Lecture 2
Variables & Introduction to Problem
Solving
Dr. Mohammad Ahmad

Variables

 Avariableis a name for alocation in memory

A variable must be declared by specifying the

variable's name and the type of information that it
will hold

data type variable name
int total;

int count, temp, result;

Multiple variables can be created in one declaration

Rules for valid variable names

The name can be made up of letters, digits, the
underscore character (_), and the dollar sign

Variable names cannot begin with a digit

C Is case sensitive - Total, total, and TOTAL
are different identifiers

By convention, programmers use different case
styles for different types of names/identifiers, such
as

= title case for variable names - Lincoln

= ypper case for constants - MAXIMUM

Variable Initialization

A variable can be given an initial value in the
declaration

int sum = 0;
int base = 32, max = 149;

« When avariable is referenced in a program, its
current value is used

Assignment

 An assighment statement changes the value of a
variable

« The assignment operator is the = sign

total = 55;

T

 The expression on the right is evaluated and the
result is stored in the variable on the left

« The value that was in total IS overwritten

* You can only assign a value to a variable that is
consistent with the variable's declared type

Assignment Through scanf()

Int variable;

scanf(“%d”, &variable);

« <keyboardinput> 30

\)
\

 Thereis not assignment operator in this case

Constants

A constant is an identifier that i1s similar to a
variable except that it holds the same value during
Its entire existence

As the name implies, it is constant, not variable

The compiler will issue an error if you try to
change the value of a constant

In C, we use the const modifier to declare a
constant

const int MIN HEIGHT = 69;

Constants

Constants are useful for three important reasons

First, they give meaning to otherwise unclear
literal values

» For example, MAX LOAD means more than the literal 250

Second, they facilitate program maintenance

» |[f aconstant is used in multiple places, its value need
only be updated in one place

Third, they formally establish that a value should
not change, avoiding inadvertent errors by other
programmers

#define primitive

« Constants can also be defined using the primitives
of the C preprocessor

. #define KMS_PER MILE 1.609

Some Primitive Data Types

* Int

 float

e double

float and double analogy

float and double analogy

Numeric Primitive Data

 The difference between the various numeric
primitive types is their size, and therefore the
values they can store:

Type

char
short
int
long

float
double

Storage

8 bits

16 bits
32 bits
64 bits

32 bits
64 bits

Min Value Max Value
-128 127

-32,768 32,767
-2,147,483,648 2,147,483,647
<-9x 1018 >0 x 1018

+/- 3.4 x 1038 with 7 significant digits
+/- 1.7 x 10308 with 15 significant digits

Computer Memory

0278
9279

9280

9281
0282
9283
0284
9285
90286

Main memory is divided
into many memory
locations (or cells)

Each memory cell has a
numeric adadress, which
uniquely identifies it

Storing Information

0278
9279

9280

9281
0282
9283
0284
9285
90286

10011010

Each memory cell stores a

— set number of bits (usually

J

8 bits, or one byie)

Large values are
stored in consecutive
memory locations

0278
9279

9280

9281
0282
9283
0284
9285
90286

Storing a char

} char (8 bits = 1 byte)

0278
9279

9280

9281
0282
9283
0284
9285
90286

Storing a short

} short (16 bits = 2 bytes)

0278
9279

9280

9281
0282
9283
0284
9285
90286

Storing an int

> int (32 bits = 4 bytes)

0278
9279

9280

9281
0282
9283
0284
9285
90286

Storing along

~ long (64 bits = 8 bytes)

0278
9279

9280

9281
0282
9283
0284
9285
90286

Storing a float

~ float (32 bits = 4 bytes)

Storing a double

0278
9279

9280

9281
0282
9283
0284
9285
90286

~ double (64 bits = 8 bytes)

Storing a Double

Address 0x08

Address 0x0C

Character Strings

« A string of characters can be represented as a

string literal by putting double quotes around the
text:

« Examples:

"This is a string literal."
"123 Main Street"
"x"

Characters

A char variable stores a single character

Character literals are delimited by single quotes:
'a’ 'X' "7 'S’ vt "\n'

Example declarations:

char topGrade = 'A';

char terminator = ';', separator = ' ';

Note the distinction between a primitive character variable,
which holds only one character, and a String object, which

can hold multiple characters

Characters

e The ASCII character set i1s older and smaller than
Unicode, but is still quite popular

e The ASCII characters are a subset of the Unicode

character set, including:

uppercase letters
lowercase letters
punctuation

digits

special symbols
control characters

A B,C,...

a,b,c,...

period, semi-colon, ...
0,1,2,...

& |,)\, ...

carriage return, tab, ...

