2~ヘロ~
 ABEER

The condition for continuity of $f(x)$ at a point c of its domain is
$\lim _{x \rightarrow \infty} f(x)=x$
$\lim _{x \rightarrow+} f(x)=f(x)$
$\lim _{x \rightarrow \infty} f(x)=c$
$\lim _{x \rightarrow 1} f(x)=f(c)$

Which of the following points are on the graph of $f(x)=4+2 \log _{3}(1-2 x)$?
(3,1). $(1,0)$ and $\left(\frac{1}{5},-1\right)$
$(0,4),(-1,6)$ and $\left(\frac{1}{5},-2\right)$
$(0,6),(-1,4)$ and $\left(\frac{1}{3}, 2\right)$
$(0,4),(-1,6)$ and $\left(\frac{1}{5}, 2\right)$

Question №. 2

Find the function $f(x)$ such thi

0 $\frac{1}{x^{2}+x}$.
$0 \frac{1}{r^{3}-1}$.
$0 \frac{1}{x^{2}-x}$.
${ }^{0} \frac{3}{r-1}$.

Question No. 27

The range of the function $f(x)=-x^{2}+1$ is
(- $\left.{ }^{\infty},-1\right]$
$[-1, \infty)$
$[1, \infty)$
D
$(-\infty, 1]$

The function $f(x)$ is increasing on an interval I if for $x_{1}, x_{2} \in I$,
0 if $x_{1}>x_{2}$, then $f\left(x_{1}\right) \leq f\left(x_{2}\right)$,
if $x_{1}<x_{2}$, then $f\left(x_{1}\right)<f\left(x_{2}\right)$,
if $x_{1}>x_{2}$, then $f\left(x_{1}\right)<f\left(x_{2}\right)$,
if $x_{1}<x_{2}$, then $f\left(x_{1}\right)=f\left(x_{2}\right)$.

Qugen 1iv. 31

Given that $3^{x-1}=4^{x}$ then x

$\ln 4$
 $\ln 3-\operatorname{los}$

$\frac{\ln 3}{\ln 3+\ln 4}$

- $\frac{\ln 3}{\ln 3-\ln 4}$
\bigcirc
$\frac{\ln 4}{\ln 3 \div \ln 4}$

Let $f(x)=x^{2}+c$ and $g(x)=x$, give the value of c such that $f(x+1)=x g(x)+2 x$.

Question №. 2

Find the function $f(x)$ such thi

0 $\frac{1}{x^{2}+x}$.
$0 \frac{1}{r^{3}-1}$.
$0 \frac{1}{x^{2}-x}$.
${ }^{0} \frac{3}{r-1}$.

Question No. 18

Which of the following inequalities is false?
$0 \frac{1}{1+x^{2}}>1$.
${ }^{0} x \leq x$.

- $\frac{1}{1+x^{2}} \leq 1$.
${ }^{0} x^{2} \leq x^{2}+1$.

Question №. 2

Find the function $f(x)$ such thi

0 $\frac{1}{x^{2}+x}$.
$0 \frac{1}{r^{3}-1}$.
$0 \frac{1}{x^{2}-x}$.
${ }^{0} \frac{3}{r-1}$.

Question No. 18

Which of the following inequalities is false?
$0 \frac{1}{1+x^{2}}>1$.
$0_{0} x \leq x$.
01
$\frac{1}{1+x^{2}} \leq 1$.
${ }^{0} x^{2} \leq x^{2}+1$.

Question No. 1

Evaluate $\lim _{x \rightarrow-3} \frac{|x+3|}{x+3}$

00

- Does not exist
$\bigcirc 2$
O 1

Quesben No. 5

wher Materyme

The range of the function $f(x)=5^{4 x}$ is

- $(5, \infty)$
- $(-\infty, \infty)$
$(0, \infty)$
$0[4, \infty)$

Evaluate $\lim _{x \rightarrow-\infty} \frac{2 x}{x^{3}-4}=$

- ∞
- $\frac{1}{2}$
- $\frac{-1}{2}$

00

Question No. 33

Which of the following points are on the graph of $f(x)=4+2 \log _{3}(1-2 x)$?
O $(3,1),(1,0)$ and $\left(\frac{1}{3},-1\right)$
$(0,4),(-1,6)$ and $\left(\frac{1}{3},-2\right)$
) $(0,6),(-1,4)$ and $\left(\frac{1}{3}, 2\right)$
$(0,4),(-1,6)$ and $\left(\frac{1}{3}, 2\right)$

Question No. 18

Which of the following inequalities is false?

