

Choose the correct answer:

1. Two forces $\widehat{\boldsymbol{F}_{\mathbf{1}}}=\mathbf{1 0} \hat{\imath} \& \widehat{\boldsymbol{F}_{\mathbf{2}}}=\mathbf{2 4} \hat{\jmath}$ are applied to move a 2 kg box. The magnitude of acceleration is:
A) $169 \mathrm{~m} / \mathrm{s}^{2}$
B) $25 \mathrm{~m} / \mathrm{s}^{2}$
C) $11 \mathrm{~m} / \mathrm{s}^{2}$
D) $13 \mathrm{~m} / \mathrm{s}^{2}$
2. According to Q 1 : the direction of acceleration is:
A) 67.4^{0}
B) -67.4^{0}
C) 76.4^{0}
D) -76.4^{0}

Use the following to answer question 3-5
The block of mass \mathbf{M} is connected to a block of mass \mathbf{m} as shown in figure:

3. The normal force \mathbf{F}_{N} on block \mathbf{M} is:
A) $\mathrm{F}_{\mathrm{N}}=m g-\mathrm{T}$
B) $\mathrm{F}_{\mathrm{N}}=\mathrm{Mg}$
C) $F_{N}=m g$
D) $\mathrm{F}_{\mathrm{N}}=\mathrm{Mg}-\mathrm{T}$
4. In the diagram, if we cut the, cord the acceleration of mass \mathbf{m} is:
A) $a=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
B) $a=$ zero
C) $a=735 \mathrm{~m} / \mathrm{s}^{2}$
D) $\mathrm{a}=4.9 \mathrm{~m} / \mathrm{s}^{2}$
5. The free body diagram representing the forces on \mathbf{m} is:
A)

B)

C)

D)

At this figure show the Projectile motion

6. When the projectile fired from the origin with Initial speed V_{0} different θ. The maximum range R occurs when
A) $\theta=45^{0}$
B) $\theta=90^{\circ}$
C) $\theta=180^{\circ}$
D) $\theta=360^{\circ}$
7. In the projected body, the component of its velocity in \mathbf{x}-direction $\left(v_{x}\right)$ is
A) equal to V_{o}
B) v_{x} unchanged
C) changes with angle
D) changes with time
8. In the projectile motion, the acceleration at heights point is:
A) zero
B) 2 g
C) -2 g
D) -g
9. A particle moving with initial velocity $\overrightarrow{\boldsymbol{v}}=-\mathbf{2} \hat{\boldsymbol{\imath}}+\mathbf{4} \hat{\boldsymbol{\jmath}}$, and acceleration $\overrightarrow{\boldsymbol{a}}=-\mathbf{5} \hat{\boldsymbol{\imath}}+\mathbf{8} \hat{\boldsymbol{\jmath}}$, the \mathbf{x}-component $\mathrm{v}_{\mathbf{x}}$ of the final velocity at ($\mathrm{t}=1 \mathrm{~s}$) is :
A) $-7 \mathrm{~m} / \mathrm{s}$
B) $-27 \mathrm{~m} / \mathrm{s}$
C) $-37 \mathrm{~m} / \mathrm{s}$
D) $-17 \mathrm{~m} / \mathrm{s}$
10.A particle moves in $x y$ plane as: $x(t)=2 t(m)$ and $y(t)=t^{2}-1(m)$. The velocity of the particle at $t=1 \mathrm{~s}$ is:
A) $\hat{i}+\hat{j}(\mathrm{~m} / \mathrm{s})$
B) $2 \hat{i}+\hat{j}(\mathrm{~m} / \mathrm{s})$
C) $2 \hat{i}-\hat{j}(\mathrm{~m} / \mathrm{s})$
D) $2 \hat{i}+2 \hat{j}(\mathrm{~m} / \mathrm{s})$
11.The velocity and the acceleration of a body in a uniform circular motion are:
A) differed by 45^{0}
B) perpendicular
C) differed by 135°
D) parallel
12.The gravitational force of earth acting on a 47 kg is:
A) 9.8 N
B) 147 N
C) 47 N
D) 460.6 N
13. In the figure, the magnitude of the net force on the block is:

A) 9 N
B) 10 N
C) 11 N
D) 12 N
14.A stone is thrown at building of height h with initial speed $32 \mathrm{~m} / \mathrm{s}$ directed 60° the stone landed on the roof after 4 s the vertical height is :
A) $\Delta y=78.4 m$
B) $\Delta y=17.4 \mathrm{~m}$
C) $\Delta y=32.45 \mathrm{~m}$
D) $\Delta y=20.5 \mathrm{~m}$
15.From question 14 , the horizontal velocity $\left(\mathrm{v}_{\mathrm{x}}\right)$ is:
A) $\mathrm{v}_{\mathrm{x}}=16 \mathrm{~m} / \mathrm{s}$
B) $\mathrm{v}_{\mathrm{x}}=-16 \mathrm{~m} / \mathrm{s}$
C) $\mathrm{v}_{\mathrm{x}}=27 \mathrm{~m} / \mathrm{s}$
D) $\mathrm{v}_{\mathrm{x}}=-27 \mathrm{~m} / \mathrm{s}$
16.A projectile is launched to achieve a maximum range of 140 m , the speed of the projectile must be:
A) $17 \mathrm{~m} / \mathrm{s}$
B) $27 \mathrm{~m} / \mathrm{s}$
C) $37 \mathrm{~m} / \mathrm{s}$
D) $45 \mathrm{~m} / \mathrm{s}$
17.A car travels east at constant velocity. The net force on the car is:
A) Zero
B) down
C) up
D) east
18. In the figure shown the block of mass 3 kg is at rest on a smooth inclined plane with angle 60° under the action of F, the magnitude of force F is:

5 N
B) 215 N
C) 14.7 N
D) 25.5 N
19. A person of mass 80 kg stands on spring scale in an elevator that has upward acceleration of 3 $\mathbf{m} / \mathbf{s}^{2}$ the scale will read:
A) 12.8 N
B) 1024 N
C) 544 N
D) 784 N
20.The figure shows a train of three blocks being pulled across a frictionless floor by force \mathbf{F}, with an acceleration equal $3 \mathrm{~m} / \mathrm{s}^{2}$, the magnitude of force F on the tree blocks is:

A) zero
B) 30 N
C) 60 N
D) 90 N
21.Acceleration is always in the direction of:
A) displacement
B) net force
C) velocity
D) none of these
22.A book rests on a table, exerting a downward force on it. The reaction to this force is:
A) Force from the Earth on the table
B) Force from the book on Earth
C) Force from the Earth on the book
D) Force from the table on the book
23.A projectile is fired with a velocity of $60 \mathrm{~m} / \mathrm{s}$ at angle of θ to horizontal. If the range(R) is 337 m the angle θ is:
A) $\theta=337^{0}$
B) $\theta=33.27^{0}$
C) $\theta=40^{\circ}$
D) $\theta=40.5^{0}$
24.Stone thrown from the top of tall building follows a path that is
A)Parabolic
B) Hyperbolic
C) Straight line
D) Circular
25.A particle is moving in circular path, at point E , the particles velocity is $\overrightarrow{\boldsymbol{v}}=5 \hat{\imath}+8 \hat{\jmath}$. At which point the velocity is $\vec{v}=-5 i-8 \hat{\jmath}$.
A) Point A
B) point B
C) point C
D) point D

26. A rope from the ceiling suspends a ball of weight 400 N . the tension in the rope is:

200 N
B) 400 N
C) 800 N
D) 560 N
27.The physical quantities are measured in the same units are:
A) Weight and tension
B) velocity and displacement
C) mass and weight
D) fraction and acceleration
28.In which figure of the following the x-component of the net force is negative value?

A)

C)

D)

29. Show the correct direction of the tension force T :

A)

B)

C)

D)
30.Definition as the time for particle go around the circle once:
A) acceleration
B) period
C) velocity
D) force
31. A car moves in a circular road of radius 2 m with speed $4 \mathrm{~m} / \mathrm{s}$, the car's acceleration is:
A) $1 \mathrm{~m} / \mathrm{s}^{2}$
B) $8 \mathrm{~m} / \mathrm{s}^{2}$
C) $4 \mathrm{~m} / \mathrm{s}^{2}$
D) $2 \mathrm{~m} / \mathrm{s}^{2}$
32.An objects move at constant speed of $5 \mathrm{~m} / \mathrm{s}$ on circular path of radius 10 m . the period in seconds is:
A) $3 \pi^{3}$
B) π
C)
4π
D) 20
33.The weight of a body is equal 686 N , its mass is:
A) 1000 kg
B) 200 kg
C) 70 kg
D) 686 kg

