324 Stat Lecture Notes

(7 One- and Two-Sample Estimation Problem)

(Book*: Chapter 8, pg265)

Probability& Statistics for Engineers & Scientists By Walpole, Myers, Myers, Ye

Estimation

• Point estimate:

- Is a single numerical value to estimate parameter
- Example :

$$\overline{X} = \sum \frac{X_i}{n}$$
$$\hat{P} = \frac{X}{n}$$
$$S^2 = \frac{\sum (X_i - \overline{X})}{n-1}$$

• Interval estimate

- Is two numerical values to estimate parameter
- It means to be in an interval s.a

 $(\theta_L < \theta < \theta_U)$

Lower bound

(L)

upper bound

(U) •

Interval estimation

• An interval estimate of a population parameter θ is an interval of the form $\hat{\theta}_L < \theta < \hat{\theta}_U$ where $\hat{\theta}_L$ and $\hat{\theta}_U$ depend on the value of the statistic $\hat{\Theta}$ for a particular sample and also on the sampling distribution of $\hat{\Theta}$. Since different samples will generally yield different values of $\hat{\Theta}$ and therefore different values of $\hat{\theta}_L$ and $\hat{\theta}_U$. From the sampling distribution of $\hat{\Theta}$ we shall be able to determine θ_L and $\hat{\theta}_U$ such that the $P(\hat{\theta}_L < \theta < \hat{\theta}_U)$ is equal to any positive fractional value we care to specify. If for instance we find $\hat{\theta}_L$ and $\hat{\theta}_U$ such that:

$$P(\hat{\theta}_L < \theta < \hat{\theta}_U) = 1 - \alpha \quad for \quad 0 < \alpha < 1$$

then we have a probability of $(1-\alpha)$ of selecting a random sample that will produce an interval containing θ .

- The interval $\hat{\theta}_L < \theta < \hat{\theta}_U$ computed from the selected sample, is then called a $(1-\alpha)100\%$ confidence interval.
- The fraction $(1-\alpha)$ is called confidence coefficient or the degree of confidence.
- The end points $\hat{\theta}_L$ and $\hat{\theta}_U$ are called the lower and upper confidence limits.
- For Example:

when $\alpha = 0.05$ we have a 95% confidence interval and so on, that we are 95% confident that θ is between $\hat{\theta}_{L}$, $\hat{\theta}_{U}$

9.4 Single Sample: Estimating the Mean:

1-Confidence Interval on μ (σ^2 Known):

If \overline{X} is the mean of a random sample of size **n** from a population with known variance σ^2 , a $(1-\alpha)100\%$ confidence interval for μ is given by:

$$\overline{X} - Z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + Z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$
(1)

where $Z_{1-\alpha/2}$ is the -value leaving an area of $\frac{\alpha}{2}$ to the right

$$\hat{\theta}_{L} = \bar{X} - Z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \quad , \quad \hat{\theta}_{U} = \bar{X} + Z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \tag{2}$$

EX (1):

The mean of the quality point averages of a random sample of **36** college seniors is calculated to be **2.6**.

Find the 95% confidence intervals for the mean of the entire senior class. Assume that the population standard deviation is **0.3**.

Solution:

n=36 , $\overline{X}=2.6$, $\sigma=0.3$

95% confidence interval for the mean $\,\mu$:

$$1 - \alpha = 0.95 \rightarrow \alpha = 0.05 \rightarrow \frac{\alpha}{2} = 0.025 \rightarrow Z_{1 - \frac{\alpha}{2}} = 1.96$$

$$\overline{X} \pm Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

$$2.6 \pm 1.96(\frac{0.3}{\sqrt{36}}) \rightarrow 2.6 \pm 0.098$$

$$2.502 < \mu < 2.698$$

Thus , we have 95% confident that μ lies between 2.502 and 2.698

Theorem 9.1:

If \overline{X} is used as an estimate of μ , we can be $(1-\alpha)100\%$ confident that the error will not be exceed

 $Z_{1-\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}$

For example (1): e = (1.96) (0.3/6) = 0.098 or

Theorem (2):

If \overline{X} is used as an estimate of μ , we can be $(1-\alpha)100\%$ confident that the error will not exceed a specified amount, e when the sample size is:

$$n = \left(\frac{Z_{1-\frac{\alpha}{2}}\sigma}{e}\right)^2 \tag{3}$$

The fraction of **n** is rounded up to next whole number.

EX (2):

How large a sample is required in Ex. (1) if we want to be 95% confident that our estimate of μ is off by less than **0.05**?

Solution

$$\alpha = 0.05 \to \frac{\alpha}{2} = 0.025 \to Z_{1-\frac{\alpha}{2}} = 1.96,$$

$$\sigma = 0.3 , e = 0.05$$

$$n = \left(\frac{(1.96)(0.3)}{0.05}\right)^2 = 138.2976 \approx 138$$

n is rounded up to whole number.

