الورقة الكاملة للتفسيرات والتعاليل الكيميائية

anggiall stances.

س1_فسر بعدّ النيوتروز_ أفضل قذيفة نووّية.

الجواب: لأنه معتدل الشحنة فلا يحدث تدافع كهربائي بينه وبين النواة المقذوفة.

س2_فسركنلة النواة أصغر من مجموع كنل مكوّناتها وهمي حرّة.

الجواب: النقص في الكتلة يتحول إلى طاقة.

س3_فسر إطلاق النّواة للبوزيتروز.

الجواب: بسبب تحول البروتون إلحب نيوترون يستقر داخل النواة وينطلق بوزيترون خارج النواة وذلك مز_ أجل النوى

 $^{1}_{1} ext{H} \longrightarrow ^{1}_{0} ext{n} + ^{0}_{+1} ext{e}$ التي تقع تحت حزام الاستقرار وفق المعادلة :

س4_فسر يرافق تفاعل الاندماج النووي انطلاق طاقة هائلةكما في النجوم.

الجواب: بسبب النقص في الكتلة حيث تحول هذا النقص في الكتلة إلى طاقة.

س 5_ فسر إطلاق النواة للإلكترونات المؤلفة لجسيمات بيتا.

الجواب: بسبب تحول نيوتروزك إلح بروتوزك يستقر داخل النواة وينطلق جسيم بيتا خارج النواة وذلك من أجل النوى التي تقع

 $^1_1 n \longrightarrow ^1_0 H + ^0_1 e$: فوق حزام الاستقرار وفق المعادلة: نوق حزام الاستقرار وفق المعادلة:

س6_فسرعدم تأثر أشعّة غاما بالحقل الكهربائيي أوالمغناطيسي

الجواب: لأنها أمواج كهرطيسية عديمة الشحنة.

س7_فسرتأثّركلّ مز_ جسيمات ألفا وجسيمات بيتا بالحقل الكهربائي_ّ.

الجواب: لأزر كل منهما يحمل شحنة كهربائية فتنحرف جسيمة ألفا نحو اللبوس السالب لمكثفة مشحونة وتتحرف جسيمة بيتا نحو اللبوس الموجب لمكثفة مشحونة .

> س8_علل كيف يحدث الأسر الالكتروني للنوى التي تقع تحت حزام الاستقرار ولا تملك طاقة كافية لإطلاق بوزنترون. الجواب: تلقط النواة الكتروناً مز السحامة الالكترونية المحيطة بها ليرتبط مروتون فيتشكل نيوترون

> > وفق المعادلة: H + −0e + 0 + −1e . أ

س9_علل كيف بيكز للنوى التي يزيد عددها الذري عن 83 أن تتحول إلمب نوى أكثر استقراراً .

الجواب: يطرأ عليها تحول من النوع ألفا كما في المعادلة: AX → A-4Y + 4He + Energy .

س10_علل تأثَّر كلُّ مز_ جسيمات ألفا وجسيمات بيتا بالحقل المغناطيسي.

الجواب: لأنها تتأثر بقوة لورنز المغناطيسية فتنحرف عن مسارها ويكون انحرف جسيمات بيتا بجهة معاكسة لجهة انحراف جسيمات ألفا.

الورقة الكاملة للتفسيرات والتعاليل الكيميائية

س 11_علل طاقة ارتباط النواة تعاكس بالإشارة الطاقة المنتشرة عند تشكل النواة.

الجواب: لأنها مقدار موجب.

س 12_ علل لماذا تلتقط بعض النوى القذيفة التي قذفت بها دون ان تنقسم.

الجواب: لأن هذه النوى يحدث عليها تفاعلات التقاط نووي.

س 13_ علل تحول بعض النوى المقذوفة بجسيم إلى عنصر جديد مطلقة جسيم آخر .

الجواب: لأن هذه النوي يحدث عليها تفاعلات تطافر نووية.

س14_ علل عند قذف نواة اليورانيوم بنيوتروزب بطحى ؛ تتحول إلحب نواتيرن متوسطتي الكتلة وتنطلق نيوترونات سريعة .

الجواب: لأن هذه النوى يحدث عليها تفاعلات انشطار نووي.

الشازانة

س 1 _ علل لماذا يزداد حجم الهواء داخل البالوز_ عند ارتفاع درجة الحوارة (والعكس صحيح).

