

## KING SAUD UNIVERSITY COMMON FIRST YEAR

BASIC SCIENCES DEPARTMENT

Math 101 Mid term Exam 1438/1439 H.

First Semester

Time Allowed - 2 Hours

St. Name:

St. ID:

Section:

ملاحظة اكتب خطوات الحل بالتفصيل لجميع الأسئلة داخل دفتر الإجابة (الإجابة على ورقة الأسئلة غير معتمدة). علمًا بأن عدد الأسئلة (٥). وعدد الصفحات (١).

Question 1:

(4 Marks)

- A) Solve the following inequality, and write your answer in interval notation  $-5 < 2x - 3 \le 7$
- B) Determine algebraically is the function  $f(x) = \frac{x^4 + x^2}{|x|}$  even, odd, or neither.

Question 2:

(7 Marks)

A) Let 
$$f(x) = \frac{7}{4 - x^2}$$
,  $g(x) = \sqrt{x}$ . Find:

1) 
$$(f \circ g)(x)$$
.

- B) Given that  $f(x) = \frac{1-2x}{3x+2}$  is a one-to-one function, find  $f^{-1}(x)$ .
- C) If  $3 \sec \theta + 5 = 0$ ,  $\sin \theta > 0$ , then find  $\sin (2\theta)$ .

#### Question 3:

Use the graph of y = f(x) to find the following:

- a)  $\lim f(x)$
- b) The horizontal and vertical asymptote(s) for the graph of f(x).
- c) The x-value(s) in the domain at which f(x)is not differentiable.

(4 Marks)



(9 Marks)

Evaluate each of the following limits (if exist).

1) 
$$\lim_{x \to 0} \frac{x+8}{x^2+2}$$

3) 
$$\lim_{x \to 4} \frac{x-4}{\sqrt{x-2}}$$

5) 
$$\lim_{x \to 0} x^2 \cos\left(\frac{3}{x}\right)$$

2) 
$$\lim_{x \to 0} \frac{\sin(5x) + \tan(3x)}{2x}$$

4) 
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 3x + 2}$$

6) 
$$\lim_{x \to \infty} \cos \left( \frac{\pi x + 1}{x^2 + 3} \right)$$

## Question 6:

(6 Marks)

A) Let  $f(x) = x^2 + 3$ , then use the definition of derivative to find f'(x)

B) Find all vertical and horizontal asymptotes (if any) for  $f(x) = \frac{\sqrt{9x^2 + 13}}{2x - 3}$ 

C) Find the values of a and b such that the function  $g(x) = \begin{cases} \frac{x^2 + bx + 5}{x - 1}, & x \neq 1 \\ a, & x = 1 \end{cases}$  is continuous at every real number.

Good Luck

## ميد الترم الاول البديل



## KING SAUD UNIVERSITY COMMON FIRST YEAR

### BASIC SCIENCES DEPARTMENT

Alternative Math 101 Mid term Exam 1438/1439 H.

First Semester

Time Allowed - 2 Hours

St. Name: St. ID: 438101095 Section:

ملاحظة: اكتب خطوات الحل بالتفصيل لجميع الأسئلة داخل دفتر الإجابة (الإجابة على ورقة الأسئلة غير معتمدة).
علمًا بأن عدد الأسئلة (٥)، وعدد الصفحات (١).

Question 1:

(4 Marks)

A) Solve the following inequality, and write your answer in interval notation  $3-2|3x-1| \ge 6$ 

B) Determine algebraically is the function  $f(x) = \frac{2x^3 + x}{\cos x}$  even, odd, or neither.

Question 2:

(7 Marks)

A) Let 
$$f(x) = \frac{7}{\sqrt{x-2}}$$
,  $g(x) = x^2 + 2$ . Find:

1) 
$$(f \circ g)(x)$$
.

2) 
$$D_f$$
,  $D_g$ , and  $D_{f \circ g}$ .

- B) Show that  $f(x) = x^2 + x 6$ , x < 0 is a one-to-one function.
- C) Find the exact value of  $\sin \left(\cos^{-1}\left(\frac{2}{3}\right)\right)$ .

#### Question 3:

Use the graph of y = f(x) to find the following:

- a)  $\lim_{x\to -2} f(x)$
- b) The horizontal and vertical asymptote(s) for the graph of f(x).
- c) The x-value(s) in the domain at which f(x) is not differentiable.







