Chapter 5 Gases

Dr. Dalal Alezi
dalezi@kau.edu.sa

28/10/2018

- Elements that exist as gases at $25^{\circ} \mathrm{C}$ and 1 atm (blue boxes)

- Noble gases are monoatomic, e.g. $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}$
- Other gases are diatomic, e.g. $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}$

Pressure units

$$
\begin{gathered}
1 \mathrm{~atm}=760 \mathrm{mmHg} \\
1 \mathrm{~atm}=76 \mathrm{cmHg} \\
1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa} \\
1 \mathrm{~atm}=1.01325 \times 10^{2} \mathrm{kPa} \\
1 \text { torr }=1 \mathrm{mmHg}
\end{gathered}
$$

Convert 688 mmHg to atmosphere?

$$
1 \mathrm{~atm}=760 \mathrm{mmHg}
$$

1 atm	\rightarrow	760 mmHg
? atm	\rightarrow	688 mmHg

$(1 \times 688) / 760=0.905 \mathrm{~atm}$

What is the pressure in kPa of 732 mmHg ?

$$
\begin{aligned}
& 760 \mathrm{mmHg}=1.01325 \times 102 \mathrm{kPa} \\
& 760 \mathrm{mmHg} \quad \rightarrow \quad 1.01325 \times 102 \mathrm{kPa} \\
& 732 \mathrm{mmHg} \\
& \rightarrow ? \mathrm{kPa} \\
& =97.6 \mathrm{kPa}
\end{aligned}
$$

(5.19 book)A gas sample occupying a volume of 725 ml at a pressure of 0.97 atm is allowed to expand at constant temperature until its pressure reaches 0.541 atm . What is its final volume?

$$
\begin{array}{cc}
\mathrm{V}_{1}=725 \mathrm{ml} \quad \mathrm{P}_{1}=0.97 \mathrm{~atm} & \mathrm{P}_{2}=0.541 \mathrm{~atm} \\
\mathrm{~V}_{2}=\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{P}_{2}=? \\
\mathrm{P}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} & \\
\mathrm{~V}_{2}=0.97 \times 725 / 0.541=1299 \mathrm{ml}
\end{array}
$$

(5.21 book) the volume of a gas is 5.8 L , measured at 1 atm . What is the pressure of the gas in mmHg if the volume is changed to 9.65 L ? (the temperature remain constant)

$$
\begin{gathered}
\mathrm{V}_{1}=5.8 \mathrm{~L} \quad \begin{array}{c}
\mathrm{P}_{1}=1 \mathrm{~atm} \\
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \longrightarrow
\end{array} \begin{array}{c}
\mathrm{V}_{2}=9.65 \mathrm{~L} \\
\mathrm{P}_{2}=\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{V}_{2}
\end{array} \mathrm{P}_{2}=? \mathrm{mmHg} \\
\mathrm{P}_{2}=1 \times 5.8 / 9.65=0.601 \mathrm{~atm} \\
\mathrm{P}_{2}=0.601 \times 760=456.76 \mathrm{mmHg}
\end{gathered}
$$

(5.23) A 36.4 L volume of methane gas is heated from $25^{\circ} \mathrm{C}$ to $88^{\circ} \mathrm{C}$ at constant pressure. What is the final volume of the gas?

$$
\begin{gathered}
\mathrm{V}_{1}=36.4 \mathrm{~L} \quad \mathrm{~T}_{1}=25+273=298 \mathrm{~K} \quad \mathrm{~T}_{2}=88+273=361 \mathrm{~K} \quad \mathrm{~V}_{2}=? \\
\mathrm{~V}_{1} \mathrm{~T}_{2}=\mathrm{V}_{2} \mathrm{~T}_{1} \longrightarrow \quad \begin{array}{l}
\mathrm{V}_{2}=\mathrm{V}_{1} \mathrm{~T}_{2} / \mathrm{T}_{1} \\
\mathrm{~V}_{2}=36.4 \times 361 / 298=44.09 \mathrm{~L}
\end{array}
\end{gathered}
$$

A student collects 125 ml sample of hydrogen gas. Later, the sample is found to have a volume of 128.6 ml at $26^{\circ} \mathrm{C}$, at what temperature (in C) the sample was collected?

