

T.me/Science 2022bot : تم التحميل بواسطة

Telegram: @Science_2022bot (O_O)

الاسم الرقم: "

المدّة : ثلاث ساعات الدرجة : ستمنة امتحان شهادة الدراسة الثانوية العامة دورة عام ٢٠٢١ (الفرع العامي - دورة أولى)

<u>الرياضيات:</u>

الصفحة الأولى

أولاً: أجب عن خمسة فقط من الأسئلة الستة الآتية: (40 درجة لكل سؤال)

السوال الأول:

 $[-\infty,0[\,\cup\,]$ نتأمل الخط البياني $\mathcal C$ للتابع f المعرف على

والمطلوب:

$$\lim_{x \to 0} f(x) \ , \ \lim_{x \to 1} f(x) \ , \ \lim_{x \to +\infty} f(x) \ \rightleftharpoons (1$$

$$\mathcal C$$
 اكتب معادلة كل مقارب أفقي ومعادلة كل مقارب شاقولي لـ $\mathcal C$ اكتب معادلة كل مقارب أفقى المتارب أ

$$\cdot f'(x) < 0$$
 جد حلول المتراجحة (3

$$\cdot f(x) = 0$$
 جد حل المعادلة (4

 $(x + \frac{1}{x^2})^{12}$ في منشور (المستقل عن (x) في منشور الثاني: جد قيمة الحد الثابت (المستقل عن

. $I = \int_{0}^{3} (2 - |2 - x|) dx$ السوال الثالث: احسب العدد:

السوال الرابع:

نتأمل في معلم متجانس D(6,2,5) , C(5,0,5) , B(1,-2,1) , A(2,0,1) النقاط الآتية: O(6,2,5) ، النقاط الآتية الآتي

رتبطین خطیاً. \overrightarrow{AC} ، \overrightarrow{AB} اثبت أن اثبت

D , C , B , A النقاط $\overline{AD}=\alpha\overline{AB}+\beta\overline{AC}$ واستنتج أنّ النقاط β , α بحيث (2) عيّن العددين الحدين الحقيقيين β , α بحيث تقم في مستو واحد.

السوال الخامس:

المطلوب: $f(x)=rac{ax^2+bx+1}{x-1}$ وفق: $\mathbb{R}\setminus\{1\}$ المطلوب:

. f عين العددين الحقيقيين b , a لتكون b , a عين العددين الحديث

السؤال السادس:

نتامل حجر نرد متوازن فيه أربعة وجوه ملوّنة بالأسود، ووجهان ملونان بالأحمر، نلقي هذا الحجر خمس مرات على التوالي. نعرّف متحولاً عشوائياً X يدل على عدد الوجوه السوداء التي نحصل عليها. المطلوب:

. P(X = 0) واحسب (1) اكتب قيم المتحول العشوائي

2) احسب التوقع الرياضي للمتحول العشوائي X وتباينه.

تُانياً: حل التمارين الثلاثة الآتية: (70 درجة لكلُّ من التمرينين الأول والثاني - 60 درجة للتمرين الثالث)

 $u_{n+1} = \frac{1}{2}u_n - 3$, $u_0 = 2$: التمرين الأول : لتكن لدينا المتتالية $(u_n)_{n \geq 0}$ المعرفة بالعلاقة التدريجية $v_n = u_n + 6$. وفق : $v_n = u_n + 6$

المطلوب:

. n مندسية، عيّن أساسها واحسب v_0 ، ثمّ اكتب عبارة v_n بدلالة v_n اثبت أن المتتالية و v_n هندسية، عيّن أساسها واحسب

 $(w_n)_{n\geq 0}$ لنعرَف المنتالية $(w_n)_{n\geq 0}$ وفق: $(w_n)_n = \ln(v_n)$ ، اثبت أنّ المنتالية $(w_n)_{n\geq 0}$ حسابية واحسب $(w_n)_{n\geq 0}$. $S=w_0+w_1+w_2+w_3+w_4+w_5$.

الاسم : الرقم: المدّة : ثلاث ساعات

الدرجة: ستمئة

امتحان شهادة الدراسة الثانوية العامة دورة عام ٢٠٢١ (الفرع العلمي - دورة أولى)

الرياضيات:

الصفحة الثانية

التمرين الثاني:

في المستوي العقدي المنسوب إلى معلم متجانس $(O, \overline{u}, \overline{v})$ نتأمل النقاط C, B, A التي تمثلها الأعداد العقدية c = -4i ، b = -4 + 4i ، a = 8

- . احسب العدد $\frac{b-c}{a-c}$ ، واستنتج أنّ المثلث ABC قائم ومتساوي الساقين.
- . $\frac{\pi}{4}$ صورة النقطة D وفق دوران مركزه D الممثل للنقطة D صورة النقطة D جد العدد العقدي D
 - . مربعاً $A\ CBE$ مربعاً ليكون الرباعي $a\ CBE$ مربعاً جد العدد العقدي

التمرين الثالث:

 $f(x) = x - 4 + \ln(\frac{x}{x+1})$ وفق: $I =]0,+\infty[$ المعرف على f المعرف على C الخط البياني للتابع

- f(I) أثبت أن f تابع متزايد تماماً على f، واستتنج أ
- . + ∞ الثبت أنّ المستقيم d الذي معادلته y=x-4 مقارب مائل للخط (2
 - .d ادرس الوضع النسبي بين الخط البياني C والمستقيم (3

ثالثاً: حل المسالتين الآتيتين: (100 درجة لكل مسألة)

المسألة الأولى:

: المطلوب . D(3,1,1) ، C(-3,4,-1) ، B(2,1,1) ، A(-1,2,3) النقاط $(O;\vec{i},\vec{j},\vec{k})$ نتامل النقاط في معلم متجانس

- ا) جد \overline{AC} و ویین آن المستقیمین \overline{AC} و \overline{AB} متعامدان.
- (ABC) يعامد المستوي (ABC) واكتب معادلة للمستوي (n(2,4,1)
- . (ABC) جد تمثيلاً وسيطياً للمستقيم d المار من النقطة D والعمودي على المستوي (3
 - . D-ABC عن المستوي (ABC) ثمّ احسب بعد D عن المستوي (4
- نَبِت أَن (C,2) , (B,-1) , (A,1) الْبِت أَن (C,2) مركز الأبعاد المتناسبة للنقاط المثقلة (C,2) , (B,-1) , (A,1) متوازیان.

المسألة الثانية:

: وفق $f(x) = \frac{(x+1)^2}{e^x}$: وفق \mathbb{R} وفق المعرف على والمطلوب المعرف المعرف على المعرف على المعرف على المعرف على المعرف على المعرف الم

- ا احسب نهايات التابع f عند أطراف مجموعة تعريفه واكتب معادلة المستقيم المقارب الأفقى.
 - . $f'(x) = (1-x^2)e^{-x}$ زُبُت أَنْ (2
 - ادرس تغیرات التابع f ونظم جدولاً بها ودل على القیم الحدیة مبیناً نوعها.
 - ارسم C في معلم متجانس.
 - g المتنتج رسم الخط البياني C_1 للتابع g المعرف وفق: g المتنتج رسم الخط البياني (5
 - $h(x) = \ln(f(x))$ جد مجموعة تعریف التابع: (6

- انتهت الأسئلة -

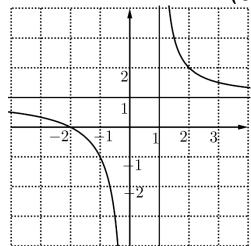
ملاحظة : يمنع استعمال الآلات الحاسبة والجداول اللوغاريتمية

امتحان شهادة الدراسة الثانوية العامة / الفرع العلمي الدورة الأولى عام 2021

سلم درجات مادة: الرياضيات الدرجة: ستمئة

أولاً: أجب عن خمسة فقط من الأسئلة الستة الآتية: (40 درجة لكل سؤال)

السوال الأول:


نتأمل الخط البياني C المعرف على $[0,+\infty[$ والمطلوب:

.
$$\lim_{x \to 0} f(x)$$
 و $\lim_{x \to 1} f(x)$ و $\lim_{x \to +\infty} f(x)$ جد (1

.
$$C$$
 اكتب معادلة كل مقارب أفقي ومعادلة كل مقارب شاقولي لـ (2

$$f'(x) < 0$$
 جد حلول المتراجحة (3

.
$$f(x) = 0$$
 جد حل المعادلة (4

	5	$\lim_{x \to +\infty} f(x) = 1$
	5	$\lim_{x \to 1} f(x) = +\infty$
	5	$\lim_{x \to 0} f(x) = -\infty$
	5	y=1
	5	x = 1
	5	x = 0
إذا كتب الطالب $(-2,0)$ في حل الطلب الأخير	5	$]-\infty,0[\bigcup]1,+\infty[$
ينال الدرجة المخصصة	5	x = -2
	40	مجموع درجات السؤال الأول

 $(x+\frac{1}{x^2})^{12}$ في منشور $(x+\frac{1}{x^2})^{12}$ جد قيمة الحد الثابت (المستقل عن $(x+\frac{1}{x^2})^{12}$

إذا كتب الطالب $T_r = \binom{n}{r} a^r.b^{n-r}$ ينال الدرجة	5	$T_r = \binom{n}{r} a^{n-r} . b^r$
المخصصة للقانون ويتابع له إذا حسب الطالب المنشور كاملاً وحدد القيمة	3 × 5	$T_r = \binom{12}{r} (x)^{12-r} (\frac{1}{x^2})^r = \binom{12}{r} x^{12-3r}$
المطلوبة ينال الدرجة المخصصة كاملاً	5	12 - 3r = 0
	5	r = 4
عند حساب r و T_r في الخطوتين الأخيرتين يخسر الدرجات المخصصة في حال كان r سالباً أو كسراً	+3+2 5	$T_4 = \binom{12}{4} = 495$
	40	مجموع درجات السؤال الثاني

. $I = \int_{0}^{3} (2 - |2 - x|) dx$: السؤال الثالث: احسب العدد

5 لتجزئة حدود التكامل و 5+5 لعبارتي التكامل 5 لكل تابع أصلي	3 × 5	$I = \int_{0}^{2} (x)dx + \int_{2}^{3} (4-x)dx$
اذا كتب الطالب : $I = \int_{0}^{3} 2 - (2 - x) dx = \int_{0}^{3} x \ dx$	3 × 5	$I = \left[\frac{x^2}{2}\right]_0^2 + \left[4x - \frac{x^2}{2}\right]_2^3$
0 0	4×2	التعويض
$= \left[\frac{1}{2}x^{2}\right]_{0}^{3} = \frac{9}{2}$ ينال الطالب 5 درجات للتابع الأصلي و 2+2 للتعويض والنتيجة	2	الناتج
35 % 1 2 3	40	مجموع درجات السؤال الثالث

السؤال الرابع:

نتأمل في معلم متجانس D(6,2,5) النقاط الآتية A(2,0,1) و A(2,0,1) و المطلوب: \overline{AC} و \overline{AB} و \overline{AB} و المطلوب: (1

D و G و G و استنتج أن النقاط $A\vec{D}=\alpha \overrightarrow{AB}+\beta \overrightarrow{AC}$ و استنتج أن النقاط G و G

لكل مركبة درجة لكل مركبة درجة	3 3	$\overrightarrow{AB}(-1,-2,0)$ $\overrightarrow{AC}(3,0,4)$
	3 3	أو المركبات غير متناسبة $-\frac{1}{3} \neq \frac{0}{4}$ أو أية عبارة تثبت عدم الارتباط الخطي
لكل مركبة درجة	3	$\overrightarrow{AD}(4,2,4)$
لتعويض الشعاعين في العبارة	2 × 3	$\overrightarrow{AD} = lpha \overrightarrow{AB} + eta \overrightarrow{AC}$ تعويض الأشعة في العبارة
كل معادلة 3 درجات	3 × 3	الوصول إلى ثلاث معادلات خطية من العبارة السابقة بطريقة صحيحة
	2 + 2	eta و $lpha$
	3	التحقق
$\overrightarrow{AD}=-\overrightarrow{AB}+\overrightarrow{AC}$ إذا كتب الطالب العبارة مباشرة بعد تعويض الأشعة في علاقة الارتباط الخطي ينال الدرجات $3 imes 5$	3	\overrightarrow{AD} $=$ $-\overrightarrow{AB}$ $+$ \overrightarrow{AC} أو النقاط تقع في مستوٍ واحد
	40	مجموع درجات السؤال الرابع

السؤال الخامس:

ليكن
$$f(x)=\frac{ax^2+bx+1}{x-1}$$
 وفق: $\mathbb{R}\setminus\{1\}$ والمطلوب: $f(x)=\frac{ax^2+bx+1}{x-1}$ وفق: $f(x)=\frac{ax^2+bx+1}{x-1}$ والمطلوب: $f(x)=\frac{ax^2+bx+1}{x-1}$ قيمة حديث التابع $f(x)=\frac{ax^2+bx+1}{x-1}$

	5	$f(-1) = \frac{a-b+1}{-2} = 0$ النعويض
	5	الوصول إلى العلاقة الأولى
إذا أخطأ الطالب بحساب المشتق وتابع الحل ينال الدرجات المخصصة للخطوات اللاحقة فقط	10	حساب المشتق
	5	-1 معرفة أن المشتق ينعدم عند
	5	التعويض في المشتق
	6	الوصول إلى العلاقة الثانية
	2 + 2	b=2 و $a=1$
	40	مجموع درجات السؤال الخامس

السؤال السادس:

نتأمل حجر نرد متوازن فيه أربعة وجوه ملونة بالأسود ووجهان ملونان بالأحمر ، نلقي هذا الحجر خمس مرات على التوالي ، نعرف متحولاً عشوائياً X يدل على عدد الوجوه السوداء التي نحصل عليها ، والمطلوب:

- . P(X=0) اكتب قيم المتحول العشوائي X واحسب (1
- احسب التوقع الرياضي للمتحول العشوائي X وتباينه.

ملاحظة:	3	$X\!=\!\{0,\!1,\!2,\!3,\!4,\!5\}$ قيم X هي
إذا أهمل أو أضاف الطالب أي قيمة من قيم المتغير العشوائي يخسر درجة واحدة لكل قيمة يهملها أو يضيفها	10	قانون حساب الاحتمال
بعسوامي يعسر درب واحده سن عيد يهسه او يعسيه الله يتجاوز 3 درجات	5 + 5	q فیم p فیم
q و p يخسر الطالب 5 درجات إذا بدل بين p و إذا حسب الطالب:	5	التعويض
$P(X=0) = \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3}$ ينال الدرجة المخصصة لحساب $P(X=0)$ كاملة	2	النتيجة
X إذا كتب الطالب القانون الاحتمالي للمتحول العشوائي	2 + 3	قانون $E(X)$ + نتیجة
ثم حسب التوقع الرياضي والتباين منه ينال الدرجات المخصصة	2+3	قانون $V(X)$ + نتیجة
	40	مجموع درجات السؤال السادس

ثانياً: حل التمارين الثلاثة الآتية: (70 درجة لكل من التمرينين الأول والثاني - 60 درجة للتمرين الثالث) $u_{n+1} = \frac{1}{2}u_n - 3 \quad v_0 = 2 \quad v_{n+1} = \frac{1}{2}u_n - 3 \quad v_0 = 0$ المعرفة بالعلاقة التدريجية: $v_n = u_n + 6$ وفق $v_n = u_n + 6$ وفق $v_n = u_n + 6$

المطلوب:

- . v_n بدلالة v_n غبارة عبارة v_n بدلالة v_n أثبت أن المتتالية v_n هندسية ، عين أساسها واحسب v_n
- w_0 نعرف المتتالية $(w_n)_{n\geq 0}$ وفق: $w_n=\ln(v_n)$ وفق: $w_n=\ln(v_n)$ حسابية واحسب (2 $S=w_0+w_1+w_2+w_3+w_4+w_5$ ثم احسب المجموع

	5	u_{n+1} بدلالة v_{n+1}
	5	u_n جساب v_{n+1} بدلالة
	5	v_n بدلالة v_{n+1}
	5	q حساب
	5	v_0 حساب
	5	كتابة v_n بدلالة n بأي صيغة صحيحة
	5	$w_{n+1}-w_n$ القانون
	5	v_n و v_{n+1} بدلالة $w_{n+1}-w_n$ و
	3	استخدام خواص اللوغاريتم
	2	الوصول للعدد الثابت أساس المتتالية الحسابية
	5	w_0 حساب
	5	w_5 حساب
إذا قام الطالب بحساب كلاً من	5	قانون حساب مجموع متتالية حسابية
w_5 و w_1 و w_2 و w_3 و w_5	5	التعويض في القانون
ثم قام بحساب المجموع S ينال الدرجات المخصصة	5	الحساب والنتيجة
	70	مجموع درجات السوال السابع / التمرين الأول /

ملاحظات التمرين الأول:

عند إثبات أن المتتالية $(w_n)_{n\geq 0}$ حسابية يمكن الكتابة بأكثر من صياغة بطرائق مختلفة منها:

$$5+5$$
 $w_{n+1}-w_n=\ln(v_{n+1})-\ln(v_n)$ (2)
$$=\ln\left(\frac{v_{n+1}}{v_n}\right)$$

$$=\ln q=$$
 ثابت

التمرين الثاني:

في المستوي العقدي المنسوب إلى معلم متجانس $(O,\overrightarrow{u},\overrightarrow{v})$ نتأمل النقاط A و B و B التي تمثلها الأعداد العقدية

و المطلوب: a=8 و b=-4+4i و a=8

- احسب العدد $\frac{b-c}{a-c}$ ، واستنتج أن المثلث ABC قائم ومتساوي الساقين.
- . $\frac{\pi}{4}$ جد العدد العقدي d الممثل للنقطة d صورة النقطة d وفق دوران مركزه d وزاويته d
 - مربعاً. ACBE مربعاً للنقطة E الممثل للنقطة e مربعاً.

	5	$\dfrac{b-c}{a-c}$ التعويض في
	5+5+5+5	الإصلاح $= \frac{-4+8i}{8+4i}$
في حال كتب الطالب النتيجة مباشرة بعد التعويض ينال الدرجات المخصصة للإصلاح بالإضافة إلى درجة النتيجة	5	النتيجة
	5	المثلث قائم ومتساوي الساقين
	5	قانون الدوران
	5	التعويض
	5	النتيجة بالشكل الجبري
إذا لم يراعي الطالب ترتيب رؤوس الرباعي يخسر 5 درجات المخصصة للطريقة ويتابع له الحل	5	E اختيار طريقة مناسبة لإيجاد مثل $\overrightarrow{AC} = \overrightarrow{EB}$ أو تناصف القطرين أو تساوي طولي القطرين أو الدوران
	5 + 5	تطبيق الطريقة
	5	e الوصول إلى قيمة
	70	مجموع درجات السوال الثامن / التمرين الثاني /

التمرين الثالث:

ليكن $f(x)=x-4+\ln(\frac{x}{x+1})$ وفق: $I=]0,+\infty[$ المعرف على $f(x)=x-4+\ln(\frac{x}{x+1})$ وفق: $f(x)=x-4+\ln(\frac{x}{x+1})$ المطلوب: $f(x)=x-4+\ln(\frac{x}{x+1})$ واستنتج $f(x)=x-4+\ln(\frac{x}{x+1})$ أثبت أن $f(x)=x-4+\ln(\frac{x}{x+1})$ واستنتج $f(x)=x-4+\ln(\frac{x}{x+1})$

- . $+\infty$ في جوار d في جوار y=x-4 مقارب مائل للخط d في جوار (2
 - d ادرس الوضع النسبي بين الخط البياني C والمستقيم (3

$f'(x) = 1 + \frac{1}{x(x+1)} > 0$	5	I متزاید تماماً علی $x\mapsto \dfrac{x}{x+1}$
x(x+1)	5	I متزايد تماماً على $x \mapsto \ln x$
5 × 3 الاشتقاق	5	I مرکب تابعین متزایدین هو تابع متزاید علی
f'(x) > 0 10	5	I متزاید تماماً علی $x \mapsto x - 4$
	5	ومجموع تابعين متزايدين هو تابع متزايد
ملاحظة:		
$\lim_{x \to 0} f(x)$ و $\lim_{x \to +\infty} f(x)$ إذا حسب الطالب	5 × 2	$f(]0,+\infty[)=]-\infty,+\infty[$
ثم كتب النتيجة يعطى 5 + 5		
ملاحظة:	5	$f(x)\!-\!y_d$ القانون
في حال حل الطالب المعادلة $\frac{x}{x+1} = 1$ وذكر أن التابع	5	$\lim_{x\to +\infty} (f(x)-y_d) = 0$ إيجاد النهاية
I متزاید تماماً علی $g(x) = \dfrac{x}{x+1}$ فإنه یحافظ علی إشارة واحدة	5 + 5	الوضع النسبي: الإشارة + التعليل $\ln\left(\frac{x}{x+1}\right) < 0$ أي $\frac{x}{x+1} < 1$
$\ln(\frac{x}{x+1}) < 0$ أي $g(x) < 1$ ينال الطالب الدرجة المخصصة لتعليل الإشارة I تابع الفرق على I	5	d تحت المستقيم مع إشارته C تحت المستقيم
	60	مجموع درجات السؤال التاسع / التمرين الثالث /

ثالثاً: حل المسألتين التاليتين: (100 درجة لكل مسألة)

المسألة الأولى:

في معلم متجانس C(-3,4,-1) و A(-1,2,3) و المطلوب: A(-1,2,3) و المطلوب:

- . متعامدان. (AB) و (AC) و بين أن المستقيمين (\overline{AC}) و \overline{AB} عامدان.
- . (ABC) يعامد المستوي $\vec{n}(2,4,1)$ واكتب معادلة المستوي ($\vec{n}(2,4,1)$
 - (ABC) جد تمثيلاً وسيطياً للمستقيم d المار من D والعمودي على المستوي (3
 - ABC عن المستوي (ABC) ثم احسب بعد D عن المستوي (4
- نبت أن (C,2) و (B,-1) و (A,1) و أثبت أن (C,2) مركز الأبعاد المتناسبة للنقاط المثقلة (A,1) و (A,1) و (CG) متوازيان.

كل مركبة درجة واحدة	2×3	\overrightarrow{AC} و \overrightarrow{AB}
	3 + 2	حساب $\overrightarrow{AB}.\overrightarrow{AC}$ قانون + نتیجة
	3 + 2	حساب $\overrightarrow{n}.\overrightarrow{AB}=0$ التعويض + النتيجة
	3 + 2	حساب $\overrightarrow{n}.\overrightarrow{AC}=0$ التعويض + النتيجة
	3	التعبير عن معرفته أن $\stackrel{ ightarrow}{n}$ يعامد شعاعين غير مرتبطين خطياً
		أو التعبير عن معرفته أن $\stackrel{ ightarrow}{n}$ ناظم المستوي
	5	قانون المستو <i>ي</i>
	5 + 5	التعويض + نتيجة
للقانون 5 ولكل معادلة 5	$5+3\times 5$	التعبير عن معرفته لشكل التمثيل الوسيطي
كتابة النتيجة مباشرة بشكل صحيح ينال درجة القانون ضمناً	3 + 5 + 5	قانون المسافة + التعويض + النتيجة
	4 + 4	$\left\ \overrightarrow{AC} ight\ $ و $\left\ \overrightarrow{AB} ight\ $
	4	حساب المساحة
	3	قانون الحجم
	3	والنتيجة
	3	$\overrightarrow{GA} - \overrightarrow{GB} + 2\overrightarrow{GC} = \overrightarrow{0}$
	2	$\overrightarrow{GA} + \overrightarrow{BG} + 2\overrightarrow{GC} = \overrightarrow{0}$
	3	$\overrightarrow{BA} = -2\overrightarrow{GC}$
	_ 2	و \overrightarrow{GC} مرتبطین خطیا \overrightarrow{BA}
		(BA) (CG)
	100	مجموع درجات السؤال العاشر / المسألة الأولى /
		•

ملاحظات المسألة الأولى

	طريقة ثانية للطلب الأخير:
5 + 5	$(BA) \ (CG)$ مجموع ثقلي A و B يساوي الصفر فيكون
	طريقة ثالثة للطلب الأخير:
2 + 2 + 2	G احداثیات
2	\overrightarrow{AB} و \overrightarrow{CG}
2	$\overrightarrow{AB} = -2\overrightarrow{CG}$
	طريقة رابعة للطلب الأخير:
2	$\overrightarrow{AG} = \frac{\beta}{\alpha + \beta + \gamma} \overrightarrow{AB} + \frac{\gamma}{\alpha + \beta + \gamma} \overrightarrow{AC}$
2	$\overrightarrow{AG} = -\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AC}$
2	$\overrightarrow{AC} + \overrightarrow{CG} = -\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AC}$
2	$\overrightarrow{CG} = -\frac{1}{2}\overrightarrow{AB}$
2	الشعاعان مرتبطان خطياً والمستقيمان متوازيان
	طريقة خامسة للطلب الأخير:
2 + 2	$\overrightarrow{BI}=2\overrightarrow{BC}$ نفرض I مركز الأبعاد المتناسبة للنقطتين $(C,2)$ و $(B,-1)$ إذاً
1	[BI] تكون C منتصف
2	(C,2) و $(B,-1)$ و $(A,1)$
	هو مركز الأبعاد المتناسبة للنقطتين $(A,1)$ و $(I,1)$ حسب الخاصة التجميعية
1	$[\mathit{IA}]$ ومنه G في منتصف
2	(BA)اا وبالتالي $[CG]$ تصل بين منتصفي ضلعين في مثلث ومنه $[CG]$

المسألة الثانية:

ليكن
$$f(x) = \frac{(x+1)^2}{e^x}$$
 وفق: \mathbb{R} والمطلوب: $f(x) = \frac{(x+1)^2}{e^x}$ المعرف على $f(x) = \frac{(x+1)^2}{e^x}$

احسب نهايات f عند أطراف مجموعة تعريفه واكتب معادلة المستقيم المقارب الأفقي. f

.
$$f'(x) = (1-x^2)e^{-x}$$
 اثبت أن (2

(3) ادرس تغيرات التابع f ونظم جدو d بها ودل على القيم الحدية مبيناً نوعها.

ارسم C في معلم متجانس. (4)

. $g(x) = (x-1)^2 e^x$ استنتج رسم الخط البياني G للتابع التابع g المعرف وفق: (5

 $h(x) = \ln(f(x))$ استنتج مجموعة تعريف التابع: (6

	5	$\lim_{x \to -\infty} f(x) = +\infty$
النهاية + التعليل	5+3	$\lim_{x \to +\infty} f(x) = 0$
	5	مقارب أفقي $y\!=\!0$
قانون + التعويض + النتيجة	5+5+5	f'(x)
	3 + 3	x=-1 ينعدم $f'(x)$ عندما $x=1$ أو
	3 + 3	$f(-1) = 0$ و $f(1) = \frac{4}{e}$
إشارة + أسهم إذا لم يضع الطالب الإشارة في سطر $f'(x)$ يخسر 6 درجات	(2+3)× 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	5	f(-1)=0 قيمة صغرى محلياً
	5	$f(1) = rac{4}{e}$ قیمة کبری محلیاً
5 للانسجام مع الجدول 5 للانسجام مع المقارب والقيم الحدية	5 + 5	C $\frac{4}{e}$ $y=0$
	10	نظير C بالنسبة لمحور التراتيب أو $g(x) = f(-x)$ أو الرسم
التعليل + النتيجة		
$\mathbb{R}\setminus\{-1\}$ في الخطوة الأخيرة إذا كتب الطالب	5 + 5	$\mathbb{R}\setminus\{-1\}$ مجموعة التعريف
ينال 10 درجات		
	100	مجموع درجات السؤال الحادي عشر / المسألة الثانية /

انتهى السلم

الاسم ا قرام: فعدًا : تحث ساعات معدًا : معاد

المتحان شهادة الدراسة الثانوية العامة دورة عام ٢٠٢١ (الغرع العلمي - دورة ثانية)

الرياضيات

الصقعة الأولى

أولاً: أجب عن خسسة فقط من الأسئلة السبئة الإتوبة: (40 درجة لكل سوال)

 $P_{n,j}^{1} = 16 \binom{n+2}{2}$ النسوال الأول: عين فيمة n الني تعقق المعادلة

المسؤال الثاني: نتأمل في معلم متجانس ($O, \overline{1}, \overline{j}, \overline{k}$) النقطة ($O, \overline{1}, \overline{j}, \overline{k}$) والمستوي O = 0 - 2z + y - 2z - 4 = 0

1) احسب بعد A عن العستوي P.

