. If all else fails, you can attempt to attack the server-side logic that will
decrypt or deobfuscate the opaque string by submitting malformed varia-
tions of it — for example, containing overlong values, different character
sets, and the like.

The ASP.NET ViewState

One commonly encountered mechanism for transmitting opaque data via the
client is the ASPNET viewstate. This is a hidden field that is created by default
in all ASPNET web applications. It contains serialized information about the

Chapter 5 = Bypassing Client-Side Controls

125

state of the current page. The ASPNET platform employs the viewstate to
enhance server performance. It enables the server to preserve elements within
the user interface across successive requests without needing to maintain all
the relevant state information on the server side. For example, the server may
populate a drop-down list on the basis of parameters submitted by the user.
When the user makes subsequent requests, the browser does not submit the
contents of the list back to the server. However, the browser does submit the
hidden viewstate field, which contains a serialized form of the list. The server
deserializes the viewstate and recreates the same list that is presented to the
user again.

In addition to this core purpose of the viewstate, developers can use it to
store arbitrary information across successive requests. For example, instead of
saving the product’s price in a hidden form field, an application may save it in
the viewstate as follows:

string price = getPrice(prodno) ;
ViewState.Add("price", price);

The form returned to the user now looks something like this:

<form method="post" action="Shop.aspx?prod=3">

<input type="hidden" name="__ VIEWSTATE" id="__ VIEWSTATE"
value="/wEPDWULLTE1ODcxNjkwNjIPFgIeBXByaWN1BQMzOT1kZA==" />

Product: HTC Avalanche

Price: 399

Quantity: <input type="text" name="quantity"> (Maximum quantity is 50)

<input type="submit" value="Buy">

</form>

When the user submits the form, her browser sends the following:

POST /shop/76/Shop.aspx?prod=3 HTTP/1.1

Host: mdsec.net

Content-Type: application/x-www-form-urlencoded
Content-Length: 77

_ VIEWSTATE=%2FwEPDWULLTE1ODcxNjkwNjIPFgIeBXByaWN1BQMzOT1kZA%3D%3D&
quantity=1

The request apparently does not contain the product price — only the quan-
tity ordered and the opaque viewstate parameter. Changing that parameter at
random results in an error message, and the purchase is not processed.

The viewstate parameter is actually a Base64-encoded string that can be
easily decoded to see the price parameter that has been placed there:

3D FF 01 OF OF 05 OB 2D 31 35 38 37 31 36 39 30 ; =¥..... -15871690
36 32 OF 16 02 1E 05 70 72 69 63 65 05 03 33 39 ; 62..... price. .39
39 64 64 ; 9dd

126

Chapter 5 = Bypassing Client-Side Controls

m When you attempt to decode what appears to be a Base64-encoded
string, a common mistake is to begin decoding at the wrong position within the
string. Because of how Base64 encoding works, if you start at the wrong posi-
tion, the decoded string will contain gibberish. Base64 is a block-based format
in which every 4 bytes of encoded data translates into 3 bytes of decoded data.
Hence, if your attempts to decode a Base64 string do not uncover anything
meaningful, try starting from four adjacent offsets into the encoded string.

By default, the ASPNET platform protects the viewstate from tampering by
adding a keyed hash to it (known as MAC protection). However, some applications
disable this default protection, meaning that you can modify the viewstate’s value
to determine whether it has an effect on the application’s server-side processing.

Burp Suite includes a viewstate parser that indicates whether the viewstate
is MAC protected, as shown in Figure 5-3. If it is not protected, you can edit the
contents of the viewstate within Burp using the hex editor below the viewstate
tree. When you send the message to the server or client, Burp sends your updated
ViewState, and, in the present example, enables you to change the price of the

item being purchased.

" burp suite professional
burp intruder repeater window help

Foloe o)

| target | proxy ‘ spider | scanner | intruder i repeater i'sequerwcer i decoder | comparer | options | aleris |

[intercept | options | history |

requestto hitp:imdsec.net80 [172.16.50.129]

| forward || drop || interceptis on H action

(‘raw | params | neaders | nex [viewstate |

- ViewState v2.0 compatible [MAC is not enabled]
¢ Pair
¢ Pair
string -1587169062
7 Pair
¢ List
string price
string
null
null

-1587 16806

price 399

Figure 5-3: Burp Proxy can decode and render the viewState, allowing you to
review its contents and edit these if the EnableviewStateMac option is not set

Chapter 5 = Bypassing Client-Side Controls

127

TRY IT!

http://mdsec.net/shop/76/

1. If you are attacking an ASP.NET application, verify whether MAC protec-
tion is enabled for the viewstate. This is indicated by the presence of a
20-byte hash at the end of the viewstate structure, and you can use the
ViewState parser in Burp Suite to confirm whether this is present.

2. Even if the viewState is protected, use Burp to decode the viewstate
on various application pages to discover whether the application is using
the viewstate to transmit any sensitive data via the client.

3. Try to modify the value of a specific parameter within the viewstate
without interfering with its structure, and see whether an error message
results.

4. If you can modify the viewstate without causing errors, you should
review the function of each parameter within the viewstate and
see whether the application uses it to store any custom data. Try to
submit crafted values as each parameter to probe for common vulner-
abilities, as you would for any other item of data being transmitted
via the client.

5. Note that MAC protection may be enabled or disabled on a per-page
basis, so it may be necessary to test each significant page of the applica-
tion for viewstate hacking vulnerabilities. If you are using Burp Scanner
with passive scanning enabled, Burp automatically reports any pages that
use the viewstate without MAC protection enabled.

Capturing User Data: HTML Forms

The other principal way in which applications use client-side controls to restrict
data submitted by clients occurs with data that was not originally specified by
the server but that was gathered on the client computer itself.

HTML forms are the simplest and most common way to capture input from
the user and submit it to the server. With the most basic uses of this method,
users type data into named text fields, which are submitted to the server as
name/value pairs. However, forms can be used in other ways; they can impose
restrictions or perform validation checks on the user-supplied data. When an

128

Chapter 5 = Bypassing Client-Side Controls

application employs these client-side controls as a security mechanism to defend
itself against malicious input, the controls can usually be easily circumvented,
leaving the application potentially vulnerable to attack.

Length Limits

Consider the following variation on the original HTML form, which imposes
a maximum length of 1 on the quantity field:

<form method="post" action="Shop.aspx?prod=1">

Product: iPhone 5

Price: 449

Quantity: <input type="text" name="quantity" maxlength="1">

<input type="hidden" name="price" value="449">

<input type="submit" value="Buy">

</form>

Here, the browser prevents the user from entering more than one character
into the input field, so the server-side application may assume that the quantity
parameter it receives will be less than 10. However, this restriction can easily be
circumvented either by intercepting the request containing the form submission
to enter an arbitrary value, or by intercepting the response containing the form
to remove the maxlength attribute.

INTERCEPTING RESPONSES

When you attempt to intercept and modify server responses, you may find
that the relevant message displayed in your proxy looks like this:

HTTP/1.1 304 Not Modified

Date: Wed, 6 Jul 2011 22:40:20 GMT
Etag: "6c7-5fcc0900"

Expires: Thu, 7 Jul 2011 00:40:20 GMT
Cache-Control: max-age=7200

This response arises because the browser already possesses a cached copy
of the resource it requested. When the browser requests a cached resource,
it typically adds two headers to the request — 1£-Modified-Since and
If-None-Match:

GET /scripts/validate.js HTTP/1.1

Host: wahh-app.com

If-Modified-Since: Sat, 7 Jul 2011 19:48:20 GMT
If-None-Match: "6c7-5fcc0900"

These headers tell the server when the browser last updated its cached copy.
The Etag string, which the server provided with that copy of the resource,
is a kind of serial number that the server assigns to each cacheable resource.

Chapter 5 = Bypassing Client-Side Controls 129

It updates each time the resource is modified. If the server possesses a newer
version of the resource than the date specified in the I1f-Modified-Since
header, or if the Etag of the current version matches the one specified in the
If-None-Match header, the server responds with the latest version of the
resource. Otherwise, it returns a 304 response, as shown here, informing the
browser that the resource has not been modified and that the browser should
use its cached copy.

When this occurs, and you need to intercept and modify the resource that
the browser has cached, you can intercept the relevant request and remove
the 1£-Modified-Since and If-None-Match headers. This causes the server
to respond with the full version of the requested resource. Burp Proxy con-
tains an option to strip these headers from every request, thereby overriding
all cache information sent by the browser.

1. Look for form elements containing a maxlength attribute. Submit data
that is longer than this length but that is formatted correctly in other
respects (for example, it is numeric if the application expects a number).

2. If the application accepts the overlong data, you may infer that the client-
side validation is not replicated on the server.

3. Depending on the subsequent processing that the application performs
on the parameter, you may be able to leverage the defects in validation to
exploit other vulnerabilities, such as SQL injection, cross-site scripting, or
buffer overflows.

Script-Based Validation

The input validation mechanisms built into HTML forms themselves are extremely
simple and are insufficiently fine-grained to perform relevant validation of
many kinds of input. For example, a user registration form might contain fields
for name, e-mail address, telephone number, and zip code, all of which expect
different types of input. Therefore, it is common to see customized client-side
input validation implemented within scripts. Consider the following variation
on the original example:

<form method="post" action="Shop.aspx?prod=2" onsubmit="return
validateForm(this) ">

Product: Samsung Multiverse

Price: 399

130 Chapter 5 = Bypassing Client-Side Controls

Quantity: <input type="text" name="quantity"> (Maximum quantity is 50)

<input type="submit" value="Buy">

</form>

<script>function validateForm(theForm)
{
var isInteger = /"\d+$/;
var valid = isInteger.test (quantity) &&
quantity > 0 && quantity <= 50;
if (!valid)
alert ('Please enter a valid quantity');
return valid;
}

</script>

TRY IT!

http://mdsec.net/shop/139/

The onsubmit attribute of the form tag instructs the browser to execute the
ValidateForm function when the user clicks the Submit button, and to submit
the form only if this function returns true. This mechanism enables the client-
side logic to intercept an attempted form submission, perform customized
validation checks on the user’s input, and decide whether to accept that input.
In the preceding example, the validation is simple; it checks whether the data
entered in the amount field is an integer and is between 1 and 50.

Client-side controls of this kind are usually easy to circumvent. Usually
it is sufficient to disable JavaScript within the browser. If this is done, the
onsubmit attribute is ignored, and the form is submitted without any custom
validation.

However, disabling JavaScript may break the application if it depends on
client-side scripting for its normal operation (such as constructing parts of the
user interface). A neater approach is to enter a benign (known good) value into
the input field in the browser, intercept the validated submission with your
proxy, and modify the data to your desired value. This is often the easiest and
most elegant way to defeat JavaScript-based validation.

Alternatively, you can intercept the server’s response that contains the
JavaScript validation routine and modify the script to neutralize its effect —in
the previous example, by changing the validateForm function to return true
in every case.

Chapter 5 = Bypassing Client-Side Controls

131

1. Identify any cases where client-side JavaScript is used to perform input
validation prior to form submission.

2. Submit data to the server that the validation ordinarily would have
blocked, either by modifying the submission request to inject invalid data
or by modifying the form validation code to neutralize it.

3. As with length restrictions, determine whether the client-side controls are
replicated on the server and, if not, whether this can be exploited for any
malicious purpose.

4. Note that if multiple input fields are subjected to client-side validation
prior to form submission, you need to test each field individually with
invalid data while leaving valid values in all the other fields. If you submit
invalid data in multiple fields simultaneously, the server might stop pro-
cessing the form when it identifies the first invalid field. Therefore, your
testing won't reach all possible code paths within the application.

.m Client-side JavaScript routines to validate user input are common in
web applications, but do not conclude that every such application is vulner-
able. The application is exposed only if client-side validation is not replicated
on the server, and even then only if crafted input that circumvents client-side
validation can be used to cause some undesirable behavior by the application.

In the majority of cases, client-side validation of user input has beneficial effects
on the application’s performance and the quality of the user experience. For
example, when filling out a detailed registration form, an ordinary user might
make various mistakes, such as omitting required fields or formatting his tele-
phone number incorrectly. In the absence of client-side validation, correcting
these mistakes may entail several reloads of the page and round-trip messages
to the server. Implementing basic validation checks on the client side makes
the user’s experience much smoother and reduces the load on the server.

Disabled Elements

If an element on an HTML form is flagged as disabled, it appears on-screen
but is usually grayed out and cannot be edited or used in the way an ordinary
control can be. Also, it is not sent to the server when the form is submitted. For
example, consider the following form:

<form method="post" action="Shop.aspx?prod=5">
Product: Blackberry Rude

Price: <input type="text" disabled="true" name="price" value="299">

132 Chapter 5 = Bypassing Client-Side Controls

Quantity: <input type="text" name="quantity"> (Maximum quantity is 50)

<input type="submit" value="Buy">

</form>

This includes the price of the product as a disabled text field and appears
on-screen as shown in Figure 5-4.

Please enter the required quantity:

Product: Blackberry Rude
Price: 299

Quantity: (Maximum quantity is 50)

Buy

Figure 5-4: A form containing a disabled input field

When this form is submitted, only the quantity parameter is sent to the
server. However, the presence of a disabled field suggests that a price parameter
may originally have been used by the application, perhaps for testing purposes
during development. This parameter would have been submitted to the server
and may have been processed by the application. In this situation, you should
definitely test whether the server-side application still processes this parameter.
If it does, seek to exploit this fact.

TRY IT!

http://mdsec.net/shop/104/

1. Look for disabled elements within each form of the application. Whenever
you find one, try submitting it to the server along with the form's other
parameters to determine whether it has any effect.

2. Often, submit elements are flagged as disabled so that buttons appear
as grayed out in contexts when the relevant action is unavailable. You
should always try to submit the names of these elements to determine
whether the application performs a server-side check before attempting
to carry out the requested action.

Chapter 5 = Bypassing Client-Side Controls

133

3. Note that browsers do not include disabled form elements when forms
are submitted. Therefore, you will not identify these if you simply walk
through the application’s functionality, monitoring the requests issued
by the browser. To identify disabled elements, you need to monitor the
server's responses or view the page source in your browser.

4. You can use the HTML modification feature in Burp Proxy to automatically
re-enable any disabled fields used within the application.

Capturing User Data: Browser Extensions

Besides HTML forms, the other main method for capturing, validating, and
submitting user data is to use a client-side component that runs in a browser
extension, such as Java or Flash. When first employed in web applications, browser
extensions were often used to perform simple and often cosmetic tasks. Now,
companies are increasingly using browser extensions to create fully functional
client-side components. These run within the browser, across multiple client
platforms, and provide feedback, flexibility, and handling of a desktop appli-
cation. A side effect is that processing tasks that previously would have taken
place on the server may be offloaded onto the client for reasons of speed and
user experience. In some cases, such as online trading applications, speed is so
critical that much of the key application logic takes place on the client side. The
application design may deliberately sacrifice security in favor of speed, perhaps
in the mistaken belief that traders are trusted users, or that the browser exten-
sion includes its own defenses. Recalling the core security problem discussed
in Chapter 2, and the earlier sections of this chapter, we know that the concept
of a client-side component defending its business logic is impossible.

Browser extensions can capture data in various ways — via input forms
and in some cases by interacting with the client operating system’s filesystem
or registry. They can perform arbitrarily complex validation and manipula-
tion of captured data before submission to the server. Furthermore, because
their internal workings are less transparent than HTML forms and JavaScript,
developers are more likely to assume that the validation they perform cannot
be circumvented. For this reason, browser extensions are often a fruitful target
for discovering vulnerabilities within web applications.

A classic example of a browser extension that applies controls on the client
side is a casino component. Given what we have observed about the fallible
nature of client-side controls, the idea of implementing an online gambling
application using a browser extension that runs locally on a potential attacker’s

134

Chapter 5 = Bypassing Client-Side Controls

machine is intriguing. If any aspect of the game play is controlled within the
client instead of by the server, an attacker could manipulate the game with
precision to improve the odds, change the rules, or alter the scores submitted
to the server. Several kinds of attacks could occur in this scenario:

m The client component could be trusted to maintain the game state. In this
instance, local tampering with the game state would give an attacker an
advantage in the game.

m An attacker could bypass a client-side control and perform an illegal action
designed to give himself an advantage within the game.

m An attacker could find a hidden function, parameter, or resource that,
when invoked, allows illegitimate access to a server-side resource.

m If the game involves any peers, or a house player, the client component
could be receiving and processing information about other players that,
if known, could be used to the attacker’s advantage.

Common Browser Extension Technologies

The browser extension technologies you are most likely to encounter are Java
applets, Flash, and Silverlight. Because these are competing to achieve similar
goals, they have similar properties in their architecture that are relevant to
security:

m They are compiled to an intermediate bytecode.

m They execute within a virtual machine that provides a sandbox environ-
ment for execution.

m They may use remoting frameworks employing serialization to transmit
complex data structures or objects over HTTP.

Java

Java applets run in the Java Virtual Machine (JVM) and are subject to the sand-
boxing applied by the Java Security Policy. Because Java has existed since early
in the web’s history, and because its core concepts have remained relatively
unchanged, a large body of knowledge and tools are available for attacking and
defending Java applets, as described later in this chapter.

Flash

Flash objects run in the Flash virtual machine, and, like Java applets, are sand-
boxed from the host computer. Once used largely as a method of delivering
animated content, Flash has moved on. With newer versions of ActionScript,

Chapter 5 = Bypassing Client-Side Controls

135

Flash is now squarely billed as capable of delivering full-blown desktop applica-
tions. A key recent change in Flash is ActionScript 3 and its remoting capability
with Action Message Format (AMF) serialization.

Silverlight

Silverlight is Microsoft’s alternative to Flash. It is designed with the similar goal
of enabling rich, desktop-like applications, allowing web applications to provide
a scaled-down .NET experience within the browser, in a sandboxed environment.
Technically, Silverlight applications can be developed in any .NET-compliant
language from C# to Python, although C# is by far the most common.

Approaches to Browser Extensions

You need to employ two broad techniques when targeting applications that use
browser extension components.

First, you can intercept and modify the requests made by the component
and the responses received from the server. In many cases, this is the quickest
and easiest way to start testing the component, but you may encounter several
limitations. The data being transmitted may be obfuscated or encrypted, or may
be serialized using schemes that are specific to the technology being used. By
looking only at the traffic generated by the component, you may overlook some
key functionality or business logic that can be discovered only by analyzing
the component itself. Furthermore, you may encounter obstacles to using your
intercepting proxy in the normal way; however, normally these can be circum-
vented with some careful configuration, as described later in this chapter.

Second, you can target the component itself directly and attempt to decom-
pile its bytecode to view the original source, or interact dynamically with the
component using a debugger. This approach has the advantage that, if done
thoroughly, you identify all the functionality that the component supports or
references. It also allows you to modify key data submitted in requests to the
server, regardless of any obfuscation or encryption mechanisms used for data
in transit. A disadvantage of this approach is that it can be time-consuming
and may require detailed understanding of the technologies and programming
languages used within the component.

In many cases, a combination of both these techniques is appropriate. The
following sections look at each one in more detail.

Intercepting Traffic from Browser Extensions

If your browser is already configured to use an intercepting proxy, and the
application loads a client component using a browser extension, you may see
requests from this component passing through your proxy. In some cases, you

136

Chapter 5 = Bypassing Client-Side Controls

don’t need to do anything more to begin testing the relevant functionality,
because you can intercept and modify the component’s requests in the usual way.

In the context of bypassing client-side input validation that is implemented in
a browser extension, if the component submits the validated data to the server
transparently, this data can be modified using an intercepting proxy in the same
way as already described for HTML form data. For example, a browser exten-
sion supporting an authentication mechanism might capture user credentials,
perform some validation on these, and submit the values to the server as plain-
text parameters within the request. The validation can be circumvented easily
without performing any analysis or attack on the component itself.

In other cases, you may encounter various obstacles that make your testing
difficult, as described in the following sections.

Handling Serialized Data

Applications may serialize data or objects before transmitting them within HTTP
requests. Although it may be possible to decipher some of the string-based data
simply by inspecting the raw serialized data, in general you need to unpack the
serialized data before it can be fully understood. And if you want to modify the
data to interfere with the application’s processing, first you need to unpack the
serialized content, edit it as required, and reserialize it correctly. Simply edit-
ing the raw serialized data will almost certainly break the format and cause a
parsing error when the application processes the message.

Each browser extension technology comes with its own scheme for serializing
data within HTTP messages. In general, therefore, you can infer the serializa-
tion format based on the type of client component that is being employed, but
the format usually is evident in any case from a close inspection of the relevant
HTTP messages.

Java Serialization

The Java language contains native support for object serialization, and Java
applets may use this to send serialized data structures between the client and
server application components. Messages containing serialized Java objects
usually can be identified because they have the following content-Type header:

Content-Type: application/x-java-serialized-object

Having intercepted the raw serialized data using your proxy, you can deserialize
it using Java itself to gain access to the primitive data items it contains.

DSer is a handy plug-in to Burp Suite that provides a framework for viewing
and manipulating serialized Java objects that have been intercepted within Burp.
This tool converts the primitive data within the intercepted object into XML
format for easy editing. When you have modified the relevant data, DSer then
reserializes the object and updates the HTTP request accordingly.

Chapter 5 = Bypassing Client-Side Controls

137

You can download DSer, and learn more about how it works, at the follow-
ing URL:

http://blog.andlabs.org/2010/09/re-visiting-java-de-serialization-it.html

Flash Serialization

Flash uses its own serialization format that can be used to transmit complex
data structures between server and client components. Action Message Format
(AMF) normally can be identified via the following content-Type header:

Content-Type: application/x-amf

Burp natively supports AMF format. When it identifies an HTTP request or
response containing serialized AMF data, it unpacks the content and presents
this in tree form for viewing and editing, as shown in Figure 5-5. When you have
modified the relevant primitive data items within the structure, Burp reserial-
izes the message, and you can forward it to the server or client to be processed.

burp suite professional v1.2.14 @E‘ﬁ
burp intruder repeater window help
[target | prowy | spider | scanner | intruder |repeater | sequencer | decoder | comparer | options | aleris |
1
| S | nost |www.myapp.com |
request
raw | params | headers | hex [amf
‘ type ‘ value
B4 AMF version 0 =
o Sl body 0
a target string LoginHandler
a response string]
a response method string LoginHandler =
¢ [] data array
a [0] string user
a [l string [password
[21 null 1
T3 boolean false
114 nurber 1.0
1[4 number 1.4817493139431134E16
1 [6] number 38.0
11 number 2.0
[l null
o [1[9] array =
| P e e P e e P e e PP
response
| 0matches
ready length:

Figure 5-5: Burp Suite supports AMF format and lets you view and edit the
deserialized data

138

Chapter 5 = Bypassing Client-Side Controls

Silverlight Serialization

Silverlight applications can make use of the Windows Communication Foundation
(WCF) remoting framework that is built in to the NET platform. Silverlight client
components using WCF typically employ Microsoft’s NET Binary Format for
SOAP (NBEFS), which can be identified via the following content-Type header:

Content-Type: application/soap+msbinl

A plug-in is available for Burp Proxy that automatically deserializes NBFS-
encoded data before it is displayed in Burp’s interception window. After you
have viewed or edited the decoded data, the plug-in re-encodes the data before
it is forwarded to the server or client to be processed.