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{V}_{1}=125 \mathrm{ml} \\
\mathrm{~V}_{1} \mathrm{~T}_{2}=\mathrm{V}_{2} \mathrm{~T}_{1}
\end{array} \quad \begin{array}{l}
\mathrm{T}_{1}=?
\end{array} \begin{array}{l}
\mathrm{V}_{2}=128.6 \mathrm{ml} \quad \mathrm{~T}_{2}=26+273=299 \mathrm{~K} \\
\mathrm{~T}_{1}=\mathrm{V}_{1} \mathrm{~T}_{2} / \mathrm{V}_{2} \\
\mathrm{~T}_{1}=125 \times 299 / 128.6=290.6 \mathrm{~K} \\
\mathrm{~T}_{1}=290.6-273=17.6^{\circ} \mathrm{C}
\end{array}
\end{aligned}
$$

What pressure in atmosphere will 18.6 mol methane exert when its compressed in 12 L tank at temperature $45^{\circ} \mathrm{C}$?

$$
\begin{gathered}
\mathrm{P}=? \quad \mathrm{n}=18.6 \mathrm{~mol} \quad \mathrm{~V}=12 \mathrm{~L} \quad \mathrm{~T}=45+273=318 \mathrm{~K} \quad \mathrm{R}=\mathbf{0 . 0 8 2 1} \mathrm{atm} . \mathrm{L} / \mathrm{mol} . \mathrm{K} \\
\mathrm{PV}=\mathrm{nRT} \\
\mathrm{P}=\mathrm{nRT} / \mathrm{V}
\end{gathered}
$$

What volume dose 0.056 mol of H_{2} gas occupy at $25^{\circ} \mathrm{C}$ and 1.11 atm pressure ?

$$
\mathrm{V}=? \quad \mathrm{n}=0.056 \mathrm{~mol} \quad \mathrm{~T}=25+273=298 \mathrm{~K} \quad \mathrm{P}=1.11 \mathrm{~atm}
$$

$\mathrm{R}=0.0821 \mathrm{~atm} . \mathrm{L} / \mathrm{mol} . \mathrm{K}$

$$
\begin{gathered}
\mathrm{PV}=\mathrm{nRT} \\
\mathrm{~V}=\mathrm{nRT} / \mathrm{P}
\end{gathered}
$$

$$
V=0.056 \times 0.0821 \times 298 / 1.11=1.23 \mathrm{~L}
$$

What volume is occupied by $1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ vapor at temperature $134^{\circ} \mathrm{C}$ and pressure of 0.0552 atm?

$$
\begin{gathered}
\mathrm{V}=? ~ \\
\mathrm{n}=\mathrm{m} / \mathrm{M}=1 \mathrm{~g} \\
\mathrm{n}=1 / 18.016=0.056 \mathrm{~mol} \\
\mathrm{PV}=\mathrm{nRT} \\
\mathrm{~V}=\mathrm{nRT} / \mathrm{P}
\end{gathered}
$$

$V=0.056 \times 0.0821 \times 407 / 0.0552=33.9 \mathrm{~L}$

How many moles are in 148 mL gas at $13^{\circ} \mathrm{C}$ and pressure 107 kPa ?

$$
\begin{aligned}
& \mathrm{n}=? \quad \mathrm{~V}=148 \mathrm{ml} / 1000=0.148 \mathrm{~L} \quad \mathrm{~T}=13+273=286 \mathrm{~K} \\
& \mathrm{P}=107 \mathrm{kPa} / 1.013 \times 10^{2} \xlongequal{1.05} \mathrm{~atm} \\
& \mathrm{PV}=\mathrm{nRT} \\
& \mathrm{n}=\mathrm{PV} / \mathrm{RT} \\
& \mathrm{n}=1.05 \times 0.148 / 0.0821 \times 286=6.6 \times 10^{-3} \mathrm{~mol}
\end{aligned}
$$

A sample of nitrogen monoxide has a volume 72.6 ml at temperature $16^{\circ} \mathrm{C}$ and a pressure 104.1 kPa . What volume the sample will occupy at temperature $24^{\circ} \mathrm{C}$ and pressure 99.3 kPa ?