2) اكتب معاللة للكرة التي مركزها الروتمس المستوي P.

المعوال الثلث: احمد التكامل الأتى: x sinx dx = أ

السوال الرابع: تأمل حدول تغيرات النابع / المعزف على]0,+ ه [خطه البيائي C . والمطلوب:

الكفيد الأقفي. $\lim_{x\to +\infty} f(x)$ معادلة المقارب الأقفي.

f(x) = 0 all the state of f(x) = 0

دل على القيمة المحلية ربين نوعها.

4) جد مجموعة حلول المتراجعة 0 < (x) أ.

السوال الخامس:

المعطوب: $f(z) = \frac{2z^2 + \cos^2 z}{2}$ وفق: $f(z) = \frac{2z^2 + \cos^2 z}{2}$ المعطوب:

البت أن المستقيم Δ الذي معادلته 2 = 2 مقارب مائل C في جوار ∞ وادر س الوضع النسبي بين C و Δ المسؤال المسادس:

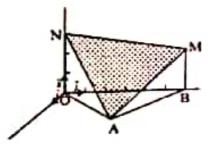
يحتوي صندوق على كرات حمراء و كرات بيضاء ، عدد الكرات العمراء يساوي ثلاثة أضعف عدد الكرات البيضاء. المطلوب:

- السعب عشوالياً من السندوق كرة، ما احتمال أن تكون بيضاء اللون.
- 2) نسحب من الصندوق ثلاث كرات على النتالي مع الإعادة، نعزف X المتحول العشوائي الذي يدل على عدد الكرات البيضاء المسعوبة أشاء عمليات السحب الثلاثة. اكتب مجموعة قيم X وجدول الفانون الاحتمالي.

ثلثياً: جل التمارين الثلاثة الآتية: (70 درجة لكل من النمرينين الأول والثاني- 60 درجة للتمرين الثالث) التمرين الألث) التمرين الأول :

نتأمل المنتالية $u_n = (u_n - 2)^2 + 2$: $u_n = \frac{5}{2}$ وأياً كان العدد الطبيعي $u_n = \frac{5}{2}$ المطلوب:

- 1) أنبت بالتدريج أن 3 ≥ 1 2 أيّا كان العدد الطبيعي 11 .
 - 2) أثبت أنَّ المنتقلبة إنه (س) منتقلصة .
 - استنتج تقارب المتتالية على (u,) رجد عقارب المتتالية على المتتالية على المتتالية على المتتالية المتالية المتالية المتالية المتالية المتالية المتالية المتالية المتتالية المتالية المت


التعرين الثاني: في معلم متمانس (كَرَرَ . () لدينا النقاط :

. A(1,3,0), B(0,6,0), N(0,0,3), M(0,6,2)

1) اكتب معادلة المستوي (AMN) .

The second second

- اكتب تمثيلاً وسيطياً المستقيم ۵ المار من 0 ويعامد المستوي (AMN).
- z-1=0 اثبت أن المستوى الذي معادلته z-1=0 هو المستوي المحوري القطعة المستقيمة (BM

يتين في لعسلعة المانعة

الإسم ا طرام: المذاع: ثلاث ساحات المرحة: سلملة

امتحاث شهادة الدراسة الثانوية العامة دورة عام ٢٠٧١ (اللرح الطمي - دورة ثانوة)

الريابنيان

الصفحة الثالية

التعريث الثالث:

لبكن النابع f المعرف على R وقل : ٢-(ux +b) هـ المطلوب:

أولاً: احسب فيمة كل من م , م إذا طمت أنَّ ع = (١-) / فيمة حدية للنابع.

ناتها: لنكن المعادلة التفاصلية "-عار = بر+ 'بر، عن فيمة تر إذا علمت أن "-بر(x + 2) = اكر لها.

ثالثاً: هل المسالنين الأتينين: (100 سرمة لكل سالة)

العمالة الأولى:

 $\alpha \in \mathbb{R}$ عيث $P(z) = z^3 - 2(\alpha + i\sqrt{3})z^2 - 4(\alpha - i\sqrt{3})z + 8$ عيث $P(z) = 2^3 - 2(\alpha + i\sqrt{3})z^2 - 4(\alpha - i\sqrt{3})z + 8$ عيث $P(z) = 2^3 - 2(\alpha + i\sqrt{3})z^2 - 4(\alpha - i\sqrt{3})z + 8$ عيث $P(z) = 2^3 - 2(\alpha + i\sqrt{3})z^2 - 4(\alpha - i\sqrt{3})z + 8$ المطلوب:

- 1) احسب العدد a لكى يكرن z = 2 علاً للمعاملة 0 = (1)
- P(x) = (x-2)Q(x) يحقق: Q(x) = 0 جد كلير الحدود من الدرجة الثانية Q(x) = 0 يحقق: Q(x) = 0 بغرض 1 مستنج علول المعادلة Q(x) = 0 .

شاهياً: لتكن A و B و C نقاط المستوى الذي تمثل الأعداد العقدية بالترتيب:

: مطلوب م م م المطلوب م م م المطلوب م م المطلوب م م المطلوب م المطلوب م

ABC اثبت ان: $\frac{a-b}{c-b}=c^{\frac{2\pi}{3}}$ ، راستنج طبیعة السلت (a

ليكن المنتث 'A'B'C' سبورة المنتث ABC وفق تناظر بالنسبة لمحور الغواسل، عين 'a و'b' و'c التي تمثلها (b
 لقاط المستوى 'A'B'C' على الترتيب.

المسالة الثانية:

ليكن $_{\eta}C$ المنط البياني للتابع f المعزف على $\int (x) = e^{-t} (1 + \ln x)^{-t} = \int (-1 + \ln x)^{-t} = \int$

- 1) ادرس تغيرات التابع ج ونظم جدولاً بها.
- . $\alpha = 1$ أن المعادلة $\alpha = 1$ علا رحيداً α ، ثم تعنق أن $\alpha = 1$ إين أن المعادلة $\alpha = 1$
 - 3) جد نهايات المتابع / عدد أطراف مجموعة تعريفه.
 - $f'(x) = \frac{g(x)}{e^x}$: نا نابت ان (4
- 5) مستفيداً من تغيرات التابع ج ادرس تغيرات التابع / ونظم حدولاً بها.
 - 6) في معلم متجانس ارسم الخط ر6

- ائتهت الخسيلة -

ملاحظة : يمنع استعمال الألات العاسبة.

 $(im f(x) = -\alpha)$, (im f(x) = 0) $x \to 0$ $x \to +\infty$ ٥= لا مارب أضفى الخط ع فاهوار ١٠٠٠ 2)- الممادلة ه=(4 و حيد · عرى م قيمة عرى عرى م]۱ ره [= کر السؤال الخامس :

 $f(x) = 2x + \frac{\cos x}{x}$ $J(x) - y = \frac{\cos^2 x}{x}$ 0 5 Co3 X 51 : x<0 voir

0 7 COSZX 3 1 $\lim_{x \to -\infty} \left(\frac{1}{x} \right) = 0$ $\lim_{x \to -\infty} \frac{\cos^2 x}{x} = 0$

 $\begin{array}{ccc} c & \text{Lin} \left[f(x) - y_{0} \right] = 0 \\ & & \times \rightarrow -\infty \end{array}$

خالمستقم ۵ مقارب ماعل الاطر ع في هوار هد.

X	-00	0
cos'x	+	
×	-	
チェンク		
	· 5 Cb C	
•		

 $F_{n+3}^{3} = 16 \binom{n+2}{2}$

 $(n+3)(n+2)(n+1)=16 \frac{(n+2)(n+1)}{2!}$

السخوال الثايي ،

 $dist(A,P) = \frac{14+1-4-41}{\sqrt{4+1+4}} = \frac{3}{3} = 1$

Y = dist(A, P) = 1

سادلة الك مناشكن؛

(x-X)2+(y-y)2+(Z-Z)2=12

 $(x-2)^{2}+(y-1)^{2}+(z-2)^{2}=1$

 $I = \int_{1}^{\frac{\pi}{2}} x \sin dx$

 $\int_{a}^{b} uv' = [uv]_{a}^{b} - \int_{a}^{b} v \cdot u'$

 $I = \left[-\kappa \cos x \right]^{\frac{\pi}{2}} + \int_{-\infty}^{\frac{\pi}{2}} \cos x \, dx$

 $I = \left[- x \cos x + \sin x \right]_{0}^{\frac{\pi}{2}} = 1 - 0 = 1$

E(n1:

$$2 \leq u_{5} = \frac{5}{2} \leq 3$$

LE (n+1) ast ifin E(n) ast is in

$$0 \leq u_n - 2 \leq 1$$

$$0^{1} \leq (u_{n}-2)^{2} \leq 1^{2}$$

$$2 \leq (u_1 - 2)^2 + 2 \leq 3$$

Util assep E(n) aipallo . Tes E(n+1)

$$E'(n)$$
 $u_{n+1} \leq u_n$

: 4, 4

$$U_1 = (y_1 - 2)^2 + 2 = (25 - 2)^2 + 2$$

= $\frac{1}{4} + 2 = \frac{9}{4}$

$$U_1 = \frac{9}{4} \le u_0 = \frac{5}{2}$$
 $U_2 = \frac{5}{2}$ $U_3 = \frac{5}{2}$ $U_4 = \frac{9}{4}$ $U_5 = \frac{9}{4}$

$$\left(u_{n+1} - 2 \right)^2 \leq \left(u_n - 2 \right)^2$$

$$(u_{n+1}-2)^2+2 \leq (u_n-2)^2+2$$

ويتقاطع ع ١ في كل نقطة ما جلقها

السلوال السارس ؛

إذا كان عدر الكرات البيماء (١٨) عنها سيكون عدر الكرات المحراء (3n) وميكون إحمالي

$$P(w) = \frac{n}{4n} = \frac{1}{4n}$$

$$S = \frac{1}{4}$$
, $S = 1 - \frac{1}{4} = \frac{3}{4}$ $N = 3$

$$P(x=0) = {3 \choose 0} \left(\frac{1}{4}\right)^{0} \cdot \left(\frac{3}{4}\right)^{3} = \frac{27}{64}$$

$$P(X=1) = {3 \choose 1} \left(\frac{1}{4}\right)^{1} \left(\frac{3}{4}\right)^{2} = \frac{27}{64}$$

$$P(X=2) = {3 \choose 2} {(\frac{1}{4})^2} {(\frac{3}{4})^2} = \frac{9}{64}$$

$$\frac{K}{P(X=K)} \frac{0}{64} \frac{1}{64} \frac{27}{64} \frac{27}{64} \frac{9}{64} \frac{1}{64}$$

$$\begin{array}{c}
X = X_0 + q t \\
J = J_0 + b t & t \in \mathbb{R} & \Rightarrow b \\
Z = Z_0 + c t
\end{array}$$

$$\begin{array}{c}
X = 15t \\
Y = 6t \\
Z = 6t \\
t \in \mathbb{R}
\end{array}$$

(x,y,z) عَقَمَ مَ الْمُسَوِي الْمُحورِي M'(x,y,z)

: vés of [BM] Taball

$$M'B = A'A \Rightarrow M'B^2 = M'M^2$$

$$\Rightarrow (x-0)^{2} + (y-6)^{2} + (z-0)^{2} = (x-0)^{2} + (y-6)^{2}$$

$$(y-6)^2 + Z^2 = (y-6)^2 + (z-2)^2$$

E(n) insoli assof E(n+1) مرحم أياً كان العد الطبيعي 170

المتالية (١١) مشاعضة ولاسودة رائد من الأدى بالعدد (2) خطي منقارت.

$$(-)$$
 $u_n = (u_n - 2)^2 + 2$

$$u_n = u_n^2 - 4u_n + 4 + 2$$

$$u_n^2 - 5u_n + 6 = 0$$

$$(u_n-3)(u_n-2)=0$$

$$(L-3)(L-2)=0$$

الترين الثاني :

AMY 55- N (9, 5, c)

$$\overrightarrow{n} \cdot \overrightarrow{AM} = 0$$
 : juice

$$\Rightarrow \binom{9}{6} \binom{3}{2} = 0$$

$$+(z-2)^2 | \overrightarrow{n}' \cdot \overrightarrow{AN} = 0$$

$$\Rightarrow \begin{pmatrix} a \\ b \\ -3 \\ 3 \end{pmatrix} = 0 \Rightarrow \begin{vmatrix} -a - 3b + 3c = 0 \\ 0 \\ 0 \end{vmatrix}$$

- عبدانع (س) عيد الله

ولاً!

$$\Rightarrow$$
 8 -2(x+c\sqrt{3})4-4(x-c\sqrt{3})2+8=0

$$16 - 16\alpha = 0$$

X=1

$$\frac{Z^2-2i\sqrt{3}Z-4}{Z^2-2i\sqrt{3}Z-4}$$

 $Z - 2 | Z^3 - 2(1+i\sqrt{3})Z^2 - 4(1-i\sqrt{3})Z + 8$ $-Z^3 + 2Z^2$

-21/3 Z2-4(1-W3)Z+8 +21/3 Z2-40/3Z

$$Z_2 = \frac{-b+\sqrt{b}}{2a}$$

$$Z_3 = \frac{-b-\sqrt{b}}{2a}$$

$$Z_3 = -1 + c\sqrt{3}$$

وهي معادلة المستوي المحوري للقطعة [BM]

التمرين الثالث ١

$$\overline{-1}$$

$$f'(x) = q e^{x} - e^{x} (ax+b)$$

$$f'(-1) = ae - e(-a+b)$$

$$f(x) = (x+2)e^{-x}$$

$$y' = f'(x) = e^{-x} - e^{-x}(x+z)$$

$$\mathcal{I}' = -e^{-x}(x+i)$$

$$y = e^{x}(x+2)$$

$$y' + y = e^{-x}(x + 2 - x - 1) = e^{-x}$$

$$\Rightarrow \sqrt{\lambda = 1}$$

مسوحة ضوئيا بـ CamScanner

2) الناج و معط ومترومطرد تما ماً على T. كما أن :

$$\lim_{x \to 0^+} f(x) = e^{\circ}(1-\omega) = -\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{1}{e^{x}} + \frac{\ln x}{x}, \frac{x}{e^{x}} \right)$$

$$f(x) = -e^{-x}(1+\ln x) + \frac{1}{x}e^{-x}$$

$$= \frac{-1-hx+\frac{1}{x}}{e^{x}} = \frac{g(x)}{e^{x}}$$

$$f(x) = 0 \iff 0 = (x)^2$$

にじ

$$\frac{a-b}{c-b} = \frac{2-1-i\sqrt{3}}{-1+i\sqrt{3}-1-i\sqrt{3}} = \frac{1-i\sqrt{3}}{-2}$$

$$= \frac{-1}{2} + i \frac{\sqrt{3}}{2}$$

$$r = \sqrt{\left(\frac{-1}{2}\right)^2 + \left(\frac{13}{2}\right)^2} = 1$$

$$\cos\theta = \frac{1}{V} = \frac{1}{2}$$

$$\theta = \frac{2\pi}{3} + 2\pi K$$

$$\sin\theta = \frac{1}{V} = \frac{1}{2}$$

$$\frac{a-b}{c-b} = e^{i\frac{2\pi}{3}}$$

$$\frac{|a-b|}{|c-b|} = 1$$

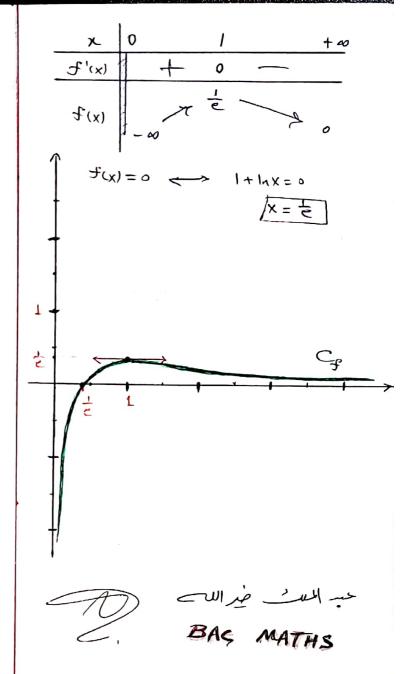
$$\Rightarrow AB = CB$$

$$\Rightarrow arg\left(\frac{a-b}{c-b}\right) = \frac{2\pi}{3}$$

خانات ABC مسادي الساقين أسة

$$a' = \overline{a} = 2$$

$$b' = \overline{b} = 1 - i\sqrt{3}$$


$$c' = \overline{c} = -1 - i\sqrt{3}$$

: عيانا عاكسها

آ جو سنی وستم واشقاعی علے I.

$$\lim_{x \to +\infty} g(x) = 0 - 1 - (+\infty) = -\infty$$

$$9^{1}(x) = \frac{-1}{x^{2}} - \frac{1}{x} < 0$$

ملاحظات عامة

١- في ركن تسجيل الدرجات على القسيمة تخصص الحقول على الناتالي كما يأتي :

موضوع المنؤال	رقم السوال	العال
تحليل توافقي	מדניוורני לייני ועל וויניוניון	rrrdme
معادلة كرة	السوال النائي	•
التكامل	السوال الثالث	
جدول تغيرات	السؤال الرابع	1
المقارب المائل	الموال الغامس	٥
ו אבישועים או איי איי איי איי איי איי איי איי	السؤال السادس	- 3
متثاليات	السوال السابع/ التعرين الأول	٧
تمرين الأشمة	السوال النامن/ التمرين النائي	٨
القيمة الحدية	السوال التاسم/ التمرين الثالث	1
مسألة العقدية	السوال العاشر / المسألة الأولى	1.
مسألة دراسة تابع أسى	الموال الحادي عشر / المسألة الثانية	11

٢- في الأسللة الاختيارية في حال أجاب الطالب على جميع الأسللة تعسقح أول خمس إجابات منها فقط حسب
ترتيب إجاباته ويكتب جانب الإجابة الأخيرة (اختياري ملفي)

٣- تُعذف (درجة واحدة) لكل خطأ حسابي من الدرجات المخصصة للغطوة التي وقع قيها الغطأ.

إذا دمج الطالب خطوتين أو أكثر وكأن باستطاعة الطالب الجيرد أن يقوم بذلك الدمج، يعطى الطالب مجموع الدرجات المخمصة لما دمج من خطوات .

٥٠٠٠ لا يجوز تجزلة الدرجات المغصّصة للخطوة الواحدة إلّا عند رجود خطأ حسابي.

إذا أخطأ الطالب في خطوة من خطوات الحلّ ثم تابع الحلّ بمنطق سليم ومفيد يعطَى عن الخطوات التي تليها ما يستحق من درجات وفق السلّم بشرط ألا يؤدّي خطؤه إلى خفض سويّة السؤال أو تغيير مضمونه ."

٧- إذا أجاب الطالب عن موقف بطريقة غير واردة في السلم ومبرّراً خطوات حلّه، فعلى المصحح أن يعرض الطريقة على ممثل الفرع الذي عليه أن يقوم والموجّهون الاختصاصيّون بدراسة هذه الطريقة والتأكد من محتها علمياً ومن ثم توزيع الدرجات لئلك الطريقة بما يكافئ التوزيع الوارد على الطريقة الواردة في السلم ثم يعتم هذا الثوزيع بعد أخذ موافقة النوجيه الأول لمادة الرياضيات في وزارة التربية.

٨- عدد الاضطرار إلى تعديل درجة حصل عليها الطالب عن سؤال ما، يجب على كل من المصفح والمدقق
 تسجيل اسمه مفروناً بتوقيمه في جوار الدرجة المعذلة مرفقاً بمهر خاتم الامتعانات.

٩- إذا حلَّ الطالب سؤالاً بأكثر من طريفة تصخح حلوله كالله وتعتمد الدرجة الأعلى.

• ١- إذا لم يُجب الطالب عن سوال ما، تكتب (إلى جانب السوال)العبارة الأتية: (صغر للسوال.... الأله و يلا إجابة)

١١- تُكتب الدرجات الجزئية لكلُّ سوال ضمن دائرة وبالأرقام العربية (....) 1,2,3,4...)

١٧- نُسجَل الدرجات التي يستحقها الطالب عن طلبات السؤال ومراحله (رقماً) وبوصوح على الهامش، أمّا الدرجة المستحقة عن السؤال كاملاً فتُسجَل على الهامش الأيمن (مقابل بداية الإجابة) رقماً وكتابة.

الأحاد العشرات المثات

حقل العشرات بالمنات.

بعد استبدال حفل الكسور بالأحاد، حقل الأحاد بالعشرات.

استعنن شهادة الدرامسة التلوية العامة / القرع الطمي / hmالنورة التلية علم ٢٠٠١م الدرجة: ستملة

التجمع التعليمي العلاز لحب عن طعسة فقط من الأسننة البيئة الأثية: (40) درجة لكل سؤل) أ العسوال الأول:

@bak111

 $P_{n,r}^{*} = 17 \binom{n+7}{r}$ عن قيمة n التي تعقق المعادلة

ملاحظة: الغطأ بتطبيق القلون يغسره درجلت	ه قلون توافيق+ ه نشر +ه قلون تراتيب + ه نشر+ هشرط الاختصار	$n \in \{0,1,2,\}$ شرط العل $(n+3)(n+2)(n+1) = 16 \frac{(n+3)(n+1)}{2}$
	عممانلة درجة أولى	$n+\tau=\Lambda$
	•	n = °
	1.	معموع درجات السوال الأول

المسؤال الثاني: نتأمل في مطم متجانس P:2x+y-2z-4=0 للنقطة A(2,1,2) والمستوي A(2,1,2) المطلوب: احسب بعد الم عن العستوى P.

اكتب معادلة للكرة التي مركزها A وتمس المستوي P.

ملاحظة: أي خطأ بتطبيق القلون يخسر ٥ درجات قلون + تعويض + نتيجة (٣ ×٥)		$dis_{(a \rightarrow c)} = \frac{ ax + bx + cz + d}{\sqrt{a' + b' + c'}}$
تعويض+ إسلاح+ نتيمة	0+0+0	$= \frac{ 1+1-1-1 }{\sqrt{1+1+1}} = \frac{r}{r} = 1$
إذا كتب قانون خاطئ يخسر ٢٠ درجة إذا كتب معادلة للكرة بدون تربيع يخسر ٢٠	١.	$d = \mathbb{R}$ and
قالون + تعویض	5+5	$(x-2)^2 + (y-1)^2 + (z-2)^2 = 1$
	1.	مجموع درجات المنوال الذكي

السوال الثالث: احسب التكامل الأتي: x sinx dx = 1

	ب التكامل:	
P×4	u'=1 , $u=x$	
ox Y	$v = -\cos x$, $v' = \sin x$	
5	قانون التكامل بالتجزنة	
5+5+5	$1 = -x \cos x + \sin x \Big _0^2 = 1$	
1.	مجموع درجات السوال الثلاث	*
	5 × 5	$v = -\cos x$ و $v' = \sin x$ $v' = \sin x$ قانون التكامل بالتجزئة

السوال الرابع: تأمل جدول تغيرات النابع / المعزف على]0,+ 10 خطه البياني C . والمطلوب: 1) حد (x) معادلة المقارب الأفقى. (2) ما عند حلول المعادلة 0 = (x)f(x) ثل على القيمة المعلية وبين نوعها. 4) جد مجموعة حلول المتراجحة 0<(x) كر. $\lim f(x) = -\infty, \quad \lim f(x) = 0$ المقارب الأقفى 0 = بر عد حلول المعادلة: حل وحيد القيمة الكبرى محلياً ، أ 240 إذا أغلق المنجال يغسر عدرجات مجموعة حلول المتراجعة المجال [1+,0 إذا كتب مجل]1.0 إينسر ١٠ درجات مجموع درجات البسوال الزابع السؤال الخامس: النبط البيقي للتابع f المعرف على $\int -\infty, 0$ وفق: $\frac{2x^2 + \cos^2 x}{c}$ المطلوب: Δ الذي معادلته Δ Δ و Δ مقارب ماثل لـ Δ في جوار Δ وادرس الوضيع النسبي بين Δ و $f(x) - y_A = \frac{\cos^2 x}{x}$ 0 $\lim_{x \to \infty} (f(x) - y_A) = 0$ ٥ $-1 \le \cos x \le 1$ ٥ عند القسمة على 0 > ٪ ولم يغيّر جهة التراجح . 5 cos x 51 ٣ يضر درجتان $\frac{-1}{\leq \cos x} \leq .$ ۲ 1 = 1 الإحاطة ٥ $\lim_{x \to \infty} \frac{\cos^2 x}{\cos^2 x} = 0$ • $g(x) = \frac{\cos^2 x}{1}$ الوضع النسبي دراسة إشارة إذا كتب الطالب 0 > g (x) < 0 والخط C يقع تحت إشارة الكسر من إشارة المقام والمقام سالب 0> (x) المقارب ينال الارجات المغصمة ومنه الخط C يقع تحت المقارب دون العاجة لذكر النقاط المشتركة مجموع درجات المنؤال الغامس علوقى النشر والتوزيع والطبع معلوظة لوزارة التربية صلعة إ س بطورة الامتعلية الللية عام ١٠٠١م) mt

المستون المستون على كرات معواه و كرات بيضاه ، عند الكرات المعواه يساوي ثلاثة أمندن عرب السول المستون على كرات معواه و كرات بيضاه ، عند الكرات المعوال أن تكون بيضاء النون الكون المستوق كراة ما احتمال أن تكون بيضاء النون الكرات البيضاء المعورة على المستون كرات البيضاء المعرب المستون المعرب المستون الذي ينل على عند المستون المستوق ثلاث كرات على التعلى مع الإعلاد، نعزف الالمتعول العشواني الذي ينل على عند المستوق ثلاث كرات على التعلى مع الإعلاد، نعزف الالمتعول العشواني الذي المتعالى.