The WCF binary SOAP plug-in for Burp was produced by Brian Holyfield
and is available to download here:

www.gdssecurity.com/1/b/2009/11/19/wcf-binary-soap-plug-in-for-burp/

Obstacles to Intercepting Traffic from Browser Extensions

If you have set up your browser to use an intercepting proxy, you may find that
requests made by browser extension components are not being intercepted by
your proxy, or are failing. This problem usually is due to issues with the com-
ponent’s handling of HTTP proxies or SSL (or both). Typically it can be handled
via some careful configuration of your tools.

The first problem is that the client component may not honor the proxy con-
figuration you have specified in your browser or your computer’s settings. This
is because components may issue their own HTTP requests, outside of the APIs
provided by the browser itself or the extension framework. If this is happen-
ing, you can still intercept the component’s requests. You need to modify your
computer’s hosts file to achieve the interception and configure your proxy to
support invisible proxying and automatic redirection to the correct destination
host. See Chapter 20 for more details on how to do this.

The second problem is that the client component may not accept the SSL
certificate being presented by your intercepting proxy. If your proxy is using a
generic self-signed certificate, and you have configured your browser to accept it,
the browser extension component may reject the certificate nonetheless. This may
be because the browser extension does not pick up the browser’s configuration
for temporarily trusted certificates, or it may be because the component itself
programmatically requires that untrusted certificates should not be accepted.
In either case, you can circumvent this problem by configuring your proxy to
use a master CA certificate, which is used to sign valid per-host certificates for
each site you visit, and installing the CA certificate in your computer’s trusted
certificate store. See Chapter 20 for more details on how to do this.

In some rare cases you may find that client components are communicating
using a protocol other than HTTP, which simply cannot be handled using an

Chapter 5 = Bypassing Client-Side Controls

139

intercepting proxy. In these situations, you still may be able to view and modify
the affected traffic by using either a network sniffer or a function-hooking tool.
One example is Echo Mirage, which can inject into a process and intercept calls
to socket APIs, allowing you to view and modify data before it is sent over the
network. Echo Mirage can be downloaded from the following URL:

www . bindshell .net/tools/echomirage

1. Ensure that your proxy is correctly intercepting all traffic from the browser
extension. If necessary, use a sniffer to identify any traffic that is not
being proxied correctly.

2. If the client component uses a standard serialization scheme, ensure that
you have the tools necessary to unpack and modify it. If the component
is using a proprietary encoding or encryption mechanism, you need to
decompile or debug the component to fully test it.

3. Review responses from the server that trigger key client-side logic. Often,
timely interception and modification of a server response may allow you
to “unlock” the client GUI, making it easy to reveal and then perform
complex or multistaged privileged actions.

4. If the application performs any critical logic or events that the client com-
ponent should not be trusted to perform (such as drawing a card or rolling
dice in a gambling application), look for any correlation between execu-
tion of critical logic and communication with the server. If the client does
not communicate with the server to determine the outcome of the event,
the application is definitely vulnerable.

Decompiling Browser Extensions

By far the most thorough method of attacking a browser extension component
is to decompile the object, perform a full review of the source code, and if nec-
essary modify the code to change the object’s behavior, and recompile it. As
already discussed, browser extensions are compiled into bytecode. Bytecode is a
high-level platform-independent binary representation that can be executed by
the relevant interpreter (such as the Java Virtual Machine or Flash Player), and
each browser extension technology uses its own bytecode format. As a result,
the application can run on any platform that the interpreter itself can run on.

The high-level nature of bytecode representation means that it is always
theoretically possible to decompile the bytecode into something resembling the
original source code. However, various defensive techniques can be deployed to
cause the decompiler to fail, or to output decompiled code that is very difficult
to follow and interpret.

140

Chapter 5 = Bypassing Client-Side Controls

Subject to these obfuscation defenses, decompiling bytecode normally is the
preferable route to understanding and attacking browser extension components.
This allows you to review business logic, assess the full functionality of the
client-side application, and modify its behavior in targeted ways.

Downloading the Bytecode

The first step is to download the executable bytecode for you to start working
on. In general, the bytecode is loaded in a single file from a URL specified within
the HTML source code for application pages that run the browser extension.
Java applets generally are loaded using the <applet> tag, and other components
generally are loaded using the <object> tag. For example:

<applet code="CheckQuantity.class" codebase="/scripts"
id="CheckQuantityApplet">
</applet>

In some cases, the URL that loads the bytecode may be less immediately obvi-
ous, since the component may be loaded using various wrapper scripts provided
by the different browser extension frameworks. Another way to identify the
URL for the bytecode is to look in your proxy history after your browser has
loaded the browser extension. If you take this approach, you need to be aware
of two potential obstacles:

m Some proxy tools apply filters to the proxy history to hide from view items
such as images and style sheet files that you generally are less interested
in. If you cannot find a request for the browser extension bytecode, you
should modify the proxy history display filter so that all items are visible.

m Browsers usually cache the downloaded bytecode for extension components
more aggressively than they do for other static resources such as images.
If your browser has already loaded the bytecode for a component, even
doing a full refresh for a page that uses the component may not cause
the browser to request the component again. In this eventuality, you may
need to fully clear your browser’s cache, shut down every instance of the
browser, and then start a fresh browser session to force your browser to
request the bytecode again.

When you have identified the URL for the browser extension’s bytecode, usu-
ally you can just paste this URL into your browser’s address bar. Your browser
then prompts you to save the bytecode file on your local filesystem.

m If you have identified the request for the bytecode in your Burp Proxy
history, and the server’s response contains the full bytecode (and not a ref-
erence to an earlier cached copy), you can save the bytecode directly to file

Chapter 5 = Bypassing Client-Side Controls

141

from within Burp. The most reliable way to do this is to select the Headers tab
within the response viewer, right-click the lower pane containing the response
body, and select Copy to File from the context menu.

Decompiling the Bytecode

Bytecode usually is distributed in a single-file package, which may need to be
unpacked to obtain the individual bytecode files for decompilation into source
code.

Java applets normally are packaged as . jar (Java archive) files, and Silverlight
objects are packaged as .xap files. Both of these file types use the zip archive
format, so you can easily unpack them by renaming the files with the .zip
extension and then using any zip reader to unpack them into the individual files
they contain. The Java bytecode is contained in . class files, and the Silverlight
bytecode is contained in .d11 files. After unpacking the relevant file package,
you need to decompile these files to obtain source code.

Flash objects are packaged as . swf files and don’t require any unpacking
before you use a decompiler.

To perform the actual bytecode decompilation, you need to use some specific
tools, depending on the type of browser extension technology that is being used,
as described in the following sections.

Java Tools

Java bytecode can be decompiled to into Java source code using a tool called
Jad (the Java decompiler), which is available from:

www .varaneckas.com/jad

Flash Tools
Flash bytecode can be decompiled into ActionScript source code. An alternative
approach, which is often more effective, is to disassemble the bytecode into a
human-readable form, without actually fully decompiling it into source code.
To decompile and disassemble Flash, you can use the following tools:
m Flasm — www. nowrap.de/flasm

m Flare — www.nowrap.de/flare

m SWEScan — www.hp. com/go/swfscan (this works for Actionscript 2 and 3)

Silverlight Tools

Silverlight bytecode can be decompiled into source code using a tool called
NET Reflector, which is available from:

www . red-gate.com/products/dotnet-development/reflector/

142

Chapter 5 = Bypassing Client-Side Controls

Working on the Source Code

Having obtained the source code for the component, or something resembling
it, you can take various approaches to attacking it. The first step generally is
to review the source code to understand how the component works and what
functionality it contains or references. Here are some items to look for:

m Input validation or other security-relevant logic and events that occur
on the client side

m Obfuscation or encryption routines being used to wrap user-supplied
data before it is sent to the server

m “Hidden” client-side functionality that is not visible in your user interface
but that you might be able to unlock by modifying the component

m References to server-side functionality that you have not previously identi-
fied via your application mapping

Often, reviewing the source code uncovers some interesting functions
within the component that you want to modify or manipulate to identify
potential security vulnerabilities. This may include removing client-side
input validation, submitting nonstandard data to the server, manipulating
client-side state or events, or directly invoking functionality that is present
within the component.

You can modify the component’s behavior in several ways, as described in
the following sections.

Recompiling and Executing Within the Browser

You can modify the decompiled source code to change the component’s behav-
ior, recompile it to bytecode, and execute the modified component within your
browser. This approach is often preferred when you need to manipulate key
client-side events, such as the rolling of dice in a gaming application.

To perform the recompilation, you need to use the developer tools that are
relevant to the technology you are using;:

m For Java, use the javac program in the JDK to recompile your modified
source code.

m For Flash, you can use flasm to reassemble your modified bytecode or
one of the Flash development studios from Adobe to recompile modified
ActionScript source code.

m For Silverlight, use Visual Studio to recompile your modified source code.
Having recompiled your source code into one or more bytecode files, you

may need to repackage the distributable file if required for the technology
being used. For Java and Silverlight, replace the modified bytecode files in your

Chapter 5 = Bypassing Client-Side Controls

143

unpacked archive, repackage using a zip utility, and then change the extension
back to .jar or .xap as appropriate.

The final step is to load your modified component into your browser so that
your changes can take effect within the application you are testing. You can
achieve this in various ways:

m If you can find the physical file within your browser’s on-disk cache that
contains the original executable, you can replace this with your modified
version and restart your browser. This approach may be difficult if your
browser does not use a different individual file for each cached resource
or if caching of browser extension components is implemented only in
memory.

m Using your intercepting proxy, you can modify the source code of the
page that loads the component and specify a different URL, pointing to
either the local filesystem or a web server that you control. This approach
normally is difficult because changing the domain from which the com-
ponent is loaded may violate the browser’s same origin policy and
may require reconfiguring your browser or other methods to weaken
this policy.

m You can cause your browser to reload the component from the original
server (as described in the earlier section “Downloading the Bytecode”),
use your proxy to intercept the response containing the executable, and
replace the body of the message with your modified version. In Burp
Proxy, you can use the Paste from File context menu option to achieve
this. This approach usually is the easiest and least likely to run into the
problems described previously.

Recompiling and Executing Outside the Browser

In some cases, it is not necessary to modify the component’s behavior while it
is being executed. For example, some browser extension components validate
user-supplied input and then obfuscate or encrypt the result before sending
it to the server. In this situation, you may be able to modify the component to
perform the required obfuscation or encryption on arbitrary unvalidated input
and simply output the result locally. You can then use your proxy to intercept the
relevant request when the original component submits the validated input, and
you can replace this with the value that was output by your modified component.

To carry out this attack, you need to change the original executable, which is
designed to run within the relevant browser extension, into a standalone pro-
gram that can be run on the command line. The way this is done depends on
the programming language being used. For example, in Java you simply need
to implement a main method. The section “Java Applets: A Worked Example”
gives an example of how to do this.

144

Chapter 5 = Bypassing Client-Side Controls

Manipulating the Original Component Using JavaScript

In some cases, it is not necessary to modify the component’s bytecode. Instead,
you may be able to achieve your objectives by modifying the JavaScript within
the HTML page that interacts with the component.

Having reviewed the component’s source code, you can identify all its public
methods that can be invoked directly from JavaScript, and the way in which
parameters to those methods are handled. Often, more methods are available
than are ever called from within application pages, and you may also discover
more about the purpose and handling of parameters to these methods.

For example, a component may expose a method that can be invoked to enable
or disable parts of the visible user interface. Using your intercepting proxy, you
may be able to edit the HTML page that loads the component and modify or
add some JavaScript to unlock parts of the interface that are hidden.

1. Use the techniques described to download the component’s bytecode,
unpack it, and decompile it into source code.

2. Review the relevant source code to understand what processing is being
performed.

3. If the component contains any public methods that can be manipulated to
achieve your objective, intercept an HTML response that interacts with the
component, and add some JavaScript to invoke the appropriate methods
using your input.

4. If not, modify the component’s source code to achieve your objective, and
then recompile it and execute it, either in your browser or as a standalone
program.

5. If the component is being used to submit obfuscated or encrypted data to
the server, use your modified version of the component to submit various
suitably obfuscated attack strings to the server to probe for vulnerabili-
ties, as you would for any other parameter.

Coping with Bytecode Obfuscation

Because of the ease with which bytecode can be decompiled to recover its
source, various techniques have been developed to obfuscate the bytecode itself.
Applying these techniques results in bytecode that is harder to decompile or that
decompiles to misleading or invalid source code that may be very difficult to
understand and impossible to recompile without substantial effort. For example,
consider the following obfuscated Java source:

package myapp.interface;

import myapp.class.public;
import myapp.throw.throw;

Chapter 5 = Bypassing Client-Side Controls

145

import if.if.if.if.else;

import java.awt.event.KeyEvent;

public class double extends public implements strict

{

public double(j jl1)
{
_mthif () ;
_fldif = ji;
}
private void _mthif (ActionEvent actionevent)
{
_mthif (((KeyEvent) (null)));
switch(_fldif._mthnew()._£f1dif)
{
case 0:
_fldfloat.setEnabled(false) ;
_fldboolean.setEnabled(false) ;
_fldinstanceof.setEnabled(false) ;
_fldint.setEnabled(false) ;
break;

The obfuscation techniques commonly employed are as follows:

m Meaningful class, method, and member variable names are replaced

with meaningless expressions such as a, b, and c. This forces the reader
of decompiled code to identify the purpose of each item by studying how
it is used. This can make it difficult to keep track of different items while
tracing them through the source code.

Going further, some obfuscators replace item names with keywords
reserved for the language, such as new and int. Although this technically
renders the bytecode illegal, most virtual machines (VMs) tolerate the
illegal code, and it executes normally. However, even if a decompiler
can handle the illegal bytecode, the resulting source code is even less
readable than that just described. More importantly, the source cannot
be recompiled without extensive reworking to consistently rename
illegally named items.

Many obfuscators strip unnecessary debug and meta-information from
the bytecode, including source filenames and line numbers (which makes
stack traces less informative), local variable names (which frustrates debug-
ging), and inner class information (which stops reflection from working

properly).
Redundant code may be added that creates and manipulates various kinds

of data in significant-looking ways but that is autonomous from the real
data actually being used by the application’s functionality.

146 Chapter 5 = Bypassing Client-Side Controls

m The path of execution through code can be modified in convoluted ways,
through the use of jump instructions, so that the logical sequence of execu-
tion is hard to discern when reading through the decompiled source.

m [llegal programming constructs may be introduced, such as unreachable
statements and code paths with missing return statements. Most VMs
tolerate these phenomena in bytecode, but the decompiled source cannot
be recompiled without correcting the illegal code.

Effective tactics for coping with bytecode obfuscation depend on the tech-
niques used and the purpose for which you are analyzing the source. Here are
some suggestions:

1. You can review a component for public methods without fully under-
standing the source. It should be obvious which methods can be invoked
from JavaScript, and what their signatures are, enabling you to test the
behavior of the methods by passing in various inputs.

2. If class, method, and member variable names have been replaced with
meaningless expressions (but not special words reserved by the pro-
gramming language), you can use the refactoring functionality built into
many IDEs to help yourself understand the code. By studying how items
are used, you can start to assign them meaningful names. If you use the
rename tool within the IDE, it does a lot of work for you, tracing the item'’s
use throughout the codebase and renaming it everywhere.

3. You can actually undo a lot of obfuscation by running the obfuscated byte-
code through an obfuscator a second time and choosing suitable options.
A useful obfuscator for Java is Jode. It can remove redundant code paths
added by another obfuscator and facilitate the process of understanding
obfuscated names by assigning globally unique names to items.

Java Applets: A Worked Example

We will now consider a brief example of decompiling browser extensions by
looking at a shopping application that performs input validation within a Java

applet.
In this example, the form that submits the user’s requested order quantity

looks like this:

<form method="post" action="Shop.aspx?prod=2" onsubmit="return
validateForm(this) ">

<input type="hidden" name="obfpad"
value="k1GSB8XIxOWFvIKGgilePdgaxHIsU5RnojwPdBRgZuiXSB3TgkupaFigj
UQmB8CIPS5HIXpidrPOuQPw630gZ2vbyiOevPrkxFiuUxA8Gn30olep2Lax6IyuyEU

Chapter 5 = Bypassing Client-Side Controls

147

DI9SmMG7c" >
<script>
function validateForm(theForm)
{
var obfquantity =
document .CheckQuantityApplet.doCheck (
theForm.quantity.value, theForm.obfpad.value) ;
if (obfquantity == undefined)
{
alert ('Please enter a valid quantity.');
return false;
}
theForm.quantity.value = obfquantity;
return true;
}
</script>
<applet code="CheckQuantity.class" codebase="/scripts" width="0"
height="0"
id="CheckQuantityApplet"></applet>
Product: Samsung Multiverse

Price: 399

Quantity: <input type="text" name="quantity"> (Maximum quantity is 50)

<input type="submit" value="Buy">

</form>

When the form is submitted with a quantity of 2, the following request is made:

POST /shop/154/Shop.aspx?prod=2 HTTP/1.1

Host: mdsec.net

Content-Type: application/x-www-form-urlencoded
Content-Length: 77

obfpad=k1GSB8X9Ix0WFvIKGgilePdgaxHIsUS5RnojwPdBRgZuiXSB3TgkupaFigjUQm8CIP5
HIxpidrPOuQ
Pw630gZ2vbyiOevPrkxFiuUxA8Gn30olep2Lax6IyuyEUDISmG7c&quantity=4b282c510f
776a405£465

877090058575£445b536545401e4268475e105b2d15055¢5d5204161000

As you can see from the HTML code, when the form is submitted, the vali-
dation script passes the user’s supplied quantity, and the value of the obfpad
parameter, to a Java applet called checkguantity. The applet apparently performs
the necessary input validation and returns to the script an obfuscated version
of the quantity, which is then submitted to the server.

Since the server-side application confirms our order for two units, it is clear
that the quantity parameter somehow contains the value we have requested.
However, if we try to modify this parameter without knowledge of the obfusca-
tion algorithm, the attack fails, presumably because the server fails to unpack
our obfuscated value correctly.

148

Chapter 5 = Bypassing Client-Side Controls

In this situation, we can use the methodology already described to decompile
the Java applet and understand how it functions. First, we need to download
the bytecode for the applet from the URL specified in the applet tag of the
HTML page:

/scripts/CheckQuantity.class

Since the executable is not packaged as a . jar file, there is no need to unpack
it, and we can run Jad directly on the downloaded .c1lass file:

C:\tmp>jad CheckQuantity.class

Parsing CheckQuantity.class...The class file version is 50.0 (only 45.3,
46.0 and 47.0 are supported)

Generating CheckQuantity.jad

Couldn't fully decompile method doCheck

Couldn't resolve all exception handlers in method doCheck

Jad outputs the decompiled source code as a . jad file, which we can view in
any text editor:

// Decompiled by Jad v1.5.8f. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http://www.kpdus.com/jad.html

// Decompiler options: packimports(3)

// Source File Name: CheckQuantity.java

import java.applet.Applet;

public class CheckQuantity extends Applet
{

public CheckQuantity ()

{

}

public String doCheck(String s, String sl)
{

int 1 = 0;
i = Integer.parselnt(s);
if(i <=0 || i > 50)

return null;
break MISSING_BLOCK_LABEL_26;
Exception exception;

exception;

return null;

String s2 = (new StringBuilder ()) .append("rand=") .append
(Math.random()) .append ("&g=") .append (Integer.toString (i)) .append

("&checked=true") .toString() ;
StringBuilder stringbuilder = new StringBuilder() ;

for(int j = 0; j < s2.length(); j++)
{
String s3 = (new StringBuilder()) .append('0') .append
(Integer.toHexString ((byte)sl.charAt((j * 19 + 7) % sl.length()) *

s2.charAt(j))) .toString() ;

Chapter 5 = Bypassing Client-Side Controls

149

int k = s3.length();
if(k > 2)

s3 = s3.substring(k - 2, k);
stringbuilder.append(s3) ;

return stringbuilder.toString() ;

As you can see from the decompiled source, Jad has done a reasonable job of
decompiling, and the source code for the applet is simple. When the docheck
method is called with the user-supplied quantity and application-supplied
obfpad parameters, the applet first validates that the quantity is a valid num-
ber and is between 1 and 50. If so, it builds a string of name/value pairs using
the URL querystring format, which includes the validated quantity. Finally, it
obfuscates this string by performing XOR operations against characters with the
obfpad string that the application supplied. This is a fairly easy and common
way of adding some superficial obfuscation to data to prevent trivial tampering.

We have described various approaches you can take when you have decom-
piled and analyzed the source code for a browser extension component. In this
case, the easiest way to subvert the applet is as follows:

1. Modify the docheck method to remove the input validation, allowing you
to supply an arbitrary string as your quantity.

2. Add a main method, allowing you to execute the modified component
from the command line. This method simply calls the modified docheck
method and prints the obfuscated result to the console.

When you have made these changes, the modified source code is as follows:

public class CheckQuantity

{
public static void main(String[] a)
{

System.out.println(doCheck ("999",
"k1GSB8X9Ix0WFVvIKGgilePdgaxHIsUS5RnojwPdBRgZuiXSB3TgkupaFigjUQm8CIP5HIXpi
drPOuQPw630gZ2vbyiOevPrkxFiuUxA8Gn30olep2Lax6IyuyEUD9 SmG7c")) ;

}

public static String doCheck(String s, String sl)
{
String s2 = (new StringBuilder ()) .append("rand=") .append
(Math.random()) .append("&g=") .append(s) .append
("&checked=true") .toString() ;
StringBuilder stringbuilder = new StringBuilder () ;
for(int j = 0; j < s2.length(); Jj++)
{
String s3 = (new StringBuilder()) .append('0') .append

150 Chapter 5 = Bypassing Client-Side Controls

(Integer.toHexString ((byte)sl.charAt((j * 19 + 7) % sl.length()) *
s2.charAt(j))) .toString() ;

int k = s3.length();

if(k > 2)

s3 = s3.substring(k - 2, k);
stringbuilder.append(s3) ;
}
return stringbuilder.toString() ;

}
}

This version of the modified component provides a valid obfuscated string
for the arbitrary quantity of 999. Note that you could use nonnumeric input
here, allowing you to probe the application for various kinds of input-based
vulnerabilities.

m The Jad program saves its decompiled source code with the . jad exten-
sion. However, if you want to modify and recompile the source code, you need
to rename each source file with the . java extension.