 $\frac{V}{T}$ = const الجواب: لأز حجم عينة من غازيتناسب طرداً مع درجة حرارته المطلقة عند ثبات ضغط الغاز حسب قانون شارل

س2_علل لماذا يرتفع المنطاد في الجوعند تسخين الهواء داخله.

الجواب: يؤدي تسخين الهواء داخله إلى نقصان كثافته لتصبح أقل من كثافة الهواء المحيط بالمنطاد مما يؤدي إلى ارتفاعه.

س 3_ فسر عند رش كمية صغيرة من العطر في غرفة نلاحظ انتشار الرائحة في كامل أرجاء الغرفة.

الجواب: تنتشر الغازات في جميع الاتجاهات بسبب الحركة العشوائية لجزيئاتها لتملًا الحيز الذي يوجد فيه بشكل متجانس تقريباً.

س4_إذا وضعت عبوتان من محلول حمض كلور الماء المركز ومحلول النشادر بجانب بعضهما ثم نزع الغطاء على تشكل أبخرة بيضاء بالقرب من عبوة حمض كلور الماء .

الجواب: بسبب انتشار جزئيات غازي كلور الهيدروجين والنشادر خارج عبوتيهما وتكويز ملح كلوريد الأمونيوم الأبيض وفق المعادلة:

HCl (g)+NH3(g) → NH4Cl(g) وبما أز الكتلة المولية لغاز النشادر أصغر فسرعة انتشاره تكون أكبر حسب قانون غراهام لهذا

تتشكل الأبخرة البيضاء من كلوريد الأمونيوم بجوار عبوة حمض كلور الماء.

س 5_ علل يهمل حجم جزئيات الغاز مقابل حجم الغاز.

الجواب: بسبب تباعد الجزئيات فيما بينها .

س6_علل لماذا لا يتغير متوسط الطاقة الحركية لجزئيات الغاز بمرور الزمزع عند ثبات درجة الحرارة.

الجواب: لأن الطاقة تنتقل بين الجزئيات من خلال التصادمات.

الورقة الكاملة للتفسيرات والتعاليل الكيميائية

سرعة المتفاعل الكيميائي

س1_فسر احتراق مسحوق الفحم أسرع من احتراق قطعة فحم مماثلة له بالكتلة.

الجواب: لأزر مساحة سطح التماس في مسحوق الفحم أكبر من مساحة سطح التماس لقطعة الفحم المماثلة بالكتلة.

س2_ فسر تؤدّي زبادة درجة الحرارة إلى زبادة سرعة التّفاعل.

الجواب: لأزر زيادة درجة الحرارة تؤدي لزيادة عدد الجزيئات التي تملك طاقة حركية أكبر أو تساوي طاقة التنشيط فتزداد عدد التصادمات الفعالة مما يؤدي لزيادة سرعة التفاعل.

س3_ فسر تزداد سرعة التفاعل بزيادة تركيز المواد المتفاعلة.

الجواب: سبب زمادة عدد التصادمات الفعالة.

س4_فسر التَّفاعلات الَّتِي تحتاج إلى طاقة تنشيط منخفضة تميل إلى أن تكون سريعة.

الجواب: لأز عدد الجزيئات التي تملك طاقة التنشيط يكون كبير.

س5_ فسر التفاعلات البي تحتاج إلى طاقة تنشيط كبيرة تميل إلى أن تكون بطيئة.

الجواب: لأن عدد الجزيئات التي علك طاقة التنشيط يكون صغير (قليل).

س6_علل لماذا تكوز قيمة تغير تراكيز المواد المتفاعلة بالنسبة لغير الزمز سالبة.

الجواب: لأن تراكيز المواد المتفاعلة في تناقص مستمر .

س7_علل لماذا تكون قيمة تغير تراكيز المواد الناتجة بالنسبة لتغير الزمز موجبة.

الجواب: لأز تراكيز المواد الناتجة في تزايد مستمر.

س8_علل لماذا لا يحدث التفاعل الكيميائي إلاإذا كان التصادم فعال.

الجواب: عندما يحدث التصادم الفعال يتوافر الشرطين التاليين الازمين لحدوث التفاعل:

1) تأخذ دقائق المواد المتفاعلة وضعاً فراغياً مناسباً.

2) تمتلك دقائق المواد المتفاعلة الحد الأدنى من الطاقة اللازمة لحدوث التفاعل الكيميائي وهي طاقة التنشيط.

