TEST BANK PHYS 110

FIRST TERM 1439H

الدوري الثاني (طالبات)

مجامعة الملك عبد العزيز

شرح كامل للمقرر

ملخص للقوانين

نماذج الاختبارات السابقة

مراجعة عامة شاملة لمقرر الدوري الثاني

شرح مفصل لحل جميع الأسئلة

Before Exam

د. معاذ ابراهیم

0568148379

تطلب حصريا من مركز النخبة

ري الطباعة والتصوير © 1501589616 - تميز 0501589616 - تميز

Chapter 4: MOTIN IN 2D AND 3D

الحركة في بعدين وثلاث ابعاد

1. If the x component of vector \vec{r} is 2.6 m and the y component is -2.3 m then \vec{r} in unit-

(A) 2.6
$$\hat{i} - 2.3 \hat{j}$$

(B)
$$-2.3 \hat{i} + 2.6 \hat{j}$$

(C)
$$6.2 \hat{i} + 3.2$$

(B)
$$-2.3 \hat{i} + 2.6 \hat{j}$$
 (C) $6.2 \hat{i} + 3.2 \hat{j}$ (D) $3.2 \hat{i} - 6.2 \hat{j}$

$$\vec{r} = 2.6i - 2.3j$$

2. The displacement of a particle moving from $\vec{r}_1 = 5\hat{i} - 6\hat{j} + 2\hat{k}$ to $\vec{r}_2 = -2\hat{i} + 6\hat{j} + 2\hat{k}$ is

(A)
$$-7\hat{i} + 12\hat{j}$$
 (B) $3\hat{i} + 4\hat{k}$ (C) $7\hat{i} - 12\hat{j}$ (D) $-3\hat{i} - 4\hat{k}$

(B)
$$3\hat{i} + 4\hat{k}$$

(C)
$$7\hat{i} - 12\hat{j}$$

$$(D) - 3\hat{i} - 4\hat{k}$$

$$\triangle \ \ \widehat{\ } = \widehat{\ } \widehat{\ } - \widehat{\ } \widehat{\ }$$

$$(-2i+6j+2k)-(5i-6j+2k)$$

$$= -7i + 12j$$

3. A particle goes from $(x_1=-2m, y_1=3m, z_1=1m)$ to $(x_2=3m, y_2=-1m, z_2=4m)$. Its displacement is: displacement is:

(a)
$$\hat{i} + 2\hat{j} + 5\hat{k}$$

(b)
$$5\hat{i} - 4\hat{j} + 3$$

(b)
$$5\hat{i} - 4\hat{j} + 3\hat{k}$$
 (c) $-5\hat{i} + 4\hat{j} - 3\hat{k}$ (d) $-\hat{i} - 2\hat{j} - 5\hat{k}$

(d)
$$-\hat{i} - 2\hat{j} - 5i$$

$$\frac{1}{2} \sum_{i=1}^{2} \frac{1}{x_{i}} = \frac{1}{x_{i}} = \frac{1}{x_{i}}$$

$$\frac{1}{2} \sum_{i=1}^{2} \frac{1}{x_{i}} = \frac{1}{x_{i}}$$

$$\frac{1}{2} \sum_{i=1}^{2} \frac{1}{x_{i}} = \frac{1}{x_{i}}$$

$$\Delta X = (3 - (-2))i (-1 - 3)j (4 - 1) K$$

$$5i - 4j + 3 K (b)$$

4. The coordinates of a car's position as function of time is given by: $x = 5t^2 + 16$, and $y = -t^3$ +5, the magnitude of position vector \bar{r} at t=2s is:

$$\Rightarrow x = 5t^2 - 16$$

$$x = 5(2)^2 - 16$$

$$x = 4 \text{ m}$$

$$\Rightarrow y = -t^3 + 5$$

$$y = -(2)^3 + 5$$

$$y = -3$$

$$y = \sqrt{4^2 + (-3)^2} \Rightarrow 5 \text{ m}$$

5. The components of a car's velocity as a function of time are given by :

 $V_x=2t+3$, and $V_y=4t-1$, its velocity \vec{V} at (t=1 s) is:

(A)
$$\vec{V} = 9\hat{i} + 11\hat{j}$$

(B)
$$\vec{V} = 5\hat{i} + 3\hat{j}$$

$$(C) \vec{V} = 7\hat{i} + 7\hat{j}$$

(A)
$$\vec{V} = 9\hat{i} + 11\hat{j}$$
 (B) $\vec{V} = 5\hat{i} + 3\hat{j}$ (C) $\vec{V} = 7\hat{i} + 7\hat{j}$ (D) $\vec{V} = 11\hat{i} + 15\hat{j}$

* عومی ب ا = t * فی الس کستن

$$V_x = 2t + 3$$

$$V_{x} = 2(1) + 3$$

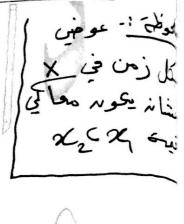
$$Vy = 4t - 1 \implies Vy = 3jm \implies V = 5i + 3j$$

6. Velocity is defined as:

time

rate of chang of Position with time

- 7. The position of a particle moving on an x axis is given by: $X = t^2 + 2$, its average velocity in the time interval from t=1s to t=2s is:
- (a) 4 m/s
- (b) 2 m/s
- (d) 1 m/s


$$x = t^2 + 2$$

$$V_{\text{ave}} = \frac{\chi_2 - \chi_1}{t_2 - t_1}$$

$$\chi = 1^2 + 2 \Longrightarrow 3$$

$$\chi_0 = 2^2 + 2 \Longrightarrow 6$$

$$v_{ave} = \frac{6-3}{2-1}$$

8. A car travels east at 200 m/s and then travels west at 200 m/s, the change in its velocity

- (a) zero
- (b) 400 m/s east
- (c) 400 m/s west
- (d) 200 m/s west

$$\Lambda V = 22$$

* chang in its Velocity +

$$\Delta V = V_2 - V_1$$

9. The position vector for a moving particle is: $\vec{r} = \hat{i} + 4t^2\hat{j} + t\hat{k}$, its velocity and acceleration as a function of time are:

(a)
$$\frac{\overline{v} = 8t\hat{j} + \hat{k}}{\overline{a} = 8\hat{j}}$$

(a)
$$\frac{\overline{v} = 8t\hat{j} + \hat{k}}{\overline{a} = 8\hat{j}}$$
 (b) $\frac{\overline{v} = \hat{i} + 8t\hat{j} + \hat{k}}{\overline{a} = 8\hat{j} + \hat{k}}$ (c) $\overline{v} = 8t\hat{j}$ (d) $\overline{v} = 8t^2\hat{j} + t\hat{k}$ $\overline{a} = 8\hat{j}$

$$(c) \in \overline{a} = 8t\hat{j}$$

$$\overline{a} = \hat{i} + 8\hat{j}$$

(d)
$$\overline{v} = 8t^2 \hat{j} + t\hat{k}$$
$$\overline{a} = 8\hat{j}$$

$$\overrightarrow{r} = i + 4t^2j + tK$$

$$V = 1 + 41$$

$$V = 8 + 1$$

$$Q = 8 + 1$$

10. A particle moves in the xy plane. In which situation of the following V_x and V_y are both constant

Situation	X(m)	Y(m)
Α	2t²	4 t + 3
В	4 t 3 - 2	+3
С	5 t	21+1
D	- 3 t	t 2 - 1
) B	(c) C	(d) D

(a) A

* حالت ثبوت السرعة تكوير قيمت السرجة بعد الأثناه لا أحتوى بل ل

$$ceif | \mathcal{K} = 5t$$

$$V = 5m | S$$

$$ceif | \mathcal{Y} = 2t + 1$$

$$V = 2m | S$$

11. The components of a car's velocity as a function of time are given by $v_x = 6 t^2 - 5$, $v_{y=}$.

(A)
$$a_x = 10 \text{ t}$$

 $a_y = -12 \text{ t}^2$

(B)
$$a_x = 4 t$$

 $a_y = -6 t^2$

(C)
$$a_x = 6 t$$

 $a_y = -15 t^2$

$$\frac{(D) a_x = 12 t}{a_y = -9 t^2}$$

lieuty
$$V_x = 6t^2 - 5$$
 $a_x = 12t$
 $a_x = -3t^3$
 $a_y = -9t^2$

12. A particle moving with initial velocity $\vec{v}_0 = -2\hat{i} + 4\hat{j}$ m/s, and acceleration $\vec{a} = -5\hat{i} + 8\hat{j}$ m/s², the x-component v_x of the final velocity at (t=1 s) is ?

$$V. = -2i + 4j$$
 $a = -5i + 8j$
 $t = 1$
 $v = ??$

$$\vec{V} = V_0 + qt$$

$$\vec{V} = -2i + 4j + (-5i + 8j)$$

$$\vec{V} = -2i + 4j - 5i + 8j$$

$$\vec{V} = -7i + 12j$$

$$\vec{V}_{\chi} = -7i + 12j$$

14. A particle had a speed of 18 m/s in the +x direction and after 2.4 s its speed was 30 m/s in the -x direction. Its average acceleration during this time is:

(a)
$$a = \frac{-30 - 18}{2.4}$$
 (b) $a = \frac{30 - 18}{2.4}$ (c) $a = \frac{18 + 30}{2.4}$ (d) $a = \frac{18 - 30}{2.4}$

(b)
$$a = \frac{30 - 18}{2.4}$$

(c)
$$a = \frac{18 + 30}{2.4}$$

(d)
$$a = \frac{18-30}{2.4}$$

$$V_1 = +18 \, \text{m} \, \text{ls}$$

$$V_2 = -30 \, \text{m} \, \text{ls}$$

$$t = 2.4$$

$$a_{3v_2} = ??$$

$$a_{ave} = \frac{V_2 - V_1}{t_2 - t_1}$$

$$= \frac{-30 - 18}{2.4}$$

15. A particle moving with $\vec{v}_0 = 2\hat{i} + 5\hat{j}$ and acceleration $\vec{a} = 5\hat{j}$. Its velocity after 2s is:

(c)
$$\sqrt{29}$$
 m/s

(d)
$$\sqrt{43.2}$$
 m/s

$$V_{0} = 2i + 5j$$
 $V_{0} = V_{0} + at$
 $V_{0} = 2i + 5j + (5j) 2$
 $V_{0} = 2i + 5j + (5j) 2$
 $V_{0} = 2i + 5j + 10j$
 $V_{0} = 2i + 5j + 10j$
 $V_{0} = 2i + 15j$
 $V_{0} = 2i + 15j$
 $V_{0} = 2i + 15j$
 $V_{0} = 2i + 15j$

16. A particle leaves the origin with initial velocity $\bar{v}_0 = 8\hat{i} + 12\hat{j}$ m/s and a constant acceleration $\bar{a} = 4\hat{i} - 2\hat{j}$ m/s². The particle's velocity at t = 6 s is:

(a)
$$\bar{v} = 24\hat{j}$$

$$\overline{v} = 32\hat{i} + 24\hat{j}$$

(c)
$$\overline{v} = 32\hat{i}$$

(d)
$$\bar{v} = 32\hat{i} - 12\hat{j}$$

$$V_{o} = 8i + 12j$$
 $a = 4i - 2j$
 $t = 6sec$
 $V = ??$

$$\vec{V} = V_0 + \alpha t$$

$$\vec{V} = 8i + 12j + (4i - 2j)6$$

$$\vec{V} = 8i + 12j + 24i - 12j$$

$$\vec{V} = 32i$$

17. Acceleration is equal to

(a)
$$\frac{d\vec{v}}{dt}$$

(b)
$$\frac{d\vec{r}}{dt}$$

$$(c)\frac{d\vec{v}}{dr}$$

$$(d)\frac{\Delta \vec{r}}{\Delta t}$$

* Acceleration =
$$\frac{d\vec{v}}{dt}$$

$$Velocity = \frac{dx}{dt}$$

32. You are to launch a rocket, from just above the ground, with one of the following initial velocity vectors: (1) $\vec{v}_0 = 20\hat{i} + 70\hat{j}$, (2) $\vec{v}_0 = -20\hat{i} + 70\hat{j}$, (3) $\vec{v}_0 = 20\hat{i} - 70\hat{j}$, (4) $\vec{v}_0 = -20\hat{i} - 70\hat{j}$. Rank the vector according to the launch speed greatest first.

$$|\vec{l}| \vec{V_o} = \sqrt{(20)^2 + (70)^2} = 72.8$$

$$|\vec{l}| \vec{V_o} = \sqrt{(-20)^2 + (70)^2} = 72.8$$

$$|\vec{l}| \vec{V_o} = \sqrt{(20)^2 + (-70)^2} = 72.8$$

$$|\vec{l}| \vec{V_o} = \sqrt{(20)^2 + (-70)^2} = 72.8$$

$$|\vec{l}| \vec{V_o} = \sqrt{(-20)^2 + (-70)^2} = 72.8$$

33. In the projectile motion, the vertical velocity component v_{ν}

- (a)changes continuously
- equals (d) v_vequals v_x remains (c) (b) zero constant

الرأ رست للسريت للسريت بي تنفير بشكل قابت لحديد النسارع ثابت 18--- في المسارع ثابت 18--- في

* Chang continuously *

30. In question 28, the maximum range of the ball is:

- (a) 1469.4 m
- (b) 1272.5 m
- (c) 1649.4 m
- (d) 1722.5 m

$$R_{mgx} = \frac{\sqrt{c}}{2}$$

$$R_{mqx} = \frac{(120)^2}{918}$$
= 1469,4 m

31. The horizontal range is the horizontal distance the projectile has traveled when it returns

- (a) the origin
- (b) its max. height (c) its final height
- (d) its initial height

* تعن من لمري (المسافت (هوفيت) المفدوف فم يعود الى نفسى هو المسافت (كتى يتوركرا المفدوف فم يعود الى نفسى ركز رتفاى (هربسائى .

its inital height

28. A ball is thrown with initial velocity $v_0=120$ m/s at an angle $\theta_0=60^\circ$ above the horizontal, the velocity v_0 in unit vector notation is:

the velocity
$$\vec{v}_0$$
 in this vector rotation is:
(a) $\vec{v}_0 = 104\hat{i} + 60\hat{j}$ (b) $\vec{v}_0 = 60\hat{i} + 104\hat{j}$ (c) $\vec{v}_0 = 60\hat{i}$ (d) $\vec{v}_0 = 104\hat{j}$

$$V_{0x} = V_{0} \cos \theta$$

$$= 120 \times 60$$

$$= 60 i$$

$$= 60 i$$

$$V_{0y} = V_{0} \sin \theta$$

$$= 120 \sin 60$$

$$= 104 j$$

29. In question 28, the acceleration in the horizontal direction when t=5 s is:

(b)
$$-9.8 \text{ m/s}^2$$

the acceleration in the norizontal direction is:

[Zero]

[eg Solut Ge Solution is selected as select

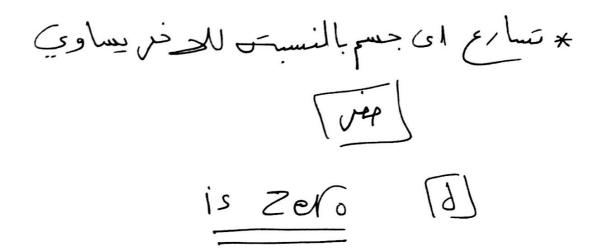
26. In question 25, the horizontal component of the ball's velocity $V_{x0}\,$ is:

- (a) V_{x0} = unchanged
- (b) $V_{x0} = zero$
- (c) $V_{x0} = V_0$
- (d) V_{x0} is changed

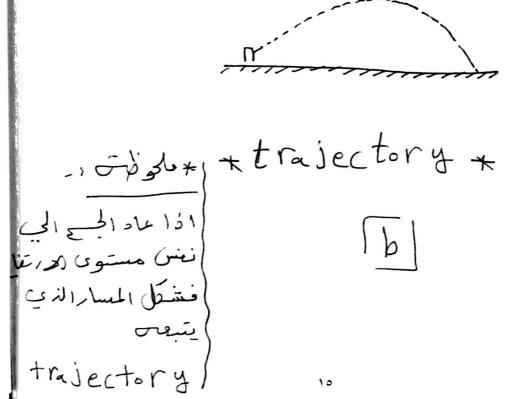
والماً عابت

unch changes

[al


27. In question 25, at the maximum height, the vertical component of the ball's velocity Vy is:

- (a) $V_y = V_x$
- (b) $V_v = V_0$
- (c) $V_y = zero$
- $(d) V_y = V_{0y}$


* at the maximum hight

الس عد اقع ارتفاع = من

- 24. Two projectiles are in flight at the same time. The acceleration of one relative to the other:
- (a) is always 9.8 m/s² (b) can be as large as 19.8 m/s² (c) can be horizontal (d) is zero

- 25. A ball is thrown at V_0 and angle θ_0 above horizontal and returned to its initial height. The path of the ball is called:
- (a) Range
- (b) Trajectory
- (c) Horizontal
- (d) Vertical path

22. A large cannon fired a ball at an angle of 30° above the horizontal with initial speed 980m the projectile will travel what horizontal distance before striking the ground?