In this Question the sample has \mathbf{n} is constant

$$
\begin{array}{r}
\mathrm{V}_{1}=72.6 \mathrm{~mL} \quad \mathrm{P}_{1}=104.1 \mathrm{kPa} \quad \mathrm{~T}_{1}=16+273=289 \mathrm{~K} \\
\mathrm{~V}_{2}=? \\
\mathrm{P}_{2}=99.3 \mathrm{kPa} \quad \mathrm{~T}_{2}=24+273=297 \mathrm{~K} \\
\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}} \\
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
\\
\mathrm{~V}_{2}=104.1 \times 72.6 \times 297 / 99.3 \times 289
\end{array}
$$

$$
\mathrm{V}_{2}=78.2 \mathrm{~mL}
$$

A balloon was inflated with 2.42 L of helium gas at temperature $27^{\circ} \mathrm{C}$. Later, the volume of balloon changed to 2.37 L at temperature $19^{\circ} \mathrm{C}$ and pressure 99.7 kPa . What was the pressure when the balloon was inflated?

$$
\begin{aligned}
& \mathrm{V}_{1}=2.42 \mathrm{~L} \quad \mathrm{~T}_{1}=27+273=300 \mathrm{~K} \quad \mathrm{P}_{1}=\text { ? } \\
& \mathrm{V}_{2}=2.37 \mathrm{~L} \quad \mathrm{~T}_{2}=19+273=292 \mathrm{~K} \quad \mathrm{P}_{2}=99.7 \mathrm{kPa} \\
& \frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}} \\
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& \mathrm{P}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1} / \mathrm{V}_{1} \mathrm{~T}_{2} \\
& P_{1}=99.7 \times 2.37 \times 300 / 2.42 \times 292=100.3 \mathrm{kPa}
\end{aligned}
$$

What is the final volume of 5 L gas when the final pressure become double the original at constant temperature?

$$
\begin{array}{ccc}
\mathrm{V}_{1}=5 \mathrm{~L} & \mathrm{~V}_{2} \underline{\underline{=?}} & \mathrm{P}_{1} \\
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} & \\
\mathrm{P}_{1} \times 5=2 \mathrm{P}_{1} \times \mathrm{V}_{2} \\
\mathrm{~V}_{2}=5 \mathrm{P}_{1} / 2 \mathrm{P}_{1} \\
\mathrm{~V}_{2}=5 / 2=2.5 \mathrm{~L}
\end{array}
$$

Ans: 2.5 L

Calculate the density of sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ in grams per liter $(\mathrm{g} / \mathrm{L})$ at 2.3 atm and $60 \mathrm{C}^{\circ}$

$$
\begin{aligned}
& \mathrm{d}=? ? \mathrm{~g} / \mathrm{L} \\
& \mathrm{P}=2.3 \mathrm{~atm} \\
& \mathrm{~T}=60+273.15=333.15 \mathrm{~K} \\
& \mathrm{M}=32.06+(2 \times 16)=64.06 \mathrm{~g} / \mathrm{mol} \\
& \qquad \begin{array}{r}
\mathrm{d}=\frac{P M}{R T}
\end{array} \\
& \qquad \begin{array}{r}
d=5.3 \times 64.06 \\
0.082 \times 333.15 \\
\mathrm{~d}=5 . \mathrm{g} / \mathrm{L}
\end{array}
\end{aligned}
$$

Ans: $5.39 \mathrm{~g} / \mathrm{L}$

Calculate the density of gas in grams per liter $(\mathrm{g} / \mathrm{L})$ at 1.5 atm and $30^{\circ} \mathrm{C}$. Assuming that we have 4.5 mole of this gas. If you know that the mass of this gas is 126 g .

$$
\begin{aligned}
& \mathrm{d}=? ? \mathrm{~g} / \mathrm{L} \\
& \mathrm{P}=1.5 \mathrm{~atm} \\
& \mathrm{~T}=30+273.15=303.15 \mathrm{~K} \\
& \mathrm{M}=\frac{m}{n}=\frac{126}{4.5}=28 \mathrm{~g} / \mathrm{mol} \\
& \\
& \qquad \begin{array}{l}
\mathrm{d}=\frac{P M}{R T} \\
0.082 \times 303.15 \\
\mathrm{~d}=1.69 \mathrm{~g} / \mathrm{L}
\end{array}
\end{aligned}
$$

Ans: $1.69 \mathrm{~g} / \mathrm{L}$

Which of these gases will have the greatest density at the same specified temperature and pressure?
A) O_{2}
B) Kr
C) CO
D) $\mathrm{C}_{2} \mathrm{H}_{6}$

The density of a gas is directly proportional to its molar mass

> كثافة الغاز تتتاسب طرديا مع كتلته المو لارية

Gases	Molar mass
O_{2}	$2 \times 16=32 \mathrm{~g} / \mathrm{mol}$
Kr	$83.8 \mathrm{~g} / \mathrm{mol}$
CO	$12+16=28 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}_{2} \mathrm{H}_{6}$	$2 \times 12+6 \times 1.008=30.05 \mathrm{~g} / \mathrm{mol}$