All that remains is to recompile the source code using the javac compiler
that comes with the Java SDK, and then execute the component from the
command line:

C:\tmp>javac CheckQuantity.java

C:\tmp>java CheckQuantity
4b282c510£776a455d425a7808015c555£42585460464d1e42684c4l14al52ble0b5a520a
145911171609

Our modified component has now performed the necessary obfuscation
on our arbitrary quantity of 999. To deliver the attack to the server, we simply
need to submit the order form in the normal way using valid input, intercept
the resulting request using our proxy, and substitute the obfuscated quantity
with the one provided by our modified component. Note that if the application
issues a new obfuscation pad each time the order form is loaded, you need to
ensure that the obfuscation pad being submitted back to the server matches the
one that was used to obfuscate the quantity also being submitted.

TRY IT!

These examples demonstrate the attack just described and the corresponding
attacks using Silverlight and Flash technologies:

http://mdsec.net/shop/154/
http://mdsec.net/shop/167/
http://mdsec.net/shop/179/

Chapter 5 = Bypassing Client-Side Controls

151

Attaching a Debugger

Decompilation is the most complete method of understanding and compromis-
ing a browser extension. However, in large and complex components containing
tens of thousands of lines of code, it is nearly always much quicker to observe the
component during execution, correlating methods and classes with key actions
within the interface. This approach also avoids difficulties that may arise with
interpreting and recompiling obfuscated bytecode. Often, achieving a specific
objective is as simple as executing a key function and altering its behavior to
circumvent the controls implemented within the component.

Because the debugger is working at the bytecode level, it can be easily used
to control and understand the flow of execution. In particular, if source code
can be obtained through decompilation, breakpoints can be set on specific
lines of code, allowing the understanding gained through decompilation to be
supported by practical observation of the code path taken during execution.

Although efficient debuggers are not fully matured for all the browser exten-
sion technologies, debugging is well supported for Java applets. By far the best
resource for this is JavaSnoop, a Java debugger that can integrate Jad to decom-
pile source code, trace variables through an application, and set breakpoints on
methods to view and modify parameters. Figure 5-6 shows JavaSnoop being
used to hook directly into a Java applet running in the browser. Figure 5-7
shows JavaSnoop being used to tamper with the return value from a method.

Add new function hook @

Class: |TradeApp | Browse.., |

Method: |int StockSelector (String) -
|int EventSelected(String)
|int UTLaunch(String)
| void HelperUL{String)
| void LoginHelper{String)

[T Apply rule to subdasses | Search for function. .. | | Add New Hook |

Figure 5-6: JavaSnoop can hook directly into an
applet running in the browser

.:ma It's best to run JavaSnoop before the target applet is loaded.
JavaSnoop turns off the restrictions set by your Java security policy so that it
can operate on the target. In Windows, it does this by granting all permissions
to all Java programs on your system, so ensure that JavaSnoop shuts down
cleanly and that permissions are restored when you are finished working.

An alternative tool for debugging Java is JSwat, which is highly configu-
rable. In large projects containing many class files, it is sometimes preferable

152

Chapter 5 = Bypassing Client-Side Controls

to decompile, modify, and recompile a key class file and then use JSwat to hot-
swap it into the running application. To use J[Swat, you need to launch an applet
using the appletviewer tool included in the JDK and then connect JSwat to it.
For example, you could use this command:

appletviewer -J-Xdebug -J-Djava.compiler=NONE -J-
Xrunjdwp: transport=dt_socket,
server=y, suspend=n, address=5000 appletpage.htm

B Javasnoop [E=E=a)
File Class Management Scripting Settings Help
Target Program Setup Status
once: | SNOOPING

— e

Start & Snoop Target Program Attach & Snoop Process. I Stop Snooping] I ARG l
Function Hooks
Conditi
Enabled ClassMethod Inheritable sk

TradeApp.getUID() Enabled Parameter Operator Operand

(@ Always hook () Hook IF (7 Don't hook IF Add Condition

[AddMewHook... | [Delete Hook
On execution [erzaamh
Console | Decompiled Code
[Print parameters || Print stack trace
E [2011/01/20 14:38:53] Return value tampering request from: TradeApp.getUID(int) I
[F]...to console
Edit return value = |
1.0 to file:
1 Class: TradeApp
! Method: getUID
[] Run custom script
Return value
§ Type Value
Tamper with parameters
[¥] Tamper with return value
[Pause program
Sent agent updated rules at 2:38:51 PM { e e R o] ‘ e J

Figure 5-7: Once a suitable method has been identified, JavaSnoop can be used to
tamper with the return value from the method

When you're working on Silverlight objects, you can use the Silverlight Spy
tool to monitor the component’s execution at runtime. This can greatly help
correlate relevant code paths to events that occur within the user interface.
Silverlight Spy is available from the following URL:

http://firstfloorsoftware.com/SilverlightSpy/

Chapter 5 = Bypassing Client-Side Controls

153

Native Client Components

Some applications need to perform actions within the user’s computer that cannot
be conducted from inside a browser-based VM sandbox. In terms of client-side
security controls, here are some examples of this functionality:

m Verifying that a user has an up-to-date virus scanner
m Verifying that proxy settings and other corporate configuration are in force

m Integrating with a smartcard reader

Typically, these kinds of actions require the use of native code components,
which integrate local application functionality with web application functional-
ity. Native client components are often delivered via ActiveX controls. These are
custom browser extensions that run outside the browser sandbox.

Native client components may be significantly harder to decipher than other
browser extensions, because there is no equivalent to intermediate bytecode.
However, the principles of bypassing client-side controls still apply, even if this
requires a different toolset. Here are some examples of popular tools used for
this task:

m OllyDbg is a Windows debugger that can be used to step through native
executable code, set breakpoints, and apply patches to executables, either
on disk or at runtime.

m IDA Pro is a disassembler that can produce human-readable assembly
code from native executable code on a wide variety of platforms.

Although a full-blown description is outside the scope of this book, the fol-
lowing are some useful resources if you want to know more about reverse
engineering of native code components and related topics:

m Reversing: Secrets of Reverse Engineering by Eldad Eilam
m Hacker Disassembling Uncovered by Kris Kaspersky

m The Art of Software Security Assessment by Mark Dowd, John McDonald,
and Justin Schuh

m Fuzzing for Software Security Testing and Quality Assurance (Artech House
Information Security and Privacy) by Ari Takanen, Jared DeMott, and
Charlie Miller

m The IDA Pro Book: The Unofficial Guide to the World’s Most Popular Disassembler
by Chris Eagle

m www.acm.uiuc.edu/sigmil/RevEng

m www.uninformed.org/?v=1&a=7

154

Chapter 5 = Bypassing Client-Side Controls

Handling Client-Side Data Securely

As you have seen, the core security problem with web applications arises because
client-side components and user input are outside the server’s direct control.
The client, and all the data received from it, is inherently untrustworthy.

Transmitting Data Via the Client

Many applications leave themselves exposed because they transmit critical data
such as product prices and discount rates via the client in an unsafe manner.

If possible, applications should avoid transmitting this kind of data via the
client. In virtually any conceivable scenario, it is possible to hold such data on
the server and reference it directly from server-side logic when needed. For
example, an application that receives users’ orders for various products should
allow users to submit a product code and quantity and look up the price of each
requested product in a server-side database. There is no need for users to submit
the prices of items back to the server. Even where an application offers different
prices or discounts to different users, there is no need to depart from this model.
Prices can be held within the database on a per-user basis, and discount rates
can be stored in user profiles or even session objects. The application already
possesses, server-side, all the information it needs to calculate the price of a
specific product for a specific user. It must. Otherwise, it would be unable, on
the insecure model, to store this price in a hidden form field.

If developers decide they have no alternative but to transmit critical data via
the client, the data should be signed and/or encrypted to prevent user tamper-
ing. If this course of action is taken, there are two important pitfalls to avoid:

m Some ways of using signed or encrypted data may be vulnerable to
replay attacks. For example, if the product price is encrypted before
being stored in a hidden field, it may be possible to copy the encrypted
price of a cheaper product and submit it in place of the original price.
To prevent this attack, the application needs to include sufficient context
within the encrypted data to prevent it from being replayed in a differ-
ent context. For example, the application could concatenate the product
code and price, encrypt the result as a single item, and then validate
that the encrypted string submitted with an order actually matches the
product being ordered.

m If users know and/or control the plaintext value of encrypted strings that
are sent to them, they may be able to mount various cryptographic attacks
to discover the encryption key the server is using. Having done this, they
can encrypt arbitrary values and fully circumvent the protection offered
by the solution.

Chapter 5 = Bypassing Client-Side Controls

155

In applications running on the ASP.NET platform, it is advisable never to
store any customized data within the viewstate — especially anything sensi-
tive that you would not want to be displayed on-screen to users. The option to
enable the viewstate MAC should always be activated.

Validating Client-Generated Data

Data generated on the client and transmitted to the server cannot in principle
be validated securely on the client:

m Lightweight client-side controls such as HTML form fields and JavaScript
can be circumvented easily and provide no assurance about the input that
the server receives.

m Controls implemented in browser extension components are sometimes
more difficult to circumvent, but this may merely slow down an attacker
for a short period.

m Using heavily obfuscated or packed client-side code provides additional
obstacles; however, a determined attacker can always overcome these.
(A point of comparison in other areas is the use of DRM technologies to
prevent users from copying digital media files. Many companies have
invested heavily in these client-side controls, and each new solution usu-
ally is broken within a short time.)

The only secure way to validate client-generated data is on the server side of
the application. Every item of data received from the client should be regarded
as tainted and potentially malicious.

COMMON MYTH

It is sometimes believed that any use of client-side controls is bad. In particu-
lar, some professional penetration testers report the presence of client-side
controls as a “finding” without verifying whether they are replicated on the
server or whether there is any non-security explanation for their existence. In
fact, despite the significant caveats arising from the various attacks described
in this chapter, there are nevertheless ways to use client-side controls that do
not give rise to any security vulnerabilities:

B Client-side scripts can be used to validate input as a means of enhanc-
ing usability, avoiding the need for round-trip communication with the
server. For example, if the user enters her date of birth in an incorrect
format, alerting her to the problem via a client-side script provides a
much more seamless experience. Of course, the application must revali-
date the item submitted when it arrives at the server.

Continued

156 Chapter 5 = Bypassing Client-Side Controls

COMMON MYTH (continued)

B Sometimes client-side data validation can be effective as a security
measure — for example, as a defense against DOM-based cross-site
scripting attacks. However, these are cases where the focus of the attack
is another application user, rather than the server-side application,
and exploiting a potential vulnerability does not necessarily depend on
transmitting any malicious data to the server. See Chapters 12 and 13
for more details on this kind of scenario.

B As described previously, there are ways of transmitting encrypted data
via the client that are not vulnerable to tampering or replay attacks.

Logging and Alerting

When an application employs mechanisms such as length limits and JavaScript-
based validation to enhance performance and usability, these should be inte-
grated with server-side intrusion detection defenses. The server-side logic that
performs validation of client-submitted data should be aware of the validation
that has already occurred on the client side. If data that would have been blocked
by client-side validation is received, the application may infer that a user is
actively circumventing this validation and therefore is likely to be malicious.
Anomalies should be logged and, if appropriate, application administrators
should be alerted in real time so that they can monitor any attempted attack
and take suitable action as required. The application may also actively defend
itself by terminating the user’s session or even suspending his account.

.]ma In some cases where JavaScript is employed, the application still can
be used by users who have disabled JavaScript within their browsers. In this
situation, the browser simply skips JavaScript-based form validation code, and
the raw input entered by the user is submitted. To avoid false positives, the log-
ging and alerting mechanism should be aware of where and how this can arise.

Summary

Virtually all client/server applications must accept the fact that the client com-
ponent, and all processing that occurs on it, cannot be trusted to behave as
expected. As you have seen, the transparent communications methods gener-
ally employed by web applications mean that an attacker equipped with simple
tools and minimal skill can easily circumvent most controls implemented on
the client. Even where an application attempts to obfuscate data and processing
residing on the client side, a determined attacker can compromise these defenses.

Chapter 5 = Bypassing Client-Side Controls

157

In every instance where you identify data being transmitted via the client, or
validation of user-supplied input being implemented on the client, you should
test how the server responds to unexpected data that bypasses those controls.
Often, serious vulnerabilities lurk behind an application’s assumptions about
the protection afforded to it by defenses that are implemented at the client.

Questions

Answers can be found at http://mdsec.net/wahh.

1. How can data be transmitted via the client in a way that prevents tamper-
ing attacks?

2. Anapplication developer wants to stop an attacker from performing brute-
force attacks against the login function. Because the attacker may target
multiple usernames, the developer decides to store the number of failed
attempts in an encrypted cookie, blocking any request if the number of
failed attempts exceeds five. How can this defense be bypassed?

3. An application contains an administrative page that is subject to rigor-
ous access controls. It contains links to diagnostic functions located on a
different web server. Access to these functions should also be restricted
to administrators only. Without implementing a second authentication
mechanism, which of the following client-side mechanisms (if any) could
be used to safely control access to the diagnostic functionality? Do you
need any more information to help choose a solution?

(a) The diagnostic functions could check the HTTP referer header to
confirm that the request originated on the main administrative page.

(b) The diagnostic functions could validate the supplied cookies to confirm
that these contain a valid session token for the main application.

(c) The main application could set an authentication token in a hidden field
that is included within the request. The diagnostic function could vali-
date this to confirm that the user has a session on the main application.

4. If a form field includes the attribute disabled=true, it is not submitted
with the rest of the form. How can you change this behavior?

5. Are there any means by which an application can ensure that a piece of
input validation logic has been run on the client?

Attacking Authentication

On the face of it, authentication is conceptually among the simplest of all the
security mechanisms employed within web applications. In the typical case, a
user supplies her username and password, and the application must verify that
these items are correct. If so, it lets the user in. If not, it does not.

Authentication also lies at the heart of an application’s protection against
malicious attack. It is the front line of defense against unauthorized access. If an
attacker can defeat those defenses, he will often gain full control of the applica-
tion’s functionality and unrestricted access to the data held within it. Without
robust authentication to rely on, none of the other core security mechanisms
(such as session management and access control) can be effective.

In fact, despite its apparent simplicity, devising a secure authentication func-
tion is a subtle business. In real-world web applications authentication often is
the weakest link, which enables an attacker to gain unauthorized access. The
authors have lost count of the number of applications we have fundamentally
compromised as a result of various defects in authentication logic.

This chapter looks in detail at the wide variety of design and implementa-
tion flaws that commonly afflict web applications. These typically arise because
application designers and developers fail to ask a simple question: What could
an attacker achieve if he targeted our authentication mechanism? In the majority
of cases, as soon as this question is asked in earnest of a particular application,
a number of potential vulnerabilities materialize, any one of which may be
sufficient to break the application.

159

160

Chapter 6 = Attacking Authentication

Many of the most common authentication vulnerabilities are no-brainers.
Anyone can type dictionary words into a login form in an attempt to guess
valid passwords. In other cases, subtle defects may lurk deep within the appli-
cation’s processing that can be uncovered and exploited only after painstaking
analysis of a complex multistage login mechanism. We will describe the full
spectrum of these attacks, including techniques that have succeeded in breaking
the authentication of some of the most security-critical and robustly defended
web applications on the planet.

Authentication Technologies

A wide range of technologies are available to web application developers when
implementing authentication mechanisms:

m HTML forms-based authentication

m Multifactor mechanisms, such as those combining passwords and physi-
cal tokens

m Client SSL certificates and /or smartcards
m HTTP basic and digest authentication
m Windows-integrated authentication using NTLM or Kerberos

m Authentication services

By far the most common authentication mechanism employed by web applica-
tions uses HTML forms to capture a username and password and submit these
to the application. This mechanism accounts for well over 90% of applications
you are likely to encounter on the Internet.

In more security-critical Internet applications, such as online banking, this
basic mechanism is often expanded into multiple stages, requiring the user to
submit additional credentials, such as a PIN or selected characters from a secret
word. HTML forms are still typically used to capture relevant data.

In the most security-critical applications, such as private banking for high-worth
individuals, it is common to encounter multifactor mechanisms using physical
tokens. These tokens typically produce a stream of one-time passcodes or per-
form a challenge-response function based on input specified by the application.
As the cost of this technology falls over time, it is likely that more applications
will employ this kind of mechanism. However, many of these solutions do not
actually address the threats for which they were devised — primarily phishing
attacks and those employing client-side Trojans.

Some web applications employ client-side SSL certificates or cryptographic
mechanisms implemented within smartcards. Because of the overhead of adminis-
tering and distributing these items, they are typically used only in security-critical

Chapter 6 = Attacking Authentication

161

contexts where an application’s user base is small, such as web-based VPNs for
remote office workers.

The HTTP-based authentication mechanisms (basic, digest, and Windows-
integrated) are rarely used on the Internet. They are much more commonly
encountered in intranet environments where an organization’s internal users
gain access to corporate applications by supplying their normal network or
domain credentials. The application then processes these credentials using one
of these technologies.

Third-party authentication services such as Microsoft Passport are occasion-
ally encountered, but at the present time they have not been adopted on any
significant scale.

Most of the vulnerabilities and attacks that arise in relation to authentication
can be applied to any of the technologies mentioned. Because of the overwhelm-
ing dominance of HTML forms-based authentication, we will describe each
specific vulnerability and attack in that context. Where relevant, we will point
out any specific differences and attack methodologies that are relevant to the
other available technologies.

Design Flaws in Authentication Mechanisms

Authentication functionality is subject to more design weaknesses than any
other security mechanism commonly employed in web applications. Even
in the apparently simple, standard model where an application authenticates
users based on their username and password, shortcomings in the design of
this model can leave the application highly vulnerable to unauthorized access.

Bad Passwords

Many web applications employ no or minimal controls over the quality of users’
passwords. It is common to encounter applications that allow passwords that are:

m Very short or blank
m Common dictionary words or names
m The same as the username

m Still set to a default value

Figure 6-1 shows an example of weak password quality rules. End users typi-
cally display little awareness of security issues. Hence, it is highly likely that
an application that does not enforce strong password standards will contain a
large number of user accounts with weak passwords set. An attacker can easily
guess these account passwords, granting him or her unauthorized access to the
application.

162 Chapter 6 = Attacking Authentication

EIFAQ - Mozilla Firefox (=]}
File Edit “ew Go Bookmarks Tools Help
™ =
QEI v e = @ £l {/ﬂ | ke f v middleburyalumniorg/default, aspx?Page=FaQ LI @ G ||Q,
LYPE UPPETCESE T ST TU R TITUTRTO o OE aCCEPLELT. TMETT YU CIEdLE d USET TT4MTE, U SUre U

to include spaces or punctuation, For example: RobertSmith, robertsmith and roberthsmith are fine;
Bob Smith, Robert Smith or Robert H. Smith are not,

Are there minimum and mazimum lengths for passwords?
The minimurm password length is four characters, and the maximum length is 25 characters.
Do my PantherMNet user name and password work for other alumni online services?

Your user name and password are used for accessing the online directory, alumni lifelong e-mail
services, MiddNet career netwaorking, and alumni discussion groups.

What if I can't remember my password? Is there a hint system for passwords?

If wou forget your password and can't log in, first click on the "Forget Your Password?" link at the

log-on page. This will allow you to answer a password hint question that you set up when you

registered at Pantherket, and then reset your password. If you have forgotten both your user b

‘ Daone 4

Figure 6-1: An application that enforces weak password quality rules

Attempt to discover any rules regarding password quality:
1. Review the website for any description of the rules.

2. If self-registration is possible, attempt to register several accounts with
different kinds of weak passwords to discover what rules are in place.

3. If you control a single account and password change is possible, attempt
to change your password to various weak values.

.m If password quality rules are enforced only through client-side con-
trols, this is not itself a security issue, because ordinary users will still be
protected. It is not normally a threat to an application’s security that a crafty
attacker can assign himself a weak password.

TRY IT!

http://mdsec.net/auth/217/

Brute-Forcible Login

Login functionality presents an open invitation for an attacker to try to guess
usernames and passwords and therefore gain unauthorized access to the appli-
cation. If the application allows an attacker to make repeated login attempts

Chapter 6 = Attacking Authentication

163

with different passwords until he guesses the correct one, it is highly vulnerable
even to an amateur attacker who manually enters some common usernames
and passwords into his browser.

Recent compromises of high-profile sites have provided access to hundreds
of thousands of real-world passwords that were stored either in cleartext or
using brute-forcible hashes. Here are the most popular real-world passwords:
password
website name
12345678
gwerty
abcl23
111111
monkey

12345

letmein

.m Administrative passwords may in fact be weaker than the password
policy allows. They may have been set before the policy was in force, or they
may have been set up through a different application or interface.

In this situation, any serious attacker will use automated techniques to attempt
to guess passwords, based on lengthy lists of common values. Given today’s
bandwidth and processing capabilities, it is possible to make thousands of login
attempts per minute from a standard PC and DSL connection. Even the most
robust passwords will eventually be broken in this scenario.

Various techniques and tools for using automation in this way are described
in detail in Chapter 14. Figure 6-2 shows a successful password-guessing attack
against a single account using Burp Intruder. The successful login attempt can be
clearly distinguished by the difference in the HTTP response code, the response
length, and the absence of the “login incorrect” message.

In some applications, client-side controls are employed in an attempt to
prevent password-guessing attacks. For example, an application may set a
cookie such as failedlogins=1 and increment it following each unsuccess-
ful attempt. When a certain threshold is reached, the server detects this in
the submitted cookie and refuses to process the login attempt. This kind
of client-side defense may prevent a manual attack from being launched
using only a browser, but it can, of course, be bypassed easily, as described in
Chapter 5.

164 Chapter 6 = Attacking Authentication

i intruder attack 3 E”E

attack save columns

Filter: showing all items

" results ‘ target I positions | payloads I options |

reguest payload status | emor [imeo. length comment
9306 password2 302 [] | | 563
0 200 ™ Ll |1610 baseline request
1 Aaaaaa 200 =] [1610
2 Abcdef 200 [l [|1610
27 Abcdefg 200 ™| [|1610
4 Action 200 ™] |[1610
5 Adidas 200 s O [1610
6 Admin 200 O] | O [1610
e Administrative 200 ™=] [1610
request | response |

raw | params | headers | nex |

POST /auth/le/Default.ashx HTTR/L.L -
Host: mdsec.net

Content-Type: application/x-www—form-urlencodsd
Content-Length: 34

Connection: close

username=nesahi&passwvord=passwordl

-

[=]l=1[=]] | 0 matches
finished |

Figure 6-2: A successful password-guessing attack

A variation on the preceding vulnerability occurs when the failed login counter
is held within the current session. Although there may be no indication of this on
the client side, all the attacker needs to do is obtain a fresh session (for example, by
withholding his session cookie), and he can continue his password-guessing attack.