ASCII Table

Dec HxQct Char Dec Hx Oct Himl Chr |Dec Hx Qct Hirml Chr| Dec Hx Qct Html Chr
0 0 000 NIL fruall) 32 Z0 040 Space| 64 40 100 «#64; [| 96 60 140 `
1 1 001 30H (start of heading) 33 21 041 ő ! a5 41 101 A 4 | 97 A1 141 &=#597; A
2 2 002 3T (start of text) 34 ZzZ 042 dr U 66 42 102 «#66; B | 98 62 142 &#%5; b
3 2 003 ETH (end of text) 35 23 043 ť # 67 43 103 C C | 99 63 143 «#99; ¢
4 4 004 EOT (end of transmission) 36 Z4 044 $ 5 65 44 104 «#63; D (100 64 144 s#loo; d
5 5 005 ENQ [(encuiry) 37 Z5 045 %: % 69 45 105 &«#69; E |10l 65 145 «#l0l; =
6 & 006 ACE [acknowledge) 38 26 D46 ő & 70 46 106 F F (102 66 146 f €
7 7 007 EBEL (bell) 39 27 047 ' " 71 47 107 G G |103 67 147 &#l03; o
8@ 8 010 BES (backspace] 40 Z8 050 (:7 | 72 45 110 H: H |104 65 150 «#104; h
9 9 011 TAR (horizontal tab) 41 29 051):) 73 49 111 «#73; I |105 69 151 i 1
10 & 0lZ LF (NL line feed, new line)| 42 zZA 052 &#d2; 7 74 44 112 J J |106 g4 152 j 7
11 B 013 VT (wertical tah) 43 2B 053 Ƶ + 75 4B 113 «#75; E (107 6B 153 k: k
12 C 0l4 FF (NP form feed, new page)| 44 ZC 054 &#dd: | 76 4C 114 «#76; L (108 6C 154 &#l03; 1
13 D 015 CE (carriage return) 45 ZD 055 &#d5h: - 77 4D 115 M: M |109 6D 155 m: I
14 E 0lg 30 (shift out) 46 2E 056 &#d67 . 78 4E 116 N N |110 6E 156 &#l10; n
15 F 017 3I (shift in) 47 ZF 057 &«#47: f 79 4F 117 O 0 |111 &6F 157 «#l11; o
16 10 020 DLE (data link escape) 48 30 060 +: 0 80 50 120 :; P |112 70 la0 &#ll2: p
17 11 021 DC1 (dewice control 1) 49 31 0Rl 1 1 gl 51 121 Ž 0 |113 71 1el &#l13; 9
13 12 022 DCZ (dewice control Z) B0 32 06Z 2 2 82 BZ 122 R E |114 72 16z «#114; ¢
19 13 023 DC3 (dewice control 3) 51 33 DB3 3: 3 83 53 123 S: 5 |115 73 1le3 &#l15; =
20 14 024 DC4A (dewice control 4) B2 34 064 2Z; 4 g4 54 124 «#84; T (116 74 le4d «#lle; T
21 15 025 NAE [(negative acknowledge) B3 35 0A5 5: 5 85 55 125 # T |117 75 1lah l7: 1
22 16 026 5TH (synchronous idle) 84 36 0RE d; 6 g6 56 126 V V |113 76 les &#l1&; W
23 17 027 ETE (end of trans. block) 85 37 087 7 7 87 57 127 W W |119 77 167 &#l19; w
24 13 030 CAN (cancel) 56 33 070 87 8 88 53 130 X X |120 78 170 &#lz0; =
25 19 031 EM (end of medium) 87 39 071 9: 9 89 59 131 ɍ ¥ |121 79 171 &#lZ1:; ¥
26 14 032 5B (substitute] B8 34 072 5r : 0 B4 132 Ɏ £ |122 74 172 &#lEZ; 2
27 1B 033 E3C (escape) 59 3B 073 ;:7 ; 91 SE 133 ɏ [(123 7B 173 { |
28 1C 034 F3 (file separator) 60 3C 074 «#00; < 9z 5C 134 \ % |124 7C 174 «#l24d;
29 1D 035 G5 (group separator) Gl 3D 075 l: = 93 5D 135]:] |125 70 175 }
30 1E 036 B3 (record separator) B2 3E 076 �Z; = 94 EE 136 «#94; * (126 7E 176 &#lZ6; -~
31 1F 037 T3 [unit separator) 63 3F 077 #6372 7 95 SF 137 «#55; _ |127 7F 177 «#127; DEL

Source:

www.Lookup Tables .com

Escape Sequences

What if we wanted to print a the quote character?