0

$\frac{1}{1+x^{2}}>1$.
 $x \leq x$.
 $\frac{1}{1+x^{2}} \leq 1$.

$x^{2} \leq x^{2}+1$.

If $a \in \mathbb{R}$, solve the inequality $3 x-5 a \leq \frac{1}{2}(x+1)$, for x.

O $\left[2 a+\frac{1}{5}, \infty\right)$
○ $\left(-\infty, 2 a-\frac{1}{5}\right]$
○ $\left(-\infty, 2 a+\frac{1}{5}\right]$
○ $\left(-\infty, 2 a+\frac{1}{5}\right)$

If $\sin \theta=\frac{4}{5}$ then $\cot \theta=$, where $0^{\circ}<9<90^{\circ}$

The function $f(x)$ is constant on an interval I if for $x_{1}, x_{2} \in I$,
if $x_{1}<x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$,
if $x_{1}<x_{2}$, then $f\left(x_{1}\right)<f\left(x_{2}\right)$,
if $x_{1}>x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$,
if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right)=f\left(x_{2}\right)$,

If $a \in R$, solve the inequality $3 x-5 a \leq \frac{1}{2}(x+1)$, for x.

$$
\begin{aligned}
& \left(-\infty, 2 a-\frac{1}{5}\right] \\
& \left(2 a+\frac{1}{5}, \infty\right) \\
& \left(-\infty, \left.2 a+\frac{1}{5} \right\rvert\,\right. \\
& \left(-\infty, 2 a+\frac{1}{5}\right)
\end{aligned}
$$

Δ

Question No. 16

The vertical asymptote to the graph of $f(x)=\log _{5}(x+1)$
$x=1$
y $=1$
$x=-1$

- $y=5$

If $a \in R$, solve the inequality $3 x-5 a \leq \frac{1}{2}(x+1)$, for x.

$$
\begin{aligned}
& \left(-\infty, 2 a-\frac{1}{5}\right] \\
& \left(2 a+\frac{1}{5}, \infty\right) \\
& \left(-\infty, \left.2 a+\frac{1}{5} \right\rvert\,\right. \\
& \left(-\infty, 2 a+\frac{1}{5}\right)
\end{aligned}
$$

Δ

Question No. 17

For the graph of $f(x)=-3(5)^{1-2 x}+4$, the line

- $y=-3$ is its horizontal asymptote.
$x=4$ is its vertical asymptote.
- $y=4$ is its horizontal asymptote.
$x=\frac{1}{2}$ is its vertical asymptote.

If $f(x)=(x-3)(x+1)+c$ and the remainder of $\underset{x \rightarrow j}{f(y)}$ is 6 , then $f(x)$ is equal to

- $x^{3}-2 x-1$
- $2 x^{2}-2 x+6$
- $x^{2}-2 x+3$
- $x^{3}-2 x-2$

D

Question No. 15

The complement of the angle 60° is:

- 140°
120°
- 70°

${ }^{\circ} 30^{\circ}$

Question No. 14

The expression $\left(1+\tan ^{2} \theta\right)$ equals
$\sec ^{2} \theta$

- $\cos ^{2} \theta$
- $\csc ^{2} \theta$

$\sin ^{2} \theta$

Total questions in exam: 40 | Answered: 0

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 0

Duestion No. 12

Compute the product $(\mathrm{x}-2)(\mathrm{x}-3)$

Total questions in exam: $\mathbf{4 0}$ | Answered: $\mathbf{0}$

Question No. 14

The expression $\left(1+\tan ^{2} \theta\right)$ equals
$\sec ^{2} \theta$

- $\cos ^{2} \theta$
- $\csc ^{2} \theta$
$\sin ^{2} \theta$

Question No. 11

Solve: $6 x^{2}+7 x-3=0$

O $x=2+i$ or $x=2-i$
$x=\frac{1}{3}$ or $x=\frac{-3}{2}$
$x=\frac{3}{2}$ or $x=-\frac{1}{3}$
$x=3$ or $x=-1$

Evaluate $\lim _{x \rightarrow-\infty} \frac{2 x}{x^{3}-4}=$

- ∞

0 $\frac{1}{2}$

- $\frac{-1}{2}$
$\bigcirc 0$

The function $f(x)$ is constant on an interval I if for $x_{1}, x_{2} \in I$,

0 if $x_{1}<x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$,
0 if $x_{1}<x_{2}$, then $f\left(x_{1}\right)<f\left(x_{2}\right)$,
0 if $x_{1}>x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$,