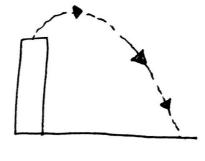
(a) 4.3 km

(b) 8.5 km

(c) 43 km

Horizontal distance = Rang

$$R = ??$$


$$R = \frac{\sqrt{2} \sin 2\theta}{9}$$

$$R = \frac{(980)^2 \sin(2x30)}{9.8}$$

$$R = 84870 \text{ m} \Rightarrow \frac{84870}{1000}$$

= 85 km

23. A stone thrown from the top of a tall building follows a path that is:

- (a) circular
- (b) parabolic
- (c) hyperbolic
- (d) a straight line

Parabolic + قَفِع مِكَا فَيْ *

* إذا رقط حر من قبت حبن يكوسر شكل المسار على شكل قبلي مكا فئ *

20. In the projectile motion the acceleration in the horizontal direction is:

- (A) 19.6 m/s^2
- (B) zero
- (C) 9.8 m/s²
- (D) 4.9 m/s²

* فى المقدوفات والما التسارع في كر آماه (كر فقى = مفن كر آماه (كر وقتى = مفن كر وده المعالم المعال

- 21. The range of a ball is thrown at an angle of 30° above the horizontal with an initial speed 50 m/s is:
- (A) 318.1 m
- (B) 267.3 m
- (C) 373.4 m
- (D) 220.9 m

$$R = \frac{\sqrt{sin 2\theta}}{g}$$

$$R = \frac{\sqrt{sin 2\theta}}{\sqrt{sin 2\theta}}$$

$$\frac{\sqrt{sin 2\theta}}{\sqrt{sin 2\theta}}$$

= 220,9 m

18. The range of a ball is thrown at an angle of 30° above the horizontal with an initial speed 50 m/s is:

- (A) 318.1 m
- (B) 267.3 m
- (C) 373.4 m
- (D) 220.9 m

$$R = \frac{V^2 \sin 2\theta}{9}$$

19. The maximum range of a projectile is at launch angle

- (A) $\theta = 25^{\circ}$
- (B) $\theta = 35^{\circ}$
- $(C) \theta = 45^{\circ}$
- (D) $\theta = 55^{\circ}$

الزاوية عند اقعي مدي تساوي

the angle at maximum rangis

145

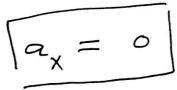
34. The maximum range of a projectile is at launch angle

(a)
$$\theta = 25^{\circ}$$

(b)
$$\theta = 35^{\circ}$$

(c)
$$\theta = 45^{\circ}$$

(d)
$$\theta = 55^{\circ}$$


35. In the projectile motion the horizontal velocity component ν_x remains constant because the acceleration in the horizontal direction is:

(a)
$$a_x > 0$$

(b)
$$a_x = g$$

(c)
$$a_x > g$$

(d)
$$a_x = 0$$

السر المت على فور مر تبقى ثا بتت لحديد فكيت المتسارع من (هوفق) (فور ١٠) يساوى جنر

- 36. The range of a ball is thrown at an angle of 30° above the horizontal with an initial speed 50 m/s is:
- (a) 318.1 m
- (b) 267.3 m
- (c) 373.4 m
- (d) 220.9 m

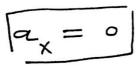
$$R = \frac{V_o^2 \sin 2\theta}{\vartheta}$$

- 37. A ball is thrown at an angle of 30° above the horizontal with an intial speed 980 m/s. The ball's range is:
- (a) 4.3 km
- (b) 8.5 km
- (c) 43 km
- (d) 85 km

ے سے قسمنا علی ۱۰۰۰ عشانہ انحولط الی ۲۰۰۰

<u>,</u> / 000

 \approx 85 km


38. In the projectile motion the horizontal velocity component v_x remains constant because the acceleration in the horizontal direction is:

$$(a) a_x = 0$$

(b)
$$a_x > 0$$

(c)
$$a_x = g$$

(d)
$$a_x > g$$

* التسارع على قور يو يساوي مفن *

39. A ball is thrown at V_0 and angle θ_0 above horizontal and returned to its initial height. The path of the ball is called:

(a) Range

(b) Trajectory

(c) Horizontal path

(d) Vertical path

* حيمًا يقذ ف جسم بسم عن إبتدائيت ، لا وزاويت في أم يعود دلجسم الي نفس أحدر تفاع الهيدائي فإنه مسار (Path) هذا الجسم المي يسبي

* trajectory *

40. In question 39, the horizontal component of the ball's velocity V_{x_0} is:

$$=$$
 (b) $V_{x0} = zero$

(c)
$$V_{x0} = V_0$$

(c)
$$V_{x0} = V_0$$
 (d) V_{x0} is changed

* اذا كان التسارع عابت فانر السر 4 لا تتغير

41. In question 39, at the maximum height, the vertical component of the ball's velocity Vy is:

(a)
$$V_y = V_x$$

(b)
$$V_y = V_0$$

(c)
$$V_y = zero$$

(d)
$$V_y = V_{0y}$$

م الله الله الله عبد ا تعنى ارتفاع = 0

Vy at maximum height

42. The period of an objects moving at a constant speed of 4 m/s on a circular path of radius

(B)
$$2\pi$$
 s

(C)
$$4\pi$$
 s

$$V = 4ml^{3}$$

$$V = 2m$$

$$t = \frac{2TT}{V}$$

$$t = 2TT^{2}$$

$$t = ??$$

$$t = \frac{2\pi r}{v}$$

$$t = \frac{2\pi 2}{4}$$

$$=\frac{yT}{y}$$

43. The period of an objects moving at a constant speed of 4 m/s on a circular path of radius

(B)
$$2\pi$$
 s

44. A particle moves at constant speed in a circular path. The instantaneous velocity and instantaneous acceleration vectors are:

- (a) both tangent to the circular
- (b) both perpendicular to the to each other
- (c) perpendicular (d) opposite to
 - each other

path

circular path

*السرعة والتسارع في الحركت الدائر من يكونانه

* Prefendicular to each other

45. For a biological sample in a 1:0-m radius centrifuge to have a centripetal acceleration of 25g, its speed must be:

- (a) 11 m/s
- (b) 16 m/s
- (c) 50 m/s

10

(d) 122 m/s

$$a = 25 \%$$

$$= 25 \times 918$$

$$= 245 \text{ m/s}$$

$$Y = 1 \text{ m}$$

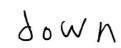
$$V = ??$$

$$\alpha = \frac{V^{2}}{V^{2}}$$


$$245 = \frac{V^{2}}{V^{2}}$$

$$V^{2} = 245 \quad \text{(V)}$$

$$V = 15,6 \approx 16 \text{ m}$$


- 46. A stone is tied to a 0.50-m string and whirled at a constant speed of 4m/s in a vertical circle. Its acceleration at the top of the circle is:
- (a) 9.8 m/s², up
- (b) 9.8 m/s², down
- (c) 32 m/s², up
- (d) 32 m/s², down

$$a = \frac{V^2}{R}$$

$$\alpha = ??$$

a = 32 m/s down

- 47. A stone is tied to a 0.50-m string and whirled at a constant speed of 40m/s in a vertical circle. Its acceleration at the bottom of the circle is:
- (a) 9.8 m/s², up
- (b) 9.8 m/s², down
- (c) 32 m/s², up
- (d) 32 m/s², down

$$a = \frac{V}{R}$$

$$\alpha = \frac{4}{0.50}$$

77

48. A car rounds a 20-m radius curve at 10m/s. The magnitude of its acceleration is:

- (a) zero
- (b) 0.2 m/s^2
- (c) 5 m/s²
- (d) 40 m/s²

$$a = ??$$

$$a = \frac{\sqrt{c}}{r}$$

$$=\frac{10^2}{20}$$

$$= 5m/s^2$$

- 49. The speed of a car moving in a circular path of radius 20 m with a centripetal acceleration of 5 m/s2 is:
- (a) 10 m/s
- (b) 100 m/s
- (c) 4 m/s
- (d) 2000 m/s

$$a = \frac{V^2}{r}$$

$$5 = \frac{V^2}{20}$$

$$V^2 = \sqrt{5 \times 20} \quad V = 10 \text{ m}$$

27

50. The period of a plane that enters a horizontal circular turn with $\bar{v}_i = 200\hat{i} + 600\hat{j}$ m/s and 32 s later leaves the turn with $\bar{v}_f = 200\hat{i} + 600\hat{j}$ is:

$$\sqrt{i} = 200i + 600j$$
 $\sqrt{j} = 200i + 600j$
 $t_{1} = 325$
 $t_{2} = 325$

50. The period of a plane that enters a horizontal circular turn with
$$\bar{v}_i = 200\hat{i} + 600\hat{j}$$
 m/s and 32 s later leaves the turn with $\bar{v}_i = 200\hat{i} + 600\hat{j}$ is:

(a) 12

(b) 16

(c) 32

(d) 64

$$\vec{v}_i = 200\hat{i} + 600\hat{j}$$
Line (a) 12

(b) 16

(c) 32

(d) 64

$$\vec{v}_i = 200\hat{i} + 600\hat{j}$$
Line (a) 12

(b) 16

(c) 32

(d) 64

$$\vec{v}_i = 200\hat{i} + 600\hat{j}$$
Line (a) 10

(d) 64

$$\vec{v}_i = 200\hat{i} + 600\hat{j}$$
Line (a) 10

(e) 10

(f) 10

(f) 10

(g) 10

(h) 10

51. The period of an objects moving at a constant speed of 4 m/s on a circular path of radius 2 m is:

(b)
$$2\pi$$
 s

(c)
$$4\pi$$
 S

(d)
$$8\pi$$
 s

$$V=4mls$$

$$Y=2m$$

$$t=??$$

$$t = \frac{2\pi r}{V}$$

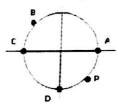
$$t = \frac{2\pi r^2}{4}$$

$$t = \frac{2\pi r^2}{4}$$

$$t = \frac{4\pi r^2}{4}$$

$$t = \pi r^3 ecc$$

52. Referring to question 51, the acceleration of the object is:


(d)
$$8 \text{ m/s}^2$$

$$V = Ymls$$

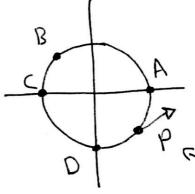
$$\alpha = \frac{V^2}{V}$$

$$a = \frac{y^2}{2} = 8m/s^2$$

53. A particle is moving in circular path, at point P the particles velocity is: $\vec{v} = 3\hat{i} + 4\hat{j}$ at which point the velocity is $\vec{v} = -3\hat{i} - 4\hat{j}$