		التزف ليوضاه لمستوبه لذه عملوت لسحب ك
في قيم العلمول العلوائي يعلسو دوجتان إِنَّ أَمْسَاعُلُ قَلِمَةً أَو القَعْسَ قَلِمَةً		$P(m) = \frac{1}{t}$
		$X = \{0, 1, 2, 3\}$
	7+7	$p(X=0) = \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} = \frac{27}{64}$
	T+T	$p(X=1) = \frac{1}{4} \times \frac{3}{4} \times \frac{3}{4} \times 3 = \frac{27}{64}$
عنم العنوب بالتباديل ينصو ٢ درجات	7+7	$p(X=2)=\frac{1}{4}\times\frac{1}{4}\times\frac{3}{4}\times3=\frac{9}{64}$
	7+7	$p(X=3) = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{64}$
عَشِيم العِدُول	•	$p(X=x_1) \mid \frac{1}{12} \mid \frac{1}{12} \mid \frac{1}{12} \mid \frac{1}{12}$
	1.	مجدوع درجات السؤال السكس
عد لمشاة بين م ر به يعسر درجاين نشد	A+1	$P = \frac{\pi}{4\pi} = \frac{1}{4} , q = \frac{3}{4} \qquad -1$
	۸ ۲ ۲ تعویطس +	$X'(\Omega) = \{0,1,2,3\}$ کلون برنولی P(3) = P(1) + P(0)
(2+3)×4	۲ تنبیة لکل اعتمال	

التجمع التعليمي @bak111

E	CUL	COLORDOCTOR	mmm	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT				
	المناز على التعارين الثلاثة الأتية: (70 درجة ذكل من التعريفين الأول والثاني - 60 درجة للتعرين الثالث)							
Ē	$ u_{n,1} = (u_n - 2)^2 + 2 $ المعرفة وفق: $ \frac{5}{2} = u_0 $							
E								
E	المطلوب: ١) اثبت بالتدريج أن 2 5 س 2 ك أيًا كان العند الطبيعي ١٠.							
E	· lim	تقارب المتثالية م _{ده} (س) وجذ س	م) استنلج	٢) أثبت أنّ المنتالية ودم (سا) منتاقمة .				
B			*	ترميز الفضية				
B	•			(ن) نسمة (E (٠)				
Ħ			۰	E(n) قترامن سنة (E				
B			5×4	رائبات (n+1) واثبات				
Ħ			7.7	, , ,				
			,	$n \ge 0$ سعقة فإن $E(n)$ سعقة فإن $E(n+1)$				
Ħ				$u_{n+1} - u_n \le 0$: اثبات أنها متناقصة				
Ħ			0+0+0	$(u_n-2)^2+2-u_n=(u_n-3)(u_n-2)$				
	الأدتى	او تبرير الها متناقصة ومعنودة من	7+7	س, 2≥0 س, -3≤0				
Ħ		$\lim_{n\to\infty}u_n=2$	1	$(u_*-3)(u_*-2) \le 0$				
B			a	المتتالية متناقصة ومعدودة من الأنني فهي ستقارية، النهاية هي عل				
Ħ				f(x) = x illustice				
				$\lim_{n\to\infty} u_n = 2$				
-			٧.	المجموع				
Ē	7	طريقة ثانية لبرهان المعدودية	8	طریقهٔ ثانیهٔ آبر مان التناقس بطریقهٔ التنریخ: $Q(n):u_{n-1} \le u_n: n \ge 0$				
		بنهات مسعة (·) E						
Ħ		افتراض صحة E(n)	٥	منته $Q(0):u, \le u, \frac{9}{4} \le \frac{5}{2}$				
		واندات (n+1)		نفرض Q(n) مسحيحة من اجل n				
	1	لعرف تلبع الدي = (سا) ع		$Q(n+1):u_{n+2} \le u_{n+1}: n \ge 0$				
	٣	$f(x) = (x-2)^2 + 2$		$u_{n+1} \le u_n$ من الغرض من الغرض				
3	7	f'(x) = 2(x-2)	۲	$u_{n+1} - 2 \le u_n - 2$				
=	7	x ≥ 2 / منزاید تماماً علی]x+x[۲	$(u_{n-1}-2)^2 \le (u_n-2)^2$				
3		من الفرض 3 £ 2 س 2 2	۲	$(u_{n-1}-2)^2+2\leq (u_n-2)^2+2$				
1	0	$f(2) \leq f(u_n) \leq f(3)$	۲	$u_{n+2} \leq u_{n+1}$				
=	۰	$2 \le u_{n+1} \le 3$	۲	$n \ge 0$ سعیدة ایا کلت $Q(n+1)$ سعیدة ایا کلت $Q(n+1)$				
		E(n) ممتنة فإن $E(n+1)$						
		سميمة لياً كانت 0 ≤ n						
1.								

(ماءة الرياضيات - علمان بالدورة الامتعلية الثلية عام ٢٠٠١م) em حلولى النشر والتوزيع والطبع معلوظة لوزارة التربية صفعة ٦

وين الثاني: في معلم متجانس (٥٠٢, ٥٠٦) لتينا النقاط : A(1,3,0), B(0,6,0), N(0,0,3), M(0,6,2)

الكتب معادلة المستوي (AMN) -

E	·CAM	ر العستوي (N)	2) الكتب تعشيلةً وسيطيةً للمستقيم له العار من () ويعاه
Ē	ري للقطعة المستخيمة الكلام	المنتوى المحور	2) الكتب تعنيلا وسيطيا للمستقيم Δ العار من ϕ ويعام $z = 1 = 1$ المبتوي الذي معادلته $z = 1 = 1 - 1$ هو
Ħ	ملاحظات:	T	1
H T+T	737		الومسول إلى معادلة المستوي (AMN)
Ħ	· AN . AM	7	إما من الملاهة ax +by +c= +d =0 أما من الملاهة
7+7	$n \cdot \overrightarrow{AN} = 0 \cdot \overrightarrow{n} \cdot \overrightarrow{AM} = 0$	1+1+1	تعويض النقاط
1+1+1	افترانس (a,b,c) n	1+1+1+1	d.c.b.a a
1717	ليجاد قيم الوسطاء c , b , a		كتابة معادلة المستوى
	كتابة معادلة للمستوي		المعادلات الوسيطية - قانون
۰	أو (ت. x . y . z) لم نقطة من المستوي		شعاع توجيه
ه قلون	$A\vec{k} = \alpha AM + \beta AN$	2×3	17.5
ە ئمويىش مەھ	α, β ايجاد	2.73	شيجه
	الوصول إلى معادلة للمستوي		اللبات أن 1 = ت معادلة الستوي المحوري
-	الرميون إلى المناسبة	3×3	إيجاد إحداثيات المنتصف
		2×3	معرفة الناظم BM
		٥	كتابة معادلة المستري المحوري
		γ.	المهدوع
(2-1=0		
ŧ	rī(0,0,1)		طريقة: المستوي المحوري
٣	MB(0,0,2)		$D(x,y,1)$ $D \in \rho$
٣	1(0,6,1)	5+5	$BD = \sqrt{x^2 + (y - 6)^2 + 1}$
Í	(0,6,1) تحقق معادلة المستوي م		$MD = \sqrt{x^{2} + (y - 6)^{2} + 1}$
4	مرتبطان خطیا MB , n	7	BD = MD
4	م المستوي المعوري	7	ور المستوى المحوري
	-		
		İ	مدريعه:
	في التميل الوسيطي عند استخدام نقطة	•	أو (تر ، و ، د) لم نقطة من المستوي المحوري
	غير المبتأ يخسر درجة واحدة		$KM^2 = MB^2$ $\omega_0 KM = MB$
11 - 11		7+7+1	المويض - إممالاح - نشجة

التمرين الثالث: ليكن التابع f المعرف على \mathbb{R} وفق : $f(x) = (ax + b)e^{-x}$. $f(x) = (ax + b)e^{-x}$. $f(x) = (ax + b)e^{-x}$. f(x) = b . f(x) = ax . f(x) =

التجمع التعليمي @bak111@

يتنا: على تعسكتين الأتينين (100 درجة لكل مسألة)

المسلحة الأولى: أولاً: لوش (ت) ٢ كثير حدود معزف بالصيفة

عبت $a \in \mathbb{R}$ عبت $P(z) = z' - 2(\alpha + i\sqrt{3})z^2 - 4(\alpha - i\sqrt{3})z + 8$

الصعب المعند ن لكي يكون ٢ = = علا للمعادلة 0 = (2)

P(z) = (z-2)Q(z) بغرض q(z) = (z-2)Q(z) بغرض q(z) = (z-2) المعنود من النوجة الثانية q(z) = (z-2)Q(z)

. P(x)=0 المعادل المعادلة P(x)=0

 $c = -1 + i\sqrt{3}$, $b = 1 + i\sqrt{3}$, a = 2 المخدية بالترتيب: $a = 2 + i\sqrt{3}$, $b = 1 + i\sqrt{3}$, a = 2 المخدية بالترتيب: $a = 2 + i\sqrt{3}$

ABC النبت الن $\frac{a-b}{c-b} = \frac{2\pi}{c^3}$ ، واستنج طبيعة السلك (a) واستنج

الميكن المنتثث س A' B' C' مسورة المنتثث ABC وفق نتاطر بالنسبة لمحور الفواصل، عبن " ه و " ال و " التي التي المنتث المستوى " A' B' C' على الترتيب.
 المستوى " A' B' C' C' A على الترتيب.

Е	تعنقها تقاط المستوي ١/٠ ١/ ٢٠ على اللزنينية،							
				•		المعانلة	: ١- التعويض 2 = 2 في	ارزا
B					طية	الوصبول إلى معانلة خ		
Ħ						a	الومسول إلى فيمة ٢	- 11
			طريفة ثانية لإيجاد (=) Q	5+5+5	محدة	يقة أخرى	إه القسمة الإقلينية أو أي طر	ا ۲ - نحدا
			$z^2 + bz + c) = p(z)$	3+3+3		5 ,	وايجاد (z) Q	-
	0+0+0		c ob oa sad				وپجد (-) ج	
Ė				٥			جذر أول	
				٥			جذر ثالي	
1				0			جنر ثاثث	
3				.2*	طريقة		البات .	الثانية:a-
		٥	تاتي ا	و بالشكل الم	كتلبة		b-a	27
1				2=			c - a	
I		+0	ببري	لا ملتكل و 3	مب	5+5	تعويعن	
		0+0	ها بالشكل العبري والنتيجة	$\frac{a-a}{c-a}$	ا حساب	•	الشكل الجبري	
1			، مثلث متساوي الساقين و			٥	الشكل المثلني	
				ر الدرجة المخصم از إذا قام الطالب و		10	الشكل الأسي	i
			AB , AC , BC , BC			٥	مثلث متساوي الساقين و	2 mm-1
			السافين بدل ٥ در هات ملاحظة: إذا كانب الطالب المثلث متساوي الساقين				منفرج الزاوية	
			أو منفرح الزاوية بنال « درجات المخصصة للغطوة					
-		<u>a</u> -	منساوي الساقين 1 = 1				a', b', c' shad	b
-		c - c			المجموع			
-								

ملاة الرياضيات . علمن بطورة الامتعلية الثلية عام ١٠٠١م) tm

عُتِناً: على المساللين الإنبينين: (100 درجة لكل مسألة)

المسلكة الأولى: أولاً: لوكن (٢) كثير حدود معزف بالصيفة

وب: $a \in \mathbb{R}$ دین $P(z) = z' - 2(\alpha + i\sqrt{3})z' - 4(\alpha - i\sqrt{3})z + 8$

P(z) = 0 المعند ي لكن يكون z = Y ملاً للمعادلة z = Y المعند ي الكن يكون

P(z)=(z-2)Q(z) بغرض z=z جد كثير الحدود من الدرجة الثانية Q(z) يحقق: Q(z)=(z-2)Q(z) بغرض z=z

P(x)=0 تَمْ استنج حلول المعادلة

 $c = -1 + i \sqrt{3}$, $b = 1 + i \sqrt{3}$, a = 2 : يقاط المستوي التي تعمل الأعداد العقدية بالترتيب: $a = 2 + i \sqrt{3}$, $b = 1 + i \sqrt{3}$, a = 2

ABC النبت ان: $\frac{a-b}{c-b}=\frac{2r}{c-b}$ ، واستنتج طبيعة السنت الناء ...

ليكن العنثث ١٤٢٠ مردة العنثث ١٤٤٠ وفق نتاظر بالنسبة لمحور القواصل، عين ٥ و ١٥ و ١٠ التي التي تعنثها نقاط العستوي ٢٠ هـ و ٢٠ على الترتيب.

			•		المعادلة	اولاً : ١- الشعوييس 2 = 2 في
8					الوسول إلى معادلة خ	
			۰			
						الومسول إلى فيمة ٢
		طريقة ثانية لإيجاد (ع) 2	5+5+5	ستيعة	يقة اخرى .	 ٢- إجزاء القسمة الإقليدية أو أي طر
•			٥			وايجاد (ت) Q
0+0+0		c sb sa sad	•			م ب
			۰			جنر أول
			٥			جذر ثاني
			٥			جنر نائث
				طريقة		ثانیاً:a- إثبات
	•		الم المشكل الم	كثلة		b-a 27
		1	2=			$c-a=e^{z}$
	+0	ببري	لا بع بعثكل ال	***	5+5	تعويمن
			b-a			
0+	0+0		c-a			الشكل الجبري
					٥	الشكل المثلثي
					10	الشكل الأسي
			*			استنتاج مثلث منساري الساقين و
			السافين يا			
		ب المثلث متساوي الساقين عدد دائر المفرسة	ا ملاحد		منفرج الزاوية	
		ت در جب المعصمية				
	a-l		3+3+3			a', b', c' عليا -b
	c-b	منساوي المباقين ا				
			١	المجموع		
	0+0+0	0+0+0	عبد المثلث متساوي الساقين و درجك المخصصة	Q(z) المربقة للبة لابعاد $Q(z)$ المربقة للبة لابعاد $Q(z)$ المربقة للبة لابعاد $Q(z)$ المربقة للبة لابعاد $Q(z)$ المربقة للبة المربق والمربق والمر	Q(z) المريقة للية لإيجاد $Q(z)$ المريقة المريقة المريقة المريقة المريقة و $Q(z)$ المحدد $Q(z)$ ا	و المعادلة a و المعادلة a و المعادلة a و المعادلة a و و و و و و و و و و و و و و و و و و و

مخة الرياضيات . غلص بالدورة الامتمالية الثانية عام ٢٠١١م) ٢١١ علول انتشر والتوزيع والطبع معلوظة لوزارة التربية صفعة ٥

، $f(x) = e^{-t} (1 + \ln x)$ الخط البياني للنابع f المعزف على $[0,+\infty[$ على C_{j} وفق: C_{j} الخط البياني للنابع والنابع g المعرف على / واق: $\sin x = \frac{1}{x} - 1 - 1 - 1 - 1$. المطنوب: ا) ادرس تغيرات التابع g ونظم جدولاً بها. (2) بين أن للمعانلة g(x) = g(x) حلاً وحيداً α ، ثم تحقق أن $(1 = \alpha)$ $f'(x) = \frac{g'(x)}{x}$: اثبت ان المنابع $f'(x) = \frac{g'(x)}{x}$ عند اطراف مجموعة تعریفه. 4) اثبت ان النابع $f'(x) = \frac{g'(x)}{x}$ 5) مستقیداً من تغیرات التابع و ادرس تغیرات التابع / ونظم جدولاً بها. 6) فی مطم متجانس ارسم الخط ، C. $\lim_{x \to \infty} g(x) = +\infty$, $\lim_{x \to \infty} g(x) = -\infty$ $g'(x) = -\frac{1}{x} - \frac{1}{x}$ 5+5 $0 \in f(]0,+\infty[] =]-\infty,+\infty[\begin{cases}]0,+\infty[& \text{if } g \\]0,+\infty[& \text{otherwise} g \end{cases}$ 5×4 قالمعادلة 0 = (x) برحل وحبد $g(1) = 1 - 1 - \ln 1 = 0$ $\lim_{x\to\infty} f(x) = -\infty .$ $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1 + \ln x}{x} = 0$ 5+5 5 + 5

إذا لم يكانب الطالب العند f'(x)إ ونظم جدو الأبتو التى مع 5 + 5حله ووحسع إشارة واجدة f(x)ه درجات ١. 1 .. المجموع

انتهى السلم

(مادة الرياضيات - خاص بالدورة الامتحلية الثلثية عام ١٠٠١م) tm حقوق النشر والتوزيع والطبع محقوظة توزارة التربية صفعة ١٠

الاسم الرقم: "

المدّة : ثلاث ساعات الدرجة : ستمنة امتحان شهادة الدراسة الثانوية العامة دورة عام ٢٠٢١ (الفرع العامي - دورة أولى)

<u>الرياضيات:</u>

الصفحة الأولى

أولاً: أجب عن خمسة فقط من الأسئلة الستة الآتية: (40 درجة لكل سؤال)

السوال الأول:

 $[-\infty,0[\,\cup\,]$ نتأمل الخط البياني $\mathcal C$ للتابع f المعرف على

والمطلوب:

$$\lim_{x \to 0} f(x) \ , \ \lim_{x \to 1} f(x) \ , \ \lim_{x \to +\infty} f(x) \ \rightleftharpoons (1$$

$$\mathcal C$$
 اكتب معادلة كل مقارب أفقي ومعادلة كل مقارب شاقولي لـ $\mathcal C$ اكتب معادلة كل مقارب أفقى المتارب أ

$$\cdot f'(x) < 0$$
 جد حلول المتراجحة (3

$$\cdot f(x) = 0$$
 جد حل المعادلة (4

 $(x + \frac{1}{x^2})^{12}$ في منشور (المستقل عن (x) في منشور الثاني: جد قيمة الحد الثابت (المستقل عن

. $I = \int_{0}^{3} (2 - |2 - x|) dx$ السوال الثالث: احسب العدد:

السوال الرابع:

نتأمل في معلم متجانس D(6,2,5) , C(5,0,5) , B(1,-2,1) , A(2,0,1) النقاط الآتية: O(6,2,5) ، النقاط الآتية الآتي

رتبطین خطیاً. \overrightarrow{AC} ، \overrightarrow{AB} اثبت أن اثبت

D , C , B , A النقاط $\overline{AD}=\alpha\overline{AB}+\beta\overline{AC}$ واستنتج أنّ النقاط β , α بحيث (2) عيّن العددين الحدين الحقيقيين β , α بحيث تقم في مستو واحد.

السوال الخامس:

المطلوب: $f(x)=rac{ax^2+bx+1}{x-1}$ وفق: $\mathbb{R}\setminus\{1\}$ المطلوب:

. f عين العددين الحقيقيين b , a لتكون b , a عين العددين الحديث

السؤال السادس:

نتامل حجر نرد متوازن فيه أربعة وجوه ملوّنة بالأسود، ووجهان ملونان بالأحمر، نلقي هذا الحجر خمس مرات على التوالي. نعرّف متحولاً عشوائياً X يدل على عدد الوجوه السوداء التي نحصل عليها. المطلوب:

. P(X = 0) واحسب (1) اكتب قيم المتحول العشوائي

2) احسب التوقع الرياضي للمتحول العشوائي X وتباينه.

تُانياً: حل التمارين الثلاثة الآتية: (70 درجة لكلُّ من التمرينين الأول والثاني - 60 درجة للتمرين الثالث)

 $u_{n+1} = \frac{1}{2}u_n - 3$, $u_0 = 2$: التمرين الأول : لتكن لدينا المتتالية $(u_n)_{n \geq 0}$ المعرفة بالعلاقة التدريجية $v_n = u_n + 6$. وفق : $v_n = u_n + 6$

المطلوب:

. n مندسية، عيّن أساسها واحسب v_0 ، ثمّ اكتب عبارة v_n بدلالة v_n اثبت أن المتتالية و v_n هندسية، عيّن أساسها واحسب

 $(w_n)_{n\geq 0}$ لنعرَف المنتالية $(w_n)_{n\geq 0}$ وفق: $(w_n)_n = \ln(v_n)$ ، اثبت أنّ المنتالية $(w_n)_{n\geq 0}$ حسابية واحسب $(w_n)_{n\geq 0}$. $S=w_0+w_1+w_2+w_3+w_4+w_5$.

الاسم : الرقم: المدة : ثلاث ساعات

الدرجة: ستمئة

امتحان شهادة الدراسة الثانوية العامة دورة عام ٢٠٢١ (الفرع العلمي - دورة أولى)

الرياضيات:

<u>الصفحة الثانية</u>

التمرين الثاني:

في المستوي العقدي المنسوب إلى معلم متجانس (O, \vec{u}, \vec{v}) نتأمل النقاط C, B, A التي تمثلها الأعداد العقدية في المستوي العقدية c = -4i ، b = -4 + 4i ، a = 8

- . احسب العدد $\frac{b-c}{a-c}$ ، واستنتج أن المثلث ABC قائم ومتساوي الساقين.
- . $\frac{\pi}{4}$ صورة النقطة D وفق دوران مركزه D الممثل للنقطة D صورة النقطة D جد العدد العقدي D
 - . مربعاً $A\ CBE$ مربعاً ليكون الرباعي $a\ CBE$ مربعاً جد العدد العقدي

التمرين الثالث:

 $f(x) = x - 4 + \ln(\frac{x}{x+1})$ وفق: $I =]0,+\infty[$ المعرف على f المعرف على C الخط البياني للتابع

- f(I) أثبت أن f تابع متزايد تماماً على f، واستتنج أ
- . + ∞ الثبت أنّ المستقيم d الذي معادلته y=x-4 مقارب مائل للخط (2
 - .d ادرس الوضع النسبي بين الخط البياني C والمستقيم (3

ثالثاً: حل المسالتين الآتيتين: (100 درجة لكل مسألة)

المسألة الأولى:

: المطلوب . D(3,1,1) ، C(-3,4,-1) ، B(2,1,1) ، A(-1,2,3) النقاط $(O;\vec{i},\vec{j},\vec{k})$ نتامل النقاط في معلم متجانس

- ا) جد \overline{AC} و ویین آن المستقیمین \overline{AC} و \overline{AB} متعامدان.
- (ABC) يعامد المستوي (ABC) واكتب معادلة للمستوي (n(2,4,1)
- . (ABC) جد تمثيلاً وسيطياً للمستقيم d المار من النقطة D والعمودي على المستوي (3
 - . D-ABC عن المستوي (ABC) ثمّ احسب بعد D عن المستوي (4
- نَبِت أَن (C,2) , (B,-1) , (A,1) الْبِت أَن (C,2) مركز الأبعاد المتناسبة للنقاط المثقلة (C,2) , (B,-1) , (A,1) متوازیان.

المسألة الثانية:

: وفق $f(x) = \frac{(x+1)^2}{e^x}$: وفق \mathbb{R} وفق المعرف على والمطلوب المعرف المعرف على المعرف على المعرف على المعرف على المعرف على المعرف الم

- ا احسب نهايات التابع f عند أطراف مجموعة تعريفه واكتب معادلة المستقيم المقارب الأفقى.
 - . $f'(x) = (1-x^2)e^{-x}$ زُبُت أَنْ (2
 - ادرس تغیرات التابع f ونظم جدولاً بها ودل على القیم الحدیة مبیناً نوعها.
 - ارسم C في معلم متجانس.
 - g المتنتج رسم الخط البياني C_1 للتابع g المعرف وفق: g المتنتج رسم الخط البياني (5
 - $h(x) = \ln(f(x))$ جد مجموعة تعریف التابع: (6

- انتهت الأسئلة -

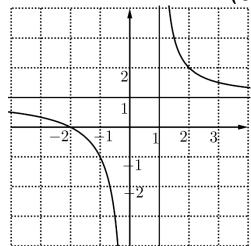
ملاحظة : يمنع استعمال الآلات الحاسبة والجداول اللوغاريتمية

امتحان شهادة الدراسة الثانوية العامة / الفرع العلمي الدورة الأولى عام 2021

سلم درجات مادة: الرياضيات الدرجة: ستمئة

أولاً: أجب عن خمسة فقط من الأسئلة الستة الآتية: (40 درجة لكل سؤال)

السوال الأول:


نتأمل الخط البياني C المعرف على $[0,+\infty[$ والمطلوب:

.
$$\lim_{x \to 0} f(x)$$
 و $\lim_{x \to 1} f(x)$ و $\lim_{x \to +\infty} f(x)$ جد (1

.
$$C$$
 اكتب معادلة كل مقارب أفقي ومعادلة كل مقارب شاقولي لـ (2

$$f'(x) < 0$$
 جد حلول المتراجحة (3

.
$$f(x) = 0$$
 جد حل المعادلة (4

	5	$\lim_{x \to +\infty} f(x) = 1$
	5	$\lim_{x \to 1} f(x) = +\infty$
	5	$\lim_{x \to 0} f(x) = -\infty$
	5	y=1
	5	x = 1
	5	x = 0
إذا كتب الطالب $(-2,0)$ في حل الطلب الأخير	5	$]-\infty,0[\bigcup]1,+\infty[$
ينال الدرجة المخصصة	5	x = -2
	40	مجموع درجات السؤال الأول

 $(x+\frac{1}{x^2})^{12}$ في منشور $(x+\frac{1}{x^2})^{12}$ جد قيمة الحد الثابت (المستقل عن $(x+\frac{1}{x^2})^{12}$

إذا كتب الطالب $T_r = \binom{n}{r} a^r.b^{n-r}$ ينال الدرجة	5	$T_r = \binom{n}{r} a^{n-r} . b^r$
المخصصة للقانون ويتابع له إذا حسب الطالب المنشور كاملاً وحدد القيمة	3 × 5	$T_r = \binom{12}{r} (x)^{12-r} (\frac{1}{x^2})^r = \binom{12}{r} x^{12-3r}$
المطلوبة ينال الدرجة المخصصة كاملاً	5	12 - 3r = 0
	5	r = 4
عند حساب r و T_r في الخطوتين الأخيرتين يخسر الدرجات المخصصة في حال كان r سالباً أو كسراً	+3+2 5	$T_4 = \binom{12}{4} = 495$
	40	مجموع درجات السؤال الثاني

 $I = \int_{0}^{3} (2-|2-x|)dx$:السؤال الثالث: احسب العدد

		·
 5 لتجزئة حدود التكامل و 5+5 لعبارتي التكامل 5 لكل تابع أصلى 	3 × 5	$I = \int_{0}^{2} (x)dx + \int_{2}^{3} (4-x)dx$
اذا كتب الطالب : الطالب $I = \int_{3}^{3} 2 - (2 - x) dx = \int_{3}^{3} x \ dx$	3 × 5	$I = \left[\frac{x^2}{2}\right]_0^2 + \left[4x - \frac{x^2}{2}\right]_2^3$
0 0	4×2	التعويض
$=$ $\left[\frac{1}{2}x^{2}\right]_{0}^{3} = \frac{9}{2}$ ينال الطالب 5 درجات للتابع الأصلي و 2+2 للتعويض والنتيجة	2	الناتج
	40	مجموع درجات السؤال الثالث

السؤال الرابع:

نتأمل في معلم متجانس D(6,2,5) النقاط الآتية A(2,0,1) و A(2,0,1) و المطلوب: \overline{AC} و \overline{AB} و \overline{AB} و المطلوب: (1

D و G و G و استنتج أن النقاط $A\vec{D}=\alpha \overrightarrow{AB}+\beta \overrightarrow{AC}$ و استنتج أن النقاط G و G

لكل مركبة درجة لكل مركبة درجة	3 3	$\overrightarrow{AB}(-1,-2,0)$ $\overrightarrow{AC}(3,0,4)$
	3 3	$\frac{0}{4} \neq \frac{1}{-1}$ أو المركبات غير متناسبة $\frac{1}{4}$ أو أية عبارة تثبت عدم الارتباط الخطي
لكل مركبة درجة	3	$\overrightarrow{AD}(4,2,4)$
لتعويض الشعاعين في العبارة	2 × 3	$\overrightarrow{AD} = lpha \overrightarrow{AB} + eta \overrightarrow{AC}$ تعويض الأشعة في العبارة
كل معادلة 3 درجات	3 × 3	الوصول إلى ثلاث معادلات خطية من العبارة السابقة بطريقة صحيحة
	2 + 2	eta و $lpha$
	3	التحقق
$\overrightarrow{AD}=-\overrightarrow{AB}+\overrightarrow{AC}$ إذا كتب الطالب العبارة مباشرة بعد تعويض الأشعة في علاقة الارتباط الخطي ينال الدرجات $3 imes 5$	3	\overrightarrow{AD} $=$ $-\overrightarrow{AB}$ $+$ \overrightarrow{AC} أو النقاط تقع في مستوٍ واحد
	40	مجموع درجات السؤال الرابع

السؤال الخامس:

ليكن
$$f(x)=\frac{ax^2+bx+1}{x-1}$$
 وفق: $\mathbb{R}\setminus\{1\}$ والمطلوب: $f(x)=\frac{ax^2+bx+1}{x-1}$ وفق: $f(x)=\frac{ax^2+bx+1}{x-1}$ والمطلوب: $f(x)=\frac{ax^2+bx+1}{x-1}$ قيمة حديث التابع $f(x)=\frac{ax^2+bx+1}{x-1}$

إذا أخطأ الطالب بحساب المشتق وتابع الحل ينال الدرجات المخصصة للخطوات اللاحقة فقط	5	$f(-1) = \frac{a-b+1}{-2} = 0$ النعويض
	5	الوصول إلى العلاقة الأولى
	10	حساب المشتق
	5	-1 معرفة أن المشتق ينعدم عند
	5	التعويض في المشتق
	6	الوصول إلى العلاقة الثانية
	2 + 2	b=2 و $a=1$
	40	مجموع درجات السؤال الخامس

السؤال السادس:

نتأمل حجر نرد متوازن فيه أربعة وجوه ملونة بالأسود ووجهان ملونان بالأحمر ، نلقي هذا الحجر خمس مرات على التوالي ، نعرف متحولاً عشوائياً X يدل على عدد الوجوه السوداء التي نحصل عليها ، والمطلوب:

- . P(X=0) اكتب قيم المتحول العشوائي X واحسب (1
- احسب التوقع الرياضي للمتحول العشوائي X وتباينه.