س9_ بعض التصادمات بنتج عنها تفاعل كيميائر وليس جميعها.

الجواب: لأنه يوجد تصادمات فعالة وتصادمات غير فعالة ولحدوث التفاعل يجب أزر يكوز التصادم فعّال.

س10_علل سرعة احتراق البوتان اكبر من سرعة احتراق الأوكنان.

الجواب: لأن عدد الروابط C-C و C-H أقل في حالة البوتان وبالتالمي احتراقه أسرع.

الورقة الكاملة للتفسيرات والتعاليل الكيميائية

س 11_علل كيف يعمل الحفاز على تسريع التفاعل الكيميائي .

الجواب: يعمل الحفاز علم خفض طاقة التنشيط لتصبح أقل من طاقة التنشيط للتفاعل الأصلي فيحدث التفاعل بشكل أسرع.

س 12_علل المواد الصلبة والسائلة الصرفة ذات تركيز ثانت.

الجواب: لأز تغير عدد المولات يؤدي لتغير الحجم والعكس صحيح فتبقى نسبة عدد المولات إلى الحجم (التركيز) ثابتة.

س 13_علل من أجل التفاعل الأولمي الآتي: (D(g) → D(g) عند ازدياد تركيز A إلى الضعف ونقصان تركيز B إلى الضعف ونقصان تركيز B إلى النصف فإن سرعة التفاعل تزداد أربع مرات.

 $v'=K(2[A])^3.([\frac{B}{2}])=4$ $K[A]^3.[B]=4v:$ بكز بعد تغير التراكيز تصبح $v=K[A]^3.[B]$

فابح التوازن الكيميائي

س 1_ فسر لماذا لا تستهلك المواد المتفاعلة كليا في التفاعلات المتوازنة.

الجواب: لأن المواد الناتجة تتفاعل مع بعضها لتعطي المواد المتفاعلة في الشروط ذاتها.

س2_ فسر إضافة حفاز تسرّع الوصول إلح حالة التّوازن دون أن يؤثر على حالة التوازن.

الجواب: لأزر الحفاز يزيد مز سرعة التفاعل المباشر وسرعة التفاعل العكسي بالمقدار نفسه.

س 3_ فسر في التفاعل الآتي C(s)+2H_{2(g)} منزاح بالإنجاه المباشر بزيادة الضغط.

الجواب: فسر عند زيادة الضغط يرجح التفاعل نحو تشكل عدد مولات أقل من الغاز لهذا يرجح التفاعل المباشر.

س4_ فسر في التفاعل الماصّ للحرارة تقل قيمة ثابت التوازز عند خفض درجة الحرارة. (عد عكس السؤال اعكس الإجابة)

الجواب: عند خفض درجة الحرارة في التفاعل الماصيرجح التفاعل في الاتجاه الناشر (العكسي) فتقل كمية المواد الناتجة وتزداد كمية المواد المتفاعلة فتقل قيمة ثابت التوازن.

س5_ فسر في التفاعل الناشر للحرارة تقل قيمة ثابت التوازز_ عند زيادة درجة الحرارة. (عند عكس السؤال اعكس الإجابة)

الجواب: عند زيادة درجة الحرارة في التفاعل الناشر يرجح التفاعل في الاتجاه الماص (العكسي) فتقل كمية المواد الناتجة وتزداد كمية المواد المتفاعلة فتقل قيمة ثابت التوازز.

الورقة الكاملة للتفسيرات والتعاليل الكيميائية

س6_ فسر لماذا يسمى التوازن الكيميائي في حالة التفاعلات الكيميائية بالتوازن الحركمي.

الجواب: يسمى التوازن الكيميائي توازن حركي لأنه يحدث عندما تتساوى سرعة التفاعل المباشر مع سرعة التفاعل العكسي ولا تكون قيمة السرعة لأي تفاعل معدومة فالجملة في حالة توازن حركي.

س7_ علل المواد الصلبة والسائلة كمذيب فقط لا تظهر في عبارة ثابت التوازن.

الجواب: لأن تراكيزهما تبقى ثابتة مهما اختلفت كميتها .

س8_علل عند مزج حجمين متساويين من غازي الهيدروجين وبخار اليود ذي اللون البنفسجي في شروط مناسبة يلاحظ تضاؤل اللول البنفسجي ثم ثباته .

