

ŻŻŻŻ

مدونة المناهج السعودية https://eduschool40.blog الموقع التعليمي لجميع المراحل الدر اسية في المملكة العربية السعودية

KINCDOM OF SAUDI ADARIA		المملكة العربية السعودية
Ministry of Education		وزارة التعليم
Rabigh-College of Science and Arts	-=	جامعة الملك عبدالعزيز
PHYS110 2 nd med term exam		
Second semester 1437/1438	(SAM)	
	ما معذاللك عندالعربز المعاد الملك عندالعربز المعاد المعاد المعاد	
tudent Name:	Student Number:	class:
Choose the correct and	swer:	
1. Two forces $\widehat{F_1} = 10\hat{\imath}$ & acceleration is:	$\widehat{F_2} = 24\hat{j}$ are applied to move	a 2kg box. The magnitude of
A) 169 m/s ² B) 25 m	m/s^2 C) 11 m/s^2 D) 13 m/s^2	$/s^2$
2. According to Q1: the direc	tion of acceleration is:	
A) 67.4 ⁰ B) -67.4 ⁰	C) 76.4 ⁰ D) -76.4 ⁰	
		ρ,
3. The normal force F_N on b A) $F_N = mg - T$ B) F	lock M is: $F_N = Mg$ C) $F_N = mg$	D) $F_N = Mg - T$
4. In the diagram, if we cut t	he, cord the acceleration of mass m	is:
A) $a = -9.8 \text{ m/s}^2$ B) $a = \text{zer}$	o C) $a = 735 \text{ m/s}^2$	D) $a = 4.9 \text{ m/s}^2$
5 The free body diagram rer	presenting the forces on m is:	
5. The free body diagram rep	resenting the forces on m is.	
FN 🕇 📊	a	a _ ≜ ▲
τŤ⊥a	' ↓ F _N ↓	" a
		Ī
L F.	JFa ⊥Fa	. ↓F.
A) Y'^g B)		D) Y'y

2			
At this figure show the	ne Projectile motion		y $v_{yA} = 0$
6. When the project range R occurs v A) $\theta = 45^{\circ}$	The fired from the original here B $\theta = 90^{\circ}$	gin with Initial speed C) $\theta = 180^{\circ}$	V_0 different θ . The maximum $D)\theta=360^\circ$
7. In the projected	body, the component	of its velocity in x –	direction (v _x) is
A) equal to V _o C) changes with angl	e	D) change	B) v_x unchanged as with time
8. In the projectile r	notion, the accelerat	ion at heights point	is:
A) zero	B) 2g	C) -2g	D) -g
 9. A particle movie x-component v_x A) -7 m/s B) 	ng with initial veloc of the final velocity -27 m/s	city $\vec{v} = -2\hat{i} + 4\hat{j}$, a at (t =1 s) is : C) -37 m/s D)	and acceleration $\vec{a} = -5\hat{i} + 8\hat{j}$, the -17 m/s
10.A particle moves particle at t=1 s i	in xy plane as: x(t) = s:	= 2t (m) and y(t) =	$t^2 - 1$ (<i>m</i>). The velocity of the
A) $\hat{i} + \hat{j} (m/s)$	B) $2\hat{i} + \hat{j} (m/s)$	s) C) $2\hat{i} - \hat{j}$ (n	n/s) D) $2\hat{i} + 2\hat{j} (m/s)$
11.The velocity and	the acceleration of a	body in a uniform ci	rcular motion are:
A) differed by 4	5 ⁰ B) perpendicula	ar C) differed b	by 135 ⁰ D) parallel
12.The gravitational	force of earth acting	on a 47 kg is:	
A) 9.8 N	B) 147 N	C) 47 N	D) 460.6 N

3 13.In the figure, the magnitude of **the net force** on the block is: 19 N A) 9 N B) 10 N C) 11 N D) 12N 14.A stone is thrown at building of height h with initial speed 32 m/s directed 60° the stone landed on the roof after 4s the vertical height is : C) $\Delta y = 32.45 \text{ m}$ A) $\Delta y = 78.4 \text{ m}$ B) $\Delta y = 17.4 \text{ m}$ D) $\Delta y = 20.5 \text{ m}$ 15.From question 14, the horizontal velocity (v_x) is: B) $v_x = -16 \text{ m/s}$ C) $v_x = 27 \text{ m/s}$ A) $v_x = 16 \text{ m/s}$ D) $v_x = -27 \text{ m/s}$ 16.A projectile is launched to achieve a maximum range of 140 m, the speed of the projectile must be: A) 17 m/s B) 27 m/s C)37 m/s D) 45 m/s 17.A car travels east at **constant velocity**. The net force on the car is: A) Zero D) east B) down C) up 18. In the figure shown the block of mass 3 kg is **at rest** on a smooth inclined plane with angle 60° under the action of F, the magnitude of force F is: 3 88 . 60° 5 N B) 215 N C) 14.7 N D) 25.5 N 19.A person of mass 80 kg stands on spring scale in an elevator that has upward acceleration of 3 m/s^2 the scale will read: C) 544 N A) 12.8 N B) 1024 N D) 784 N DONE BY AISHA ALBELADI