ملاحظة:	3	$X\!=\!\{0,\!1,\!2,\!3,\!4,\!5\}$ قیم X هي
إذا أهمل أو أضاف الطالب أي قيمة من قيم المتغير العشوائي يخسر درجة واحدة لكل قيمة يهملها أو يضيفها	10	قانون حساب الاحتمال
بعسوامي يعسر درب واحده للل يتجاوز 3 درجات	5 + 5	q فیم p فیم
q و p يخسر الطالب 5 درجات إذا بدل بين p و إذا حسب الطالب:	5	التعويض
$P(X=0) = \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3}$ ينال الدرجة المخصصة لحساب $P(X=0)$ كاملة	2	النتيجة
X إذا كتب الطالب القانون الاحتمالي للمتحول العشوائي	2 + 3	قانون $E(X)$ + نتیجة
ثم حسب التوقع الرياضي والتباين منه ينال الدرجات المخصصة	2+3	قانون $V(X)$ + نتیجة
	40	مجموع درجات السؤال السادس

ثانياً: حل التمارين الثلاثة الآتية: (70 درجة لكل من التمرينين الأول والثاني - 60 درجة للتمرين الثالث) $u_{n+1} = \frac{1}{2}u_n - 3 \quad v_0 = 2 \quad v_{n+1} = \frac{1}{2}u_n - 3 \quad v_0 = 0$ المعرفة بالعلاقة التدريجية: $v_n = u_n + 6$ وفق $v_n = u_n + 6$ وفق $v_n = u_n + 6$

المطلوب:

- . v_n بدلالة v_n غبارة عبارة v_n بدلالة v_n أثبت أن المتتالية v_n هندسية ، عين أساسها واحسب v_n
- w_0 نعرف المتتالية $(w_n)_{n\geq 0}$ وفق: $w_n=\ln(v_n)$ وفق: $w_n=\ln(v_n)$ وفق: $w_n=\ln(v_n)$ حسابية واحسب (2 $S=w_0+w_1+w_2+w_3+w_4+w_5$ ثم احسب المجموع

	5	u_{n+1} بدلالة v_{n+1}
	5	u_n جساب v_{n+1} بدلالة
	5	v_n بدلالة v_{n+1}
	5	q حساب
	5	v_0 حساب
	5	كتابة v_n بدلالة n بأي صيغة صحيحة
	5	$w_{n+1}-w_n$ القانون
	5	v_n و v_{n+1} بدلالة $w_{n+1}-w_n$ و
	3	استخدام خواص اللوغاريتم
	2	الوصول للعدد الثابت أساس المتتالية الحسابية
	5	w_0 حساب
	5	w_5 حساب
إذا قام الطالب بحساب كلاً من	5	قانون حساب مجموع متتالية حسابية
w_5 و w_1 و w_2 و w_3 و w_5	5	التعويض في القانون
ثم قام بحساب المجموع S ينال الدرجات المخصصة	5	الحساب والنتيجة
	70	مجموع درجات السوال السابع / التمرين الأول /

ملاحظات التمرين الأول:

عند إثبات أن المتتالية $(w_n)_{n\geq 0}$ حسابية يمكن الكتابة بأكثر من صياغة بطرائق مختلفة منها:

$$5+5$$
 $w_{n+1}-w_n=\ln(v_{n+1})-\ln(v_n)$ (2)
$$=\ln\left(\frac{v_{n+1}}{v_n}\right)$$

$$=\ln q=$$
 ثابت

التمرين الثاني:

في المستوي العقدي المنسوب إلى معلم متجانس $(O,\overrightarrow{u},\overrightarrow{v})$ نتأمل النقاط A و B و B التي تمثلها الأعداد العقدية

و المطلوب: a=8 و b=-4+4i و a=8

- احسب العدد $\frac{b-c}{a-c}$ ، واستنتج أن المثلث ABC قائم ومتساوي الساقين.
- . $\frac{\pi}{4}$ جد العدد العقدي d الممثل للنقطة d صورة النقطة d وفق دوران مركزه d وزاويته d
 - مربعاً. ACBE مربعاً للنقطة E الممثل للنقطة e مربعاً.

	5	$\dfrac{b-c}{a-c}$ التعويض في
	5+5+5+5	الإصلاح $= \frac{-4+8i}{8+4i}$
في حال كتب الطالب النتيجة مباشرة بعد التعويض ينال الدرجات المخصصة للإصلاح بالإضافة إلى درجة النتيجة	5	النتيجة
	5	المثلث قائم ومتساوي الساقين
	5	قانون الدوران
	5	التعويض
	5	النتيجة بالشكل الجبري
إذا لم يراعي الطالب ترتيب رؤوس الرباعي يخسر 5 درجات المخصصة للطريقة ويتابع له الحل	5	E اختيار طريقة مناسبة لإيجاد مثل $\overrightarrow{AC} = \overrightarrow{EB}$ أو تناصف القطرين أو تساوي طولي القطرين أو الدوران
	5 + 5	تطبيق الطريقة
	5	e الوصول إلى قيمة
	70	مجموع درجات السوال الثامن / التمرين الثاني /

سلم تصحيح الرياضيات بعد إعادة تنسيقه / تنسيق: أيهم الشاعر / حقوق النشر والتوزيع والطبع محفوظة لوازرة التربية

التمرين الثالث:

ليكن $f(x)=x-4+\ln(\frac{x}{x+1})$ وفق: $I=]0,+\infty[$ المعرف على $f(x)=x-4+\ln(\frac{x}{x+1})$ وفق: $f(x)=x-4+\ln(\frac{x}{x+1})$ المطلوب: $f(x)=x-4+\ln(\frac{x}{x+1})$ واستنتج $f(x)=x-4+\ln(\frac{x}{x+1})$ أثبت أن $f(x)=x-4+\ln(\frac{x}{x+1})$ واستنتج $f(x)=x-4+\ln(\frac{x}{x+1})$

- . $+\infty$ في جوار d في جوار y=x-4 مقارب مائل للخط d في جوار (2
 - d ادرس الوضع النسبي بين الخط البياني C والمستقيم (3

$f'(x) = 1 + \frac{1}{x(x+1)} > 0$	5	I متزاید تماماً علی $x\mapsto \dfrac{x}{x+1}$
x(x+1)	5	I متزايد تماماً على $x \mapsto \ln x$
5 × 3 الاشتقاق	5	I مرکب تابعین متزایدین هو تابع متزاید علی
f'(x) > 0 10	5	I متزاید تماماً علی $x \mapsto x - 4$
	5	ومجموع تابعين متزايدين هو تابع متزايد
ملاحظة:		
$\lim_{x \to 0} f(x)$ و $\lim_{x \to +\infty} f(x)$ إذا حسب الطالب	5 × 2	$f(]0,+\infty[)=]-\infty,+\infty[$
ثم كتب النتيجة يعطى 5 + 5		
ملاحظة:	5	$f(x)\!-\!y_d$ القانون
في حال حل الطالب المعادلة $\frac{x}{x+1} = 1$ وذكر أن التابع	5	$\lim_{x\to +\infty} (f(x)-y_d) = 0$ إيجاد النهاية
I متزاید تماماً علی $g(x) = \dfrac{x}{x+1}$ فإنه یحافظ علی إشارة واحدة	5 + 5	الوضع النسبي: الإشارة + التعليل $\ln\left(\frac{x}{x+1}\right) < 0$ أي $\frac{x}{x+1} < 1$
$\ln(\frac{x}{x+1}) < 0$ أي $g(x) < 1$ ينال الطالب الدرجة المخصصة لتعليل الإشارة I تابع الفرق على I	5	d تحت المستقيم مع إشارته C تحت المستقيم
	60	مجموع درجات السؤال التاسع / التمرين الثالث /

ثالثاً: حل المسألتين التاليتين: (100 درجة لكل مسألة)

المسألة الأولى:

في معلم متجانس C(-3,4,-1) و A(-1,2,3) و المطلوب: A(-1,2,3) و المطلوب:

- . متعامدان. (AB) و (AC) و بين أن المستقيمين (\overline{AC}) و \overline{AB} عامدان.
- . (ABC) يعامد المستوي $\vec{n}(2,4,1)$ واكتب معادلة المستوي ($\vec{n}(2,4,1)$
 - (ABC) جد تمثيلاً وسيطياً للمستقيم d المار من D والعمودي على المستوي (3
 - ABC عن المستوي (ABC) ثم احسب بعد D عن المستوي (4
- نبت أن (C,2) و (B,-1) و (A,1) و أثبت أن (C,2) مركز الأبعاد المتناسبة للنقاط المثقلة (A,1) و (A,1) و (CG) متوازيان.

كل مركبة درجة واحدة	2×3	\overrightarrow{AC} و \overrightarrow{AB}
	3 + 2	حساب $\overrightarrow{AB}.\overrightarrow{AC}$ قانون + نتیجة
	3 + 2	حساب $\overrightarrow{n}.\overrightarrow{AB}=0$ التعويض + النتيجة
	3 + 2	حساب $\overrightarrow{n}.\overrightarrow{AC}=0$ التعويض + النتيجة
	3	التعبير عن معرفته أن $\stackrel{ ightarrow}{n}$ يعامد شعاعين غير مرتبطين خطياً
		أو التعبير عن معرفته أن $\stackrel{ ightarrow}{n}$ ناظم المستوي
	5	قانون المستو <i>ي</i>
	5 + 5	التعويض + نتيجة
للقانون 5 ولكل معادلة 5	$5+3\times 5$	التعبير عن معرفته لشكل التمثيل الوسيطي
كتابة النتيجة مباشرة بشكل صحيح ينال درجة القانون ضمناً	3 + 5 + 5	قانون المسافة + التعويض + النتيجة
	4 + 4	$\left\ \overrightarrow{AC} ight\ $ و $\left\ \overrightarrow{AB} ight\ $
	4	حساب المساحة
	3	قانون الحجم
	3	والنتيجة
	3	$\overrightarrow{GA} - \overrightarrow{GB} + 2\overrightarrow{GC} = \overrightarrow{0}$
	2	$\overrightarrow{GA} + \overrightarrow{BG} + 2\overrightarrow{GC} = \overrightarrow{0}$
	3	$\overrightarrow{BA} = -2\overrightarrow{GC}$
	_ 2	و \overrightarrow{GC} مرتبطین خطیا \overrightarrow{BA}
		(BA) (CG)
	100	مجموع درجات السؤال العاشر / المسألة الأولى /
		•

سلم تصحيح الرياضيات بعد إعادة تنسيقه / تنسيق: أيهم الشاعر / حقوق النشر والتوزيع والطبع محفوظة لوازرة التربية

ملاحظات المسألة الأولى

	طريقة ثانية للطلب الأخير:
5 + 5	$(BA) \ (CG)$ مجموع ثقلي A و B يساوي الصفر فيكون
	طريقة ثالثة للطلب الأخير:
2 + 2 + 2	G احداثیات
2	\overrightarrow{AB} و \overrightarrow{CG}
2	$\overrightarrow{AB} = -2\overrightarrow{CG}$
	طريقة رابعة للطلب الأخير:
2	$\overrightarrow{AG} = \frac{\beta}{\alpha + \beta + \gamma} \overrightarrow{AB} + \frac{\gamma}{\alpha + \beta + \gamma} \overrightarrow{AC}$
2	$\overrightarrow{AG} = -\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AC}$
2	$\overrightarrow{AC} + \overrightarrow{CG} = -\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AC}$
2	$\overrightarrow{CG} = -\frac{1}{2}\overrightarrow{AB}$
2	الشعاعان مرتبطان خطياً والمستقيمان متوازيان
	طريقة خامسة للطلب الأخير:
2 + 2	$\overrightarrow{BI}=2\overrightarrow{BC}$ نفرض I مركز الأبعاد المتناسبة للنقطتين $(C,2)$ و $(B,-1)$ إذاً
1	[BI] تكون C منتصف
2	(C,2) و $(B,-1)$ و $(A,1)$
	هو مركز الأبعاد المتناسبة للنقطتين $(A,1)$ و $(I,1)$ حسب الخاصة التجميعية
1	$[\mathit{IA}]$ ومنه G في منتصف
2	(BA)اا وبالتالي $[CG]$ تصل بين منتصفي ضلعين في مثلث ومنه $[CG]$

المسألة الثانية:

ليكن
$$f(x) = \frac{(x+1)^2}{e^x}$$
 وفق: \mathbb{R} والمطلوب: $f(x) = \frac{(x+1)^2}{e^x}$ المعرف على $f(x) = \frac{(x+1)^2}{e^x}$

احسب نهايات f عند أطراف مجموعة تعريفه واكتب معادلة المستقيم المقارب الأفقي. f

.
$$f'(x) = (1-x^2)e^{-x}$$
 اثبت أن (2

(3) ادرس تغيرات التابع f ونظم جدو d بها ودل على القيم الحدية مبيناً نوعها.

ارسم C في معلم متجانس. (4)

. $g(x) = (x-1)^2 e^x$ استنتج رسم الخط البياني G للتابع التابع g المعرف وفق: (5

 $h(x) = \ln(f(x))$ استنتج مجموعة تعريف التابع: (6

	5	$\lim_{x \to -\infty} f(x) = +\infty$
النهاية + التعليل	5+3	$\lim_{x \to +\infty} f(x) = 0$
	5	مقارب أفقي $y\!=\!0$
قانون + التعويض + النتيجة	5+5+5	f'(x)
	3 + 3	x=-1 ينعدم $f'(x)$ عندما $x=1$ أو
	3 + 3	$f(-1) = 0$ و $f(1) = \frac{4}{e}$
إشارة + أسهم إذا لم يضع الطالب الإشارة في سطر $f'(x)$ يخسر 6 درجات	(2+3)× 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	5	f(-1)=0 قيمة صغرى محلياً
	5	$f(1) = rac{4}{e}$ قیمة کبری محلیاً
5 للانسجام مع الجدول 5 للانسجام مع المقارب والقيم الحدية	5 + 5	C $\frac{4}{e}$ $y=0$
	10	نظير C بالنسبة لمحور التراتيب أو $g(x) = f(-x)$ أو الرسم
التعليل + النتيجة		
$\mathbb{R}\setminus\{-1\}$ في الخطوة الأخيرة إذا كتب الطالب	5 + 5	$\mathbb{R}\setminus\{-1\}$ مجموعة التعريف
ينال 10 درجات		
	100	مجموع درجات السؤال الحادي عشر / المسألة الثانية /

انتهى السلم

سلم تصحيح الرياضيات بعد إعادة تنسيقه / تنسيق: أيهم الشاعر / حقوق النشر والتوزيع والطبع محفوظة لوازرة التربية

الاسم ا قرام: فعدًا : تحث ساعات معدًا : معن ساعات

المتحان شهادة الدراسة الثانوية العامة دورة عام ٢٠٢١ (الغرع العلمي - دورة ثانية)

الرياضيات

الصقعة الأولى

أولاً: أجب عن خسسة فقط من الأسئلة السبئة الإتوبة: (40 درجة لكل سوال)

 $P_{n,j}^{1} = 16 \binom{n+2}{2}$ النسوال الأول: عين فيمة n الني تعقق المعادلة

المسؤال الثاني: نتأمل في معلم متجانس ($O, \overline{1}, \overline{j}, \overline{k}$) النقطة ($O, \overline{1}, \overline{j}, \overline{k}$) والمستوي O = 0 - 2z + y - 2z - 4 = 0

1) احسب بعد A عن العستوي P.

2) اكتب معاللة للكرة التي مركزها الروتمس المستوي P.

المعوال الثلث: احمد التكامل الأتى: x sinx dx = أ

السوال الرابع: تأمل حدول تغيرات النابع / المعزف على]0,+ ه [خطه البيائي C . والمطلوب:

الكفيد الأقفي. $\lim_{x\to +\infty} f(x)$ معادلة المقارب الأقفي.

f(x) = 0 all the state of f(x) = 0

دل على القيمة المحلية ربين نوعها.

4) جد مجموعة حلول المتراجعة 0 < (x) أ.

السوال الخامس:

المعطوب: $f(z) = \frac{2z^2 + \cos^2 z}{2}$ وفق: $f(z) = \frac{2z^2 + \cos^2 z}{2}$ المعطوب:

 Δ و النبي معادلته Δ الذي معادلته Δ و مقارب مائل Δ في جوار Δ وادرس الوضع النسبي بين Δ و Δ المعادس:

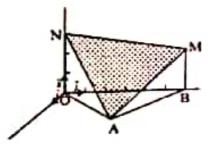
يحتوي صندوق على كرات حمراء و كرات بيضاء ، عدد الكرات العمراء يساوي ثلاثة أضعف عدد الكرات البيضاء. المطلوب:

- السعب عشوالياً من السندوق كرة، ما احتمال أن تكون بيضاء اللون.
- 2) نسحب من الصندوق ثلاث كرات على النتالي مع الإعادة، نعزف X المتحول العشوائي الذي يدل على عدد الكرات البيضاء المسعوبة أشاء عمليات السحب الثلاثة. اكتب مجموعة قيم X وجدول الفانون الاحتمالي.

ثلثياً: جل التمارين الثلاثة الآتية: (70 درجة لكل من النمرينين الأول والثاني- 60 درجة للتعرين الثالث) التعرين الثالث) التعرين الأول :

نتأمل المنتالية $u_n = (u_n - 2)^2 + 2$: $u_n = \frac{5}{2}$ وأياً كان العدد الطبيعي $u_n = \frac{5}{2}$ المطلوب:

- 1) أنبت بالتدريج أن 3 ≥ 1 2 أيّا كان العدد الطبيعي 1 .
 - 2) أثبت أنَّ المنتقلبة إنه (س) منتقلصة .
 - استنتج تقارب المتتالية على (u,) رجد عقارب المتتالية على المتتالية على المتتالية على المتتالية المتالية المتالية المتالية المتالية المتالية المتالية المتالية المتتالية المتالية المت


التعرين الثاني: في معلم متمانس (كَرَرَ . () لدينا النقاط :

. A(1,3,0), B(0,6,0), N(0,0,3), M(0,6,2)

1) اكتب معادلة المستوي (AMN) .

The second second

- اكتب تمثيلاً وسيطياً المستقيم ۵ المار من 0 ويعامد المستوي (AMN).
- z-1=0 اثبت أن المستوى الذي معادلته z-1=0 هو المستوي المحوري القطعة المستقيمة (BM

يتين في فصيلعة الملاقية

الإسم ا طرام: المذاع: ثلاث ساحات المرحة: سلملة

امتحاث شهادة الدراسة الثانوية العامة دورة عام ٢٠٧١ (اللرح الطمي - دورة ثانوة)

الريابنيان

الصفحة الثانية

التعريث الثالث:

لبكن النابع f المعرف على R وقل : ٢-(ux +b) هـ المطلوب:

أولاً: احسب فيمة كل من م , م إذا طمت أنَّ ع = (١-) / فيمة حدية للنابع.

ناتها: لنكن المعادلة التفاصلية "-عار = بر+ ابر، عن فيمة تر إذا علمت أن "-بر(x + 2) = اكر لها.

ثالثاً: هل المسالنين الأتينين: (100 سرمة لكل سالة)

العمالة الأولى:

 $\alpha \in \mathbb{R}$ ميث $P(z) = z^3 - 2(\alpha + i\sqrt{3})z^2 - 4(\alpha - i\sqrt{3})z + 8$ ميث $P(z) = 2^3 - 2(\alpha + i\sqrt{3})z^2 - 4(\alpha - i\sqrt{3})z + 8$ ميث $P(z) = 2^3 - 2(\alpha + i\sqrt{3})z^2 - 4(\alpha - i\sqrt{3})z + 8$ ميث $P(z) = 2^3 - 2(\alpha + i\sqrt{3})z^2 - 4(\alpha - i\sqrt{3})z + 8$

- 1) احسب العدد a لكى يكرن z = 2 علاً للمعاملة 0 = (1)
- P(x) = (x-2)Q(x) يحقق: Q(x) = 0 جد كلير الحدود من الدرجة الثانية Q(x) = 0 يحقق: Q(x) = 0 بغرض 1 مستنج علول المعادلة Q(x) = 0 .

شاهياً: لتكن A و B و C نقاط المستوى الذي تمثل الأعداد العقدية بالترتيب:

: مطلوب م م م المطلوب م م م المطلوب م م المطلوب م م المطلوب م المطلوب م

ABC اثبت ان: $\frac{a-b}{c-b}=c^{\frac{2\pi}{3}}$ ، راستنج طبیعة السلت (a

ليكن المنتث 'A'B'C' سبورة المنتث ABC وفق تناظر بالنسبة لمحور الغواسل، عين 'a و'b' و'c التي تمثلها (b
 لقاط الممتوى 'A'B'C' على الترتيب.

المسالة الثانية:

ليكن $_{\eta}C$ المنط البياني للتابع f المعزف على $\int (x) = e^{-t} (1 + \ln x)^{-t} = \int (-1 + \ln x)^{-t} = \int$

- 1) ادرس تغيرات التابع ج ونظم جدولاً بها.
- . $\alpha = 1$ أن المعادلة $\alpha = 1$ علا رحيداً α ، ثم تعنق أن $\alpha = 1$ إين أن المعادلة $\alpha = 1$
 - 3) جد نهايات المتابع / عدد أطراف مجموعة تعريفه.
 - $f'(x) = \frac{g(x)}{e^x}$: نا نابت ان (4
- 5) مستفيداً من تغيرات التابع ج ادرس تغيرات التابع / ونظم حدولاً بها.
 - 6) في معلم متجانس ارسم الخط ر6

- ائتهت الخسيلة -

ملاحظة : يمنع استعمال الألات العاسبة.

 $(im f(x) = -\alpha)$, (im f(x) = 0) $x \to 0$ $x \to +\infty$ ٥= لا مارب أضفى الخط ع فاهوار ١٠٠٠ 2)- الممادلة ه=(4 و حيد · عرى م قيمة عرى عرى م]۱ ره [= کر السؤال الخامس ؛

 $f(x) = 2x + \frac{\cos x}{x}$ $J(x) - y = \frac{\cos^2 x}{x}$ 0 5 Co3 X 51 : X<0 Joji

 $\lim_{x \to -\infty} \left(\frac{1}{x} \right) = 0$ $\lim_{x \to -\infty} \frac{\cos^2 x}{x} = 0$

 $\begin{array}{ccc} c & \text{Lin} \left[f(x) - y_{0} \right] = 0 \\ & & \times \rightarrow -\infty \end{array}$

خالمستقم ۵ مقارب ماعل الاطر ع في هوار هد.

X	-00	0
cos'x	+	
×	-	
チェンク		
	· 5 Cb C	
•		

 $F_{n+3}^{3} = 16 \binom{n+2}{2}$

 $(n+3)(n+2)(n+1)=16 \frac{(n+2)(n+1)}{2!}$

السخوال الثايي ،

 $dist(A,P) = \frac{14+1-4-41}{\sqrt{4+1+4}} = \frac{3}{3} = 1$

Y = dist(A, P) = 1

سادلة الك مناشكن؛

(x-X)2+(y-y)2+(Z-Z)2=12

 $(x-2)^{2}+(y-1)^{2}+(z-2)^{2}=1$

 $I = \int_{0}^{\frac{\pi}{2}} x \sin dx$

 $\int_{a}^{b} uv' = [uv]_{a}^{b} - \int_{a}^{b} v \cdot u'$

 $I = \left[-\kappa \cos x \right]^{\frac{\pi}{2}} + \int_{-\infty}^{\frac{\pi}{2}} \cos x \, dx$

 $I = \left[- x \cos x + \sin x \right]_{0}^{\frac{\pi}{2}} = 1 - 0 = 1$

E(n1:

$$2 \leq u_{5} = \frac{5}{2} \leq 3$$

LE (n+1) ast ifin E(n) ast is in

$$0 \leq u_n - 2 \leq 1$$

$$0^{1} \leq (u_{n}-2)^{2} \leq 1^{2}$$

$$2 \leq (u_1 - 2)^2 + 2 \leq 3$$

Util assep E(n) aipallo . Tes E(n+1)

$$E'(n)$$
 $u_{n+1} \leq u_n$

: 4, 4

$$U_1 = (y_1 - 2)^2 + 2 = (25 - 2)^2 + 2$$

= $\frac{1}{4} + 2 = \frac{9}{4}$

$$U_1 = \frac{9}{4} \le u_0 = \frac{5}{2}$$
 $U_2 = \frac{5}{2}$ $U_3 = \frac{5}{2}$ $U_4 = \frac{9}{4}$ $U_5 = \frac{9}{4}$

$$\left(u_{n+1} - 2 \right)^2 \leq \left(u_n - 2 \right)^2$$

$$(u_{n+1}-2)^2+2 \leq (u_n-2)^2+2$$

ويتقاطع ع ١ في كل نقطة ما جلقها

السلوال السارس ؛

إذا كان عدر الكرات البيماء (١٨) عنها سيكون عدر الكرات المحراء (3n) وميكوني إحمالي

$$P(w) = \frac{n}{4n} = \frac{1}{4n}$$

$$S = \frac{1}{4}$$
, $S = 1 - \frac{1}{4} = \frac{3}{4}$ $N = 3$

$$P(x=0) = {3 \choose 0} \left(\frac{1}{4}\right)^{0} \cdot \left(\frac{3}{4}\right)^{3} = \frac{27}{64}$$

$$P(X=1) = {3 \choose 1} \left(\frac{1}{4}\right)^{1} \left(\frac{3}{4}\right)^{2} = \frac{27}{64}$$

$$P(X=2) = {3 \choose 2} {(\frac{1}{4})^2} {(\frac{3}{4})^2} = \frac{9}{64}$$

$$\frac{K}{P(X=K)} \frac{0}{64} \frac{1}{64} \frac{27}{64} \frac{27}{64} \frac{9}{64} \frac{1}{64}$$

$$\begin{array}{c}
X = X_0 + q t \\
J = J_0 + bt & t \in \mathbb{R} & \Rightarrow b \\
Z = Z_0 + ct & Z = 6t \\
& t \in \mathbb{R}
\end{array}$$

(x,y,z) عَقَمَ مَ الْمُسَوِي الْمُحورِي M'(x,y,z)

: vés of [BM] Taball

$$M'B = A'A \Rightarrow M'B^2 = M'M^2$$

$$\Rightarrow (x-0)^{2} + (y-6)^{2} + (z-0)^{2} = (x-0)^{2} + (y-6)^{2}$$

$$(y-6)^2 + Z^2 = (y-6)^2 + (z-2)^2$$

E(n) insoli assof E(n+1) مرحم أياً كان العد الطبيعي 170

المتالية (١١) مشاعضة ولاسودة رائد من الأدى بالعدد (2) خطي منقارت.

$$(-)$$
 $u_n = (u_n - 2)^2 + 2$

$$u_n = u_n^2 - 4u_n + 4 + 2$$

$$u_n^2 - 5u_n + 6 = 0$$

$$(u_n-3)(u_n-2)=0$$

$$(L-3)(L-2)=0$$

الترين الثاني :