الجواب: سبب ثبات اللوز البنفسجي دليل على عدم استهلاك اليود كلياً على الرغم من مزج المواد بنسب التفاعل مما يدل على أن التفاعل متوازف.

س9_علل عندما يكون حاصل التفاعل Q أصغر من ثابت التوازن الكيميائي Kc يرجح التفاعل المباشر على العكسي. الجواب: لأن تراكيز المواد الناتجة تكون أقل من تراكيزها في حالة التوازن فيرجح التفاعل المباشر على العكسي للوصول إلم حالة التوازن.

س 10_علل عندما يكون حاصل النفاعل Q أكبر من ثابت النوازن الكيميائي Kc يرجح النفاعل العكسي على المباشر. المجواب: لأن تراكيز المواد الناتجة تكون أكبر من تراكيزها في حالة النوازن فيرجح النفاعل العكسي على المباشر للوصول الحساب المحسمة المجارف المحسمة المجارف المحسمة المجارف المحسمة المحسنة المحسنة

س11_عندما بمزج بخار الماء مع أول أكسيد الكربوزب في الدرجة 120ºC يحصل التفاعل المتوازن. `

 $CO_{(g)}+H_2O_{(g)}$ والمطلوب: $\triangle H>0$

1- علل عند زيادة درجة الحرارة فإن التفاعل يرجح في الاتجاه العكسي.

الجواب: لأنه عند زيادة درجة الحرارة يرجح التفاعل في الاتجاه الماص (العكسي) وعندها يزداد تراكيز المواد المتفاعلة وينقص تراكيز المواد الناتجة فينقص قيمة ثابت التوازز الكيميائي Kc.

2- علل عند زيادة كمية CO فإن التفاعل يرجح في الاتجاه المباشر.

الجواب: عند زيادة تركيز CO يرجح التفاعل بالاتجاه الذي ينقص تركيز CO وهو الاتجاه المباشر للوصول إلى حالة توازن جديدة وبتراكيز جديدة.

الورقة الكاملة للتفسيرات والتعاليل الكيميائية

3- علل إن ازدياد الضغط لايؤثر على حالة التوازن.

الجواب: لأن عدد المولات الغازية متساو في طرفي المعادلة.

4- علل إذا امتص CO2 بوساطة محلول فإن التفاعل يرجح في الاتجاه المباشر.

الجواب: إذا امتص CO2 فإن تركيزه ينقص وبالتالمي يرجح التفاعل باتجاه زيادة تركيز CO2 وهو الاتجاه المباشر للوصول إلم حالة توازز جديدة .

 $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)} \triangle H < 0:$ لدمك النّفاعل المتوازن والناشر للحرارة التّالحي.

1- على عند زيادة تركيز H2 برجع التفاعل في الانجاه العكسمي.

الجواب: عند زيادة تركيز H2 يرجح التفاعل باتجاه نقصان تركيز H2 وهو الاتجاه العكسم للوصول إلح حالة توازن جديدة.

2- علل عند نقص تركيز NH3 يرجح التفاعل في الاتجاه المباشر.

الجواب: عند نقص تركيز NH3 يرجح التفاعل باتجاه زيادة تركيز NH3 وهو الاتجاه المباشر للوصول إلحب حالة توازز بجديدة.

3- علل عند خفض درجة الحرارة مع بقاء الضغط ثابتاً يرجح التفاعل في الاتجاه الناشر.

الجواب: عند خفض درجة الحرارة يرجح التفاعل بالاتجاه الناشر (المباشر) فتزداد تراكيز المواد الناتجة وتنقص تراكيز المواد المتفاعلة فتزداد قيمة Kc .

4- علل عند زيادة الضغط مع بقاء درجة الحوارة ثابتة يرجح التفاعل في الاتجاه المباشر.

الجواب: عند زيادة الضغط يرجح التفاعل باتجاه تشكل عدد أقل من المولات الغازية أي في الاتجاه المباشر للوصول إلى حالة توازز جديدة .

المموفي والأسس

س1_ إذا علمتَ أن أيون السّيانيد CN أساس أقوى من أيون الخلات CH3COO ما هو الحمض المرافق لكلّ منهما وأي الحمضين أقوى ؟ فسّر ذلك.

الجواب: الحمض المرافق لأيوز السيانيد هو حمض سيان الهيدروجين HCN والحمض المرافق لأيوز الخلات هو حمض الخل CH3COOH وحمض الخل هو الحمض الأقوى لأنه يرافق الأساس الأضعف.