What is the molar mass of Freon- 12 gas if its density is $11.19 \mathrm{~g} / \mathrm{L}$ at 2.3 atm and $30^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \mathrm{M}=? ? \\
& \mathrm{~d}=11.19 \mathrm{~g} / \mathrm{L} \\
& \mathrm{P}=2.3 \mathrm{~atm} \\
& \mathrm{~T}=30+273.15=303.15 \mathrm{~K}
\end{aligned}
$$

$$
\begin{gathered}
M=\frac{d R T}{P} \\
M=\frac{11.19 \times 0.082 \times 303.15}{2.3} \\
M=120.94 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Ans: $120.94 \mathrm{~g} / \mathrm{mol}$

Calculate the volume of $\mathrm{CO}(\mathrm{in} \mathrm{L})$ produced from 4.2 L of $\left(\mathrm{O}_{2}\right)$ at the same T \& P

$$
2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{CO}(\mathrm{~g})
$$

$$
\mathrm{V}_{\mathrm{CO}}=(4.2 \times 2) / 3=2.8 \mathrm{~L}
$$

Ans: 2.8 L

What volume of CO_{2} gas at 800 torr and 565 K could be produced by the reaction of 62 g of CaCO_{3} according to the equation?

$$
\mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

	moles of CO_{2}	moles of CaCO_{3}
من المعادلة الكيميائية		
من المسألة		

$$
\begin{gathered}
\mathrm{n}_{\mathrm{CO} 2}=0.62 \mathrm{~mol} \\
\mathrm{P}=800 \mathrm{torr} / 760=1.05 \mathrm{~atm} \\
\mathrm{~T}=565 \mathrm{~K} \\
\mathrm{~V}_{\mathrm{CO} 2}=? \\
\mathrm{PV}=\mathrm{nRT} \\
1.05 \times \mathrm{V}=0.62 \times 0.082 \times 565 \\
\mathrm{~V}=27.35 \mathrm{~L}
\end{gathered}
$$

A mixture of two gases has a total pressure of 1852 mmHg at $21^{\circ} \mathrm{C}$. The mixture is analyzed and is found to contain 6.5 mol CO , and 3.6 mol He . What is the partial pressure of He ?

$$
\begin{aligned}
P_{H e} & =P_{T} X_{H e} \\
\mathrm{X}_{H e} & =\frac{n_{H e}}{n_{T}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{T}}=1852 \underline{\mathrm{mmHg}}, \quad \mathrm{n}_{\mathrm{CO}}=6.5 \mathrm{~mol}, \quad \mathrm{n}_{\mathrm{He}}=3.6 \mathrm{~mol} \quad \mathrm{n}_{T}=\mathrm{n}_{\mathrm{CO}}+\mathrm{n}_{\mathrm{He}}=6.5+3.6=10.1 \mathrm{~mol} \\
& P_{H e}=1852 \times \frac{3.6}{10.1} \\
& P_{H e}=660.1 \mathrm{mmHg}
\end{aligned}
$$

Ans: 660.1 mmHg

A mixture of two gases has a total pressure of 5 atm at $25^{\circ} \mathrm{C}$. The mixture is analyzed and is found to contain 500 g Kr , and 50 g He . What is the partial pressure of Kr ?

$$
\begin{gathered}
P_{K r}=P_{T} X_{K r} \\
\mathrm{X}_{K r}=\frac{n_{K r}}{n_{T}} \\
\mathrm{P}_{\mathrm{T}}=5 \mathrm{~atm}, \quad \mathrm{n}_{\mathrm{kr}}=\frac{500}{83.8}=5.97 \mathrm{~mol}, \quad \mathrm{n}_{\mathrm{He}}=\frac{50}{4}=12.5 \mathrm{~mol}, \\
\mathrm{n}_{\mathrm{T}}=\mathrm{n}_{\mathrm{Kr}}+\mathrm{n}_{\mathrm{He}}=5.97+12.5=18.47 \mathrm{~mol} \\
P_{K r}=5 \times \frac{5.97}{18.47} \\
P_{K r}=1.6 \mathrm{~atm}
\end{gathered}
$$

Ans: 1.6 atm

A sample of oxygen gas was collected over water at $30^{\circ} \mathrm{C}$ and 701 mmHg . The volume of the container was 5.66 L . Calculate the mole of O_{2} collected. (Vapor pressure of water $=$ 31.82 mmHg at $30^{\circ} \mathrm{C}$.)