Finally, in some cases, the application locks out a targeted account after
a suitable number of failed logins. However, it responds to additional login
attempts with messages that indicate (or allow an attacker to infer) whether
the supplied password was correct. This means that an attacker can complete
his password-guessing attack even though the targeted account is locked out.
If the application automatically unlocks accounts after a certain delay, the
attacker simply needs to wait for this to occur and then log in as usual with
the discovered password.

1. Manually submit several bad login attempts for an account you control,
monitoring the error messages you receive.

2. After about 10 failed logins, if the application has not returned a message
about account lockout, attempt to log in correctly. If this succeeds, there
is probably no account lockout policy.

Chapter 6 = Attacking Authentication 165

3. If the account is locked out, try repeating the exercise using a different
account. This time, if the application issues any cookies, use each cookie
for only a single login attempt, and obtain a new cookie for each subse-
quent login attempt.

4. Also, if the account is locked out, see whether submitting the valid pass-
word causes any difference in the application’s behavior compared to an
invalid password. If so, you can continue a password-guessing attack even
if the account is locked out.

5. If you do not control any accounts, attempt to enumerate a valid user-
name (see the next section) and make several bad logins using this.
Monitor for any error messages about account lockout.

6. To mount a brute-force attack, first identify a difference in the applica-
tion’s behavior in response to successful and failed logins. You can use
this fact to discriminate between success and failure during the course of
the automated attack.

7. Obtain a list of enumerated or common usernames and a list of common
passwords. Use any information obtained about password quality rules to
tailor the password list so as to avoid superfluous test cases.

8. Use a suitable tool or a custom script to quickly generate login requests
using all permutations of these usernames and passwords. Monitor
the server’s responses to identify successful login attempts. Chapter 14
describes in detail various techniques and tools for performing custom-
ized attacks using automation.

9. If you are targeting several usernames at once, it is usually preferable
to perform this kind of brute-force attack in a breadth-first rather than
depth-first manner. This involves iterating through a list of passwords
(starting with the most common) and attempting each password in turn
on every username. This approach has two benefits. First, you discover
accounts with common passwords more quickly. Second, you are less
likely to trigger any account lockout defenses, because there is a time
delay between successive attempts using each individual account.

TRY IT!

http://mdsec.net/auth/16/
http://mdsec.net/auth/32/
http://mdsec.net/auth/46/
http://mdsec.net/auth/49/

166

Chapter 6 = Attacking Authentication

Verbose Failure Messages

A typical login form requires the user to enter two pieces of information — a
username and password. Some applications require several more, such as date
of birth, a memorable place, or a PIN.

When a login attempt fails, you can of course infer that at least one piece of
information was incorrect. However, if the application tells you which piece of
information was invalid, you can exploit this behavior to considerably diminish
the effectiveness of the login mechanism.

In the simplest case, where a login requires a username and password, an
application might respond to a failed login attempt by indicating whether the
reason for the failure was an unrecognized username or the wrong password,
as illustrated in Figure 6-3.

Username: | daf Username: zzz
Password: Password:
Password is incorrect. User is not recognised.

Figure 6-3: Verbose login failure messages indicating when a valid
username has been guessed

In this instance, you can use an automated attack to iterate through a large
list of common usernames to enumerate which ones are valid. Of course, user-
names normally are not considered a secret (they are not masked during login,
for instance). However, providing an easy means for an attacker to identify valid
usernames increases the likelihood that he will compromise the application
given enough time, skill, and effort. A list of enumerated usernames can be
used as the basis for various subsequent attacks, including password guessing,
attacks on user data or sessions, or social engineering.

In addition to the primary login function, username enumeration can arise
in other components of the authentication mechanism. In principle, any func-
tion where an actual or potential username is submitted can be leveraged for
this purpose. One location where username enumeration is commonly found
is the user registration function. If the application allows new users to register
and specify their own usernames, username enumeration is virtually impos-
sible to prevent if the application is to prevent duplicate usernames from being
registered. Other locations where username enumeration are sometimes found

Chapter 6 = Attacking Authentication

167

are the password change and forgotten password functions, as described later
in this chapter.

.:ma Many authentication mechanisms disclose usernames either implic-
itly or explicitly. In a web mail account, the username is often the e-mail
address, which is common knowledge by design. Many other sites expose
usernames within the application without considering the advantage this
grants to an attacker, or generate usernames in a way that can be predicted
(for example, user1842, user1843, and so on).

In more complex login mechanisms, where an application requires the user to
submit several pieces of information, or proceed through several stages, verbose
failure messages or other discriminators can enable an attacker to target each
stage of the login process in turn, increasing the likelihood that he will gain
unauthorized access.

.Ima This vulnerability may arise in more subtle ways than illustrated here.
Even if the error messages returned in response to a valid and invalid username
are superficially similar, there may be small differences between them that can
be used to enumerate valid usernames. For example, if multiple code paths
within the application return the “same” failure message, there may be minor
typographical differences between each instance of the message. In some cases,
the application’s responses may be identical on-screen but contain subtle differ-
ences hidden within the HTML source, such as comments or layout differences. If
no obvious means of enumerating usernames presents itself, you should perform
a close comparison of the application’s responses to valid and invalid usernames.

You can use the Comparer tool within Burp Suite to automatically analyze
and highlight the differences between two application responses, as shown
in Figure 6-4. This helps you quickly identify whether the username’s validity
results in any systematic difference in the application’s responses.

word compare of #1 and #2 (4 differences) o B @

Length- 1,597 ® text () hex Length: 1,591 @ text () hex
|name:"usemame“tvpe:‘mﬂ" |
value="E2E2"/>=ftd>=id>&nbs p;=fd=<fr><tr><id>Password:<id><td ‘
1

|

=

|name="username"” type="text"

value="Wudode /><id>=td> =Ad=>=fr=<tr><td>Password<fd>
=td==input name="password" type="password"
value="/><ftd><td><input type="submit' value="Login"

| I==fd==fr=<fable><form=<bri==a

|nref:“Reg\ster ashx"=Register=/a=<br=<br=<hr=Login failed.
IP\ease note that accounts are disabled for a short time following
isevera\ unsuccessful logins =lbody=</html=

|=<mputname:“passwurd"type:"passwurd"
Iva\ue:""i>=fto>=1t1>=\nput type="submit"value="Login"

| I==<hd=<fr=<ftable=<form=<bri-<a

href="Register ashx"-Register</a=<br=<br=<hr=Login failed.
Please note that accounis are disabled for a short time following =

Iseveral unsuccessful logins =lbody==/html=

key: |modified [HEIEEE added [syncviews

Figure 6-4: Identifying subtle differences in application responses using Burp Comparer

168 Chapter 6 = Attacking Authentication

1. If you already know one valid username (for example, an account you
control), submit one login using this username and an incorrect password,
and another login using a random username.

2. Record every detail of the server’'s responses to each login attempt,
including the status code, any redirects, information displayed on-
screen, and any differences hidden in the HTML page source. Use your
intercepting proxy to maintain a full history of all traffic to and from the
server.

3. Attempt to discover any obvious or subtle differences in the server's
responses to the two login attempts.

4. If this fails, repeat the exercise everywhere within the application where
a username can be submitted (for example, self-registration, password
change, and forgotten password).

5. If a difference is detected in the server’'s responses to valid and invalid
usernames, obtain a list of common usernames. Use a custom script or
automated tool to quickly submit each username, and filter the responses
that signify that the username is valid (see Chapter 14).

6. Before commencing your enumeration exercise, verify whether the appli-
cation performs any account lockout after a certain number of failed login
attempts (see the preceding section). If so, it is desirable to design your
enumeration attack with this fact in mind. For example, if the application
will grant you only three failed login attempts with any given account, you
run the risk of “wasting” one of these for every username you discover
through automated enumeration. Therefore, when performing your enu-
meration attack, do not submit a far-fetched password with each login
attempt. Instead, submit either a single common password such as pass-
word] or the username itself as the password. If password quality rules
are wealk;, it is highly likely that some of the attempted logins you perform
as part of your enumeration exercise will succeed and will disclose both
the username and password in a single hit. To set the password field to
be the same as the username, you can use the “battering ram” attack
mode in Burp Intruder to insert the same payload at multiple positions in
your login request.

Even if an application’s responses to login attempts containing valid and
invalid usernames are identical in every intrinsic respect, it may still be possible
to enumerate usernames based on the time taken for the application to respond
to the login request. Applications often perform very different back-end pro-
cessing on a login request, depending on whether it contains a valid username.
For example, when a valid username is submitted, the application may retrieve
user details from a back-end database, perform various processing on these

Chapter 6 = Attacking Authentication

169

details (for example, checking whether the account is expired), and then validate
the password (which may involve a resource-intensive hash algorithm) before
returning a generic message if the password is incorrect. The timing difference
between the two responses may be too subtle to detect when working with only
a browser, but an automated tool may be able to discriminate between them.
Even if the results of such an exercise contain a large ratio of false positives, it
is still better to have a list of 100 usernames, approximately 50% of which are
valid, than a list of 10,000 usernames, approximately 0.5% of which are valid.
See Chapter 15 for a detailed explanation of how to detect and exploit this type
of timing difference to extract information from the application.

In addition to the login functionality itself, there may be other sources of
information where you can obtain valid usernames. Review all the source code
comments discovered during application mapping (see Chapter 4) to identify
any apparent usernames. Any e-mail addresses of developers or other personnel
within the organization may be valid usernames, either in full or just the user-
specific prefix. Any accessible logging functionality may disclose usernames.

TRY IT!

http://mdsec.net/auth/53/
http://mdsec.net/auth/59/
http://mdsec.net/auth/70/
http://mdsec.net/auth/81/
http://mdsec.net/auth/167/

Vulnerable Transmission of Credentials

If an application uses an unencrypted HTTP connection to transmit login cre-
dentials, an eavesdropper who is suitably positioned on the network can, of
course, intercept them. Depending on the user’s location, potential eavesdrop-
pers may reside:

m On the user’s local network

m Within the user’s IT department

m Within the user’s ISP

m On the Internet backbone

m Within the ISP hosting the application

m Within the IT department managing the application

170

Chapter 6 = Attacking Authentication

.I[E Any of these locations may be occupied by authorized personnel but
also potentially by an external attacker who has compromised the relevant
infrastructure through some other means. Even if the intermediaries on a par-
ticular network are believed to be trusted, it is safer to use secure transport
mechanisms when passing sensitive data over it.

Even if login occurs over HTTPS, credentials may still be disclosed to unau-
thorized parties if the application handles them in an unsafe manner:

m If credentials are transmitted as query string parameters, as opposed
to in the body of a posT request, these are liable to be logged in various
places, such as within the user’s browser history, within the web server
logs, and within the logs of any reverse proxies employed within the
hosting infrastructure. If an attacker succeeds in compromising any of
these resources, he may be able to escalate privileges by capturing the
user credentials stored there.

m Although most web applications do use the body of a posT request to
submit the HTML login form itself, it is surprisingly common to see the
login request being handled via a redirect to a different URL with the same
credentials passed as query string parameters. Why application develop-
ers consider it necessary to perform these bounces is unclear, but having
elected to do so, it is easier to implement them as 302 redirects to a URL
than as posT requests using a second HTML form submitted via JavaScript.

m Web applications sometimes store user credentials in cookies, usually
to implement poorly designed mechanisms for login, password change,
“remember me,” and so on. These credentials are vulnerable to capture
via attacks that compromise user cookies and, in the case of persistent
cookies, by anyone who gains access to the client’s local filesystem. Even if
the credentials are encrypted, an attacker still can simply replay the cookie
and therefore log in as a user without actually knowing her credentials.
Chapters 12 and 13 describe various ways in which an attacker can target
other users to capture their cookies.

Many applications use HTTP for unauthenticated areas of the application and
switch to HTTPS at the point of login. If this is the case, then the correct place
to switch to HTTPS is when the login page is loaded in the browser, enabling a
user to verify that the page is authentic before entering credentials. However, it
is common to encounter applications that load the login page itself using HTTP
and then switch to HTTPS at the point where credentials are submitted. This
is unsafe, because a user cannot verify the authenticity of the login page itself
and therefore has no assurance that the credentials will be submitted securely.
A suitably positioned attacker can intercept and modify the login page, chang-
ing the target URL of the login form to use HTTP. By the time an astute user
realizes that the credentials have been submitted using HTTP, they will have
been compromised.

Chapter 6 = Attacking Authentication 171

1. Carry out a successful login while monitoring all traffic in both directions
between the client and server.

2. Identify every case in which the credentials are transmitted in either
direction. You can set interception rules in your intercepting proxy to flag
messages containing specific strings (see Chapter 20).

3. If any instances are found in which credentials are submitted in a URL
query string or as a cookie, or are transmitted back from the server to the
client, understand what is happening, and try to ascertain what purpose
the application developers were attempting to achieve. Try to find every
means by which an attacker might interfere with the application’s logic to
compromise other users’ credentials.

4. If any sensitive information is transmitted over an unencrypted channel,
this is, of course, vulnerable to interception.

5. If no cases of actual credentials being transmitted insecurely are iden-
tified, pay close attention to any data that appears to be encoded or
obfuscated. If this includes sensitive data, it may be possible to reverse-
engineer the obfuscation algorithm.

6. If credentials are submitted using HTTPS but the login form is loaded
using HTTP, the application is vulnerable to a man-in-the-middle attack,
which may be used to capture credentials.

TRY IT!

http://mdsec.net/auth/88/
http://mdsec.net/auth/90/
http://mdsec.net/auth/97/

Password Change Functionality

Surprisingly, many web applications do not provide any way for users to change
their password. However, this functionality is necessary for a well-designed
authentication mechanism for two reasons:

m Periodic enforced password change mitigates the threat of password com-
promise. It reduces the window in which a given password can be targeted
in a guessing attack. It also reduces the window in which a compromised
password can be used without detection by the attacker.

m Users who suspect that their passwords may have been compromised
need to be able to quickly change their password to reduce the threat of
unauthorized use.

172

Chapter 6 = Attacking Authentication

Although it is a necessary part of an effective authentication mechanism,
password change functionality is often vulnerable by design. Vulnerabilities
that are deliberately avoided in the main login function often reappear in the
password change function. Many web applications’ password change functions
are accessible without authentication and do the following;:

m Provide a verbose error message indicating whether the requested user-
name is valid.

m Allow unrestricted guesses of the “existing password” field.

m Check whether the “new password” and “confirm new password” fields
have the same value only after validating the existing password, thereby
allowing an attack to succeed in discovering the existing password
noninvasively.

A typical password change function includes a relatively large logical decision
tree. The application needs to identify the user, validate the supplied existing
password, integrate with any account lockout defenses, compare the supplied
new passwords with each other and against password quality rules, and feed
back any error conditions to the user in a suitable way. Because of this, pass-
word change functions often contain subtle logic flaws that can be exploited to
subvert the entire mechanism.

1. Identify any password change functionality within the application. If
this is not explicitly linked from published content, it may still be imple-
mented. Chapter 4 describes various techniques for discovering hidden
content within an application.

2. Make various requests to the password change function using invalid
usernames, invalid existing passwords, and mismatched “new password”
and “confirm new password” values.

3. Try to identify any behavior that can be used for username enumeration
or brute-force attacks (as described in the “Brute-Forcible Login” and
“Verbose Failure Messages” sections).

m If the password change form is accessible only by authenticated users
and does not contain a username field, it may still be possible to supply an
arbitrary username. The form may store the username in a hidden field, which
can easily be modified. If not, try supplying an additional parameter contain-
ing the username, using the same parameter name as is used in the main
login form. This trick sometimes succeeds in overriding the username of the
current user, enabling you to brute-force the credentials of other users even
when this is not possible at the main login.

Chapter 6 = Attacking Authentication 173

TRY IT!

http://mdsec.net/auth/104/
http://mdsec.net/auth/117/
http://mdsec.net/auth/120/
http://mdsec.net/auth/125/
http://mdsec.net/auth/129/
http://mdsec.net/auth/135/

Forgotten Password Functionality

Like password change functionality, mechanisms for recovering from a forgot-
ten password situation often introduce problems that may have been avoided
in the main login function, such as username enumeration.

In addition to this range of defects, design weaknesses in forgotten pass-
word functions frequently make this the weakest link at which to attack the
application’s overall authentication logic. Several kinds of design weaknesses
can often be found:

m Forgotten password functionality often involves presenting the user with
a secondary challenge in place of the main login, as shown in Figure 6-5.
This challenge is often much easier for an attacker to respond to than
attempting to guess the user’s password. Questions about mothers’ maiden
names, memorable dates, favorite colors, and the like generally will have a
much smaller set of potential answers than the set of possible passwords.
Furthermore, they often concern information that is publicly known or
that a determined attacker can discover with a modest degree of effort.

Forgot Your Password or User ID?
User Id: Tim
When you registered your User |d, you provided a secret question.

Your secret question, provided during registration, is:

what street did you live on in sierra vista

Enter the answer to your secret question:

(> I

Figure 6-5: A secondary challenge used in an account
recovery function

In many cases, the application allows users to set their own password
recovery challenge and response during registration. Users are inclined

174

Chapter 6 = Attacking Authentication

to set extremely insecure challenges, presumably on the false assumption
that only they will ever be presented with them. An example is “Do I own
a boat?” In this situation, an attacker who wants to gain access can use
an automated attack to iterate through a list of enumerated or common
usernames, log all the password recovery challenges, and select those that
appear most easily guessable. (See Chapter 14 for techniques regarding
how to grab this kind of data in a scripted attack.)

As with password change functionality, application developers commonly
overlook the possibility of brute-forcing the response to a password recov-
ery challenge, even when they block this attack on the main login page. If
an application allows unrestricted attempts to answer password recovery
challenges, it is highly likely to be compromised by a determined attacker.

In some applications, the recovery challenge is replaced with a simple
password “hint” that is configured by users during registration. Users
commonly set extremely obvious hints, perhaps even one that is identi-
cal to the password itself, on the false assumption that only they will
ever see them. Again, an attacker with a list of common or enumerated
usernames can easily capture a large number of password hints and then
start guessing.

The mechanism by which an application enables users to regain control of
their account after correctly responding to a challenge is often vulnerable.
One reasonably secure means of implementing this is to send a unique,
unguessable, time-limited recovery URL to the e-mail address that the
user provided during registration. Visiting this URL within a few minutes
enables the user to set a new password. However, other mechanisms for
account recovery are often encountered that are insecure by design:

m Some applications disclose the existing, forgotten password to the user
after successful completion of a challenge, enabling an attacker to use
the account indefinitely without any risk of detection by the owner.
Even if the account owner subsequently changes the blown password,
the attacker can simply repeat the same challenge to obtain the new
password.

m Some applications immediately drop the user into an authenticated
session after successful completion of a challenge, again enabling an
attacker to use the account indefinitely without detection, and without
ever needing to know the user’s password.

m Some applications employ the mechanism of sending a unique recov-
ery URL but send this to an e-mail address specified by the user at the
time the challenge is completed. This provides absolutely no enhanced
security for the recovery process beyond possibly logging the e-mail
address used by an attacker.

Chapter 6 = Attacking Authentication

175

Even if the application does not provide an on-screen field for you to pro-
vide an e-mail address to receive the recovery URL, the application may transmit
the address via a hidden form field or cookie. This presents a double opportunity:
you can discover the e-mail address of the user you have compromised, and you
can modify its value to receive the recovery URL at an address of your choosing.

m Some applications allow users to reset their password’s value directly
after successful completion of a challenge and do not send any e-mail
notification to the user. This means that the compromising of an account
by an attacker will not be noticed until the owner attempts to log in
again. It may even remain unnoticed if the owner assumes that she
must have forgotten her password and therefore resets it in the same
way. An attacker who simply desires some access to the application can
then compromise a different user’s account for a period of time and
therefore can continue using the application indefinitely.

1. Identify any forgotten password functionality within the application. If
this is not explicitly linked from published content, it may still be imple-
mented (see Chapter 4).

2. Understand how the forgotten password function works by doing a
complete walk-through using an account you control.

3. If the mechanism uses a challenge, determine whether users can set or
select their own challenge and response. If so, use a list of enumerated or
common usernames to harvest a list of challenges, and review this for any
that appear easily guessable.

4. If the mechanism uses a password “hint,” do the same exercise to harvest
a list of password hints, and target any that are easily guessable.

5. Try to identify any behavior in the forgotten password mechanism that
can be exploited as the basis for username enumeration or brute-force
attacks (see the previous details).

6. If the application generates an e-mail containing a recovery URL in
response to a forgotten password request, obtain a number of these URLs,
and attempt to identify any patterns that may enable you to predict the
URLs issued to other users. Employ the same techniques as are relevant to
analyzing session tokens for predictability (see Chapter 7).

TRY IT!

http://mdsec.net/auth/142/
http://mdsec.net/auth/145/
http://mdsec.net/auth/151/

176

Chapter 6 = Attacking Authentication

“Remember Me” Functionality

Applications often implement “remember me” functions as a convenience to
users. This way, users don’t need to reenter their username and password each
time they use the application from a specific computer. These functions are
often insecure by design and leave the user exposed to attack both locally and
by users on other computers:

m Some “remember me” functions are implemented using a simple per-
sistent cookie, such as RememberUser=daf (see Figure 6-6). When this
cookie is submitted to the initial application page, the application trusts
the cookie to authenticate the user, and it creates an application session
for that person, bypassing the login. An attacker can use a list of common
or enumerated usernames to gain full access to the application without
any authentication.