س2_في المعادلة A+ +40 → H3O+ +A مز_ هوالحمض والأساس حسب برونشتد ولوري معالتعليل.

الجواب: HA حمض لأنه يمنح بروتوز , H2O أساس لأنه يستقبل بروتوز .

الورقة الكاملة للتفسيرات والتعاليل الكيميائية

س3_ في المعادلة ⁻NH₄ + Cl → NH₄ من هوالحمض والأساس حسب برونشتد ولوري معالتعليل.

الجواب: HClحمض لأنه بينح بروتوز , NH3 أساس لأنه يستقبل بروتوز .

 س4_حدد الحمض والأساس حسب لويس مع التعليل.

الجواب: الأساس NH3 لأز_ ذرة الآزوت تمنح زوج الكتروني غير رابط

إلى ذرةالبور فتشكل رابطة تساندية بين ذرتعي البور والنتروجين أما الحمض ثلاثعي فلور البور BF3 لأنه يستقبل زوج الكترونعي .

س5_علل بعد الماء ناقلارديئاً للتيار الكهربائي.

الجواب: لاحتوائه على عدد فليل مز الأيونات.

س6_علل تزداد قوة الأساس بإزدياد ثابت تأييه Kb.

 $| \frac{| - C_b | | - C_b | - C_b | | - C_b | - C_b$

س7_علل تزداد قوة الحمض بإزدياد ثابت تأينه Ka.

الجواب: Ka = $\frac{[H_3O^+]^2}{C_a} \implies$ Ka = $\frac{[H_3O^+]^2}{C_a}$ تزداد قيمة ثابت تأين الحمض الضعيف بزيادة تركيز أيون الهدرونيوم وبما أز قوة الحمض تزداد بإزدياد تركيز أيونات الهدرونيوم وبالتالجي تزداد قوة الحمض بإزدياد قيمة ثابت تأييه .

س8_علل يرجح التفاعل ⁺20H +2OH بالانجاه المباشر عند إضافة كمية من محلول حمض قوي .

الجواب: تتّحد أيونات الهدرونيوم المضافة مع أيونات الهدروكسيد يرجح التفاعل المباشر وتذوب كمية إضافية مز هيدروكسيد المغنزيوم.

الماليل المانية للأملاح

س1_ ذوّبان ملح نترات البوتاسيوم بالماء لاي عدّ حلمهة.

الجواب: لأن الايونات الناتجة عن تأين هذا الملح حيادية لا تتفاعل مع الماء.

س2_جميع الأملاح تتمتّع بخاصيّة قطبيّة.

الجواب: لأنها تتألف من شق موجب أساسي وشق سالب حمضي.

الورقة الكاملة للتفسيرات والتعاليل الكيميائية

س3_ أملاح الصوديوم شديدة الذوّبان بالماء.

الجواب: لأزب قوى التجاذب بين أيونات الملح في بلوراته أصغر من قوى التجاذب بين أيونات الملح وجزيئات الماء أثناء عملية الذوبان.

س4_ ملح كرومات الفضة قليل الذوّبان_ بالماء

الجواب: لأز فوى التجاذب بين أيونات الملح في بلوراته أكبر من قوى التجاذب بين أيونات الملح وجزيئات الماء أثناء عملية الذوبان .

س 5_ فسر تشكل راسب ملحى من ملح كبريتات الباريوم عند اضافة حمض الكبريت إلى رشاحة الملح.

BaSO_{4(s)} $Ba_{(aq)}^{2+} + SO_{4(aq)}^{2-}$ الجواب: معادلة التوازر غير المتجانس للملح

وعند إضافة حمض الكبريت يزداد تركيز أيونات الكبريتات في المحلول فيصبح Q >ksp أي المحلول فوق مشبع فتتريب كمية من ملح كبريتات الباريوم حتى الوصول لحالة توازز _ جديدة .

س6 فسر زيادة ترسب ملح فوسفات ثلاثي الكالسيوم عند إضافة حمض كلور الماء.