AMY 55- N (9, 5, c)

$$\overrightarrow{n} \cdot \overrightarrow{AM} = 0$$
 : juice

$$\Rightarrow \binom{9}{6} \binom{3}{2} = 0$$

$$+(z-2)^2 | \overrightarrow{n}' \cdot \overrightarrow{AN} = 0$$

$$\Rightarrow \begin{pmatrix} a \\ b \\ -3 \\ 3 \end{pmatrix} = 0 \Rightarrow \begin{vmatrix} -a - 3b + 3c = 0 \\ 0 \\ 0 \end{vmatrix}$$

- عبدانع (س) عيد الله

ولاً!

$$\Rightarrow$$
 8 -2(x+c\sqrt{3})4-4(x-c\sqrt{3})2+8=0

$$16 - 16\alpha = 0$$

X=1

$$\frac{Z^2-2i\sqrt{3}Z-4}{Z^2-2i\sqrt{3}Z-4}$$

 $Z - 2 | Z^3 - 2(1+i\sqrt{3})Z^2 - 4(1-i\sqrt{3})Z + 8$ $-Z^3 + 2Z^2$

-21/3 Z2-4(1-W3)Z+8 +21/3 Z2-40/3Z

$$Z_2 = \frac{-b+\sqrt{b}}{2a}$$

$$Z_3 = \frac{-b-\sqrt{b}}{2a}$$

$$Z_3 = -1 + c\sqrt{3}$$

وهي معادلة المستوي المحوري للقطعة [BM]

التمرين الثالث ١

$$\overline{-1}$$

$$f'(x) = q e^{x} - e^{x} (ax+b)$$

$$f'(-1) = ae - e(-a+b)$$

$$f(x) = (x+2)e^{-x}$$

$$y' = f'(x) = e^{-x} - e^{-x}(x+z)$$

$$\mathcal{I}' = -e^{-x}(x+i)$$

$$y = e^{x}(x+2)$$

$$y' + y = e^{-x}(x + 2 - x - 1) = e^{-x}$$

$$\Rightarrow \sqrt{\lambda = 1}$$

مسوحة ضوئيا بـ CamScanner

2) الناج و معط دمتر ومطرد تما ماً : Till . I de

مادراته ه= (x)و تغبل ميتر ومياً .» .

$$9(1) = 1 - 1 - 1_{n(1)} = 0$$

Lim f(x) = e°(1-0) = -00 ×->0+

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{1}{e^{x}} + \frac{\ln x}{x}, \frac{x}{e^{x}} \right)$$

 $f(x) = -e^{-x}(1+\ln x) + \frac{1}{x}e^{-x}$

$$= \frac{-1-hx+\frac{1}{x}}{e^{x}} = \frac{g(x)}{e^{x}}$$

f(x)=0 <--> o=(x)e

$$\frac{a-b}{c-b} = \frac{2-1-i\sqrt{3}}{-1+i\sqrt{3}-1-i\sqrt{3}} = \frac{1-i\sqrt{3}}{-2}$$

$$=\frac{1}{2}+i\frac{\sqrt{3}}{2}$$

$$r = \sqrt{\left(\frac{-1}{2}\right)^2 + \left(\frac{13}{2}\right)^2} = 1$$

$$\cos\theta = \frac{1}{V} = \frac{1}{2}$$

$$\theta = \frac{2\pi}{3} + 2\pi K$$

$$\sin\theta = \frac{1}{V} = \frac{1}{2}$$

$$\frac{a-b}{c-b} = e^{i\frac{2\pi}{3}}$$

$$\Rightarrow \left| \frac{a-b}{c-b} \right| = 1$$

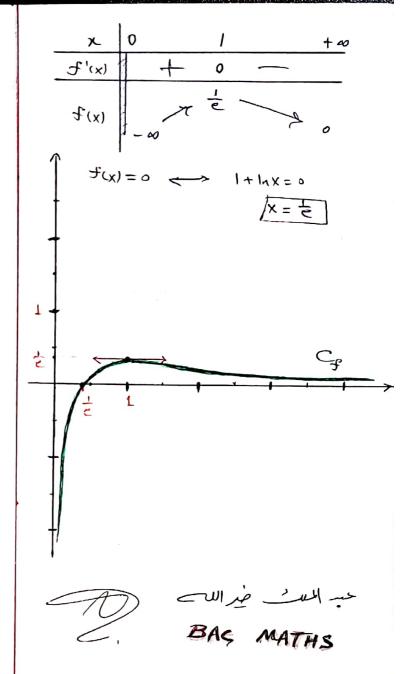
$$\Rightarrow AB = cB$$

$$\Rightarrow arg\left(\frac{a-b}{c-b}\right) = \frac{2\pi}{3}$$

خانشات ABC مسادي الساحين أرسة B

$$a' = \overline{a} = 2$$

$$b' = \overline{b} = 1 - i\sqrt{3}$$


$$c' = \overline{c} = -1 - i\sqrt{3}$$

: عنانا عائسها

آ ج من ف وستم واشقاعی علے I.

$$\lim_{x \to +\infty} g(x) = 0 - 1 - (+\infty) = -\infty$$

$$9^{1}(x) = \frac{-1}{x^{2}} - \frac{1}{x} < 0$$

ملاحظات عامة

١- في ركن تسجيل الدرجات على القسيمة تخصص الحقول على الناتالي كما يأتي :

موضوع المنؤال	رقم السوال	العال
تحليل توافقي	מדניוורני לייני ועל וויניוניון	rrrdme
معادلة كرة	السوال النائي	•
التكامل	السوال الثالث	
جدول تغيرات	السؤال الرابع	1
المقارب المائل	الموال الغامس	٥
ו אבישועים או איי איי איי איי איי איי איי איי איי	السؤال السادس	- 3
متثاليات	السوال السابع/ التعرين الأول	٧
تمرين الأشمة	السوال النامن/ التمرين النائي	٨
القيمة الحدية	السوال التاسم/ التمرين الثالث	1
مسألة العقدية	السوال العاشر / المسألة الأولى	1.
مسألة دراسة تابع أسى	الموال الحادي عشر / المسألة الثانية	11

٢- في الأسللة الاختيارية في حال أجاب الطالب على جميع الأسللة تعسقح أول خمس إجابات منها فقط حسب
ترتيب إجاباته ويكتب جانب الإجابة الأخيرة (اختياري ملفي)

٣- تُعذف (درجة واحدة) لكل خطأ حسابي من الدرجات المخصصة للغطوة التي وقع قيها الغطأ.

إذا دمج الطالب خطوتين أو أكثر وكأن باستطاعة الطالب الجيرد أن يقوم بذلك الدمج، يعطى الطالب مجموع الدرجات المخمصة لما دمج من خطوات .

٥٠٠٠ لا يجوز تجزلة الدرجات المغصّصة للخطوة الواحدة إلّا عند رجود خطأ حسابي.

إذا أخطأ الطالب في خطوة من خطوات الحلّ ثم تابع الحلّ بمنطق سليم ومفيد يعطَى عن الخطوات التي تليها ما يستحق من درجات وفق السلّم بشرط ألا يؤدّي خطؤه إلى خفض سويّة السؤال أو تغيير مضمونه ."

٧- إذا أجاب الطالب عن موقف بطريقة غير واردة في السلم ومبرّراً خطوات حلّه، فعلى المصحح أن يعرض الطريقة على ممثل الفرع الذي عليه أن يقوم والموجّهون الاختصاصيّون بدراسة هذه الطريقة والتأكد من محتها علمياً ومن ثم توزيع الدرجات لئلك الطريقة بما يكافئ التوزيع الوارد على الطريقة الواردة في السلم ثم يعتم هذا الثوزيع بعد أخذ موافقة النوجيه الأول لمادة الرياضيات في وزارة التربية.

٨- عدد الاضطرار إلى تعديل درجة حصل عليها الطالب عن سؤال ما، يجب على كل من المصفح والمدقق
 تسجيل اسمه مفروناً بتوقيمه في جوار الدرجة المعذلة مرفقاً بمهر خاتم الامتعانات.

٩- إذا حلَّ الطالب سؤالاً بأكثر من طريفة تصخح حلوله كالله وتعتمد الدرجة الأعلى.

• ١- إذا لم يُجب الطالب عن سوال ما، تكتب (إلى جانب السوال)العبارة الأتية: (صغر للسوال.... الأله و يلا إجابة)

١١- تُكتب الدرجات الجزئية لكلُّ سوال ضمن دائرة وبالأرقام العربية (....) 1,2,3,4...)

١٧- نُسجَل الدرجات التي يستحقها الطالب عن طلبات السؤال ومراحله (رقماً) وبوصوح على الهامش، أمّا الدرجة المستحقة عن السؤال كاملاً فتُسجَل على الهامش الأيمن (مقابل بداية الإجابة) رقماً وكتابة.

الأحاد العشرات المثات

حقل العشرات بالمنات.

بعد استبدال حفل الكسور بالأحاد، حقل الأحاد بالعشرات.

استعنن شهادة الدرامسة التلوية العامة / القرع الطمي / hmالنورة التلية علم ٢٠٠١م الدرجة: ستملة

التجمع التعليمي العلاز لحب عن طعسة فقط من الأسننة البيئة الأثية: (40) درجة لكل سؤل) أ العسوال الأول:

@bak111

 $P_{n,r}^{*} = 17 \binom{n+7}{r}$ عن قيمة n التي تعقق المعادلة

ملاحظة: الغطأ بتطبيق القلون يغسره درجلت	ه قلون توافيق+ ه نشر +ه قلون تراتيب + ه نشر+ هشرط الاختصار	$n \in \{0,1,2,\}$ شرط العل $(n+3)(n+2)(n+1) = 16 \frac{(n+3)(n+1)}{2}$
	عممانلة درجة أولى	$n+\tau=\Lambda$
	•	n = °
	1.	معموع درجات السوال الأول

المسؤال الثاني: نتأمل في مطم متجانس P:2x+y-2z-4=0 للنقطة A(2,1,2) والمستوي A(2,1,2) المطلوب: احسب بعد الم عن العستوى P.

اكتب معادلة للكرة التي مركزها A وتمس المستوي P.

ملاحظة: أي خطأ بتطبيق القلون يخسر ٥ درجات قلون + تعويض + نتيجة (٣ ×٥)		$dis_{(a \rightarrow c)} = \frac{ ax + bx + cz + d}{\sqrt{a' + b' + c'}}$
تعويض+ إسلاح+ نتيمة	0+0+0	$= \frac{ 1+1-1-1 }{\sqrt{1+1+1}} = \frac{r}{r} = 1$
إذا كتب قانون خاطئ يخسر ٢٠ درجة إذا كتب معادلة للكرة بدون تربيع يخسر ٢٠	١.	$d = \mathbb{R}$ and
قالون + تعویض	5+5	$(x-2)^2 + (y-1)^2 + (z-2)^2 = 1$
	1.	مجموع درجات المنوال الذكي

السوال الثالث: احسب التكامل الأتي: x sinx dx = 1

	ب التكامل:	
P×4	u'=1 , $u=x$	
ox Y	$v = -\cos x$, $v' = \sin x$	
5	قانون التكامل بالتجزنة	
5+5+5	$1 = -x \cos x + \sin x \Big _0^2 = 1$	
1.	مجموع درجات السوال الثلاث	*
	5 × 5	$v = -\cos x$ و $v' = \sin x$ $v' = \sin x$ قانون التكامل بالتجزئة

السوال الرابع: تأمل جدول تغيرات النابع / المعزف على]0,+ 10 خطه البياني C . والمطلوب: 1) حد (x) معادلة المقارب الأفقى. (2) ما عند حلول المعادلة 0 = (x)f(x) ثل على القيمة المعلية وبين نوعها. 4) جد مجموعة حلول المتراجحة 0<(x) كر. $\lim f(x) = -\infty, \quad \lim f(x) = 0$ المقارب الأقفى 0 = بر عد حلول المعادلة: حل وحيد القيمة الكبرى محلياً ، أ 240 إذا أغلق المنجال يغسر عدرجات مجموعة حلول المتراجعة المجال [1+,0 إذا كتب مجل]1.0 إينسر ١٠ درجات مجموع درجات البسوال الزابع السؤال الخامس: النبط البيقي للتابع f المعرف على $\int -\infty, 0$ وفق: $\frac{2x^2 + \cos^2 x}{c}$ المطلوب: Δ الذي معادلته Δ Δ و Δ مقارب ماثل لـ Δ في جوار Δ وادرس الوضيع النسبي بين Δ و $f(x) - y_A = \frac{\cos^2 x}{x}$ 0 $\lim_{x \to \infty} (f(x) - y_A) = 0$ ٥ $-1 \le \cos x \le 1$ ٥ عند القسمة على 0 > ٪ ولم يغيّر جهة التراجح . 5 cos x 51 ٣ يضر درجتان $\frac{-1}{5} \leq \frac{\cos^2 x}{5} \leq .$ ۲ 1 = 1 الإحاطة ٥ $\lim_{x \to \infty} \frac{\cos^2 x}{\cos^2 x} = 0$ • $g(x) = \frac{\cos^2 x}{1}$ الوضع النسبي دراسة إشارة إذا كتب الطالب 0 > g (x) < 0 والخط C يقع تحت إشارة الكسر من إشارة المقام والمقام سالب 0> (x) المقارب ينال الارجات المغصمة ومنه الخط C يقع تحت المقارب دون العاجة لذكر النقاط المشتركة مجموع درجات المنؤال الغامس علوق النشر والتوزيع والطبع معلوظة لوزارة التربية صلعة إ س بطورة الامتعلية الللية عام ١٠٠١م) mt

المستون المستون على كرات معواه و كرات بيضاه ، عند الكرات المعواه يساوي ثلاثة أمندن عرب السول المستون على كرات معواه و كرات بيضاه ، عند الكرات المعوال أن تكون بيضاء النون الكون المستوق كراة ما احتمال أن تكون بيضاء النون الكرات البيضاء المعورة على المستون كرات البيضاء المعرب المستون المعرب المستون الذي ينل على عند المستون المستوق ثلاث كرات على التعلى مع الإعلاد، نعزف الالمتعول العشواني الذي ينل على عند المستوق ثلاث كرات على التعلى مع الإعلاد، نعزف الالمتعول العشواني الذي المتعالى.

		التزف ليوساه لمستوبه لذه عنوان لسعب ك
في قيم العلمول العلوائي يعلسو دوجتان إِنَّ أَمْسَاعُلُ قَلِمَةً أَو القَعْسَ قَلِمَةً		$P(m) = \frac{1}{t}$
		$X = \{0, 1, 2, 3\}$
	7+7	$p(X=0) = \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} = \frac{27}{64}$
	T+T	$p(X=1) = \frac{1}{4} \times \frac{3}{4} \times \frac{3}{4} \times 3 = \frac{27}{64}$
عنم العنوب بالتباديل ينصو ٢ درجات	7+7	$p(X=2)=\frac{1}{4}\times\frac{1}{4}\times\frac{3}{4}\times3=\frac{9}{64}$
	7+7	$p(X=3) = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{64}$
عَشِيم العِدُول	•	$p(X=x_1) \mid \frac{1}{12} \mid \frac{1}{12} \mid \frac{1}{12} \mid \frac{1}{12}$
	1.	مجدوع درجات السؤال السكس
عد لمشاة بين م ر م يعسر درجاين نشد	A+1	$P = \frac{\pi}{4\pi} = \frac{1}{4} , q = \frac{3}{4} \qquad -1$
	۸ ۲ ۲ تعویطس +	$X'(\Omega) = \{0,1,2,3\}$ کلون برنولی P(3) = P(1) + P(0)
(2+3)×4	۲ تنبیة لکل اعتمال	

التجمع التعليمي @bak111

E	CUL	COLORDOCTOR	mmm	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	
	المناز على التعارين الثلاثة الأتية: (70 درجة نكل من التعريفين الأول والثاني- 60 درجة للتعرين الثالث)				
Ē	$u_{n+1} = (u_n - 2)^2 + 2$ نتأمل المنتالية $u_{n+1} = u_n = \frac{5}{2} = u_n = \frac{5}{2}$ المعرفة وفق: $u_n = \frac{5}{2} = u_n = \frac{5}{2}$ كان العدد الطبيعي $u_n = \frac{5}{2} = u_{n+1} = \frac{5}{2}$				
E					
E		•	يمي 11 .	العطلوب: ١) أنبت بالتدريج أن $3 \le u_2 \le 1$ أنا كان العند الطب	
E	· lim	تقارب المتثالية م _{ده} (س) وجذ س	م) استنلج	٢) أثبت أنّ المنتالية ودم (سا) منتاقمة .	
B			*	ترميز الفضية	
B	•			(ن) نسمة (E (٠)	
Ħ			۰	E(n) قترامن سنة (E	
B			5×4	رائبات (n+1) واثبات	
Ħ			7.7	, , ,	
			,	$n \ge 0$ سعقة فإن $E(n)$ سعقة فإن $E(n+1)$	
Ħ				$u_{n+1} - u_n \le 0$: اثبات أنها متناقصة	
Ħ			0+0+0	$(u_n-2)^2+2-u_n=(u_n-3)(u_n-2)$	
	الأدتى	او تبرير الها متناقصة ومعنودة من	7+7	س, 2≥0 س, -3≤0	
Ħ		$\lim_{n\to\infty}u_n=2$	1	$(u_*-3)(u_*-2) \le 0$	
B			a	المتتالية متناقصة ومعدودة من الأنني فهي ستقارية، النهاية هي عل	
Ħ				f(x) = x Unablify $x = f(x) = x$	
				$\lim_{n\to\infty} u_n = 2$	
-			٧.	المجموع	
Ē	7	طريقة ثانية لبرهان المعدودية	6	طریقهٔ ثانیهٔ آبر مان التناقس بطریقهٔ التنریخ: $Q(n):u_{n-1} \le u_n: n \ge 0$	
		بنبات مسعة (·) E			
Ħ		افتراض صحة E(n)	٥	منته $Q(0):u, \le u, \frac{9}{4} \le \frac{5}{2}$	
		واندات (n+1)		نفرض Q(n) مسحيحة من اجل n	
	1	لعرف تلبع الله = (سا) ع		$Q(n+1):u_{n-2} \le u_{n-1}: n \ge 0$	
	٣	$f(x) = (x-2)^2 + 2$		$u_{n+1} \le u_n$ من الغرض من الغرض	
3	7	f'(x) = 2(x-2)	۲	$u_{n+1} - 2 \le u_n - 2$	
=	7	x ≥ 2 / منزاید تماماً علی]x+x[۲	$(u_{n-1}-2)^2 \le (u_n-2)^2$	
3		من الفرض 3 £ 2 س 2 2	۲	$(u_{n-1}-2)^2+2\leq (u_n-2)^2+2$	
1	0	$f(2) \leq f(u_n) \leq f(3)$	۲	$u_{n+2} \leq u_{n+1}$	
=	۰	$2 \le u_{n+1} \le 3$	۲	$n \ge 0$ سعیدة ایا کلت $Q(n+1)$ سعیدة ایا کلت $Q(n+1)$	
		E(n) ممتنة فإن $E(n+1)$			
		سميمة لياً كانت 0 ≤ n			
1.					

(ماءة الرياضيات - علمان بالدورة الامتعلية الثلية عام ٢٠٠١م) em حلولى النشر والتوزيع والطبع معلوظة لوزارة التربية صفعة ٦

وين الثاني: في معلم متجانس (٥٠٢, ٥٠٦) لتينا النقاط : A(1,3,0), B(0,6,0), N(0,0,3), M(0,6,2)

الكتب معادلة المستوي (AMN) -

E	·CAM	لا العستوي (١٨)	2) الكتب تعشيلةً وسيطيةً للمستقيم له العار من () ويعاه
Ē	ري للقطعة المستخيمة الكلام	المنتوى المحور	2) الكتب تعنيلا وسيطيا للمستقيم Δ العار من ϕ ويعام $z = 1 = 1$ المبتوي الذي معادلته $z = 1 = 1 - 1$ هو
Ħ	ملامطات	T	1
H T+T	737		الومسول إلى معادلة المستوي (AMN)
Ħ	· AN . AM	7	إما من الملاهة ax +by +c= +d =0 أما من الملاهة
7+7	$n \cdot \overrightarrow{AN} = 0 \cdot \overrightarrow{n} \cdot \overrightarrow{AM} = 0$	1+1+1	تعويض النقاط
1+1+1	افترانس (a,b,c) n	1+1+1+1	d.c.b.a a
1717	ليجاد قيم الوسطاء c , b , a		كتابة معادلة المستوى
	كتابة معادلة للمستوي		المعادلات الوسيطية - قانون
۰	أو (ت. x . y . z) لم نقطة من المستوي		شعاع توجيه
ه قلون	$A\vec{k} = \alpha AM + \beta AN$	2×3	17.5
ە ئمويىش مەھ	α, β ايجاد	2.73	شيجه .
	الوصول إلى معادلة للمستوي		اللبات أن 1 = ت معللة الستوي المعوري
-	الرميون إلى	3×3	إيجاد إحداثيات المنتصف
		2×3	معرفة الناظم BM
		٥	كتابة معادلة المستري المحوري
		γ.	المهدوع
(2-1=0		
ŧ	rī(0,0,1)		طريقة: المستوي المحوري
٣	MB(0,0,2)		$D(x,y,1)$ $D \in \rho$
٣	1(0,6,1)	5+5	$BD = \sqrt{x^2 + (y - 6)^2 + 1}$
Í	(0,6,1) تحقق معادلة المستوي م		$MD = \sqrt{x^{2} + (y - 6)^{2} + 1}$
4	مرتبطان خطیا MB , n	7	BD = MD
4	م المستوي المعوري	7	ور المستوى المحوري
	-		
		İ	مدريعه:
	في التميل الوسيطي عند استخدام نقطة	•	أو (تر ، و ، د) لم نقطة من المستوي المحوري
	غير المبتأ يخسر درجة واحدة		$KM^2 = MB^2$ $\omega_0 KM = MB$
11 - 11		7+7+1	المويض - إممالاح - نشجة

التمرين الثالث: ليكن التابع f المعرف على \mathbb{R} وفق : $f(x) = (ax + b)e^{-x}$. $f(x) = (ax + b)e^{-x}$. $f(x) = (ax + b)e^{-x}$. f(x) = b . f(x) = ax . f(x) =

التجمع التعليمي @bak111@

يتنا: على تعسكتين الأتينين (100 درجة لكل مسألة)

المسلحة الأولى: أولاً: لوش (ت) ٢ كثير حدود معزف بالصيفة

عبت $a \in \mathbb{R}$ عبت $P(z) = z' - 2(\alpha + i\sqrt{3})z^2 - 4(\alpha - i\sqrt{3})z + 8$

الصعب المعند ن لكي يكون ٢ = = علا للمعادلة 0 = (2)

P(z) = (z-2)Q(z) بغرض q(z) = (z-2)Q(z) بغرض q(z) = (z-2) المعنود من النوجة الثانية q(z) = (z-2)Q(z)

. P(x)=0 المعادل المعادلة P(x)=0

 $c = -1 + i\sqrt{3}$, $b = 1 + i\sqrt{3}$, a = 2 المخدية بالترتيب: $a = 2 + i\sqrt{3}$, $b = 1 + i\sqrt{3}$, a = 2 المخدية بالترتيب: $a = 2 + i\sqrt{3}$

ABC النبت الن $\frac{a-b}{c-b} = \frac{2\pi}{c^3}$ ، واستنج طبيعة السلك (a) واستنج

الميكن المنتثث س A' B' C' مسورة المنتثث ABC وفق نتاطر بالنسبة لمحور الفواصل، عبن " ه و " ال و " التي التي المنتث المستوى " A' B' C' على الترتيب.
 المستوى " A' B' C' C' A على الترتيب.

Е	تعنقها تقاط المستوي ١٠ ، ١٠ ، ١٠ على اللزنيلية،							
				•		المعانلة	: ١- التعويض 2 = 2 في	ارزا
B						طية	الوصبول إلى معانلة خ	
Ħ						a	الومسول إلى فيمة ٢	- 11
			طريفة ثانية لإيجاد (=) Q	5+5+5	محدة	يقة أخرى	إه القسمة الإقلينية أو أي طر	ا ۲ - نحدا
			$z^2 + bz + c) = p(z)$	3+3+3		5 ,	وايجاد (z) Q	-
	0+0+0		c ob oa sad				وپجد (-) ج	
Ė				٥			جذر أول	
				٥			جذر ثالي	
1				0			جنر ثاثث	
3				.2*	طريقة		البات .	الثانية:a-
		٥	تاتي ا	و بالشكل الم	كتلبة		b-a	27
1				2=			c - a	
I		+0	ببري	لا ملتكل و 3	مب	5+5	تعويعن	
		0+0	ها بالشكل العبري والنتيجة	$\frac{a-a}{c-a}$	ا حساب	•	الشكل الجبري	
1			، مثلث متساوي الساقين و			٥	الشكل المثلني	
				ر الدرجة المخصم از إذا قام الطالب و		10	الشكل الأسي	i
			للنتج أن المثلث متساوي	AB , AC	, BC	٥	مثلث متساوي الساقين و	2 mm-1
			ب المثلث متساوي الساقين	دل ه در حات لمة: إذا كانب العقال	السافين يا		منفرج الزاوية	
			ه درجات المخصصة	رح الزاوية ينلل	او منة الفطو			
-		<u>a</u> -	منساوي الساقين 1 = 1				a', b', c' shad	b
-		c - c			المجموع			
-								

ملاة الرياضيات . غلص بطورة الامتعلية الثلية عام ١٠٠١م) tm

عُتِناً: على المساللين الإنبينين: (100 درجة لكل مسألة)

المسلكة الأولى: أولاً: لوكن (٢) كثير حدود معزف بالصيفة

وب: $a \in \mathbb{R}$ دین $P(z) = z' - 2(\alpha + i\sqrt{3})z' - 4(\alpha - i\sqrt{3})z + 8$

P(z) = 0 المعند ي لكن يكون z = Y ملاً للمعادلة z = Y المعند ي الكن يكون

P(z)=(z-2)Q(z) بغرض z=z جد كثير الحدود من الدرجة الثانية Q(z) يحقق: Q(z)=(z-2)Q(z) بغرض z=z

P(x)=0 تَمْ استنج حلول المعادلة

 $c = -1 + i \sqrt{3}$, $b = 1 + i \sqrt{3}$, a = 2 : يقاط المستوي التي تعمل الأعداد العقدية بالترتيب: $a = 2 + i \sqrt{3}$, $b = 1 + i \sqrt{3}$, a = 2

ABC النبت ان: $\frac{a-b}{c-b}=\frac{2r}{c-b}$ ، واستنتج طبيعة السنت الناء ...

ليكن العنثث ١٤٢٠ مردة العنثث ١٤٤٠ وفق نتاظر بالنسبة لمحور القواصل، عين ٥ و ١٥ و ١٠ التي التي تعنثها نقاط العستوي ٢٠ هـ و ٢٠ على الترتيب.