(9 Marks)

Evaluate each of the following limits (if exist),

1) 
$$\lim_{x \to 0} \frac{1 + \sin x}{x^2 - 1}$$

3) 
$$\lim_{x \to 3} \frac{\sqrt{x+1}-2}{x^2-4x+3}$$

5) 
$$\lim_{x \to 0} x^4 \sin\left(\frac{1}{x^2}\right)$$

2) 
$$\lim_{x\to 0} \frac{1+\sin(2x)-\cos(x)}{2x}$$

4) 
$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - x - 6}$$

6) 
$$\lim_{x \to \infty} \sqrt[3]{\frac{x+4}{8x+3}}$$

Question 6:

(6 Marks)

A) Let  $f(x) = x^2 + 2x - 4$ , then use the definition of derivative to find f'(x)

B) Find all vertical and horizontal asymptotes (if any) for  $f(x) = \frac{\sqrt{x^2 - 5}}{|x| + 5}$ 

C) Find the values of a and b such that the function  $f(x) = \begin{cases} ax + b, & x > 1 \\ 5x + 2a, & x < 1 \\ 4, & x = 1 \end{cases}$  is continuous at every real number.

Good Luck

# ميد الترم الثاني

| A) Use definition of limit to show that $\lim_{x\to 2} (2x+3) = 7$ .  3) Use the Intermediate Value Theorem to show that $f(x) = x^5 - 4x^3 + 1$ has a in the interval $[0,1]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COMMON PIETS YEAR BASIC SCIENCES DEPARTMENT  Math 101 Mid term Exam 1438/1430 H.  Second Sementer  Time Allowed - 2 Hours  St. Name:  St. ID:  Section:  St. Name:  St. ID:  Section:  St. ID:  Section:  St. Name:  St. ID:  Section:  Section:  St. ID:  Section:  St. ID:  Section:  Section:  Section:  Section:  Section:  Section:  Section:  Section:  St. ID:  Section:  S |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| COMMON FIRST YEAR BASIC SCIENCES DEPARTMENT  Math 101 Mid term Exam 1438/1430 H. Second Screenser Time Allowed - 2 Hours  St. Name:  St. ID:  Second Screenser Internation of Screenser Internation of St. Name:  St. ID:  Second Screenser Internation of Screenser Internation of St. Name:  (5 Marks)  A) Determine algebraically whether the function $f(x) = \frac{x^5 + 3x}{x^4 + x^2}$ is even, odd, or neither.  B) Find the domain of $f(x) = \sqrt{x^2 - x - 6}$ Question 2:  (6 Marks)  A) Let $f(x) = x^2$ , $g(x) = \sqrt{x}$ . Find:  1) $(f \circ g)(x)$ .  2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .  B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  Section 3:  (4 Marks)  A) Use definition of limit to show that $\lim_{x \to 2} (2x + 3) = 7$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COMMON PIETS YEAR BASIC SCIENCES DEPARTMENT  Math 101 Mid term Exam 1438/1430 H.  Second Sementer  Time Allowed - 2 Hours  St. Name:  St. ID:  Section:  St. Name:  St. ID:  Section:  St. ID:  Section:  St. Name:  St. ID:  Section:  Section:  St. ID:  Section:  St. ID:  Section:  Section:  Section:  Section:  Section:  Section:  Section:  Section:  St. ID:  Section:  S | 000000                           | KING SAUD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UNIVERSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |
| Math 101 Mid term Exam 1438/1439 H. Second Structure Time Allowed - 2 Hours  St. Name:  St. ID:  Section:  St. Name:  St. Name:  St. Name:  St. ID:  Section:  Sectio | Math 101 Mid term Exam 1438/1439 H.  Second Semetter  Time Allowed - 2 Hours  St. Name:  St. ID:  Section:  Sectio  | SQSan-Cllaff King Sand Ohlounder | COMMON F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IRST YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
| Second Sementer Time Allowed - 2 Hours  St. Name:  St. ID:  Section:  Secti | Second Sementer Time Allowed - 2 Hours  St. Name:  St. ID:  Section:  Section:  Section:  St. Name:  St. ID:  Section:  Secti | First Nat Common                 | BASIC SCIENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DEPARTMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |
| St. Name:  St. ID:  Section:  St. ID:  Section:  St. ID:  Section:  Section:  St. ID:  Section:  Section:  St. ID:  Section:  Section:  St. ID:  Section:  Section:  Section:  St. Name:  St. ID:  Section:  Section:  St. Name:  St. ID:  Section:  Section:  St. Name:  St. ID:  Section:  Section:  Section:  Section:  St. Name:  St. ID:  Section:   | St. Name:  St. ID:  Section:  St. Name:  St. ID:  Section:  Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: Section: S |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| St. Name:  St. ID:  Section:  Secti | St. Name:  St. ID:  Section:  Section:  St. ID:  Section:  Sectio |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| Question 1: (5 Marks)  A) Determine algebraically whether the function $f(x) = \frac{x^2 + 3x}{x^4 + x^2}$ is even, odd, or neither.  B) Find the domain of $f(x) = \sqrt{x^2 - x - 6}$ Question 2: (6 Marks)  A) Let $f(x) = x^2$ , $g(x) = \sqrt{x}$ . Find:  1) $(f \circ g)(x)$ .  2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .  B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-3}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  (4 Marks)  A) Use definition of limit to show that $\lim_{x \to 2} (2x + 3) = 7$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Question 1: (5 Marks)  A) Determine algebraically whether the function $f(x) = \frac{x^2 + 3x}{x^4 + x^2}$ is even, odd, or neither.  B) Find the domain of $f(x) = \sqrt{x^2 - x - 6}$ Question 2: (6 Marks)  A) Let $f(x) = x^2$ , $g(x) = \sqrt{x}$ . Find:  1) $(f \circ g)(x)$ .  