 $Ca_3(PO_4)_{2(s)}$ \Rightarrow 3 $Ca_{(aq)}^{2+} + 2PO_{4_{(aq)}}^{3-}$ عادلة التوازن غير المتجانس للملح

عند إضافة حمض كلور الماء تتحد أيونات الهدرونيوم الناتجة عن تأينه مع أيونات الفوسفات وينتج حمض الفوسفور H3PO4 ضعيف التأين فيتناقص تركيز أيونات الفوسفات ويصبح Q<Ksp أي المحلول غير مشبع فتذوب كمية إضافية من ملح فوسفات ثلاثم الكالسيوم حتى الوصول لحالة توازن جديدة .

س7_ علل المحلول الناتج عز حلمهة ملح نترات الأمونيوم هو محلول حمضي.

الجواب: يتميه ملح نترات الأمونيوم وفق المعادلة: (aq) - NH4⁺(aq) +NO3 (aq) لمعادلة: المعادلة:

لكن أيون النترات حيادي لا يتفاعل مع الماء أما أيون الأمونيوم يتفاعل مع الماء (يتحلمه) وفق المعادلة:

NH4⁺ (aq) + H2O(L)

NH3 (g) + H3O⁺ (aq)

نلاحظ أن الناتج أيون الهدرونيوم كما يدل على أن المحلول أصبح حمضياً PH<7

الورقة الكاملة للتفسيرات والتعاليل الكيميائية

س8_علل المحلول الناتج عز_ حلمهة ملح سيانيد الصوديوم هو محلول أساســـي.

الجواب: يتميه ملح سيانيد الصوديوم وفق المعادلة: (aq) +CN (aq) معانيد الصوديوم وفق المعادلة المعادلة

لكن أيون الصوديوم حيادي لا يتفاعل مع الماء أما أيون السيانيد يتفاعل مع الماء (يتحلمه) وفق المعادلة:

 $CN^{-}_{(aq)} + H_2O_{(L)}$ \longleftarrow $HCN_{(aq)} + OH^{-}_{(aq)}$

نلاحظ أن الناتج أيول الهدروكسيد مما يدل على أن المحلول أصبح أساسياً PH>7

س 9_ماهي طبيعة المحلول الناتج عن حلمهة خلات الأمونيوم مع التعليل.

الجواب: يتميه ملح خلات الأمونيوم وفق المعادلة: (aq) - NH4⁺(aq) + CH3COO 3 (aq) الجواب. يتميه ملح خلات الأمونيوم وفق المعادلة:

يتفاعل أبوز الخلات مع الماء (يتحلمه) وفق المعادلة الآتية: (aq) + H2O(L) ← CH3COO H(aq) + OH (aq) وفق المعادلة الآتية:

يتفاعل أبوز للمونيوم مع الماء (يتحلمه) وفق المعادلة الآتية: NH3 (g) + H3O⁺(aq) وفق المعادلة الآتية:

NH4⁺ (aq) + CH3COO 3⁻ (aq) ← CH3COO H(aq) + NH3 (g) : جمع المعادلتين السابقتين

فيكون الوسط حمضي إذا كان Ka>Kb وعندها [-H3O]<[H3O]

فيكون الوسط أساسي إذا كان Kb>Ka وعندها ["H3O+]>[H3O+]

وبكون الوسط معتدل إذا كان Kb=Ka وعندها [-H3O+]=[OH]

س10_يحوي بيشر محلول مشبع لملح pbCrO4 قليل الذوبان بالماء يضاف إليه قطرات من محلول نترات الرصاص II عديم اللوز والمطلوب علل: تشكل راسب مز كرومات الرصاص II .

الجواب: بعد إضافة قطرات مز محلول نترات الرصاص سوف يزداد تركيز أيونات الرصاص ويصبح Q>Ksp تترسب كمية مز هذا الملح كرومات الرصاص.

العابرة المهمعة

س1_علل استخدام أحد مشعرات حمض _أساس في معايرة التعديل.

الجواب: لتحديد نقطة نهاية تفاعل المعايرة.

س2_علل يعتبر أزرق بروم التيمول مشعراً مناسباً عند معايرة حمض قوي بأساس قوي ّ.

الجواب: لأن PH نقطة انتهاء التفاعل 7 واقعة ضمن مجال المشعر 7.6 - 6.

الورقة الكاملة للتفسيرات والتعاليل الكيميائية

س 3_علل طبيعة الوسط الناتج بعد انتهاء المعايرة لحمض قوي بأساس قوي .

الجواب: معتدل سبب تشكل الماء.

س4_علل يعتبر فينول فتالئين مشعراً مناسباً عند معايرة حمض ضعيف بأساس قوي.

