## CHAPTER 7

## Choose the correct answer:

1. The kinetic energy of a $\mathbf{9 0} \mathbf{~ k g}$ football player running at speed $\mathbf{1 0} \mathbf{~ m} / \mathbf{s}$ is:
(a) $4500 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$
(b) $4500 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2}$
(c) $4500 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(d) $4500 \mathrm{~kg}^{2} \mathrm{~m}^{2} / \mathrm{s}^{2}$
2. A force $\vec{F}=3 \hat{i}+5 \hat{j}$ is applied to a block that moves a distance $\vec{d}=2 \hat{i}$ on a surface. The work done on the block by the force $F$ is:
(a) 6 J
(b) 10 J
(c) 16 J
(d) 11.7 J
3. In the figure the force $F$ moved the block a distance $d$, the work done on the block by the frictional force is:

(a) 2 J
(b) 0
(c) -1 J
(d) -2 J
4. Which of the following particles that moves along the $x$-axis has a negative work done on it ?

| Particle | $\boldsymbol{K}_{\boldsymbol{i}}$ (initial KE) | $\boldsymbol{K}_{\boldsymbol{f}}$ (final KE) |
| :---: | :---: | :---: |
| A | 9 J | 4 J |
| B | 4 J | 4 J |
| C | 5 J | 8 J |
| D | 3 J | Zero |

(a) A and D
(b) B and C
(c) C and D
(d) D and B
5. The work done by the gravitational force on a $\mathbf{5} \mathbf{~ k g}$ body raised vertically (رفع إلى أعلى) a distance $\mathbf{0 . 5} \mathbf{~ m}$ is:
(a) +24.5 J
(b) +2.5 J
(c) -24.5 J
(d) -2.5 J
6. The power due to $\mathbf{F}_{\mathbf{1}}$ and $\mathbf{F}_{\mathbf{2}}$ acting on a box sliding to the right across a frictionless floor with velocity $\mathbf{v}$ is:

(a) $P_{1}=F_{1} \vee \cos 180$ $\mathrm{P}_{2}=\mathrm{F}_{2} \vee \cos 150$
(b) $P_{1}=F_{1} \vee \cos 180$
$P_{2}=F_{2} \vee \cos 30$
(c) $P_{1}=F_{1} \vee \cos 0$ $P_{2}=F_{2} \vee \cos 30$
(d) $P_{1}=F_{1} \vee \cos 0$
$P_{2}=F_{2} \vee \cos 150$
7. In which of the following situation the net power = zero ?

| situation | $\mathbf{P}_{\mathbf{1}}$ | $\mathbf{P}_{\mathbf{2}}$ | $\mathbf{P}_{\mathbf{3}}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{A}$ | 12 | 5 | $\mathbf{- 7}$ |
| B | -13 | 3 | -2 |


| C | 15 | -12 | -3 |
| :---: | :---: | :---: | :---: |
| $D$ | 10 | 2 | -7 |

(a) $\mathbf{A}$
(b) $\mathbf{B}$
(c) $\mathbf{C}$
(d) D
8. A spring of $\mathbf{k}=\mathbf{4 0 8} \mathbf{N} / \mathbf{m}$ is pulled to the position $\mathbf{x}=\mathbf{1 7} \mathbf{~ m m}$, the work done by the spring force is:
(a) $-5.9 \times 10^{-2} \mathrm{~J}$
(b) $-59 \times 10^{-2} \mathrm{~J}$
(c) $-0.59 \times 10^{-2} \mathrm{~J}$
(d) $-590 \times 10^{-2} \mathrm{~J}$
9. If the kinetic energy of a particle is initially $\mathbf{5} \mathbf{J}$ and there is a net transfer of $\mathbf{2} \mathbf{J}$ to the particle, then the final kinetic energy is :
(a) 3 J
(b) 7 J
(c) 5 J
(d) 2.5 J
10. Which of the following bodies has the largest kinetic energy?

| Body | Mass (kg) | Velocity(m/s) |
| :---: | :---: | :---: |
| A | $3 \mathbf{~ m}$ | V |
| B | $3 \mathbf{~ m}$ | $2 \mathbf{V}$ |
| C | $2 \mathbf{m}$ | $3 \mathbf{V}$ |
| D | $\mathbf{m}$ | $4 \mathbf{V}$ |

(a) body A
(b) body B
(c) body C
(d) body D
11. A force $\mathbf{F}$ acts on a box that slides to the right a distance $\mathbf{d}$ across a frictionless floor. In which situatin of the following the work done by this force on the box is zero ?
(a)

(b)

(c)

(d)

12. In question 11, which figure gives $\mathbf{W}=\mathbf{F} \mathbf{d}$ ?
(a)

(b)

(c)

(d)

13. Which of the following is the correct unit of work ?
(a) N.m ${ }^{2}$
(b) $N^{2} \cdot m$
(c) Joule
(d) Joule.m
14. A particle moves through a displacement $\vec{d}=(15 m) \hat{i}-(12 m) \hat{j}$ along a straight line while being acted on by a force $\vec{F}=(210 N) \hat{i}-(150 N) \hat{j}$. The work done on the particle by this force is:
(a) 4950 J
(b) 1350 J
(c) 3150 J
(d) 1800 J
15. The figure shows a force $\mathbf{F}$ applied to a box that moves to the right for a distance $\mathbf{d}$ over a frictionless floor. The work done on the box by the force $F$ is:

(a) $F \cos 60$
(b) $\mathrm{Fd} \cos 60$
(c) $F \sin 60$
(d) $\mathrm{Fd} \sin 60$
16. The figure shows two forces applied to a box that moves to the right for a distance of $\mathbf{3} \mathbf{~ m}$ over a frictionless floor. The force magnitudes are $F_{1}=\mathbf{9} N, F_{2}=\mathbf{3 N}$. What is the work done on the box by the force $\mathbf{F}_{1}$ ?

(a) 23.4 J
(b) zero
(c) 13.5 J
(d) 27 J
17. In question $\mathbf{1 6}$, what is the work done by the force $\mathbf{F}_{\mathbf{2}}$ ?
(a) 23.4 J
(b) zero
(c) 13.5 J
(d) 9 J
18. A force $\boldsymbol{F}$ acts on a box that slides to the right a distance $\boldsymbol{d}$ across a frictionless floor. In which situation of the following the work done by this force on the box is zero?
(a) The angle between
(b) The angle between
(c) The angle between
(d) The angle between
$\vec{F}$ and $\vec{d}$ is $150^{\circ}$
$\vec{F}$ and $\vec{d}$ is $90^{\circ}$
$\vec{F}$ and $\vec{d}$ is $45^{\circ}$
$\vec{F}$ and $\vec{d}$ is $0^{\circ}$
19. In question 27 , which situation gives $\mathbf{W}=\boldsymbol{F} \boldsymbol{d}$ ?
(a) The angle between
(b) The angle between
(c) The angle between
(d) The angle between
$\vec{F}$ and $\vec{d}$ is $150^{\circ}$
$\vec{F}$ and $\vec{d}$ is $90^{\circ}$
$\vec{F}$ and $\vec{d}$ is $45^{\circ}$
$\vec{F}$ and $\vec{d}$ is $0^{\circ}$
20. A particle moves through a displacement $\vec{d}=-4 \hat{i}$ meter along a straight line while being acted on by a force $\vec{F}=2 \hat{i}-3 \hat{j}$ Newton. The work done on the particle by this force is:
(a) +2 J
(b) -4 J
(c) +5 J
(d) -8 J
21. Two men sliding a box of mass $\mathbf{m}$ a displacement $\mathbf{d}$ along the $x$-axis, if the work done by the first man was $\mathbf{W}_{\mathbf{1}}=\mathbf{6 0}$ $\mathbf{J}$, and the net work on the box was $\mathbf{W}=\mathbf{1 2 0} \mathbf{J}$. What is the work $\mathbf{W}_{\mathbf{2}}$ done by the second man?
(a) $W_{2}=0$
(b) $\mathrm{W}_{2}=60 \mathrm{~J}$
(c) $\mathrm{W}_{2}=120 \mathrm{~J}$
(d) $\mathrm{W}_{2}=180 \mathrm{~J}$
22. In question $\mathbf{2 1}$, What is the work done on the box $\left(\mathbf{W}_{\mathbf{g}}\right)$ by the gravitational force?
(a) 0
(b) 60 J
(c) 120 J
(d) 180 J
23. In question 21, if the box was initially stationary, what is its speed $v_{f}$ at the end of the displacement?
(a) $v_{f}=\sqrt{\frac{2 W}{m}}$
(b) $v_{f}=\sqrt{\frac{m}{2 W}}$
(c) $v_{f}=\sqrt{\frac{2 m}{W}}$
(d) $v_{f}=\sqrt{\frac{W}{2 m}}$
24. Which of the following bodies has the smallest kinetic energy ?

| Body | Mass(kg) | Velocity(m/s) |
| :---: | :---: | :---: |
| A | $3 \mathbf{m}$ | $1 \mathbf{V}$ |
| B | $3 \mathbf{~ m}$ | 2 V |
| C | $2 \mathbf{~ m}$ | 3 V |
| D | $1 \mathbf{~ m}$ | 4 V |

(a) body A
(b) body B
(c) body C
(d) body D
25. A block lies on a frictionless floor attached to a spring of spring constant $\mathbf{k}=\mathbf{4 0 8} \mathbf{N} / \mathbf{m}$, how much work does the spring force do on the block if it is pulled from $\mathbf{x}_{\mathbf{1}}=\mathbf{0}$ to $\mathbf{x}_{\mathbf{2}}=\mathbf{1 0} \mathbf{~ m m}$ ?
(a) -0.03 J
(b) -0.02 J
(c) -0.04 J
(d) -0.05 J
26. A block of weight $\mathbf{1 0 0} \mathbf{N}$ lifted up $\mathbf{1} \mathbf{~ m}$ by a man, the work done by the gravitational force on it is:
(a) 100 J
(b) -100 J
(c) 10.2 J
(d) -10.2 J
27. A block is pulled at a constant speed of $\mathbf{2} \mathbf{m} / \mathrm{s}$ across a horizontal floor by an applied force of $\mathbf{2} \mathbf{N}$ directed $\mathbf{6 0}^{\circ}$ above the horizontal. What is the power acting on the block due to the force?
(a) 2 Watt
(b) 3 Watt
(c) 4 Watt
(d) 6 Watt

## CHAPTER 9

28. In the closed and isolated system :
(a) mass = constant
(b) mass = zero
$\mathrm{F}_{\text {external }}=$ constant
(c) mass = constant
$\mathrm{F}_{\text {external }}=$ constant
(d) mass = zero
$\mathrm{F}_{\text {external }}=$ zero
29. How fast would a man of mass 80 kg have to run to have the same linear momentum as a $\mathbf{1 6 0 0} \mathbf{~ k g}$ car moving at $\mathbf{1 . 2} \mathbf{~ k m} / \mathrm{h}$ ?
(a) $0.24 \mathrm{~km} / \mathrm{h}$
(b) $2.4 \mathrm{~km} / \mathrm{h}$
(c) $24 \mathrm{~km} / \mathrm{h}$
(d) $240 \mathrm{~km} / \mathrm{h}$
30. A box sliding along $x$-axis on a frictionless surface, suddenly explodes into three pieces. The figure shows the momenta of the three pieces, find the initial momentum of the box?
$P_{1}=10 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
$P_{2}=2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
$P_{3}=6 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

(a) $-18 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(b) $18 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(c) $2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(d) $-2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
31. A $\mathbf{2} \mathbf{~ k g}$ body moving with velocity $\mathbf{3} \mathbf{~ m} / \mathbf{s}$ and a $\mathbf{3} \mathbf{~ k g}$ body moving with velocity $\mathbf{- 1} \mathbf{~ m} / \mathbf{s}$ along the $\mathbf{x}$-axis. Find the total linear momentum of the system of the two bodies?
(a) $3 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(b) $9 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(c) $8 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(d) $2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
32. A box of mass $\mathbf{m}=\mathbf{6} \mathbf{k g}$ slides with velocity $\mathbf{v}=\mathbf{+ 4} \mathbf{m} / \mathbf{s}$ across a frictionless floor suddenly explodes into two pieces. One piece $\mathbf{m}_{\mathbf{1}}=\mathbf{2} \mathbf{~ k g}$ moves with velocity $\mathbf{v}_{\mathbf{1}}=+\mathbf{8} \mathbf{m} / \mathbf{s}$. What is the velocity $\mathbf{v}_{\mathbf{2}}$ of the second piece $\mathbf{m}_{\mathbf{2}}$ ?
(a) $24 \mathrm{~m} / \mathrm{s}$
(b) $16 \mathrm{~m} / \mathrm{s}$
(c) $8 \mathrm{~m} / \mathrm{s}$
(d) $2 \mathrm{~m} / \mathrm{s}$

## Chapter 1: MEASUREMENT

Choose the correct answer:

1. We can write the speed of light ( $\mathbf{c}=\mathbf{2 9 9 , 0 0 0}, \mathbf{0 0 0} \mathrm{m} / \mathrm{s}$ ) using the scientific notation as:
(a) $2.99 \times 10^{8}$
(b) $29.9 \times 10^{8}$
(c) $0.299 \times 10^{8}$
(d) $299 \times 10^{8}$
2. A car moving with a speed of $\mathbf{1 0 0} \mathbf{~ k m} / \mathbf{h}$, what is its speed in $\mathbf{m} / \mathbf{s}$ ?
(a) $27.8 \mathrm{~m} / \mathrm{s}$
(b) $16.7 \mathrm{~m} / \mathrm{s}$
(c) $277.8 \mathrm{~m} / \mathrm{s}$
(d) $167.7 \mathrm{~m} / \mathrm{s}$
3. We can express the very small number ( $\mathbf{0 . 0 0 0} \mathbf{0 0 0} \mathbf{0 0 4 5 6}$ ) using the scientific notation as:
(a) $4.56 \times 10^{-8}$
(b) $4.56 \times 10^{-9}$
(c) $4.56 \times 10^{-10}$
(d) $4.56 \times 10^{-11}$
4. The conversion factor to convert $\mathbf{3} \mathbf{~ m i n}$ to seconds is
(a) $\frac{3600 s}{3 \min }$
(b) $\frac{60 s}{3 \min }$
(c) $\frac{3600 s}{1 \mathrm{~min}}$
(d) $\frac{60 s}{1 \mathrm{~min}}$
5. Which of the following is not a base quantity ?
(a) speed
(b) mass
(c) length
(d) time
6. How many centimeters in $\mathbf{1} \mathbf{~ k m}$ ?
(a) $10^{5} \mathrm{~cm}$
(b) $10^{2} \mathrm{~cm}$
(c) 10 cm
(d) $10^{4} \mathrm{~cm}$
7. The conversion factor to convert hours to seconds is:
(a) $\frac{1 s}{3600 h}$
(b) $\frac{3600 h}{1 s}$
(c) $\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}$
(d) $\frac{3600 \mathrm{~s}}{1 \mathrm{~h}}$
8. ( $\mathbf{1} \mathbf{~ m}=3.281 \mathrm{ft}$ ) then $1.5 \mathrm{ft} / \mathrm{h}$ equals:
(a) $1.37 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
(b) $1.27 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
(c) $1645.8 \mathrm{~m} / \mathrm{s}$
(d) $17717.4 \mathrm{~m} / \mathrm{s}$
9. A square with an edge of $\mathbf{1 ~ c m}$ has an area of: ( area $=$ edge $^{2}$ )
(a) $10^{2} \mathrm{~m}^{2}$
(b) $10^{4} \mathrm{~m}^{2}$
(c) $10^{-4} \mathrm{~m}^{2}$
(d) $10^{-6} \mathrm{~m}^{2}$
10. $\quad 10^{\mathbf{3}}$ gigawatts is:
(a) $10^{12}$ watts
(b) $10^{9}$ watts
(c) $10^{-6}$ watts
(d) $10^{-3}$ watts
11. The conversion factor to convert $\mathbf{1 0} \mathbf{~ k g}$ to $\mathbf{g}$ is:
(a) $\frac{10^{3} g}{1 \mathrm{~kg}}$
(b) $\frac{10^{3} g}{10 \mathrm{~kg}}$
(c) $\frac{1 \mathrm{~kg}}{10^{3} g}$
(d) $\frac{10 \mathrm{~kg}}{10^{3} g}$
12. Which prefix is true?
(a) milli $=10^{3}$
(b) micro $=10^{-9}$
(c) mega $=10^{6}$
(d) pico $=10^{9}$
13. $1 \mathrm{~mm}^{2}=$
(a) $10^{-3} \mathrm{~m}^{2}$
(b) $10^{-6} \mathrm{~m}^{2}$
(c) $10^{-9} \mathrm{~m}^{2}$
(d) $10^{-12} \mathrm{~m}^{2}$
14. If the length, height, and width of a rectangular block are $\mathbf{3 c m}, \mathbf{4 c m}$, and $\mathbf{5 c m}$ respectively, then the volume is
(a) $60 \mathrm{~m}^{3}$
(b) $60 \mathrm{~cm}^{3}$
(c) 60 m
(d) 60 cm
15. If $\mathbf{1 ~ m i}=\mathbf{1 6 0 9} \mathbf{~ m}$ then $\mathbf{5 5 ~ m i} / \mathrm{h}$ is
(a) $15.4 \mathrm{~m} / \mathrm{s}$
(b) $24.6 \mathrm{~m} / \mathrm{s}$
(c) $66.3 \mathrm{~m} / \mathrm{s}$
(d) $88.1 \mathrm{~m} / \mathrm{s}$
16. A nanosecond is:
(a) $10^{9} \mathrm{~s}$
(b) $10^{-9} \mathrm{~s}$
(c) $10{ }^{10} \mathrm{~s}$
(d) $10^{-10} \mathrm{~s}$
17. A gram is:
(a) $10^{-6} \mathrm{~kg}$
(b) $10^{-3} \mathrm{~kg}$
(c) $10^{6} \mathrm{~kg}$
(d) $10^{3} \mathrm{~kg}$
18. The SI base unit for mass is:
(a) gram
(b) pound
(c) kilogram
(d) kilopound
19. There are $\mathbf{1 0 0 0}$ meters in
(a) 1 kilometer
(b) 10 kilometer
(c) 100 cm
(d) $10,000 \mathrm{~cm}$
20. How many centimeters in 1 km?
(a) $10^{5} \mathrm{~cm}$
(b) $10^{2} \mathrm{~cm}$
(c) 10 cm
(d) $10^{4} \mathrm{~cm}$
21. The conversion factor to convert hours to seconds is:
(a) $\frac{1 \mathrm{~s}}{3600 \mathrm{~h}}$
(b) $\frac{3600 h}{1 s}$
(c) $\frac{1 h}{3600 s}$
(d) $\frac{3600 \mathrm{~s}}{1 \mathrm{~h}}$
22. If $\mathbf{1 m}=\mathbf{3 . 2 8 1} \mathbf{f t}$, then $\mathbf{3 . 3 7 5} \mathbf{f t}^{\mathbf{3}}=$
(a) $1.2 \times 10^{2} \mathrm{~m}^{3}$
(b) $9.6 \times 10^{-2} \mathrm{~m}^{3}$
(c) $10.5 \mathrm{~m}^{3}$
(d) $0.21 \mathrm{~m}^{3}$
23. $10^{-9}$ second is
(a) millisecond
(b) microsecond
(c) nanosecond
(d) gigasecond
24. A 10 kilogram =
(a) $10^{6} \mathrm{~g}$
(b) $10^{3} \mathrm{~g}$
(c) $10^{4} \mathrm{~g}$
(d) $10^{2} \mathrm{~g}$
25. The SI units of the base quantities (Length, Mass, Time) are:
(a) $\mathrm{m}, \mathrm{kg}, \mathrm{s}$
(b) $\mathrm{cm}, \mathrm{g}, \mathrm{s}$
(c) $\mathrm{km}, \mathrm{g}, \mathrm{s}$
(d) $\mathrm{km}, \mathrm{kg}, \mathrm{s}$
26. ( 0.00000000636 ) is equal to:
(a) $6.36 \times 10^{-7}$
(b) $6.36 \times 10^{-8}$
(c) $6.36 \times 10^{-9}$
(d) $6.36 \times 10^{-10}$
27. 50 km =
(a) $5 \times 10^{5} \mathrm{~cm}$
(b) $5 \times 10^{6} \mathrm{~cm}$
(c) $5 \times 10^{7} \mathrm{~cm}$
(d) $5 \times 10^{8} \mathrm{~cm}$
28. $\quad 100 \mathrm{~g} / \mathrm{cm}^{3}=$
(a) $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
(b) $10^{4} \mathrm{~kg} / \mathrm{m}^{3}$
(c) $10^{5} \mathrm{~kg} / \mathrm{m}^{3}$
(d) $10^{6} \mathrm{~kg} / \mathrm{m}^{3}$
29. a microsecond is:
(a) $10^{6} \mathrm{~s}$
(b) $10^{-6} \mathrm{~s}$
(c) $10^{9} \mathrm{~s}$
(d) $10^{-9} \mathrm{~s}$
30. The conversion factor to convert $\mathbf{6 m}$ to $\mathbf{~ m m}$ is:
(a) $\frac{10^{3} \mathrm{~mm}}{1 \mathrm{~m}}$
(b) $\frac{10^{3} \mathrm{~mm}}{6 \mathrm{~m}}$
(c) $\frac{1 \mathrm{~m}}{10^{3} \mathrm{~mm}}$
(d) $\frac{6 \mathrm{~m}}{10^{3} \mathrm{~mm}}$