2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .  B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  (4 Marks)  Use definition of limit to show that $\lim_{x \to 2} (2x + 3) = 7$ .  Use the Intermediate Value Theorem to show that $f(x) = x^5 - 4x^3 + 1$ has in the interval $[0,1]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| Question 2:  A) Determine algebraically whether the function $f(x) = \frac{x^5 + 3x}{x^4 + x^2}$ is even, odd, or neither.  B) Find the domain of $f(x) = \sqrt{x^2 - x - 6}$ Question 2:  A) Let $f(x) = x^2$ , $g(x) = \sqrt{x}$ . Find:  1) $(f \circ g)(x)$ .  2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .  B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  (4 Marks)  A) Use definition of limit to show that $f(x) = x^5 - 4x^3 + 1$ has a in the interval $[0,1]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Question 1: (5 Marks)  A) Determine algebraically whether the function $f(x) = \frac{x^5 + 3x}{x^4 + x^2}$ is even, odd, or neither.  B) Find the domain of $f(x) = \sqrt{x^2 - x - 6}$ Question 2: (6 Marks)  A) Let $f(x) = x^2$ , $g(x) = \sqrt{x}$ . Find:  1) $(f \circ g)(x)$ .  2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .  B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  (4 Marks)  A) Use definition of limit to show that $\int_{x-2}^{1} (2x+3) = 7$ .  Use the Intermediate Value Theorem to show that $f(x) = x^5 - 4x^3 + 1$ has in the interval $[0,1]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | St. Name:                        | St. ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Section:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |
| Question 1: (5 Marks)  A) Determine algebraically whether the function $f(x) = \frac{x^5 + 3x}{x^4 + x^2}$ is even, odd, or neither.  B) Find the domain of $f(x) = \sqrt{x^2 - x - 6}$ Question 2: (6 Marks)  A) Let $f(x) = x^2$ , $g(x) = \sqrt{x}$ . Find:  1) $(f \circ g)(x)$ .  2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .  B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  (4 Marks)  A) Use definition of limit to show that $\lim_{x \to 2} (2x + 3) = 7$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Question 1: (5 Marks)  A) Determine algebraically whether the function $f(x) = \frac{x^5 + 3x}{x^4 + x^2}$ is even, odd, or neither.  B) Find the domain of $f(x) = \sqrt{x^2 - x - 6}$ Question 2: (6 Marks)  A) Let $f(x) = x^2$ , $g(x) = \sqrt{x}$ . Find:  1) $(f \circ g)(x)$ .  2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .  B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  estion 3: (4 Marks)  A) Use definition of limit to show that $\lim_{x \to 2} (2x + 3) = 7$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | بلة غير معتمدة).                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ه)، وعدد الصفحات (۲).<br>نام الأزرق فقط.<br>ماسية بين الطلاب.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1- اكتب خطوات الحل بال<br>علمًا بأن عدد الأسئلة (<br>2- لا يسمح بالكتابة إلا بالا<br>3- لا يسمح بتدوال الألة ال |
| A) Determine algebraically whether the function $f(x) = \frac{x^5 + 3x}{x^4 + x^2}$ is even, odd, or neither.  B) Find the domain of $f(x) = \sqrt{x^2 - x - 6}$ Question 2:  (6 Marks)  A) Let $f(x) = x^2$ , $g(x) = \sqrt{x}$ . Find:  1) $(f \circ g)(x)$ .  2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .  B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  (4 Marks)  A) Use definition of limit to show that $\lim_{x \to 2} (2x + 3) = 7$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A) Determine algebraically whether the function $f(x) = \frac{x^5 + 3x}{x^4 + x^2}$ is even, odd, or neither.  B) Find the domain of $f(x) = \sqrt{x^2 - x - 6}$ Question 2:  (6 Marks)  A) Let $f(x) = x^2$ , $g(x) = \sqrt{x}$ . Find:  1) $(f \circ g)(x)$ .  2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .  B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  estion 3:  (4 Marks)  (5 Marks)  (6 Marks)  (6 Marks)  (7 Output Description of the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ouestion 1:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |
| A) Let $f(x) = x^2$ , $g(x) = \sqrt{x}$ . Find:  1) $(f \circ g)(x)$ .  2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .  B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  (4 Marks)  (5 Marks)  (6 Marks)  (6 Marks)  (8 Marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A) Let $f(x) = x^2$ , $g(x) = \sqrt{x}$ . Find:  1) $(f \circ g)(x)$ .  2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .  B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  estion 3:  (4 Marks)  Use definition of limit to show that $\lim_{x \to 2} (2x + 3) = 7$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A) Determine algebraic neither.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | is even, odd, or                                                                                                |