The following line would confuse the compiler
because it would interpret the second quote as the
end of the string

printf ("I said "Hello" to you.");

An escape sequence is a series of characters that
represents a special character

An escape sequence begins with a backslash
character (\)

printf ("I said \"Hello\" to you.");

Escape Sequences

« Some C escape seguences:

Escape Sequence

\b
\t
\n
\r
\a
\H
\l
\\

Meaning

backspace
tab

newline
carriage return
beep

double quote
single quote
backslash

printf() function

printf(“format string”, variable1, variable2, ...);
printf(“For int use %d”, myinteger);
printff(“For float use %f”’, myFloat);
printf(“For double use %lf”’, myDouble);
printf(“For float or double %g”, myF_or_D);

printf(“int=%d double %If”’, myinteger, myDouble);

scanf() function

scanf(“format string”, &variable1, &variable2, ...);
scanf(“%d”, &myinteger);

scanf(“%f”’, &myFloat);

scanf(“%lIf”’, &myDouble);

scanf(“%d%f”’, &myinteger, &myFloat);

Common Bugs

Using & in a printf function call.
printf(“For int use %d”, &myinteger); // wrong

Using the wrong string in printf
printf(“This is a float %d”, myFloat); // use %f not %d

Not using & in a scanf() function call.
scanf(“%d”, myinteger); // Wrong

Using the wrong string in scanf()
scanf(“%d”, &myFloat); // wrong; use %f instead of %d

PROBLEM SOLVING & PROGRAM DESIGN

Two phases involved in the design of any program:
. Problem Solving Phase

* Define the problem

« Outline the solution

* Develop the outline into an algorithm

« Test the algorithm for correctness
. Implementation Phase

« Code the algorithm using a specific programming
language

* Run the program on the computer
« Document and maintain the program

Structured Programming Concept

= Structured programming techniques
assist the programmer in writing
effective error free programs.

The elements of structured of programming
Include:

 Top-down development
 Modular design.

The Structure Theorem:

It IS possible to write any computer
program by using only three (3) basic
control structures, namely:

« Sequential
« Selection (if-then-else)
* Repetition (looping, DoWhile)

ALGORITHMS

An algorithm is a sequence of precise
Instructions for solving a problem in a
finite amount of time.

Properties of an Algorithm:
* [t must be precise and unambiguous

* [t must give the correct solution in all
cases

* |t must eventually end.

Developing an Algorithm

Understand the problem
(Do problem by hand. Note the steps)

Devise a plan
(look for familiarity and patterns)

Carry out the plan (trace)

Review the plan (refinement)

Understanding the Algorithm

Possibly the simplest and easiest method to
understand the steps in an algorithm, is by using
the flowchart method. This algorithm is composed
of block symbols to represent each step in the
solution process as well as the directed paths of
each step.

Understanding the Algorithm

The most common block symbols are:

Svmbol

Representation

Svmbol

Representation

@ Start/Stop <> Decision
Process O Connector
E Input/Output i Flow Direction

Understanding the Algorithm

Problem Example

Find the average of a given set of numbers.

Understanding the Algorithm - Problem
Example

Solution Steps - Proceed as follows:

1. Understanding the problem

(1) Write down some numbers on paper and
find the average manually, noting each
step carefully.

e.g. Given alist say: 5, 3, 25,0, 9

Understanding the Algorithm - Problem Example

Solution Steps - Proceed as follows:

1. Understanding the problem
(1) Write down some numbers on paper
(i) Count numbers | I.e. How many? 5
(i) Add themup |1.e. 5+3+25+0+
9 =42
(iv) Divide result by numbers counted |
l.e. 42/5 = 8.4

Understanding the Algorithm - Problem Example

Solution Steps - Proceed as follows:

2.

Devise a plan:

Make note of NOT what you did in steps (i)
through (iv) above, but HOW you did it.

In doing so, you will begin to develop the
algorithm.

For Example:

How do we count the numbers?
Starting at O we set our COUNTER to 0.
Look at first number and add 1 to COUNTER.
Look at 2nd number and add 1 to COUNTER.
...and so on,
until we reach the end of the list.

For Example:

How do we add numbers?
Let SUM be the sum of numbers in list.
l.e. Set SUM1to O
Look at 1st number and add number to SUM.
Look at 2nd number and add number to SUM.
...and so on,
until we reach end of list.

For Example:

How do we compute the average?

Let AVE be the average.

then AVE total sum of items

number of items

SUM
COUNTER

Understanding the Algorithm - Problem Example
Solution Steps - Proceed as follows:

3. ldentify patterns, repetitions and familiar tasks.

Familiarity: Unknown number of items?
l.e. nitem

Patterns : look at each number in the list

Repetitions: Look at a number

Add number to sum
Add 1 to counter

Understanding the Algorithm - Problem Example
Solution Steps - Proceed as follows:

4. Carry out the plan
Check each step
Consider special cases
Check result
Check boundary conditions:
e.g. What if the list is empty?
Division by 07?
Are all data values within specified range?

Understanding the Algorithm - Problem Example

Solution Steps - Proceed as follows:

5. Review the plan:
Can you derive the result differently?
Can you make the solution more general?

Can you use the solution or method for
another problem?

e.g. average temperature or average grades

Understanding the Algorithm - Problem Example

A flowchart representation of the algorithm for the above problem can be as

followe:
Total=10
Average =0
Count=0
Mo
@* te %:,;\ Yoo 7/ Read Number /
No i
b J
Average = Total/Count Total = Total + Number
Count = Count +1
T
h 4

/Pri.ut Aw:rngt/

v
(Stop)