- if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right)=f\left(x_{2}\right)$,

Question No. 5
The function $f(x)=\left\{\begin{array}{lll}x^{2} & \text { if } & x \leq 2 \\ k-x^{2} & \text { if } & x>2\end{array}\right.$ is continuous if

O $k=4$
o $k=4$
o $k=2$
$k=8$

Question No. 7

The solution set of the equation $16 x+16=1+13 x$ is
$\{5,-5\}$
\{5\}

- \emptyset
$\{-5\}$

Total questions in exam: $\mathbf{4 0}$ | Answered: 0

The horizontal asymptote to the graph of $f(x)=2^{x}-3$. . $=.3$
. $=3$

The range of the function $f(x)=5^{4 x}$ is

- $(5, \infty)$
- $(-\infty, \infty)$
- $(0, \infty)$
- $[4, \infty)$

Total questions in exam.

Question No. 1

Evaluate $\lim _{x \rightarrow-3} \frac{|x+3|}{x+3}$0Does not exist21

Total gumbins nesm io | Anrarget 4

Questien Ne,

Solve $a x^{2}+b x+c=0$
0

$$
s=\left\{\frac{-b-\sqrt{b^{2}+4 a}}{2 a}, \frac{-b+\sqrt{b^{2}+4 a}}{2 a}\right\}
$$

0

$$
S=\left\{\frac{-b-\sqrt{3}-4 a}{2 a}, \frac{\Delta \cdot \sqrt{b^{4}-4 a}}{2 a}\right\}
$$

$$
N=\left\{\frac{b-\sqrt{b^{2}-4 a}}{2 a}=\frac{b+\sqrt{b^{1}-4 a}}{2 a}\right\}
$$

$S=\left\{\frac{-b^{2} \sqrt{b^{5}-4 a}}{a}, \frac{-b+\sqrt{b^{2}-4 a}}{a}\right\}$

Question No. 1
Evaluate $\lim _{x \rightarrow-3} \frac{|x+3|}{x+3}$
$\bigcirc 0$

- Does not exist
$\bigcirc 2$
- 1

4

Question No. 3

The slope of the vertical line is

00

- Undefined
- -1

O 1

Question No. 4
The horizontal asymptote to the graph of $f(x)=2^{x}-3$.

O $y=-3$
() $x=2$
(1) $x=-2$
y $=3$

The range of the function $f(x)=5^{4 x}$ is

- $(5, \infty)$
- $(-\infty, \infty)$
- $(0, \infty)$
- $[4, \infty)$

Question No. 4
The horizontal asymptote to the graph of $f(x)=2^{x}-3$.

O $y=-3$

- $x=2$
() $x=-2$
- $y=3$

If $a \in \mathbb{R}$, solve the inequality $3 x-5 a \leq \frac{1}{2}(x+1)$, for x.

O $\left[2 a+\frac{1}{5}, \infty\right)$
○ $\left(-\infty, 2 a-\frac{1}{5}\right]$
○ $\left(-\infty, 2 a+\frac{1}{5}\right]$
○ $\left(-\infty, 2 a+\frac{1}{5}\right)$

Question No. 3

The slope of the vertical line is

00

- Undefined
- -1

O 1

Factor the following: $a^{2}+a b-a r-r b$
O $(a-b)(a+r)$
$0(a+b)(a+r)$
O $(a+b)(a-r)$

$0(a-b)(a-r)$

Question No. 7

Simplify the expression. $\sqrt{-16}$
O is not a real number

- -4
- -8

○ 4

Question No. 1
Evaluate $\lim _{x \rightarrow-3} \frac{|x+3|}{x+3}$

00

- Does not exist
$\bigcirc 2$
O 1

4

Question No. 18

Evaluate $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}=$

- $\frac{1}{6}$
- $-\frac{1}{6}$
- $-\frac{1}{4}$
- $\frac{1}{2}$

Total questions in exam: $40 \mid$ Answered: 0

Question No. 16
The vertical asymptote to the graph of $f(x)=\log _{5}(x+1)$
$x=1$
$y=1$
$x=-1$

- $y=5$

Question No. 17

For the graph of $f(x)=-3(5)^{1-2 x}+4$, the line

- $y=-3$ is its horizontal asymptote.
$x=4$ is its vertical asymptote.
- $y=4$ is its horizontal asymptote.
$x=\frac{1}{2}$ is its vertical asymptote.