| A) Let $f(x) = x^2$ , $g(x) = \sqrt{x}$ . Find:  1) $(f \circ g)(x)$ . 2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .  B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  (4 Marks A) Use definition of limit to show that $\lim_{x \to 2} (2x + 3) = 7$ .  3) Use the Intermediate Value Theorem to show that $f(x) = x^5 - 4x^3 + 1$ has a in the interval $[0,1]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A) Let $f(x) = x^2$ , $g(x) = \sqrt{x}$ . Find:  1) $(f \circ g)(x)$ . 2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .  B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  estion 3:  (4 Marks)  1) Use definition of limit to show that $\lim_{x \to 2} (2x + 3) = 7$ .  1) Use the Intermediate Value Theorem to show that $f(x) = x^5 - 4x^3 + 1$ has in the interval $[0,1]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Question 2:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (6 Marks)                                                                                                       |
| 1) $(f \circ g)(x)$ . 2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .  B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  (4 Marks A) Use definition of limit to show that $\lim_{x \to 2} (2x + 3) = 7$ .  3) Use the Intermediate Value Theorem to show that $f(x) = x^5 - 4x^3 + 1$ has a in the interval $[0,1]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1) $(f \circ g)(x)$ .<br>2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .<br>B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .<br>C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.<br>estion 3: (4 Marks) Use definition of limit to show that $\lim_{x \to 2} (2x + 3) = 7$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A) Let $f(x) = x^2$              | n(r) - 1/2 Find                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (o man no)                                                                                                      |
| 2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .  B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  (4 Marks A) Use definition of limit to show that $\lim_{x \to 2} (2x + 3) = 7$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2) $D_f$ , $D_g$ , and $D_{f \circ g}$ .  B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  estion 3:  (4 Marks)  1) Use definition of limit to show that $\lim_{x \to 2} (2x + 3) = 7$ .  1) Use the Intermediate Value Theorem to show that $f(x) = x^5 - 4x^3 + 1$ has in the interval $[0,1]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | $f(x) = \sqrt{x}$ . Find                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  (4 Marks A) Use definition of limit to show that $\lim_{x\to 2} (2x+3) = 7$ .  3) Use the Intermediate Value Theorem to show that $f(x) = x^5 - 4x^3 + 1$ has a in the interval $[0,1]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  estion 3:  (4 Marks)  1) Use definition of limit to show that $\lim_{x\to 2} (2x+3) = 7$ .  1) Use the Intermediate Value Theorem to show that $f(x) = x^5 - 4x^3 + 1$ has in the interval $[0,1]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  (4 Marks A) Use definition of limit to show that $\lim_{x\to 2} (2x+3) = 7$ .  3) Use the Intermediate Value Theorem to show that $f(x) = x^5 - 4x^3 + 1$ has a in the interval $[0,1]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B) Show that $f(x) = 3x + 2$ is a one-to-one function, and find $f^{-1}(x)$ .  C) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ , without using calculator.  estion 3:  (4 Marks)  1) Use definition of limit to show that $\lim_{x\to 2} (2x+3) = 7$ .  1) Use the Intermediate Value Theorem to show that $f(x) = x^5 - 4x^3 + 1$ has in the interval $[0,1]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2) D , D , and D                 | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| A) Use definition of limit to show that $\lim_{x\to 2} (2x+3) = 7$ .  3) Use the Intermediate Value Theorem to show that $f(x) = x^5 - 4x^3 + 1$ has a in the interval $[0,1]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A) Use definition of limit to show that $\lim_{x\to 2} (2x+3) = 7$ .  Use the Intermediate Value Theorem to show that $f(x) = x^5 - 4x^3 + 1$ has in the interval $[0,1]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | (5)),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The state of the s |                                                                                                                 |
| in the interval [0, 1].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in the interval [0, 1].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A) Use definition of limit       | to show that $\lim_{x\to 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2x+3)=7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4 Marks                                                                                                        |
| بر بيع P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Exis F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | Value Theorem to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | show that $f(x) = x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $x^5 - 4x^3 + 1$ has a                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P: يتبع                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | The same of the sa |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |

### KING SAUD UNIVERSITY COMMON FIRST YEAR BASIC SCIENCES DEPARTMENT

Question 4:

(9 Marks)

C) Evaluate each of the following limits (if exist).

1) 
$$\lim_{x \to 0} \frac{x^2 + 3}{x + 1}$$

2) 
$$\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right)$$

3) 
$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 7x + 12}$$

4) 
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

5) 
$$\lim_{x \to \infty} \tan \left( \frac{\pi x^2 - x}{x^2 + 5x} \right)$$
 6)  $\lim_{x \to 1} \frac{x - 1}{\frac{1}{x^5} - x^5}$ 

6) 
$$\lim_{x \to 1} \frac{x - 1}{\frac{1}{x^5} - x^6}$$

Question 5:

(6 Marks)

A) Let  $f(x) = 2x^2 + 5$ , then use the definition of derivative to find f'(x).

B) Find all vertical and horizontal asymptotes (if any) for  $f(x) = \frac{2x-5}{|x|+3}$ 

C) Find the value of k such that

$$f(x) = \begin{cases} \frac{x^3 - 8}{x - 2}, & x \neq 2\\ 3k + 1, & x = 2 \end{cases}$$

is continuous at x=2.

Good Luck

# ميد البديل الترم الثاني

1- اكتب خطوات الحل بالتفصيل لجميع الأسئلة داخل دفتر الإجابة (الإجابة على ورقة الأسئلة غير معتمدة):

علمًا بأن عدد الأسئلة (٥). وعدد الصفحات (٢).

2- لا يسمح بالكتابة إلا بالقلم الأزرق فقط.

لا يسمح بتدوال الآلة الحاسبة بين الطلاب.

لا تستخدم ألة حاسبة قابلة للبرمجة أو ألة حاسبة ترسم دوال.

Question 1: (5 Marks)

A) Determine algebraically whether the function  $f(x) = \left| \frac{2x^4 + x^2}{\sin x} \right|$  is even, odd, or neither.

B) Solve  $|1-2|2x-3| \ge -6$ 

(6 Marks)

Question 2:

A) Let  $f(x) = \frac{3}{\sqrt{x-4}}$ ,  $g(x) = x^2 + 4$ . Find:

1)  $(f \circ g)(x)$ .

2)  $D_f$ ,  $D_g$ , and  $D_{f \circ g}$ .

B) Show that  $f(x) = x^2 - 4x - 5$ , x > 2 is a one-to-one function.