Are the following statements (True $\checkmark$ ) or (False $\times$ ) ?
31. The SI base unit for mass is gram.
(a) True
(b) False
32. There are 1209600 seconds in one week.
(a) True
(b) False

## Chapter 2: MOTION ALONG A STRAIGHT LINE

Choose the correct answer:

1. Suppose the motion of a particle is described by the equation: $\mathbf{X}=\mathbf{2 0 + 4} \mathbf{t}^{\mathbf{2}}$. Find the instantaneous velocity at $\mathbf{t}=5 \mathrm{~s}$ ?
(a) $16 \mathrm{~m} / \mathrm{s}$
(b) $60 \mathrm{~m} / \mathrm{s}$
(c) $40 \mathrm{~m} / \mathrm{s}$
(d) $36 \mathrm{~m} / \mathrm{s}$
2. A ball thrown vertically upward with an initial velocity of $\mathbf{1 2} \mathbf{~ m} / \mathbf{s}$, what is the ball's maximum height?
(a) 7.35 m
(b) 14.7 m
(c) 0.61 m
(d) 1.22 m
3. A body moves along the $x$-axis with constant acceleration $\mathbf{a}=\mathbf{4} \mathbf{m} / \mathbf{s}^{\mathbf{2}}$. At $\mathbf{t}=\mathbf{0}$ the body is at $\mathbf{x}_{\mathbf{0}}=\mathbf{5} \mathbf{m}$ and has velocity $\mathbf{v}_{\mathbf{0}}=\mathbf{3} \mathbf{~ m} / \mathrm{s}$. Find its position at $\mathbf{t}=\mathbf{2} \mathbf{s}$ ?
(a) 14 m
(b) 19 m
(c) 15 m
(d) 18 m
4. Suppose the velocity of the particle is given by the: $\mathbf{v}=\mathbf{1 0 + 2} \mathbf{~} \mathbf{t}^{\mathbf{2}}$ where $\mathbf{v}$ is in $\mathrm{m} / \mathrm{s}$ and $\mathbf{t}$ is in $s$. Find the change in velocity of the particle in the time interval between $\mathbf{t}_{\mathbf{1}}=\mathbf{2} \mathbf{s}$ and $\mathbf{t}_{\mathbf{2}}=\mathbf{5} \mathbf{s}$ ?
(a) $41 \mathrm{~m} / \mathrm{s}$
(b) $14 \mathrm{~m} / \mathrm{s}$
(c) $24 \mathrm{~m} / \mathrm{s}$
(d) $42 \mathrm{~m} / \mathrm{s}$
5. In question 4, Find the instantaneous acceleration when $\mathbf{t}=\mathbf{2 s}$ ?
(a) $4 \mathrm{~m} / \mathrm{s}^{2}$
(b) $14 \mathrm{~m} / \mathrm{s}^{2}$
(c) $8 \mathrm{~m} / \mathrm{s}^{2}$
(d) $18 \mathrm{~m} / \mathrm{s}^{2}$
6. Which pair of the following initial and final positions along the $x$-axis give a positive displacement?
(a) $-3 m,+5 m$
(b) $-3 m,-4 m$
(c) $5 m,-3 m$
(d) $4 m, 3 m$
7. You walk a distance $\mathbf{1 . 2 2} \mathbf{m}$ in $\mathbf{1} \mathrm{s}$ and then run a distance 3.05 m in $\mathbf{1 ~ s}$, what is your average speed?
(a) $0.92 \mathrm{~m} / \mathrm{s}$
(b) $4.27 \mathrm{~m} / \mathrm{s}$
(c) $2.14 \mathrm{~m} / \mathrm{s}$
(d) $1.83 \mathrm{~m} / \mathrm{s}$
8. The following are equations of the velocity $v(t)$ of a particle, in which situation the acceleration is constant?
(a) $v=3 t+6$
(b) $v=4 t^{2}$
(c) $v=3 t^{2}-4 t$
(d) $v=5 t^{3}-3$
9. A particle's position on the $x$-axis is given by $X=8-5 t+25 t^{2}$, with $X$ in meters and $t$ in seconds. Find the particles velocity function?
(a) $v=-5+25 t$
(b) $v=-5+50 t$
(c) $v=8-5+25 t$
(d) $v=8+5+50 t$
10. A rocket ship moves with constant acceleration equal to $9.8 \mathrm{~m} / \mathrm{s}^{2}$, if it starts from rest how long will it take to reach a velocity $\frac{1}{10}$ the velocity of light? ( $\mathrm{V}_{\text {light }}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ )
(a) $3.1 \times 10^{5} \mathrm{~s}$
(b) $3.1 \times 10^{7} \mathrm{~s}$
(c) $3.1 \times 10^{6} \mathrm{~s}$
(d) $3.1 \times 10^{4} \mathrm{~s}$
11. In question 10, how far will the rocket ship travel?
(a) $4.6 \times 10^{13} \mathrm{~m}$
(b) $4.6 \times 10^{10} \mathrm{~m}$
(c) $4.6 \times 10^{12} \mathrm{~m}$
(d) $4.6 \times 10^{11} \mathrm{~m}$
12. A ball thrown vertically upward with an initial velocity of $\mathbf{1 2} \mathbf{~ m} / \mathrm{s}$, how long does the ball take to reach its maximum height?
(a) 0.74 s
(b) 1.35 s
(c) 0.82 s
(d) 1.22 s
13. A car moving with a constant acceleration covered a distance between two points $\mathbf{6 0} \mathbf{~ m}$ apart in $\mathbf{6} \mathbf{s}$, what was its initial speed if the final speed was $\mathbf{1 5} \mathbf{~ m} / \mathbf{s}$ ?
(a) $-10 \mathrm{~m} / \mathrm{s}$
(b) $-5 \mathrm{~m} / \mathrm{s}$
(c) $5 \mathrm{~m} / \mathrm{s}$
(d) $17.5 \mathrm{~m} / \mathrm{s}$
14. The instantaneous acceleration a equals:
(a) $\frac{d x}{d t}$
(b) $\frac{d}{d t}\left(\frac{d^{2} x}{d t^{2}}\right)$
(c) $\frac{d^{2}}{d t^{2}}\left(\frac{d x}{d t}\right)$
(d) $\frac{d}{d t}\left(\frac{d x}{d t}\right)$
15. Suppose the motion of a particle is described by the equation: $\mathbf{X = \mathbf { 2 0 } + \mathbf { 4 } \mathbf { t } ^ { \mathbf { 2 } } \text { . Find the }}$ average velocity of the particle in the time interval $\mathbf{t}_{\mathbf{1}}=\mathbf{2} \mathbf{s}$ to $\mathbf{t}_{\mathbf{2}}=\mathbf{5} \mathbf{s}$ ?
(a) $29 \mathrm{~m} / \mathrm{s}$
(b) $28 \mathrm{~m} / \mathrm{s}$
(c) $84 \mathrm{~m} / \mathrm{s}$
(d) $10 \mathrm{~m} / \mathrm{s}$

## 16. In question 15, Find the instantaneous velocity at $\mathbf{t}=5 \mathbf{s}$ ?

(a) $16 \mathrm{~m} / \mathrm{s}$
(b) $60 \mathrm{~m} / \mathrm{s}$
(c) $40 \mathrm{~m} / \mathrm{s}$
(d) $36 \mathrm{~m} / \mathrm{s}$
17. A rock is dropped from rest from the top of a $\mathbf{1 0 0} \mathbf{~ m}$ tall building, how long does it take to fall the first $\mathbf{5 0} \mathbf{~ m}$ ?
(a) 3.2 s
(b) 10.2 s
(c) 20.4 s
(d) 4.5 s
18. The following are equations of the position of a particle, in which situation the velocity of the particle is constant ?
(a) $x=4 t^{2}-2$
(b) $x=-2 t^{3}$
(c) $x=-3 t-2$
(d) $x=4 t^{-2}$
19. A ball thrown vertically upward with an initial velocity of $\mathbf{1 2} \mathbf{~ m} / \mathbf{s}$, what is the ball's maximum height?
(a) 7.35 m
(b) 14.7 m
(c) 0.61 m
(d) 1.22 m
20. A body moves along the x-axis with constant acceleration $\mathbf{a}=\mathbf{4} \mathbf{m} / \mathbf{s}^{\mathbf{2}}$. At $\mathbf{t}=\mathbf{0}$ the body is at $\mathbf{x = 5} \mathbf{m}$ and has velocity $\mathbf{v}=\mathbf{3} \mathbf{~ m} / \mathbf{s}$. Find its position at $\mathbf{t}=\mathbf{2 s}$ ?
(a) 14 m
(b) 19 m
(c) 15 m
(d) 18 m
21. In question $\mathbf{2 0}$, where is the body when its velocity is $\mathbf{5} \mathbf{~ m} / \mathbf{s}$ ?
(a) 7 m
(b) 9 m
(c) 11 m
(d) 2 m
22. A man runs a distance of 1 mile in exactly 4 minutes, What is his average velocity in $\mathrm{mi} / \mathrm{hr}$ ?
(a) $900 \mathrm{mi} / \mathrm{hr}$
(b) $15 \mathrm{mi} / \mathrm{hr}$
(c) $6.71 \mathrm{mi} / \mathrm{hr}$
(d) $15000 \mathrm{mi} / \mathrm{hr}$
23. You walk a distance of $\mathbf{7 3 . 2} \mathbf{~ m}$ at a speed of $\mathbf{1 . 2 2} \mathbf{~ m} / \mathrm{s}$ and then run $\mathbf{7 3 . 2} \mathbf{~ m}$ in $\mathbf{2 4} \mathbf{~ s}$. What is your overall displacement?
(a) 97.2 m
(b) 73.2 m
(c) 146.4 m
(d) zero
24. In question 23, what is the time interval from the start to the end?
(a) 24 s
(b) 84 s
(c) 36 s
(d) 4.27 s
25. If $\mathbf{t}_{\mathbf{1}}=\mathbf{2} \mathbf{s}$ and $\mathbf{t}_{\mathbf{2}}=\mathbf{4} \mathbf{s}$ find the average acceleration when the velocity changes from $\mathbf{8}$ $\mathrm{m} / \mathrm{s}$ to $\mathbf{1 2} \mathbf{~ m} / \mathrm{s}$ ?
(a) $1 \mathrm{~m} / \mathrm{s}^{2}$
(b) $3.33 \mathrm{~m} / \mathrm{s}^{2}$
(c) $5 \mathrm{~m} / \mathrm{s}^{2}$
(d) $2 \mathrm{~m} / \mathrm{s}^{2}$
26. What is the initial speed of a car moving a distance of $\mathbf{6 0 ~ m}$ in $\mathbf{6 s}$ if the final speed was $15 \mathrm{~m} / \mathrm{s}$ ?
(a) $-10 \mathrm{~m} / \mathrm{s}$
(b) $-5 \mathrm{~m} / \mathrm{s}$
(c) $5 \mathrm{~m} / \mathrm{s}$
(d) $17.5 \mathrm{~m} / \mathrm{s}$
27. If the total distance moved by a bus before stopping was 56.7 m with initial speed of $\mathbf{2 2 . 3 6 ~ \mathbf { m } / \mathrm { s } \text { . What is the magnitude of the acceleration? }}$
(a) $8.82 \mathrm{~m} / \mathrm{s}^{2}$
(b) $4.41 \mathrm{~m} / \mathrm{s}^{2}$
(c) $17.63 \mathrm{~m} / \mathrm{s}^{2}$
(d) $2.21 \mathrm{~m} / \mathrm{s}^{2}$
28. A pipe dropped from a building struck the ground with a speed of $\mathbf{2 4} \mathbf{~ m} / \mathbf{s}$. what height was it dropped from?
(a) 58.8 m
(b) 2.44 m
(c) 1.22 m
(d) 29.4 m
29. What is the initial speed of a ball thrown upward vertically reaching a height of $\mathbf{0 . 5 4 4}$ m in 0.2 s ?
(a) $4.68 \mathrm{~m} / \mathrm{s}$
(b) $3.7 \mathrm{~m} / \mathrm{s}$
(c) $2.1 \mathrm{~m} / \mathrm{s}$
(d) $0.74 \mathrm{~m} / \mathrm{s}$
30. The initial and the final positions of a particle moving along the $x$-axis are $\mathbf{- 2} \mathbf{m}, \mathbf{1 0}$ $\mathbf{m}$, then its displacement $\Delta \mathbf{x}$ equals:
(a) +12 m
(b) +8 m
(c) -12 m
(d) -8 m
31. In which situation of the following the displacement is positive?

| Situation | $\mathbf{X}_{\mathbf{1}}(\mathbf{m})$ | $\mathbf{X}_{\mathbf{2}}(\mathbf{m})$ |
| :---: | :---: | :---: |
| $\mathbf{A}$ | -3 | 5 |
| $\mathbf{B}$ | -3 | -7 |
| $\mathbf{C}$ | -3 | -3 |
| $\mathbf{D}$ | 2 | 5 |

(a) A and B
(b) A and C
(c) A and D
(d) B and C
32. The position of a body moving along the $x$ axis is given by $\mathbf{x}=\mathbf{3} \mathbf{t - 4} \mathbf{t}^{\mathbf{2}}+\mathbf{t}^{\mathbf{3}}$. Its position at $\mathbf{t}=\mathbf{2} \mathbf{s}$ is:
(a) 6 m
(b) 2 m
(c) -6 m
(d) -2 m
33. In question 32, the displacement of the object in the time interval $\mathbf{t}=\mathbf{0}$ to $\mathbf{t}=\mathbf{4} \mathbf{s}$ is:
(a) $\Delta x=3 m$
(b) $\Delta x=12 m$
(c) $\Delta x=-3 m$
(d) $\Delta x=-12 m$
34. A car travelled $\mathbf{4 0} \mathbf{~ k m}$ in $\mathbf{0 . 5} \mathbf{h}$, then travelled $\mathbf{4 0} \mathbf{~ k m}$ in $\mathbf{1} \mathbf{h}$. Its average speed is:
(a) $26.7 \mathrm{~km} / \mathrm{h}$
(b) $160 \mathrm{~km} / \mathrm{h}$
(c) $80 \mathrm{~km} / \mathrm{h}$
(d) $53.3 \mathrm{~km} / \mathrm{h}$
35. A car starts from point $\mathbf{A}$ moved a distance $\mathbf{5 0} \mathbf{~ k m}$ to point $\mathbf{B}$ then returns to point $\mathbf{A}$ in a time interval of $\mathbf{2}$ hours. Its average velocity is:
(a) zero
(b) $50 \mathrm{~km} / \mathrm{h}$
(c) $100 \mathrm{~km} / \mathrm{h}$
(d) $25 \mathrm{~km} / \mathrm{h}$
36. The position of a particle moving along the $x$-axis is given by: $\mathbf{x}=\mathbf{2} \mathbf{t}^{\mathbf{3}}$. Its acceleration is:
(a) $6 t^{2} \mathrm{~m} / \mathrm{s}^{2}$
(b) $12 \mathrm{t} \mathrm{m} / \mathrm{s}^{2}$
(c) constant
(d) zero
37. A ball dropped from a building, its velocity and position after $\mathbf{1} \mathbf{s}$ are:
(a) $V=-9.8 \mathrm{~m} / \mathrm{s}$
(b) $\mathrm{V}=-4.9 \mathrm{~m} / \mathrm{s}$
(c) $V=-9.8 \mathrm{~m} / \mathrm{s}$
(d) $\begin{aligned} \mathrm{V} & =-4.9 \mathrm{~m} / \mathrm{s} \\ \mathrm{y} & =-4.9 \mathrm{~m}\end{aligned}$
38. An electron has an initial velocity $\mathbf{V}_{\mathbf{0}}=\mathbf{1 \times 1 0 ^ { 5 }} \mathbf{m} / \mathrm{s}$ travels a distance $\mathbf{0 . 0 1} \mathbf{m}$, if the final velocity was $\mathbf{V}=\mathbf{2} \times \mathbf{1 0}^{\mathbf{6}} \mathbf{~ m} / \mathrm{s}$, then its acceleration is:
(a) $1995 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}$
(b) $195 \times 10^{6} \mathrm{~m} / \mathrm{s}^{2}$
(c) $95 \times 10^{6} \mathrm{~m} / \mathrm{s}^{2}$
(d) $1.995 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}$
39. A particle moving in the $+\mathbf{x}$ direction with increasing speed :
(a) Its velocity is positive and acceleration is negative
(b) Its velocity is negative and acceleration positive
(c) Its velocity and acceleration are both positive
(d) Its velocity is positive and acceleration is zero
40. In which situation of the following the velocity is in the negative $x$ direction?