Question No. 16

The vertical asymptote to the graph of $f(x)=\log _{5}(x+1)$
$x=1$
y $=1$
$x=-1$

- $y=5$

Total questions in exam: $\mathbf{4 0}$ | Answered: $\mathbf{0}$

Question No. 14

The expression $\left(1+\tan ^{2} \theta\right)$ equals
$\sec ^{2} \theta$

- $\cos ^{2} \theta$
- $\csc ^{2} \theta$
$\sin ^{2} \theta$

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 0

Question No. 14

The expression $\left(1+\tan ^{2} \theta\right)$ equals
${ }^{\circ} \sec ^{2} \theta$

- $\boldsymbol{\operatorname { c o s }}^{2} \theta$
- $\csc ^{2} \theta$
${ }^{\circ} \sin ^{2} \theta$

Question No. 15

The complement of the angle 60° is:

- 140°
120°
- 70°
- 30°

Total questions in exam: $\mathbf{4 0}$ | Answered: 0

Duestion No. 12

Compute the product $(x-2)(x-3)$

Total questions in exam: 40 | Answered: 0

Question No. 11

Solve: $6 x^{2}+7 x-3=0$

O $x=2+i$ or $x=2-i$
$x=\frac{1}{3}$ or $x=\frac{-3}{2}$
$x=\frac{3}{2}$ or $x=-\frac{1}{3}$
$x=3$ or $x=-1$

Total questions in exam: $\mathbf{4 0}$ | Answered: 0

The function $f(x)$ is constant on an interval I if for $x_{1}, x_{2} \in I$,

0 if $x_{1}<x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$,
0 if $x_{1}<x_{2}$, then $f\left(x_{1}\right)<f\left(x_{2}\right)$,
0 if $x_{1}>x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$,

- if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right)=f\left(x_{2}\right)$,

Question No. 10

Evaluate $\lim _{x \rightarrow-\infty} \frac{2 x}{x^{3}-4}=$

- ∞

0 $\frac{1}{2}$

- $\frac{-1}{2}$
$\bigcirc 0$

west ion No. 2

The horizontal asymptote to the graph of $f(x)=2^{x}-3$.
sinerivernvode

Question No. 5
The function $f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x \leq 2 \\ k-x^{2} & \text { if } \\ x>2\end{array}\right.$ is continuous if

O $k=4$
o $k=4$
($k=2$
$k=8$

Question No. 7

The solution set of the equation $16 x+16=1+13 x$ is
$\{5,-5\}$
\{5\}

- \emptyset
$\{-5\}$

Question No. 4
The horizontal asymptote to the graph of $f(x)=2^{x}-3$.

O $y=-3$
() $x=2$
(1) $x=-2$
y $=3$

Question No. 3

The slope of the vertical line is

00

- Undefined
- -1
- 1

The range of the function $f(x)=5^{4 x}$ is

- $(5, \infty)$
- $(-\infty, \infty)$
- $(0, \infty)$
- $[4, \infty)$

Total questions in exam: $\mathbf{4 0}$ | Answered: 1

Question No. 1

For the graph of $f(x)=-3(5)^{1-2 x}+4$, the line
O $x=4$ is its vertical asymptote.
O $y=4$ is its horizontal asymptote.

- $x=\frac{1}{2}$ is its vertical asymptote.
- $y=-3$ is its horizontal asymptote.

Solve the inequality $x^{2}(x-1)(x-2) \leq 0$

- $x \in \mathbb{R} \backslash(1,2)$.

O $x \in[1,2] \cup\{0\}$.

- $x \in \mathbb{R} \backslash[1,2]$.
- $x \in(1,2) \cup\{0\}$.

Question No. 1
Evaluate $\lim _{x \rightarrow-3} \frac{|x+3|}{x+3}$

00
O Does not exist
$\bigcirc 2$

- 1
Ao

Question №. 2

Find the function $f(x)$ such thi

0 $\frac{1}{x^{2}+x}$.
$0 \frac{1}{r^{3}-1}$.
$0 \frac{1}{x^{2}-x}$.
${ }^{0} \frac{3}{r-1}$.