20. The figure shows an acceleration ea	a train of three block qual 3 m/s ² , the magn	ts being pulled across itude of force F on the	a frictionless e tree blocks i	floor by force F , with is:
1	Cord 1 10 KG 10 KG	Cord 2 F	→	
A) zero	B) 30 N	C) 60 N	D) 90 N	
21.Acceleration is al	ways in the direction	of:		
A) displacement	B) net f	force C) ve	locity D)) none of these
22.A book rests on a A) Force from the	table, exerting a down the Earth on the table	vnward force on it. Th	ne reaction to	this force is:
 22.A book rests on a A) Force from th B) Force from th C) Force from th D) Force from th 23.A projectile is firm the angle θ is: 	table, exerting a dow he Earth on the table he book on Earth he Earth on the book the table on the book ed with a velocity of	vnward force on it. Th	b horizontal. I	this force is:
22.A book rests on a A) Force from th B) Force from th C) Force from th D) Force from th D) Force from th 23.A projectile is fir m the angle θ is: A) θ = 337 ⁰	table, exerting a down the Earth on the table the book on Earth the Earth on the book the table on the book the table on the book B) θ = 33.27 ⁰	wnward force on it. The force on it. The force on it. The force on it. The force on the force of θ to constrain the force of θ to constraint the f	b horizontal. I	this force is: If the range(R) is 337) θ = 40.5 ⁰
22. A book rests on a A) Force from th B) Force from th C) Force from th D) Force from th D) Force from th angle θ is: A) θ = 337 ⁰ 24. Stone thrown from	table, exerting a down the Earth on the table the book on Earth the Earth on the book the table on the book the table on the book B) θ = 33.27 ⁰ m the top of tall build	wnward force on it. The force of θ to be consistent of θ to be consistent of θ and the force of θ are a set of θ and the force of θ are a set of θ and the force of θ and the fo	be reaction to p o horizontal. I D) at is	this force is: If the range(R) is 337) θ = 40.5 ⁰
22.A book rests on a A) Force from th B) Force from th C) Force from th D) Force from th D) Force from th 23.A projectile is firment the angle θ is: A) θ = 337 ⁰ 24.Stone thrown from A) Parabolic	table, exerting a down the Earth on the table the book on Earth the Earth on the book the table on the book ed with a velocity of B) θ = 33.27 ⁰ m the top of tall build B) Hyperbolic	wnward force on it. The 60 m/s at angle of θ to C) $\theta = 40^0$ ling follows a path that c C) Straight	b horizontal. I D horizontal D	this force is: If the range(R) is 337) θ = 40.5 ⁰ D) Circular
22.A book rests on a A) Force from th B) Force from th C) Force from th D) Force from th D) Force from th 23.A projectile is fir m the angle θ is: A) θ = 337 ⁰ 24.Stone thrown from A)Parabolic 25.A particle is mo $\vec{v} = 5\hat{i} + 8\hat{j}$. At	table, exerting a down the Earth on the table the book on Earth the Earth on the book the table on the book ed with a velocity of B) θ = 33.27 ⁰ m the top of tall build B) Hyperbolic twing in circular path which point the velocity	vnward force on it. The 60 m/s at angle of θ to C) $\theta = 40^0$ ling follows a path that c C) Straight h, at point E, the part pocity is $\vec{v} = -5i - 8\hat{j}$	b horizontal. I D) tt is t line cticles velocit	this force is: If the range(R) is 337) $\theta = 40.5^{0}$ D) Circular sy is

		b) 8 m/s	C) 4 m/s ²	D) 2 III/8
32.An obje seconds	ects move at c s is:	constant speed of :	5 m/s on circular pat	t h of radius 10m. the period in
A) $3\pi^{3}$	B)	π C)	4π D) 20	
3.The we	ight of a body	v is equal 686 N,	its mass is:	
A) 100	0 kg	B) 200 kg	C) 70 kg	D) 686 kg

7

DONE BY AISHA ALBELADI