				- 3-		بسيا نداد السوي ا
			•		المعادلة	اولاً : ١- الشعوييس 2 = 2 في
						الوسول إلى معادلة خ
			۰			
						الومسول إلى فيمة ٢
		طريقة ثانية لإيجاد (ع) 2	5+5+5	ستيعة	يقة اخرى .	 ٢- إجزاء القسمة الإقليدية أو أي طر
9			٥			وايجاد (ت) Q
0+0+0		c sb sa sad	•			م ب
			۰			جنر أول
			٥			جذر ثاني
			٥			جنر نائث
				طريقة		ثانیاً:a- إثبات
	•		الم المشكل الم	كثلة		b-a 27
		1	2=			$c-a=e^{z}$
	+0	ببري	لا بع بعثكل ال	****	5+5	تعويمن
			b-a			
0+	0+0		c-a			الشكل الجبري
					٥	الشكل المثلثي
					10	الشكل الأسي
			*			استنتاج مثلث منساري الساقين و
			نال ٥ در جات	السافين يا		
		ب المثلث متساوي الساقين عدد دائر المفرسة	مُنَّةً: إِذَا كَانَبِ الْمَصَّالُةِ إِذَا إِذَا كَانِبِ الْمَصَّالُةِ :	ا ملاحد		منفرج الزاوية
		ت در جب المعصمية				
	a-l		3+3+3			a', b', c' عليا -b
	c-b	منساوي المباقين ا				
			١	المجموع		
	0+0+0	0+0+0	عبد المثلث متساوي الساقين و درجك المخصصة	Q(z) المربقة للبة لابعاد $Q(z)$ المربقة للبة لابعاد $Q(z)$ المربقة للبة لابعاد $Q(z)$ المربقة للبة لابعاد $Q(z)$ المربقة للبة المربق والمربق والمر	Q(z) المريقة للية لإيجاد $Q(z)$ المريقة المريقة المريقة المريقة المريقة و $Q(z)$ المحدد $Q(z)$ ا	و المعادلة a و المعادلة a و المعادلة a و المعادلة a و و و و و و و و و و و و و و و و و و و

مخة الرياضيات . غلص بالدورة الامتمالية الثانية عام ٢٠١١م) ٢١١ علول انتشر والتوزيع والطبع معلوظة لوزارة التربية صفعة ٥

، $f(x) = e^{-t} (1 + \ln x)$ الخط البياني للنابع f المعزف على $[0,+\infty[$ على C_{j} وفق: C_{j} الخط البياني للنابع والنابع g المعرف على / واق: $\sin x = \frac{1}{x} - 1 - 1 - 1 - 1$. المطنوب: ا) ادرس تغيرات التابع g ونظم جدولاً بها. (2) بين أن للمعانلة g(x) = g(x) حلاً وحيداً α ، ثم تحقق أن $(1 = \alpha)$ $f'(x) = \frac{g'(x)}{x}$: اثبت ان المنابع $f'(x) = \frac{g'(x)}{x}$ عند اطراف مجموعة تعریفه. 4) اثبت ان النابع $f'(x) = \frac{g'(x)}{x}$ 5) مستقیداً من تغیرات التابع و ادرس تغیرات التابع / ونظم جدولاً بها. 6) فی مطم متجانس ارسم الخط ، C. $\lim_{x \to \infty} g(x) = +\infty$, $\lim_{x \to \infty} g(x) = -\infty$ $g'(x) = -\frac{1}{x} - \frac{1}{x}$ 5+5 $0 \in f(]0,+\infty[] =]-\infty,+\infty[\begin{cases}]0,+\infty[& \text{if } g \\]0,+\infty[& \text{otherwise} g \end{cases}$ 5×4 قالمعادلة 0 = (x) برحل وحبد $g(1) = 1 - 1 - \ln 1 = 0$ $\lim_{x\to\infty} f(x) = -\infty .$ $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1 + \ln x}{x} = 0$ 5+5 5 + 5

إذا لم يكانب الطالب العند f'(x)إ ونظم جدو الأبتو التى مع 5 + 5حله ووحسع إشارة واجدة f(x)ه درجات ١. 1 .. المجموع

انتهى السلم

(مادة الرياضيات - خاص بالدورة الامتحلية الثلثية عام ١٠٠١م) tm حقوق النشر والتوزيع والطبع محقوظة توزارة التربية صفعة ١٠

امتحان شهادة الدراسة الثانوية دورة عام 2019 الاسم : (الفرع العلمي - الدورة الأولى) الرقم : الصفحة الأولى المدة :

الدرجة ستمائة

أولاً: أجب عن الأسئلة الأربعة التالية: (40) درجة لكل سؤال

C خطه البياني R خطه البياني السؤال الأول : نجد جانباً جدول تغيرات التابع

x	$-\infty$	-1		2	+∞
$\dot{f}(x)$	_	0	+	0	_
f(x)	+∞ <	~ -2	/	4	3

$$\lim_{x\to+\infty}f(x) = \lim_{x\to-\infty}f(x) \quad (1$$

- 2) اكتب معادلة المقارب الأفقى للخط البياني 2
 - f دل على القيمة الحدية الصغرى للتابع f
 - f(]-1,2[) (4

 $\left(x+\frac{1}{x^2}\right)^6$ السؤال الثاني : عين الحد المستقل عن x في منشور

 $f(x)=x+3-rac{1}{x^2}$: وفق R^* وفق وفق النياني للتابع التابع المعرف على المعرف على المعرف الم

 $+\infty$ الذي معادلته y=x+3 مقارب للخط Δ في جوار Δ

 Δ والمستقيم C أدرس الوضع النسبي للخط

B(0,1,1) و A(1,0,1) نتأمل النقطتين A(1,0,1) و نتأمل النقطتين البيع : في معلم متجانس

- $\vec{u}(2,2,1)$ اكتب تمثيل وسيطي للمستقيم d المار من A ويقبل شعاع توجيه له (1,2,2,1)
 - 2) أَثْبَت أَنّ المستقيمين (AB) و متعامدان

ثانياً: حل التمارين الأربعة الآتية: (60) درجة لكل تمرين

التمرين الأول : لتكن المنتالية $S_n = 1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n}$: المطلوب التمرين الأول : لتكن المنتالية المعرفة وفق

- أثبت أنّ المنتالية $(S_n)_{n\geq 0}$ متزايدة تماماً (1
- $S_n = \frac{1}{2} \left(3 \frac{1}{3^n} \right)$ تكتب بالشكل S_n تكتب بالشكل (2

ثم استنتج عنصراً راجحاً على المتتالية $(S_n)_{n\geq 0}$ وبيّن أنها متقاربة

التمرين الثاني: يحتوي صندوق على خمس كرات ، ثلاث حمراء اللون وتحمل الأرقام 0 , 1 , 2

وكربتان بيضاء اللون وبحمل الأرقام 0 , 1 نسحب عشوائياً كربتين على النتالي دون إعادة من الصندوق

- P(A) الحدث A : الكرتان المسحوبتان لهما اللون ذاته ، احسب (1
- 2) نعرف متحولاً عشوائياً X يدل على مجموع رقمي الكرتين المسحوبتين

عين مجموعة قيم المتحول العشوائي X واكتب جدول قانونه الاحتمالي ، ثم احسب توقعه الرياضي .

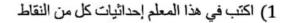
يتبع في الصفحة الثانية ...

الصفحة الثانية

التمرين الثالث : ليكن التابع $f(x)=rac{2+lnx}{1+lnx}$: وفق العلاقة $e^{-1},+\infty$ المطلوب

x>A ثم أعط عدداً حقيقياً A يحقق الشرط إذا كانت $\lim_{x\to +\infty}f(x)$ جد (1

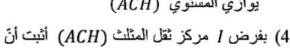
]0.9, 1.1[في المجال f(x)


 $\lim_{x \to +\infty} f(f(x)) \tag{2}$

 $Z_B=-3i$ و $Z_A=-1+i$ و المتان تمثلهما الأعداد العقدية : $Z_A=-1+i$ و المتان تمثلهما الأعداد العقدية : $P(Z)=Z^2+(1+2i)Z+3+3i$ وليكن $P(Z)=Z^2+(1+2i)Z+3+3i$

- أثبت أنّ Z_A حلاً للمعادلة P(Z)=0 ثم استنتج الحل الأخر للمعادلة (1
- $\frac{\pi}{2}$ جد العدد العقدي Z' الممثل للنقطة A' صورة النقطة A وفق دوران مركزه B وزاويته (2
 - (3) اكتب Z_A بالشكل الأسى

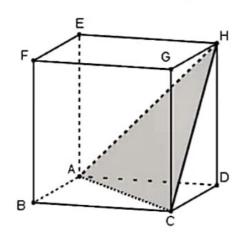
ثَالثاً - حل المسألتين الآتيتين: (100) درجة لكل مسألة


ABCDEFGH المكعب ($A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE}$) المكعب المكعب المسائلة الأولى : نتأمل في معلم متجانس

A , C , H , F , D

- 2) اكتب معادلة المستوي (ACH)
- 3) أثبت أنّ المستوى P الذي معادلته

$$P: -2x + 2y - 2z + 1 = 0$$
 (ACH)
 $y = 1$



D و I و F على استقامة واحدة

 $R=\sqrt{3}$ التي معادلة للكرة S التي مركزها $\Omega(1,-1,1)$ ونصف قطرها S ونين أنّ المستوي (ACH) يمس الكرة S

المسألة الثانية : ليكن $f(x) = \frac{4}{1+e^x}$ المعرف على R وفق : $f(x) = \frac{4}{1+e^x}$ والمطلوب :

- 1) جد نهایة التابع f عند أطراف مجموعة تعریفه و اكتب معادلة كل مقارب وجدته .
 -) ادرس تغيرات التابع f ونظم جدولاً بها .
- T و C النصابي الخط البياني C عند النقطة C عند النقطة (0,2) وادرس الوضع النسبي لـ C
 - C في معلم متجانس ارسم كل مقارب وجدته ثم ارسم المماس T والخط البياني T
 - $g(x)=rac{4e^x}{1+e^x}$ وفق R وفق G المعرف على G المتابع G المتابع G المتابع G المتابع G المتابع G المتابع G المتابع G المتابع G المتابع G المتابع G المتابع G

انتهت الأسئلة

التربية صفحة ا سلّم تصحيح شهادة الثانوية العامة - الفرع العلمى لمادة الرياضيات الدورة الامتحانية الأولى لعام 2019م

ملاحظات عامة

1- في ركن تسجيل الدرجات على القسيمة تخصص الحقول على التتالي كما يأتي:

موضوع السؤال	رقم السؤال	الحقل
جدول تغيرات	السؤال الأول	1
تحليل توافقي	السؤال الثاني	2
تحليل(مقارب)	السؤال الثالث	3
أشعة	السؤال الرابع	4
متتاليات	السؤال الخامس/ التمرين الأول	5
احتمالات	السؤال السادس/ التمرين الثاني	6
تحليل	السؤال السابع/ التمرين الثالث	7
عقدية	السؤال الثامن/ التمرين الرابع	8
مسألة أشعة	السؤال التاسع/ المسألة الأولى	9
مسألة تحليل	السؤال العاشر / المسألة الثانية	10

- 2- يُحذف (درجتان) لكل خطأ حسابي من الدرجات المخصصة للخطوة التي وقع فيها الخطأ.
- 3- إذا دمج الطالب خطوتين أو أكثر وكان باستطاعة الطالب الجيد أن يقوم بذلك الدمج ، يعطى الطالب مجموع الدرجات المخصصة لما دمج من خطوات .
 - 4- لا يجوز تجزئة الدرجات المخصصة للخطوة الواحدة إلا عند وجود خطأ حسابي .
- 5- إذا أخطأ الطالب في خطوة من خطوات الحل ثم تابع الحل بمنطق سليم ومفيد فيعطى عن الخطوات التي تليها ما يستحق من درجات وفق السلّم بشرط ألا يؤدي الخطأ إلى خفض سوية السؤال أو تغيير مضمونه .
- 6-إذا أجاب الطالب عن موقف بطريقة غير واردة في السلّم ، فعلى المصحح أن يعرض الطريقة على ممثل الفرع الذي عليه أن يقوم والموجهون الاختصاصيون بدراسة هذه الطريقة والتأكد من صحتها ومن ثم توزيع الدرجات لتلك الطريقة بما يكافئ التوزيع الوارد على الطريقة الواردة في السلّم ثم يعمّم هذا التوزيع بعد أخذ موافقة التوجيه الأول لمادة الرياضيات في وزارة التربية .
- 7- عند الاضطرار إلى تعديل درجة حصل عليها الطالب عن سؤال ما ، يجب على كل من المصحح والمدقق تسجيل اسمه مقروناً بتوقيعه في جوار الدرجة المعدّلة مرفقاً بمهر خاتم الامتحانات .
 - 8-إذا حل الطالب سؤالاً بأكثر من طريقة تصحح كافة حلوله وتعتمد الدرجة الأعلى.
- 10- إذا لم يُجب الطالب عن سؤال ما، تُكتب (إلى جانب السؤال)العبارة الآتية: (صفر للسؤال..... لأنه بلا إجابة)
- 11- تُسجل الدرجات التي يستحقها الطالب عن طلبات السؤال ومراحله (رقماً) وبوضوح على الهامش ، أما الدرجة المستحقة عن السؤال كاملاً تُسجل على الهامش الأيمن (مقابل بداية الإجابة) رقماً وكتابة.

مثّال ذلك : الأحاد العشرات المئات 1 1 2

بعد استبدال حقل الكسور بالآحاد.

حقل الآحاد بالعشرات. حقل العشرات بالمئات.

أولاً: أحب عن الأسئلة الأربعة الآتية: (40 درجة لكل سؤال) المعوال الأول: نجد جانباً جدول تغيرات التابع ﴿ المعرف على ١٣ خطه البياني . C

درجة الخطوة	الخطوة	رقم الخطوة
8	(3) أو فقط $\lim_{x \to +\infty} f(x) = +3$	1
8	$(+\infty)$ أو فقط $\lim_{x \to -\infty} f(x) = +\infty$	2
8	y=3 المقارب الأفقي	3
8	(-2) أو فقط $f(-1) = -2$	4
4 + 4 أطراف مجالات	$\left(\begin{array}{ccc} -2,4 \end{array} \right)$ أو فقط $f\left(\begin{array}{ccc} -1,2 \end{array} \right) = -2,4$	5
40	المجموع	

• •	۵ : /600/ د	هامة ـ الفرع العلمي مادة الرياضيات الدرج الدورة الامتحانية الأولى لعام 2019م	حیح سهاده اسانویه اد
		ة: (40 درجة لكان سوال)	، عن الأسئلة الأربعة الآتيا
	$\frac{x}{f'(x)}$	$-\infty$ -1 2 $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$	
	f (x		خطه البياني C .
	J (*)	$\lim_{x \to -2} f(x)$	$, \lim_{x \to +\infty} f(x) \Rightarrow -1$
		الصغرى للتابع ح.	3- بل على القيمة الحدية
		.f (- احسب (]-1,2[)
لموة	درجة الخم	الخطوة	رقم الخطوة
	8	(3) أو فقط $\lim_{x \to +\infty} f(x) = +3$	1
	8	$\left(+\infty ight)$ أو فقط $\lim_{x o -\infty} f\left(x ight) = +\infty$	2
	8	y=3 المقارب الأفقي $y=3$	3
	8	(-2) أو فقط $f(-1) = -2$	4
4 حالات	4 + أطراف مح	(-2,4) أو فقط $f(-1,2)=-2,4$	5
	40	المجموع	
		$-\left(x+\frac{1}{x^2}\right)^6$ عيّن الحد المستقل عن x في منشور	السؤال الثاني :
	رجة الخطوة		رقم الخطوة
	10	$T_r = \binom{n}{r} a^{n-r} . b^r$	1
	5+5	$T_r = \begin{pmatrix} 6 \\ r \end{pmatrix} x^{-6-r} \left(\frac{1}{x^2} \right)^r$	2
	5	$T_r = \begin{pmatrix} 6 \\ r \end{pmatrix} x^{6-r} x^{-2}$	3
	5	$T_r = \begin{pmatrix} 6 \\ r \end{pmatrix} x^{6-3r}$	4
	-	x الحد المستقل عن	_
	3 2	6-3r = 0 $r = 2$	5
	5	$T=2$ أو كتب الحد الثالث $T_2=egin{pmatrix} 6 \\ 2 \end{pmatrix}$	6
	40	المجموع	
		$x^{6-r} \left(\frac{1}{x^2}\right)^r \rightarrow$	ا حسب الطالب بشكل منف
		ينال 20 درجة فقط $x^{6-r} \left(\frac{1}{x^2}\right)$	$\int_{0}^{\infty} x^{0} dx = x^{0}$
		5 در جات	$x^{6-3r} =$
		5 درجات	6-3r = r = 2

 $x^{6-r} \left(\frac{1}{x^2}\right)^r$ ملاحظة: إذا حسب الطالب بشكل منفر د

درجة فقط
$$x^{6-r} \left(\frac{1}{x^2}\right)^r = x^0$$
 ينال 20 درجة فقط الإذا كتب الطالب

$$x^{6-3r} = x^0 - 6-3r = 0$$

$$6 - 3r = 0$$

$$r=2$$

أثبت أن المستقيم Δ الذي معادلته x+3 مقارب للخط C في جوار $+\infty$ ، ثمّ ادرس الوضع النس للخط C والمستقيم A.

	تقيم ∆.	
درجة الخطوة	الخطوة	خطوة
5 + 5 تعویض قانون	$f(x) - y = (x + 3 - \frac{1}{x^2}) - (x + 3)$	
5 نتيجة	$=-\frac{1}{x^2}$,
10	$\lim_{x \to +\infty} (f(x) - y_{\Delta}) = 0$	
10	$f(x) - y_{\Delta} = -\frac{1}{2} < 0$	
5	$egin{array}{c} x \\ \Delta \ ext{ تحت } C \end{array}$	ļ
40	المجموع	
	\cdot $B(0,1,1)$ و $A(1,0,1)$ ب $A(1,0,1)$ ، نتأمل النقطتين $A(1,0,1)$ و	معلم مدّ
	$ec{u}\left(2,2,1 ight)$. المار من A ويقبل شعاع توجيه له d	
	و d متعامدان. d و d متعامدان.	ستقيمين
درجة الخطوة	الخطوة	وة و
<u> </u>	$\int x = 2t + 1$	
10 + 5	$d: \begin{cases} x - 2t + 1 \\ y = 2t \end{cases} : t \in R$	
تعویض قانون	z = t + 1	
5	$\overrightarrow{AB}(-1,1,0)$	+
5 + 5	$\overrightarrow{AB} \cdot \overrightarrow{u} = (-1)(2) + (1)(2) + (0)(1)$	
5	$\overrightarrow{AB} \cdot \overrightarrow{u} = (1)(2) + (1)(2) + (0)(1)$	_
5		+
40	d إذن المستقيم (AB) يعامد المستقيم المجموع	+
•		

B(0,1,1) و A(1,0,1) و A(1,0,1) و المعال النقطتين A(1,0,1) و المعال الماليع: في معلم متجانس

- 1) اكتب تمثيلاً وسيطياً للمستقيم d المار من A ويقبل شعاع توجيه له $\vec{u}(2,2,1)$
 - 2) أثبت أن المستقيمين (AB) و d متعامدان.

درجة الخطوة	الخطوة	الرقم الخطوة
10 + 5 تعویض قانون	$d: \begin{cases} x = 2t + 1 \\ y = 2t \\ z = t + 1 \end{cases} : t \in R$	1
5	\overrightarrow{AB} (-1,1,0)	2
5 + 5	$\overrightarrow{AB} \cdot \overrightarrow{u} = (-1)(2) + (1)(2) + (0)(1)$	3
5	$\overrightarrow{AB} \cdot \overrightarrow{u} = 0$	4
5	d يعامد المستقيم (AB) إذن المستقيم	5
40	المجموع	

حل التمارين الاربعة الاتية: (60 در

السؤال الخامس : (60 درجة)

(
$$S_n$$
) اثبت أن S_n تكتب بالشكل $S_n = \frac{1}{2}(3 - \frac{1}{3^n})$ مثم استنتج عنصراً راجعاً على المتتالية S_n (S_n) وييّن أنّها متقاربة.

$(S_n)_{n\geq 0}$	المنتالية $_{0 \le n}(S_n)$ متزايدة تماماً. $S_n = \frac{1}{2}(3 - \frac{1}{3^n})$ تكتب بالشكل $\frac{1}{3^n} = \frac{1}{2}$ ، ثمّ استنتج عنصراً راجحاً على المنتالي	
Surrent State	متقارية.	وبيّن أنّها
درجة الخطوة	الخطوة	م الخطوة
10	$S_{n+1} = 1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n} + \frac{1}{3^{n+1}}$	1
5 + 5+ 5 قانون	$S_{n+1} - S_n = \frac{1}{3^{n+1}} > 0$	2
5	قانون مجموع حدود متتالية هندسية	3
5	$S_n = (1). \frac{1 - (\frac{1}{3})^{n+1}}{1 - \frac{1}{3}}$	4
5	$S_n = \frac{3}{2}(1 - (\frac{1}{3})^{n+1})$	5
5	$=\frac{1}{2}(3-\frac{1}{3^n})$	6
5	$S_n \leq \frac{3}{2}$	7
5	الحد الراجح أي عدد أكبر أو يساوي $\frac{3}{2}$	8
5	متتالية متزايدة ومحدودة من الأعلى فهي متتالية متقاربة $S_{n-n\geq 0}$	9
60	المجموع	
	$\displaystyle \lim_{n o +\infty} S_n = 1$ وكتب كذلك المتتالية متقاربة ينال الدرجة المخصصة للخطوة ر	_
وقق الجدول الاتي:	ب الطلب الثاني بالتدريج ينال الدرجات المخصصة للخطوات $E(n)$, $E(n)$	دا حل انطان 1
2+2	اثبات صحة (E(0)	2
2+2	E(n+1) نفرض صحة $E(n)$ و نثبت صحة	3
2	$S_{n+1} = S_n + \frac{1}{3^{n+1}}$ کتابة	4
2	$S_{n+1} = \frac{1}{2}(3 - \frac{1}{3^n}) + \frac{1}{3^n} \times \frac{1}{3}$ استخدام الفرض وكتابة:	5
2	$S_{n+1} = \frac{3}{2} - \frac{1}{2} \frac{1}{3^n} + \frac{1}{3^n} \times \frac{1}{3}$	6
2	$S_{n+1} = \frac{3}{2} - \frac{1}{3^n} (\frac{1}{3 \times 2})$ الوصول إلى:	7
2	$S_{n+1} = \frac{1}{2}(3 - \frac{1}{3^{n+1}})$	8

ي ن رو د ي.		• •
2	E(n) ترمیز	1
2+2	E(0)إثبات صحة	2
2+2	E(n+1) نفرض صحة $E(n)$ ونُثبت صحة	3
2	$S_{n+1} = S_n + \frac{1}{3^{n+1}}$ کتابة	4
2	$S_{n+1} = \frac{1}{2}(3 - \frac{1}{3^n}) + \frac{1}{3^n} \times \frac{1}{3}$ استخدام الفرض وكتابة:	5
2	$S_{n+1} = \frac{3}{2} - \frac{1}{2} \frac{1}{3^n} + \frac{1}{3^n} \times \frac{1}{3}$	6
2	$S_{n+1} = \frac{3}{2} - \frac{1}{3^n} (\frac{1}{3 \times 2})$ الوصول إلى:	7
2	$S_{n+1} = \frac{1}{2} (3 - \frac{1}{3^{n+1}})$	8

درجة الخطوة	الخطوة	رقم الخطوة
5	$S_{n+1}-S_n>0$	1
2	E(n) ترمیز	2
2+2	E(0)إثبات صحة	3
2+2	E(n+1) نفرض صحة $E(n)$ ونُثبت صحة	4
(5)×2	الإصلاح و النتيجة	5

السؤال السادس: (60 درجة)

التمرين الثاني :

P(A) الحدث A: " الكرتان المسحوبتان لهما اللون ذاته " ، احسب -1

درجة الخطوة	الخطوة	الخطوة
5	$S_{n+1} - S_n > 0$	1
2	$E\left(n ight)$ ترمیز	2
2+2	$E\left(0 ight)$ إثبات صحة	3
2+2	E(n+1) نفرض صحة $E(n)$ و نُثبت صحة	4
(5)×2	الإصلاح و النتيجة	5
	جة)	ا دس : (60 در.
		ني :
ه اللون وتحمل	ت، ثلاث حمراء اللون وتحمل الأرقام 0 , 1 , 2 وكرتان بيضا	ق على خمس كرا
مرين وسين	ياً كرتين على النتالي دون إعادة من هذا الصندوق.	
	حويتان لهما اللون ذاته" ، احسب $P(A)$.	
	يدل على مجموع رقمي الكرتين المسحوبتين.	
رياضى.	العشوائي X ، واكتب جدول قانونه الاحتمالي، ثمّ احسب توقعه الر	موعة قيم المتحول
درجة الخطوة	الخطوة	الخطوة
4× 3	$P(A) = \frac{3}{5} \times \frac{2}{1} + \frac{2}{5} \times \frac{1}{1} = \frac{8}{30}$	1
4/\ 3	5 4 5 4 20	1
8	$X(\Omega) = \{0, 1, 2, 3\}$	2
_	$P(x=0) = \dots = \frac{2}{20}$	
5	_ = 0	
5	$P(x=1) = \dots = \frac{8}{20}$	
3		3
5	$P(x = 2) = \dots = \frac{6}{}$	
	$P(x=2) = \dots = \frac{6}{20}$	
5	$P(x = 3) = \dots = \frac{4}{}$	
	20	
5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	$P(x) \mid \frac{2}{20} \mid \frac{8}{20} \mid \frac{6}{20} \mid \frac{4}{20}$	4
_	$E(x) = \sum_{i=1}^{i=4} x_i P_i 5$ $= \frac{0+8+12+12}{12}$	5
5	$\sum_{i=1}^{\infty} i^{2} i^{2}$	<i>J</i>
5		6
	20	
5	$=\frac{32}{20}$ المجموع	7
	20	1 '
60	20	

ملاحظة: في الخطوتين 3 و 4 إذا كتب الطالب:

$$\begin{array}{c|c|c|c|c}
X & 0 & 1 & 2 & 3 \\
\hline
P(X) & \frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6}
\end{array}$$

ثمّ كتب جدول القانون الاحتمالي وفق الشكل:

للحظة: إذا أنجز الطالب إحدى الخطوات 1 أو 2 أو 3 أو 4 معتمداً على جدول ينال الدرجات الم

 $\lim_{x\to+\infty}f\left(f\left(x\right)\right) \pmod{2}$

	یح یخس (10	اعتبار أن السحب بالتتالي مع إعادة وتابع بشكل صد	ا أنجز الحل على
	, , , ,		
		4 إذا كتب الطالب: 2 1 0 0	في الخطوتين 3 و
			عي سرين ور
		1 1 2 3	
		$X \mid 0 \mid 1 \mid 2 \mid 3$	
جة فقط للخطوتين	ينال 15 در.	حتمالي وفق الشكل: 1 2 2 1 مالي وفق الشكل: A	جدول القانون الا
		$P(X)$ $\frac{1}{6}$ $\frac{2}{6}$ $\frac{2}{6}$ $\frac{1}{6}$ $\frac{1}{6}$	
خصصة	نال الدر حات الم	دى الخطوات 1 أو 2 أو 3 أو 4 معتمداً على جدول ين	ذا أنحز الطالب اح
	. • -		سابع: (60 در
			<u>بى .</u> كە:
		2+lnr : : 1 -] - 1 + - [la . i mall & a di
	والمطلوب:	$f(x) = \frac{2 + \ln x}{1 + \ln x}$: eight lades $I = \left[e^{-1}, +\infty\right]$	عبع / المعرف عو
. 10.9 . 1.	f في المجال]1	عدداً حقيقياً A يحقق الشرط: إذا كان $x > A$ ، كان (x)	نم أعطِ $\lim_{x\to +\infty} f(x)$
			$\lim_{x\to +\infty} f(f(x))$
		CONTRACTOR OF THE STATE OF THE	ALIX MARKET
رجة الخطوة	در	الخطوة	لم الخطوة
5 + 5		$\lim_{x\to+\infty}f(x)=1$	1
5 + 5 + 5	+ 5	$\left \ln(x)+2\right $	2
+ مركز + قانون + تعويض	-	$\left \frac{\ln(x) + 2}{\ln(x) + 1} - 1 \right < 0.1$	2
~		$\left \frac{1}{2}\right < \frac{1}{2}$	2
5		$\left \frac{\ln(x)+1}{\ln(x)}\right < \frac{10}{10}$	3
5 + 5		$1+\ln(x)>10$	4
3		ln(x) > 9	5
2		$x > e^9$	6
		$x > e$ أو أي عدد أكبر منها $A = e^9$	<u> </u>
5 + 5		$\lim_{x\to+\infty} f(f(x)) = f(1) = 2$	7
60		المجموع	
			ا حل الطالب بالط
رجة الخطوة	در	الخطوة	قم الخطوة
5		$f(x) = 1 + \frac{1}{\ln x + 1}$	1
		$\frac{\ln x + 1}{1}$	
5 + 5		$\frac{9}{10} < 1 + \frac{1}{\ln x + 1} < \frac{11}{10}$	2
		$-\frac{1}{10} < \frac{1}{10} < \frac{1}{10}$	
5		$-\frac{10}{10} < \frac{1}{\ln x + 1} < \frac{10}{10}$	3
5		$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	4
<u> </u>		$0 < \frac{1}{\ln x + 1} < \frac{10}{10}$	4
5		$\ln(x) + 1 > 10$	5
5		ln(x) > 9	6
5		$x > e^9$	7
		او أي عدد أكبر منها $A=e^9$	/
	و اله التصريح	حساب المركز أو نصف القطر يخسر درجتان ويُتاب	ا أخطأ الطالب في
	ىم تا- استعمىياح.	. حسات المر حر او تصنف العظر يحسر در جدال ويتاب	

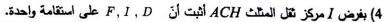
لاحظة اذا حل الطالب بالطريقة الآتية

	بالطريقة الأنية:	ه: إدا حل الطالب
درجة الخطوة	الخطوة	رقم الخطوة
5	$f(x) = 1 + \frac{1}{\ln x + 1}$	1
5 + 5	$\frac{9}{10} < 1 + \frac{1}{\ln x + 1} < \frac{11}{10}$	2
5	$-\frac{1}{10} < \frac{1}{\ln x + 1} < \frac{1}{10}$	3
5	$0 < \frac{1}{\ln x + 1} < \frac{1}{10}$	4
5	ln(x) + 1 > 10	5
5	ln(x) > 9	6
5	$x > e^9$	7
	أو أي عدد أكبر منها $A=e^9$	/

ملاحظة: إذا أخطأ الطالب في حساب المر كز أو نصف القطر يخسر درجتان ويُتابع له التم

السؤال الثامن: (60 درجة)

$\cdot \frac{\pi}{2}$	ن z_A حلاً للمعادلة $p(z)=0$ ثمّ استنتج الحل الآخر للمعادلة. z_A د العقدي z' الممثل للنقطة A' صورة النقطة A وفق دوران مركزه B' وزاويته A'	
2	رz بالشكل الأنتي.	- اكتب
درجة الخطوة	الخطوة	لخطوة
5 + 5 + 5 تعويض + نشر + نتيجة	$P(-1+i) = (-1+i)^2 + (1+2i)(-1+i) + 3+3i = 0$	1
	$Z_1 + Z_2 = -\frac{b}{a}$	
5	ا أو	2
	$Z_1.Z_2 = \frac{c}{}$	
5 + 5	z=-3i الوصول	3
تعويض + نتيجة 5	$Z' - Z_B = e^{i\theta}(Z_A - Z_B)$	4
5	$Z' + 3i = e^{i\frac{\pi}{2}}(-1 + i + 3i)$	5
5	, , , , , , , , , , , , , , , , , , ,	6
5	$Z' = -4 - 4i$ $r = \sqrt{2}$	7
5	$\theta = \frac{3\pi}{4}(2\pi)$	8
5	$Z_A = \sqrt{2} e^{i\frac{3\pi}{4}}$	9
60	المجموع	
ات المخصصة كاملة	ُالب الجذر الآخر بأي طريقة صحيحة ينال الدرجة المخصصة رين باستخدام المميز أو الإتمام إلى مربع كامل أو القسمة الإقليدية ينال الدرج	
	درجات $ imes$	المميز 3
	الطبيعيين للمميز $\times (8)$ درجات	
	لمطلوبین $2 imes(4)$ درجات	لجدرين ا


ملاحظة: إذا استنتج الطالب الجذر الآخر بأي طريقة صحيحة ينال الدرجة المخصصة

ملاحظة: إذا أوجد الجذرين باستخدام المميز أو الإتمام إلى مربع كامل أو القسمة الإقليدية ينال الدرجات المخصصة كاملة $(2) \times 3$ ايجاد المميز

- 2) اكتب معادلة للمستوي (ACH) •
- p: -2x + 2y 2z + 1 = 0 الذي معادلته P الذي معادلته (3) يوازي المستوي (ACH).