الجواب: لأن PH نقطة انتهاء التفاعل 8.72 واقعة ضمز بحال المشعر 10 - 8.2

س 5_ علل تكون قيمة 7 < PHعند معابرة حمض الخل ضعيف بأساس قوي كهيدروكسيد البوتاسيوم.

الجواب: بسبب تشكل أيونات الخلات التي تسلك سلوك ضعيف

س 6_علل بعتبر أحمر للتيل مشعراً مناسباً عند معابرة أساس ضعيف مجمض قوي.

الجواب: لأن PH نقطة انتهاء النفاعل 5.27 واقعة ضمن مجال المشعر 6.2 - 4.2

س7_ علل طبيعة الوسط الناتج بعد التهاء المعايرة لحمض قوي كحمض كلور الماء بأساس ضعيف كهيدروكسيد الأمونيوم.

الجواب: بسبب تشكل أيونات الأمونيوم التي يسلك سلوك حمض ضعيف.

الكيمياء العفعوية

الأغوال:

س1_ مزوجية (انحلال) الإيتانول في الماء بالنسب كافّة.

الجواب: بسبب تشكَّل الرّوابط الهِدروجينيّة بير__ جزيئات الإيتانول وجزيئات الماء .

س2_تناقص مزوجية الأغوال في الماء بازدياد كتلها الجزيئيةً.

الجواب: بسبب نقصان تأثير الجزء القطبي OH علم حساب تأثير الجزء غيرِ القطبي R.

س3_درجة غلياز_ الأغوال مرتفعةً نسبياً مقارنة مع الألكانات الموافقةِ لها بعدد ذرّات الكربوز_.

الجواب: درجة غليان الأغوال أعلى من درجة غليان الألكانات بسبب قدرة الأغوال على تشكيّل روابط هِدروجينيّة بين جزيئاتها، بينما لا تتشكّل روابط هِدروجينية بين جزيئات الألكانات.

س4_ تتفاعل الأغوال مع المعادن النشيطة.

الجواب: لأن المعادن النشيطة تستطيع إزاحة الهدروجين في الرابطة H-O.

س5_ الهكسان_ -1-ول أقلّ مزوجية في الماء من الإيتانول.

الجواب: بسبب نقصان تأثير الجزء القطبي OH على حساب تأثير الجزء غيرِ القطبي R.

الورقة الكاملة للتفسيرات والتعاليل الكيميائية الألدهيدات والكيتونات:

س1 كيف تتغيّر درجة غليان الألدهيدات ودرجة غليان الكيتونات بحسب كتلها المولية.

الجواب: تزداد درجة غليان الألدهيد والكيتونات بازدياد كنلته المولية.

س2_أقارزك بين درجة غليان الألدهيدات والأغوال الموافقة لها مع التّفسير.

الجواب: درجة غليان الأغوال أعلى من درجة غليان الألدهيدات والكيتونات الموافقة لها، لأز قطبيّة الرّابطة OH في الأغوال أقوى من قطبيّة الرّابطة c=o في الألدهيدات و الكيتونات إضافة إلى أن ّ جزيئات الأغوال تشكّل روابط هِدروجينيّة بين جزئاتِها بينما لا تشكّل الألدهيدات و الكيتونات روابط هدروجينيّة.

س3_أقارز بين درجة غليان الألدهيدات والألكانات الموافقة مع التّفسير.

الجواب: درجة غليان الألدهيدات والكيتونات أعلى من درجة غليان الألكانات الموافقة، لأن قطبيّة روابط الألدهيدات والكيتونات أعلى من قطبيّة روابط الألكانات.

س4_ أقارز بين درجة غليات الكيتونات والإبترات الموافقة مع التّفسير.

الجواب: درجة غليان للألدهيدات والكيتونات أعلى من الإيترات الموافقة لأن قطبيّة الرّابطة c=o في الألدهيدات والكيتونات أقوى من قطبيّة الرّابطة c-o-c في الإبترات.

س5_ تقلُّ مزوجية الكيتونات في الماء بزيادة كتلتها الجزيئية.

الجواب: بسبب نقصان تأثير الجزء القطبي على حساب تأثير الجزء غيرِ القطبي

س6_ تتأكسد الألدهيدات بسهولة بينما تقاوم الكيتونات الأكسدة في الشروط ذاتها.