| Situation | Position of the particle |
| :---: | :---: |
| $\mathbf{A}$ | $\mathrm{X}=-2 \mathrm{t}^{2}-2$ |
| $\mathbf{B}$ | $\mathrm{X}=3 \mathrm{t}^{3}-5$ |
| C | $\mathrm{X}=-2 \mathrm{t}^{-2}+1$ |
| D | $\mathrm{X}=-5+5 \mathrm{t}$ |

(a) $\mathbf{A}$
(b) $\mathbf{B}$
(c) $\mathbf{C}$
(d) D
41. A ball is thrown vertically upward. Its displacement is:
(a) positive during rising and negative during falling
(b) negative during rising and positive during falling
(c) positive during rising and falling
(d) negative during rising and falling
42. A man walks $4 \mathbf{m}$ from point $A$ due east, then $\mathbf{3} \mathbf{m}$ due north. What is his displacement from the point $A$ ?
(a) 7 m
(b) 6 m
(c) 5 m
(d) 10 m
43. The following are equations of the velocity $\mathrm{v}(\mathrm{t})$ of a particle, in which situation the acceleration is constant?
(a) $v=3 t+6$
(b) $v=4 t^{2}$
(c) $v=3 t^{2}-4 t$
(d) $v=5 t^{3}-3$
44. You are throwing a ball straight up in the air. At the highest point, the ball's velocity and acceleration are:
(a) $v=0$
(b) $v=v_{0}$
$a=-g$
$a=0$
(c) $v>v_{0}$
(d) $v<V_{0}$
$a=-g$
$a<-g$
45. If the sign of the velocity and acceleration of a particle are opposite, then the speed of the particle
(a) is zero
(b) decreases
(c) increases
(d) does not change
46. A particle moves from $x_{1}=\mathbf{5} \mathbf{~ m}$ to $x_{2}=\mathbf{1 2} \mathbf{~ m}$, then:
(a) $\Delta x$ is positive
(b) $\Delta x$ is negative
(c) $\Delta x$ is zero
(d) $\Delta x=12 m$
47. You walked a distance of $\mathbf{2} \mathbf{~ k m}$ along a road in $\mathbf{0 . 5} \mathbf{h}$, then walked back to the initial position in $\mathbf{0 . 7 5} \mathbf{h}$. Your overall displacement is:
(a) 6 km
(b) 0
(c) 4 km
(d) 2 km
48. In question 62, your average speed is:
(a) $5.3 \mathrm{~km} / \mathrm{h}$
(b) $1.6 \mathrm{~km} / \mathrm{h}$
(c) $3.2 \mathrm{~km} / \mathrm{h}$
(d) 0
49. The position of a car changes from $\mathbf{x}_{\mathbf{1}}=\mathbf{2 0} \mathbf{~ m}$ to $\mathbf{x}_{\mathbf{2}}=\mathbf{1 0 0} \mathbf{~ m}$ in the time interval from $\mathbf{2 s}$ to $\mathbf{4 s}$, the average velocity of the car is:
(a) $40 \mathrm{~m} / \mathrm{s}$
(b) $30 \mathrm{~m} / \mathrm{s}$
(c) $45 \mathrm{~m} / \mathrm{s}$
(d) $25 \mathrm{~m} / \mathrm{s}$
50. The position of a particle is given by: $\mathbf{x}(\mathbf{t})=\mathbf{1 0 + \mathbf { t } ^ { \mathbf { 2 } }}$, the instantaneous acceleration at $\mathbf{t}=\mathbf{1} \mathbf{s}$ is:
(a) $8 \mathrm{~m} / \mathrm{s}^{2}$
(b) $6 \mathrm{~m} / \mathrm{s}^{2}$
(c) $4 \mathrm{~m} / \mathrm{s}^{2}$
(d) $2 \mathrm{~m} / \mathrm{s}^{2}$
51. The free fall acceleration is:
(a) zero
(b) $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) $+9.8 \mathrm{~m} / \mathrm{s}^{2}$
(d) $-32 \mathrm{~m} / \mathrm{s}^{2}$
52. In which situation of the following the velocity is constant ?

| Situation | Position of the particle |
| :---: | :--- |
| A | $\mathbf{X = 3 \mathbf { t } - \mathbf { 2 }}$ |
| B | $\mathbf{X}=\mathbf{2} \mathbf{t}^{\mathbf{2}} \mathbf{- \mathbf { 2 }}$ |
| C | $\mathbf{X = - 2 \mathbf { t } ^ { \mathbf { 3 } }}$ |
| D | $\mathbf{X}=\mathbf{2 - 5} \mathbf{t}^{\mathbf{2}}$ |

(a) $\mathbf{A}$
(b) B
(c) $\mathbf{C}$
(d) D
53. A car starts from rest, travels with constant accelertion a distance $\mathbf{5 0 0} \mathbf{m}$, the final velocity is $\mathbf{5 0} \mathbf{~ m} / \mathbf{s}$. Its acceleration is:
(a) $1.6 \mathrm{~m} / \mathrm{s}^{2}$
(b) $2.5 \mathrm{~m} / \mathrm{s}^{2}$
(c) $3.6 \mathrm{~m} / \mathrm{s}^{2}$
(d) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
54. The equation that represents the motion with constant acceleration is:
(a) $v^{2}=v_{0}^{2}+2 a t$
(b) $v=v_{0}+2 a\left(x-x_{0}\right)$
(c) $x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$
(d) $v=v_{0}+\frac{1}{2} a t^{2}$
55. When an object is thrown vertically upward $\uparrow$, while it is rising:
(a) its velocity and acceleration are both upward $\uparrow$
(b) its velocity is upward $\uparrow$ and its acceleration is downward $\downarrow$
(c) its velocity and acceleration are both downward $\downarrow$
(d) its velocity is downward $\downarrow$ and its acceleration is upward $\uparrow$

Are the following statements (True $\checkmark$ ) or (False $\mathbf{x}$ ) ?
56. Speed is the magnitude of instantaneous velocity.
(a) True
(b) False
57. Average acceleration is the ratio of (النسـبة بـين) the change of velocity $\Delta v$ to the time interval $\Delta \mathrm{t}$.
(a) True
(b) False
58. The free fall motion is an example of motion along a straight line with constant acceleration.
(a) True
(b) False

## Chapter (3): VECTORS

Choose the correct answer:

1. A vector has two components ( $\mathbf{A}_{\mathbf{x}}=\mathbf{3} \mathbf{~ c m}$ and $\mathbf{A}_{\mathbf{y}}=\mathbf{- 4} \mathbf{~ c m}$ ). What is the magnitude of $\vec{A}$ ?
(a) 4 cm
(b) 5 cm
(c) 1 cm
(d) 7 cm
2. In question 2 , What is the direction of $\vec{A}$ ?
(a) $-53.1^{\circ}$
(b) $-25.3^{\circ}$
(c) $-17.9^{\circ}$
(d) $-36.9^{\circ}$
3. Given the two vectors $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$, Find $\vec{c}$ where $\vec{c}=\vec{a}+\vec{b}$ ?
(a) $\vec{c}=3 \hat{i}+5 \hat{j}+7 \hat{k}$
(b) $\vec{c}=3 \hat{i}+\hat{j}+7 \hat{k}$
(c) $\vec{c}=\hat{i}+\hat{j}+7 \hat{k}$
(d) $\vec{c}=\hat{i}+5 \hat{j}+\hat{k}$
4. In question 3 , Find $\vec{a} \cdot \vec{b}$ ?
(a) 5
(b) 15
(c) 20
(d) 8
5. Vectors $\vec{C}$ and $\vec{D}$ have magnitudes of $\mathbf{3}$ units and 4 units respectively. What is the angle between the directions of $\vec{C}$ and $\vec{D}$ if $\vec{C} \times \vec{D}=12$
(a) $90^{\circ}$
(b) $180^{\circ}$
(c) $270^{\circ}$
(d) $0^{\circ}$
6. A vectors $\vec{a}$ has two component, $\mathrm{a}_{\mathrm{x}}=2.6 \mathrm{~m}, \mathrm{a}_{\mathrm{y}}=-2.3 \mathrm{~m}$, what is the direction of $\vec{a}$ ?
(a) $-48.5^{\circ}$
(b) $48.5^{\circ}$
(c) $-41.3^{\circ}$
(d) $41.3^{\circ}$
7. In the figure what are the signs of the $\mathbf{x}$ and $\mathbf{y}$ component of $\vec{r}_{1}+\vec{r}_{2}$ ? $\quad \mathrm{y}$
(a) $(+,+)$
(b) $(-,-)$
(c) $(+,-)$
(d) $(-,+)$

8. If $\vec{a} \times \vec{b}=\vec{c}$ then the value of $\boldsymbol{c}_{\boldsymbol{y}}$ equals:
(a) $a_{z} b_{x}-b_{z} a_{x}$
(b) $a_{x} b_{y}-b_{x} a_{y}$
(c) $a_{y} b_{z}-b_{y} a_{z}$
(d) $a_{y} b_{x}-b_{y} a_{x}$
9. Two vectors $\vec{a}$ and $\vec{b}, \vec{a}$ has a magnitude of $\mathbf{1 2} \mathbf{~ m}$ and has an angle of $\mathbf{4 0 ^ { \circ }}$ from the $+x$ direction, and $\vec{b}$ has a magnitude of $\mathbf{9} \mathbf{m}$ in the direction shown. Find the $x$ component of their vector sum?

(a) 17.65 m
(b) 10.79 m
(c) 0.73 m
(d) 3.21 m
10. Two vectors $\vec{a}=(4 m) \hat{i}-(3 m) \hat{j}$ and $\vec{b}=(6 m) \hat{i}+(8 m) \hat{j}$, What is the magnitude of $\vec{a}$ ?
(a) 1 m
(b) 4 m
(c) 5 m
(d) 7 m
11. In question 10, find $\vec{a}+\vec{b}$ ?
(a) $10 \hat{i}+5 \hat{j}$
(b) $2 \hat{i}+11 \hat{j}$
(c) $10 \hat{i}+11 \hat{j}$
(d) $9 \hat{i}+12 \hat{j}$
12. In question 10 , Find $\vec{a} \cdot \vec{b}$ ?
(a) 1
(b) 24
(c) 48
(d) zero
13. In question 10, Find $\frac{\vec{b}}{2}$ ?
(a) $3 \hat{i}+4 \hat{j}$
(b) $-3 \hat{i}-4 \hat{j}$
(c) $12 \hat{i}+16 \hat{j}$
(d) $-12 \hat{i}-16 \hat{j}$
14. Given the two vectors $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$, Find $\vec{c}$ where $\vec{c}=\vec{a}+\vec{b}$ ?
(a) $\vec{c}=3 \hat{i}+5 \hat{j}+7 \hat{k}$
(b) $\vec{c}=3 \hat{i}+\hat{j}+7 \hat{k}$
(c) $\vec{c}=\hat{i}+\hat{j}+7 \hat{k}$
(d) $\vec{c}=\hat{i}+5 \hat{j}+\hat{k}$
15. Vector $\vec{A}$ has a magnitude of 6 units and is in the direction of positive x-axis, vector $\vec{B}$ has a magnitude of 4 units and making an angle of $30^{\circ}$ with the positive x-axis. What is the magnitude of $\vec{A} \times \vec{B}$ ?
(a) 12 units
(b) 24 units
(c) 20.8 units
(d) 28 units
16. In the figure, what is the signs of the $\mathbf{x}$ and $\mathbf{y}$ components of vector $\vec{d}$ ?
(a) $(+,+)$
(b) $(+,-)$
(c) $(-,-)$
(d) $(-,+)$

17. Two vectors: $\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{B}=\hat{i}-2 \hat{j}+3 \hat{k}$. Find $\vec{A} \cdot \vec{B}$ ?
(a) 5
(b) 15
(c) 20
(d) 8
18. Which figure of the following represent the relation $\vec{s}=\vec{a}+\vec{b}$ :
(a)

(b)

(c)

(d)

19. from the figure, the y component of the vector $\vec{r}$ equals:
(a) 13 m
(b) 7.5 m
(c) 8.7 m
(d) 7.8 m
20. Which one of the following is the scalar quantity?
(a) Displacement
(b) Length
(c) Velocity
(d) acceleration
21. Vector $\vec{A}$ has two components, $\boldsymbol{A}_{\boldsymbol{x}}=\mathbf{- 2 5} \mathbf{~ m}, \boldsymbol{A}_{\boldsymbol{y}}=\mathbf{4 0} \mathbf{m}$, what is the direction of $\vec{A}$ ?
(a) $32^{\circ}$
(b) $-32^{\circ}$
(c) $58^{\circ}$
(d) $-58^{\circ}$
22. If the $\mathbf{x}$ component of vector $\vec{r}$ is $\mathbf{2 . 6} \mathbf{~ m}$ and the $\mathbf{y}$ component is $\mathbf{- 2 . 3} \mathbf{~ m}$ then $\vec{r}$ in unitvector notation is:
(a) $2.6 \hat{i}-2.3 \hat{j}$
(b) $-2.3 \hat{i}+2.6 \hat{j}$
(c) $2.6 \hat{i}-(-2.3) \hat{j}$
(d) $2.6 \hat{i}-2.3 \hat{j}+\hat{k}$
23. Vector $\vec{c}$ has the magnitude of $\mathbf{3 6}$, what is the magnitude of $\frac{\vec{c}}{4}-9$ ?
(a) zero
(b) 6
(c) 9
(d) 27
24. Which one of the following figures shows the three vectors $\vec{a}, \vec{b}$ and $-\vec{b}$ :
(a)

(b)

(c)

(d)

25. Two vectors are given by: $\vec{a}=4 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{b}=6 \hat{i}+8 \hat{j}+4 \hat{k}$

Find $\vec{c}$ where $\vec{a}-\vec{b}+\vec{c}=0$
(a) $4 \hat{i}-3 \hat{j}+\hat{k}$
(b) $2 \hat{i}+11 \hat{j}+3 \hat{k}$
(c) $-2 \hat{i}-5 \hat{j}+\hat{k}$
(d) $\hat{i}+3 \hat{j}+11 \hat{k}$
26. If the angle between $\vec{A}$ and $\vec{B}$ is $60^{\circ}$, and $\mathbf{A}=\mathbf{5}$ units, $\mathbf{B}=\mathbf{6}$ units, then the magnitude of the vector product $\vec{A} \times \vec{B}$ is:
(a) 30
(b) 20.89
(c) 15
(d) 25.98
27. For the following two vectors: $\vec{A}=2 \hat{i}+3 \hat{j}-4 \hat{k}, \quad \vec{B}=-3 \hat{i}+4 \hat{j}+2 \hat{k}$. Find $\vec{A} \cdot \vec{B}$
(a) -4
(b) -2
(c) -8
(d) -10
28. In question 27 , the magnitude of vector $\vec{A}$ equals:
(a) 5.4
(b) 3
(c) 1.7
(d) 4.2
29. If $\vec{a} \times \vec{b}=\vec{c}$ then the value of $\boldsymbol{c}_{\boldsymbol{x}}$ equals:
(a) $a_{z} b_{x}-b_{z} a_{x}$
(b) $a_{x} b_{y}-b_{x} a_{y}$
(c) $a_{y} b_{z}-a_{z} b_{\gamma}$
(d) $a_{y} b_{x}-b_{y} a_{x}$
30. Which vector of the following has the $\mathbf{y}$-component equals zero:
(a)

(b)

©
(d)
31. Vectors $\vec{C}$ and $\vec{D}$ have magnitudes of $\mathbf{3}$ units and $\mathbf{4}$ units respectively. What is the angle between the directions of $\vec{C}$ and $\vec{D}$ if $\vec{C} \cdot \vec{D}=\mathbf{1 2}$ units?
(a) $90^{\circ}$
(b) $180^{\circ}$
(C) $270^{\circ}$
(d) $0^{\circ}$
32. Two vectors $\vec{a}$ and $\vec{b}$ shown in the figure, if $\vec{r}=\vec{a}+\vec{b}$ then :
(a) $r_{x}=a \cos 40+b \cos 20$
(b) $r_{x}=a \cos 40+b \cos 160$
(c) $r_{x}=a \sin 40+b \sin 20$

(d) $r_{x}=a \sin 40+b \sin 160$
33. If $\vec{A}=3 \hat{i}-3 \hat{j}$ and $\vec{B}=\hat{i}-2 \hat{j}$, then $\vec{A}-2 \vec{B}=$
(a) $\hat{i}+\hat{j}$
(b) $2 \hat{i}-\hat{j}$
(c) $5 \hat{i}-7 \hat{j}$
(d) $4 \hat{i}-5 \hat{j}$
34. The vector $\vec{B}$ in the diagram is equal to:
(a) $\vec{B}=\vec{A}-\vec{C}$
(b) $\vec{B}=\vec{A}+\vec{C}$
(c) $\vec{B}=\vec{C}-\vec{A}$
(d) $\vec{B}=-\vec{A}-\vec{C}$

35. In the diagram, the magnitude of $\vec{A}=\mathbf{1 2} \mathbf{m}$ and the magnitude of $\vec{B}=\underset{\vec{B}}{\mathbf{8} \mathbf{~ m} \text {. The } \mathbf{x}}$ component of $\vec{A}+\vec{B}=$
(a) 14 m
(b) 10 m
(c) 6 m
(d) 18.4 m

