

Question No. 15

The condition for continuity of f(x) at a point c of its domain is

 $\lim_{x\to a} f(x) = f(c)$

Sever & Next , sever & Next

Question No. 33

بر 12

1:01 CO

Which of the following points are on the graph of $f(x) = 4 + 2\log_3(1-2x)$?

- (3, 1), (1, 0) and $(\frac{1}{3}, -1)$
- (0, 4), (-1, 6) and $(\frac{1}{5}, -2)$
- $(0,6), (-1,4) \text{ and } (\frac{1}{5},2)$
- (0, 4), (-1, 6) and $(\frac{1}{3}, 2)$

Total questions in exam: 40 | Answered: 15

Question No. 27				
The range of the funct	$\inf f(x) = -x^2 +$	+ 1 is		
 (-∞,-1] [-1,∞) [1,∞) (-∞,1] 	D		6	
مندر قالي Save & Next				

In exam: 40 | Answered. 5 Question No. Suppose $a, b \in \mathbb{R}$ and $b \ge 0$. The solution of the inequality $0 \le |x - a| \le b$ is (a-b,a) U (a,a+b) 0 (a-b.a) U (a, b) · (-b, a) U (a, a + b) (a - b. a) U (a. b)

Given that $3^{x-1} = 4^x$ then x :

in. 31

ln4 ln3 - ln40 ln3 In3+In4 0 ln3 ln3-ln4 ln4 ln3+ln4

Question No. 28
Let
$$f(x) = x^2 + c$$
 and $g(x) = x$, give the value of c such that $f(x + 1) = xg(x) + 2x$.
 $0 < -1$
 $0 < -1$
 $0 < -4$
 $0 < -0$

Margare Willing Karan and And Adapter Ster Question No. 5 If $\sin \theta = \frac{4}{5}$ then $\cot \theta = 0.490^{\circ}$, where 0.490° In such a such 0 4 3 0 <u>1</u> 0 <u>5</u> 3 0 3 5 Save & Next , Man

Total questions in exam: 40 | Answered: 1

Question No. 33

Which of the following points are on the graph of $f(x) = 4 + 2 \log_3(1 - 2x)$?

(3, 1), (1, 0) and $(\frac{1}{3}, -1)$ (0, 4), (-1, 6) and $(\frac{1}{3}, -2)$ (0, 6), (-1, 4) and $(\frac{1}{3}, 2)$ (0, 4), (-1, 6) and $(\frac{1}{3}, 2)$

If $a \in \mathbb{R}$, solve the inequality $3x - 5a \leq \frac{1}{2}(x+1)$, for x.

 $\begin{array}{c} \bullet & [2a + \frac{1}{5}, \infty) \\ \bullet & (-\infty, 2a - \frac{1}{5}] \\ \bullet & (-\infty, 2a + \frac{1}{5}] \\ \bullet & (-\infty, 2a + \frac{1}{5}) \end{array}$

Save & Next , Save & Next

Question No. 8

The function f(x) is constant on an interval I if for $x_1, x_2 \in I$,

- if $x_1 < x_2$, then $f(x_1) > f(x_2)$,
- if $x_1 < x_2$, then $f(x_1) < f(x_2)$,
- if $x_1 > x_2$, then $f(x_1) > f(x_2)$,
- if $x_1 \neq x_2$, then $f(x_1) = f(x_2)$,

Save & Next منذ راقلي

Scanned with CamScanner

A144054,

Question No. 4

If $a \in \mathbb{R}$, solve the inequality $3x - 5a \leq \frac{1}{2}(x+1)$, for x.

2

$$\begin{array}{l} & \left(-\infty, 2a - \frac{1}{5} \right) \\ & \left[2a + \frac{1}{5}, \infty \right) \\ & \left(-\infty, 2a + \frac{1}{5} \right) \\ & \left(-\infty, 2a + \frac{1}{5} \right) \end{array}$$

14

Question No. 4

If $a \in \mathbb{R}$, solve the inequality $3x - 5a \leq \frac{1}{2}(x+1)$, for x.

2

$$\begin{array}{l} & \left(-\infty, 2a - \frac{1}{5} \right) \\ & \left[2a + \frac{1}{5}, \infty \right) \\ & \left(-\infty, 2a + \frac{1}{5} \right) \\ & \left(-\infty, 2a + \frac{1}{5} \right) \end{array}$$

14

Total questions in exam: 40 | Answered: 0

Question No. 17

Save & Next مطراقلي

For the graph of $f(x) = -3(5)^{1-2x} + 4$, the line

- \bigcirc y = -3 is its horizontal asymptote.
- x = 4 is its vertical asymptote.
- \bigcirc y = 4 is its horizontal asymptote.
- $x = \frac{1}{2}$ is its vertical asymptote.