		ه المثلث ACH اثبت أن F,I,D على استقامة واحدة. C التي مركزها $\Omega(1,-1,1)$ ونصف قطرها S $R=\sqrt{3}$	تتب معادلة للمست بت أن المستوي إزي المستوي (آ رض I مركز ثقل تب معادلة للكرة
	درجة الخطوة	(ACH) يمس الكرة S. الخطوة	بين أن المستوي قم الخطوة
•	5×(3)	A,C,D,F,H ايجاد إجداثيات	1
	5	ax + by + cz + d = 0 معادلة المستوي من الشكل	2
	(4)×3	a,b,c,d تعويض النقاط الثلاث والحصول على ثلاث معادلات خطية بدلالة	3
	(3)×3	a,b,c ابجاد	4
	4	ئية. كتابة معادلة المستوى	5
	2×(5)	التحقق من التوازي ً	6
l	3×3	احداثيات مركز الثقل	7
	5 + 3 + 3 شعاع شعاع تناسب	إثبات النقاط H,I,F على استقامة واحدة	8
	2×(5)	معادلة الكرة (قانون +تعويض)	9
	5+5	حساب بعد Ω عن المستوي (ACH) (قانون + نتيجة)	10
	5	$r=$ التحقق من بعد Ω عن المستوي	11
	100	المجموع المجموع المدن ا	ية لإيجاد معا
Ī	5	$\overrightarrow{AM} = \alpha \overrightarrow{AC} + \beta \overrightarrow{AH}$	1
	3×3	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$	2
l	3×(4)	الإصلاح وكتابة المعادلات	3
	4	إيجاد معادلة المستوي	
		ادلة المستوي:	لة لإيجاد معا
	2	ناظم $\vec{n}(a,b,c)$	1
	(3)×2	إيجاد مركبات أي شعاعين من (ACH)	2
	$(3)\times 2+(3)\times 2$	الجداء السلمي يساوي الصفر	3
	3×(2)	$\vec{n}(a,b,c)$ أو كتابة a , b , c حساب الثوابت	4
	4	معادلة المستوي	5
		، إلى معادلة المستوي بأي طريقة سليمة أخرى لم تذكر في السلم توزع الدرجات بما يا و الطالب المكعب إلى معلم آخر وتابع حلّ المسالة بطريقة صحيحة يخسر 3 درجانا	

طربقة ثانبة لابجاد معادلة المستوى:

5	$\overrightarrow{AM} = \alpha \overrightarrow{AC} + \beta \overrightarrow{AH}$	1
3×3	$ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} $	2
3×(4)	الإصلاح وكتابة المعادلات	3
4	إيجاد معادلة المستوي	

طربقة ثالثة لابجاد معادلة المستوى:

2	ناظم $\vec{n}(a,b,c)$	1
(3)×2	إيجاد مركبات أي شعاعين من (ACH)	2
$(3)\times 2+(3)\times 2$	الجداء السلمي يساوي الصفر	3
3×(2)	$\overrightarrow{n}(a,b,c)$ حساب الثوابت a , b , c أو كتابة	4
4	معادلة المستوي	5

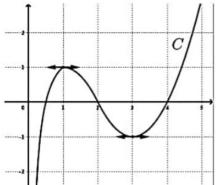
	ن $f(x)=rac{4}{1+e^x}$ وفق: \mathbb{R} والمطلوب : $f(x)=\frac{4}{1+e^x}$ والمطلوب : هاية التابع f عند أطراف مجموعة تعريفه واكتب معادلة كل مقارب وجدته.	
	تغيرات التابع ٢ ونظم جدولاً بها.	2− ادرس
.1	T عند النقط البياني C عند النقطة C ، C ، وإدرس الوضيع النسبي C عند النقطة C	3- جد م
	طم متجانس ارسم كل مقارب وجدته ثم ارسم المماس T والخط البياني C	4- في م
التابع و.	الخط البياني للتابع g المعرف على $\mathbb R$ وفق $\frac{4e^x}{1+e^x}$ استنتج الخط البياني C	5- ليكن ′
درجة الخطوة	الخطوة	لخطوة
10	$\lim_{x \to +\infty} f(x) = 0$	1
5	مقارب أفقي $y=0$	2
10	$\lim_{x \to -\infty} f(x) = 4$	3
5	مقارب أفقي $y=4$	4
	$f'(x) = \frac{-4e^x}{(1+e^x)^2} < 0$	5
10		
5	$\frac{x}{f'(x)} \frac{-\infty}{-}$	_
5	f(x) 4	6
5	 قانون المماس	7
3	m = f'(0) = -1	8
2	m-f (هادلهٔ $y=-x+2$	9
5	معادله ۲: ۲ معادله تشکیل تابع الفرق	1(
-	$x \mid -\infty 0 +\infty$	1
5×2	عوق Δ تحت Δ الوضع النسبي C	11
رسم C	y ↑ 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
رسم المقاربين 2+3		1
∠ +3	0	12
رسم المماس 5	 الرسم الدقيق للخط البياني مع مقارباته مع المماس	
5+5	$f(-x) = \frac{4}{1 + e^{-x}} = f(-x) = \frac{4}{1 + e^{-x}}$	13
	نظير C بالنسبة لمحور التراتيب $^{C^{\prime}}$	
100	المجموع	
	ستنتاج C' إذا كتب الطالب ما يأتي:	لله : في ال
5	$g(x) = \frac{4e^{x} + 4 - 4}{(1 + e^{x})^{2}} = 4 - f(x)$	1
5	ينتج عن C وفق تناظر لمحور الفواصل ثمّ إنسحاب شعاعه $ec{i}$ على محور التراتيب C'	2
	م الصحيح للخط C' ينال 10 درجات	للة: الرس
	انتهى السلم	

ļ			<u> </u>
	5	$g(x) = \frac{4e^{x} + 4 - 4}{(1 + e^{x})^{2}} = 4 - f(x)$	1
	5	ينتج عن C وفق تناظر لمحور الفواصل ثمّ إنسحاب شعاعه \vec{I} على محور التراتيب C'	2

الرياضيات

الاسم:

امتحان شهادة الدراسة الثانوية دورة عام 2019 (الفرع العلمي - الدورة الثانية)


الرقم: المدة:

الصفحة الأولي

الدرجة ستمائة

أولاً: أجب عن الأسنلة الأربعة التالية: (40) درجة لكل سؤال

السؤال الأول : في الشكل المرسوم جانباً ليكن C الخط البياني للتابع f المعرف على المجال $[0,+\infty[$

- $\lim_{x\to 0^+} f(x) , \lim_{x\to +\infty} f(x) \implies (1$
 - 2) دل على القيم الحدية مبيناً نوعها
- $f'(x) \le 0$ جد حلول المتراجحة (3
 - $f([1,3]) \Rightarrow (4)$

$$\binom{15}{2n} = \binom{15}{n+3}$$
 : عين قيم العدد n الذي تحقق العلاقة : السؤال الثاني عين قيم العدد n

السؤال الثالث: ليكن f التابع المعرف على R وفق:

$$f(x) = \begin{cases} \frac{x \sin x}{\sqrt{x^2 + 1} - 1} & : x \neq 0 \\ m & : x \neq 0 \end{cases}$$

- f عند الصفر التابع f عند الصفر
- . عين قيمة العدد m ليكون f مستمراً عند الصفر (2

B(-1,2,1) و A(2,1,-2) . النقطتين A(2,1,-2) و السؤال الرابع : نتأمل في معلم متجانس P: 3x - y - 3z - 8 = 0 والمستوى

- P أثبت أنّ المستقيم (AB) يعامد المستوى (1
- P على A المسقط القائم للنقطة A على A على A المسقط القائم للنقطة A على Aثانياً: حل التمارين الأربعة الآتية: (60) درجة لكل تمرين

التمرين الأول : ليكن C الخط البياني للتابع f المعرف على $[0,+\infty]$ وفق : : والمطلوب $f(x) = ax + b - \frac{lnx}{x}$

- يوازي A(1,0) عين العددين الحقيقيين a و b إذا علمت أنّ المماس للخط c في النقطة ay = 3x: الذي معادلته d الذي
 - y=4x-4 و a=4 و أثبت أنّ المستقيم a=4 الذي معادلته a=4 و a=4 Δ و C مقارب مائل للخط C في جوار ∞ + ثم أدرس الوضع النسبي بين

يتبع في الصفحة الثانية

الصفحة الثانية

C و B و A النقاط B و C النقاط B و B النقاط B و B النقاط B و B و B و B النقاط B و B النقاط B و B النقاط B و B النقاط B و B النقاط B و B و B النقاط B و B

1) احسب العدد $\frac{b-a}{c-a}$ واستنتج أنّ النقاط A و B و C تقع على استقامة واحدة

0 بفرض d=1+6i العدد العقدي الممثل للنقطة d=1+6i صورة θ وفق دوران مركزه وزاويته θ احسب θ

3) جد العدد العقدي n الممثل للنقطة N ليكون الرباعي OAND مربع

التمرين الثالث : لتكن المتتالية $u_n = \frac{2n-1}{n+1}$ المعرفة وفق : المطلوب الثالث : لتكن المتتالية المطلوب المعرفة وفق : المطلوب

- $(u_n)_{n\geq 0}$ ادرس اطراد المتتالية (1
- $(u_n)_{n\geq 0}$ أثبت أنّ العدد 2 راجح على (2
-] 1.9 , 2.1 مصب u_n خم جد عدداً طبيعياً n_0 يحقق أياً كان $n>n_0$ كان $n>n_0$ في المجال $n>n_0$ (3 التمرين الرابع: صندوق يحتوي على خمس كرات منها كرتان حمر أوان وثلاث كرات زرقاء

نكرر عملية سحب عشوائياً لكرة من الصندوق دون إعادة حتى لا يبقى في الصندوق إلا كرات من اللون ذاته ليكن X المتحول العشوائي الذي يمثل عدد مرات السحب اللازمة

عين مجموعة القيم التي يأخذها X واكتب جدول القانون الاحتمالي للمتحول X واحسب توقعه الرياضي ثالثاً - حل المسألتين الآتيتين: (100) درجة لكل مسألة

المسألة الأولى: نتأمل في معلم متجانس $(0; \vec{i}, \vec{j}, \vec{k})$ النقطة A(1,2,0) والمستويات:

P: 2x - y + 2z - 2 = 0 Q: x + y + z - 1 = 0R: x - z - 1 = 0

- 1) أثبت أنّ المستويين P و Q متقاطعان بفصل مشترك Δ ، اكتب تمثيلاً وسيطياً له
 - A يعامد Δ ويمر بالنقطة R يعامد Δ ويمر بالنقطة
 - 3) أثبت أنّ المستويات P و Q و Q تتقاطع في بنقطة I يطلب تعيين إحداثياتها
 - Δ استنتج بعد النقطة A عن المستقيم (4

المسألة الثانية : ليكن $f(x) = \frac{2x}{e^x}$ المعرف على R وفق : $f(x) = \frac{2x}{e^x}$ والمطلوب :

- 1) جد نهايات التابع f عند أطراف مجموعة تعريفه واكتب معادلة المقارب الأفقى
 - f ادرس تغیرات التابع f
 - C في معلم متجانس ارسم الخط (3)
- x=1 ومحوري الإحداثيات والمستقيم C
 - $g(x)=2xe^x$: وفق g ولنتج رسم الخط C_1 التابع (5
 - $y'+y=2e^{-x}$: هو حل المعادلة التفاضلية f(x) أثبت أن (6

انتهت الأسئلة

ي . سلّم تصحيح شهادة الثانوية العامة - الفرع العلمى لمادة الرياضيات الدورة الامتحانية الثانية لعام 2019م

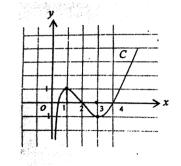
<u>ملاحظات عامة</u>

1- في ركن تسجيل الدرجات على القسيمة تخصص الحقول على التتالي كما يأتي:

موضوع السؤال	رقم السؤال	الحقل
قراءة خط بياني	السؤال الأول	1
تحليل توافقي	السؤال الثاني	2
الاستمرار	السؤال الثالث	3
أشعة	السؤال الرابع	4
تابع لوغاريتمي مقارب مائل	السؤال الخامس/ التمرين الأول	5
عقدية	السؤال السادس/ التمرين الثاني	6
متتاليات	السؤال السابع/ التمرين الثالث	7
احتمالات	السؤال الثامن/ التمرين الرابع	8
مسألة أشعة / هندسة	السؤال التاسع/ المسألة الأولى	9
مسألة تحليل	السؤال العاشر / المسألة الثانية	10

- 2- يُحذف (درجتان) لكل خطأ حسابي من الدرجات المخصصة للخطوة التي وقع فيها الخطأ.
- 3- إذا دمج الطالب خطوتين أو أكثر وكان باستطاعة الطالب الجيد أن يقوم بذلك الدمج ، يعطى الطالب مجموع الدرجات المخصصة لما دمج من خطوات .
 - 4- لا يجوز تجزئة الدرجات المخصصة للخطوة الواحدة إلا عند وجود خطأ حسابي .
- 5- إذا أخطأ الطالب في خطوة من خطوات الحل ثم تابع الحل بمنطق سليم ومفيد فيعطى عن الخطوات التي تليها ما يستحق من درجات وفق السلّم بشرط ألا يؤدي الخطأ إلى خفض سوية السؤال أو تغيير مضمونه .
- 6-إذا أجاب الطالب عن موقف بطريقة غير واردة في السلّم ، فعلى المصحح أن يعرض الطريقة على ممثل الفرع الذي عليه أن يقوم والموجهون الاختصاصيون بدراسة هذه الطريقة والتأكد من صحتها ومن ثم توزيع الدرجات لتلك الطريقة بما يكافئ التوزيع الوارد على الطريقة الواردة في السلّم ثم يعمّم هذا التوزيع بعد أخذ موافقة التوجيه الأول لمادة الرياضيات في وزارة التربية .
- 7- عند الاضطرار إلى تعديل درجة حصل عليها الطالب عن سؤال ما ، يجب على كل من المصحح والمدقق تسجيل اسمه مقروناً بتوقيعه في جوار الدرجة المعدّلة مرفقاً بمهر خاتم الامتحانات .
 - 8-إذا حل الطالب سؤالاً بأكثر من طريقة تصحح كافة حلوله وتعتمد الدرجة الأعلى.
- 10- إذا لم يُجب الطالب عن سؤال ما، تُكتب (إلى جانب السؤال)العبارة الآتية: (صفر للسؤال..... لأنه بلا إجابة)
- 11- تُسجل الدرجات التي يستحقها الطالب عن طلبات السؤال ومراحله (رقماً) وبوضوح على الهامش ، أما الدرجة المستحقة عن السؤال كاملاً تُسجل على الهامش الأيمن (مقابل بداية الإجابة) رقماً وكتابة.

مثال ذلك : الأحاد العشرات المئات 1 1 2


بعد استبدال حقل الكسور بالآحاد.

حقل الآحاد بالعشرات. حقل العشرات بالمئات.

الدورة الامتحانية الثانية لعام 2019م

أولاً: أجب عن الأسئلة الأربعة الآتية: (40 درجة لكل سؤال)

- $\lim_{x \to 0} f(x)$, $\lim_{x \to +\infty} f(x) \to (1$
- دل على القيم الحدية مبيّناً نوعها.
- . $f'(x) \le 0$ جد حلول المتراجحة: 0
 - $f([1,3]) \Rightarrow (4)$

=			/ (L / J/ · · ·
الخطوة	درجة	الخطوة	رقم الخطوة
5	5	$(-\infty)$ أو فقط $\lim_{x \to 0} f(x) = -\infty$	1
5		$(+\infty)$ أو فقط $\lim_{x \to +\infty} f(x) = +\infty$	2
5+	-5	(2کبری محلیاً) (1) او (1)	3
5-	+5	(1-=(3)=-1) (صغری محلیاً) $f(3)=-1$	4
5	5	[1,3]	5
5	5	[-1,+1]	
4	0	المجموع	

ملاحظة: إذا فتح أحد طرفى المجالات أو كلاهما يخسر درجتين.

$\binom{15}{2n} = \binom{15}{n+3}$: التي تحقق العلاقة العلاقة عين قيم العدد n التي تحقق العلاقة

درجة الخطوة	الخطوة	رقم الخطوة
10	شرط الحل	1
15+15	n=3 الوصول إلى $n=4$	2
40	المجموع	

	الدورة الامتحانية الثانية لعام 2019م 40 درجة لكل سؤال)	عن الأسئلة الأربعة الآتية: (
		، الأول:
	الخط البياني للتابع أ المعرف	كل المرسوم جانباً عليكن C
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	على المجال] ∞+, 0 [والم
		(x) , $\lim_{x \to +\infty} f(x) \Rightarrow (1)$
	1 0 1 1 3 4	* * * * * * * * * * * * * * * * * * * *
		2) دل على القيم الحدّية م
	$f(x) \leq \frac{1}{x} \int_{\mathbb{R}^n} f(x) dx$	3) جد حلول المتراجحة: 04) عدد (11.21)
. 1 . 11 ; ,	الخطوة	$f\left([1,3]\right) \Rightarrow (4$
درجة الخطوة 5	——————————————————————————————————————	رقم الخطوة
	$x \rightarrow 0$	'
5	$\left(+\infty\right)$ أو فقط $\lim_{x\to+\infty}f\left(x ight)=+\infty$	2
5+5	(2کبری محلیاً) $(f(1)=1)$ أو	3
5+5	(1-) (صغری محلیاً) $(3)=-1$ أو $(3)=-1$	4
5	[1,3]	5
5	[-1,+1]	
40	المجموع ت أو كلاهما يخسر درجتين.	
	$\begin{pmatrix} 15 \\ 2n \end{pmatrix} = \begin{pmatrix} 15 \\ n+3 \end{pmatrix}$. تحقق العلاقة :	ثاني: عيّن قيم العدد n الن
درجة الخطوة	$\cdot \binom{15}{2n} = \binom{15}{n+3} : $ الخطوة	
درجة الخطوة 10	() () ()	
	الخطوة $n=3$ الخطوة $n=4$ الوصول إلى $n=4$	
10	الخطوة شرط الحل	رقم الخطوة 1 2
10 15+15 40	الخطوة $n = 3$ الخطوة الوصول إلى $n = 4$ أو $n = 3$ المجموع	رقم الخطوة 1 2 ريقة ثانية:
10 15+15 40 درجة الخطوة	الخطوة شرط الحل الوصول إلى 1 = 1 أو 1 = 1 المجموع الخطوة	رقم الخطوة 1 2
10 15+15 40	الخطوة شرط الحل الوصول إلى 1 = 1 أو 1 = 1 المجموع الخطوة إيجاد شرط الحل	رقم الخطوة 1 2 ريقة ثانية:
10 15+15 40 درجة الخطوة 10	الخطوة شرط الحل الوصول إلى 1 = 1 أو 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	رقم الخطوة 1 2 ريقة ثانية:
10 15+15 40 درجة الخطوة 10 4+4	الخطوة الخطوة الوصول إلى $n = 3$ أو $n = 4$ الوصول إلى $n = 4$ المجموع المجموع المجموع المجموع الخطوة $\frac{15!}{(2n)!(15-2n)!} = \frac{15!}{(n+3)!(12-n)!}$	رقم الخطوة 1 2 ريقة ثانية: رقم الخطوة 1
10 15+15 40 درجة الخطوة 10 4+4 4	الخطوة الحل الحل الحل الحل الحل الحل الحل الح	رقم الخطوة 1 2 ريقة ثانية:
10 15+15 40 درجة الخطوة 10 4+4	الخطوة الحل الحل الحل الحل الحل الحل الحل الح	رقم الخطوة 1 2 ريقة ثانية: رقم الخطوة 1
10 15+15 40 درجة الخطوة 10 4+4 4	الخطوة الخطوة الوصول إلى $n = 3$ أو $n = 4$ الوصول إلى $n = 4$ المجموع المجموع المجموع المجموع الخطوة المجاد شرط الحل $\frac{15!}{(2n)!(15-2n)!} = \frac{15!}{(n+3)!(12-n)!}$ $\frac{(2n)!(15-2n)!}{(n+3)!} = \frac{(12-n)!}{(15-2n)!}$ $\frac{(2n)!}{(n+3)!} = \frac{(12-n)!}{(15-2n)!}$	رقم الخطوة 1 2 ريقة ثانية: رقم الخطوة 1
10 15+15 40 cces likedes 10 4+4 4	الخطوة الحل الحل الحل الحل الحل الحل الحل الح	رقم الخطوة 1 2 ريقة ثانية: رقم الخطوة 1 2
10 15+15 40 درجة الخطوة 10 4+4 4 4	الخطوة الخطوة $n = 3$ أو $n = 4$ الوصول إلى $n = 4$ أو $n = 3$ المجموع المجموع المجموع إلى المجموع المجموع إلى ا	رقم الخطوة 1 2 ريقة ثانية: رقم الخطوة 1
10 15+15 40 cces likedes 10 4+4 4	الخطوة الخلوة الخلاء الخطوة الخطوة الوصول إلى $n = 3$ أو $n = 4$ المجموع المجموع المجموع المجموع الخطوة الخلاء المجموع المجم	رقم الخطوة 2 ريقة ثانية: رقم الخطوة 1 2 3
10 15+15 40 درجة الخطوة 10 4+4 4 4 4 5+5 40	الخطوة الخلاء الخلاء الوصول إلى $n = 3$ أو $n = 4$ المجموع المجموع المجموع الخطوة المحلول الخلاء الخلاء المحموع المح	رقم الخطوة 1 2 ريقة ثانية: رقم الخطوة 1 2 3 4 n=4, n=3 كتب n=4, n=4
10 15+15 40 درجة الخطوة 10 4+4 4 4 4 5+5 40	الخطوة الخلوة الخلاء الخطوة الخطوة الوصول إلى $n = 3$ أو $n = 4$ المجموع المجموع المجموع المجموع الخطوة الخلاء المجموع المجم	رقم الخطوة 1 2 ريقة ثانية: رقم الخطوة 1 2 3 4 n=4, n=3 كتب n=4, n=4
10 15+15 40 درجة الخطوة 10 4+4 4 4 4 5+5 40	الخطوة الخلاء الخلاء الوصول إلى $n = 3$ أو $n = 4$ المجموع المجموع المجموع الخطوة المحلول الخلاء الخلاء المحموع المح	رقم الخطوة 1 2 ريقة ثانية: رقم الخطوة 1 2 3 4 1 4

السوال الثالث: ليكن
$$f$$
 التابع المعرف على \mathbb{R} وفق : $x \neq 0$ $x \neq 0$ $x \neq 0$ والمطلوب: $f(x) = \begin{cases} \frac{x \sin x}{\sqrt{x^2 + 1} - 1} & x \neq 0 \\ m & x = 0 \end{cases}$

درجة الخطوة	الخطوة	رقم الخطوة
5	ح. ع.ت	1
5 + 5	الضرب بالمرافق والإصلاح	2
3+2	إيجاد النهاية	3
10	شرط الاستمرار	4
10	استنتاج قيمة m	5
40	المجموع	

ملاحظة: إذا وجد الطالب النهاية دون ذكر حالة عدم التعيين تعطى درجة الخطوة الأولى ضمناً.