36. Vectors $\vec{A}$ and $\vec{B}$ each has magnitude 4 and the angle between them is $\mathbf{3 0}^{\circ}$. The value of $\vec{A} \cdot \vec{B}=$
(a) 3.46
(b) 13.86
(c) 16
(d) 8
37. Let $\vec{C}=\vec{A} \times \vec{B}$ and $\phi$ is the angle between $\vec{A}$ and $\vec{B}$, which of the following is true?
(a) The magnitude of $\vec{C}=A B \cos \phi$
(c) $-\vec{C}=\vec{B} \times \vec{A}$
(b) $\vec{A} \times \vec{B}=\vec{B} \times \vec{A}$
(d) The angle between $\vec{C}$ and $\vec{A}=0^{\circ}$
38. Vectors $\vec{a}$ and $\vec{b}$ have magnitudes 5 units and 2 units, respectively. If $\vec{a} \times \vec{b}=5$ units, then the angle $\phi$ between $\vec{a}$ and $\vec{b}$ equals:
(a) $0^{\circ}$
(b) $30^{\circ}$
(c) $60^{\circ}$
(d) $90^{\circ}$
39. If vector $\vec{A}=6 \hat{i}-8 \hat{j}$ then $4 \vec{A}$ has a magnitude :
(a) 10
(b) 20
(c) 30
(d) 40
40. A vector $\vec{a}$ has a magnitude of $\mathbf{2 5} \mathbf{m}$ and an $\mathbf{a}_{\mathbf{x}}=\mathbf{1 2} \mathbf{~ m}$. The angle it makes with the positive x axis is:
(a) $26^{\circ}$
(b) $29^{\circ}$
(c) $61^{\circ}$
(d) $64^{\circ}$
41. Let $\vec{A}=2 \hat{i}+6 \hat{j}-3 \hat{k}$ and $\vec{B}=4 \hat{i}+2 \hat{j}+\hat{k}$. The vector sum $\vec{S}=\vec{A}+\vec{B}$ is:
(a) $6 \hat{i}+8 \hat{j}-2 \hat{k}$
(b) $-2 \hat{i}+4 \hat{j}-4 \hat{k}$
(c) $2 \hat{i}-4 \hat{j}+4 \hat{k}$
(d) $8 \hat{i}+12 \hat{j}-3 \hat{k}$
42. Let $\vec{A}=2 \hat{i}+6 \hat{j}-3 \hat{k}$ and $\vec{B}=4 \hat{i}+2 \hat{j}+\hat{k}$. Then $\vec{A} \cdot \vec{B}=$
(a) $8 \hat{i}+12 \hat{j}-3 \hat{k}$
(b) $12 \hat{i}-14 \hat{j}-20 \hat{k}$
(c) 23
(d) 17
43. Vectors $\vec{A}$ and $\vec{B}$ each have magnitude $\mathbf{L}$. When the angle between them is $\mathbf{6 0}^{\circ}$. The magnitude of $\vec{A} \times \vec{B}$ is:
(a) $0.5 \mathrm{~L}^{2}$
(b) $L^{2}$
(c) $0.866 \mathrm{~L}^{2}$
(d) $2 \mathrm{~L}^{2}$
44. Which vector of the following has the $\mathbf{x}$-component equals zero:
(a)

(b)

(c)
(d)
45. The angle between $\vec{A}=-25 \hat{i}+45 \hat{j}$ and the x axis is
(a) $-29^{\circ}$
(b) $29^{\circ}$
(c) $-60.9^{\circ}$
(d) $60.9^{\circ}$
46. Let $\vec{V}=2 \hat{i}+6 \hat{j}-3 \hat{k}$. The magnitude of $\vec{V}$ is
(a) 5
(b) 5.57
(c) 7
(d) 7.42
47. from the figure, the y component of the vector $\vec{r}$ equals:
(a) 13 m
(b) 7.5 m
(c) 8.7 m
(d) 7.8 m
48. In the figure, what is the signs of the $x$ and $y$ components Of the vector $\vec{d}$ :
(a) $(+,+)$
(b) $(-,-)$
(c) $(+,-)$
(d) $(-,+)$

| y |  |
| :--- | :--- |
|  | d |
|  | x |

49. Two vectors are given by: $\vec{a}=4 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{b}=6 \hat{i}+8 \hat{j}+4 \hat{k}$

Find $\vec{c}$ where $\vec{a}-\vec{b}+\vec{c}=0$
(a) $4 \hat{i}-3 \hat{j}+\hat{k}$
(b) $2 \hat{i}+11 \hat{j}+3 \hat{k}$
(c) $-2 \hat{i}-5 \hat{j}+\hat{k}$
(d) $\hat{i}+3 \hat{j}+11 \hat{k}$
50. For the following two vectors: $\vec{A}=2 \hat{i}+3 \hat{j}-4 \hat{k} \quad, \quad \vec{B}=-3 \hat{i}+4 \hat{j}+2 \hat{k}$

Find $\vec{A} \cdot \vec{B}$
(a) -4
(b) -2
(c) -8
(d) -10
51. Vector $\vec{a}$ has three components, $\mathbf{a}_{\mathbf{x}} \mathbf{= 1 0} \mathbf{m}, \mathbf{a}_{\mathbf{y}} \mathbf{= 1 0} \mathbf{m}$, and $\mathbf{a}_{\mathbf{z}} \mathbf{= 5} \mathbf{~ m}$. Its magnitude is:
(a) 225 m
(b) 25 m
(c) 20 m
(d) 15 m
52. If $\vec{A}=2 \hat{i}+6 \hat{j}-3 \hat{k}$ and $\vec{B}=4 \hat{i}+2 \hat{j}+\hat{k}$. Then $\vec{A}-\vec{B}=$
(a) $6 \hat{i}+8 \hat{j}-2 \hat{k}$
(b) $-2 \hat{i}+4 \hat{j}-4 \hat{k}$
(c) $2 \hat{i}-4 \hat{j}+4 \hat{k}$
(d) $8 \hat{i}+12 \hat{j}-3 \hat{k}$
53. Vectors $\vec{C}$ and $\vec{D}$ have magnitudes of $\mathbf{3}$ units and $\mathbf{4}$ units respectively. What is the angle between the directions of $\vec{C}$ and $\vec{D}$ if $\vec{C} \cdot \vec{D}=\mathbf{1 2}$ units?
(a) $90^{\circ}$
(b) $180^{\circ}$
(c) $270^{\circ}$
(d) $0^{\circ}$
54. The vector $-\vec{b}$ has the same magnitude as the vector $\vec{b}$ but
(a) perpendicular to $\vec{b}$
(c) the opposite direction of $\vec{b}$
(b) paralell to $\vec{b}$
(d) the same direction of $\vec{b}$
55. In which figure of the following $\mathbf{b}_{\mathbf{x}}=\mathbf{8 . 7} \mathbf{~ m}$ ? ( $\left.\mathbf{b}=\mathbf{1 0} \mathbf{~ m}\right)$
(a)

(b)

(c)

(d)

56. The components of $\vec{a}$ are: $\mathbf{a}_{\mathbf{x}}=\mathbf{3} \mathbf{~ m}$, and $\mathbf{a}_{\mathbf{y}}=\mathbf{4} \mathbf{m}$, the direction of $\vec{a}$ is:
(a) $66.8^{\circ}$
(b) $63.4^{\circ}$
(c) $59^{\circ}$
(d) $53.13^{\circ}$
57. In question 59, the magnitude of $\vec{a}$ is:
(a) 6.71 m
(b) 5.83 m
(c) 7.62 m
(d) 5 m
58. In the figure, the signs of the $\mathbf{x}$ and $\mathbf{y}$ components Of the vector $\vec{d}$ are:
(a) $(+,+)$
(b) $(-,-)$
(c) $(+,-)$
(d) $(-,+)$
59. The vector product $\hat{j} \times \hat{k}$ is equal to:
(a) 0
(b) 1
(c) $\hat{i}$
(d) $-\hat{i}$
60. If $\vec{a}=4 \hat{i}-3 \hat{j}$ and $\vec{b}=6 \hat{i}+8 \hat{j}$, then $\vec{b}-\vec{a}=$
(a) $4 \hat{i}-3 \hat{j}$
(b) $2 \hat{i}+11 \hat{j}$
(c) $-2 \hat{i}-5 \hat{j}$
(d) $\hat{i}+3 \hat{j}$
61. If $\boldsymbol{A}=\mathbf{4}$ units, $\boldsymbol{B}=\mathbf{6}$ units, and the angle $\phi=\mathbf{6 0}{ }^{\circ}$, then the magnitude of the vector product $\vec{A} \times \vec{B}$ is:
(a) 31.2 units
(b) 20.78 units
(c) 15.6 units
(d) 25.98 units
62. For the following two vectors: $\vec{A}=2 \hat{i}+3 \hat{j}-4 \hat{k}, \quad \vec{B}=-3 \hat{i}+2 \hat{j}+2 \hat{k}$. Find $\vec{A} \cdot \vec{B}$
(a) -5
(b) -2
(c) -8
(d) -11
63. If $\boldsymbol{C}=\mathbf{3}$ units, $\boldsymbol{D}=4$ units and $\vec{C} \cdot \vec{D}=\mathbf{- 1 2}$ units then the angle between the directions of $\vec{C}$ and $\vec{D}$ is:
(a) $90^{\circ}$
(b) $180^{\circ}$
(c) $270^{\circ}$
(d) $0^{\circ}$
64. If $\vec{D}=5 \hat{i}+25 \hat{j}$, then $\frac{\vec{D}}{5}$ equals:
(a) $5 \hat{i}+\hat{j}$
(b) $\hat{i}+5 \hat{j}$
(c) $5 \hat{i}-\hat{j}$
(d) $\hat{i}-5 \hat{j}$
65. Two vectors $\vec{a}$ and $\vec{b}$ shown in the figure, if $\vec{r}=\vec{a}+\vec{b}$ then :
(a) $r_{x}=a \cos 40+b \cos 20$
(b) $r_{x}=a \cos 40+b \cos 160$
(c) $r_{x}=a \sin 40+b \sin 20$
(d) $r_{x}=a \sin 40+b \sin 160$


Are the following statements (True $\checkmark$ ) or (False $\boldsymbol{x}$ ) ?
66. The component of a vector is the projection of the vector (مسقط المتجه) on an axis.
(a) True
(b) False
67. The magnitude of $\vec{A} \cdot \vec{B}$ is maximum when the angle between $\vec{A}$ and $\vec{B}$ is $90^{\circ}$.
(a) True
(b) False
68. The value of $\hat{i} \cdot(\hat{j} \times \hat{k})$ is zero.
(a) True
(b) False
69. $a_{x}$ and $a_{y}$ are vector components of $\vec{a}$.
(a) True
(b) False
70. The magnitude of the unit vector equals 1 .
(a) True
(b) False

## Chapter 4: MOTIN IN 2D AND 3D

1. If the x component of vector $\vec{r}$ is 2.6 m and the y component is -2.3 m then $\vec{r}$ in unitvector notation is:
(A) $2.6 \hat{i}-2.3 \hat{j}$
(B) $-2.3 \hat{i}+2.6 \hat{j}$
(C) $6.2 \hat{i}+3.2 \hat{j}$
(D) $3.2 \hat{i}-6.2 \hat{j}$
2. The displacement of a particle moving from $\vec{r}_{1}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ to $\vec{r}_{2}=-2 \hat{i}+6 \hat{j}+2 \hat{k}$ is
(A) $-7 \hat{i}+12 \hat{j}$
(B) $3 \hat{i}+4 \hat{k}$
(C) $7 \hat{i}-12 \hat{j}$
(D) $-3 \hat{i}-4 \hat{k}$
3. A particle goes from $\left(x_{1}=-2 m, y_{1}=3 m, z_{1}=1 m\right)$ to $\left(x_{2}=3 m, y_{2}=-1 m, z_{2}=4 m\right)$. Its displacement is:
(a) $\hat{i}+2 \hat{j}+5 \hat{k}$
(b) $5 \hat{i}-4 \hat{j}+3 \hat{k}$
(c) $-5 \hat{i}+4 \hat{j}-3 \hat{k}$
(d) $-\hat{i}-2 \hat{j}-5 \hat{k}$
4. The coordinates of a car's position as function of time is given by: $x=5 t^{2}+16$, and $y=-t^{3}$ +5 , the magnitude of position vector $\bar{r}$ at $\mathrm{t}=2 \mathrm{~s}$ is:
(a) 5 m
(b) 1 m
(c) 2.6 m
(d) 4 m
5. The components of a car's velocity as a function of time are given by :
$\mathrm{V}_{\mathrm{x}}=2 \mathrm{t}+3$, and $\mathrm{V}_{\mathrm{y}}=4 \mathrm{t}-1$, its velocity $\vec{V}$ at ( $\left.\mathrm{t}=1 \mathrm{~s}\right)$ is:
(A) $\vec{V}=9 \hat{i}+11 \hat{j}$
(B) $\vec{V}=5 \hat{i}+3 \hat{j}$
(C) $\vec{V}=7 \hat{i}+7 \hat{j}$
(D) $\vec{V}=11 \hat{i}+15 \hat{j}$
6. Velocity is defined as:
(a) rate of change
(b) position of position with divided by time
(c) a speeding up
(d) change of time
7. The position of a particle moving on an $x$ axis is given by: $\mathrm{X}=\mathrm{t}^{2}+2$, its average velocity in the time interval from $t=1 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$ is:
(a) $4 \mathrm{~m} / \mathrm{s}$
(b) $2 \mathrm{~m} / \mathrm{s}$
(c) $3 \mathrm{~m} / \mathrm{s}$
(d) $1 \mathrm{~m} / \mathrm{s}$
8. A car travels east at $200 \mathrm{~m} / \mathrm{s}$ and then travels west at $200 \mathrm{~m} / \mathrm{s}$, the change in its velocity is:
(a) zero
(b) $400 \mathrm{~m} / \mathrm{s}$ east
(c) $400 \mathrm{~m} / \mathrm{s}$ west
(d) $200 \mathrm{~m} / \mathrm{s}$ west
9. The position vector for a moving particle is: $\bar{r}=\hat{i}+4 t^{2} \hat{j}+t \hat{k}$, its velocity and acceleration as a function of time are:
(a) $\begin{aligned} \bar{v} & =8 t \hat{j}+\hat{k} \\ \bar{a} & =8 \hat{j}\end{aligned}$
(b) $\begin{aligned} & \bar{v}=\hat{i}+8 t \hat{j}+\hat{k} \\ & \bar{a}=8 \hat{j}+\hat{k}\end{aligned}$
(C) $\begin{aligned} \bar{v} & =8 t \hat{j} \\ \bar{a} & =\hat{i}+8 \hat{j}\end{aligned}$
(d) $\begin{aligned} \bar{v} & =8 t^{2} \hat{j}+t \hat{k} \\ \bar{a} & =8 \hat{j}\end{aligned}$
10. A particle moves in the xy plane. In which situation of the following $\mathrm{V}_{\mathrm{x}}$ and $\mathrm{V}_{\mathrm{y}}$ are both constant

| Situation | $X(m)$ | $Y(m)$ |
| :---: | :---: | :---: |
| $A$ | $2 t^{2}$ | $4 t+3$ |
| $B$ | $4 t^{3}-2$ | +3 |
| $C$ | $5 t$ | $2 t+1$ |
| $D$ | $-3 t$ | $t^{2}-1$ |