(a) A

(b) B


(c) C

(d) D

$$\overrightarrow{V}_{p} = 3i + 4j$$

$$\overrightarrow{V}_{p} = -3i - 4j$$

$$\overrightarrow{V} = -3\overrightarrow{l} - 4\overrightarrow{J}$$

م م م المركب المرابع الموال (-ر-) . فإ در ع هي الربع المرابع المرابع المالان (-ر-)

Chapter 5: FORCE AND MOTIN I

القوة والحركة

1. The figures below shows four situation in which forces act on a block that lies on a

بداكر قديد للقوة تكونه فيرا القوتاس فى نفسى ذهر اتجاه went/en=

2. A force of 0.2 N acts on a mass of 100 g, what is its acceleration?

(a)
$$2 \times 10^{-2} \text{ m/s}^2$$

(a)
$$2 \times 10^{-2} \text{ m/s}^2$$
 (b) $2 \times 10^{-6} \text{ m/s}^2$ (c) $2 \times 10^{-3} \text{ m/s}^2$ (d) 2 m/s^2

(c)
$$2 \times 10^{-3} \text{ m/s}^2$$

(d)
$$2 \text{ m/s}^2$$

$$f = 0.2N$$
 $M = \frac{100}{1000}$
 $= 0.1163$
 $a = ??$

$$\begin{aligned}
& = \infty & \alpha \\
& = \infty & \alpha \\
& = \infty, 2 \\
& = 0, 1 & \alpha & 0, 0
\end{aligned}$$

$$& = \frac{0, 2}{0, 1}$$

$$& = 2 \times 15^{2}$$

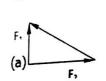
$$& = 0$$

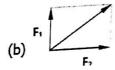
Scanned by CamScanner

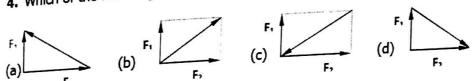
3. A man pulls a box of mass 3 kgvertically upward with a force of magnitude 40 N. What is the acceleration of the box?

(a)
$$a = \frac{T - mg}{m}$$
 (b) $a = \frac{mg - T}{m}$ (c) $a = \frac{T + mg}{m}$ (d) $a = \frac{m}{T + mg}$

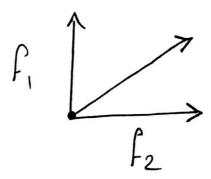
(b)
$$a = \frac{mg - 1}{m}$$


(c)
$$a = \frac{T + mg}{m}$$


(d)
$$a = \frac{m}{T + mg}$$


$$t - mg = ma$$

= a = t-mg [a]


4. Which of the following figures correctly show the vector addition of forces F_1 and F_2 ?

* حامل 2ع قوتين هي اله يبرأ المتجب من بداين كل قوة .

5. If the 1 kg body has an acceleration of 2 m/s² at an angle of 20° above the positive direction of the x-axis. What is the **net force** in unit vctor notation?

$$F_{x} = 1.88L$$

$$F_{y} = \text{masin}\theta \implies 1 \times 2 \times \sin 20$$

$$= 5,000$$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,000$
 $= 5,$

6. Two forces act on a particle that moves with **constant velocity** $\vec{v} = 3\hat{i} - 4\hat{j}$ m/s, one of the forces is $\vec{F}_1 = 2\hat{i} - 6\hat{j}$ N, what is the other force?

(a)
$$\vec{F}_2 = 2\hat{i} - 6\hat{j}$$

(b)
$$\vec{F}_2 = 6\hat{i} - 10\hat{j}$$

(c)
$$\vec{F}_2 = -2\hat{i} + 6$$

(a)
$$\vec{F}_2 = 2\hat{i} - 6\hat{j}$$
 (b) $\vec{F}_2 = 6\hat{i} - 10\hat{j}$ (c) $\vec{F}_2 = -2\hat{i} + 6\hat{j}$ (d) $\vec{F}_2 = -6\hat{i} + 10\hat{j}$

6

constant velocity - 15 Grap 151x

$$F_1 + F_2 = 0$$

$$\int_{2} = -2i + 6j$$

7. A particle has a weight of 22 N at a point where $g = 9.8 \text{ m/s}^2$, what are its mass and weight at a point where g = 0?

(a)
$$m = 2.2 \text{ kg}$$

(a) $m = 0$

(b)
$$m = 0$$

 $W = 2.2 N$

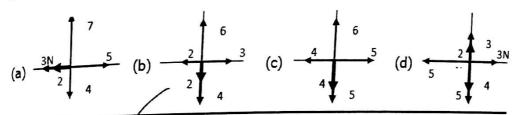
(c) m =
$$0.45 \text{ kg}$$

W = 0

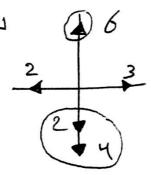
(d)
$$m = 0$$

 $W = 45 N$

$$w = 22N$$
 $g = -9.8$


$$m = ??$$

$$w = 7)$$


$$m = \frac{22}{9.8} \Rightarrow 2.2 \text{ kg}$$

$$W = 2.2 \times (0) \Rightarrow 0$$

8. In which figure of the following the y-component of the net force is zero?

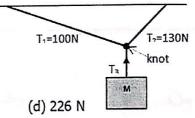
* المرلب لا للقوة تساوى معز

25

In question9, if the cord is cut then the mass will slide with acceleration equals: 11.

(a)
$$a = -4.9 \text{ m/s}^2$$

(b)
$$a = -9.8 \text{ m/s}^2$$


(c)
$$a = -8.5 \text{ m/s}^2$$

(a)
$$a = -4.9 \text{ m/s}^2$$
 (b) $a = -9.8 \text{ m/s}^2$ (c) $a = -8.5 \text{ m/s}^2$ (d) $a = -3.4 \text{ m/s}^2$

* 151 كالر راجي لد تؤثر عليات قوة خارجي ك أو f. يتمرك أقب المون وزنى فقط فامر :-

(a)
$$\alpha = -4, q = > 2/5 - 2/2$$

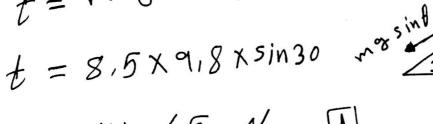
A block of mass M= 20 kg hangs from three cords by means of a knot, (the mass M does not move), what is the value of tensionT₃?

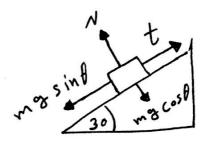
$$t_3 = m g$$

77

g. In the figure a cord holds stationary a block of mass m = 8.5 kg on a frictionless plane that is inclined at An angle $\theta = 30^{\circ}$, the tension in the cord T

equals:

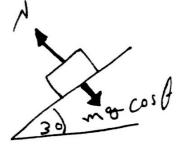

(a) 72.14 N


(b) 83.3 N

- (c) 53.14 N
- (d) 41.65 N

t=m&sinA

t = 41,65 N


In question9, the Normal forceN acting on the block is: 10.

(a) $N = F_g - mg \cos\theta$

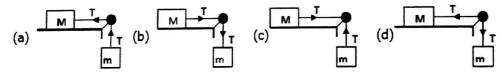
- (b) $N = F_g \cos\theta$
- (c) $N = F_g + mg \cos \theta$
- (d) $N = F_g$

N=mgcosa

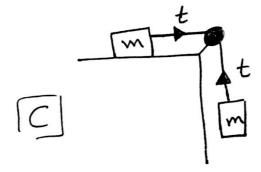
N = 8,5 X 9,8 X COS 30

$$= 72,1 N$$

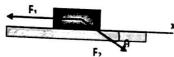
- 13. What is the net force acting on a body of a mass of 48 kg , when its acceleration is 6 m/s²?
- (a) 758 N
- (b) 182 N
- (c) 288 N
- (d) 470 N


$$m = 48 kg$$

$$\alpha = 6 m ls^2$$


$$\xi f = ??$$

$$\begin{aligned}
& \mathcal{Z} f = \mathcal{M} & \mathcal{A} \\
& \mathcal{Z} f = 48 \times 6 \\
& = 288 \mathcal{N}
\end{aligned}$$


14. Which figure of the following shows the right direction of the tension T? (the two masses are stationary).

* فاسمة هاست ، وا ثماً إ آباه الله على البلوة .

Two forces act on a block of mass m = 0.5 kg that Moves along the x-axis on a frictionless table, $F_1 = 3$ N and $F_2 = 1$ N directed at angle $\theta = 30^{\circ}$ as shown, What is the acceleration of the block?