Total questions in exam: 4	0 Answered: 0	10.21 (1)	
		-	
Question No. 14	"Why spe	White.	1444
The expression (1+	tan ² θ) equals		Z
sec ² θ	Million	MALIT	Althe
cos ² θ	- 1 · · · · · · ·		
$csc^2\theta$	\mathcal{O}		
ο sin ² θ	•		
31			
Save & Next منا راقلی			

Total questions in exam: 40 | Answered: 0

Question No. 8

 t_i

The function f(x) is constant on an interval I if for $x_1, x_2 \in I$,

• if $x_1 < x_2$, then $f(x_1) > f(x_2)$, • if $x_1 < x_2$, then $f(x_1) < f(x_2)$, • if $x_1 > x_2$, then $f(x_1) > f(x_2)$, • if $x_1 \neq x_2$, then $f(x_1) = f(x_2)$,

مطراقلی Save & Next

Total questions in exam: 40 1 Mis Question No. 5 The function $f(x) = \begin{cases} x^2 & \text{if } x \le 2 \\ k - x^2 & \text{if } x > 2 \end{cases}$ is continuous if 0 K=4 0 K=4 0 k=2 0 k=8 .5 مطراقلي Save & Next
Total questions in exam: 40 Answered. Question No. 7 The solution set of the equation 16x + 16 = 1 + 13x is ○ {5, - 5} 0 {5} 0 Ø 0 {-5}

If $a \in \mathbb{R}$, solve the inequality $3x - 5a \leq \frac{1}{2}(x+1)$, for x.

 $\begin{array}{c} \bigcirc & [2a + \frac{1}{5}, \infty) \\ \bigcirc & (-\infty, 2a - \frac{1}{5}] \\ \bigcirc & (-\infty, 2a + \frac{1}{5}] \\ \bigcirc & (-\infty, 2a + \frac{1}{5}) \\ \bigcirc & (-\infty, 2a + \frac{1}{5}) \end{array}$

Save & Next

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 16 The vertical asymptote to the graph of $f(x) = \log_5(x+1)$ ◎ x = 1 ◎ y = 1 ○ x = -1 ◎ y = 5 مغط راقلی Save & Next

Total questions in exam: 40 | Answered: 0

Question No. 17

For the graph of $f(x) = -3(5)^{1-2x} + 4$, the line

- y = -3 is its horizontal asymptote.
- x = 4 is its vertical asymptote.
- \bigcirc y = 4 is its horizontal asymptote.
- $x = \frac{1}{2}$ is its vertical asymptote.

Total questions in exam: 40 | Answered: 0

Question No. 8

 t_i

The function f(x) is constant on an interval I if for $x_1, x_2 \in I$,

• if $x_1 < x_2$, then $f(x_1) > f(x_2)$, • if $x_1 < x_2$, then $f(x_1) < f(x_2)$, • if $x_1 > x_2$, then $f(x_1) > f(x_2)$, • if $x_1 \neq x_2$, then $f(x_1) = f(x_2)$,

مطراقلی Save & Next

Question No. 7 The solution set of the equation $16x + 16 = 1 + 13x$ is					
(z) {5}					
Ø					
{-5}					
a_					
	1				
		8			

Total questions in exam: 40 | Answered: 1

Question No. 1 For the graph of $f(x) = -3(5)^{1-2x} + 4$, the line x = 4 is its vertical asymptote. 0 • y = 4 is its horizontal asymptote. • $x = \frac{1}{2}$ is its vertical asymptote. • y = -3 is its horizontal asymptote.