¥ " burp suite professional EI@

burp intruder repeater window help

{target | prowy | spider | scanner | intruder | repeater | sequencer | decoder | comparer | options | alers |

(1 [2 [

! | host |mdsecnet follow redirect
| [| | pot [443 | [elusessL
request
raw | params | headers | hex
GET /auth/21%/Default.ashx HTTP/L.L -
Host: mdsec.nst M
Cookie: RememberUsEr=daf|

-
[+]l=l=]] | 0matches

response

raw | headers | hex | html | render

HTTP/Ll.l 302 Found
Date: Thu, 10 Feb Z011 16:41:57 GMT i
Server: Microsoft-IIS/6.0

X-Powered-By: ASP.NET

X-AspNet-Version: 2.0.50727

Location: /auth/219/Home.ashx

Set-Cookie: Sessionld=ABIZF5€4565D57BES540588S9087CT7ICCCE; secure; HrtplOnly
Content-Type: text/html; charsst=utf-g

Content-Length: 136

<html><head><title>0bject moved</title></head><haody>
<hI>0bject moved to here.</hl>
</hody></html>

[=ll=][=]] | 0matches
done length: 547 (164 millis))

Figure 6-6: A vulnerable ‘remember me” function, which automatically logs in a
user based solely on a username stored in a cookie

Chapter 6 = Attacking Authentication 177

m Some “remember me” functions set a cookie that contains not the username
but a kind of persistent session identifier, such as RememberUser=1328.
When the identifier is submitted to the login page, the application looks
up the user associated with it and creates an application session for
that user. As with ordinary session tokens, if the session identifiers of
other users can be predicted or extrapolated, an attacker can iterate
through a large number of potential identifiers to find those associ-
ated with application users, and therefore gain access to their accounts
without authentication. See Chapter 7 for techniques for performing
this attack.

m Even if the information stored for reidentifying users is suitably protected
(encrypted) to prevent other users from determining or guessing it, the
information may still be vulnerable to capture through a bug such as
cross-site scripting (see Chapter 12), or by an attacker who has local access
to the user’s computer.

1. Activate any “remember me” functionality, and determine whether the
functionality indeed does fully “remember” the user or whether it remem-
bers only his username and still requires him to enter a password on sub-
sequent visits. If the latter is the case, the functionality is much less likely
to expose any security flaw.

2. Closely inspect all persistent cookies that are set, and also any data that
is persisted in other local storage mechanisms, such as Internet Explorer’'s
userData, Silverlight isolated storage, or Flash local shared objects. Look
for any saved data that identifies the user explicitly or appears to contain
some predictable identifier of the user.

3. Even where stored data appears to be heavily encoded or obfuscated,
review this closely. Compare the results of “remembering” several very
similar usernames and/or passwords to identify any opportunities to
reverse-engineer the original data. Here, use the same techniques that
are described in Chapter 7 to detect meaning and patterns in session
tokens.

4. Attempt to modify the contents of the persistent cookie to try to con-
vince the application that another user has saved his details on your
computer.

178

Chapter 6 = Attacking Authentication

TRY IT!

http://mdsec.net/auth/219/
http://mdsec.net/auth/224/
http://mdsec.net/auth/227/
http://mdsec.net/auth/229/
http://mdsec.net/auth/232/
http://mdsec.net/auth/236/
http://mdsec.net/auth/239/
http://mdsec.net/auth/245/

User Impersonation Functionality

Some applications implement the facility for a privileged user of the application
to impersonate other users in order to access data and carry out actions within
their user context. For example, some banking applications allow helpdesk opera-
tors to verbally authenticate a telephone user and then switch their application
session into that user’s context to assist him or her.

Various design flaws commonly exist within impersonation functionality:

m [t may be implemented as a “hidden” function, which is not subject to
proper access controls. For example, anyone who knows or guesses the
URL /admin/ImpersonateUser.jsp may be able to make use of the func-
tion and impersonate any other user (see Chapter 8).

m The application may trust user-controllable data when determining whether
the user is performing impersonation. For example, in addition to a valid
session token, a user may submit a cookie specifying which account his
session is currently using. An attacker may be able to modify this value
and gain access to other user accounts without authentication, as shown
in Figure 6-7.

m If an application allows administrative users to be impersonated, any weak-
ness in the impersonation logic may result in a vertical privilege escalation
vulnerability. Rather than simply gaining access to other ordinary users’
data, an attacker may gain full control of the application.

m Some impersonation functionality is implemented as a simple “backdoor”
password that can be submitted to the standard login page along with any
username to authenticate as that user. This design is highly insecure for
many reasons, but the biggest opportunity for attackers is that they are
likely to discover this password when performing standard attacks such
as brute-forcing of the login. If the backdoor password is matched before
the user’s actual password, the attacker is likely to discover the function of

Chapter 6 = Attacking Authentication

179

the backdoor password and therefore gain access to every user’s account.
Similarly, a brute-force attack might result in two different “hits,” thereby

revealing the backdoor password, as shown in Figure 6-8.

burp suite professional E‘ﬂ @

burp intruder repeater window help

{ target i/ proxy | spider | scanner i intruder | repeater i sequencer | decoder i comparer 'options i alerts ‘

[intercept | options | history |

é requestio hitps:/mdsecnet 443 [172.16.50.129]

[[5 i [2

| forward ! | drop | ! interceptis on I! action !

[. raw | params].-nead-ers | nex |

GET /auth/272/Home.ashx HTTP/Ll.1 I:iE
Host: mdsesc.net Il

User-Agent: Mozilla/5.0 (Windows; U; Windows NT &.1l; =n-GB; rv:1.9.2.8) Gecko/IZ0Ll0072Z
Firefox/3.€.8

Accept: text/html,application/xhtml+4xml, application/xml;q=0.9,*/*;q=0.8
Adccept-Language: en—gh,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0O-BBS5S-1,utf-8B;q=0.7,*;q=0.7

Feep-Alive: 115

Connection: keep-alive

Referer: https://mdsec.net/auth/272/5ShowlUsers.ashx

Cookie: Impersonatels
Cache-

=30} SessionTd=56CECE3 1ED037EEZBD48F58573E28FCA

Control: max-age=0

-

EEE]

| 0matches

Figure 6-7: A vulnerable user impersonation function

Identify any impersonation functionality within the application. If this is
not explicitly linked from published content, it may still be implemented
(see Chapter 4).

Attempt to use the impersonation functionality directly to impersonate
other users.

Attempt to manipulate any user-supplied data that is processed by the
impersonation function in an attempt to impersonate other users. Pay
particular attention to any cases where your username is being submitted
other than during normal login.

If you succeed in making use of the functionality, attempt to impersonate
any known or guessed administrative users to elevate privileges.

When carrying out password-guessing attacks (see the “Brute-Forcible
Login” section), review whether any users appear to have more than one
valid password, or whether a specific password has been matched against
several usernames. Also, log in as many different users with the credentials
captured in a brute-force attack, and review whether everything appears
normal. Pay close attention to any “logged in as X" status message.

180 Chapter 6 = Attacking Authentication

TRY IT!

http://mdsec.net/auth/272/

http://mdsec.net/auth/290/

i intruder attack 4 EI

altack save columns

Filter: showing all items

" results ‘ target | positions | payloads | options |

request paylead status | error |tim£0. length comment

5318 hendrix1 302 566

2197 letmein 302 | | i6o4

0 200 L] L] [1610 baseline request
1 Aaaaaa 200 s O [1610

2 Abcdef 200 O] | O [1610

3 Abcdefg 200 ™| [|1610

4 Action 200 ™ [l |[1610

5 Adidas 200 ™ L] [1610

6 Admin 200 s O [1610

7 Administrative 200 0 | O 1610

[“request | response ‘
" raw | headers | hex | html | render

HTTP/ 1.1 302 Found =
Connection: close

Date: Thu, 10 Feb Z01l1 17:37:14 GHMT

Server: Microsoft-IIS/6.0

MicrosoftOfficeWebServer: 5.0_Pub

X-Powered-By: ASF.NET

X-AspNet-Version: Z.0.50727

Location: /auth/Z90/Home.ashx?idminOverride=trus

Set—Cookie: Sessionld=1FEEE45IADE44A10ASCEBSCEDI4TAF4L; secure;

Heeptmly

Cache-Control: no-cache

Pragma: no-cache -
= l=]l=] | 0 matches

6322 0f 10140 |

Figure 6-8: A password-guessing attack with two “hits,” indicating the
presence of a backdoor password

Incomplete Validation of Credentials

Well-designed authentication mechanisms enforce various requirements on
passwords, such as a minimum length or the presence of both uppercase and
lowercase characters. Correspondingly, some poorly designed authentication
mechanisms not only do not enforce these good practices but also do not take
into account users” own attempts to comply with them.

For example, some applications truncate passwords and therefore validate
only the first n characters. Some applications perform a case-insensitive check
of passwords. Some applications strip unusual characters (sometimes on the
pretext of performing input validation) before checking passwords. In recent
times, behavior of this kind has been identified in some surprisingly high-profile
web applications, usually as a result of trial and error by curious users.

Chapter 6 = Attacking Authentication

181

Each of these limitations on password validation reduces by an order of
magnitude the number of variations available in the set of possible passwords.
Through experimentation, you can determine whether a password is being
fully validated or whether any limitations are in effect. You can then fine-tune
your automated attacks against the login to remove unnecessary test cases,
thereby massively reducing the number of requests necessary to compromise
user accounts.

1. Using an account you control, attempt to log in with variations on your
own password: removing the last character, changing the case of a char-
acter, and removing any special typographical characters. If any of these
attempts is successful, continue experimenting to try to understand what
validation is actually occurring.

2. Feed any results back into your automated password-guessing attacks to
remove superfluous test cases and improve the chances of success.

TRY IT!

http://mdsec.net/auth/293/

Nonunique Usernames

Some applications that support self-registration allow users to specify their
own username and do not enforce a requirement that usernames be unique.
Although this is rare, the authors have encountered more than one application
with this behavior.

This represents a design flaw for two reasons:

m One user who shares a username with another user may also happen to
select the same password as that user, either during registration or in a
subsequent password change. In this eventuality, the application either
rejects the second user’s chosen password or allows two accounts to
have identical credentials. In the first instance, the application’s behavior
effectively discloses to one user the credentials of the other user. In the
second instance, subsequent logins by one of the users result in access to
the other user’s account.

m An attacker may exploit this behavior to carry out a successful brute-force
attack, even though this may not be possible elsewhere due to restrictions
on failed login attempts. An attacker can register a specific username

182

Chapter 6 = Attacking Authentication

multiple times with different passwords while monitoring for the dif-
ferential response that indicates that an account with that username
and password already exists. The attacker will have ascertained a target
user’s password without making a single attempt to log in as that user.

Badly designed self-registration functionality can also provide a means for
username enumeration. If an application disallows duplicate usernames, an
attacker may attempt to register large numbers of common usernames to iden-
tify the existing usernames that are rejected.

1. If self-registration is possible, attempt to register the same username
twice with different passwords.

2. If the application blocks the second registration attempt, you can exploit
this behavior to enumerate existing usernames even if this is not possible
on the main login page or elsewhere. Make multiple registration attempts
with a list of common usernames to identify the already registered names
that the application blocks.

3. If the registration of duplicate usernames succeeds, attempt to register
the same username twice with the same password, and determine the
application’s behavior:

a. If an error message results, you can exploit this behavior to carry out a
brute-force attack, even if this is not possible on the main login page.
Target an enumerated or guessed username, and attempt to register
this username multiple times with a list of common passwords. When
the application rejects a specific password, you have probably found
the existing password for the targeted account.

b. If no error message results, log in using the credentials you speci-
fied, and see what happens. You may need to register several users,
and modify different data held within each account, to understand
whether this behavior can be used to gain unauthorized access to
other users’ accounts.

Predictable Usernames

Some applications automatically generate account usernames according to
a predictable sequence (cust5331, cust5332, and so on). When an application
behaves like this, an attacker who can discern the sequence can quickly arrive
at a potentially exhaustive list of all valid usernames, which can be used as
the basis for further attacks. Unlike enumeration methods that rely on making
repeated requests driven by wordlists, this means of determining usernames
can be carried out nonintrusively with minimal interaction with the application.

Chapter 6 = Attacking Authentication

183

1. If the application generates usernames, try to obtain several in quick
succession, and determine whether any sequence or pattern can be
discerned.

2. If it can, extrapolate backwards to obtain a list of possible valid user-
names. This can be used as the basis for a brute-force attack against the
login and other attacks where valid usernames are required, such as the
exploitation of access control flaws (see Chapter 8).

TRY IT!

http://mdsec.net/auth/169/

Predictable Initial Passwords

In some applications, users are created all at once or in sizeable batches and are
automatically assigned initial passwords, which are then distributed to them
through some means. The means of generating passwords may enable an attacker
to predict the passwords of other application users. This kind of vulnerability is
more common on intranet-based corporate applications — for example, where
every employee has an account created on her behalf and receives a printed
notification of her password.

In the most vulnerable cases, all users receive the same password, or one
closely derived from their username or job function. In other cases, generated
passwords may contain sequences that could be identified or guessed with
access to a very small sample of initial passwords.

1. If the application generates passwords, try to obtain several in quick
succession, and determine whether any sequence or pattern can be
discerned.

2. If it can, extrapolate the pattern to obtain a list of passwords for other
application users.

3. If passwords demonstrate a pattern that can be correlated with user-
names, you can try to log in using known or guessed usernames and the
corresponding inferred passwords.

4. Otherwise, you can use the list of inferred passwords as the basis for a
brute-force attack with a list of enumerated or common usernames.

184

Chapter 6 = Attacking Authentication

TRY IT!

http://mdsec.net/auth/172/

Insecure Distribution of Credentials

Many applications employ a process in which credentials for newly created accounts
are distributed to users out-of-band of their normal interaction with the applica-
tion (for example, via post, e-mail, or SMS text message). Sometimes, this is done
for reasons motivated by security concerns, such as to provide assurance that
the postal or e-mail address supplied by the user actually belongs to that person.

In some cases, this process can present a security risk. For example, suppose
that the message distributed contains both username and password, there is
no time limit on their use, and there is no requirement for the user to change
the password on first login. It is highly likely that a large number, even the
majority, of application users will not modify their initial credentials and that
the distribution messages will remain in existence for a lengthy period, during
which they may be accessed by an unauthorized party.

Sometimes, what is distributed is not the credentials themselves, but rather
an “account activation” URL, which enables users to set their own initial pass-
word. If the series of these URLs sent to successive users manifests any kind of
sequence, an attacker can identify this by registering multiple users in close suc-
cession and then infer the activation URLs sent to recent and forthcoming users.

A related behavior by some web applications is to allow new users to register
accounts in a seemingly secure manner and then to send a welcome e-mail to
each new user containing his full login credentials. In the worst case, a security-
conscious user who decides to immediately change his possibly compromised
password then receives another e-mail containing the new password “for future
reference.” This behavior is so bizarre and unnecessary that users would be
well advised to stop using web applications that indulge in it.

1. Obtain a new account. If you are not required to set all credentials during
registration, determine the means by which the application distributes
credentials to new users.

2. If an account activation URL is used, try to register several new accounts
in close succession, and identify any sequence in the URLs you receive.
If a pattern can be determined, try to predict the activation URLs sent to
recent and forthcoming users, and attempt to use these URLs to take own-
ership of their accounts.

3. Try to reuse a single activation URL multiple times, and see if the applica-
tion allows this. If not, try locking out the target account before reusing
the URL, and see if it now works.

Chapter 6 = Attacking Authentication

185

Implementation Flaws in Authentication

Even a well-designed authentication mechanism may be highly insecure due to
mistakes made in its implementation. These mistakes may lead to information
leakage, complete login bypassing, or a weakening of the overall security of
the mechanism as designed. Implementation flaws tend to be more subtle and
harder to detect than design defects such as poor-quality passwords and brute-
forcibility. For this reason, they are often a fruitful target for attacks against
the most security-critical applications, where numerous threat models and
penetration tests are likely to have claimed any low-hanging fruit. The authors
have identified each of the implementation flaws described here within the web
applications deployed by large banks.

Fail-Open Login Mechanisms

Fail-open logic is a species of logic flaw (described in detail in Chapter 11) that has
particularly serious consequences in the context of authentication mechanisms.

The following is a fairly contrived example of a login mechanism that fails
open. If the call to db.getUser () throws an exception for some reason (for
example, a null pointer exception arising because the user’s request did not
contain a username or password parameter), the login succeeds. Although the
resulting session may not be bound to a particular user identity and therefore
may not be fully functional, this may still enable an attacker to access some
sensitive data or functionality.

public Response checkLogin(Session session) {
try {
String uname = session.getParameter ("username") ;
String passwd = session.getParameter ("password") ;
User user = db.getUser (uname, passwd) ;
if (user == null) {
// invalid credentials
session.setMessage ("Login failed. ");
return doLogin(session) ;
}
}

catch (Exception e) {}

// valid user
session.setMessage ("Login successful. ");
return doMainMenu (session) ;

}

In the field, you would not expect code like this to pass even the most cursory
security review. However, the same conceptual flaw is much more likely to exist
in more complex mechanisms in which numerous layered method invocations

186 Chapter 6 = Attacking Authentication

are made, in which many potential errors may arise and be handled in different
places, and where the more complicated validation logic may involve maintain-
ing significant state about the login’s progress.

1. Perform a complete, valid login using an account you control. Record
every piece of data submitted to the application, and every response
received, using your intercepting proxy.

2. Repeat the login process numerous times, modifying pieces of the data
submitted in unexpected ways. For example, for each request parameter
or cookie sent by the client, do the following:

a. Submit an empty string as the value.

b. Remove the name/value pair altogether.

c. Submit very long and very short values.

d. Submit strings instead of numbers and vice versa.

e. Submit the same item multiple times, with the same and different
values.

3. For each malformed request submitted, review closely the application’s
response to identify any divergences from the base case.

4. Feed these observations back into framing your test cases. When one
modification causes a change in behavior, try to combine this with other
changes to push the application’s logic to its limits.

TRY IT!

http://mdsec.net/auth/300/

Defects in Multistage Login Mechanisms

Some applications use elaborate login mechanisms involving multiple stages,
such as the following:

m Entry of a username and password
m A challenge for specific digits from a PIN or a memorable word

m The submission of a value displayed on a changing physical token

Multistage login mechanisms are designed to provide enhanced security over
the simple model based on username and password. Typically, the first stage
requires the users to identify themselves with a username or similar item, and
subsequent stages perform various authentication checks. Such mechanisms

Chapter 6 = Attacking Authentication

187

frequently contain security vulnerabilities — in particular, various logic flaws
(see Chapter 11).

COMMON MYTH

It is often assumed that multistage login mechanisms are less prone to secu-
rity bypasses than standard username/password authentication. This belief
is mistaken. Performing several authentication checks may add considerable
security to the mechanism. But counterbalancing this, the process is more
prone to flaws in implementation. In several cases where a combination of
flaws is present, it can even result in a solution that is /ess secure than a nor-
mal login based on username and password.

Some implementations of multistage login mechanisms make potentially
unsafe assumptions at each stage about the user’s interaction with earlier stages:

m An application may assume that a user who accesses stage three must
have cleared stages one and two. Therefore, it may authenticate an attacker
who proceeds directly from stage one to stage three and correctly com-
pletes it, enabling an attacker to log in with only one part of the various
credentials normally required.

m An application may trust some of the data being processed at stage two
because this was validated at stage one. However, an attacker may be able
to manipulate this data at stage two, giving it a different value than was
validated at stage one. For example, at stage one the application might
determine whether the user’s account has expired, is locked out, or is in
the administrative group, or whether it needs to complete further stages
of the login beyond stage two. If an attacker can interfere with these
flags as the login transitions between different stages, he may be able to
modify the application’s behavior and cause it to authenticate him with
only partial credentials or otherwise elevate privileges.

m An application may assume that the same user identity is used to complete
each stage; however, it might not explicitly check this. For example, stage
one might involve submitting a valid username and password, and stage
two might involve resubmitting the username (now in a hidden form
tield) and a value from a changing physical token. If an attacker submits
valid data pairs at each stage, but for different users, the application might
authenticate the user as either one of the identities used in the two stages.
This would enable an attacker who possesses his own physical token and
discovers another user’s password to log in as that user (or vice versa).
Although the login mechanism cannot be completely compromised with-
out any prior information, its overall security posture is substantially
weakened, and the substantial expense and effort of implementing the
two-factor mechanism do not deliver the benefits expected.

188 Chapter 6 = Attacking Authentication

Perform a complete, valid login using an account you control. Record every
piece of data submitted to the application using your intercepting proxy.

Identify each distinct stage of the login and the data that is collected at
each stage. Determine whether any single piece of information is collected
more than once or is ever transmitted back to the client and resubmitted
via a hidden form field, cookie, or preset URL parameter (see Chapter 5).

Repeat the login process numerous times with various malformed
requests:

a. Try performing the login steps in a different sequence.
b. Try proceeding directly to any given stage and continuing from there.
c. Try skipping each stage and continuing with the next.

d. Use your imagination to think of other ways to access the different
stages that the developers may not have anticipated.

If any data is submitted more than once, try submitting a different value
at different stages, and see whether the login is still successful. It may
be that some of the submissions are superfluous and are not actually
processed by the application. It might be that the data is validated at one
stage and then trusted subsequently. In this instance, try to provide the
credentials of one user at one stage, and then switch at the next to actu-
ally authenticate as a different user. It might be that the same piece of
data is validated at more than one stage, but against different checks. In
this instance, try to provide (for example) the username and password of
one user at the first stage, and the username and PIN of a different user
at the second stage.

Pay close attention to any data being transmitted via the client that was
not directly entered by the user. The application may use this data to store
information about the state of the login progress, and the application may
trust it when it is submitted back to the server. For example, if the request
for stage three includes the parameter stage2complete=true, it may

be possible to advance straight to stage three by setting this value. Try to
modify the values being submitted, and determine whether this enables
you to advance or skip stages.

TRY IT!

http://mdsec.net/auth/195/
http://mdsec.net/auth/199/
http://mdsec.net/auth/203/
http://mdsec.net/auth/206/
http://mdsec.net/auth/211/

Chapter 6 = Attacking Authentication 189

Some login mechanisms employ a randomly varying question at one of the stages
of the login process. For example, after submitting a username and password, users
might be asked one of various “secret” questions (regarding their mother’s maiden
name, place of birth, name of first school) or to submit two random letters from a
secret phrase. The rationale for this behavior is that even if an attacker captures
everything that a user enters on a single occasion, this will not enable him to log
in as that user on a different occasion, because different questions will be asked.

In some implementations, this functionality is broken and does not achieve
its objectives:

m The application may present a randomly chosen question and store the
details within a hidden HTML form field or cookie, rather than on the
server. The user subsequently submits both the answer and the question
itself. This effectively allows an attacker to choose which question to
answer, enabling the attacker to repeat a login after capturing a user’s
input on a single occasion.

m The application may present a randomly chosen question on each login
attempt but not remember which question a given user was asked if he
or she fails to submit an answer. If the same user initiates a fresh login
attempt a moment later, a different random question is generated. This
effectively allows an attacker to cycle through questions until he receives
one to which he knows the answer, enabling him to repeat a login having
captured a user’s input on a single occasion.