(a) A
(b) B
(c) C
(d) D
11. The components of a car's velocity as a function of time are given by $v_{x}=6 t^{2}-5, v_{y}=-$ $3 \mathrm{t}^{3}$. The acceleration components are:
(A) $a_{x}=10 t$
$a_{y}=-12 t^{2}$
(B) $a_{x}=4 t$
(C) $a_{x}=6 t$
(D) $a_{x}=12 t$
$a_{y}=-6 t^{2}$
$a_{y}=-15 t^{2}$
$a_{y}=-9 t^{2}$
12. A particle moving with initial velocity $\vec{v}_{0}=-2 \hat{i}+4 \hat{j} \mathrm{~m} / \mathrm{s}$, and acceleration $\vec{a}=-5 \hat{i}+8 \hat{j}$ $\mathrm{m} / \mathrm{s}^{2}$, the x -component $\mathrm{v}_{\mathrm{x}}$ of the final velocity at $(\mathrm{t}=1 \mathrm{~s})$ is ?
(A) $-7 \mathrm{~m} / \mathrm{s}$
(B) $-17 \mathrm{~m} / \mathrm{s}$
(C) $-27 \mathrm{~m} / \mathrm{s}$
(D) $-37 \mathrm{~m} / \mathrm{s}$
13. Acceleration is defined as:
(a) rate of change
(b) speed divided
(c) rate of change
(d) change of of position with time by time of velocity with velocity time
14. A particle had a speed of $18 \mathrm{~m} / \mathrm{s}$ in the $+x$ direction and after 2.4 s its speed was $30 \mathrm{~m} / \mathrm{s}$ in the $-x$ direction. Its average acceleration during this time is:
(a) $a=\frac{-30-18}{2.4}$
(b) $a=\frac{30-18}{2.4}$
(c) $a=\frac{18+30}{2.4}$
(d) $a=\frac{18-30}{2.4}$
15. A particle moving with $\vec{v}_{0}=2 \hat{i}+5 \hat{j}$ and acceleration $\vec{a}=5 \hat{j}$. Its velocity after 2 s is:
(a) $15 \mathrm{~m} / \mathrm{s}$
(b) $12 \mathrm{~m} / \mathrm{s}$
(c) $\sqrt{29} \mathrm{~m} / \mathrm{s}$
(d) $\sqrt{43.2} \mathrm{~m} / \mathrm{s}$
16. A particle leaves the origin with initial velocity $\bar{v}_{0}=8 \hat{i}+12 \hat{j} \mathrm{~m} / \mathrm{s}$ and a constant acceleration $\bar{a}=4 \hat{i}-2 \hat{j} \mathrm{~m} / \mathrm{s}^{2}$. The particle's velocity at $\mathrm{t}=6 \mathrm{~s}$ is:
(a) $\bar{v}=24 \hat{j}$
$\bar{v}=32 \hat{i}+24 \hat{j}$
(c) $\bar{v}=32 \hat{i}$
(d) $\bar{v}=32 \hat{i}-12 \hat{j}$
17. Acceleration is equal to
(a) $\frac{d \vec{v}}{d t}$
(b) $\frac{d \vec{r}}{d t}$
(c) $\frac{d \vec{v}}{d r}$
(d) $\frac{\Delta \vec{r}}{\Delta t}$
18. The range of a ball is thrown at an angle of $30^{\circ}$ above the horizontal with an initial speed $50 \mathrm{~m} / \mathrm{s}$ is:
(A) 318.1 m
(B) 267.3 m
(C) 373.4 m
(D) 220.9 m
19. The maximum range of a projectile is at launch angle
(A) $\theta=25^{\circ}$
(B) $\theta=35^{\circ}$
(C) $\theta=45^{\circ}$
(D) $\theta=55^{\circ}$
20. In the projectile motion the acceleration in the horizontal direction is:
(A) $19.6 \mathrm{~m} / \mathrm{s}^{2}$
(B) zero
(C) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(D) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
21. The range of a ball is thrown at an angle of $30^{\circ}$ above the horizontal with an initial speed $50 \mathrm{~m} / \mathrm{s}$ is:
(A) 318.1 m
(B) 267.3 m
(C) 373.4 m
(D) 220.9 m
22. A large cannon fired a ball at an angle of $30^{\circ}$ above the horizontal with initial speed 980 m the projectile will travel what horizontal distance before striking the ground?
(a) 4.3 km
(b) 8.5 km
(c) 43 km
(d) 85 km
23. A stone thrown from the top of a tall building follows a path that is:
(a) circular
(b) parabolic
(c) hyperbolic
(d) a straight line
24. Two projectiles are in flight at the same time. The acceleration of one relative to the other:
(a) is always $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(b) can be as large as $19.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) can be horizontal
(d) is zero
25. A ball is thrown at $\mathrm{V}_{0}$ and angle $\theta_{0}$ above horizontal and returned to its initial height. The path of the ball is called:
(a) Range
(b) Trajectory
(c) Horizontal
(d) Vertical path
path
26. In question 25, the horizontal component of the ball's velocity $\mathrm{V}_{\mathrm{x} 0}$ is:
(a) $\mathrm{V}_{\mathrm{x} 0}=$ unchanged
(b) $\mathrm{V}_{\mathrm{x} 0}=$ zero
(c) $V_{x 0}=V_{0}$
(d) $V_{x 0}$ is changed
27. In question 25, at the maximum height, the vertical component of the ball's velocity $\mathrm{V}_{\mathrm{y}}$ is:
(a) $\mathrm{V}_{\mathrm{y}}=\mathrm{V}_{\mathrm{x}}$
(b) $\mathrm{V}_{\mathrm{y}}=\mathrm{V}_{0}$
(c) $V_{y}=z e r o$
(d) $V_{y}=V_{0 y}$
28. A ball is thrown with initial velocity $\mathrm{v}_{0}=120 \mathrm{~m} / \mathrm{s}$ at an angle $\theta_{0}=60^{\circ}$ above the horizontal, the velocity $v_{0}$ in unit vector notation is:
(a) $\bar{v}_{0}=104 \hat{i}+60 \hat{j}$
(b) $\bar{v}_{0}=60 \hat{i}+104 \hat{j}$
(c) $\bar{v}_{0}=60 \hat{i}$
(d) $\bar{v}_{0}=104 \hat{j}$
29. In question 28, the acceleration in the horizontal direction when $t=5 \mathrm{~s}$ is:
(a) $24 \mathrm{~m} / \mathrm{s}^{2}$
(b) $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) zero
(d) $600 \mathrm{~m} / \mathrm{s}^{2}$
30. In question 28, the maximum range of the ball is:
(a) 1469.4 m
(b) 1272.5 m
(c) 1649.4 m
(d) 1722.5 m
31. The horizontal range is the horizontal distance the projectile has traveled when it returns to ......
(a) the origin
(b) its max. height
(c) its final height
(d) its initial
height
32. You are to launch a rocket, from just above the ground, with one of the following initial velocity vectors: (1) $\bar{v}_{0}=20 \hat{i}+70 \hat{j}$, (2) $\bar{v}_{0}=-20 \hat{i}+70 \hat{j}$, (3) $\bar{v}_{0}=20 \hat{i}-70 \hat{j}$, (4) $\bar{v}_{0}=-20 \hat{i}-70 \hat{j}$. Rank the vector according to the launch speed greatest first.
(a) $4>3>2>1$
(b) $4>2>3>1$
(c) $1>2>3>4$
(d) all the same
33. In the projectile motion, the vertical velocity component $\mathrm{v}_{\mathrm{y}}$
(a)changes continuously
(b) remains
(c) equals
(d) $\mathrm{v}_{\mathrm{y}}$ equals $\mathrm{v}_{\mathrm{x}}$
34. The maximum range of a projectile is at launch angle
(a) $\theta=25^{\circ}$
(b) $\theta=35^{\circ}$
(c) $\theta=45^{\circ}$
(d) $\theta=55^{\circ}$
35. In the projectile motion the horizontal velocity component $v_{x}$ remains constant because the acceleration in the horizontal direction is:
(a) $a_{x}>0$
(b) $a_{x}=g$
(c) $a_{x}>g$
(d) $a_{x}=0$
36. The range of a ball is thrown at an angle of $30^{\circ}$ above the horizontal with an initial speed $50 \mathrm{~m} / \mathrm{s}$ is:
(a) 318.1 m
(b) 267.3 m
(c) 373.4 m
(d) 220.9 m
37. A ball is thrown at an angle of $30^{\circ}$ above the horizontal with an intial speed $980 \mathrm{~m} / \mathrm{s}$. The ball's range is:
(a) 4.3 km
(b) 8.5 km
(c) 43 km
(d) 85 km
38. In the projectile motion the horizontal velocity component $\mathrm{v}_{\mathrm{x}}$ remains constant because the acceleration in the horizontal direction is:
(a) $a_{x}=0$
(b) $a_{x}>0$
(c) $a_{x}=g$
(d) $a_{x}>g$
39. A ball is thrown at $\mathrm{V}_{0}$ and angle $\theta_{0}$ above horizontal and returned to its initial height. The path of the ball is called:
(a) Range
(b) Trajectory
(c) Horizontal path
(d) Vertical path
40. In question 39, the horizontal component of the ball's velocity $\mathrm{V}_{\mathrm{x} 0}$ is:
(a)
$V_{x 0}=(b) V_{x 0}=z e r o$
(c) $V_{x 0}=V_{0}$
(d) $V_{x 0}$ is changed unchanged
41. In question 39, at the maximum height, the vertical component of the ball's velocity $\mathrm{V}_{\mathrm{y}}$ is:
(a) $V_{y}=V_{x}$
(b) $V_{y}=V_{0}$
(c) $\mathrm{V}_{\mathrm{y}}=$ zero
(d) $V_{y}=V_{0 y}$
42. The period of an objects moving at a constant speed of $4 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 2 m is:
(A) $\pi \underline{s}$
(B) $2 \pi \mathrm{~s}$
(C) $4 \pi \mathrm{~s}$
(D) $8 \pi \mathrm{~s}$
43. The period of an objects moving at a constant speed of $4 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 2 m is:
(A) $\underline{\pi} \mathrm{s}$
(B) $2 \pi \mathrm{~s}$
(C) $4 \pi \mathrm{~s}$
(D) $8 \pi \mathrm{~s}$
44. A particle moves at constant speed in a circular path. The instantaneous velocity and instantaneous acceleration vectors are:
(a) both tangent to the circular path
(b) both
perpendicular to the circular path
(c) perpendicular
(d) opposite to each other
45. For a biological sample in a 1:0-m radius centrifuge to have a centripetal acceleration of 25 g , its speed must be:
(a) $11 \mathrm{~m} / \mathrm{s}$
(b) $16 \mathrm{~m} / \mathrm{s}$
(c) $50 \mathrm{~m} / \mathrm{s}$
(d) $122 \mathrm{~m} / \mathrm{s}$
46. A stone is tied to a $0.50-\mathrm{m}$ string and whirled at a constant speed of $4 \mathrm{~m} / \mathrm{s}$ in a vertical circle. Its acceleration at the top of the circle is:
(a) $9.8 \mathrm{~m} / \mathrm{s}^{2}$, up
(b) $9.8 \mathrm{~m} / \mathrm{s}^{2}$,
(c) $32 \mathrm{~m} / \mathrm{s}^{2}$, up
(d) $32 \mathrm{~m} / \mathrm{s}^{2}$, down
down
47. A stone is tied to a $0.50-\mathrm{m}$ string and whirled at a constant speed of $40 \mathrm{~m} / \mathrm{s}$ in a vertical circle. Its acceleration at the bottom of the circle is:
(a) $9.8 \mathrm{~m} / \mathrm{s}^{2}$, up
(b) $9.8 \mathrm{~m} / \mathrm{s}^{2}$,
(c) $32 \mathrm{~m} / \mathrm{s}^{2}$, up
(d) $32 \mathrm{~m} / \mathrm{s}^{2}$, down down
48. A car rounds a $20-\mathrm{m}$ radius curve at $10 \mathrm{~m} / \mathrm{s}$. The magnitude of its acceleration is:
(a) zero
(b) $0.2 \mathrm{~m} / \mathrm{s}^{2}$
(c) $5 \mathrm{~m} / \mathrm{s}^{2}$
(d) $40 \mathrm{~m} / \mathrm{s}^{2}$
49. The speed of a car moving in a circular path of radius 20 m with a centripetal acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$ is:
(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $100 \mathrm{~m} / \mathrm{s}$
(c) $4 \mathrm{~m} / \mathrm{s}$
(d) $2000 \mathrm{~m} / \mathrm{s}$
50. The period of a plane that enters a horizontal circular turn with $\bar{v}_{i}=200 \hat{i}+600 \hat{j} \mathrm{~m} / \mathrm{s}$ and 32 s later leaves the turn with $\bar{v}_{f}=200 \hat{i}+600 \hat{j}$ is:
(a) 12
(b) 16
(c) 32
(d) 64
51. The period of an objects moving at a constant speed of $4 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 2 m is:
(a) $\pi \mathrm{s}$
(b) $2 \pi \mathrm{~s}$
(c) $4 \pi \mathrm{~s}$
(d) $8 \pi \mathrm{~s}$
52. Referring to question 51 , the acceleration of the object is:
(a) $1 \mathrm{~m} / \mathrm{s}^{2}$
(b) $2 \mathrm{~m} / \mathrm{s}^{2}$
(c) $4 \mathrm{~m} / \mathrm{s}^{2}$
(d) $8 \mathrm{~m} / \mathrm{s}^{2}$
53. A particle is moving in circular path, at point P the particles velocity is: $\vec{v}=3 \hat{i}+4 \hat{j}$ at which point the velocity is $\vec{v}=-3 \hat{i}-4 \hat{j}$

(a) A
(b) B
(c) C
(d) D

## Chapter 5: FORCE AND MOTIN I



1. The figures below shows four situation in which forces act on a block that lies on a frictionless floor. In which figure the block has the greatest acceleration?
(a)

(b)

(c)

(d)

2. A force of $\mathbf{0 . 2} \mathbf{N}$ acts on a mass of $\mathbf{1 0 0} \mathbf{~ g}$, what is its acceleration?
(a) $2 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}$
(b) $2 \times 10^{-6} \mathrm{~m} / \mathrm{s}^{2}$
(c) $2 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$
(d) $2 \mathrm{~m} / \mathrm{s}^{2}$
3. A man pulls a box of mass $\mathbf{3}$ kgvertically upward with a force of magnitude $\mathbf{4 0} \mathbf{N}$. What is the acceleration of the box?
(a) $a=\frac{T-m g}{m}$
(b) $a=\frac{m g-T}{m}$
(c) $a=\frac{T+m g}{m}$
(d) $a=\frac{m}{T+m g}$
4. Which of the following figures correctly show the vector addition of forces $\mathbf{F}_{\mathbf{1}}$ and $\mathbf{F}_{\mathbf{2}}$ ?
$F_{1}$
(a)

(b)

(c)

(d)

5. If the $\mathbf{1} \mathbf{~ k g}$ body has an acceleration of $\mathbf{2 ~ m} / \mathbf{s}^{\mathbf{2}}$ at an angle of $\mathbf{2 0 ^ { \circ }}$ above the positive direction of the x -axis. What is the net force in unit vctor notation?
(a) $\vec{F}=0.34 \hat{i}+0.94 \hat{j}$
(b) $\vec{F}=1.88 \hat{i}+0.68 \hat{j}$
(c) $\vec{F}=0.68 \hat{i}+1.88 \hat{j}$
(d) $\vec{F}=0.94 \hat{i}+0.34 \hat{j}$
6. Two forces act on a particle that moves with constantvelocity $\vec{v}=3 \hat{i}-4 \hat{j} \mathbf{m} / \mathbf{s}$, one of the forces is $\vec{F}_{1}=2 \hat{i}-6 \hat{j} \mathbf{N}$, what is the other force?
(a) $\vec{F}_{2}=2 \hat{i}-6 \hat{j}$
(b) $\vec{F}_{2}=6 \hat{i}-10 \hat{j}$
(c) $\vec{F}_{2}=-2 \hat{i}+6 \hat{j}$
(d) $\vec{F}_{2}=-6 \hat{i}+10 \hat{j}$
7. A particle has a weight of $\mathbf{2 2} \mathbf{N}$ at a point where $\mathbf{g}=\mathbf{9 . 8} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$, what are its mass and weight at a point where $\mathbf{g}=\mathbf{0}$ ?
(a) $m=2.2 \mathrm{~kg}$
(b) $\mathrm{m}=0$
$W=2.2 \mathrm{~N}$
(c) $\begin{aligned} \mathrm{m} & =0.45 \mathrm{~kg} \\ \mathrm{~W} & =0\end{aligned}$
(d) $\mathrm{m}=0$
$W=45 \mathrm{~N}$
8. In which figure of the following the $y$-component of the net force is zero?
(a)

(b)

(c)

(d)

9. In the figure a cord holds stationary a block of mass $\mathbf{m}=\mathbf{8 . 5} \mathbf{~ k g}$ on a frictionless plane that is inclined at An angle $\boldsymbol{\theta}=\mathbf{3 0}^{\circ}$, the tension in the cord $\mathbf{T}$ equals:
(a) 72.14 N
(b) 83.3 N
(c) 53.14 N
(d) 41.65 N

10. In question9, the Normal forceN acting on the block is:
(a) $N=F_{g}-m g \cos \theta$
(b) $N=F_{g} \cos \theta$
(c) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}+\mathrm{mg} \cos \theta$
(d) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}$
11. In question9, if the cord is cut then the mass will slide with acceleration equals:
(a) $\mathrm{a}=-4.9 \mathrm{~m} / \mathrm{s}^{2}$
(b) $\mathrm{a}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) $\mathrm{a}=-8.5 \mathrm{~m} / \mathrm{s}^{2}$
(d) $\mathrm{a}=-3.4 \mathrm{~m} / \mathrm{s}^{2}$
12. A block of mass $\mathbf{M}=\mathbf{2 0} \mathbf{~ k g}$ hangs from three cords by means of a knot, (the mass $\mathbf{M}$ does not move), what is the value of tensionT3 ${ }_{3}$ ?
(a) 230 N
(b) 196 N
(c) 426 N
(d) 226 N

M
13. What is the net force acting on a body of a mass of $48 \mathbf{k g}$, when its acceleration is $6 \mathrm{~m} / \mathrm{s}^{2}$ ?
(a) 758 N
(b) 182 N
(c) 288 N
(d) 470 N
14. Which figure of the following shows the right direction of the tension $\mathbf{T}$ ? (the two masses are stationary).
(a)

(b)

(c)

(d)

أعداد: أ.خذيجة سعيد إشراف: د. هناء فرحان
15. Two forces act on a block of mass $\mathbf{m}=\mathbf{0 . 5} \mathbf{~ k g}$ that Moves along the x -axis on a frictionless table, $\mathbf{F}_{\mathbf{1}}=\mathbf{3} \mathbf{N}$ and $\mathbf{F}_{\mathbf{2}}=\mathbf{1} \mathbf{N}$ directed at angle $\boldsymbol{\theta}=\mathbf{3 0 ^ { \circ }}$ as shown, What is the acceleration of the block?

(a) $-4.3 \mathrm{~m} / \mathrm{s}^{2}$
(b) $-7.7 \mathrm{~m} / \mathrm{s}^{2}$
(c) $-5 \mathrm{~m} / \mathrm{s}^{2}$
(d) $-7 \mathrm{~m} / \mathrm{s}^{2}$
16. If $m_{1}=\mathbf{2 k g}$ and $m_{2}=4 \mathbf{k g}$ and the same force is applied to both masses, then the ratio of their accelerations is:
(a) $\frac{a_{2}}{a_{1}}=\frac{1}{2}$
(b) $\frac{a_{2}}{a_{1}}=2$
(c) $\frac{a_{2}}{a_{1}}=\frac{1}{4}$
(d) $\frac{a_{2}}{a_{1}}=4$
17. A force $\mathbf{F}$ applied to a body of mass $\mathbf{m}_{\mathbf{0}}$ giving it an acceleration $\mathbf{a}_{\mathbf{0}}$, what is the mass of a body $\mathbf{x}$ if the same force is applied to it and accelerate it by $\mathbf{a}_{\mathbf{x}}$ ?
(a) $m_{x}=m_{0} \frac{a_{x}}{a_{0}}$
(b) $m_{x}=m_{0} \frac{a_{0}}{a_{x}}$
(c) $m_{x}=\frac{a_{x}}{a_{0}}$
(d) $m_{x}=\frac{a_{0}}{a_{x}}$
18. In the figure, two forces acting on a box of mass $\mathbf{m}$ moving over a frictionless ice along the $\mathbf{x}$-axis .
What is the acceleration of the box?