Question No. 4

If $f(x)=-\sqrt{2 x}$ then $f(x)$ is

O not defined
O decreasing
O increasing
O constant

MKCL OES

Total questions in exam 40 | Answered. 27

Question No. 25

Find the quotimt $\frac{6 x^{2}}{2 x^{2}}+\frac{3 x}{x^{2}}$, where $x \neq 0$
01 3
41
($\frac{1}{2}$
(6) -1

Question No. 9

Given that $f(x)=3^{2 x+1}-1$. Then $f(-1)=$
○ 2
$\begin{array}{r}3 \\ \circ \\ \hline\end{array}$

- $\frac{-2}{3}$

○ -1

Question No. 8 / $/ 3,30$,
The supplement of the angle 50° is:
${ }^{\circ} 40^{\circ}$
${ }^{\circ} 150^{\circ}$

- 50°
${ }^{\circ} 130^{\circ}$

The function $f(x)=\left\{x^{2}\right.$ $k-x^{2}$ if $x=$

k=4
$\mathrm{k}=2$
$\mathrm{k}=8$
$\mathrm{k}=-4$

Question No. 33

Find the domain of $f(x)=\frac{2}{\sqrt{|x|-3}}$
$(-\infty,-3] \cup[3, \infty)$.
$(-\infty,-3) \cup(3, \infty)$.
$(-3,3)$.
[-3, 3].

In demith wris firative $f(1)-\sqrt{3 n+!}$ is
ef $1 \times \infty$

- (1) m)
© (F, m)
e($\mathrm{m} / 2)$
abmilement ofthe angle $65^{\prime \prime}$

1/8
18,
\square

Total questions in exam: $\mathbf{4 0}$ | Answered: $\mathbf{0}$

Question No. 20

Evaluate $\lim _{x \rightarrow-\infty} \frac{x^{4}+2 x^{2}-1}{x^{3}-2 x-2}=$
0
-1
$-\infty$
1

If $f(x)=(x-3)(x+1)+c$ and the remainder of $\frac{f(x)}{x+2}$ is 6 , then $f(x)$ is equal to
$x^{2}-2 x-1$
$x^{2}-2 x-2$
$x^{2}-2 x+3$
$2 x^{2}-2 x+6$

Question No. 20

Evaluate $\lim _{x \rightarrow-\infty} \frac{x^{4}+2 x^{2}-1}{x^{3}-2 x-2}=$

0
-1
$-\infty$
1

Question No. 16

The solution set of the equation $3(x+3)=3 x-9$ is
$\{2,3\}$
the set of real numbers
1
\emptyset

Question No. 17

Evaluate $\lim _{x \rightarrow-3} \frac{x^{2}+7 x+12}{x+3}=$

Total questions in exam: $\mathbf{4 0} \mid$ Answered: $\mathbf{0}$

Question No. 18

If $0^{\circ}<\theta<90^{\circ}$ then θ is called
a straight angle
a right angle
an obtuse angle
an acute angle

Let $\mathrm{U}=\{0,1,2,3,4,5,6,7,9\}$, and $\mathrm{A}=\{0,1,2,5,7\}$ the complement of A is $\{3,4,6,9\}$
$\{1,3,5,7\}$
\emptyset
$\{1,2,3,4,5,6,7\}$

Total questions in exam: $\mathbf{4 0}$ | Answered: $\mathbf{0}$

Question No. 15

The solution set of the equation $-1+\log _{8}(3 x+2)=-\frac{1}{3}$ is
. $\left\{-\frac{1}{3}\right\}$

- $\left\{\frac{3}{2}\right\}$
$\left\{-\frac{2}{3}\right\}$
$\left\{\frac{2}{3}\right\}$

Question No. 12

The function $f(x)=\left\{\begin{array}{ll}x^{4} & \text { if } x \leq 1 \\ k-x^{4} & \text { if } x>1\end{array}\right.$ is continuous if
$k=1$
$k=-1$
$k=0$
$\mathrm{k}=2$

Total questions in exam: $\mathbf{4 0} \mid$ Answered: $\mathbf{0}$

Question No. 11

Which of the following is a pair of inverse functions?
$f(x)=\sqrt{3+x}$, where $x \in[-3, \infty)$, and $g(x)=x^{2}-3$, where $x \in[0, \infty)$.
$f(x)=\sqrt{3+x}$, where $x \in[-3, \infty)$, and $g(x)=x^{2}+3$, where $x \in[0, \infty)$.
$f(x)=2 x-1$, where $x \in \mathbb{R}$, and $g(x)=x+\frac{1}{2}$, where $x \in \mathbb{R}$.
$f(x)=x$, where $x \in \mathbb{R}$, and $g(x)=-x$, where $x \in \mathbb{R}$.