.m The second of these conditions is really quite subtle, and as a result,
many real-world applications are vulnerable. An application that challenges a
user for two random letters of a memorable word may appear at first glance
to be functioning properly and providing enhanced security. However, if the
letters are randomly chosen each time the previous authentication stage is
passed, an attacker who has captured a user’s login on a single occasion can
simply reauthenticate up to this point until the two letters that he knows are
requested, without the risk of account lockout.

1. If one of the login stages uses a randomly varying question, verify whether
the details of the question are being submitted together with the answer.
If so, change the question, submit the correct answer associated with that
question, and verify whether the login is still successful.

2. If the application does not enable an attacker to submit an arbitrary
question and answer, perform a partial login several times with a single
account, proceeding each time as far as the varying question. If the ques-
tion changes on each occasion, an attacker can still effectively choose
which question to answer.

190 Chapter 6 = Attacking Authentication

TRY IT!

http://mdsec.net/auth/178/
http://mdsec.net/auth/182/

.]ma In some applications where one component of the login varies ran-
domly, the application collects all of a user’s credentials at a single stage.
For example, the main login page may present a form containing fields for
username, password, and one of various secret questions. Each time the
login page is loaded, the secret question changes. In this situation, the ran-
domness of the secret question does nothing to prevent an attacker from
replaying a valid login request having captured a user’s input on one occa-
sion. The login process cannot be modified to do so in its present form,
because an attacker can simply reload the page until he receives the varying
question to which he knows the answer. In a variation on this scenario, the
application may set a persistent cookie to “ensure” that the same varying
question is presented to any given user until that person answers it cor-
rectly. Of course, this measure can be circumvented easily by modifying or
deleting the cookie.

Insecure Storage of Credentials

If an application stores login credentials insecurely, the security of the login
mechanism is undermined, even though there may be no inherent flaw in the
authentication process itself.

It is common to encounter web applications in which user credentials are
stored insecurely within the database. This may involve passwords being
stored in cleartext. But if passwords are being hashed using a standard algo-
rithm such as MD5 or SHA-1, this still allows an attacker to simply look up
observed hashes against a precomputed database of hash values. Because the
database account used by the application must have full read/write access to
those credentials, many other kinds of vulnerabilities within the application
may be exploitable to enable you to access these credentials, such as command
or SQL injection flaws (see Chapter 9) and access control weaknesses (see
Chapter 8).

m Some online databases of common hashing functions are available here:

http://passcracking.com/index.php

http://authsecu.com/decrypter-dechiffrer-cracker-hash-md5/
script-hash-md5.php

Chapter 6 = Attacking Authentication

191

1. Review all of the application’s authentication-related functionality, as well
as any functions relating to user maintenance. If you find any instances in
which a user’s password is transmitted back to the client, this indicates
that passwords are being stored insecurely, either in cleartext or using
reversible encryption.

2. If any kind of arbitrary command or query execution vulnerability is
identified within the application, attempt to find the location within the
application’s database or filesystem where user credentials are stored:

a. Query these to determine whether passwords are being stored in
unencrypted form.

b. If passwords are stored in hashed form, check for nonunique val-
ues, indicating that an account has a common or default password
assigned, and that the hashes are not being salted.

c. If the password is hashed with a standard algorithm in unsalted form,
query online hash databases to determine the corresponding cleartext
password value.

Securing Authentication

Implementing a secure authentication solution involves attempting to simultane-
ously meet several key security objectives, and in many cases trade off against
other objectives such as functionality, usability, and total cost. In some cases
“more” security can actually be counterproductive. For example, forcing users
to set very long passwords and change them frequently often causes users to
write down their passwords.

Because of the enormous variety of possible authentication vulnerabilities,
and the potentially complex defenses that an application may need to deploy to
mitigate against all of them, many application designers and developers choose
to accept certain threats as a given and concentrate on preventing the most seri-
ous attacks. Here are some factors to consider in striking an appropriate balance:

m The criticality of security given the functionality that the application offers

m The degree to which users will tolerate and work with different types of
authentication controls

m The cost of supporting a less user-friendly system

m The financial cost of competing alternatives in relation to the revenue likely
to be generated by the application or the value of the assets it protects

192

Chapter 6 = Attacking Authentication

This section describes the most effective ways to defeat the various attacks
against authentication mechanisms. We'll leave it to you to decide which kinds
of defenses are most appropriate in each case.

Use Strong Credentials

m Suitable minimum password quality requirements should be enforced.
These may include rules regarding minimum length; the appearance of
alphabetic, numeric, and typographic characters; the appearance of both
uppercase and lowercase characters; the avoidance of dictionary words,
names, and other common passwords; preventing a password from being
set to the username; and preventing a similarity or match with previ-
ously set passwords. As with most security measures, different password
quality requirements may be appropriate for different categories of user.

m Usernames should be unique.

m Any system-generated usernames and passwords should be created
with sufficient entropy that they cannot feasibly be sequenced or pre-
dicted — even by an attacker who gains access to a large sample of suc-
cessively generated instances.

m Users should be permitted to set sufficiently strong passwords. For example,
long passwords and a wide range of characters should be allowed.

Handle Credentials Secretively

m All credentials should be created, stored, and transmitted in a manner
that does not lead to unauthorized disclosure.

m All client-server communications should be protected using a well-
established cryptographic technology, such as SSL. Custom solutions
for protecting data in transit are neither necessary nor desirable.

m Ifitis considered preferable to use HTTP for the unauthenticated areas of
the application, ensure that the login form itself is loaded using HTTPS,
rather than switching to HTTPS at the point of the login submission.

m Only posT requests should be used to transmit credentials to the server.
Credentials should never be placed in URL parameters or cookies (even
ephemeral ones). Credentials should never be transmitted back to the
client, even in parameters to a redirect.

m All server-side application components should store credentials in a man-
ner that does not allow their original values to be easily recovered, even
by an attacker who gains full access to all the relevant data within the

Chapter 6 = Attacking Authentication 193

application’s database. The usual means of achieving this objective is to
use a strong hash function (such as SHA-256 at the time of this writing),
appropriately salted to reduce the effectiveness of precomputed offline
attacks. The salt should be specific to the account that owns the password,
such that an attacker cannot replay or substitute hash values.

m Client-side “remember me” functionality should in general remember only
nonsecret items such as usernames. In less security-critical applications,
it may be considered appropriate to allow users to opt in to a facility to
remember passwords. In this situation, no cleartext credentials should be
stored on the client (the password should be stored reversibly encrypted
using a key known only to the server). Also, users should be warned about
risks from an attacker who has physical access to their computer or who
compromises their computer remotely. Particular attention should be paid
to eliminating cross-site scripting vulnerabilities within the application
that may be used to steal stored credentials (see Chapter 12).

m A password change facility should be implemented (see the “Prevent
Misuse of the Password Change Function” section), and users should be
required to change their password periodically.

m Where credentials for new accounts are distributed to users out-of-band,
these should be sent as securely as possible and should be time-limited.
The user should be required to change them on first login and should be
told to destroy the communication after first use.

m Where applicable, consider capturing some of the user’s login information
(for example, single letters from a memorable word) using drop-down
menus rather than text fields. This will prevent any keyloggers installed
on the user’s computer from capturing all the data the user submits. (Note,
however, that a simple keylogger is only one means by which an attacker
can capture user input. If he or she has already compromised a user’s
computer, in principle an attacker can log every type of event, including
mouse movements, form submissions over HTTPS, and screen captures.)

Validate Credentials Properly

m Passwords should be validated in full — that is, in a case-sensitive way,
without filtering or modifying any characters, and without truncating
the password.

m The application should be aggressive in defending itself against unex-
pected events occurring during login processing. For example, depending
on the development language in use, the application should use catch-all
exception handlers around all API calls. These should explicitly delete all

194 Chapter 6 = Attacking Authentication

session and method-local data being used to control the state of the login
processing and should explicitly invalidate the current session, thereby
causing a forced logout by the server even if authentication is somehow
bypassed.

m All authentication logic should be closely code-reviewed, both as pseudo-
code and as actual application source code, to identify logic errors such
as fail-open conditions.

m If functionality to support user impersonation is implemented, this should
be strictly controlled to ensure that it cannot be misused to gain unau-
thorized access. Because of the criticality of the functionality, it is often
worthwhile to remove this functionality from the public-facing applica-
tion and implement it only for internal administrative users, whose use
of impersonation should be tightly controlled and audited.

m Multistage logins should be strictly controlled to prevent an attacker from
interfering with the transitions and relationships between the stages:

m All data about progress through the stages and the results of previous
validation tasks should be held in the server-side session object and
should never be transmitted to or read from the client.

m No items of information should be submitted more than once by the
user, and there should be no means for the user to modify data that
has already been collected and/or validated. Where an item of data
such as a username is used at multiple stages, this should be stored
in a session variable when first collected and referenced from there
subsequently.

m The first task carried out at every stage should be to verify that all
prior stages have been correctly completed. If this is not the case, the
authentication attempt should immediately be marked as bad.

m To prevent information leakage about which stage of the login failed
(which would enable an attacker to target each stage in turn), the appli-
cation should always proceed through all stages of the login, even
if the user failed to complete earlier stages correctly, and even if the
original username was invalid. After proceeding through all the stages,
the application should present a generic “login failed” message at the
conclusion of the final stage, without providing any information about
where the failure occurred.

m Where a login process includes a randomly varying question, ensure that
an attacker cannot effectively choose his own question:

m Always employ a multistage process in which users identify themselves
at an initial stage and the randomly varying question is presented to
them at a later stage.

Chapter 6 = Attacking Authentication 195

m When a given user has been presented with a given varying question,
store that question within her persistent user profile, and ensure that
the same user is presented with the same question on each attempted
login until she successfully answers it.

m When a randomly varying challenge is presented to the user, store the
question that has been asked in a server-side session variable, rather
than a hidden field in an HTML form, and validate the subsequent
answer against that saved question.

.m The subtleties of devising a secure authentication mechanism run
deep here. If care is not taken in the asking of a randomly varying question,
this can lead to new opportunities for username enumeration. For example, to
prevent an attacker from choosing his own question, an application may store
within each user’s profile the last question that user was asked, and continue
presenting that question until the user answers it correctly. An attacker who
initiates several logins using any given user’s username will be met with the
same question. However, if the attacker carries out the same process using
an invalid username, the application may behave differently: because no
user profile is associated with an invalid username, there will be no stored
question, so a varying question will be presented. The attacker can use this
difference in behavior, manifested across several login attempts, to infer the
validity of a given username. In a scripted attack, he will be able to harvest
numerous usernames quickly.

If an application wants to defend itself against this possibility, it must go to
some lengths. When a login attempt is initiated with an invalid username, the
application must record somewhere the random question that it presented
for that invalid username and ensure that subsequent login attempts using
the same username are met with the same question. Going even further, the
application could switch to a different question periodically to simulate the
nonexistent user’s having logged in as normal, resulting in a change in the
next question! At some point, however, the application designer must draw a
line and concede that a total victory against such a determined attacker prob-
ably is not possible.

Prevent Information Leakage

m The various authentication mechanisms used by the application should
not disclose any information about authentication parameters, through
either overt messages or inference from other aspects of the application’s
behavior. An attacker should have no means of determining which piece
of the various items submitted has caused a problem.

m A single code component should be responsible for responding to all failed
login attempts with a generic message. This avoids a subtle vulnerability

196 Chapter 6 = Attacking Authentication

that can occur when a supposedly uninformative message returned from
different code paths can actually be spotted by an attacker due to typo-
graphical differences in the message, different HTTP status codes, other
information hidden in HTML, and the like.

m If the application enforces some kind of account lockout to prevent brute-
force attacks (as discussed in the next section), be careful not to let this
lead to any information leakage. For example, if an application discloses
that a specific account has been suspended for X minutes due to Y failed
logins, this behavior can easily be used to enumerate valid usernames. In
addition, disclosing the precise metrics of the lockout policy enables an
attacker to optimize any attempt to continue guessing passwords in spite
of the policy. To avoid enumeration of usernames, the application should
respond to any series of failed login attempts from the same browser with a
generic message advising that accounts are suspended if multiple failures
occur and that the user should try again later. This can be achieved using a
cookie or hidden field to track repeated failures originating from the same
browser. (Of course, this mechanism should not be used to enforce any
actual security control — only to provide a helpful message to ordinary
users who are struggling to remember their credentials.)

m If the application supports self-registration, it can prevent this function
from being used to enumerate existing usernames in two ways:

m Instead of permitting self-selection of usernames, the application can
create a unique (and unpredictable) username for each new user, thereby
obviating the need to disclose that a selected username already exists.

m The application can use e-mail addresses as usernames. Here, the
first stage of the registration process requires the user to enter her
e-mail address, whereupon she is told simply to wait for an e-mail
and follow the instructions contained within it. If the e-mail address
is already registered, the user can be informed of this in the e-mail. If
the address is not already registered, the user can be provided with a
unique, unguessable URL to visit to continue the registration process.
This prevents the attacker from enumerating valid usernames (unless
he happens to have already compromised a large number of e-mail
accounts).

Prevent Brute-Force Attacks

m Measures need to be enforced within all the various challenges imple-
mented by the authentication functionality to prevent attacks that attempt
to meet those challenges using automation. This includes the login itself,

Chapter 6 = Attacking Authentication

197

as well as functions to change the password, to recover from a forgotten
password situation, and the like.

Using unpredictable usernames and preventing their enumeration presents
a significant obstacle to completely blind brute-force attacks and requires
an attacker to have somehow discovered one or more specific usernames
before mounting an attack.

Some security-critical applications (such as online banks) simply disable
an account after a small number of failed logins (such as three). They also
require that the account owner take various out-of-band steps to reactivate
the account, such as telephoning customer support and answering a series
of security questions. Disadvantages of this policy are that it allows an
attacker to deny service to legitimate users by repeatedly disabling their
accounts, and the cost of providing the account recovery service. A more
balanced policy, suitable for most security-aware applications, is to sus-
pend accounts for a short period (such as 30 minutes) following a small
number of failed login attempts (such as three). This serves to massively
slow down any password-guessing attack, while mitigating the risk of
denial-of-service attacks and also reducing call center work.

If a policy of temporary account suspension is implemented, care should
be taken to ensure its effectiveness:

m To prevent information leakage leading to username enumeration, the
application should never indicate that any specific account has been
suspended. Rather, it should respond to any series of failed logins,
even those using an invalid username, with a message advising that
accounts are suspended if multiple failures occur and that the user
should try again later (as just discussed).

m The policy’s metrics should not be disclosed to users. Simply telling
legitimate users to “try again later” does not seriously diminish their
quality of service. But informing an attacker exactly how many failed
attempts are tolerated, and how long the suspension period is, enables
him to optimize any attempt to continue guessing passwords in spite
of the policy.

m If an account is suspended, login attempts should be rejected without
even checking the credentials. Some applications that have imple-
mented a suspension policy remain vulnerable to brute-forcing because
they continue to fully process login attempts during the suspension
period, and they return a subtly (or not so subtly) different mes-
sage when valid credentials are submitted. This behavior enables
an effective brute-force attack to proceed at full speed regardless of
the suspension policy.

198 Chapter 6 = Attacking Authentication

m Per-account countermeasures such as account lockout do not help protect
against one kind of brute-force attack that is often highly effective — iterat-
ing through a long list of enumerated usernames, checking a single weak
password, such as password. For example, if five failed attempts trigger
an account suspension, this means an attacker can attempt four different
passwords on every account without causing any disruption to users. In
a typical application containing many weak passwords, such an attacker
is likely to compromise many accounts.

The effectiveness of this kind of attack will, of course, be massively reduced
if other areas of the authentication mechanism are designed securely. If
usernames cannot be enumerated or reliably predicted, an attacker will
be slowed down by the need to perform a brute-force exercise in guessing
usernames. And if strong requirements are in place for password quality,
it is far less likely that the attacker will choose a password for testing that
even a single user of the application has chosen.

In addition to these controls, an application can specifically protect itself
against this kind of attack through the use of CAPTCHA (Completely
Automated Public Turing test to tell Computers and Humans Apart)
challenges on every page that may be a target for brute-force attacks (see
Figure 6-9). If effective, this measure can prevent any automated submission
of data to any application page, thereby keeping all kinds of password-
guessing attacks from being executed manually. Note that much research
has been done on CAPTCHA technologies, and automated attacks against
them have in some cases been reliable. Furthermore, some attackers have
been known to devise CAPTCHA-solving competitions, in which unwit-
ting members of the public are leveraged as drones to assist the attacker.
However, even if a particular kind of challenge is not entirely effective, it
will still lead most casual attackers to desist and find an application that
does not employ the technique.

AxsiXy

&

Type the characters you see in the picture above.

Figure 6-9: A CAPTCHA control
designed to hinder automated attacks

m If you are attacking an application that uses CAPTCHA controls to hin-
der automation, always closely review the HTML source for the page where
the image appears. The authors have encountered cases where the solution

Chapter 6 = Attacking Authentication 199

to the puzzle appears in literal form within the ALT attribute of the image
tag, or within a hidden form field, enabling a scripted attack to defeat the
protection without actually solving the puzzle itself.

Prevent Misuse of the Password Change Function

m A password change function should always be implemented, to allow
periodic password expiration (if required) and to allow users to change
passwords if they want to for any reason. As a key security mechanism,
this needs to be well defended against misuse.

m The function should be accessible only from within an authenticated session.

m There should be no facility to provide a username, either explicitly or via
a hidden form field or cookie. Users have no legitimate need to attempt
to change other people’s passwords.

m As a defense-in-depth measure, the function should be protected from
unauthorized access gained via some other security defect in the applica-
tion — such as a session-hijacking vulnerability, cross-site scripting, or
even an unattended terminal. To this end, users should be required to
reenter their existing password.

m The new password should be entered twice to prevent mistakes. The appli-
cation should compare the “new password” and “confirm new password”
fields as its first step and return an informative error if they do not match.

m The function should prevent the various attacks that can be made against
the main login mechanism. A single generic error message should be used
to notify users of any error in existing credentials, and the function should
be temporarily suspended following a small number of failed attempts
to change the password.

m Users should be notified out-of-band (such as via e-mail) that their pass-
word has been changed, but the message should not contain either their
old or new credentials.

Prevent Misuse of the Account Recovery Function

m In the most security-critical applications, such as online banking, account
recovery in the event of a forgotten password is handled out-of-band. A
user must make a telephone call and answer a series of security questions,
and new credentials or a reactivation code are also sent out-of-band (via
conventional mail) to the user’s registered home address. The majority of
applications do not want or need this level of security, so an automated
recovery function may be appropriate.

200 Chapter 6 = Attacking Authentication

m A well-designed password recovery mechanism needs to prevent accounts
from being compromised by an unauthorized party and minimize any
disruption to legitimate users.

m Features such as password “hints” should never be used, because they
mainly help an attacker trawl for accounts that have obvious hints set.

m The best automated solution for enabling users to regain control of accounts
is to e-mail the user a unique, time-limited, unguessable, single-use recov-
ery URL. This e-mail should be sent to the address that the user provided
during registration. Visiting the URL allows the user to set a new pass-
word. After this has been done, a second e-mail should be sent, indicating
that a password change was made. To prevent an attacker from denying
service to users by continually requesting password reactivation e-mails,
the user’s existing credentials should remain valid until they are changed.

m To further protect against unauthorized access, applications may present
users with a secondary challenge that they must complete before gain-
ing access to the password reset function. Be sure that the design of this
challenge does not introduce new vulnerabilities:

m The challenge should implement the same question or set of ques-
tions for everyone, mandated by the application during registration.
If users provide their own challenge, it is likely that some of these will
be weak, and this also enables an attacker to enumerate valid accounts
by identifying those that have a challenge set.

m Responses to the challenge should contain sufficient entropy that they
cannot be easily guessed. For example, asking the user for the name of
his first school is preferable to asking for his favorite color.

m Accounts should be temporarily suspended following a number of
failed attempts to complete the challenge, to prevent brute-force attacks.

m The application should not leak any information in the event of failed
responses to the challenge — regarding the validity of the username,
any suspension of the account, and so on.

m Successful completion of the challenge should be followed by the
process described previously, in which a message is sent to the user’s
registered e-mail address containing a reactivation URL. Under no
circumstances should the application disclose the user’s forgotten
password or simply drop the user into an authenticated session. Even
proceeding directly to the password reset function is undesirable. The
response to the account recovery challenge will in general be easier
for an attacker to guess than the original password, so it should not
be relied upon on its own to authenticate the user.

Chapter 6 = Attacking Authentication

201

Log, Monitor, and Notify

m The application should log all authentication-related events, including
login, logout, password change, password reset, account suspension, and
account recovery. Where applicable, both failed and successful attempts
should be logged. The logs should contain all relevant details (such as
username and IP address) but no security secrets (such as passwords).
Logs should be strongly protected from unauthorized access, because
they are a critical source of information leakage.

m Anomalies in authentication events should be processed by the appli-
cation’s real-time alerting and intrusion prevention functionality. For
example, application administrators should be made aware of patterns
indicating brute-force attacks so that appropriate defensive and offensive
measures can be considered.

m Users should be notified out-of-band of any critical security events. For
example, the application should send a message to a user’s registered
e-mail address whenever he changes his password.

m Users should be notified in-band of frequently occurring security events.
For example, after a successful login, the application should inform users of
the time and source IP/domain of the last login and the number of invalid
login attempts made since then. If a user is made aware that her account
is being subjected to a password-guessing attack, she is more likely to
change her password frequently and set it to a strong value.

Summary

Authentication functions are perhaps the most prominent target in a typical
application’s attack surface. By definition, they can be reached by unprivileged,
anonymous users. If broken, they grant access to protected functionality
and sensitive data. They lie at the core of the security mechanisms that an
application employs to defend itself and are the front line of defense against
unauthorized access.

Real-world authentication mechanisms contain a myriad of design and imple-
mentation flaws. An effective assault against them needs to proceed systemati-
cally, using a structured methodology to work through every possible avenue of
attack. In many cases, open goals present themselves — bad passwords, ways to
find out usernames, vulnerability to brute-force attacks. At the other end of the
spectrum, defects may be very hard to uncover. They may require meticulous
examination of a convoluted login process to establish the assumptions being

202 Chapter 6 = Attacking Authentication

made and to help you spot the subtle logic flaw that can be exploited to walk
right through the door.

The most important lesson when attacking authentication functionality is to
look everywhere. In addition to the main login form, there may be functions to
register new accounts, change passwords, remember passwords, recover forgotten
passwords, and impersonate other users. Each of these presents a rich target of
potential defects, and problems that have been consciously eliminated within
one function often reemerge within others. Invest the time to scrutinize and
probe every inch of attack surface you can find, and your rewards may be great.