5

sheeten No. 14

The domain of the function $f(x) = \sqrt{3}^{2x+1} S$ is

e (a(m) e (l(m) e ((m) e ((m) e (m 2)

Save & Next alla has

1022 Varia 40 Answered 2 Constituti No. 2 complement of the angle The 65

Total questions in exam: 40 | Answered: 0 Question No. 20 Evaluate $\lim_{x \to -\infty} \frac{x^4 + 2x^2 - 1}{x^3 - 2x - 2} =$ 0 0 -1 ○ -∞ 0 1

MKCL OES

Math_FT_Se

Total questions in exam: 40 | Answered: 0

Question No. 19
If
$$f(x) = (x-3)(x+1) + c$$
 and the remainder of $\frac{f(x)}{x+2}$ is 6, then $f(x)$ is equal to
 $\begin{array}{c} 0 & x^2 - 2x - 1 \\ 0 & x^2 - 2x - 2 \\ 0 & x^2 - 2x + 3 \\ 0 & 2x^2 - 2x + 6 \end{array}$

Question No. 20

0

C

0

0 -1

- 00

1

Evaluate $\lim_{x \to -\infty} \frac{x^4 + 2x^2 - 1}{x^3 - 2x - 2} =$

MKCL OES

Total questions in exam: 40 | Answered: 0

Math_

Question No. 16 The solution set of the equation 3(x+3) = 3x - 9 is $\begin{cases} 2,3 \\ 0 \\ 1 \\ 0 \\ 0 \end{cases}$

Question No. 17 Evaluate $\lim_{x \to -3} \frac{x^2 + 7x + 12}{x + 3} =$ 0 1 0 4 0 -3 0 0

MKCL OES

Question No. 18

a straight angle

an obtuse angle

an acute angle

a right angle

Total questions in exam: 40 | Answered: 0

If $0^{\circ} < \theta < 90^{\circ}$ then θ is called

Math

MKCL OES

Math

Total questions in exam: 40 | Answered: 0

Question No. 13 If $\sin \theta = \frac{4}{5}$ then $\sec \theta =$,where 0°<9<90° 0 3 5 0 5 4 0 4 5 0 5/3

Question No. 12 The function $f(x) = \begin{cases} x^4 & \text{if } x \le 1 \\ k - x^4 & \text{if } x > 1 \end{cases}$ is continuous if ○ k=1 ○ k=-1 ○ k=0 ○ k=2

MKCL OES

Total questions in exam: 40 | Answered: 0

Question No. 11

Which of the following is a pair of inverse functions?

f(x) = √3 + x, where x ∈ [-3,∞), and g(x) = x² - 3, where x ∈ [0,∞).
f(x) = √3 + x, where x ∈ [-3,∞), and g(x) = x² + 3, where x ∈ [0,∞).
f(x) = 2x - 1, where x ∈ ℝ, and g(x) = x + 1/2, where x ∈ ℝ.
f(x) = x, where x ∈ ℝ, and g(x) = -x, where x ∈ ℝ.

Question No. 11

Which of the following is a pair of inverse functions?

○ $f(x) = \sqrt{3+x}$, where $x \in [-3, \infty)$, and $g(x) = x^2 - 3$, where $x \in (-3, \infty)$ and $g(x) = x^2 + 3$, where $x \in (-3, \infty)$ and $g(x) = x^2 + 3$, where $x \in (-3, \infty)$ and $g(x) = x^2 + 3$, where $x \in (-3, \infty)$ and $g(x) = x^2 + 3$, where $x \in (-3, \infty)$ and $g(x) = x^2 + 3$, where $x \in (-3, \infty)$ and $g(x) = x^2 + 3$, where $x \in (-3, \infty)$ and $g(x) = x^2 + 3$, where $x \in (-3, \infty)$ and $g(x) = x^2 + 3$, where $x \in (-3, \infty)$ and $g(x) = x^2 + 3$, where $x \in (-3, \infty)$ and $g(x) = x^2 + 3$, where $x \in (-3, \infty)$ and $g(x) = x^2 + 3$, where $x \in (-3, \infty)$ and $g(x) = x^2 + 3$, where $x \in (-3, \infty)$ and $g(x) = x^2 + 3$, where $x \in (-3, \infty)$ and $g(x) = x^2 + 3$, where $x \in (-3, \infty)$ and $g(x) = x^2 + 3$.