$$
\mathrm{T}=30+273.15=303.15 \mathrm{~K}
$$

$$
\mathrm{P}_{\mathrm{T}}=701 \mathrm{mmHg} \quad \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=31.82 \mathrm{mmHg} \quad \mathrm{P}_{\mathrm{O} 2}=\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=701-31.82=669 \mathrm{mmHg} / 760
$$

$$
=0.88 \mathrm{~atm}
$$

$\mathrm{V}=5.66 \mathrm{~L} \quad \mathrm{n}_{\mathrm{O} 2}=? ?$

$$
\begin{gathered}
\mathrm{PV}=\mathrm{nRT} \\
0.88 \times 5.66=\mathrm{n} \times 0.082 \times 303.15 \\
\mathrm{n}=0.2 \mathrm{~mol}
\end{gathered}
$$

Ans: 0.2 mol

A sample of hydrogen gas was collected over water at $30^{\circ} \mathrm{C}$ and 2 atm . The volume of the container was 100 ml . Calculate the mass of $\mathrm{H}_{2}(\mathrm{~g})$ collected. (Vapor pressure of water $=0.04 \mathrm{~atm}$ at $30^{\circ} \mathrm{C}$.)

$$
\mathrm{T}=30+273.15=303.15 \mathrm{~K}
$$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{T}}=2 \mathrm{~atm} \quad \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=0.04 \mathrm{~atm} \quad \mathrm{P}_{\mathrm{H} 2}=\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=2-0.04=1.96 \mathrm{~atm} \\
& \mathrm{~V}=100 / 1000=0.1 \mathrm{~L} \\
& \mathrm{~m}=? ?
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{PV}=\mathrm{nRT} \\
1.96 \times 0.1=\mathrm{n} \times 0.082 \times 303.15 \\
\mathrm{n}=7.88 \times 10^{-3} \mathrm{~mol} \\
\mathrm{n}=\frac{m}{M} \\
7.88 \times 10^{-3}=\frac{m}{(2 \times 1.008)} \\
\mathrm{m}=0.016 \mathrm{~g}
\end{gathered}
$$

A sample of hydrogen gas was collected over water occupied 1.2 L at 288.15 K and pressure 500 torr. What volume would H_{2} occupy if were dry at STP? The pressure of water at 288.15 K is 12.79 torr

$$
\mathrm{V}_{1}=1.2 \mathrm{~L}
$$

$\mathrm{T}_{1}=288.15 \mathrm{~K}$
$\mathrm{P}_{\mathrm{T}}=500$ torr, $\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=12.79$ torr , $\mathrm{P}_{1}=\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=500-12.79=487.21$ torr $/ 760=0.64 \mathrm{~atm}$
$\mathrm{V}_{2}=$??
$\mathrm{STP} \rightarrow \mathrm{P}_{2}=1 \mathrm{~atm} \quad \mathrm{~T}_{2}=273.15 \mathrm{~K}$

$$
\begin{gathered}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
\frac{0.64 \times 1.2}{288.15}=\frac{1 \times V_{2}}{273.15} \\
\mathrm{~V}_{2}=0.73 \mathrm{~L}
\end{gathered}
$$

Ans: 0.73 L

A sample of hydrogen gas was collected over water occupied 4.0 L at 288.15 K and pressure 0.87 atm . What volume would H_{2} occupy if were dry at 400 K and 1.01 atm ? The pressure of water at 288.15 K is 0.017 atm .

$$
\mathrm{V}_{1}=4.0 \mathrm{~L}
$$

$$
\mathrm{T}_{1}=288.15 \mathrm{~K}
$$

$$
\mathrm{P}_{\mathrm{T}}=0.87 \mathrm{~atm}, \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=0.017 \mathrm{~atm}, \mathrm{P}_{1}=\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=0.87-0.017=0.853 \mathrm{~atm}
$$

$$
\mathrm{V}_{2}=? ?
$$

$$
\mathrm{P}_{2}=1.01 \mathrm{~atm} \quad \mathrm{~T}_{2}=400 \mathrm{~K}
$$

$$
\begin{gathered}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
\frac{0.853 \times 4}{288.15}=\frac{1.01 \times V_{2}}{400} \\
\mathrm{~V}_{2}=4.69 \mathrm{~L}
\end{gathered}
$$

Ans: 4.69 L