Questions

Answers can be found at http://mdsec.net/wahh.

1. While testing a web application, you log in using your credentials of joe
and pass. During the login process, you see a request for the following
URL appear in your intercepting proxy:

http://www.wahh-app.com/app?action=1login&uname=joe&password=pass
What three vulnerabilities can you diagnose without probing any further?

2. How can self-registration functions introduce username enumeration
vulnerabilities? How can these vulnerabilities be prevented?

3. Alogin mechanism involves the following steps:

(a) The application requests the user’s username and passcode.

(b) The application requests two randomly chosen letters from the user’s
memorable word.

Why is the required information requested in two separate steps? What
defect would the mechanism contain if this were not the case?

4. A multistage login mechanism first requests the user’s username and
then various other items across successive stages. If any supplied item is
invalid, the user is immediately returned to the first stage.

What is wrong with this mechanism, and how can the vulnerability be
corrected?

5. An application incorporates an antiphishing mechanism into its login
functionality. During registration, each user selects a specific image from
a large bank of memorable images that the application presents to her.
The login function involves the following steps:

(a) The user enters her username and date of birth.

Chapter 6 = Attacking Authentication

203

(b) If these details are correct, the application shows the user her chosen
image; otherwise, a random image is displayed.

(c) The user verifies whether the correct image is displayed. If it is, she
enters her password.

The idea behind this antiphishing mechanism is that it enables the user
to confirm that she is dealing with the authentic application, not a clone,
because only the real application knows the correct image to display to
the user.

What vulnerability does this antiphishing mechanism introduce into the
login function? Is the mechanism effective at preventing phishing?

Attacking Session Management

The session management mechanism is a fundamental security component in
the majority of web applications. It is what enables the application to uniquely
identify a given user across a number of different requests and to handle
the data that it accumulates about the state of that user’s interaction with the
application. Where an application implements login functionality, session man-
agement is of particular importance, because it is what enables the application
to persist its assurance of any given user’s identity beyond the request in which
he supplies his credentials.

Because of the key role played by session management mechanisms, they
are a prime target for malicious attacks against the application. If an attacker
can break an application’s session management, she can effectively bypass its
authentication controls and masquerade as other application users without
knowing their credentials. If an attacker compromises an administrative user
in this way, the attacker can own the entire application.

As with authentication mechanisms, a wide variety of defects can commonly
be found in session management functions. In the most vulnerable cases, an
attacker simply needs to increment the value of a token issued to him by the
application to switch his context to that of a different user. In this situation,
the application is wide open for anyone to access all areas. At the other end
of the spectrum, an attacker may have to work extremely hard, deciphering
several layers of obfuscation and devising a sophisticated automated attack,
before finding a chink in the application’s armor.

205

206

Chapter 7 = Attacking Session Management

This chapter looks at all the types of weakness the authors have encountered
in real-world web applications. It sets out in detail the practical steps you need
to take to find and exploit these defects. Finally, it describes the defensive mea-
sures that applications should take to protect themselves against these attacks.

COMMON MYTH

“We use smartcards for authentication, and users’ sessions cannot be com-
promised without them.”

However robust an application’s authentication mechanism, subsequent
requests from users are only linked back to that authentication via the result-
ing session. If the application’s session management is flawed, an attacker
can bypass the robust authentication and still compromise users.

The Need for State

The HTTP protocol is essentially stateless. It is based on a simple request-response
model, in which each pair of messages represents an independent transaction.
The protocol itself contains no mechanism for linking the series of requests
made by a particular user and distinguishing these from all the other requests
received by the web server. In the early days of the Web, there was no need for
any such mechanism: websites were used to publish static HTML pages for
anyone to view. Today, things are very different.

The majority of web “sites” are in fact web applications. They allow you to
register and log in. They let you buy and sell goods. They remember your pref-
erences the next time you visit. They deliver rich multimedia experiences with
content created dynamically based on what you click and type. To implement
any of this functionality, web applications need to use the concept of a session.

The most obvious use of sessions is in applications that support logging in.
After entering your username and password, you can use the application as
the user whose credentials you have entered, until you log out or the session
expires due to inactivity. Without a session, a user would have to reenter his
password on every page of the application. Hence, after authenticating the user
once, the application creates a session for him and treats all requests belonging
to that session as coming from that user.

Applications that do not have a login function also typically need to use ses-
sions. Many sites selling merchandise do not require customers to create accounts.
However, they allow users to browse the catalog, add items to a shopping basket,
provide delivery details, and make a payment. In this scenario, there is no need
to authenticate the user’s identity: for the majority of his visit, the application
does not know or care who the user is. But to do business with him, it needs to
know which series of requests it receives originated from the same user.

Chapter 7 = Attacking Session Management

207

The simplest and still most common means of implementing sessions is to
issue each user a unique session token or identifier. On each subsequent request
to the application, the user resubmits this token, enabling the application to
determine which sequence of earlier requests the current request relates to.

In most cases, applications use HTTP cookies as the transmission mechanism
for passing these session tokens between server and client. The server’s first
response to a new client contains an HTTP header like the following:

Set-Cookie: ASP.NET_SessionId=mza2jid454s04cwbgwb2ttj55

and subsequent requests from the client contain this header:

Cookie: ASP.NET_SessionId=mza2jid454s04cwbgwb2ttj55

This standard session management mechanism is inherently vulnerable to
various categories of attack. An attacker’s primary objective in targeting the
mechanism is to somehow hijack the session of a legitimate user and thereby
masquerade as that person. If the user has been authenticated to the application,
the attacker may be able to access private data belonging to the user or carry
out unauthorized actions on that person’s behalf. If the user is unauthenticated,
the attacker may still be able to view sensitive information submitted by the
user during her session.

As in the previous example of a Microsoft IIS server running ASP.NET, most
commercial web servers and web application platforms implement their own
off-the-shelf session management solution based on HTTP cookies. They provide
APIs that web application developers can use to integrate their own session-
dependent functionality with this solution.

Some off-the-shelf implementations of session management have been found to
be vulnerable to various attacks, which results in users” sessions being compro-
mised (these are discussed later in this chapter). In addition, some developers find
that they need more fine-grained control over session behavior than is provided
for them by the built-in solutions, or they want to avoid some vulnerabilities
inherent in cookie-based solutions. For these reasons, it is fairly common to see
bespoke and/or non-cookie-based session management mechanisms used in
security-critical applications such as online banking.

The vulnerabilities that exist in session management mechanisms largely
fall into two categories:

m Weaknesses in the generation of session tokens

m Weaknesses in the handling of session tokens throughout their life cycle

We will look at each of these areas in turn, describing the different types of
defects that are commonly found in real-world session management mecha-
nisms, and practical techniques for discovering and exploiting these. Finally,
we will describe measures that applications can take to defend themselves
against these attacks.

208 Chapter 7 = Attacking Session Management

In many applications that use the standard cookie mechanism to transmit
session tokens, it is straightforward to identify which item of data contains
the token. However, in other cases this may require some detective work.

1. The application may often employ several different items of data col-
lectively as a token, including cookies, URL parameters, and hidden form
fields. Some of these items may be used to maintain session state on dif-
ferent back-end components. Do not assume that a particular parameter
is the session token without proving it, or that sessions are being tracked
using only one item.

2. Sometimes, items that appear to be the application’s session token may
not be. In particular, the standard session cookie generated by the web
server or application platform may be present but not actually used by the
application.

3. Observe which new items are passed to the browser after authentication.
Often, new session tokens are created after a user authenticates herself.

4. To verify which items are actually being employed as tokens, find a page
that is definitely session-dependent (such as a user-specific “my details”
page). Make several requests for it, systematically removing each item
that you suspect is being used as a token. If removing an item causes
the session-dependent page not to be returned, this may confirm that the
item is a session token. Burp Repeater is a useful tool for performing
these tests.

Alternatives to Sessions

Not every web application employs sessions, and some security-critical applica-
tions containing authentication mechanisms and complex functionality opt to
use other techniques to manage state. You are likely to encounter two possible
alternatives:

m HTTP authentication — Applications using the various HTTP-based
authentication technologies (basic, digest, NTLM) sometimes avoid the
need to use sessions. With HTTP authentication, the client component
interacts with the authentication mechanism directly via the browser,
using HTTP headers, and not via application-specific code contained
within any individual page. After the user enters his credentials into a
browser dialog, the browser effectively resubmits these credentials (or
reperforms any required handshake) with every subsequent request to
the same server. This is equivalent to an application that uses HTML
forms-based authentication and places a login form on every application
page, requiring users to reauthenticate themselves with every action they
perform. Hence, when HTTP-based authentication is used, it is possible

Chapter 7 = Attacking Session Management 209

for an application to reidentify the user across multiple requests without
using sessions. However, HTTP authentication is rarely used on Internet-
based applications of any complexity, and the other versatile benefits
that fully fledged session mechanisms offer mean that virtually all web
applications do in fact employ these mechanisms.

m Sessionless state mechanisms — Some applications do not issue session
tokens to manage the state of a user’s interaction with the application.
Instead, they transmit all data required to manage that state via the client,
usually in a cookie or a hidden form field. In effect, this mechanism uses
sessionless state much like the ASP.NET viewstate does. For this type
of mechanism to be secure, the data transmitted via the client must be
properly protected. This usually involves constructing a binary blob
containing all the state information and encrypting or signing this using
a recognized algorithm. Sufficient context must be included within the
data to prevent an attacker from collecting a state object at one location
within the application and submitting it to another location to cause some
undesirable behavior. The application may also include an expiration time
within the object’s data to perform the equivalent of session timeouts.
Chapter 5 describes in more detail secure mechanisms for transmitting
data via the client.

1. If HTTP authentication is being used, it is possible that no session manage-
ment mechanism is implemented. Use the methods described previously to
examine the role played by any token-like items of data.

2. If the application uses a sessionless state mechanism, transmitting all
data required to maintain state via the client, this may sometimes be
difficult to detect with certainty, but the following are strong indicators
that this kind of mechanism is being used:

m Token-like data items issued to the client are fairly long (100 or more bytes).
m The application issues a new token-like item in response to every request.

m The data in the item appears to be encrypted (and therefore has no
discernible structure) or signed (and therefore has a meaningful structure
accompanied by a few bytes of meaningless binary data).

m The application may reject attempts to submit the same item with more
than one request.

3. If the evidence suggests strongly that the application is not using session
tokens to manage state, it is unlikely that any of the attacks described in
this chapter will achieve anything. Your time probably would be better
spent looking for other serious issues such as broken access controls or
code injection.

210 Chapter 7 = Attacking Session Management

Weaknesses in Token Generation

Session management mechanisms are often vulnerable to attack because tokens
are generated in an unsafe manner that enables an attacker to identify the values
of tokens that have been issued to other users.

.]Im There are numerous locations where an application’s security
depends on the unpredictability of tokens it generates. Here are some
examples:

B Password recovery tokens sent to the user’s registered e-mail address

B Tokens placed in hidden form fields to prevent cross-site request forgery
attacks (see Chapter 13)

B Tokens used to give one-time access to protected resources
B Persistent tokens used in “remember me” functions

B Tokens allowing customers of a shopping application that does not use
authentication to retrieve the current status of an existing order

The considerations in this chapter relating to weaknesses in token generation
apply to all these cases. In fact, because many of today’s applications rely on
mature platform mechanisms to generate session tokens, it is often in these
other areas of functionality that exploitable weaknesses in token generation
are found.

Meaningful Tokens

Some session tokens are created using a transformation of the user’s username
or e-mail address, or other information associated with that person. This infor-
mation may be encoded or obfuscated in some way and may be combined with
other data.

For example, the following token may initially appear to be a long random
string:

757365723d6461663b6170703d61646d696e3b646174653d30312£31322£3131

However, on closer inspection, you can see that it contains only hexadecimal
characters. Guessing that the string may actually be a hex encoding of a string
of ASCII characters, you can run it through a decoder to reveal the following;:

user=daf;app=admin;date=10/09/11

Chapter 7 = Attacking Session Management

211

Attackers can exploit the meaning within this session token to attempt to
guess the current sessions of other application users. Using a list of enumerated
or common usernames, they can quickly generate large numbers of potentially
valid tokens and test these to confirm which are valid.

Tokens that contain meaningful data often exhibit a structure. In other words,
they contain several components, often separated by a delimiter, that can be
extracted and analyzed separately to allow an attacker to understand their
function and means of generation. Here are some components that may be
encountered within structured tokens:

m The account username

m The numeric identifier that the application uses to distinguish between
accounts

m The user’s first and last names

m The user’s e-mail address

m The user’s group or role within the application
m A date/time stamp

m An incrementing or predictable number

m The client IP address

Each different component within a structured token, or indeed the entire
token, may be encoded in different ways. This can be a deliberate measure to
obfuscate their content, or it can simply ensure safe transport of binary data via
HTTP. Encoding schemes that are commonly encountered include XOR, Base64,
and hexadecimal representation using ASCII characters (see Chapter 3). It may
be necessary to test various decodings on each component of a structured token
to unpack it to its original form.

.:ma When an application handles a request containing a structured token,
it may not actually process every component with the token or all the data
contained in each component. In the previous example, the application may
Base64-decode the token and then process only the “user” and “date” com-
ponents. In cases where a token contains a blob of binary data, much of this
data may be padding. Only a small part of it may actually be relevant to the
validation that the server performs on the token. Narrowing down the sub-
parts of a token that are actually required can often considerably reduce the
amount of apparent entropy and complexity that the token contains.

212 Chapter 7 = Attacking Session Management

1.

Obtain a single token from the application, and modify it in systematic
ways to determine whether the entire token is validated or whether some
of its subcomponents are ignored. Try changing the token’s value one
byte at a time (or even one bit at a time) and resubmitting the modified
token to the application to determine whether it is still accepted. If you
find that certain portions of the token are not actually required to be cor-
rect, you can exclude these from any further analysis, potentially reducing
the amount of work you need to perform. You can use the “char frobber”
payload type in Burp Intruder to modify a token’s value in one character
position at a time, to help with this task.

Log in as several different users at different times, and record the tokens
received from the server. If self-registration is available and you can choose
your username, log in with a series of similar usernames containing small
variations between them, such as A, AA, AAA, AAAA, AAAB, AAAC, AABA,
and so on. If other user-specific data is submitted at login or stored in user
profiles (such as an e-mail address), perform a similar exercise to vary that
data systematically, and record the tokens received following login.

Analyze the tokens for any correlations that appear to be related to the
username and other user-controllable data.

Analyze the tokens for any detectable encoding or obfuscation. Where the
username contains a sequence of the same character, look for a correspond-
ing character sequence in the token, which may indicate the use of XOR
obfuscation. Look for sequences in the token containing only hexadecimal
characters, which may indicate a hex encoding of an ASCII string or other
information. Look for sequences that end in an equals sign and/or that con-
tain only the other valid Base64 characters:atoz, AtoZ,0to 9, +, and /.

If any meaning can be reverse-engineered from the sample of session
tokens, consider whether you have sufficient information to attempt to
guess the tokens recently issued to other application users. Find a page
of the application that is session-dependent, such as one that returns an
error message or a redirect elsewhere if accessed without a valid session.
Then use a tool such as Burp Intruder to make large numbers of requests
to this page using guessed tokens. Monitor the results for any cases in
which the page is loaded correctly, indicating a valid session token.

TRY IT!

http://mdsec.net/auth/321/
http://mdsec.net/auth/329/
http://mdsec.net/auth/331/

Chapter 7 = Attacking Session Management

213

Predictable Tokens

Some session tokens do not contain any meaningful data associating them
with a particular user. Nevertheless, they can be guessed because they contain
sequences or patterns that allow an attacker to extrapolate from a sample of
tokens to find other valid tokens recently issued by the application. Even if the
extrapolation involves some trial and error (for example, one valid guess per
1,000 attempts), this would still enable an automated attack to identify large
numbers of valid tokens in a relatively short period of time.

Vulnerabilities relating to predictable token generation may be much easier to
discover in commercial implementations of session management, such as web
servers or web application platforms, than they are in bespoke applications.
When you are remotely targeting a bespoke session management mechanism,
your sample of issued tokens may be restricted by the server’s capacity, the
activity of other users, your bandwidth, network latency, and so on. In a labora-
tory environment, however, you can quickly create millions of sample tokens,
all precisely sequenced and time-stamped, and you can eliminate interference
caused by other users.

In the simplest and most brazenly vulnerable cases, an application may use
a simple sequential number as the session token. In this case, you only need
to obtain a sample of two or three tokens before launching an attack that will
quickly capture 100% of currently valid sessions.

Figure 7-1 shows Burp Intruder being used to cycle the last two digits of a
sequential session token to find values where the session is still active and can
be hijacked. Here, the length of the server’s response is a reliable indicator that
a valid session has been found. The extract grep feature has also been used to
show the name of the logged-in user for each session.

In other cases, an application’s tokens may contain more elaborate sequences
that take some effort to discover. The types of potential variations you might
encounter here are open-ended, but the authors” experience in the field indicates
that predictable session tokens commonly arise from three different sources:

m Concealed sequences
m Time dependency

m Weak random number generation

We will look at each of these areas in turn.

Concealed Sequences

It is common to encounter session tokens that cannot be easily predicted when
analyzed in their raw form but that contain sequences that reveal themselves
when the tokens are suitably decoded or unpacked.

214 Chapter 7 = Attacking Session Management

e =

attack save columns

| Filter: showing all items |

l’ results ‘ target r positions rpayloads r options

reguest payload status | emor [limeo..| length Loggedin as: comment
g 07 200 laad L] [1314 John Herman
28 1b 200 L] L] [1348 Administrator
35 22 200 [ial] (1 [1329 Pabilna
73 48 200 W | W 1312 GUnit
128 7F 200 ™| [1357 PSCDMGILIr
147 92 200 ™] 1332 Keycek
0 302 lual [l |546 baseline request
1 00 302 = [] |548
2 01 302 ™| [|46
3 [iF] 02 [1 | [] |s46

request | response |

raw params | headers hex

GET /auth/340/Home.ashx HTTP/1.1 -
Host: mdsec.net

User—Agent: Mozilla/5.0 (Windows: U:; Windows NT €.1:; en-GB: rv:l.9.2.10)
Gecko/20100914 Firefox/3.6.10

Accept: text/html,application/xhtml4xml, application/xml;q=0.9,*/*:q=0.8
Accept-Language: en-gb,en:g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-B858-1,utf-8:¢=0.7,*;cq=0.7

Keep-Alive: 115

Connection: close —
Referer: https://mdssc.net/auch/340/Default. ashx
Cookie: SessionId=5160EZES3ESFBIZ —

-

[ell=ll=z]] | 0 matches
finished |

Figure 7-1: An attack to discover valid sessions where the session token is
predictable

Consider the following series of values, which form one component of a
structured session token:

1wjVJA
Ls3Ajg
XpKr+A
XleXYg
9hyCzA
jeFuNg
JaZZoA

No immediate pattern is discernible; however, a cursory inspection indicates
that the tokens may contain Base64-encoded data. In addition to the mixed-case
alphabetic and numeric characters, there is a + character, which is also valid in
a Base64-encoded string. Running the tokens through a Base64 decoder reveals
the following;:

Chapter 7 = Attacking Session Management

215

These strings appear to be gibberish and also contain nonprinting characters. This
normally indicates that you are dealing with binary data rather than ASCII text.
Rendering the decoded data as hexadecimal numbers gives you the following;:

9708D524
2ECDCO8E
C692ABF8
5E579762
F6lc82cc
8DE16E36
25A659A0

There is still no visible pattern. However, if you subtract each number from the
previous one, you arrive at the following:

FF97C4EB6A
97C4EB6A
FFO97C4EB6A
97C4EB6A
FF97C4EB6A
FF97C4EB6A

which immediately reveals the concealed pattern. The algorithm used to generate
tokens adds 0x97C4EB6A to the previous value, truncates the result to a 32-bit
number, and Base64-encodes this binary data to allow it to be transported using
the text-based protocol HTTP. Using this knowledge, you can easily write a
script to produce the series of tokens that the server will next produce, and the
series that it produced prior to the captured sample.

Time Dependency

Some web servers and applications employ algorithms to generate session tokens
that use the time of generation as an input to the token’s value. If insufficient
other entropy is incorporated into the algorithm, you may be able to predict
other users’ tokens. Although any given sequence of tokens on its own may
appear to be random, the same sequence coupled with information about the
time at which each token was generated may contain a discernible pattern. In a
busy application with a large number of sessions being created each second, a
scripted attack may succeed in identifying large numbers of other users’ tokens.

When testing the web application of an online retailer, the authors encoun-
tered the following sequence of session tokens:

3124538-1172764258718
3124539-1172764259062
3124540-1172764259281
3124541-1172764259734
3124542-1172764260046
3124543-1172764260156

216

Chapter 7 = Attacking Session Management

3124544-1172764260296
3124545-1172764260421
3124546-1172764260812
3124547-1172764260890

Each token is clearly composed of two separate numeric components. The
first number follows a simple incrementing sequence and is easy to predict.
The second number increases by a varying amount each time. Calculating the
differences between its value in each successive token reveals the following:

344
219
453
312
110
140
125
391
78

The sequence does not appear to contain a reliably predictable pattern. However,
it would clearly be possible to brute-force the relevant number range in an auto-
mated attack to discover valid values in the sequence. Before attempting this
attack, however, we wait a few minutes and gather a further sequence of tokens:

3124553-1172764800468
3124554-1172764800609
3124555-1172764801109
3124556-1172764801406
3124557-1172764801703
3124558-1172764802125
3124559-1172764802500
3124560-1172764802656
3124561-1172764803125
3124562-1172764803562

Comparing this second sequence of tokens with the first, two points are imme-
diately obvious:

m The first numeric sequence continues to progress incrementally; however,
five values have been skipped since the end of the first sequence. This is
presumably because the missing values have been issued to other users
who logged in to the application in the window between the two tests.

m The second numeric sequence continues to progress by similar intervals
as before; however, the first value we obtain is a massive 539,578 greater
than the previous value.

Chapter 7 = Attacking Session Management

217

This second observation immediately alerts us to the role played by time
in generating session tokens. Apparently, only five tokens have been issued
between the two token-grabbing exercises. However, a period of approximately
10 minutes has elapsed. The most likely explanation is that the second number
is time-dependent and is probably a simple count of milliseconds.