(a) $a_{x}=\frac{F_{1}+F_{2} \cos \theta}{m}$
(b) $a_{x}=\frac{F_{2} \cos \theta-F_{1}}{m}$
(c) $a_{x}=\frac{F_{2} \cos \theta}{m}$
(d) $a_{x}=\frac{F_{1}-F_{2}}{m}$
19. The magnitude of the centripetal force is
(a) $F=m \frac{v^{2}}{R^{2}}$
(b) $F=\frac{v^{2}}{R}$
(c) $F=m \frac{v}{R}$
(d) $F=m \frac{v^{2}}{R}$

1. What is the gravitational force on a man of mass $\mathbf{m}$ when he is sitting in a car that accelerates at a ?
(a) $\mathrm{F}_{\mathrm{g}}=\mathrm{ma}$
(b) $\mathrm{F}_{\mathrm{g}}=\mathrm{m}(\mathrm{g}-\mathrm{a})$
(c) $F_{g}=\mathrm{mg}$
(d) $\mathrm{F}_{\mathrm{g}}=\mathrm{m}(\mathrm{a}-\mathrm{g})$
2. Two forces act on a particle that moves with constantvelocity $\vec{v}=3 \hat{i}-4 \hat{j} \mathbf{m} / \mathbf{s}$, one of the forces is $\vec{F}_{1}=2 \hat{i}-6 \hat{j} \mathbf{N}$,what is the other force?
(a) $\vec{F}_{2}=2 \hat{i}-6 \hat{j}$
(b) $\vec{F}_{2}=6 \hat{i}-10 \hat{j}$
(c) $\vec{F}_{2}=-2 \hat{i}+6 \hat{j}$
(d) $\vec{F}_{2}=-6 \hat{i}+10 \hat{j}$
3. The figure shows a train of four blocks being pulled across a frictionless floor by force $\vec{F}$, what total mass is accelerated to the right byCord $\mathbf{2}$ ?

أعداد: أ.خديجة سعيد إشراف: د. هناء فرحان
(a) 10 kg
(b) 18 kg
(c) 13 kg
(d) 7 kg
4. A particle has a weight of $\mathbf{2 2} \mathbf{N}$ at a point where $\mathbf{g} \mathbf{= 9 . 8} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$, what are its mass and weight at a point where $\mathbf{g}=\mathbf{0}$ ?
(a) $\mathrm{m}=2.2 \mathrm{~kg}$
(b) $\mathrm{m}=0$
(c) $\mathrm{m}=0.45 \mathrm{~kg}$
(d) $\mathrm{m}=0$
$W=0$
$\mathrm{W}=2.2 \mathrm{~N}$
$\mathrm{W}=0$
$\mathrm{W}=45 \mathrm{~N}$
5. In which figure of the following the $y$-component of the net force is zero?
(a)

(b)

(c)


6. The figure shows a train of four blocks being pulled across a frictionless floor by force $\vec{F}$, what total mass is accelerated to the right by force $\vec{F}$ ?

(a) 10 kg
(b) 18 kg
(c) 13 kg
(d) $245 \mathrm{~m} / \mathrm{s}$
7. Three forces act on a particle that moves with unchanging velocity $\bar{v}=2 \hat{i}-7 \hat{j}$, two of the forces are $\vec{F}_{1}=2 \hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{F}_{2}=-5 \hat{i}+8 \hat{j}-2 \hat{k}$. what is the third force ?
(a) $3 \hat{i}-11 \hat{j}+4 \hat{k}$
(b) $7 \hat{i}-5 \hat{j}$
(c) $-3 \hat{i}+11 \hat{j}-4 \hat{k}$
(d) $-7 \hat{i}+5 \hat{j}$
8. An $\mathbf{1 1} \mathbf{~ k g}$ object is supported by a cord that Runs around a pulley and to a scale. The opposite end of the scale is attached by a cord to a wall.

## What is the reading on the scale?

(a) 11 N
(b) 9.8 N
(c) 107.8 N
(d) 215.6 N

(b)
27. A block of mass $\mathbf{m}_{\mathbf{1}}=\mathbf{3 . 7} \mathbf{~ k g}$ on frictionless inclined plane of angle $30^{\circ}$ is connected by a cord over a massless frictionless pulley to a second block of mass $\mathbf{m}_{\mathbf{2}}=\mathbf{2 . 3} \mathbf{~ k g}$ hanging vertically as shown.

If the magnitude of the acceleration of each block is $0.735 \mathrm{~m} / \mathbf{s}^{\mathbf{2}}$, what is the tension in the cord ?

(a) 36.3 N
(b) 22.5 N
(c) 20.8 N
(d) 18.1 N
28. In question $\mathbf{2 7}$, what is the normal force acting on the block $\mathbf{m}_{\mathbf{1}}$ ?
(a) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}-\mathrm{m}_{1} \mathrm{~g}$
(b) $\mathrm{N}=\mathrm{F}_{g} \cos \theta$
(c) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}+\mathrm{m}_{1} \mathrm{~g}$
(d) $\mathrm{N}=\mathrm{F}_{\mathrm{g}}$ $\cos \theta$ $\cos \theta$
29. In question 27, if the cord is cut what is the acceleration of mass $\mathbf{m}_{\mathbf{2}}$ ?
(a) $a=-4.9 \mathrm{~m} / \mathrm{s}^{2}$
(b) $a=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) $a=-0.735$
(d) a = zero $\mathrm{m} / \mathrm{s}^{2}$
30. If the $\mathbf{1} \mathbf{~ k g}$ body has an acceleration of $\mathbf{2} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$ at an angle of $\mathbf{2 0 ^ { \circ }}$ above the positive direction of the $x$-axis. What is the net force in unit vctor notation?
(a) $\vec{F}=0.34 \hat{i}+0.94 \hat{j}$
(b) $\vec{F}=1.88 \hat{i}+0.68 \hat{j}$
(c) $\vec{F}=0.68 \hat{i}+1.88 \hat{j}$
(d) $\vec{F}=0.94 \hat{i}+0.34 \hat{j}$

## Chapter 6: FORCE AND MOTIN II

1. In the figure a woman pulls a loaded sled of mass $\mathbf{m}$ along a horizontal surface at constant velocity. The coefficient of kinetic friction between the runners and the snow is $\mu_{\mathbf{k}}$.
Which figure shows the correct free body diagram for the sled and load?

(a)

(b)

(c)

(d)

2. In question 2 , The equation of the forces acting on the load and sled (from Newton's second law) is:
(a) $\bar{T}+\vec{N}+\vec{F}_{g}+\vec{f}_{k}=0$
(b) $\vec{T}+\vec{N}+\vec{F}_{g}+\vec{f}_{s}=0$
(c) $\vec{T}+\vec{N}+\vec{F}_{g}+\vec{f}_{k}=m \vec{a}$
(d) $\vec{T}+\vec{N}+\vec{F}_{g}+\vec{f}_{s}=m \vec{a}$
3. A $12 \mathbf{N}$ horizontal force pushes a block of weight $5 \mathbf{N}$ to make it move with constant speed, the value of the coefficient of friction $\mu_{k}$ is:
(a) 2.4
(b) 0.24
(c) 4.1
(d) 0.41
4. A car has a weight of $\mathbf{1 . 1 ~ \mathbf { N }}$ slides on the road with acceleration $\mathbf{a}=\mathbf{1 . 2 4} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$, what is the force of friction between the car and the road?
(a) -1.13 N
(b) -11 N
(c) -1.4 N
(d) -0.14 N
5. A $12 \mathbf{N}$ horizontal force pushes a block of weight $5 \mathbf{N}$ to make it move with constant speed, the value of the coefficient of friction $\mu_{k}$ is:
(a) 2.4
(b) 0.24
(c) 4.1
(d) 0.41

6. A block lies on a floor. If the maximum value $f_{\mathbf{x}, \max }$ of the static frictional force on the block is $\mathbf{1 0} \mathbf{N}$, what is the magnitude of the frictional force if the magnitude of the horizontally applied force is $\mathbf{8} \mathbf{N}$ ?
(a) 10 N
(b) 8 N
(c) 2 N
(d) 18 N
7. A $470 \mathbf{N}$ horizontal force pushes a block of mass $79 \mathbf{k g}$ to make it move with constant speed, what is the value of the coefficient of friction $\mu_{k}$ ?
(a) 0.61
(b) 6
(c) 1.6
(d) 0.06
8. A block lies on a floor.If the maximum value $f_{\mathbf{x}, \max }$ of the static frictional force on the block is $\mathbf{1 0} \mathbf{N}$, what is the magnitude of the frictional force if the magnitude of the horizontally applied force is $\mathbf{1 2} \mathbf{N}$ ?
(a) 10 N
(b) 12 N
(c) 2 N
(d) 22 N
9. In the figure, block B weighs $711 \mathbf{N}$. The coefficient of static friction between the block and the table is $\mathbf{0 . 2 5}$ assume that the cord between B and the knot is horizontal

What is the magnitude of the tension $T$ ?

(a) 205.2 N
(b) 355.5 N
(c) 820.1 N
(d) 1422 N
10. In question 9, the weight of block $\mathbf{A}$ is :
(a) $\mathrm{T} \cos 30$
(b) $\mathrm{T} \sin 30$
(c) $\mathrm{F}_{\mathrm{g}}-\mathrm{T} \cos 30$
(d) $F_{g}-T \sin 30$

CH 1

1. $2^{2} 99,000,000$


$$
2.99 \times 10^{8}
$$ Whemole,

2. $100 \mathrm{~km} / \mathrm{h} \longrightarrow \mathrm{m} / \mathrm{s}$ प号 $\leftarrow$ \&

$$
100 \times \frac{10^{3}}{3600}=27.77 \mathrm{~m} / \mathrm{s}
$$



$$
\begin{gathered}
3-\quad 0,000000004-56 \\
123456789 \\
4.56 \times 10^{-9}
\end{gathered}
$$

$$
\text { 4. } \frac{1 \mathrm{~min}}{1 \mathrm{~min}}=\frac{60 \mathrm{~s}}{1 \mathrm{~min}}
$$

 .


$$
6-1 \mathrm{~km} \xrightarrow{10^{3}} \mathrm{~m} \xrightarrow{10^{2}} \mathrm{~cm} \Rightarrow 10^{5} \mathrm{~cm}
$$

$7-\frac{1 \hbar}{1 \hbar}=\frac{3600 \mathrm{~s}}{1 h}$
8. $1 \mathrm{~m}=3.281 \mathrm{ft}$


$$
? ?=1.5 \mathrm{ft}=\frac{1.5}{3.281}=0.457 \div 3600=1.269 \times 10^{-4} \mathrm{~m} / \mathrm{s}
$$

9. $1 \mathrm{~cm} \xrightarrow{\times 10^{-2}} \mathrm{~m}$

$$
\begin{aligned}
& c m^{2} \xrightarrow{\left(\times 10^{-2}\right)^{2}} m^{2} \\
& =10^{-4} m^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 10-10^{3} G W \xrightarrow{\times 10^{9}} \omega \\
&=10^{12} \text { watt }
\end{aligned}
$$

$$
\begin{aligned}
11-\frac{1 \mathrm{~kg}}{1 \mathrm{~kg}} & =\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}} \\
12-\text { milli } & =10^{3} \times \text { bj}, \text { milli }=10^{-3} \mathrm{~V} \\
\text { micro } & =10^{-4} \times \text { ibj, micro }=10^{-6} \mathrm{~V} \\
\text { mega } & =10^{6} \mathrm{~V} \\
\text { pico } & =10^{9} \times \text { bj }, \text { pico }=10^{-12}
\end{aligned}
$$

$$
\text { 13. } 1 \mathrm{~mm} \xrightarrow{\left(\times 10^{-3}\right)} \mathrm{mm} \xrightarrow{\left(\mathrm{~mm}^{2} \xrightarrow{(3)^{2}}\right.} \mathrm{m}^{2} \Rightarrow 10^{-6} \mathrm{~m}^{2}
$$

$$
=3 \times 4 \times 5=60 \mathrm{~cm}^{3}
$$

15. $\quad 55 \times \frac{1609}{3600}=24.58 \mathrm{~m} / \mathrm{s}$

$$
16-1 \text { ns } \xrightarrow[10^{-9}]{ } \mathrm{s}
$$

17. 1 gram $=10^{-3} \mathrm{~kg}$

18- mass $\longrightarrow$ kilogram. . .
19. 1000 meter's $=1$ kilometer
20. $1 \mathrm{~km} \xrightarrow{\times 10^{3}} \mathrm{~m} \xrightarrow{\times 10^{2}} \mathrm{~cm} \Rightarrow 10^{5} \mathrm{~cm}$
$21-\frac{1 \hbar}{1 h}=\frac{3600 \mathrm{~s}}{1 h}$
22. $1 \mathrm{~m}=3.281 \mathrm{ft} \quad 1 \mathrm{~m}^{3}=35.31 \mathrm{ft}^{3}$

$$
\begin{array}{ll}
1 \mathrm{~m}^{3}=(3.281)^{3} \mathrm{ft}^{3} & ? ?=3.375 \mathrm{ft}^{3} \\
1 \mathrm{~m}^{3}=35.31 \mathrm{ft}^{3} & =0.0955 \mathrm{~m}^{3}=9.6 \times 10^{-2} \mathrm{~m}^{3}
\end{array}
$$

CH1 \&し
23- ${\underset{\text { nano }}{\sqrt{16} \mid} \text { second }}_{\sqrt{-9}}=$ nonosecond

25. Length $=m$, Mass $=\mathrm{kg}$, Time $=s$.
$26-\quad 0.00000000636$

$$
6.36 \times 10^{-9}
$$

27. $50 \mathrm{~km} \xrightarrow{10^{5}} \mathrm{~cm}$

$$
=5 \times 10^{6} \mathrm{~cm}
$$

28. $100 \mathrm{~g} / \mathrm{cm}^{3}=.100 \times \frac{10^{-3}}{10^{-6}}=100000=10^{1} \times 10^{4}=10^{5} \mathrm{~kg} / \mathrm{m}^{3}$
29. microlsecond $=10^{-6} \mathrm{~s}$

$$
10^{-6}
$$

$30-\frac{1}{1 m}=\frac{10^{3} \mathrm{~mm}}{1 \mathrm{~m}}$


$$
\text { (gram) } \times \frac{1}{2}
$$


$86400=24 \times 3600$ ن
$=7 \times 86400$ ن
系il 604800

1- $x=20+4 t^{2}$


$$
v=8 t
$$ a ع, عانس

$$
=8(5)=40 \mathrm{~m} / \mathrm{s}
$$



$$
\begin{aligned}
& v^{2}=v_{0}^{2}-2 g \Delta y \\
& 0=144-2 \times 9.8 \times \Delta y \\
& \frac{-144}{-19.6}=\frac{-19.6}{-14.6} \Delta y \\
& \Delta y=7.35 \mathrm{~m}
\end{aligned}
$$


3.

$$
\begin{aligned}
& t=0, x_{0}=5, v_{0}=3, x=? ? \text { bis } t=2 \\
& x-x_{0}=v_{0} t+\frac{1}{2} a t^{2} \\
& x-5=3(2)+\frac{1}{2}(4)\left(2^{2}\right) \\
& x-5=14 \\
& x=14+5=19 \mathrm{~m}
\end{aligned}
$$

4. $v=10+2 t^{2}$

$$
\begin{aligned}
& v_{1}=10+2(2)^{2}=18 \mathrm{~m} / \mathrm{s} \\
& v_{2}=10+2(5)^{2}=60 \mathrm{~m} / \mathrm{s} \\
& \Delta v=60-18=42 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

5. $v=10+2 t^{2}$ jhis dio to:


$$
=4(2)=8 \mathrm{~m} / \mathrm{s}^{2}
$$



$$
\Delta v=v_{2}-v_{1}
$$

$v_{2}, v_{1}$ us., in on $p ; r$ ive
$6-$ a) $5+3=8 \mathrm{~m}$
b) $-4+3=-1 \mathrm{~m}$
c) $-3-5=-8 m$
d) $3,4=-1 m$
¢ ¢

$$
\Delta x=x_{f}-x_{i}
$$

CH 2 EL
$7-\underset{t_{1}=0}{x_{1}=0} \xrightarrow[1 \mathrm{~s}]{1.22 \mathrm{~m}} \xrightarrow[1 \mathrm{~s}]{3.05 \mathrm{~m}} \underset{t_{2}=2 \mathrm{~s}}{x_{2}=1.22+3.05}=4.27 \mathrm{~m}$

$$
S_{\text {avg }}=\frac{4.27}{2}=2.135 \mathrm{~m} / \mathrm{s}
$$

8-a) $v=3 t+6 \rightarrow a=3$
b) $v=4 t^{2} \rightarrow a=8 t$
c) $v=3 t^{2}-4 t \rightarrow a=6 t-4$
d) $v=5 t^{3}-3 \rightarrow a=15 t^{2}$
9.

$$
\begin{aligned}
& x=8-5 t+25 t^{2} \\
& v=-5+50 t \quad \text {, } \quad \text {, ordole }
\end{aligned}
$$

10- $v_{0}=0, v=\frac{1}{10}\left(3 \times 10^{8}\right), a=9.8, t=? ?$ starts the rest rads 9 gim $u *$

$$
\begin{gathered}
v=v_{0}+a t \\
\left(\frac{1}{10} \times 3 \times 10^{8}\right)=0+9.8 t \\
\frac{\left(3 \times 10^{7}\right)}{9.8}=\frac{9.8 t}{9.8} \\
t=3.1 \times 10^{6} \mathrm{~s}
\end{gathered}
$$

11. $v^{2}=v_{0}^{2}+2 a \Delta x$

$$
\begin{gathered}
\left(\frac{1}{10} \times 3 \times 10^{8}\right)^{2}=0+2 \times 9.8 \Delta x \\
\Delta x=4.59 \times 10^{13} \mathrm{~m}
\end{gathered}
$$

12. 

$$
\begin{aligned}
& v_{0}=12, v=0, g=9.8, t=? \\
& v=v_{0}-9 t \\
& 0=12-9.8 t \\
& \frac{-12}{-9.8}=\frac{-9.8}{-9.8} t \\
& t=1.22 \mathrm{~s}
\end{aligned}
$$

 با
$13-$

$$
\begin{aligned}
& \left.\Delta x=60, t=6, v=15, v_{0}=? ?\right\} \\
& x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t \\
& 2 \times(60)=\left(\frac{1}{2}\left(v_{0}+15\right) 6\right) \times x \\
& 120=\left(v_{0}+15\right) 6 \\
& 120=6 v_{0}+90 \\
& 6 / v_{0}=\frac{30}{6} \\
& v_{0}=5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

14- $\quad a=\frac{d v}{d t}=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d^{2} x}{d t^{2}}$
15.

