Jeddah University CHEMISTRY (110) Test Bank (II) Chapters 5-6 ## Assignments 1 | 1- | The expression for the equilibrium constant (Kc) for the chemical equation: | |----|---| | | $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ | (a) $$K_c = [CaO][CaO]$$ (b) $K_c = [CO_2]$ (c) $K_c = [CaO][CaO]/[CaCO_3]$ (d) $K_C = [CaCO_3]$ 2- Consider the following reaction at equilibrium. 3- $$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$ Adding additional CO₂ will shift the reaction mixture towards: (a) The reactants (b) products (c) both reactants and products (d) non 3- Hydrofluoric acid is: (a) Strong acid (b) strong base (c) weak acid (d) weak base 4- The $[H_3O^+]$ in a solution is 1.8 x 10^{-4} , this solution is: (a) Acidic (b) basic (c) neutral (d) amphoteric 5- When the following reaction reaches to equilibrium: $$A(g) + B(g) \rightleftharpoons 2C(g)$$ $$Kc=1.4 \times 10^{-5}$$ The concentration of the productsthe concentration of reactants (a) is greater than (b) is lower than (c) equal (d) non 6- Acetic acid is a weaker acid than sulphuric acid because: - (a) it has low molecular weight. - (b) sulphuric acid is weakly ionised. - (c) it does not dissociates completely. #### 7- Consider the reaction at equilibrium: $$2KClO_3(s) \rightleftharpoons 2 KCl(s) + 3O_2(g)$$ Addition of KCl to the reaction mixture will: - (a) shift the reaction left - (b) shift the reaction right - (c) remain the reaction unchanged #### 8- This reaction is endothermic $$C(s) + CO_2(g) \rightleftharpoons 2CO(g)$$ ## Assignments 1 (a) shift the reaction left (b) shift the reaction right | Increasing | the | reaction | temperature | will | |------------|-----|----------|-------------|------| |------------|-----|----------|-------------|------| (c) remain the reaction unchanged | 9-The | pH of solution | prepared from 4 | g NaOH and w | ater to make 1 | L of solution | is: | |---------|---------------------------------|--|--------------------------|------------------|-----------------------|--------------------------| | (a) | 5 | (b) 8 | (c) 9 | | (d) 13 | | | 10- Foi | the reaction | Ni(s) + 4CO(g) | ⇒ Ni(CO) ₄ | | $K_C = 5.0 \text{ x}$ | 10 ⁴ at 25 °C | | Kc | for the reaction | on Ni(CO)₄ ⇌ N | i(s) + 4CO(g) v | vill be: | | | | (a) | 2.0×10^5 | (b) 5.0×10^4 | (c) 5.0×10^{-5} | (d) 2.0 x | 10^{-3} | | | | a balloon is i
e work done i | nflated from a vos: | olume of 0.1 L to | 1.85 L agains | st an external | pressure of 1.0 | | (a) | 1.75 L.atm | (b) -1.75 L | .atm (c) | 1.75 J | (d) -1 | .75 J | | 12- A t | omb calotime | eter is used to me | easure the chang | es in internal e | nergy for | | | (a) | Combustion reactions | reactions (b) neu | tralization reacti | ons (c) redox | reactions | (d) precipitation | | 13- Th | e enthalpy (H) | is defined as the | e sum of its inter | nal energy and | l its | | | (a) | Volume (b |) Pressure (c) | concentration | (d) product of | of volume ar | nd pressure | | 14- The | e value of entl | nalpy change (ΔΙ | H) is positive for | •••• | | | | • • • | Exothermic reaction | eaction (b) en | dothermic react | on (c) reversi | ble reaction | (d) Irreversible | | 15- Co | nstant pressur | e calorimeter me | asures | | | | | (a) | enthalpy char | nge (b) heat o | of combustion | (c) internal e | nergy (d) | heat capacity | | 16- The | ermodynamics | s is the general st | tudy of | | | | | (a) | energy interco | onversions (b) 1 | eaction kinetics | (c) chemica | al changes (| d) physical | | | = | 625 kJ of heat a