(a)
$$-4.3 \text{ m/s}^2$$

(b)
$$- 7.7 \text{ m/s}^2$$

(c) -
$$5 \text{ m/s}^2$$

(d) -
$$7 \text{ m/s}^2$$

$$K = 0.5 \text{ kg}$$

$$F_1 = -3 \text{ N}$$

$$F_2 = 1 \text{ N}$$

$$\theta = 30$$

$$\alpha = ??$$

$$\begin{aligned}
& \left[\frac{1}{2} \cos \theta - f_{1} = m \alpha \right] \\
& \left[\cos 3 \alpha - 3 = 0.5 \alpha \right] \\
& -2.133 = 0.5 \alpha \quad \div 0.5 \right] \\
& \frac{-2.133}{0.5} = 0.5 \alpha \quad \div 0.5 \right] \\
& \alpha = -4.3 \text{ m/s}^{2} \quad \alpha \end{bmatrix}$$

If m_1 = 2 kg and m_2 = 4 kg and the same force is applied to both masses, then the ratio of their accelerations is:

(a)
$$\frac{a_2}{a_1} = \frac{1}{2}$$

(b)
$$\frac{a_2}{a_1} = 2$$

(b)
$$\frac{a_2}{a_1} = 2$$
 (c) $\frac{a_2}{a_1} = \frac{1}{4}$ (d) $\frac{a_2}{a_1} = 4$

(d)
$$\frac{a_2}{a_1} = 4$$

$$M_1 = 2 \text{ is }$$

$$M_2 = 4 \text{ is }$$

$$\frac{q_2}{q_1} = ??$$

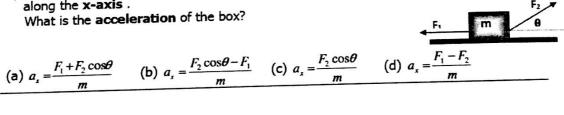
A force F applied to a body of mass mo giving it an acceleration ao, what is the mass of a body x if the same force is applied to it and accelerate it by a_x ? (a) $m_x = m_0 \frac{a_x}{a_0}$ (b) $m_x = m_0 \frac{a_0}{a_x}$ (c) $m_x = \frac{a_x}{a_0}$ (d) $m_x = \frac{a_0}{a_x}$

(a)
$$m_x = m_0 \frac{a_x}{a_0}$$

(b)
$$m_x = m_0 \frac{a_0}{a_x}$$

$$(c) m_x = \frac{a_x}{a_0}$$

$$(d) m_x = \frac{a_0}{a_x}$$


$$F_{o} = F_{\chi}$$

$$M_{o} \alpha_{o} = M_{\chi} \alpha_{\chi} \qquad \boxed{\vdots \alpha_{\chi}}$$

$$M_{\chi} = \frac{M_{o} \alpha_{o}}{\alpha_{\chi}} \qquad \boxed{oR} M_{\chi} = M_{o} \frac{\alpha_{o}}{\alpha_{\chi}}$$

$$\boxed{b}$$

In the figure, two forces acting on a box of mass m moving over a frictionless ice along the x-axis.

(a)
$$a_x = \frac{F_1 + F_2 \cos \theta}{m}$$

(b)
$$a_x = \frac{F_2 \cos \theta - F_2}{m}$$

(c)
$$a_x = \frac{F_2 \cos \theta}{m}$$

$$(d) a_x = \frac{F_1 - F_2}{m}$$

$$f_{2}\cos\theta - f_{1} = m\alpha$$

$$\frac{1}{2}\cos\theta - f_{1}$$

$$q_{2} = \frac{f_{2}\cos\theta - f_{1}}{m}$$

$$q_{3} = \frac{f_{4}\cos\theta - f_{1}}{m}$$

The magnitude of the centripetal force is 19.

(a)
$$F = m \frac{v^2}{R^2}$$
 (b) $F = \frac{v^2}{R}$ (c) $F = m \frac{v}{R}$

(b)
$$F = \frac{v^2}{R}$$

(c)
$$F = m \frac{v}{R}$$

$$(d) F = m \frac{v^2}{R}$$

$$f = m - \frac{V^2}{R}$$

Two forces act on a particle that moves with **constant velocity** $\vec{v} = 3\hat{i} - 4\hat{j}$ **m/s**, one of the forces is $\vec{F}_1 = 2\hat{i} - 6\hat{j}$ N, what is the other force?

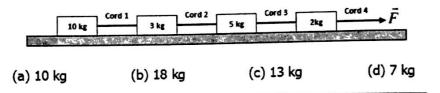
(a)
$$\vec{F}_2 = 2\hat{i} - 6\hat{j}$$

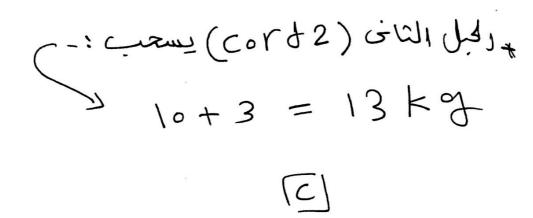
(b)
$$\vec{F}_2 = 6\hat{i} - 10\hat{j}$$

(c)
$$\vec{F}_2 = -2\hat{i} + 6\hat{j}$$

of the forces is
$$\vec{F}_1$$
 (a) $\vec{F}_2 = 2\hat{i} - 6\hat{j}$ (b) $\vec{F}_2 = 6\hat{i} - 10\hat{j}$ (c) $\vec{F}_2 = -2\hat{i} + 6\hat{j}$ (d) $\vec{F}_2 = -6\hat{i} + 10\hat{j}$

constant velocity


$$\frac{1}{f_1} + \frac{f_2}{f_2} = 0$$


$$2i - 6j + \frac{f_2}{f_2} = 0$$

$$\frac{1}{f_2} = -2i + 6j$$

$$\frac{1}{f_2} = -2i + 6j$$

21. The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F} , what total mass is accelerated to the right byCord 2?

22. A particle has a weight of 22 N at a point where $g = 9.8 \text{ m/s}^2$, what are its mass and weight at a point where g = 0?

(a)
$$m = 2.2 \text{ kg}$$

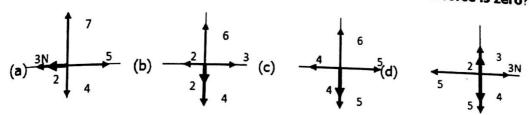
 $W = 0$

(b)
$$m = 0$$

 $W = 2.2 N$

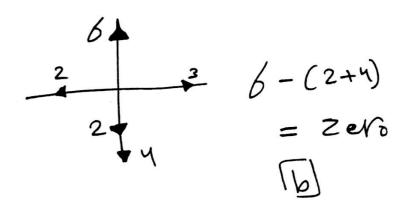
(c)
$$m = 0.45 \text{ kg}$$

W = 0

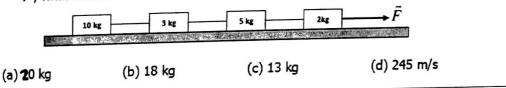

(d)
$$m = 0$$

 $W = 45 N$

$$w = ??$$


$$M = 33$$

$$W = 0$$


23. In which figure of the following the y-component of the net force is zero?

* معلن القوي للرلبت لاتساوى معز في المالت

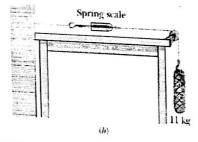
24. The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F} , what total mass is accelerated to the right by force \vec{F} ?

$$-1$$
 = $\frac{1}{5}$ = $\frac{1}{5}$

25. Three forces act on a particle that moves with **unchanging** velocity $\vec{v} = 2\hat{i} - 7\hat{j}$, two of the forces are $\vec{F}_1 = 2\hat{i} + 3\hat{j} - 2\hat{k}$ and $\vec{F}_2 = -5\hat{i} + 8\hat{j} - 2\hat{k}$ what is the **third force**?

(a)
$$3\hat{i} - 11\hat{j} + 4\hat{k}$$

(b)
$$7\hat{i} - 5\hat{j}$$


(c)
$$-3\hat{i} + 11\hat{j} - 4\hat{k}$$

(d)
$$-7\hat{i} + 5\hat{j}$$

un changing = constant velocity

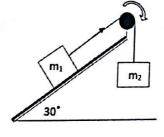
$$\sum_{i=0}^{2} f_{i} = 0$$
,
 $F_{1} + F_{2} + F_{3} = 0$
 $C = 1 + 3j - 2k - 5i + 8j - 2k + F_{3} = 0$

26. An 11 kg object is supported by a cord that Runs around a pulley and to a scale. The opposite end of the scale is attached by a cord to a wall.
What is the reading on the scale?

$$m = 11 kg$$

 $g = 918$
 $t = ??$

$$t = mg$$


$$t = 11 \times 9.8$$

$$= 107.8$$

٤٣ ()

A block of mass m1=3.7 kg on frictionless inclined plane of angle 30° is connected by a cord over a massless frictionless pulley to a second block of mass m₂=2.3 kg hanging vertically as shown.

If the magnitude of the acceleration of each block is 0.735 m/s2, what is the tension in the cord?

(a) 36.3 N

(b) 22.5 N

(c) 20.8 N

(d) 18.1 N

t-mgsind=m t-3,7x9,8xsin30=3,7x0,735 -18/13 = 2,7/95 -t = 20,8

In question 27, what is the normal force acting on the block m_1 ? 28.