2- Confidence Interval of when σ^2 is Unknown n<30 :

If \overline{x} and s are the mean and standard deviation of a random sample from <u>a normal population</u> with <u>unknown variance</u> σ^2 , a $(1-\alpha)100$ % confidence interval for μ is given by:

$$\overline{X} - t \xrightarrow[-\frac{\alpha}{2}, n-1]{\frac{S}{\sqrt{n}}} < \mu < \overline{X} + t \xrightarrow[-\frac{\alpha}{2}, n-1]{\frac{S}{\sqrt{n}}}$$
(4)

where $\frac{t}{2} = \frac{\alpha}{2}$ is the t-value with **n-1** degrees of freedom leaving an area of $\frac{\alpha^2}{2}$ to the right.

Ex 9.5 pg 275

The contents of 7 similar containers of sulfuric acid are 9.8, 10.2, 10.4, 9.8, 10, 10.2, 9.6 liters. Find a 95% confidence interval for the mean of all such containers assuming an approximate normal distribution.

<u>Solution:</u> confidence interval for the mean :

$$n = 7$$
 , $\overline{X} = 10$, $S = 0.283$,

$$at: 1 - \alpha = 0.95 \rightarrow \alpha = 0.05 \rightarrow \frac{\alpha}{2} = 0.025 \rightarrow t_{\frac{\alpha}{2}, n-1} = t_{0.025,6} = 2.447$$

$$\overline{X} \pm t \quad \underset{\frac{\alpha}{2}, n-1}{(\frac{S}{\sqrt{n}})} \Rightarrow 10 \pm (2.447)(\frac{0.283}{\sqrt{7}}) \Rightarrow 10 \pm 0.262$$

 $9.738 < \mu < 10.262 \rightarrow P(9.738 < \mu < 10.262) = 0.95$

9:4 Two Samples: Estimating the Difference between Two Means:

- **1-** Confidence Interval for $\mu_1 \mu_2$ when σ_1^2 and σ_2^2 Known:
- If \overline{X}_1 and \overline{X}_2 are the means of independent random samples of size $\mathbf{n_1}$ and $\mathbf{n_2}$ from populations with known variances σ_1^2 and σ_2^2 respectively, a $(1-\alpha)100\%$ confidence interval for $\mu_1 \mu_2$ is given by:

$$(\bar{X}_{1} - \bar{X}_{2}) \pm Z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}$$
 (5)

where $\mathbb{Z}_{1-\frac{\alpha}{2}}$ is the -value leaving an area of $\frac{\alpha}{2}$ to the right.

EX (4):

- A standardized chemistry test was given to **50** girls and **75** boys. The girls made an average grade of **76**, while the boys made an average grade of **82**. Find a
- 96% confidence interval for the difference $\mu_1 \mu_2$ where μ_1 is the mean score of all boys and μ_2 is the mean score of all girls who might take this test. Assume that the population standard deviations are **6** and **8** for girls and boys respectively.

Solution:

girls	Boys
$n_1 = 50$	n ₂ = 75
$\bar{X}_{1} = 76$	$\bar{X}_{2} = 82$
$\sigma_1 = 6$	$\sigma_2 = 8$

96% confidence interval for the mean $\mu_1 - \mu_2$:

$$1 - \alpha = 0.94 \rightarrow \alpha = 0.04 \rightarrow \frac{\alpha}{2} = 0.02 \rightarrow Z_{1 - \frac{\alpha}{2}} = 2.05$$

$$(\bar{X}_{1} - \bar{X}_{2}) \pm Z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}$$

$$(82 - 76) \pm (2.05) \sqrt{\frac{36}{50} + \frac{64}{75}} \Rightarrow 6 \pm 2.571$$

$$3.429 < \mu_{1} - \mu_{2} < 8.571 \rightarrow P (3.429 < \mu_{1} - \mu_{2} < 8.571) = 0.96$$

<u>2-Confidence Interval for \mu_1 - \mu_2 when \sigma_1^2 and \sigma_2^2 Unknown but equal variances:</u>

If X_1 and X_2 are the means of independent random samples of size $\mathbf{n_1}$ and $\mathbf{n_2}$ respectively from approximate normal populations with unknown but equal variances, a $(1-\alpha)100\%$ confidence interval for $\mu_1 - \mu_2$ is given by:

, where

$$(\bar{X}_1 - \bar{X}_2) \pm t \xrightarrow{\alpha}{2}, v S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$
 (6)

$$S_{P} = \sqrt{\frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}}$$
(7)

is the pooled estimate of the population standard deviation and is $th \underbrace{e}_{2} t - value$ with freedom leaving an area of $\frac{\alpha}{2}$ to the right.

EX (9.11- pg 288):

- The independent sampling stations were chosen for this study, one located down stream from the acid mine discharge point and the other located upstream. For **12** monthly samples collected at the down stream station the species diversity index had a mean value $\overline{X}_1 = 3.11$ and a standard deviation $s_1 = 0.771$ while **10** monthly samples had a mean index value
- $\overline{X}_2 = 2.04$ and a standard deviation $S_2 = 0.448$. Find a 90% confidence interval for the difference between the population means for the two locations, assuming that the populations are approximately normally distributed with equal variances.