l energy of the sy | | of work on the | surrounding | s, what is the | | (a) | –730 kJ | (b) 730 kJ | (c) 520 k | J $(d) - 52$ | 0 kJ | | | | | | 2 | | | | ## Assignments 1 18- The total energy of the universe is. | 18- The total energy of th | ie universe is | | | | | |--------------------------------|---|-------------------------|----------------------------|--|--| | (a) Increasing | (b) decreasing | (c) constant | (d) changeable | | | | 19- The quantity of heat i | 19- The quantity of heat required to change the system's temperature by 1 °C is the | | | | | | (a) molar heat capacit | ty (b) heat capacity | (c) internal energy | (d) stranded enthalpy | | | | 20- The sum of the kineti as | c and potential energies | s of all particles that | compose a system is known | | | | (a) enthalpy (b) | b) work (c) int | ernal energy | (d) stat function | | | | 22- The burning of natura | al gas on a stove is an | | | | | | (a) exothermic process process | s (b) endothermic pr | ocess (d) chemical | process (e) physical | | | | 23- Water condensation f | rom a steam is | | | | | | (a) exothermic process | (b) endothermic proce | ess (d) chemical pro | ocess (e) physical process | | | $Cacof_{(S)} = Cgb_{(S)} + Co_2$ kc = [co2] (b) $CaCO_3 = CaO + Co_2$ (5) (9) (2) a) reactants (left) a reactants (left) a lell objyl a Co2 aut sol. HF (hydrofloric acid). @ weak acid pH = - log (H30+) = -log[1-8 X104] PH=3-74 * acidic (() me de 1) Fc = 1.4 X/0 - FC << 1 (is lower than) 6 CH3 Cootl does not dissociates completely "Wester 1/15" ver $(7) 2 kclo_{3(5)} = 2 kcl_{5} + 302_{(9)}$ * kcl_{5} * kcl_{5} * kcl_{5} Dremain the reaction unchanged $$8999+C_{(5)}+C_{(5)}+C_{(9)}=200$$ * R * kc increase slojs # (b) shift to Right $$\frac{Q}{moles} = \frac{mess(9)}{molar mass} \qquad \frac{NaoH}{mole}$$ $$= \frac{4}{23+16+1} = 0.1 \quad mole$$ * NaoH Stronge base- $$poH = -log[oH-]$$ $poH = -log[o-1]$ $poH = 1$ $pH = 14-1 = 13$ (1) (10) Dablefolés au Cablell $$k_{a} = \frac{1}{k_{I}} \qquad k_{2} = \frac{1}{5\times10^{4}}$$ $$k_2 = 2 \times 10^{-5}$$ De bomb calorimeter a combustion reaction in yells enthalpy = E + PV (d) product of volume and pressure 14 DH = + (positive) (b) endothermic RX = JUST TOLLI (15) Constant pressure calorimeter measures 16 a E = 9 + W E = 625 + 165 E = 730 b 18 Total energy of universe is constant 19 6 heat capacity a) slae) 20 d'én leges (12/2) Internal E = WP iet 4 fert reto burning — Exothermic RX a) 23 6 Endoth __ condensation will Jeddah University CHEMISTRY (110) Test Bank Chapters 5-6-7 ### **Chem 110 Chapter 5 +6 +7 Exam** #### Choose the correct answer | [1] For the following equilibrium $2KClO_{3(s)} = 2KCl_{(s)} + 3O_{2(g)}$
When $KClO_3$ is added to the reaction mixture, the reaction will (A) Shift to right (B) Shift to left (C) remain unaffected (D) none | |--| | [2] For the following equilibrium $C_{(s)} \rightleftharpoons 2H_{2(g)} + CH_{4(g)}$
When CH ₄ is added to the reaction mixture, the reaction will (A) Shift to right (B) Shift to left (C) remain unaffected (D) none | | [3] The following reaction is endothermic $C_{(s)} + CO_{2(g)} \rightleftharpoons 2CO_{(g)}$