C) Find the exact value of  $\cos\left(2\cos^{-1}\left(\frac{4}{5}\right)\right)$ , without using calculator.

uestion 3: (4 Marks)

A) Use definition of limit to show that  $\lim_{x\to 0} (3x + 4) = 4$ .

When the Intermediate Value Theorem to show that  $f(x) = x^2 - \frac{9}{x} + 1$  has a zero in the interval [1, 3].

C) Evaluate each of the following limits (if exist):

- 1)  $\lim_{x \to 1} \frac{x^2 + 4}{2x + 2}$
- 3)  $\lim_{x \to 3} \frac{\sqrt{x+1} 2}{x^2 9}$
- 2)  $\lim_{x \to 0} x^6 \sin\left(\frac{1}{x^2}\right)$ 4)  $\lim_{x \to 3} \frac{\sqrt{x+1} - 2}{x^2 - 4x + 3}$ 6)  $\lim_{x \to 2} \frac{x^2}{x^2 - 4x + 3}$
- 5)  $\lim_{x \to \infty} \tan \left( \frac{\pi x x}{x^2 + 5x} \right)$

## Question 5:

(6 Marks)

- A) Let  $f(x) = 3x^2 2$ , then use the definition of derivative to find f'(x).
- B) Find all vertical and horizontal asymptotes (if any) for  $f(x) = \frac{2x-5}{x+3}$
- C) Find the values of a and b such that the function  $f(x) = \begin{cases} 3x + 2a, & x < 1 \\ 4, & x = 1 \end{cases}$ is continuous at every real number.

Good Luck



### KING SAUD UNIVERSITY COMMON FIRST YEAR BASIC SCIENCES DEPARTMENT Math 101 Final Exam 1438/1439 H.

First Semester

Time Allowed - 3 Hours

| St. Name:   | St. ID:                                             | Section:                                                        |  |
|-------------|-----------------------------------------------------|-----------------------------------------------------------------|--|
|             |                                                     | <u>ﻣﻼﺣﻈﺎﺕ</u> :                                                 |  |
|             | دفتر الإجابة (الإجابة على ورقة الأسئلة غير معتمدة). | <ul> <li>اكتب خطوات الحل بالتفصيل لجميع الأسئلة داخل</li> </ul> |  |
|             |                                                     | علمًا بأن عدد الأسئلة (٦). وعدد الصفحات (٢).                    |  |
|             |                                                     | <ul> <li>2- لا يسمح بالكتابة إلا بالقلم الأزرق فقط.</li> </ul>  |  |
|             |                                                     | <ul> <li>3- لا يسمع بتدوال الآلة الحاسبة بين الطلاب.</li> </ul> |  |
| Question 1: |                                                     | (4 Marks)                                                       |  |

A) Solve the following inequality, and write your answer in interval notation

$$|2x-6| \leq 4$$

B) Use definition of limit to show that  $\lim_{x \to 1} (2x + 3) = 5$ .

Question 2:

(12 Marks)

Evaluate each of the following limits (if exist):

1) 
$$\lim_{x\to 1} \left(2x + 4\right)^2$$

2) 
$$\lim_{x\to 2} \frac{x^2 + 3x - 10}{x - 2}$$

3) 
$$\lim_{x\to 0} \frac{\sqrt{x+9}-3}{x}$$

4) 
$$\lim_{x\to 0} \frac{x^2-2x}{x}$$

5) 
$$\lim_{x\to\infty} \left[ 1 + \cos\left(\frac{3}{2x+1}\right) \right]$$

6) 
$$\lim_{x\to 2} \frac{4x+3}{x-2}$$

**Question 3:** 

(6 Marks)

A) Prove that if a function f is differentiable at a, then f is continuous at a.

B) Discuss the continuity of 
$$f(x) = \begin{cases} x+3 & , & x \le 0 \\ \frac{\sin(6x)}{2x} & , & x > 0 \end{cases}$$
 at  $x = 0$ .

C) The position of a particle is given by the equation  $s(t) = \frac{t-1}{t+1}$ , where s is measured in meters and t in seconds. What is the acceleration of the particle after 3 seconds?