السوال الرابع:

رجة الخطوة 5	. 1 . 11	2- عين
5		خطوة
	ح.ع.ت	**
5 + 5	نضرب بالمرافق والإصلاح	4 الـ
3+2	إيجاد النهاية	,
10	شرط الاستمر ار	4
10 40	استنتاج قيمة m المجموع	
	P يعامد المستوي (AB) يعامد المستوي .	
12 °	A وسيطياً للمستقيم (AB) ، ثمّ عيّن إحداثيات النقطة A' المسقط القائم للنقطة A	اكتب تمثي
درجة الخطوة	لاً وسيطياً للمستقيم (AB) ، ثمّ عيّن إحداثيات النقطة 'A المسقط القائم للنقطة A المسقط القائم للنقطة A المستقيم الفائم النقطة الم النقطة الم المستقيم الخطوة	اكتب تمثي
درجة الخطوة 5 + 5	A وسيطياً للمستقيم (AB) ، ثمّ عيّن إحداثيات النقطة A' المسقط القائم للنقطة A الخطوة $\overline{AB}(-3,1,3)$, $\overline{n}(3,-1,-3)$	اكتب تمثي الخطوة 1
درجة الخطوة	A وسيطياً للمستقيم (AB) ، ثمّ عيّن إحداثيات النقطة A' المسقط القائم للنقطة A الخطوة	اكتب تمثي
درجة الخطوة 5 + 5	A المستقيم A' المستقيم (AB) ، ثمّ عيّن إحداثيات النقطة A' المسقط القائم للنقطة $AB(-3,1,3)$, $AB(-3,1,3)$, $AB(-3,1,3)$, $AB(-3,1,3)$. $AB(-3,$	اكتب تمثي الخطوة 1
درجة الخطوة 5 + 5 5	A وسيطياً للمستقيم (AB) ، ثمّ عين إحداثيات النقطة A' المسقط القائم للنقطة A' الخطوة $\overline{AB}(-3,1,3)$, $\overline{n}(3,-1,-3)$ $\overline{AB}(-3,1,3)$ أو تناسب المركبات $\overline{AB}=-\overline{n}$ يعامد \overline{AB} \overline{AB} \overline{AB} \overline{AB}	اكتب تمثي الخطوة 1 2
درجة الخطوة 5 + 5 5	A وسيطياً للمستقيم A' ثمّ عين إحداثيات النقطة A' المسقط القائم للنقطة AB الخطوة \overline{AB} $(-3,1,3)$, \overline{n} $(3,-1,-3)$ \overline{AB} A	اكتب تمثي الخطوة 1 2 3

انيا: حل التمارين الاربعة الاتية: (60 درجة لكل تمرين)

السؤال الخامس: (60 درجة)

التمرين الأول: ليكن C الخط البياني للتابع $f(x) = ax + b - \frac{\ln x}{x}$ وفق: $0, +\infty$ والمطلوب:

(60 درج			
الخط البيان	$f(x) = ax + b - \frac{\ln x}{x}$ وفق: $0, +\infty$ المعرف على أ $0, +\infty$	والمطلوب:	
a حقيقيين	يوازي المستقي $A\left(1,0 ight)$ في النقطة $A\left(1,0 ight)$ يوازي المستقي b , a	م d الذي	
y=3			
0 = -4, a	C مقارب مائل للخط $y=4x-4$ مقارب مائل للخط $b=$	في جوار ∞+	
ضع النسبي : ا	بي بين C و ∆. الخطوة	1.: 11 %	* 1.:1
زة		درجة الخطوة	
	$f'(x) = a - \frac{1 - \ln x}{x^2}$	3 + 5	
	f(1) = 0, $a+b=0$	3 + 5	
	f'(1)=3, $a-1=3$	3 + 2	
	a قيمة b قيمة	2 + 2	2 -
	$f(x) - y_{\Delta} = -\frac{\ln x}{x}$	5+5	5+
	$\lim_{x \to +\infty} (f(x) - y_{\Delta}) = 0$	5	5
	$x \mid 0$ $1 + \infty$		
	+ 0 -	5+5	5+
		5+5 5+5	
	Δ تحت C Δ تحت C	5+5	5+
- v 60)	المجموع	5+5 60	
, b = -6	المجموع (C,B,A) النقاط (D,\vec{u},\vec{v}) التي تمثلها (D,\vec{u},\vec{v}) التي تمثلها (D,\vec{u},\vec{v}) بالترتيب. المطلوب:	60	
عقدي المنس, $b = -6$, $\frac{b-a}{c-a}$.	المجموع (D, \vec{u}, \vec{v}) النقاط (D, \vec{u}, \vec{v}) التي تمثلها معلم متجانس (D, \vec{u}, \vec{v}) التي تمثلها	60 الأعداد العقدية:	
بعقدي المنس $b=-6$ ، $\frac{b-a}{c-a}$. $d=1$	المجموع المجموع التي معلم متجانس (O, u, v) النقاط C , B , A التي تمثلها $c=-18+7i$, b واستنتج أنّ النقاط $c=1$, b تقع على استقامة واحدة.	60 الأعداد العقدية:	
بعقدي المنس $b=-6$ ، $\frac{b-a}{c-a}$. $d=1$	المجموع $(D, \overline{u}, \overline{v})$ النقاط $(D, \overline{u}, \overline{v})$ النتي تمثلها منسوب إلى معلم متجانس $(D, \overline{u}, \overline{v})$ النتي $(D, \overline{u}, \overline{v})$ النتي تمثلها $(D, \overline{u}, \overline{v})$ بالترتيب. المطلوب: $(D, \overline{u}, \overline{v})$ بالنقاط $(D, \overline{u}, \overline{v})$ تقع على استقامة واحدة. $(D, \overline{u}, \overline{v})$ العدد العقدي الممثل للنقطة $(D, \overline{u}, \overline{v})$ وزاو	60 الأعداد العقدية: يته θ أحسب θ.	
بعقدي المنس b = -6 b - a c - a d = 1 الم تدي n الم	المجموع المجموع التي معلم متجانس (O, \vec{u}, \vec{v}) النقاط (O, \vec{u}, \vec{v}) التي تمثلها منسوب إلى معلم متجانس (O, \vec{u}, \vec{v}) النقاط (O, \vec{u}, \vec{v}) التي تمثلها (O, \vec{u}, \vec{v}) التي تمثلها (O, \vec{u}, \vec{v}) النقاط (O, \vec{u}, \vec{v}) تقع على استقامة واحدة. (O, \vec{v}) النقاط (O, \vec{v}) النقطة (O, \vec{v}) موروة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل ا	الأعداد العقدية: $ heta$ احسب $ heta$ احسب $ heta$ عدم خصب $ heta$ عدم خصب خصب خصب خصب خصب خصب خصب خصب خصب خصب	6
بعقدي المنس b = -6 b - a c - a d = 1 الم تدي n الم	المجموع C , B , A النقاط C , B , A التي تمثلها منسوب إلى معلم متجانس C , D النقاط C , D النقاط C , D النقاط C , واستنتج أنّ النقاط C , D , تقع على استقامة واحدة. C , D وزاو العقدي الممثل للنقطة D صورة D وفق دوران مركزه D وزاو الممثل للنقطة D ليكون الرباعي D مربعاً.	الأعداد العقدية: $ heta$ احسب $ heta$ احسب $ heta$ عدم خصب $ heta$ عدم خصب خصب خصب خصب خصب خصب خصب خصب خصب خصب	6 درجة الخطوة
بعقدي المنس b = -6 b - a c - a d = 1 الم تدي n الم	المجموع المجموع التي معلم متجانس (O, \vec{u}, \vec{v}) النقاط (O, \vec{u}, \vec{v}) التي تمثلها منسوب إلى معلم متجانس (O, \vec{u}, \vec{v}) النقاط (O, \vec{u}, \vec{v}) التي تمثلها (O, \vec{u}, \vec{v}) التي تمثلها (O, \vec{u}, \vec{v}) النقاط (O, \vec{u}, \vec{v}) تقع على استقامة واحدة. (O, \vec{v}) النقاط (O, \vec{v}) النقطة (O, \vec{v}) موروة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل ا	الأعداد العقدية: $ heta$ احسب $ heta$ احسب $ heta$ عدم خصب $ heta$ عدم خصب خصب خصب خصب خصب خصب خصب خصب خصب خصب	6 درجة الخطوة 5+5+5
بعقدي المنس b = -6 b - a c - a d = 1 الم تدي n الم	المجموع المجموع المجموع المجموع التي معلم متجانس (O, \vec{u}, \vec{v}) النقاط (O, \vec{u}, \vec{v}) التي تمثلها منسوب إلى معلم متجانس (O, \vec{u}, \vec{v}) النقاط (O, \vec{u}, \vec{v}) المعقامة واحدة. (O, \vec{u}, \vec{v}) واستنتج أنّ النقاط (O, \vec{u}, \vec{v}) تقع على استقامة واحدة. العدد العقدي الممثل للنقطة (O, \vec{u}, \vec{v}) صورة (O, \vec{u}, \vec{v}) وزاو الممثل للنقطة (O, \vec{v}) الممثل للنقطة (O, \vec{v}) الممثل للنقطة (O, \vec{v}) الممثل للنقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) النقطة (O, \vec{v}) النقطة (O, \vec{v}) النقطة (O, \vec{v}) الممثل النقاط على استقامة واحدة أو أي عبارة	الأعداد العقدية: $ heta$ احسب $ heta$ احسب $ heta$ عدم خصب $ heta$ عدم خصب خصب خصب خصب خصب خصب خصب خصب خصب خصب	6 درجة الخطوة 5+5+5
بعقدي المنس b = -6 b - a c - a d = 1 الم تدي n الم	المجموع المجموع المجموع المجموع التي معلم متجانس (O, \vec{u}, \vec{v}) النقاط (O, \vec{u}, \vec{v}) التي تمثلها منسوب إلى معلم متجانس (O, \vec{u}, \vec{v}) النقاط (O, \vec{u}, \vec{v}) المعقامة واحدة. (O, \vec{u}, \vec{v}) واستنتج أنّ النقاط (O, \vec{u}, \vec{v}) تقع على استقامة واحدة. العدد العقدي الممثل للنقطة (O, \vec{u}, \vec{v}) صورة (O, \vec{u}, \vec{v}) وزاو الممثل للنقطة (O, \vec{v}) الممثل للنقطة (O, \vec{v}) الممثل للنقطة (O, \vec{v}) الممثل للنقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) النقطة (O, \vec{v}) النقطة (O, \vec{v}) النقطة (O, \vec{v}) النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل النقطة (O, \vec{v}) الممثل المم	الأعداد العقدية: $ heta$ احسب $ heta$ احسب $ heta$ عدم خصب $ heta$ عدم خصب خصب خصب خصب خصب خصب خصب خصب خصب خصب	درجة الخطوة 5+5+5 5
بعقدي المنس b = -6 b - a c - a d = 1 الم تدي n الم	المجموع المجموع المجموع المجموع المعلم متجانس (O, u, v) النقاط C, B, A التي تمثلها منسوب إلى معلم متجانس (O, u, v) النقاط $C = -18 + 7i$, b , c واستنتج أنّ النقاط $c = 0$ بالترتيب. المطلوب: $c = 0$ النقاط $c = 0$ من النقاط $c = 0$ الممثل النقطة $c = 0$ صورة $c = 0$ وزاو الممثل النقطة $c = 0$ الممثل النقطة $c = 0$ الممثل النقطة $c = 0$ الممثل النقطة $c = 0$ الممثل النقطة $c = 0$ الممثل النقطة $c = 0$ الممثل النقطة $c = 0$ الممثل النقطة $c = 0$ الممثل النقطة $c = 0$ الممثل النقطة $c = 0$ الممثل النقطة $c = 0$ الممثل النقطة والمدة أو أي عبارة النسبة عدد حقيقي فالنقاط على استقامة واحدة أو أي عبارة النسبة عدد حقيقي فالنقاط على استقامة واحدة أو أي عبارة $c = 0$ النسبة عدد حقيقي فالنقاط على استقامة واحدة أو أي عبارة $c = 0$	الأعداد العقدية: $ heta$ احسب $ heta$ احسب $ heta$ عدم خصب $ heta$ عدم خصب خصب خصب خصب خصب خصب خصب خصب خصب خصب	درجة الخطوة 5+5+5 5 5 3 × 5
بعقدي المنس b = -6 b - a c - a d = 1 الم تدي n الم	المجموع C , B , A النقاط C , D , D النقاط C , D التي تمثلها C , D , D الترتيب. المطلوب: $C=-18+7i$, D النقاط D , D النقطة D مورة D , D وفق دوران مركزه D وزاو الممثل للنقطة D ليكون الرباعي D الخطوة D الخطوة D الخطوة D الخطوة D النقاط D الخطوة D النسبة عدد حقيقي فالنقاط على استقامة و احدة أو أي عبارة D فانون الدور ان D D فانون الدور ان D D وانون الدور ان D D وانون الدور ان D D D وانون الدور ان D D D D D D D D D D	الأعداد العقدية: عنه θ أحسب θ. در مناسبة صحيحة	درجة الخطوة 5+5+5 5 3 × 5 5

السؤال السادس: (60 درجة) التمرين الثاني:

نتامل في المستوي العقدي المنسوب إلى معلم متجانس (O, u, v) النقاط C, B, A التي تمثلها الأعداد العقدية:

الترتيب. المطلوب: c = -18 + 7i , b = -6 + 3i , a = 6 - i

- ا احسب العدد $\frac{b-a}{c-a}$ ، واستنتج أنّ النقاط C , B , A تقع على استقامة واحدة.
- بفرض d=1+6i العدد العقدي الممثل للنقطة D صورة A وفق دوران مركزه d=1+6i بفرض (2
 - مربعاً. OAND مربعاً. N الممثل النقطة N ليكون الرباعي

درجة الخطوة	الخطوة	رقم الخطوة
5+5+5	$\frac{b-a}{c-a} = \frac{-12+4i}{-24+8i} = \frac{4(-3+i)}{8(-3+i)} = \frac{1}{2}$	1
5	النسبة عدد حقيقي فالنقاط على استقامة واحدة أو أي عبارة مناسبة صحيحة	2
5	$d=ae^{i heta}$ قانون الدوران	3
3 × 5	$e^{i\theta} = \frac{d}{a} = \frac{1+6i}{6-i} = i$	4
5	$\theta = \frac{\pi}{2}$	5
5	$\overrightarrow{OA} = \overrightarrow{DN}$	6
5+3+2	a = n - d , $n = a + d$, $n = 7 + 5i$	7
60	المجموع	

مؤال السابع: (60 در جة) التمرين الثالث:

- $(u_n)_{n\geq 0}$ ادر س اطراد المتتالية $(u_n)_{n\geq 0}$. (2) أثبت أن العدد 2 راجح على $(u_n)_{n\geq 0}$.
- [1.9, 2.1] ، ثم جد عدداً طبيعياً $[n_0]$ يحقق أياً كان $[n>n_0]$ كان $[n>n_0]$ ، ثم جد عدداً طبيعياً

	$\frac{1}{2}$ Large $\frac{2n-1}{2}$	تالية مر (س) ا
	المعرفة وفق: $u_n = \frac{2n-1}{n+1}$ والمطلوب:	. (n / n 20
	$(u_n)_{n\geq 0}$) اطراد المتثاليا أن العدد 2
]1 o	$(u_n)_{n\geq 0}$ جح علی	
. j1.9	, 2.1 مجد عدداً طبيعياً n_0 يحقق ايّاً كان $n>n_0$ كان مجد عدداً طبيعياً	$\lim_{n\to+\infty}u_n$
درجة الخطوة	الخطوة	م الخطوة
5+5	كتابة الفرق $u_{n+1}-u_n$ ثم التعويض	1
5 5	إصلاح استنتاج أن u_n متزايدة تماماً	2
5+5	$u_n - 2 = \frac{-3}{n+1} < 0 \implies u_n < 2$	3
5	$\lim_{x\to\infty}u_n=2$	4
5+5 قانون + تعویض	$ u_n - 2 < 0.1$	5
5+5	$\frac{3}{n+1} < \frac{1}{10}$ نتیجة السنت	6
5	نتيجة	7
60	المجموع	
5×4 درجة	المشتق u_n متزاید ومنه u_n متزاید ومنه u_n متزایده u_n متزایده u_n	$\frac{2x-1}{x+1}$
	المشتق u_n متزایده f f $f'(x) > 0$ متزایده u_n متزایده f $f'(x) > 0$ متزایده u_{n+1} ، إصلاح u_n	$=\frac{2x-1}{x+1}$ الب
	(متزاید ومنه u_n متزاید f) + $f'(x) > 0$ + المشتق u_n متزاید u_n متزاید ومنه u_n متزاید u_n ، u_{n+1} ، u_n	$=rac{2x-1}{x+1}$ الب $n \ge 1$
	(متزاید ومنه u_n متزاید f) + $f'(x) > 0$ + المشتق u_n متزاید u_n متزاید ومنه u_n متزاید u_n ، u_{n+1} ، u_n	$rac{2x-1}{x+1}$ الب $n \geq 1$ الخذ u_0 حسب u_0
	$(x) = u_n$ متزاید ومنه u_n خات u_n متزاید ومنه u_n	$rac{2x-1}{x+1}$ الب $n \geq 1$ الخذ u_0 حسب u_0
	$(x) = u_n$ متزاید ومنه u_n خات u_n متزاید ومنه u_n	$rac{2x-1}{x+1}$ الب $n \geq 1$ الخذ u_0 حسب u_0
	$(x) = u_n$ متزاید ومنه u_n خات u_n متزاید ومنه u_n	$rac{2x-1}{x+1}$ الب $n \geq 1$ الخذ u_0 حسب u_0
	$(x) = u_n$ متزاید ومنه u_n خات u_n متزاید ومنه u_n	$rac{2x-1}{x+1}$ الب $n \geq 1$ الخذ u_0 حسب u_0
	$(x) = u_n$ متزاید ومنه u_n خات u_n متزاید ومنه u_n	$rac{2x-1}{x+1}$ الب $n \geq 1$ الخذ u_0 حسب u_0
	$(x) = u_n$ متزاید ومنه u_n خات u_n متزاید ومنه u_n	$=\frac{2x-1}{x+1}$ الب
	$(x) = u_n$ متزاید ومنه u_n خات u_n متزاید ومنه u_n	$rac{2x-1}{x+1}$ الب $n \geq 1$ الخذ u_0 حسب u_0
	$(x) = u_n$ متزاید ومنه u_n خات u_n متزاید ومنه u_n	$rac{2x-1}{x+1}$ الب $n \geq 1$ الخذ u_0 حسب u_0
	$(x) = u_n$ متزاید ومنه u_n خات u_n متزاید ومنه u_n	$rac{2x-1}{x+1}$ الب $n \geq 1$ الخذ u_0 حسب u_0
	$(x) = u_n$ متزاید ومنه u_n خات u_n متزاید ومنه u_n	$rac{2x-1}{x+1}$ الب $n \geq 1$ الخذ u_0 حسب u_0
	$(x) = u_n$ متزاید ومنه u_n خات u_n متزاید ومنه u_n	$rac{2x-1}{x+1}$ الب $n \geq 1$ الخذ u_0 حسب u_0
	$(a_n) = \frac{u_n}{u_n} + f'(x) + f'(x) + f'(x) + f'(x) = \frac{u_{n+1}}{u_n}$, $\frac{u_{n+1}}{u_n}$, $\frac{u_{n+1}}{u_n}$, $\frac{u_1 > u_0}{u_1}$	$rac{2x-1}{x+1}$ الب $n \geq 1$ الخذ u_0 حسب u_0

إذا كتب الطالب
$$u_n$$
 متزايدة) $f(x) > 0+1$ المشتق $f(x) > 0+1$ المشتق $f(x) = \frac{2x-1}{x+1}$ إذا كتب الطالب

$$\frac{u_{n+1}}{u_n}$$
 ، أخذ $n \ge 1$ أخذ أخذ أ

5
$$u_1 > u_0$$
 وإثبات u_0 u_0 حسب ومنه u_0 متزايدة

السؤال الثامن: (60 درجة)

التمرين الرابع:

ليكن X المتحول العشوائي الذي يمثل عدد مرات السحب اللازمة.

عيّن مجموعة القيم التي يأخذها X ، واكتب جدول القانون الاحتمالي للمتحول X ، واحسب توقعه الرياضي

	كرات منها .كرتان حمراوان, وثلاث كرات زرقاء، نكرر عملية سحب عشوائي لكرة تبقى في الصندوق إلا كرات من اللون ذاته .	
	ي يمثل عدد مرات السحب اللازمة.	
ضىي	و يأخذها X ، واكتب جدول القانون الاحتمالي للمتحول X ، واحسب توقعه الريا	عيّن مجموعة القيم التي
درجة الخطوة	الخطوة	رقم الخطوة
3×2=6	$X(\Omega) = \{2, 3, 4\}$	1
4+4	P(X=2) حساب	
4+4+4	P(X=3) حساب	3
4	P(X=4) حساب	
5+5	الجدول الموافق للحل	4
0 + 2 + 1.5	التوقع	5
2+3+15 60	قانون + تعويض + نتيجة المجموع	
UU	المجموع	<u>:1</u> ä
رجتان من الجدول	للمتحول فقط، يخسر درجتان ويخسر حساب القيمة المفقودة ويخسر د	<u>إذا</u> كتب الطالب قيمتان
		<u>:2</u> ä
	ة ينال درجة واحدة لكل فرع (18درجة)	'
	و $P(X=3)$ و $P(X=4)$ ينال $P(X=4)$ درجات)	,
		الجدول (10 درجات)
		الجدول (10 درجات) التوقع (20 درجة)
		'
		'
		'
		'
		'
		'
		'
		'
		'
		'
		'
		'
		,
		,
		,
		'
		'
		'

تُالثًا: حل المسألتين الآتيتين: (100 درجة لكل مسألة)

المسألة الأولى:

$$P: 2x-y+2z-2=0$$

نتأمل في معلم متجانس
$$(0; \vec{i}, \vec{j}, \vec{k})$$
 النقطة $A(1,2,0)$ والمستويات: $Q: x+y+z-1=0$

$$R: x-z-1=0$$

- أثبت أنّ المستويين Q , P متقاطعان بفصل مشترك Δ ، اكتب تمثيلاً وسيطياً له.
 - A يعامد Δ ويمر بالنقطة R يعامد Δ ويمر بالنقطة Δ
 - 3) أثبت أنّ المستويات R , Q , P تتقاطع بنقطة I يطلب تعيين إحداثياتها.
 - Δ استتتج بعد النقطة A عن المستقيم (4

Ħ		<u>ءَ:</u> (100 درجة لكل مسألة)	
8			للة الأولى:
8	\$1	P: 2x - y + 2z - 2 = 0	r des les às
	سوپ:	$Q: \ x+y+z-1=0$ والمستويات: $A(1,2,0)$ النقطة $A(1,2,0)$ والمطا $O; ec{i}, ec{j},$	ن في معلم منجالس (﴿
			- u = 1 - = 1/1
3		يين Q , P متقاطعان بفصل مشترك Δ ، اكتب تمثيلاً وسيطياً له.	
		A يعامد Δ ويمر بالنقطة A .	•
		يات R , Q , P تتقاطع بنقطة I يطلب تعيين إحداثياتها،	•
<u>,</u>		$\cdot \Delta$ عن المستقيم A عن المستقيم	
Ĕ	درجة الخطوة	الخطوة	الرقم الخطوة
	10+10	$n_{p}(2,-1,2) n_{Q}(1,1,1)$	1
Ĕ	5+5	استنتاج أن الشعاعين \overline{n}_{p} , \overline{n}_{Q} غير مرتبطان خطياً	2
Ĕ	_	2x - y + 2z - 2 = 0	
	5	$+ \underline{x+y+z-1=0}$	3
		3x + 3z - 3 = 0	
	5	x = 1 - z	4
	5	$z = t \Rightarrow x = 1 - t$	
	5	y = 0 حساب	5
	F	$\int x = 1 - t$	
	5	$\Delta: \left\{ y = 0 t \in R \right\}$	6
		z = t	
	5+5	$\vec{n}_{R}(1,0,-1), \vec{u}_{\Delta}(1-,0,1)$	7
	5	استنتاج الارتباط	8
	2	R تعویض A في R	
	8 4+6	R تعويض المعادلات الوسيطية لـ Δ في A إحداثيات A و قيمة	9
	2		10
	5+3	d معرفة أن AI هو بعد A عن AI	11
	100	$dis(A,\Delta) = AI = 2$ المجموع	
	100	المجموع	 ظه1:
		عن d بأي طريقة ينال درجة الخطوة 11 الأخيرة .	
		- ي ي د ۱۱ - ي د ۱۱ - ي د ۱۱ - ي د ۱۱ - ي د ۱۱ - ي د ۱۱ - ي د ۱۱ - ي د ۱۱ - ي د ۱۱ - ي د ۱۱ - ي د ۱۱	ئلة2:
		دلات وسيطية مكافئة للمستقيم ينال الدرجة الخطوات 6 و 5 و 4 و 3	
			<u>ظة3:</u>
ğ		ا تحقق Δ وتحقق R واستنتج أنها نقطة التقاطع ينال درجتي الخطوتين P و Δ	
Ė	فصصة	· التقاطع I بحل جملة المعادلات الخطية أو اي طريقة مكافئة ينال درجات المخ	
Ħ	4	بعد A عن المستقيم Δ وشرط التعامد ينال الدرجات المخصصة للخطوة 1	تنين 9 و 10. ظمًا 4. اذا حسن العذال
Ħ		ب بعد A عن المستقيم Δ وسرط التعامد يدان الدرجات المحصصة للحطوة Γ لـة مستو ِ مـار من A ويعامد Δ وإيجاد إحداثيات نقطة التقاطع وحساب المسا	
Ħ			' '
Ħ.			
Ĕ,	ىفحة8	ة الامتحانية الثانية لعام 2019م) حقوق النشر والتوزيع والطبع محفوظة لوزارة التربية ص	لرياضيات الثانوية العامة الدور
do			

ملاحظة2:

ملاحظة 3:

- الأفقي. عند أطراف مجموعة تعريفه واكتب معادلة المقارب الأفقي. f
 - 2) ادرس تغيرات التابع f ونظم جدولاً بهاء
 - 3) في معلم متجانس ارسم الخط .C
- x = 1 احسب مساحة السطح المحصور بين الخط C ومحوري الإحداثيات والمستقيم (4
 - . $g(x) = 2xe^x$ استنتج رسم الخط C_1 التابع g المعرف وفق: C_1
 - $y' + y = 2e^{-x}$: هو حل المعادلة التفاضلية f(x) ثنيت أن f(x)

	البياني للتابع $f(x) = \frac{2x}{x}$ وفق : \mathbb{R} والمطلوب	ليكن C الخط
	بع f عند أطراف مجموعة تعريفه واكتب معادلة المقارب الأفقي.	د نهایات التار
	التابع ﴿ ونظم جدولاً بها.	
	س ارسم الخط .C	ي معلم متجان
	x=1 السطح المحصور بين الخط C ومحوري الإحداثيات والمستقيم	حسب مساحة
	$g(x)=2xe^x$ المعرف وفق: $g(x)=2xe^x$, •
	$y'+y=2e^{-x}$: هو حل المعادلة التفاضلية f	نيت أنّ (x)
درجة الخطوة	الخطوة	خطوة
5	$\lim_{x \to -\infty} f(x) = -\infty$	1
5	$\lim_{x \to +\infty} f(x) = 0$	2
5	مقارب أفقي $y=0$	3
5 + 5 قانون + تعویض	f'(x) إيجاد	4
5+5	ايجاد القيمة التي تعدم $f'(x)$ + صورتها	5
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5+5 5+5		6
313	$f(x) \Big _{-\infty} \nearrow \frac{2}{e} \searrow 0$	
	y †	
5+(5 للمبدأ)	1	
	y 1 1 x	
	/	
5	$s = \int_{0}^{1} f(x) dx$	7
2×4	u' كتابة u و إيجاد	8
3×4	u كتابة $ u$ و إيجاد $ u$ قانون التكامل بالتجزئة $ u$ التعويض $ u$ الناتج	g
5	نظیر C بالنسبة لـ O أو من الرسم C	1
3+2	المعادلة التفاضلية التعويض + الناتج	1
	المجموع التهى السلم	
100		

انتهى السلم

- ✓ أسئلة دورات في مادة: الرياضيات.

 - ✓ سنة الدورة: 2019.
 ✓ سلم الصحيح: متوفر بدقة عالية.
- T.me/Science 2022bot : غ تم جمع الملفات بواسطة :