$$
\begin{aligned}
& x_{1}=20+4(2)^{2}=36 \mathrm{~m} \\
& x_{2}=20+4(5)^{2}=120 \mathrm{~m} \\
& v_{\text {ary }}=\frac{120-36}{5-2}=28 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$16-$

$$
\begin{aligned}
v & =8 t \\
& =8(5)=40 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$17-v_{0}=0, g=9.8, y=50, t=? ?$

$$
\begin{aligned}
& \Delta y=v_{0} t-\frac{1}{2} g t^{2} \\
& -50=-\frac{1}{2} \times 9.8 t^{2} \\
& \frac{-50}{4.9}=\frac{4.9}{4.9} t^{2} \\
& \sqrt{t^{2}}=\sqrt{10.2} \\
& t=3.195
\end{aligned}
$$

18- a) $x=4 t^{2}-2 \rightarrow v=8 t$

c) $x=-3 t-2 \rightarrow v=-3$ .
d) $x=4 t^{-2} \rightarrow v=-8 t^{-1}$

$$
\text { 19. } \begin{gathered}
v_{0}=12, v=0, g=9.8, y=? ? \\
v^{2}=v_{0}^{2}-2 g \Delta y \\
0=144-2 \times 9.8 \Delta y \\
\frac{-144}{-19.6}=\frac{-19.6}{-14.6} \Delta y \\
\Delta y=7.346
\end{gathered}
$$



$$
\begin{aligned}
& x-x_{0}=v_{0} t+\frac{1}{2} a t^{2} \\
& x-5=3(2)+\frac{1}{2}(4)(2)^{2}
\end{aligned}
$$




$$
\begin{gathered}
x-5=14 \\
x=19
\end{gathered}
$$

$$
\begin{array}{ll}
21^{x=5} \quad x=? \\
& x-5=5(2)-\frac{1}{2}(4)(2)^{2} \\
& x-5=2 \\
& x=7 \mathrm{~m}
\end{array}
$$

22. 

$$
V_{a v g}=\frac{1}{\left(\frac{4}{60}\right)}=15 \mathrm{milhr}
$$

. ach
23. displacement $=73.2+73.2=146.4 \mathrm{~m}$
. $d$ b

24

$$
\begin{aligned}
& t_{1}=\frac{d}{v}=\frac{73.2}{1.22}=60 \\
& t_{2}=24 \longleftarrow 31 \text { gwis 61 ibser } \\
& 60+24=84 \mathrm{~s}
\end{aligned}
$$

25 $\quad a_{a v g}=\frac{12-8}{4-2}=2 \mathrm{~m} / \mathrm{s}^{2}$
$26=$

$$
\begin{aligned}
& x=60, t=6, v=15, v_{0}=? ? \\
& \Delta x=\frac{1}{2}\left(v_{0}+v\right) t \\
& 2 x(60)=\left(\frac{1}{2}\left(v_{0}+15\right) 6\right) \times 2 \\
& 120=6 v_{0}+90 \\
& 6 v_{0}
\end{aligned}=\frac{30}{6} .6
$$

27

$$
\begin{aligned}
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \\
& 0=(22.36)^{2}+2 a(56.7) \\
& \frac{-499.96}{113.4}=\frac{113 / 4}{113.4} a
\end{aligned}
$$

 Tog biov
28-

$$
\begin{aligned}
v^{2} & =v_{0}^{2}-2 g \Delta y \\
(-24)^{2} & =0-2 \times 9.8 \Delta y \\
\frac{576}{-19.6} & =\frac{-19.6}{-19.6} \Delta y \\
\Delta y & =-29.38 \mathrm{~m}
\end{aligned}
$$


$\int_{i 5}^{29.4}$



$$
\begin{aligned}
29-\quad \Delta y & =v_{0} t-\frac{1}{2} g t^{2} \\
0.544 & =v_{0}(0.2)-\frac{1}{2} \times 9.8 \times(0.2)^{2} \\
0.544 & =0.2 v_{0}-0.196 \\
\frac{0.74}{0.2} & =\frac{0.2}{0.2} v_{0} \\
v_{0} & =3.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

30- $\Delta x=10-(-2)=10+2=12 \mathrm{~m}$

31-(A) $5+3=8 \quad \square$

B) $-7+3=-4$
C) $-3+3=0$
(D) $5-2=3 V$
32.

$$
\begin{aligned}
& x=3 t-4 t^{2}+t^{3} \\
& x=3(2)-4(2)^{2}+(2)^{3}=-2 m
\end{aligned}
$$

33. 

$$
\begin{gathered}
x_{1}=3(0)-4(0)^{2}+(0)^{3}=0 \\
x_{2}=3(4)-4(4)^{2}+(4)^{3}=12 \\
\Delta x=12-0=12 \mathrm{~m}
\end{gathered}
$$

34. $S_{\text {arg }}=\frac{40+40}{0.5+1}=53.3 \mathrm{~km} / \mathrm{h}$
35. 

$$
\begin{aligned}
& A \cdot \underset{2 \text { hours }}{50 \mathrm{~km}} \mathrm{~B} \\
& V_{\text {avg }}=\frac{50-50}{2}=0
\end{aligned}
$$


$\mathrm{CH}_{2}$ etr

$$
\begin{aligned}
36-x & =2 t^{3} \\
v & =6 t^{2} \\
a & =12 t
\end{aligned}
$$

37. $v_{0}=0, y=9.8, t=1, v=? ?, y=? ?$

$$
\begin{aligned}
* v & =v_{0}-g t \\
v & =0-9.8(1)=-9.8 \mathrm{~m} / \mathrm{s} \\
* \Delta y & =v_{0} t-\frac{1}{2} g t^{2} \\
\Delta y & =0(1)-\frac{1}{2}(9.8)(1)^{2} \\
& =-4.9 \mathrm{~m}
\end{aligned}
$$

38. 

$$
\begin{gathered}
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \\
\left(2 \times 10^{6}\right)^{2}=\left(1 \times 10^{5}\right)^{2}+29(0.01) \\
4 \times 10^{12}=\sqrt{10}+0.029 \\
3.99 \times 10^{12}=\frac{0.629}{0.02}+02 \\
\left(a=1.995 \times 10^{14} \mathrm{~m} / \mathrm{s}\right.
\end{gathered}
$$

39- speed increase — $\$ 0.00$ lds

- awt la اله

B) $v=9 t^{2}$ .
C) $v=4 t^{-1}$
D) $=v=5$


- bgeq B' ẃw


$$
\begin{aligned}
& \sqrt{x^{2}}=\sqrt{25} \\
& x=5
\end{aligned}
$$

CH2 UF

43-(a) $v=3 t+6 \rightarrow a=3$
b) $v=4 t^{2} \rightarrow a=8 t$

c) $v=3 t^{2}-4 t \rightarrow a=6 t$

d) $v=5 t^{3}-3 \rightarrow a=15 t^{2}$
$44-\quad v=0$

$a=-9$



$$
\text { 46- } \Delta x=12-5=+8 \quad[4, \infty]
$$

47- $\xrightarrow{2 \mathrm{~km}} \quad$ 2角 cier cilt lio, 1 is

$$
\therefore \text { displacement }=2-2=0
$$


49- $V_{\text {avy }}=\frac{100-20}{4-2}=40 \mathrm{~m} / \mathrm{s}$
50.

$$
\begin{aligned}
& x(t)=10+t^{2} \\
& v=2 t \\
& a=2
\end{aligned}
$$

51. free fall acceleration $=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ $-9.8 \leftarrow 31$ bوéml عاlū̃

52-A) $v=3$
B) $v=4 t$

C) $v=-6 t^{2}$
.
D) $v=10 t$

53- $v_{0}=0, \quad \Delta x=500, \quad v=50, ~ a=? ?$

$$
\begin{aligned}
v^{2} & =v_{0}^{2}+2 a \Delta x \\
(50)^{2} & =0+2 a(500) \\
\frac{2500}{1000} & =\frac{1000}{1000} 9 \\
a & =2.5
\end{aligned}
$$

$54-20$ - $C$ C

55






$$
a_{a v g}=\frac{\Delta v}{\Delta t}
$$





$$
\begin{aligned}
& x^{2}=3^{2}+4^{2} \\
& \sqrt{x^{2}}=\sqrt{25} \\
& x=5
\end{aligned}
$$



$$
\text { 46- } \Delta x=12-5=+8 \quad[40,0]
$$

$$
\Delta x=12-5=7
$$

$\mathrm{CH}_{3}$

$$
\begin{aligned}
1-|a| & =\sqrt{a_{x}^{2}+a_{y}^{2}} \\
& =\sqrt{9+16}=\sqrt{25}=5
\end{aligned}
$$

2- $\theta=\tan ^{-1} \frac{a_{y}}{a_{x}}=\tan ^{-1} \frac{-4}{3}=-53.1^{\circ}$
s; $\operatorname{cic}_{\text {ت }}$
3. $\vec{a}=2 i+3 j+4 k$

$$
+b=\frac{i-2 j+3 k}{3 i+j+7 k}
$$

4- $x^{2 i+3 j+4 k}$
(a.b) I; y id is $x$

$$
\frac{i-2 j+3 k}{2-6+12=8}
$$ scaler pi wi gée pix !

5. $\quad C X D=C D \sin \theta$

$$
\theta=\sin ^{-1} \frac{C X D}{C D}=\sin ^{-1} \frac{12}{(3)(4)}=90^{\circ}
$$

6- $\theta=\tan ^{-1} \frac{a_{y}}{a_{x}}=\tan ^{-1} \frac{-2.3}{2.6}=-41.49$
7- $\quad$ (


$$
\text { 8- } \left.\left|\begin{array}{lll}
i & j & k \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right|=\left(a_{y} b_{z}-b_{y} a_{z}\right) i+\left(a_{z} b_{x}-b_{z} a_{x}\right)\right) j+\left(a_{x} b_{y}-b_{x} a_{y}\right) k
$$

Cy



$\mathrm{CH}_{3}$ et



$$
r=a+b
$$

$$
\begin{aligned}
r_{x} & =a_{x}+b_{x} \\
& =9.19-8.457 \\
& =0.732
\end{aligned}
$$



$$
a_{x}=a \cos \theta=12 \cos 40=9.19
$$



 Clum

$$
b_{x}=-b \cos \theta=-9 \cos 20=-8.457
$$

ع
$10-|a|=\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{(4)^{2}+(3)^{2}}=5$
$11-4 i-3 j$

$$
+\frac{6 i+8 j}{10 i+5 j}
$$

$12-24-24=0$
$13-\frac{6 i}{2}+\frac{8 j}{2}=3 i+4 j$
14. 3 ग夕㐄 जis
15. $A \times B=A B \sin \theta$

$$
=(6)(4) \cdot \sin 30=12
$$



$$
17-2-6+12=8
$$

$$
18-
$$




- 3

19. $a_{y}=a \sin \theta=15 \sin 30=7.5$

20 - scaler $\rightarrow$ Length.
21. $\theta=\tan ^{-1} \frac{9_{y}}{9_{x}}=\tan ^{-1} \frac{40}{-25}=-57.99$
$22-x+0 i, y t 0 j \Rightarrow 2.6 i-2.3 j$
$23=\frac{36}{4}-9=9-9=0$
24-(a) الd الحتبه و .00゙rl ass

25

$$
\begin{aligned}
& a-b=-2 i-11 j-3 k \\
& -2 i-11 j-3 k+c=0 \\
& c=2 i+11 j+3 k
\end{aligned}
$$

26- $|A \times B|=A B \sin \theta=(5)(6) \sin 60=25.98$

27- $A \cdot B=-6+12-8=-2$
$28-|A|=\sqrt{(2)^{2}+(3)^{2}+(4)^{2}}=5.38$
29. $c_{x}=a_{y} b_{z}-b_{y} a_{z} \rightarrow \quad x$ yig $b 11, \ldots i$
$\mathrm{CH}_{3}$ थ.

31. $\theta=\cos ^{-1} \frac{C \cdot D}{C D}=\cos ^{-1} \frac{12}{(B)(4)}=0$


- 180) 

$$
l_{a \cos 40-b \cos 20}^{a \cos 40+b \cos 160}
$$

33. 

$$
\begin{aligned}
& B=i-2 j \Rightarrow 2 B=2 i-4 j \\
& A-2 B=(3 i-3 j)-(2 i-4 j)=i+j
\end{aligned}
$$

 $B=C-A$. . 1 سا 1 س

35- $D=a+b$

$$
\begin{aligned}
D_{x} & =a_{x}+b_{x} \\
& =12 \cos 60+8 \cos 0
\end{aligned}
$$



36.

$$
\begin{aligned}
A \cdot B & =A B \cos 30 \\
& =(4)(4) \cos 30=13.85
\end{aligned}
$$

37- $\vec{C}=\vec{A} \times \vec{B}$
$:$ Bungo abo eo
$-\vec{C}=\vec{B} \times \vec{A}$

.

$$
\begin{aligned}
& 38-a \times b=a b \sin \theta \\
& \theta=\sin ^{-1} \frac{a \times b}{a b}=\sin ^{-1} \frac{5}{(5)(2)}=30^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
39-A=6 i-8 j \Rightarrow 4 A & =24 i-32 j \\
|4 A| & =\sqrt{(24)^{2}+(-32)^{2}}=40
\end{aligned}
$$

$40-a_{x}=a \cos \theta$

$$
\theta=\cos ^{-1} \frac{a_{x}}{a}=\cos ^{-1} \frac{12}{25}=61.3
$$

$$
\begin{array}{r}
41-A=2 i+6 j-3 k \\
+\frac{B=4 i+2 j+k}{6 i+8 j-2 k}
\end{array}
$$

$42-A \cdot B=8+12-3=17$


43- $A \times B=A B \sin 0$

$$
=(L)(L) \sin 60=0.866 L^{2}
$$

44. $x$-component $=0 \rightarrow \cdot y$, on de din in 4

$$
\begin{aligned}
& \text { 45- } \theta=\tan ^{-1} \frac{a_{y}}{a_{x}}=\tan ^{-1} \frac{45}{-25}=-60.9 \\
& 46-|v|=\sqrt{4+36+9}=7
\end{aligned}
$$

47. $\quad r_{y}=r \sin \theta$

$$
\begin{aligned}
& =15 \sin 30 \\
& =7.5
\end{aligned}
$$



CH3 eレ

$$
\begin{gathered}
49=a-b=(4 i-3 j+k)-(6 i+8 j+4 k)=-2 i-11 j-3 k \\
-2 i-11 j-3 k+c=0 \\
c=2 i+11 j+3 k
\end{gathered}
$$

$50-A \cdot B=-6+12-8=-2$

$$
51-|a|=\sqrt{(10)^{2}+(10)^{2}+(5)^{2}}=15
$$

52. 

$$
\begin{aligned}
A-B & =(2 i+6 j-3 k)-(4 i+2 j+k) \\
& =-2 i+4 j-4 k
\end{aligned}
$$

53. 

$$
\begin{aligned}
& C \cdot D=C D \cos \theta \\
& \theta=\cos ^{-1} \frac{C \cdot D}{C D}=\cos ^{-1} \frac{12}{(3)(4)}=0
\end{aligned}
$$



$$
\begin{aligned}
55-b_{x} & =b \cos \theta \\
\theta & =\cos ^{-1} \frac{b x}{b}=\cos ^{-1} \frac{8.7}{10}=29.5 \\
56-\theta & =\tan ^{-1} \frac{a y}{a_{x}}=\tan ^{-1} \frac{4}{3}=53.13
\end{aligned}
$$

$$
\theta=\cos ^{-1} \frac{b x}{b}=\cos ^{-1} \frac{8.7}{10}=29.5 \approx 30 \quad * 201 \text { aw, } 11 \text {, Lis shie को } 1,01 \text { ddi a }
$$

$57-|a|=\sqrt{9+16}=5$



$$
j \times k=+i
$$

$\mathrm{CH}^{3}$ 2.

$$
\begin{aligned}
& 60-b-a=(6 i+8 j)-(4 i-3 j)=2 i+11 j \\
& 61-|A \times B|=A B \sin \theta \\
& =(4)(6) \sin 60=20,78
\end{aligned}
$$

$$
62-A \cdot B=-6+6-8=-8
$$

$$
63-C \cdot D=C D \cos \theta
$$

$$
\theta=\cos ^{-1} \frac{C \cdot D}{C D}=\cos ^{-1} \frac{-12}{(3)(4)}=180
$$

$$
64-\frac{D}{5}=\frac{5 i}{5}+\frac{25 j}{5}=i+5 j
$$

65- 32 )
66.



68 - a a 1

$j x k=i$ in



1. $y$ er $j, x$ i

$$
\text { G } 2.6 i-2.3 j
$$

2. 

$$
\begin{aligned}
\Delta r & =r_{2}-r_{1} \\
& =(-2-5) i+(6+6) j+(2-7) k \\
& =-7 i+12 j
\end{aligned}
$$

3. 

$$
\begin{aligned}
& (3+2) i+(-1-3) j+(4-1) k \\
= & 5 i-4 j+3 k
\end{aligned}
$$

4. 



$$
\begin{aligned}
& x=-5(2)^{2}+16=-4 \\
& y=-(2)^{3}+5=-3 \\
& r=-4 i-3 j \\
& |r|=\sqrt{16+9}=\sqrt{25}=5
\end{aligned}
$$

5. 

$$
\begin{gathered}
t=1: v_{x}=2(1)+3=5 \\
v_{y}=4(1)-1=3 \\
v=v_{x} i+v_{y} j \\
=5 i+3 j
\end{gathered}
$$

6. a. rate of change of position with time

7. 

$$
\begin{array}{cc}
x_{1}=1^{2}+2=3, & t_{1}=1 \\
x_{2}=2^{2}+2=6, & t_{2}=2 \\
v_{\text {avg }}=\frac{6-3}{2-1}=3 \mathrm{~m} / \mathrm{s}
\end{array}
$$

$8-\omega \int_{S}^{N} e$

$$
\begin{aligned}
& \xrightarrow{v} \xrightarrow{200} e \\
& \Delta v= v_{2}-v_{1} \\
&-200-200=-400 \\
& v_{2}
\end{aligned}
$$

CH4 er
9.

$$
\begin{aligned}
& r=i+4 t^{2} j+t k \\
& v=8 t j+k \\
& a=8 j
\end{aligned}
$$

解少


10- C . .