- (a) $N=F_g$ m_1g (b) $N=F_g\cos\theta$ cos0
- (c) $N=F_g + m_1g$ (d) $N=F_g$ $\cos\theta$

mg cos A Fox COS A

29. In question 27, if the cord is cut what is the acceleration of mass m₂?

(a)
$$a = -4.9 \text{ m/s}^2$$
 (b) $a = -9.8 \text{ m/s}^2$ (c) $a = -0.735$ (d) $a = \text{zero}$ $\frac{m}{s^2}$

$$+ cort is cut +$$

$$-2 = -9.8m/s^{2}$$

ubn

30. If the 1 kg body has an acceleration of 2 m/s² at an angle of 20° above the positive direction of the x-axis. What is the net force in unit vctor notation?

(a)
$$\vec{F} = 0.34\hat{i} + 0.94\hat{j}$$
 (b) $\vec{F} = 1.88\hat{i} + 0.68\hat{j}$ (c) $\vec{F} = 0.68\hat{i} + 1.88\hat{j}$ (d) $\vec{F} = 0.94\hat{i} + 0.34\hat{j}$

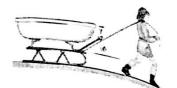
$$M = 1 kg$$

$$\alpha = 2m ls^{2}$$

$$\theta = 2s^{6}$$

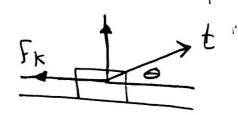
$$\mathcal{E} f = ??$$

$$\Sigma f = F_{x} + F_{y}$$
 $F_{x} = M = Cos \theta$
 $= 1 \times 2 \quad Cos 20$
 $= 1,88 i$
 $F_{y} = M = Sin \theta$
 $1 \times 2 \quad Sin 20$
 $= 0,68j$
"b"
 $= 0,68j$


Ch 6

Friction

الاحتكاك


1. In the figure a woman pulls a loaded sled of mass m along a horizontal surface at constant velocity. The coefficient of kinetic friction between the runners and the snow is μ_k .

Which figure shows the correct free body diagram for the sled and load?

* constant velocity, السربح مابت

* للجسے یتی کے اسم عابت فإنه لقوة هي قوة (كرحتاك

2. In question 2, The equation of the forces acting on the load and sled (from

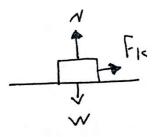
(a)
$$\vec{T} + \vec{N} + \vec{F}_t + \vec{f}_k = 0$$

(b)
$$\vec{T} + \vec{N} + \vec{F}_r + \vec{f}_s = 0$$

(c)
$$\vec{T} + \vec{N} + \vec{F}_s + \vec{f}_k = m\vec{a}$$

$$(d)\vec{T} + \vec{N} + \vec{F}_{s} + \vec{f}_{s} = m\vec{a}$$

$$= \frac{1}{2} \sin \frac{1}{2} \cos \frac{1}{2} \sin \frac{$$


- 3. A 12 N horizontal force pushes a block of weight 5 N to make it move with constant speed, the value of the coefficient of friction μ_k is:
- (a) 2.4
- (b) 0.24
- (c) 4.1
- (d) 0.41

$$F_{\mathbf{x}} = 12N$$

$$W = 5N$$

$$12 = \int_{1}^{6} \cdot 5$$

$$: \int_{1}^{\infty} = \frac{12}{5} \implies 2.4$$

- 4. A car has a weight of 1.1 N slides on the road with acceleration a=1.24 m/s², what is the force of friction between the car and the road?
- (a) 1.13 N
- (b) 11 N
- (c) 1.4 N
- (d) 0.14 N

قوة الاحتقال والمأ على الحرث لذلك قيمها ما لبت

- 5. A 12 N horizontal force pushes a block of weight 5 N to make it move with constant speed, the value of the coefficient of friction μ_k is:
- (a) 2.4
- (b) 0.24
- (c) 4.1
- (d) 0.41

$$W = N = 5N$$

$$12 = J_{k} \cdot 5$$

$$-M_{K} = \frac{12}{5} \implies 2.4$$

- 6. A block lies on a floor. If the maximum value f_{x,max} of the static frictional force on the block is 10 N, what is the magnitude of the frictional force if the magnitude of the horizontally applied force is 8 N?
- (a) 10 N
- (b) 8 N
- (c) 2 N
- (d) 18 N

11 6 11

الحوط :-اذا كا بر الجياسا كن

القوة المؤثرة نام القوة المؤثرة نساوى قوة (مصحتنال 7. A 470 N horizontal force pushes a block of mass 79 kg to make it move with A 470 N Horizontal transfer and the coefficient of friction μ_k ?

(a) 0.61

(b) 6

(c) 1.6

(d) 0.06

F=470 N m= 79 Kg

$$N = mg = 79 \times 918$$

= $N = 779,2N$

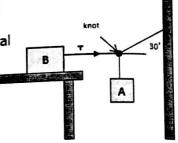
$$F_{K} = \frac{F_{K}}{N} \implies J_{K} = \frac{470}{774/2}$$

8. A block lies on a floor. If the maximum value $f_{x,max}$ of the static frictional force on the block is 10 N, what is the magnitude of the frictional force if the magnitude of the horizontally applied force is 12 N?

(a) 10 N

(b) 12 N

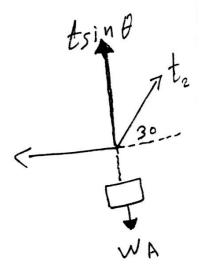
(c) 2 N


(d) 22 N

9. In the figure, block B weighs 711 N. The coefficient of static friction between the block and the table is 0.25 assume that the cord between B and the knot is horizontal

What is the magnitude of the tension T?

- (a) 205.2 N
- (b) 355.5 N
- (c) 820.1 N
- (d) 1422 N


$$W_{B} = 711/3$$
 $S_{S} = 0.25$
 $t = ??$

$$W_{B} = 711 \text{N}_{1} \quad t = f_{s}$$
 $S_{s} = 0.25$
 $S_{s} = 0.25$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$
 $S_{s} = 0.25 \quad S_{s} \cdot M_{B} \cdot S_{s}$

In question 9, the weight of block A is: 10.

- (a) T cos 30
- (b) T sin 30
- (c) $F_a T \cos 30$
- (d) $F_g T \sin 30$

 $W_A = t sin \theta$ لحرنك حللتى الزاوسى فصاري t sin 30 "4" 20 Wa = t sin 30 01 (1611

نموذج اختبار الترم الماضي ١٤٣٨هـ

King Abdulaziz University

Faculty of Science

Physics Department

Second Exam - PHYS 110

First Term 1437-1438H 2017

Date: 15/3/1438

Section:

Choose the correct answer:

A block of weight 99 N moves on a horizontal surface with constant speed by a force of 40 N. The value of the coefficient of friction μ_k is:

ID No: _

- a. 0.53
- b. 0.17
- c. 0.64
- d. 0.40
- 2. A particle moving with initial velocity $v_0 = -0.5i + 3j$ (m/s), and constant acceleration a = -5i + 6j(m/s²). The y-component of final velocity v_y at t=3s is
 - a. 21 m/s
 - b. -28 m/s
 - c. 84 m/s
 - d. -47 m/s
- A boy of 55 kg running in a circular path of R = 3 m at a velocity of 6 m/s. The centripetal force is:

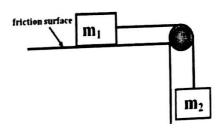
- b. 110 N
- c. 330 N
- d. 165 N
- A certain force is applied to a mass of m₁=3 kg with acceleration of 3 m/s². The same force is applied to another mass m₂ and accelerated it by 3 m/s². The mass of the second object is:
 - a. 14.0 kg
 - b. 3.0 kg
 - c. 2.0 kg
 - d. 6.2 kg
- A particle moves in the xy plane. In which situation of the following a_x and a_y are both constant

a.
$$\mathbf{v} = (4 t^3 - 2) \mathbf{i} + (3) \mathbf{j}$$

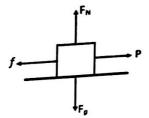
b. $\mathbf{v} = (-3 t^2) \mathbf{i} + (t^2 - 1) \mathbf{j}$