Question No. 11

Which of the following is a pair of inverse functions?
$f(x)=\sqrt{3+x}$, where $x \in[-3, \infty)$, and $g(x)=x^{2}-3$, where x $f(x)=\sqrt{3+x}$, where $x \in[-3, \infty)$, and $g(x)=x^{2}+3$, where $x \in$ $f(x)=2 x-1$, where $x \in \mathbb{R}$, and $g(x)=x+\frac{1}{2}$, where $x \in \mathbb{R}$. $f(x)=x$, where $x \in \mathbb{R}$, and $g(x)=-x$, where $x \in \mathbb{R}$.

Total questions in exam: $\mathbf{4 0} \mid$ Answered: $\mathbf{0}$

Question No. 8

If $\cos \theta=\frac{4}{5}$ then $\sec \theta=$
$\frac{5}{4}$
4
5
3
4
4
3

Question No. 9

Find the sum $\frac{3}{2 y}-\frac{5}{2 y}$

- $\frac{1}{4 y}$
- $\frac{11}{4 y^{2}}$
- $\frac{1}{y}$
y
- $-\frac{1}{y}$

Question No. 10
$\csc \theta=$
$\cos \theta$
$\overline{\sin \theta}$
$\frac{1}{\sin \theta}$
$\frac{1}{\cos \theta}$
$\frac{\sin \theta}{\cos \theta}$

MKCL OES

Total questions in exam: $\mathbf{4 0}$ | Answered: $\mathbf{0}$

Question No. 7

The slopes of two parallel lines are
different
0
equal
undefined

Total questions in exam: $\mathbf{4 0} \mid$ Answered: $\mathbf{0}$

Question No. 3

Evaluate $\lim _{x \rightarrow-1} \frac{3 x^{4}+x+1}{x+4}=$
3

- 4

1
0

Total questions in exam: $\mathbf{4 0}$ | Answered: $\mathbf{0}$

Question No. 4

Simplify $\left(\frac{-4 n^{6} m^{4}}{m^{2}}\right)^{1 / 2}$ where $m \neq 0$
$-8 n^{9} m^{3}$
Is not a real number
$\frac{1}{8 n^{9} m^{3}}$
$-\frac{1}{8 n^{9} m^{3}}$

Question No. 6

Factoring $x^{3}+y^{3}$ gives

$$
(x+y)\left(x^{2}-x y+y^{2}\right)
$$

$(x-y)\left(x^{2}+x y+y^{2}\right)$
$(x-y)\left(x^{2}-2 x y+y^{2}\right)$
$x^{3}-y^{3}$

Writing $\frac{-8+\sqrt{-128}}{8}$ in standard form of complex numbers gives
$-1+\sqrt{2}$
$-1-\sqrt{2}$
$-1-i \sqrt{2}$
$-1+i \sqrt{2}$

Total questions in exam: $\mathbf{4 0}$ | Answered: $\mathbf{0}$

Question No. 2

The complement of the angle 45° is:

- 135°
125°
45°
55°

Question No. 39

The vertex of the graph of $f(x)=-2 x^{2}+4 x-1$ is
(2,-1)
$(0,-1)$
$(-1,-7)$
$(1,1)$

If $a \neq 1$ is a positive real number such that $5^{x}=a$ then $x=$
$\ln \left(\frac{a}{5}\right)$
$\ln \left(\frac{5}{a}\right)$
$\ln 5$
$\ln a$
$\ln a$
$\ln 5$

Question No. 1

The solution set of the equation $\log _{5}(x+2)+\log _{5}(x-2)=1$ is
$O_{\{3\}}$
$0 \varnothing$
$\{-3,3\}$
\{-3\}

Question No. 38

Solve: $2 x^{2}-13 x+15=0$
$x=\frac{3}{2}$ or $x=5$
$x=2+3 i$ or $x=2-3 i$
$x=\frac{7}{2}$ or $x=-5$
$x=3$ or $x=15$

Total questions in exam: $\mathbf{4 0}$ | Answered: $\mathbf{0}$

Question No. 37

If $f(x)=-\frac{1}{3} x+1$, the domain of $f^{-1}(x)$ is
all real numbers
$[0, \infty)$
$\left[-\frac{1}{3}, 1\right]$
$[-3,1)$