(12 Marks)

Find the derivative  $\frac{dy}{dx}$  for each of the following functions:

$$1) y = \sin x + 2\cos x$$

2) 
$$y = (3x^2 + 5x + 2)^{30}$$

3) 
$$y = \sqrt{5x^2 + 7}$$

4) 
$$y = x^2 \tan(3x)$$

5) 
$$y = \tan^{-1}(4x)$$

$$6) \frac{x^2 + y^2}{\sec x} = 1$$

Question 5:

(6 Marks)

A) Given that  $g(x) = 3x^2 + 5x + 1$ , find the equation of the tangent line to the graph of g(x) at (1,9).

B) Show that the function  $f(x) = x^2 + x$  satisfies the conditions of the Mean Value Theorem on [-4,6]. Then find a number c that satisfies the conclusion of the theorem.

C) The figure shows the graph of f'(x). Determine the local minimum and local maximum of the function f(x).



Question 6:

(10 Marks)

For the function  $f(x) = x^4 - 4x^2$ , find the following (if any):

- 1) The critical numbers of f.
- 2) The interval(s) on which f is increasing and decreasing.
- 3) The local extrema of f.
- 4) The interval(s) on which f is concave upward or downward.
- 5) Sketch the graph of f.

Good Luck



# فاينل الترم الاول البديل



KING SAUD UNIVERSITY
COMMON FIRST YEAR
BASIC SCIENCES DEPARTMENT
Math 101 Final Exam 1438/1439 H.

First Semester "Alternative" Time Allowed - 3 Hours

| St. | Name: |  |  |
|-----|-------|--|--|

Section:

ملاحظات:

١- اكتب خطوات الحل بالتفصيل لجميع الأسئلة داخل دفتر الإجابة (الإجابة على ورقة الأسئلة غير معتمدة).

علما بأن عدد الأسئلة (٦)، وعدد الصفحات (٢).

- ٢- لا يسمح بالكتابة إلا بالقلم الأزرق فقط.
- ٣- لا يسمع بندوال الآلة العاسبة بين الطلاب.

Question 1: (4 Marks)

A) Solve the following inequality, and write your answer in interval notation

$$x^2 \ge x + 2$$

B) Use definition of limit to show that  $\lim_{x \to -2} (5 - 2x) = 9$ .

Question 2: (12 Marks)

Evaluate each of the following limits (if exist):

1) 
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2 + 1}$$

2) 
$$\lim_{x \to 1} \frac{x-1}{x^2-x}$$

3) 
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$$

4) 
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

5) 
$$\lim_{x \to 0} x^2 \cos\left(\frac{2}{x}\right)$$

6) 
$$\lim_{x \to -\infty} \left( \sqrt{9x^2 - x} - 3x \right)$$

Question 3:

(6 Marks)

- A) Prove that  $\frac{d}{dx}(\sin x) = \cos x$ .
- B) Discuss the continuity of  $f(x) = \begin{cases} x^2 5 & , & x \le 0 \\ \frac{\sin(4x)}{3x} & , & x > 0 \end{cases}$  at x = 0.
- C) The Velocity of a particle is given by the equation  $v(t) = \frac{t+5}{t+2}$ , where t is measured in seconds. What is the acceleration of the particle after 6 seconds?



(12 Marks)

Find the derivative  $\frac{dy}{dx}$  for each of the following functions:

$$y = 3x^3 + x^2 + 7x$$

2) 
$$y = \sqrt[3]{x^2 + 5x}$$

3) 
$$y = \sqrt{x + \sec x}$$

4) 
$$y = \frac{\sin x}{1 + \cos x}$$

5) 
$$y = x^3 \sin^{-1}(3x)$$

$$6) \sqrt{1 + \cos^2 y} = xy$$

Question 5:

(6 Marks)

- A) Given that  $f(x) = x^2 2x + 3$ , find the equation of the tangent line to the graph of g(x) at x = 3.
- B) Show that the function  $f(x) = x^3 + 2x^2 + 4$  satisfies the conditions of the Mean Value Theorem on [-1,0]. Then find a number c that satisfies the conclusion of the theorem.
- C) Find k given that  $f(x) = kx^2 + \frac{1}{x^2}$  has (1, f(1)) as an inflection point.

Question 6:

(10 Marks)

For the function  $f(x) = x^4 + x^2 - 2$ , find the following (if any):

- 1) The critical numbers of f.
- 2) The interval(s) on which f is increasing and decreasing.
- 3) The local extrema of f.
- 4) The interval(s) on which f is concave upward or downward.
- 5) Sketch the graph of f.

Good Luck