When the reaction temperature is increased, the reaction will (A) Shift to right (B) Shift to left (C) remain unaffected (D) none | | [4] Which of the following is a heterogeneous equilibrium? (A) $NH_{3(aq)} + H_2O_{(/)} \rightleftharpoons NH_4^+_{(aq)} + OH_{(aq)}^-$ (B) $HF_{(aq)} + H_2O_{(/)} \rightleftharpoons H_3O_{(aq)}^+ + F_{(aq)}^-$ (C) $2KClO_{3(s)} \rightleftharpoons 2KCl_{(s)} + 3O_{2(g)}$ (D) $CO_3^{2-}_{(aq)} + H_2O_{(/)} \rightleftharpoons HCO_3^{(aq)} + OH_{(aq)}^-$ | | [5] Which of the following is a weak acid?(A) HCl (B) HNO₃ (C) HBr (D) H₂SO₃ | | [6] Which of the following is a weak base?(A) NaOH (B) NH₃ (C) HC₂H₃O₂ (D) HN₃ | | [7] Which of the following anions is a weak base? (A) Cl ⁻ (B) NH ₃ (C) CHO ₂ ⁻ (D) ClO ₄ ⁻ | | [8] The hydronium ion concentration of a solution of pH 7.8 is (A) 1.6×10^8 (B) 6.2 (C) 1.6×10^{-8} (D) 6.3×10^7 | | [9] Which of the following anions has a neutral pH? | [10] Which of the following is a Lewis acid? | (A) HCI (B) NH_3 (C) HNO_3 (D) BF_3 | | | | | |---|--|--|--|--| | [11] For the following equilibrium reaction $A = 3C$ K_1
The overall equilibrium constant K_1 in terms of the given two equilibria $A = 2B$ K_2
$2B = 3C$ K_3 | | | | | | (A) $K_1 = K_2 + K_3$ (B) $K_1 = K_2$. K_3 (C) $K_1 = K_2/K_3$ (D) $K_1 = K_3/K_3$ | | | | | | [12] The household ammonia has a | | | | | | [13] The equilibrium constant K , for the reaction $2KClO_{3(s)} \Rightarrow 2KCl_{(s)} + 3O_{2(g)}$ is given by | | | | | | (A) $K = [KCl]^2 [O_2]^3 / [KClO_{3(s)}]^2$
(B) $K = [O_2]^3$
(C) $K = [KClO_{3(s)}]^2 / [KCl]^2 [O_2]^3$
(D) $K = 1 / [O_2]^3$ | | | | | | [14] The following reaction: $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ represents (A) irreversible (B) reversible (C) acidic (D) neutral | | | | | | [15] The soft drinks (e.g. Pepsi) has a | | | | | | [16] The statement "The total energy of the universe is constant" is related to (A) Internal energy (B) The first law of thermodynamics (C) Enthalpy (D) The heat capacity | | | | | | [17] The statement "A state function that equals to the sum of kinetic and potential energies of all particles in the system" is related to ((A) Hess's law (B) The first law of thermodynamics (C) bomb calorimeter (D) Coffee-cup calorimeter | | | | | | [18] is used to measure the heat evolved from combustion reactions at constant volume. (A) Coffee-cup calorimeter (B) The first law of thermodynamics | | | | | | [19] is used t | o measure the heat changes in different | |---------------------------------|--| | reactions at constant press | ure. | | (A) Hess's law | (B) The first law of thermodynamics | | (C) bomb calorimeter | (D) Coffee-cup calorimeter | | [20] What is the work exerted b | oy a gas that expanded from 0.10 L to 0.75 L | | against a constant pressure | e of 1.2 atm? | | (A) 0.78 L. atm | (B) -79.1 J | | $(C) - 0.78 L atm^{-1}$ | (D) 79.0 J | | [21] The endothermic reaction | is the one whose | | (A) $\Delta H < 0$ | (B) $\Delta H = 0$ | | $(C) \Delta H > 0$ | (D) None of them | | | nergy and enthalpy is | | (A) E = H + PV | (B) H = E - PV | | (C) H = E + PV | (D) none of them | | [23] The correct name of the fo | llowing structure | | | CH ₃ | | CH ₃ C | H ₂ CH ₂ CH ₂ - CH - CH - CH ₃ | | | CH ₃ | | A) 2,3-dimethylheptane | B) 2-methylheptane | | C) 2,3-dimethylhexane | D) 2,3-dimethylpentane | | [24] is the general form | nula of an alcohol. | | A) R—O—R
