2.4 Derivatives of Trigonometric Functions

f(x)	f'(x)
sin u	u' cos u
cos u	$-u' \sin u$
tan u	$u' sec^2 u$
cot u	$-u' csc^2 u$
sec u	u' sec u · tan u
csc u	$-u' csc u \cdot cot u$

Exercise:

(a) If
$$f(x) = \sin 3x$$
, find $f'(x)$

Solution

$$f'(x) = 3\cos 3x$$

(b) If
$$f(x) = \cos x^2$$
, find $f'(x)$

Solution

$$f'(x) = -2x\sin x^2$$

(c) If
$$f(x) = \sec 5x^3$$
, find $f'(x)$

Solution

$$f'(x) = 15x^2 \sec 5x^3 \cdot \tan 5x^3$$

Mathematics 1

ENG. Mahdi Alsiddig 0563938879

Example 1: Find $D_x(3 \sin x - 2 \cos x)$

Solution

$$D_x(3\sin x - 2\cos x) = 3\cos x + 2\sin x$$

Example 2 : Find the equation of the tangent line to the graph of $y=3\sin x$ at the point (π , 0)

Solution

> Equation of tangent line :

$$y - y_1 = y'(x - x_1)$$

Thus:

$$y' = 3\cos x = 3\cos \pi = -3$$

∴ Equation of tangent line:

$$y - 0 = -3(x - \pi)$$

$$y = -3x + 3\pi$$

Example 3: Find $D_x(x^2 \sin x)$

Solution

$$D_x(x^2\sin x) = 2x\sin x + x^2\cos x$$

Mathematics 1

ENG. Mahdi Alsiddig 0563938879

Example 4: Find
$$\frac{d}{dx} \left(\frac{1+\sin x}{\cos x} \right)$$

Solution

$$\frac{d}{dx}\left(\frac{1+\sin x}{\cos x}\right) = \frac{\left[(\cos x)(\cos x)\right] - \left[(1+\sin x)(-\sin x)\right]}{\cos^2 x}$$

$$= \frac{[\cos^2 x] - [-\sin x - \sin^2 x]}{\cos^2 x} = \frac{\cos^2 x + \sin x + \sin^2 x}{\cos^2 x}$$

$$=\frac{1+\sin x}{\cos^2 x}$$