11

$$
G_{x}^{v_{x}=6 t^{2}-5} \begin{aligned}
& a_{x}=12 t
\end{aligned} \quad\left\{\begin{array}{l}
v_{y}=-3 t^{3} \\
a_{y}=-9 t^{2}
\end{array}\right.
$$

12. 

$$
\begin{aligned}
& v=v_{0}+a t
\end{aligned}
$$

$$
\begin{aligned}
& =-2+(-5 \times 1) \quad v, a \cos \sin \omega i b^{\circ} * \\
& =-7
\end{aligned}
$$

13. C. rate of change of velocity with time.

14. $v_{1}=+18, v_{2}=-30$

$$
a_{\text {cugy }}=\frac{-30-18}{2 \cdot 4}
$$

15

$$
\begin{aligned}
& v=v_{0}+a t \\
& =(2 i+5 j)+(5 j)(2)
\end{aligned}
$$

$$
\begin{aligned}
& =15.1
\end{aligned}
$$

16. 

$$
\begin{aligned}
v & =v_{0}+a t \\
& =(8 i+12 j)+(4 i-2 j)(6) \\
& =8 i+12 j+24 i-12 j \\
& =32 i
\end{aligned}
$$

17. $a-\frac{d v}{d t}$ übio

18．$R=\frac{v_{0}^{2} \sin 2 \theta}{g}=\frac{(50)^{2} \sin 60}{9.8}=220.9$
19．Max range $\rightarrow \theta=45^{\circ} \quad \because$ हè

20．B－zero jex 多的任

21． 18 गon vie

11．A stone thrown from the top of a tall building follows a peth that is
A．circular
B．made of two straight line segments C．hyperbolic D．parabolic
E．a straight line E．astraight
ans：D اساساً ما لقيت فِف السلايدات الا النو دسار المقذوقات حيكون parabolic، وبحثت بالنت لقيت موقعين اجنبية منزلة السؤال ونفس الاجابة فَّ انِ


24 d－zero



25．b號
 Trajectory．

26．$\rightarrow$ quo هen


28

$$
\begin{aligned}
& v_{0 x}=120 \cos 60=60 \\
& v_{0 y}=120 \sin 60=103.9 \\
& v_{0}=60 i+104 j
\end{aligned}
$$



$30 \quad R=\frac{v_{0}^{2} \sin 2 \theta}{g}=\frac{(120)^{2} \sin (2 \times 45)}{9.8}=1469.38$

31- $\frac{d}{d}$


$$
\begin{aligned}
\text { xi.: 1. }|v|=\sqrt{(20)^{2}+(70)^{2}}=72.8 \\
\text { 3. }|v|=\sqrt{(-20)^{2}+(70)^{2}}=72.8
\end{aligned}
$$

$33 \underline{a} \quad$, $\quad$,
34. Max range $\rightarrow \theta=45$
35. $a_{x}=0 \quad\left[\begin{array}{l}1 \\ 1\end{array}\right]$
36. 18 Jign un


38- $\quad \frac{a}{5} \cdot a_{x}=0$
39. 25 ग1'on cue (b)

40 2611 wive (a)

41 27 Jis س (e)
42. $T=\frac{2 \pi r}{v}=\frac{2 \pi 2}{4}=\frac{4 \pi}{4}=\pi$



45 $\quad a=\frac{v^{2}}{r} \Rightarrow v^{2}=a r$

$$
=(25 \mathrm{~g})(1)=(25 \times 9.8)(1)=245
$$

$$
v=\sqrt{245}=15.6 \approx 16
$$





$$
a=\frac{v^{2}}{r}=\frac{4^{2}}{0.50}=32 \mathrm{~m} / \mathrm{s}^{2} \text {, down. }
$$

 Li

$$
a=\frac{4^{2}}{0.50}=32 \mathrm{~m} / \mathrm{s}^{2}, 4 p
$$

$$
\text { सell } 4 \text { • } 40 \text { o }
$$

48. $a=\frac{v^{2}}{r}=\frac{100}{20}=5 \mathrm{~m} / \mathrm{s}^{2}$
49. $a=\frac{v^{2}}{r} \Rightarrow v=\sqrt{a r}=\sqrt{20 \times 5}=\sqrt{100}=10$

50 (c)
 ジ
51.42113 viai
52. $a=\frac{v^{2}}{r}=\frac{16}{2}=8 \mathrm{~m} / \mathrm{s}^{2}$

53- $-3 i$ $-4 j$
 is y y , ous is cir



## ine equation of the projectile path (TRAJECTORY)



$$
y=\left(\tan \theta_{0}\right) x-\frac{g x^{2}}{2\left(v_{0} \cos \theta_{0}\right)^{2}}
$$

This is the equation of a parabola, so the projectile path is parabolic
$\mathrm{CH}^{5}$
1.
 a- $6+4=10$
b. $4 \sin \theta$ U [0ر, 8 ا
 $4 \cos 30=3.5$

$$
6+3.5=9.5 \longleftarrow a \overline{\text { 万, } 20} \text { vo } \sqrt{5} ?
$$

$$
c-4-6=-2
$$

,

$$
d-6-4=2
$$

- (a) u'g -

2- $F=0.2 \mathrm{~N}, m=100 \mathrm{~g} \xrightarrow{\mathrm{~kg}) 8, ; \mathrm{pir}} 100 \div 1000=0.1 \mathrm{~kg}$

$$
\begin{aligned}
F=m a \Rightarrow a & =\frac{F}{m} \\
& =\frac{0.2}{0.1}=2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

3. 

$$
\begin{aligned}
& F_{\text {Net }}=m a \\
& T-F_{g}=m a
\end{aligned}
$$

$$
F_{g} \quad a=\frac{T-F_{y}}{m}
$$

$$
m g \text { نó,w }=\frac{T-m g}{m}
$$

4- ('b) $\rightarrow F_{1} \sum_{F_{2}}^{7} 1,0$ is,
I's iss, $F_{2}, F_{1}$ in sin wer 1, , pos, i

$$
\Longrightarrow_{F_{1}}^{\eta} F_{2}
$$



$$
\begin{aligned}
F & =m a_{x} i+m a_{y} j \\
& =(1)(2 \cos 20) i+(1)(2 \sin 20) j \\
& =1.88 i+0.68 j
\end{aligned}
$$



Scanned by CamScanner
$\mathrm{CH}_{5}$ \&
6. गढ́ constant velocity $\xrightarrow{\text { ieg }} \quad \square=0$

$$
\begin{gathered}
\sum F=m a \\
F_{1}+F_{2}=0 \\
\left(2 i-\sigma_{j}\right)+F_{2}=0 \\
\hline 3, \hat{i}+1 \omega_{j} \\
F_{2}=-2 i+6 j
\end{gathered}
$$

 $w=m g \Rightarrow m=\frac{w}{9}=\frac{22}{9.8}=2.2 \mathrm{~kg}$. (2w), iv ©



$$
\omega=m g=(2.2)(0)=0
$$


a- $7-4=3$
b. $6-4-2=0$ -b u, 31 -
c. $6-5-4=-3$
d. $3+2-5-4=-4$

C 9

$F_{\text {Net }}=m a$ /"stationary" ismèvo

$$
\begin{array}{ll}
T-F g \sin \theta)=0 & q=0=2 \\
T=F g \sin \theta & F g=m g \\
=(8.5)(9.8) \sin 30 & \\
=41.65 \mathrm{~N} &
\end{array}
$$

10. $\quad F_{N}=F g \cos \theta$ 告
11. 

$$
\begin{aligned}
& F_{\text {Net }}=m a \\
& -F_{g} \sin \theta=m a \\
& a=\frac{-F_{g} \sin \theta}{m} \\
& =\frac{-8.5 \times 9.8 \times \sin 30}{8.5}=-4.9
\end{aligned}
$$




CH5 er
12



$$
\begin{aligned}
& \frac{T^{\top}}{\frac{M}{F_{g}}} \begin{aligned}
\frac{\downarrow}{F_{g}} & T=F g \\
& =m g=(20 \times 9.8)=196 \mathrm{~N}
\end{aligned} r \text { cile } \\
&
\end{aligned}
$$

13

$$
\begin{aligned}
F & =m a \\
& =(48)(6)=288 \mathrm{~N}
\end{aligned}
$$

14. (c) (


15




$$
\begin{gathered}
F_{\text {net }}=m a \\
\left(F_{2} \cos \theta\right)-F_{1}=m a \\
(1 \cos 30)-3=0.5 a \\
a=-4.26 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

16- $\frac{m_{1}}{m_{2}}=\frac{a_{2}}{a_{1}}, m_{1}=2, m_{2}=4$

$$
\frac{a_{2}}{a_{1}}=\frac{1}{2}
$$

17. $\frac{m_{0}}{m_{x}} \times \frac{a_{x}}{a_{0}}$

$$
\begin{aligned}
m_{x} \frac{a_{x}}{q_{x}} & =m_{0} \frac{q_{0}}{q_{x}} \\
m_{x} & =m_{0} \frac{q_{0}}{a_{x}}
\end{aligned}
$$

$$
\begin{array}{r}
18 \stackrel{F_{1}}{\stackrel{F_{1}}{m} \overbrace{F_{2} \cos \theta}^{\sim}} \\
\\
\frac{F_{\text {Net }}=m a}{F_{2} \cos \theta-F_{1}}=\frac{m(a}{m} \\
a_{x}=\frac{F_{2} \cos \theta-F_{1}}{m}
\end{array}
$$



1. $F_{g}=m g$

2. 




23. 8015 س س ت

24

(II)

25- unchanging velocity $\rightarrow a=0$

$$
\begin{aligned}
& F_{\text {Net }}=1 a \\
& F_{1}+F_{2}+F_{3}=0 \\
& (2 i+3 j-2 k)+(-5 i+8 j-2 k)+F_{3}=0 \\
& (-3 i+11 j-4 k)+F_{3}=0 \\
& F_{3}=3 i-11 j+4 k .
\end{aligned}
$$

CH5 ど
26.






$$
\begin{aligned}
& T-m_{2} g=-m_{2} a \\
& T=-m_{2} a+m_{2} g \\
& =(-2.3 \times 0.735)+(2.3 \times 9.8) \\
& =20.8 \mathrm{~N}
\end{aligned}
$$




$$
=-9.8 \mathrm{~m} / \mathrm{s}^{2}
$$


30. 5 رؤ سو

Exp. (14): As shown in the figure (1), a force of 45 N is applied to move a 4 kg box up an inclined plane. If the box starts from rest, find its speed after 2 s . Calculate the normal force, $\mathrm{F}_{\mathrm{N}}$.

Solution:
$\mathrm{F}=45 \mathrm{~N}, \quad \mathrm{~m}=4 \mathrm{~kg}, \quad \mathrm{v}_{0}=0, \quad \mathrm{t}=2 \mathrm{~s} \quad$ (a) $\mathrm{v}=$ =?? (b) $\mathrm{F}_{\mathrm{N}}=$ ??
نحسب السرعة من معالات الحركة
$\mathrm{v}=\mathrm{v}_{0}+\mathrm{at} \rightarrow 1$

ولإيجاد قِيمة التّسار ع نستخدم قو انين نيوتن للحركة كالتّالي:
1- تُثيّل القوى الظاهرة(قوة الدفع) والغير ظاهرة (قوة الجذب ـالقوة العمودية)(كما في الشكل (2) (2) 2- نحدد المحاور واتجاه الحركة
3- نحلل القوى المائله (قوة الجذب) إلى مركباتّها (كما في الشكل (3) (3)
4- نكتب معادلات الحركة بإستخدام قو انين نيوتن
( x -axis) $\rightarrow \mathrm{mg} \sin \theta-\mathrm{F}=-\mathrm{ma} \quad \boldsymbol{\rightarrow}$
$(y$-axis $) \rightarrow \mathrm{F}_{\mathrm{N}}-\mathrm{mg} \cos \theta=0 \quad \rightarrow 3$
حساب قيمة التّسار ع من المعادة الثّانية
From (2) $4 \times 9.8 \sin (50)-45=-4 x a \rightarrow a=3.74 \mathrm{~m} / \mathrm{s}^{2}$
النّعويض في المعادلة رقم 1 لحساب السرعة

$$
v=3.74 \times 2=7.5 \mathrm{~m} / \mathrm{s}
$$

(b) from (3) $\quad \mathrm{F}_{\mathrm{N}}=\mathrm{mg} \cos \theta=4 \times 9.8 \cos (50)=25.2 \mathrm{~N}$

(2) الشكل


الشكل (3)

Exp. 14


$$
\begin{array}{ll}
F=45, & m=4 \\
t=2, & v=? ?, \quad \text { starts from rest } \rightarrow v_{0}=0 \\
& F_{N}=? ?
\end{array}
$$



$$
\begin{aligned}
F_{N} & =m g \cos \theta: l, \text {, } 6 ; \text { sol } \\
& =(4)(9.8) \cos 50=25.19 \mathrm{~N}
\end{aligned}
$$



$$
v=v_{0}+a t: 1 ; \text { in }
$$

 1 1 ا 1
 $x$ be

$$
\begin{gathered}
F_{\text {Net }}=m a \\
\left.\left(F_{g} \sin \partial\right)-F=-m a\right) \\
(4 \times 9.8 \times \sin 50)-45=-4 a \\
d=3.74
\end{gathered}
$$



Low $\begin{aligned} & \text { abs, } k \text { is } b\end{aligned}$
"1 \&゙, Ur


$$
\begin{aligned}
v & =v_{0}+9 t \\
& =0+(3.74 \times 2)=7.48 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Exp. (15): As shown in the figure (1), a force F (makes an angle of 20 ) is applied to move a 4 kg box up an inclined plane. If the box moves with constant velocity, find the normal force, $\mathrm{F}_{\mathrm{N}}$.


Solution:

$$
\begin{aligned}
& \mathrm{F}=? ?, \quad \phi=20^{\circ}, \quad \mathrm{m}=4 \mathrm{~kg}, \mathrm{~F}_{\mathrm{N}}=\text { ?? } \\
& \mathrm{V}=\text { constant } \rightarrow \mathrm{a}=0
\end{aligned}
$$

ولايجاد قِيمة القوة ةالعموديه نستَخدم قو انين نيوتن للحركة كالتاللي:

1- تُثيل القوى الظاهرة(قوة الدفع) والغير ظاهرة (قوة الجذب -القوة العوودية)(كما في الشكل (2)) 2- نحدد المحاور واتجاه الحركة
3- نحلل القوى المائله (قوة الجذب - قوة الدفع) إلى مركباتّها (كما في الشكل (3))
4- نكتب معادلات الحركة بإستخدام قانون نيوتن الأول
$(x$-axis $) \rightarrow m g \sin \theta-F \cos \phi=0 \quad \rightarrow 1$
$(y$-axis $) \rightarrow F \sin \phi+F_{N}-m g \cos \theta=0 \quad \rightarrow 2$
لحساب قِيمة القوة العموديه نحتّاج حساب قيمة قوة الدفع وذلك بالْتعويض في المعادلة رقم (1) From (1)
$4 x 9.8 x \sin (50)-F \cos (20)=0 \rightarrow F=32 N$
التّتويض في المعادلة رقم 2 لحساب القوة العمودية
From (2)
$32 x \sin (20)+F_{N}-4 \times 9.8 x \cos (50)=0 \rightarrow F_{N}=14.3 N$

(2) الشكل


الشكّل (3)

Exp. 15
constant velocity $\rightarrow a=0$

$$
m=4, \quad \theta=20, \quad F_{N}=0
$$







$F_{N}$
[ 6




 - ubs l $m g \sin \theta-F \cos \theta=0$

$$
\text { (4) }(9.8) \sin 50-F \cos 20=0
$$

$$
\frac{30}{\cos 20}=F \frac{\cos 20}{\cos 20}
$$

$$
F=31.9
$$



$$
\begin{aligned}
& F_{N}+(31.9 \sin 20)-(4 \times 9.8 \times \cos 50)= \\
& F_{N}-14.28=0 \\
& F_{N}=14.28 \mathrm{~N}
\end{aligned}
$$

CH 6


 - ís - C 0 した -


(a) (a)
$3 \quad F_{\text {Net }}=m a$
$F-\mu_{k} F_{N}=0 \Rightarrow 12-\mu_{k} m g=0$
$12-\mu_{k} \stackrel{\pi}{5}=0$


$$
\mu_{k}=\frac{12}{5}=2.4
$$

 . $6 ; 00 \mathrm{mg}$

$4 \xrightarrow{f_{k} \text { —o }}$


$$
\begin{aligned}
F_{N e t} & =m a \\
\Theta F_{k} & =m a \\
& =-(0.1122 \times 1.24)=-0.139 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& w=m g=1.1 \\
& m=\frac{1.1}{9.8}=0.1122
\end{aligned}
$$



CH6 2 ゼ

． $f_{s}=F \quad$ S $i$ í is lm mul ine $f_{s}$



：
（1）

$$
\begin{aligned}
& f_{5 \max }=10 \mathrm{~N} \\
& F=3 \mathrm{~N}
\end{aligned}
$$

$$
\begin{gathered}
f_{5 \text { max }}=10 \mathrm{~N} \\
F=12 \mathrm{~N}
\end{gathered}
$$


㑔 F F ن



$$
f_{s}=F \quad \text { iv isw } \alpha \text { ! k }
$$

$$
F_{5}=8 \mathrm{~N}
$$



Nows cl Libsion or

 Pixócula ás ibsioul F，
 uscll is jen：

$7-$

$$
\begin{gathered}
F_{N e t}=m a \\
F-\mu_{k} F_{N}=0 \\
470-\mu_{k}(79 \times 9.8)=0 \\
\mu_{k}=0.607
\end{gathered}
$$

CH 6 er




$$
\begin{aligned}
& F_{\text {Net }}=m a \\
& (T \cos \theta)-f_{s}=0 \\
& \mu_{s} F_{N} \\
& (0.25)(\mathrm{mg})
\end{aligned}
$$

$$
\begin{aligned}
& T \cos \theta-177.5=0 \\
& T \frac{\cos 30}{\cos 30}=\frac{177.5}{\cos 30} \\
& T=205.2
\end{aligned}
$$




الالنسبة لشابتر 7و وماكان لهم تيست باتك لسهولتّهم و"لا "حتّلقولهم في مكان غير هنا ، بس في دفتيتا 2017 انتشر pdf فيه تيست باتك لـهم و كان يشبه كثير لأسئلة اللفايتل و انا حليتهه و متأكدة باذن الله من الحل ، يعتبروا اسهل فصلين من الكورس كامل و حرالاIالام تغلطوا فيّهر من سهولتّهم ،نزلتلكم pdf عليه الأسئلة و بالنسبة للأجوبة انا مرقمة الترقيم عشان تشوفوا الحلول للاسئلة مرتبة، انا كاتبه الحل بالثفصيل بس ممكن ترجعولي في حالة كان في شي
مو مفهمومِ

Twitter:@MahaAlghamdii_