Question No. 36

Evaluate $\lim _{x \rightarrow \infty}\left(x^{3}+x-3\right)=$
${ }^{\circ} 3$
(1) 0
-3
∞

1

1 thit ilim inmention of $7(+1)$
$11+1$
$1+\quad 411 \mid 1+1$
$111(4,+5)$
111
1.1

Total questions in exam: $\mathbf{4 0} \mid$ Answered: $\mathbf{0}$

Question No. 31

Evaluate $\lim _{x \rightarrow-\infty} \frac{3 x^{2}+x+2}{x^{2}+6 x+1}=$
4
3
2
1
F
exite Iveluston SyInn

Total questions in exam: $\mathbf{4 0} \mid$ Answered: $\mathbf{0}$

Question No. 28

Solve $|2 x-3|=5$
$\{1,-3\}$
\{4,-1\}
$\{1,-4\}$
$\{-1,1\}$

Total questions in exam: $\mathbf{4 0} \mid$ Answered: $\mathbf{0}$

Question No. 29

The supplement of the angle 58° is:
122°
130°
32°
40°

Question No. 32

Let $a \in \mathbb{R}$ and $f(x)=0.9^{\left(a^{2}-3 a+2\right) x-1}-a$. Give the condition
$a \in(-\infty, 1] \cup[2, \infty)$
$a \in(1,2)$
$a \in(-\infty, 1)$
$a \in(2, \infty)$

Question No. 34

Solve the inequality $\frac{x^{2}+10 x+25}{x+1} \geq 0$
$\{-5\} \cup(-1,+\infty)$
$(-5,-1)$
$(-1,+\infty)$
$[-5,+\infty)$

Question No. 35

Given that $f(x)=4^{3 x-1}+1$. Then $f(1)=$
17
14
16
15

Question No. 32

Let $a \in \mathbb{R}$ and $f(x)=0.9^{\left(a^{2}-3 a+2\right) x-1}-a$. Give the condition on a such that $f(x)$ is increasing.
$a \in(-\infty, 1] \cup[2, \infty)$
$a \in(1,2)$
$a \in(-\infty, 1)$
$a \in(2, \infty)$

Question No. 30

The function $f(x)$ is constant on an interval I if for $x_{1}, x_{2} \in I$,
if $x_{1}>x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$,
if $x_{1}<x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$,
if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right)=f\left(x_{2}\right)$,
if $x_{1}<x_{2}$, then $f\left(x_{1}\right)<f\left(x_{2}\right)$,

Total questions in exam: $\mathbf{4 0}$ | Answered: 0

Question No. 22

Evaluate: $|-12+(5-2)|$

6

- 3

9
${ }^{\circ} 4$

Total questions in exam: $\mathbf{4 0}$ | Answered: $\mathbf{0}$

Question No. 21

The domain of the function $f(x)=1-\log _{4}(x-2)$ is
${ }^{\circ}(2, \infty)$

- $(0, \infty)$
$(-\infty, 2)$
$(-\infty, \infty)$

Total questions in exam: $\mathbf{4 0} \mid$ Answered: $\mathbf{0}$

Question No. 25

If $x+a$ is a factor of the polynomial $f(x)$ then

$$
\begin{aligned}
& f(a)=-a \\
& f(-a) \neq 0 \\
& f(-a)=0 \\
& f(a)=0
\end{aligned}
$$

\square

Question No. 24

Given that $f(x)=\log _{\frac{1}{2}}(x+2)$, then $f(2)=$

- 1 $\frac{1}{2}$
- 1
$\frac{1}{4}$
2
-2

Question No. 23

The degree of the polynomial $52 x^{2}\left(x^{2}-3 x-52\right)$ is

- 52

2
4
52

The horizontal asymptote to the graph of $f(x)=3^{x-1}+2$.
$x=-2$
y=2
$y=3$
$y=-2$

Question No. 27

Evaluate $\lim _{x \rightarrow-1^{+}} \frac{x^{2}-1}{|x+1|}$
6
-2
2
1

Total questions in exam: $\mathbf{4 0}$ | Answered: $\mathbf{0}$

Question No. 27

Evaluate $\lim _{x \rightarrow-1^{+}} \frac{x^{2}-1}{|x+1|}$
6

- -2

2
1