Question No. 8 If $\cos\theta = \frac{4}{5}$ then $\sec\theta =$ 0 5 4 4 5 3 4 0 0 0 4 3

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 9 Find the sum $\frac{3}{2y} - \frac{5}{2y}$ 0 1 4y 0 11 $\overline{4y^2}$ $\bigcirc \frac{1}{y}$ $-\frac{1}{y}$

Question No. 3 Evaluate $\lim_{x \to -1} \frac{3x^4 + x + 1}{x + 4} =$ 03 0 -4 01 0 0

Question No. 6

Factoring $x^3 + y^3$ gives

$$(x+y)(x^2 - xy + y^2) (x-y)(x^2 + xy + y^2) (x-y)(x^2 - 2xy + y^2) (x-y)(x^2 - 2xy + y^2) x^3 - y^3$$

Question No. 2

The complement of the angle 45° is: 135° 125° 45° 55°

Question No. 39

The vertex of the graph of $f(x) = -2x^2 + 4x - 1$ is

- (2,-1)○ (0,-1)
- (-1,-7)
- 0 (1,1)

If $a \neq 1$ is a positive real number such that $5^x = a$ then x =

Question No. 1

The solution set of the equation $\log_5(x+2) + \log_5(x-2) = 1$ is

{3}
Ø
(-3,3)
(-3)

Scanned with CamScanner

Question No. 38

Solve: $2x^2 - 13x + 15 = 0$ $x = \frac{3}{2}$ or x = 5 x = 2 + 3i or x = 2 - 3i $x = \frac{7}{2}$ or x = -5x = 3 or x = 15

Question No. 36 Evaluate $\lim_{x \to \infty} (x^3 + x - 3) =$ 0 3 0 0 0 - 3 0 00 A GOVERNMENT OF A CONTRACTOR

HURRHUN No. 44

Find the domain of $f(+) = \sqrt{1}$

 $= \frac{1}{1} \frac{1}{2} \frac{$

 $= 1 - a_s a_b$

Question No. 31 Evaluate $\lim_{x \to -\infty} \frac{3x^2 + x + 2}{x^2 + 6x + 1} =$ 0 4 03 © 2 0 1

Question No. 32

Let $a \in \mathbb{R}$ and $f(x) = 0.9^{(a^2-3a+2)x-1} - a$. Give the condition of $a \in (-\infty, 1] \cup [2, \infty)$ $a \in (1, 2)$ $a \in (-\infty, 1)$ $a \in (2, \infty)$ **Question No. 34**

Solve the inequality $\frac{x^2 + 10x + 25}{x+1} \ge 0$ $^{\bigcirc} \{-5\} \cup (-1, +\infty)$ $\stackrel{\bigcirc}{} (-5,-1) \\ \stackrel{\bigcirc}{} (-1,+\infty) \\ \stackrel{\bigcirc}{} [-5,+\infty)$

Question No. 35 Given that $f(x) = 4^{3x-1} + 1$. Then f(1) =0 17 0 14 0 16 0 15

MKCL OES

Math_FT_Sem2_2019

Total questions in exam: 40 | Answered: 0

Question No. 32

Let $a \in \mathbb{R}$ and $f(x) = 0.9^{(a^2 - 3a + 2)x - 1} - a$. Give the condition on a such that f(x) is increasing. $a \in (-\infty, 1] \cup [2, \infty)$ $a \in (1, 2)$ $a \in (-\infty, 1)$ $a \in (2, \infty)$

Question No. 30

The function f(x) is constant on an interval I if for $x_1, x_2 \in I$,

• if
$$x_1 > x_2$$
, then $f(x_1) > f(x_2)$,
• if $x_1 < x_2$, then $f(x_1) > f(x_2)$,
• if $x_1 \neq x_2$, then $f(x_1) = f(x_2)$,
• if $x_1 \neq x_2$, then $f(x_1) = f(x_2)$,
• if $x_1 < x_2$, then $f(x_1) < f(x_2)$.

Total questions in exam: 40 | Answered: 0

Question No. 21

The domain of the function $f(x) = 1 - \log_4(x - 2)$ is

(2,∞)
 (0,∞)
 (-∞, 2)
 (-∞,∞)

MKCL OES

Total questions in exam: 40 | Answered: 0

Question No. 25

If x+a is a factor of the polynomial f(x) then

- f(a) = -a
- $^{\bigcirc} f(-a) \neq 0$
- $^{\bigcirc} f(-a) = 0$
- $^{\bigcirc} f(a) = 0$

Total questions in exam: 40	Answered: 0
-----------------------------	-------------

Question No. 26

The horizontal asymptote to the graph of $f(x) = 3^{x-1} + 2$.

- x = -2 ○ y = 2
- y = 3
- y = -2

Question No. 27 $\lim_{x \to -1^+} \frac{x^2 - 1}{|x + 1|}$ Evaluate 06 0 -2 0 2 0 1

MKCL OES

Total questions in exam: 40 | Answered: 0