R—OH | B) R—CO—R C) R—CO—OH D) | | [25] Which one of the following | g is not an alcohol? | | A) acetone B) metha | nol C) ethanol D) propanol | (D) Hess's law (C) bomb calorimeter #### [26] Which of the following represents a ketone? A) B) C) D) #### [27] Which of the following represents a carboxylic acid? A) $$CH_3CH_2 \longrightarrow O \longrightarrow CH_2CH_3$$ B) C) D) #### [28] Which of the following represents an amine? A) $$CH_3CH_2 \longrightarrow O \longrightarrow CH_2CH_3$$ #### [29] Which of the following represents an aldehyde? $$CH_3CH_2 \longrightarrow O \longrightarrow CH_2CH_3$$ B) #### [30] Which of the following contains a peptide linkage? | [31] | Hybridization of the carbon atom i | ndicated by (*) in | CH ₃ -*CH ₂ -C | CH_3 | |------|---|--------------------|--------------------------------------|--------| | | *CH ₂ =CH ₂ , and CH ₃ -*C≡CH is | , | , and | , | | | respectively. | | | | | | | | | | - A) sp³, sp², sp B) sp³, sp, sp² C) sp, sp², sp³ D) sp, sp³, sp² #### [32] Hydrocarbons containing only single bonds between the carbon atoms are called - A) alkenes - B) alkynes - C) aromatics - D) alkanes #### [33] Which of the following are known as olefins? - A) alkenes - B) alkynes - C) aromatics - D) alkanes #### [34] The simplest alkyne is ... - A) ethylene - B) ethane - C) acetylene - D) benzene #### [35] Hydrocarbons containing carbon-carbon triple bonds are called....... - A) alkanes - B) aromatic hydrocarbons - C) alkynes - D) alkenes #### [36] Alkynes always contain a - A) C=C bond - B) C≡C bond - C) C—C bond - D) C=H bond #### [37] Alkenes always contain a _____ - A) C=C bond - B) C≡C bond - C) C-C bond - D) C=H bond # [38] The general formula of alkenes is _____. B) C_nH_{2n-2} C) C_nH_{2n+2} D) C_nH_n | [39] The general fo | ormula of alkanes is | S | | |-------------------------------------|----------------------|------------------------------|-----------------------| | | | C) C_nH_{2n+2} | D) C_nH_n | | [40] The general fo | ormula of alkynes is | | | | A) C_nH_{2n} | B) C_nH_{2n-2} | C) C_nH_{2n+2} | D) C_nH_n | | What is the n H | | nd below? | | | A) 2,4-methylbutene | | | | | H H H H H H H H H H | | the following compo | and? | | A) 1 | B) 2 | C) 4 | D) 3 | | [43] The number o | of π bonds in CH3-C | СН=С=СН-СН-СН=С | CH-CH ₃ is | | A) 1 | B) 2 | C) 4 | D) 3 | | [44] cou | ld be alkene. | <i>C</i> / · | | | | | C6H6 D) C17H | 36 | | | | produces butane C) 1,2-dibro | mobutane D) 2,3- | | [46] The following A) Ether | | C) ketone D | | . | [47] The follow | ving structure represent | S_R-C-H | · | |----------------------|---|---------------------|----------------------| | A) Ether | B) ester | C) ketone D) | aldehyde | | | | | | | 1481 The follow | ving structure represent | s R-C-OH | | | A) earboxy | lic acid B) est | er (1) ketone | D) aldehyde | | A) carboxy | nic acid D) est | er er ketone | D) www.ju | | 1401 The follow | ving structure represent | R C OR' | | | [49] The follow | lic acid B) ester | C) katana | —.