ا<mark>لجواب:</mark> بسبب وجود ذرة الهدروجين مرتبطة بذرة الكربوز الزمرة الكربونيلية في الألدهيدات وعدم وجودها في الكيتونات.

الحموض الكربوكسيلية:

س1_فسر الحموض الكربوكسيلية التي تحوي 4 - 1 ذرّات كربون تتمازج في الماء بالنسّب كافة. الجواب: بسبب تشكّل الرّوابط الهدروجينيّة بين جزيئات الحموض الكربوكسيليّة وجزيئات الماء.

س2_ فسر نقصان مزوجية الحموض الكربوكسيلية في الماء بازدياد كتلها الجزيئية.

الجواب: بسبب نقصان تأثير الجزء القطبي ّ COOH وزيادة تأثير الجزء غير القطبي ّ R.

س3_ درجة غليان الحموض الكربوكسيلية مرتفعة مقارنة مع المركبات العضوية الموافقة.

الجواب: بسبب تفوّق الصّفة القطبيّة للحموض الكربوكسيليّة حيث أن ّ زمرة الكربوكسيل تتكوّن من زمرتين قطبيّتين هما الهدروكسيل والكربونيل بالإضافة إلى تشكيل رابطتين هدروجينيّتين بين كلّ جزيئين من الحمض الكربوكسيلي.ّ

الورقة الكاملة للتفسيرات والتعاليل الكيميائية

س4_ فسر تفوق الصَّفة القطبيّة للحموض الكربوكسيليّة مقارنة مع باقعي المواد العضويّة الموافقة.

الجواب: الزمرة الوظيفية المميزة للحموض الكربوكسيلية تحتوي على زمرتين قطبيتين هما زمرة الهدروكسيد وزمرة الكربونيل.

س5_ نقصان مزوجية الحموض الكربوكسيلية في الماء بارتفاع كتلتها الجزيئية.

الجواب: بسبب نقصان تأثير الجزء القطبي COOH- وزيادة تأثير الجزء غير القطبي R.

س6_ درجة غليان الحموض الكربوكسيلية أعلى من درجة غليان الألدهيدات الموافقة.

الجواب: بسبب الرابطتين الهدروجينية بين كل جزيئين من الحمض الكربوكسيلية .بينما الألدهيدات لا تشكل روابط هدروجينية.

الإسترات:

س 1_ فسر تزداد درجة غليار الإسترات بازدياد كتلها الجزيئيّة، إلا أنّها أقلّ من رجات غليان الحموض الكربوكسيليّة الموافقة.

الجواب: بسبب تشكّل روابط هدروجينيّة بيرس جزيّات الحموض الكربوكسيليّة وعدم تشكّلها بيرس جزيّات الإسترات.

س2_ فسر سبب عدم قدرة الإسترات على تشكيل روابط هدروجينية بين جزياتها.

الجواب: لعدم وجود ذرة هدروجين مرتبطة بذرة ذات شديدة الكهرسليلة.

الأميدات:

س1_ فسرالأميدات مواد صلبة أو سائلة ذات درجات غلياز_ وانصهار مرتفعة نسبياً.

الجواب: بسبب تتشكّل روابط هدروجينيّة بيرز جزيئات الأميدات الأوّليّة والنَّانوّيّة.

س2_فسّر سبب عدم تشكّل روابط هدروجينيّة بين جزيئات الأميدات النّالنيّة.

الجواب: بسبب عدم وجود ذرة هدروجين مرتبطة بذرة شديدة الكهرسلبية.

س3_ المركّب N.N ثنائري متيل إيتازب أميد غير قادر على تشكيلُ روابط هدروجينيُّة بيرن جزيًّاته.

الجواب: بسبب عدم وجود ذرة هدروجين مرتبطة بذرة شديدة الكهرسلبية.

الأمينات:

س1_ فستر درجة غليان الأمينات الأولية والثّانوية أعلى من درجة غليان الألكانات الموافقة.

الجواب: الأمينات الأوّليّة والثّانويّة تشكّل روابط هدروجينيّة بيرن جزيّاتها بينما لا تشكّل الألكانات روابط هدروجينيّة بيرن جزيّاتها.

س2_ فسر مزوجية ميتان أمين شديدة في الماء.

الجواب: بسبب قطبية روابطه بالإضافة إلى تشكيل روابط هدروجينية بين جزيئاته وبين جزيئات الماء.

_ _ _ _ انتهت الأسئلة _ _ _ _