Indeed, our hunch is correct. In a subsequent phase of our testing we perform
a code review, which reveals the following token-generation algorithm:

String sessId = Integer.toString(s_SessionIndex++) +
w_n o4

System.currentTimeMillis () ;

Given our analysis of how tokens are created, it is straightforward to con-
struct a scripted attack to harvest the session tokens that the application issues
to other users:

m We continue polling the server to obtain new session tokens in quick
succession.

m We monitor the increments in the first number. When this increases by
more than 1, we know that a token has been issued to another user.

m When a token has been issued to another user, we know the upper and
lower bounds of the second number that was issued to that person, because
we possess the tokens that were issued immediately before and after
his. Because we are obtaining new session tokens frequently, the range
between these bounds will typically consist of only a few hundred values.

m Each time a token is issued to another user, we launch a brute-force attack
to iterate through each number in the range, appending this to the miss-
ing incremental number that we know was issued to the other user. We
attempt to access a protected page using each token we construct, until
the attempt succeeds and we have compromised the user’s session.

m Running this scripted attack continuously will enable us to capture the
session token of every other application user. When an administrative
user logs in, we will fully compromise the entire application.

TRY IT!

http://mdsec.net/auth/339/
http://mdsec.net/auth/340/
http://mdsec.net/auth/347/
http://mdsec.net/auth/351/

218

Chapter 7 = Attacking Session Management

Weak Random Number Generation

Very little that occurs inside a computer is random. Therefore, when random-
ness is required for some purpose, software uses various techniques to generate
numbers in a pseudorandom manner. Some of the algorithms used produce
sequences that appear to be stochastic and manifest an even spread across the
range of possible values. Nevertheless, they can be extrapolated forwards or
backwards with perfect accuracy by anyone who obtains a small sample of values.

When a predictable pseudorandom number generator is used to produce
session tokens, the resulting tokens are vulnerable to sequencing by an attacker.

Jetty is a popular web server written in 100% Java that provides a session
management mechanism for use by applications running on it. In 2006, Chris
Anley of NGSSoftware discovered that the mechanism was vulnerable to a
session token prediction attack. The server used the Java API java.util.Random
to generate session tokens. This implements a “linear congruential generator,”
which generates the next number in the sequence as follows:

synchronized protected int next(int bits) {
seed = (seed * Ox5DEECE66DL + 0xBL) & ((1L << 48) - 1);
return (int) (seed >>> (48 - bits));

}

This algorithm takes the last number generated, multiplies it by a constant,
and adds another constant to obtain the next number. The number is truncated
to 48 bits, and the algorithm shifts the result to return the specific number of
bits requested by the caller.

Knowing this algorithm and a single number generated by it, we can easily
derive the sequence of numbers that the algorithm will generate next. With a
little number theory, we also can derive the sequence that it generated previ-
ously. This means that an attacker who obtains a single session token from the
server can obtain the tokens of all current and future sessions.

.m Sometimes when tokens are created based on the output of a pseu-
dorandom number generator, developers decide to construct each token by
concatenating several sequential outputs from the generator. The perceived
rationale for this is that it creates a longer, and therefore “stronger,” token.
However, this tactic is usually a mistake. If an attacker can obtain several
consecutive outputs from the generator, this may enable him to infer some
information about its internal state. In fact, it may be easier for the attacker to
extrapolate the generator’s sequence of outputs, either forward or backward.

Other off-the-shelf application frameworks use surprisingly simple or predict-
able sources of entropy in session token generation, much of which is deterministic.
For example, in PHP frameworks 5.3.2 and earlier, the session token is generated

Chapter 7 = Attacking Session Management

219

based on the client’s IP address, epoch time at token creation, microseconds at
token creation, and a linear congruential generator. Although there are several
unknown values here, some applications may disclose information that allows
them to be inferred. A social networking site may disclose the login time and
IP address of site users. Additionally, the seed used in this generator is the time
when the PHP process started, which could be determined to lie within a small
range of values if the attacker is monitoring the server.

m This is an evolving area of research. The weaknesses in PHP’s session
token generation were pointed out on the Full Disclosure mailing list in 2001
but were not demonstrated to be actually exploitable. The 2001 theory was
finally put into practice by Samy Kamkar with the phpwn tool in 2010.

Testing the Quality of Randomness

In some cases, you can identify patterns in a series of tokens just from visual
inspection, or from a modest amount of manual analysis. In general, however,
you need to use a more rigorous approach to testing the quality of randomness
within an application’s tokens.

The standard approach to this task applies the principles of statistical hypoth-
esis testing and employs various well-documented tests that look for evidence of
nonrandomness within a sample of tokens. The high-level steps in this process
are as follows:

1. Start with the hypothesis that the tokens are randomly generated.

2. Apply a series of tests, each of which observes specific properties of the
sample that are likely to have certain characteristics if the tokens are
randomly generated.

3. For each test, calculate the probability of the observed characteristics
occurring, working on the assumption that the hypothesis is true.

4. If this probability falls below a certain level (the “significance level”), reject
the hypothesis and conclude that the tokens are not randomly generated.

The good news is you don't have to do any of this manually! The best tool
that is currently available for testing the randomness of web application tokens
is Burp Sequencer. This tool applies several standard tests in a flexible way and
gives you clear results that are easy to interpret.

To use Burp Sequencer, you need to find a response from the application
that issues the token you want to test, such as a response to a login request that
issues a new cookie containing a session token. Select the “send to sequencer”
option from Burp’s context menu, and in the Sequencer configuration, set the
location of the token within the response, as shown in Figure 7-2. You can also

220

Chapter 7 = Attacking Session Management

configure various options that affect how tokens are collected, and then click
the start capture button to begin capturing tokens. If you have already obtained
a suitable sample of tokens through other means (for example, by saving the
results of a Burp Intruder attack), you can use the manual load tab to skip the
capturing of tokens and proceed straight to the statistical analysis.

", burp suite professiona] (ol e e

burp intruder repeater window help

i' target | proxy & spider | scanner [intruder i' repeater rsequencer i decoder \ comparer i options | alerts |

[live capture | manual load | options |

select request
1 |ntips/imdsecnet [POST /auth/367/Default ashx HTTP/. 1Host mdsec.netUser-Agent Mozilla/5.0 | | mee— ‘

‘ clear

identify token in response

token location i capture options

@ cookie \Sessionld:1AozE157995692A3 [~

(2 manual selection:

[MicrosoftOfficeWebServer: 5. 0_Fub

¥X-Powered-By: ASP.NET

|X—AspNe:—‘u’erslc-n: 2.0.50727

Location: /auth/3&1/Home.ashx

Set-Cookie: SessionTd=1ADZE1E799EE9ZA3; secure; HttpOnly
Cache-Control: no-cache

|Pracma: no-cache =l token ends:

[ell=]l=] | 0matches e
@ at delimiter: [

token starts:

(W) after expression: | |

) at offset

‘ start capture ‘

Figure 7-2: Configuring Burp Sequencer to test the randomness of a session token

When you have obtained a suitable sample of tokens, you can perform the
statistical analysis on the sample. You can also perform interim analyses while
the sample is still being captured. In general, obtaining a larger sample improves
the reliability of the analysis. The minimum sample size that Burp requires is
100 tokens, but ideally you should obtain a much larger sample than this. If the
analysis of a few hundred tokens shows conclusively that the tokens fail the
randomness tests, you may reasonably decide that it is unnecessary to capture
further tokens. Otherwise, you should continue capturing tokens and re-perform
the analysis periodically. If you capture 5,000 tokens that are shown to pass the
randomness tests, you may decide that this is sufficient. However, to achieve
compliance with the formal FIPS tests for randomness, you need to obtain a
sample of 20,000 tokens. This is the largest sample size that Burp supports.

Burp Sequencer performs the statistical tests at character level and bit level.
The results of all tests are aggregated to give an overall estimate of the number

Chapter 7 = Attacking Session Management 221

of bits of effective entropy within the token; this the key result to consider.
However, you can also drill down into the results of each test to understand
exactly how and why different parts of the token passed or failed each test, as
shown in Figure 7-3. The methodology used for each type of test is described
beneath the test results.

live capture (1686 tokens) |[J | |
‘ pause | ‘ copy tokens | auto analyse (next 2000) requests: 1686
‘ stop | ‘ save tokens | | analyse now | errors: 0

rsummary rcharacter-level analysis r bit-level analysis rom\ons |

FIPS runstest | FIPS long runstest | speciralfests | comelation | compression | bit conversion
i summary | FIPS monobit test FIPS poker test

FIPS runs test - significance levels

100%

10%

01%

0.01%

FIPS pass level
0.001%
=0.0001%
o 10 20 li} 40 Al G0

hit position

FIPS result
52 bits passed the test The following 10 bits failed the test 0,1, 2,3, 4, 5, 6, 18, 36, 42

Anomalies
44 anomalies were identified in this test.
number of 2-bit runs is too small at bit 0 (count 10, probability in a random sample: less than 0.0001%) -

Figure 7-3: Analyzing the Burp Sequencer results to understand the properties of
the tokens that were tested

Note that Burp performs all tests individually on each character and bit of data
within the token. In many cases, you will find that large parts of a structured
token are not random; this in itself may not present any kind of weakness. What
matters is that the token contains a sufficient number of bits that do pass the
randomness tests. For example, if a large token contains 1,000 bits of informa-
tion, and only 50 of these bits pass the randomness tests, the token as a whole
is no less robust than a 50-bit token that fully passes the tests.

222 Chapter 7 = Attacking Session Management

m Keep in mind two important caveats when performing statisti-
cal tests for randomness. These caveats affect the correct interpretation of
the test results and their consequences for the application’s security pos-
ture. First, tokens that are generated in a completely deterministic way may
pass the statistical tests for randomness. For example, a linear congruential
pseudorandom number generator, or an algorithm that computes the hash
of a sequential number, may produce output that passes the tests. Yet an
attacker who knows the algorithm and the internal state of the generator can
extrapolate its output with complete reliability in both forward and reverse
directions.

Second, tokens that fail the statistical tests for randomness may not actu-
ally be predictable in any practical situation. If a given bit of a token fails the
tests, this means only that the sequence of bits observed at that position con-
tains characteristics that are unlikely to occur in a genuinely random token.
But attempting to predict the value of that bit in the next token, based on the
observed characteristics, may be little more reliable than blind guesswork.
Multiplying this unreliability across a large number of bits that need to be
predicted simultaneously may mean that the probability of making a correct
prediction is extremely low.

1. Determine when and how session tokens are issued by walking through
the application from the first application page through any login func-
tions. Two behaviors are common:

m The application creates a new session anytime a request is received that
does not submit a token.

m The application creates a new session following a successful login.

To harvest large numbers of tokens in an automated way, ideally identify
a single request (typically either GET / or a login submission) that causes
a new token to be issued.

2. In Burp Suite, send the request that creates a new session to Burp
Sequencer, and configure the token’s location. Then start a live capture
to gather as many tokens as is feasible. If a custom session management
mechanism is in use, and you only have remote access to the application,
gather the tokens as quickly as possible to minimize the loss of tokens
issued to other users and reduce the influence of any time dependency.

3. If a commercial session management mechanism is in use and/or you
have local access to the application, you can obtain indefinitely large
sequences of session tokens in controlled conditions.

Chapter 7 = Attacking Session Management

223

4. While Burp Sequencer is capturing tokens, enable the “auto analyse” set-
ting so that Burp automatically performs the statistical analysis periodi-
cally. Collect at least 500 tokens before reviewing the results in any detail.
If a sufficient number of bits within the token have passed the tests,
continue gathering tokens for as long as is feasible, reviewing the analysis
results as further tokens are captured.

5. If the tokens fail the randomness tests and appear to contain patterns
that could be exploited to predict future tokens, reperform the exercise
from a different IP address and (if relevant) a different username. This
will help you identify whether the same pattern is detected and whether
tokens received in the first exercise could be extrapolated to identify
tokens received in the second. Sometimes the sequence of tokens cap-
tured by one user manifests a pattern. But this will not allow straight-
forward extrapolation to the tokens issued to other users, because
information such as source IP is used as a source of entropy (such as a
seed to a random number generator).

6. If you believe you have enough insight into the token generation algo-
rithm to mount an automated attack against other users’ sessions, it is
likely that the best means of achieving this is via a customized script.
This can generate tokens using the specific patterns you have observed
and apply any necessary encoding. See Chapter 14 for some generic tech-
niques for applying automation to this type of problem.

7. If source code is available, closely review the code responsible for gener-
ating session tokens to understand the mechanism used and determine
whether it is vulnerable to prediction. If entropy is drawn from data that
can be determined within the application within a brute-forcible range,
consider the practical number of requests that would be needed to brute-
force an application token.

TRY IT!

http://mdsec.net/auth/361/

Encrypted Tokens

Some applications use tokens that contain meaningful information about the
user and seek to avoid the obvious problems that this entails by encrypting the
tokens before they are issued to users. Since the tokens are encrypted using a
secret key that is unknown to users, this appears to be a robust approach, because
users will be unable to decrypt the tokens and tamper with their contents.

224

Chapter 7 = Attacking Session Management

However, in some situations, depending on the encryption algorithm used and
the manner in which the application processes the tokens, it may nonetheless be
possible for users to tamper with the tokens” meaningful contents without actu-
ally decrypting them. Bizarre as it may sound, these are actually viable attacks
that are sometimes easy to deliver, and numerous real-world applications have
proven vulnerable to them. The kinds of attacks that are applicable depend on
the exact cryptographic algorithm that is being used.

ECB Ciphers

Applications that employ encrypted tokens use a symmetric encryption algorithm
so that tokens received from users can be decrypted to recover their meaningful
contents. Some symmetric encryption algorithms use an “electronic codebook”
(ECB) cipher. This type of cipher divides plaintext into equal-sized blocks (such
as 8 bytes each) and encrypts each block using the secret key. During decryp-
tion, each block of ciphertext is decrypted using the same key to recover the
original block of plaintext. One feature of this method is that patterns within the
plaintext can result in patterns within the ciphertext, because identical blocks of
plaintext will be encrypted into identical blocks of ciphertext. For some types
of data, such as bitmap images, this means that meaningful information from
the plaintext can be discerned within the ciphertext, as illustrated in Figure 7-4.

Figure 7-4: Patterns within plaintext that
is encrypted using an ECB cipher may be
visible within the resulting ciphertext.

In spite of this shortcoming with ECB, these ciphers are often used for encrypt-
ing information within web applications. Even in situations where the problem
of patterns within plaintext does not arise, vulnerabilities can still exist. This
is because of the cipher’s behavior of encrypting identical plaintext blocks into
identical ciphertext blocks.

Consider an application whose tokens contain several different meaningful
components, including a numeric user identifier:

rnd=2458992;app=iTradeEUR_1;uid=218;username=dafydd; time=634430423694715
000;

Chapter 7 = Attacking Session Management

225

When this token is encrypted, it is apparently meaningless and is likely to pass
all standard statistical tests for randomness:

68BAC980742BI9EF80A27CBBBC0618E3876FF3D6C6E6ATBICBEFCA486F9EL11922776F0307
329140AABD223F003A8309DDB6B970C47BA2E249A0670592D74BCD07D51A3EL50EFC2E69
885A5C8131E4210F

The ECB cipher being employed operates on 8-byte blocks of data, and the
blocks of plaintext map to the corresponding blocks of ciphertext as follows:

rnd=2458 68BAC980742BOEF8
992 ; app= 0OA27CBBBC0618E38
iTradeEU 76FF3D6C6E6ATBIC
R_1;uid= B8FCA486F9E11922
218;user 776F0307329140AA
name=daf BD223F003A8309DD
ydd; time B6B970C47BA2E249

=6344304 A0670592D74BCD0O7
23694715 D51A3E150EFC2E69
000; 885A5C8131E4210F

Now, because each block of ciphertext will always decrypt into the same
block of plaintext, it is possible for an attacker to manipulate the sequence of
ciphertext blocks so as to modify the corresponding plaintext in meaning-
ful ways. Depending on how exactly the application processes the resulting
decrypted token, this may enable the attacker to switch to a different user or
escalate privileges.

For example, if the second block is duplicated following the fourth block, the
sequence of blocks will be as follows:

rnd=2458 68BAC980742B9EF8
992 ; app= 0A27CBBBC0618E38
iTradeEU 76FF3D6C6E6ATBIC
R_1;uid= B8FCA486F9E11922
992; app= OA27CBBBC0618E38
218;user 776F0307329140AA
name=daf BD223F003A8309DD
ydd; time B6B970C47BA2E249

=6344304 A0670592D74BCD0O7
23694715 D51A3E150EFC2E69
000; 885A5C8131E4210F

The decrypted token now contains a modified uid value, and also a duplicated
app value. Exactly what happens depends on how the application processes
the decrypted token. Often, applications using tokens in this way inspect only
certain parts of the decrypted token, such as the user identifier. If the applica-
tion behaves like this, then it will process the request in the context of the user
who has a uid of 992, rather than the original 218.

226

Chapter 7 = Attacking Session Management

The attack just described would depend on being issued with a suitable rnd
value that corresponds to a valid uid value when the blocks are manipulated.
An alternative and more reliable attack would be to register a username con-
taining a numeric value at the appropriate offset, and duplicate this block so as
to replace the existing uid value. Suppose you register the username daf1, and
are issued with the following token:

9A5A47BFI9B3B6603708F9DEAD67C7F4ACT76FF3D6C6E6ATBICBEFCA486FOEL1922A5BC430A
73B38C14BD223F003A8309DDF29A5A6F0DC06C53905B5366F5F4684C0D2BBBB08BD834BB
ADEBCO7FFE87819D

The blocks of plaintext and ciphertext for this token are as follows:

rnd=9224 9A5A47BFIB3B6603
856 ; app= 708F9DEAD67CTFAC
iTradeEU 76FF3D6C6E6ATBIC
R_1;uid= B8FCA486F9E11922

219;user A5BC430A73B38C14
name=daf BD223F003A8309DD

1;time=6 F29A5A6F0DC06C53
34430503 905B5366F5F4684C
61065250 0D2BBBB08BD834BB
0; ADEBCO7FFE87819D

If you then duplicate the seventh block following the fourth block, your
decrypted token will contain a uid value of 1:

rnd=9224 9A5A47BFI9B3B6603
856 ; app= 708F9DEAD67CT7FAC
iTradeEU 7T6FF3D6C6E6ATBIC
R_1;uid= B8FCA486F9E11922
1;time=6 F29A5A6F0DC06C53
219;user A5BC430A73B38C14
name=daf BD223F003A8309DD
1;time=6 F29A5A6F0DC06C53
34430503 905B5366F5F4684C
61065250 0D2BBBB08BD834BB
0; ADEBCO7FFE87819D

By registering a suitable range of usernames and reperforming this attack,
you could potentially cycle through the entire range of valid uid values, and
so masquerade as every user of the application.

TRY IT!

http://mdsec.net/auth/363/

Chapter 7 = Attacking Session Management

227

CBC Ciphers

The shortcomings in ECB ciphers led to the development of cipher block chaining
(CBC) ciphers. With a CBC cipher, before each block of plaintext is encrypted
it is XORed against the preceding block of ciphertext, as shown in Figure 7-5.
This prevents identical plaintext blocks from being encrypted into identical
ciphertext blocks. During decryption, the XOR operation is applied in reverse,
and each decrypted block is XORed against the preceding block of ciphertext
to recover the original plaintext.

Plaintext Plaintext Plaintext
[ITT11T™ [ITTTTT1] [ITT11T™
Initialization Vector (1V)
—P EE— E—
\ \ \
Key —> Block Cipher Key —> Block Cipher Key —> Block Cipher
Encryption Encryption Encryption
\ \/ l
[ITTT1T™ [ITTTTT1] [ITTT1T™
Ciphertext Ciphertext Ciphertext

Figure 7-5: In a CBC cipher, each block of plaintext is XORed against the preceding
block of ciphertext before being encrypted.

Because CBC ciphers avoid some of the problems with ECB ciphers, standard
symmetric encryption algorithms such as DES and AES frequently are used
in CBC mode. However, the way in which CBC-encrypted tokens are often
employed in web applications means that an attacker may be able to manipulate
parts of the decrypted tokens without knowing the secret key.

Consider a variation on the preceding application whose tokens contain
several different meaningful components, including a numeric user identifier:

rnd=191432758301; app=eBankProdTC;uid=216; time=6343303;

As before, when this information is encrypted, it results in an apparently mean-
ingless token:

OFB1F1AFB4C874E695AAFCOAA4C2269D3ESE66BBA9B2829B173F255D447C51321586257C
6E459A93635636F45D7B1A43163201477

Because this token is encrypted using a CBC cipher, when the token is decrypted,
each block of ciphertext is XORed against the following block of decrypted text
to obtain the plaintext. Now, if an attacker modifies parts of the ciphertext (the
token he received), this causes that specific block to decrypt into junk. However, it
also causes the following block of decrypted text to be XORed against a different

228

Chapter 7 = Attacking Session Management

value, resulting in modified but still meaningful plaintext. In other words, by
manipulating a single individual block of the token, the attacker can systemati-
cally modify the decrypted contents of the block that follows it. Depending on
how the application processes the resulting decrypted token, this may enable
the attacker to switch to a different user or escalate privileges.

Let’s see how. In the example described, the attacker works through the
encrypted token, changing one character at a time in arbitrary ways and send-
ing each modified token to the application. This involves a large number of
requests. The following is a selection of the values that result when the applica-
tion decrypts each modified token:

???2?2?2?2??32858301; app=eBankProdTC;uid=216;time=6343303;
??2?2??2???232758321; app=eBankProdTC;uid=216;time=6343303;
rnd=1914??72???2?7?;agp=eBankProdTC;uid=216;time=6343303;
rnd=1914?7?72???2?7?; app=eAankProdTC;uid=216;time=6343303;
rnd=191432758301????????nkPqodTC;uid=216;time=6343303;
rnd=191432758301????????nkProdUC;uid=216;time=6343303;
rnd=191432758301;app=eBa????????;uie=216;time=6343303;
rnd=191432758301;app=eBa????????;uid=226;time=6343303;
rnd=191432758301; app=eBankProdTC????????;timd=6343303;
rnd=191432758301; app=eBankProdTC????????;time=6343503;

In each case, the block that the attacker has modified decrypts into junk, as
expected (indicated by 22222222). However, the following block decrypts into
meaningful text that differs slightly from the original token. As already described,
this difference occurs because the decrypted text is XORed against the preced-
ing block of ciphertext, which the attacker has slightly modified.

Although the attacker does not see the decrypted values, the application
attempts to process them, and the attacker sees the results in the application’s
responses. Exactly what happens depends on how the application handles the
part of the decrypted token that has been corrupted. If the application rejects
tokens containing any invalid data, the attack fails. Often, however, applica-
tions using tokens in this way inspect only certain parts of the decrypted
token, such as the user identifier. If the application behaves like this, then
the eighth example shown in the preceding list succeeds, and the application
processes the request in the context of the user who has a uid of 226, rather
than the original 216.

You can easily test applications for this vulnerability