D) aldehyde | | A) carboxy | lic acid B) ester | C) Retone | D) aluchydd | | | 0 | | | | (70) 64 -64 | B) amide | | | | [50] Challer | is called | · | D) aldehyde | | A) amine | B) amide | C) ketone | D) aldellyde | | | 1 11 1 | a a función a | units of | | [51] Starch, gl | ycogen, and cellulose ar | e made of repeating | units 01 | | (A) lactose | B) glucose | C) fructose | D) sucrose | | | a CVI CVI I | | | | | ect name of CH ₃ -CH ₃ is | | D \ | | A) ethane | B) propane | C) ethyl | D) propyne | | | | | | | [53] The prod | uct of the addition of H ₂ | to 1-propene in the | presence of a nicker | | catalyst is | · | | | | A) propane | B) propyne | C) propanol | D) 2-butene | | | | | | | [54] | _ is a monosaccharide. | | | | (A) Fructose | B) Lactose | C) Guanine | D) Glycogen | | | | | | | [55] | _ is a polysaccharide. | | | | A) Cellulose | B) Galactose | C) Ribose | D) Sucrose | d chem-110 - 5-6-7 علادال علادال على علادال على الله $C_{(s)} = 2H_2 + CH_4$ $C_{(9)} = CH_{(9)}$ الدي المادة على يتجبر لمتفاعل في الاتجاه بلماس B) shift to left (L) $C_{(s)} + C_{(9)} = 2 C_{(9)}$ Eldo - Extert relocity $C_{(2)} + C_{(2)} + C_{(2)} + C_{(2)} = 2C_{(2)}$ a shift to Right 9 stronge acid —H+ neutral C-base HN03 - H+ NO3 To lewis acid - pair electron acceptor BF3 FX.B.XF CLIMINI MP. J. E-W- F 11 A = 2B2B = 3c التفاعل الأول طاصل عم لتفاعليم الكاني ولتك KI = KZXK3 (B) ammonia PH > 7 12 kc = [B2] $N_2O_4 = 2NO_2$ 14 Dreversible a beil pH<7 pepsi 6) The first low (16) لَّعَا فَوْنَ لِأُولَ للرَّمِنَا مِنْ جُرَارِيةً - 21 Endothermic DH=+3) W^{old} © DH>022 © H=E+PV 7- 6H2 6H2 6H2-CH-CH3 2,3 dimethyl heptane 24 Dalahol R-OH L a acetone (rue '01) (ketone) ketone R-C-R Carboxylic acid 0 R-C-OH amine d O NH2 29 aldehyde R-C-H © CH3-CH2-C-H propanal 30 * peptide linkage weel jeell الطمة أطارية $\sigma - \zeta - sp^3$ رابطة شائيم هاد الطة "المرثية $CH_2 =$ Spa $C \equiv CH$ sp a alkane (single bond) 33 (olefins)(alkenes) alkyne (CnH2n-2) GH2 (Ethyne) (acetylene) (35) © Alkyne (triple bond) Alkynes 36 Alkenes 37 alkene 38 CnHan alkanes CnH2n+2 alkynes H3 = C = CH2 H CH3 2,4 dimethy/-1-pentene $$\begin{array}{cccc} & (=) & (6 + TT) \\ & (a) & me & TT & bond \\ & (3) & (3) & TT & bond \\ & (3) & (3) & (3) & (3) & (3) & (3) \\ & (3) & (3) & (3) & (3) & (3) & (3) & (3) \\ & (3) & (3) & (3) & (3) & (3) & (3) & (3) \\ & (3) & (3) & (3) & (3) & (3) & (3) & (3) & (3) \\ & (3) & (3) & (3) & (3) & (3) & (3) & (3) & (3) \\ & (3) & (3) & (3) & (3) & (3) & (3) & (3) & (3) & (3) \\ & (3) & (3) & (3) & (3) & (3) & (3) & (3) & (3) & (3) \\ & (3) &$$ 6 SH6 alkene CnHan $$\frac{45}{-1} = \frac{3}{-1} = \frac{2}{-1} = \frac{2}{-1} = \frac{1}{-1} \frac{1}{-1}$$ 46 R-6-R ether Qu 47 R-c-H aldehyde 98 R-c-ott a carboxylic acid (49) R-C-O-R (b) ester 50 R-C-NH2 Danide De glucose inteles