Solution:

Station 1	Station 2
$n_1 = 12$	$n_2 = 10$
$\bar{X}_{1} = 3.11$	$\bar{X}_{2} = 2.04$
$S_1 = 0.771$	$S_2 = 0.448$

90% confidence interval for the mean $\mu_1 - \mu_2$:

$$\begin{split} S_{P} &= \sqrt{\frac{11(0.771)^{2} + 9(0.448)^{2}}{12 + 10 - 2}} = 0.646 \\ at \ 1 - \alpha &= 0.90 \rightarrow \alpha = 0.1 \rightarrow \frac{\alpha}{2} = 0.05 \rightarrow t \ \frac{\alpha}{2}, n_{1} + n_{2} - 2} \rightarrow t_{0.05, 20} = 1.725 \\ (3.11 - 2.04) \pm (1.725)(0.646) \sqrt{\frac{1}{12} + \frac{1}{10}} \Rightarrow 1.07 \pm 0.477 \\ 0.593 < \mu_{1} - \mu_{2} < 1.547 \rightarrow P(0.593 < \mu_{1} - \mu_{2} < 1.547) = 0.90 \end{split}$$

9:10 Single Sample Estimating a Proportion:

Large – Sample Confidence Interval for P:

If \hat{p} is the proportion of successes in a random sample of size n and an approximate 00% confidence interval for the binomial parameter is given by:

$$\hat{p} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}} \qquad (8) \qquad \hat{q} = 1 - \hat{p}$$

Where $Z_{1-\frac{\alpha}{2}}$ is the Z-value leaving an area of $\frac{\alpha}{2}$ to the right.

<u>EX(6):</u>

A new rocket – launching system is being considered for deployment of small, short – rang rockets. The existing system has p=0.8 as the probability of a successful launch. A sample of **40** experimental launches is made with the new system and **34** are successful. Construct a 95% confidence interval for p

Solution:

a 95% confidence interval for p.

$$n = 40 , \quad \hat{p} = \frac{34}{40} = 0.85 , \quad \hat{q} = 0.15$$

at $1 - \alpha = 0.95 \rightarrow \alpha = 0.05 \rightarrow \frac{\alpha}{2} = 0.025 \rightarrow Z_{1-\frac{\alpha}{2}} = 1.96$
 $\hat{p} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}} \rightarrow 0.85 \pm (1.96) \sqrt{\frac{(0.85)(0.15)}{40}} \rightarrow 0.85 \pm (0.111)$
 0.739

See Ex 9.14 pg 297

Theorem 3:

If \hat{p} is used as an estimate of p we can be $(1-\alpha)100\%$

confident that the error will not exceed $e = Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}}$.

<u>EX 7:</u>

In Ex. 7, find the error of p.

Solution:

The error will not exceed the following value:

$$e = Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}} = (1.96) \sqrt{\frac{(0.85)(0.15)}{40}} = 0.111$$

Theorem :

If \hat{p} is used as an estimate of p we can be $(1-\alpha)100\%$ confident that the error will be less than a specified amount **e** when the sample size is approximately:

$$n = \frac{Z_{1-\alpha/2}^{2} \ \hat{p}\hat{q}}{e^{2}}$$
(9)

Then the fraction of **n** is rounded up.

EX(8):

How large a sample is required in Ex. 7 if we want to be

95% confident that our estimate of *p* is within **0.02**?

Solution:

$$e = 0.02$$
 , $Z_{1-\frac{\alpha}{2}} = 1.96$, $\hat{p} = 0.85$, $\hat{q} = 0.15$

$$n = \frac{(1.96)^2 (0.85)(0.15)}{(0.02)^2} = 1224.51 \approx 1225$$

Two Samples: Estimating the difference between two proportions

Large- Sample confidence interval for p1-p2

If \hat{p}_1 and \hat{p}_2 are the two proportions of successes in random samples of sizes n1 and n2 respectively, $\hat{q}_1=1-\hat{p}_1$ and $\hat{q}_2=1-\hat{p}_2$, an approximate $(1-\alpha)100\%$ confidence interval for the difference of two binomial parameters, *p1-p2* is given by

$$(\hat{p}_1 - \hat{p}_2) \pm z_{1-\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$$

where $Z_{1-\frac{\alpha}{2}}$ is the -value leaving an area of $\alpha/2$ to the right .

• <u>Ex 9.17 pg 301</u>

A certain change n the process for manufacturing component parts is being considered. Samples are taken under both the existing and the new process results in an improvement.

If **75 of 1500** items from the **existing process** are found to be defective, and **80 of 2000** items from the **new process** found to be defective, find a 90% confidence interval for the rue difference in the proportions of defectives for the existing and new process respectively.

Solution

Let p1 and p2 be the true proportion of defectives for the existing and new process respectively.

 $\hat{p}_1 = 75/1500 = 0.05$ $\hat{p}_2 = 80/2000 = 0.04$ $\hat{p}_1 - \hat{p}_2 = 0.05 - 0.04 = 0.01$ $Z_{1-\frac{\alpha}{2}} = 1.645$ The 90% confidence interval is

 $0.01 \pm (1.645) \sqrt{\frac{(0.05)(0.95)}{1500} + \frac{(0.04)(0.96)}{2000}}$

(-0.0017, 0.0217)