b.
$$v = (-3t)i + (t^2 - 1)j$$

c.
$$\mathbf{v} = (2t^2)\mathbf{i} + (4t + 3)\mathbf{j}$$

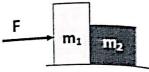

d.
$$v = (10 t) i + (9 t + 1) j$$

	A 40 kg box moves over a frictionless floor along the x-axis. The magnitude of the normal force
	to ke box moves over a move over a m
6.	A 40 kg is:
0.	on the box is:
	40 N a a N
	981
	20 2 N
	d. 392 N
	d. 392 N d. A 810 N person is standing in an elevator. If the normal force on the person is 580 N, the person
	A 810 N person is
7.	is:
	a. stationary b. moving up with a constant speed accelerating upward
	a. moving up with a constant
	b. Independent of the ball is: c. accelerating downward accelerating downward d. accelerating downward 15.6 m/s. The maximum range of the ball is:
	d. according to the lange of the sall is:
	with an initial speed for the
8.	d. accelerating downward d. accelerating downward A ball is thrown with an initial speed 15.6 m/s. The maximum range of the ball is:
U.	
	a. 152.9 m
	5 24.8 m
	A E D III
	42.6 m
	table. At t = 0.25 s, the nonzontal distance from the top of a table. At t = 0.25 s, the nonzontal distance from the top of a table.
211	d. 42.6 m A ball is fired horizontally from the top of a table. At t =0.25 s, the horizontal distance from table to the point that the ball reach the ground is 0.58 m. The ball's initial velocity is:
9.	to the point that the ball reach the grant the
	a. 17.3 m/s
	a. 17.5 m/s
	b. 11.5 m/s
	c. 2.3 m/s
	d. 6.2 III/S
	f uses 10 kg at a point where g = 9.8 m/s . its worght are f
10.	d. 6.2 m/s A body of mass 10 kg at a point where g = 9.8 m/s². Its weight at a point where g = 0 is:
	a. 0
	b. 9.8 N
	c. 98 N
	d. 10 N
	of M = 10kg and M ₂ =15kg, the tension in the top top a
11	d. 10 N Two blocks are suspended by a rope. If M_1 =10kg and M_2 =15kg, the tension in the top rope is:
11.	
	a. 49.0N
	b. 245.0N
	c. 98.0N
	d. 147.0N
	A 1800 kg car is moving on a circular road as shown in the figure. If the radius of circular road is 379.2 m, and the coefficient of friction between the tires (الكفرات) and the road
	the shown in the figure. If the radius of circuit
12.	A 1800 kg car is moving on a circular road as shown in the light. and the road 379.2 m, and the coefficient of friction between the tires (الكفرات) and the road is 0.7, the speed of the car is:
	379.2 m, and the coefficient of friction between the tires ()
	is 0.7, the speed of the car is:
	379.2 m, and the coefficient of friction between the tires (is 0.7, the speed of the car is:
	a. 26 m/s
	b. 51 m/s
	c. 37 m/s
	d. 62 m/s


- 13. A body is rotated (نَدُور) in a horizontal circle of radius 2.3 m. If the centripetal acceleration has a magnitude of 7.0 m/s², the body's speed is:
 - a. 4 m/s
 - b. 7 m/s
 - c. 21 m/s
 - d. 10 m/s
- 14. Three forces $F_1 = 3i 4j$, $F_2 = -3i + 4j$ and $F_3 = -8j$ acting on a body, the value of $F_{net,x}$ and $F_{net,y}$
 - a. $F_{\text{net},x}$ = -7 N and $F_{\text{net},y}$ = 8 N
 - b. $F_{net,x} = 9 \text{ N} \text{ and } F_{net,y} = 11 \text{ N}$

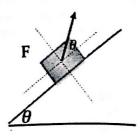
 - c. $F_{\text{net},x} = 0$ and $F_{\text{net},y} = -8 \text{ N}$ d. $F_{\text{net},x} = 6 \text{ N}$ and $F_{\text{net},y} = -7 \text{ N}$
- 15. The gravitational force of earth acting on a 15 kg is:
 - a. 115 N
 - b. 9.8 N
 - c. 147.0 N
 - d. 15 N
- 16. A ball is thrown with initial velocity V_0 = 38 m/s at an angle θ_0 = 60^0 above the horizontal. The x component of the initial velocity (V_{0x}) is:
 - a. 19.0 m/s
 - b. 65 m/s
 - c. 50 m/s
 - d. 46 m/s
- 17. At the maximum height in projectile motion, the horizontal component of the acceleration is:
 - a. $a_x > -9.8 \text{ m/s}^2$.
 - b. $a_x = a_y$.
 - c. $a_x = -9.8 \text{ m/s}^2$.
 - d. $a_x = 0$.
- 18. Two boxes slide on a rough horizontal surface, where m_1 = 12kg and m_2 = 16kg, with constant speed. Which statement is true:
 - a. $f_{k1} = f_{k2}$
 - b. $f_{k1} > f_{k2}$
 - c. $f_{k1} = f_{k2} = 0$ d. $f_{k1} < f_{k2}$
- 19. The position vector for a particle is initially r = 14 i 5 j + k and then later is r = 5 i 5 j + 6 k, all in meters. The particle's displacement vector is:
 - a. -9i+5k
 - b. 9i-10j-5k
 - c. -9 i -5 k
 - d. -9i-10j-5k

- The coefficient of static friction between a block and the surface is 0.2. If the maximum horizontal to the block before it slides is 49 N, the block's mass is: The coefficient or static motion block before it slides is 49 N, the block's mass is: force that can be applied to the block before it slides is 49 N, the block's mass is:
 - 25 kg a.
 - 69 kg b.
 - 70 kg
 - C. 20 kg
- 21. In the figure, two boxes of mass m_1 = 62 kg and m_2 = 19.4 kg In the light, to each other by a massless cord (ביל عديم are connected to each other by a massless cord (ביל عديم are الكتلة). If m2 descends (الكتلة) with constant velocity, the יבענג). וו וויצע). וו וויצע). וו וויצע). וויצע). וויצע א j. וויצע). וויצע א j. וויצע inagnitude of the frictional force between the surface and m₁ is:



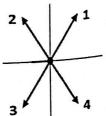
- 19.4 N
- 190 N
- b. 62 N
- C. 608 N
- 22. A boy pulls (بسحب) a 58 N box along a friction horizontal floor by a force P as shown in the figure. The frictional force between box and floor is f=29 N. If the box does not move, which of the following is true?

- $F_{N} = 58 \text{ N}$ a. P > 29 N and
- $F_N = 58 \text{ N}$ b. P < 29 N and
- F_N < 58 N c. P = 29 N and
- $F_N = 58 \text{ N}$
- 23. A projectile is launched (أطلقت) at an angle of 30° to the horizontal with a speed of 20 m/s. The maximum height of the projectile is:
 - a. 7.1 m
 - b. 5.1 m
 - c. 6.1 m
- 24. A horizontal force of 98 N acts on a 50 kg box lying (موضوع) on the floor but the box does not move. The magnitude of static frictional force (f_s) is:
 - a. 490 N
 - b. 98 N
 - c. 9.9 N
- 25. A plane (طائرة) enters a horizontal circular turn (مسار) with v_i = (200i +600 j) m/s and 23 s later leaves the turn (طائرة) leaves the turn with $v_f = (200i +600 j)$ m/s. The period of the plane is:
 - a. 600 s
 - b. 46 s
 - c. 200 s
 - d. 23 s


- 26. From the figure, if m_1 = 10 kg and m_2 = 40 kg, the force acting to accelerate the two bodies by 2 m/s² equals
 - a. 100 N
 - b. 80 N
 - c. 66 N
 - d. 410 N

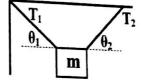
27. A box of mass m= 62kg is pushed up at constant speed over the frictionless inclined plane of angle θ =42° by an applied force F as shown in the figure. The magnitude of applied force F is:

- b. 547.1 N
- c. 607.6 N
- d. 406.6 N


- 28. In the figure, If F_1 = 21 N and F_2 = 8 N , the net force on the block is:
 - a. 29 N
 - b. -29 N
 - c. 13 N
 - d. -13 N

- 29. In the figure, a 10 kg block moves over a frictionless floor along the x axis pushed by a force F = 96 N directed $\theta = 20^{\circ}$ above + x-axis. The magnitude of the block's acceleration is:
 - a. 15.4 m/s²
 - b. 38.9 m/s²
 - c. 23.4 m/s²
 - d. 9.0 m/s^2

- 30. A particle initially has v = 7i + 2j (m/s) and then 2 s later has v = -2i + 5j (m/s). The average acceleration (a_{avg}) is
 - a. -0.3i + 7j
 - b. i + 2j
 - c. 0.4i + 5j
 - d. -4.5i + 1.5j
- 31. Two forces $F_3 = 3i 4j$ and $F_4 = 5i + 6j$ acting on a body, from the free body diagram the vectors that represent F_3 and F_4 are



- a. F₃ is vector 3, F₄ is vector 1
- b. F_3 is vector 1, F_4 is vector 3
- c. F_3 is vector 2, F_4 is vector 4
- d. F₃ is vector 4, F₄ is vector 1

A block of mass m = 10 kg is hanging (معلق) by two ropes as shown in the figure. If $\theta_1 = 30^\circ$ and 32. $\theta_2 = 45^\circ$, by using Newtons' laws , the y-component of net force (

F_{net,y}) on the block is:

- a. $T_1 \sin 45 + T_2 \sin 30 mg = 0$
- a. $T_1 \sin 30 + T_2 \sin 45 mg = 0$ b. $T_1 \sin 30 + T_3 \sin 45 mg = 0$
- b. $T_1 \sin 30 + T_2 \sin 45 mg = m a_y$ c. $T_1 \sin 45 + T_2 \sin 30 mg = m a_y$ d. $T_1 \sin 45 + T_2 \sin 30 mg = m a_y$

33. The components of a car's position as a function of time are given by $x = 5t^2 - 14$, $y = -t^3 - 4$. The velocity components are:

- a. $v_x = 10t 14$ and $v_y = -3t^2 4$ b. $v_x = 10t$ and $v_y = -3t^2$ c. $v_x = 10t^2$ and $v_y = -3t^2$ d. $v_x = 10t 14$ and $v_y = -3t^2$

$$V_0 = -0.5i + 3j|V = V_0 + at$$

$$V = V_0 + at$$

$$V = -0.5\dot{l} + 3\dot{j} + (-5\dot{l} + 6\dot{j})^3$$

$$= V_y = 3j + 18j$$

$$F = ??$$

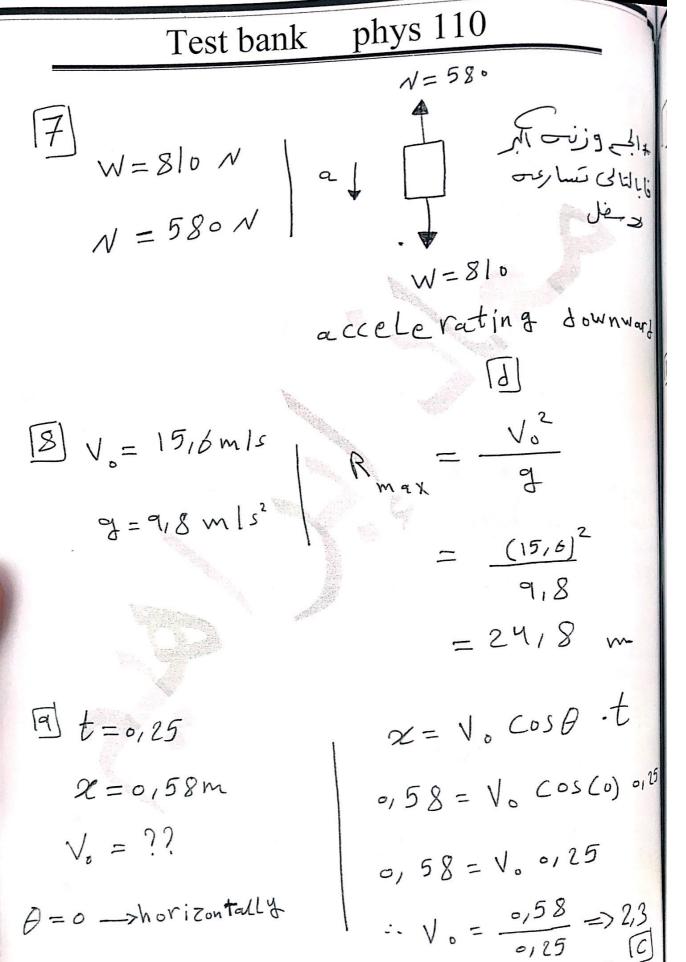
$$=55\frac{6^2}{3} => 660^{1}$$

0568148379

$$[4] m_1 = 3 | 5$$
 $a_1 = 3 | 5$
 $m_2 = ??$
 $a_2 = 3 | 5$
 $a_2 = 3 | 5$

$$= F_{1} = F_{2}$$


$$= M_{2} q_{2}$$


$$= M_{2} q_{2}$$

$$= M_{2} q_{3}$$

$$N = M3$$

$$= 40 \times 918$$

$$W = M g$$

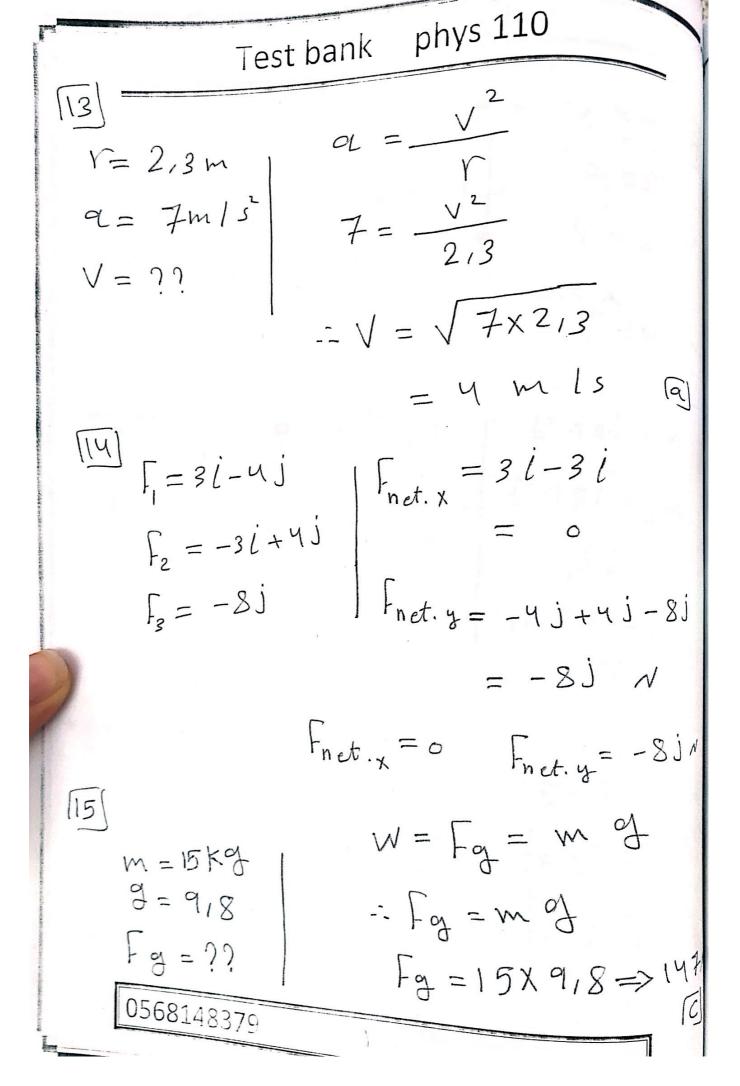
$$W = lo x o$$

$$= o \quad [a]$$

$$m_1 = 10 \text{ Kg}$$
 $m_2 = 15 \text{ Kg}$
 $t = ??$
 $g = 9.8 \text{ m} 1s^2$

$$t = (10+15) \times 918$$

 $t = 245 N$


t= & m. 9

$$V = \sqrt{f' \cdot r \cdot g}$$

$$V = \sqrt{7 \cdot r \cdot g}$$

$$\sqrt{6,7 \times 379,2 \times 9,8}$$

$$= 51 \text{ m/s "b"}$$

$$\sqrt{16}$$
 $\sqrt{16}$ $\sqrt{16$

$$V_{0X} = V_{0} Cos \theta$$

$$V_{0X} = 38 Cos 60$$

$$V_{0X} = 19 M ls$$
(a)

(IF) * horizontal commponent of acceleration

acceleration

ax = 0 "d"

Len Itimics abs cocias embes and ed Ityims

embess and es principal

embess and es principal

embess and es principal

embess and es principal

embess and especial commponent of acceleration

1191

$$r_2 = 5i - 5j + 6K$$

$$\Delta V = V_2 - V_1$$

$$\int_{S}^{M} = 0,2$$

$$im - 22$$

$$M = ??$$

Test bank phys 110 السربه شابتس * Constant relocity* FK +m [21 == 2 == 0 m, = 62 Kg m2g m29-F1 =0 m2=19Kg 19,4×9,8- Fx=0 F1 = ?? $-\Gamma_{1c} = -190/12$ = FK = 190/12 N [22] Whier (does Not move) 5-26 -: 5-bodox الر الجبے ساکن یعن جیع القوی متساوین Fg=58 N P=29N F= 29 N FN = 58 N 17/ 0568148370

23

$$N = 33$$

$$h = \frac{\sqrt{s} (\sin \theta)^2}{2 d}$$

$$h = \frac{2^{\circ 2} (sin30)^{2}}{2 \times 9.8}$$

[24] Where (does Not move) onto والما كانه ساكن فإنه القوة المؤثرة مساوي ت لقوة 2/6=0-3 F=98N

$$: F = F_s$$

Fs <- T>F

 $\begin{aligned}
v_{i} &= (200i + 600j) \\
v_{i} &= (200i + 600j) \\
v_{f} &= (200i + 600j) \\
t_{f} &= 32 \text{ sec} \\
t_{e} &= 3?
\end{aligned}$

* اذا تساوت السرب كريسة الله مع السرب النها سرب النها سرب النها سرب النها سرب النها سرب النها سرب أولى النها من النهائي = 23 النهائي = 23

[26]

 $m_1 = 10 \text{ Kg}$ $m_2 = 40 \text{ Kg}$ F = 3!

a=2m/s2

F m m

$$F = (10 + 40) 2$$

-= [= \le M. a

Test bank phys 110 [constant spect] Fost m = 62 kg, 5-12-21 A=42° ~ & colf £ = 33 FCOSA = m & sin A [Cos 92 = 62 x 9,8 x 5/n 42 C0542 C0542 · [= 547,1 28 F, =+21 N F2 = -8 N $\mathcal{E} = F_1 + F_2$ لدنياف أتجاه الغرب $\mathcal{E}f = 1)$ Fn.t = 21 - 8 = 13 N

$$\alpha = \frac{96\cos 20}{10}$$

$$V_2 = -2i + 5j$$

$$\frac{q_{qve}}{t_2-t_1}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

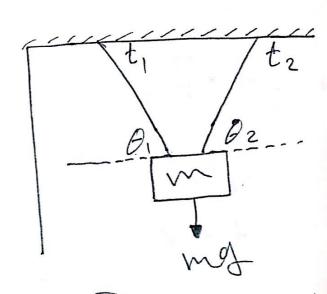
$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

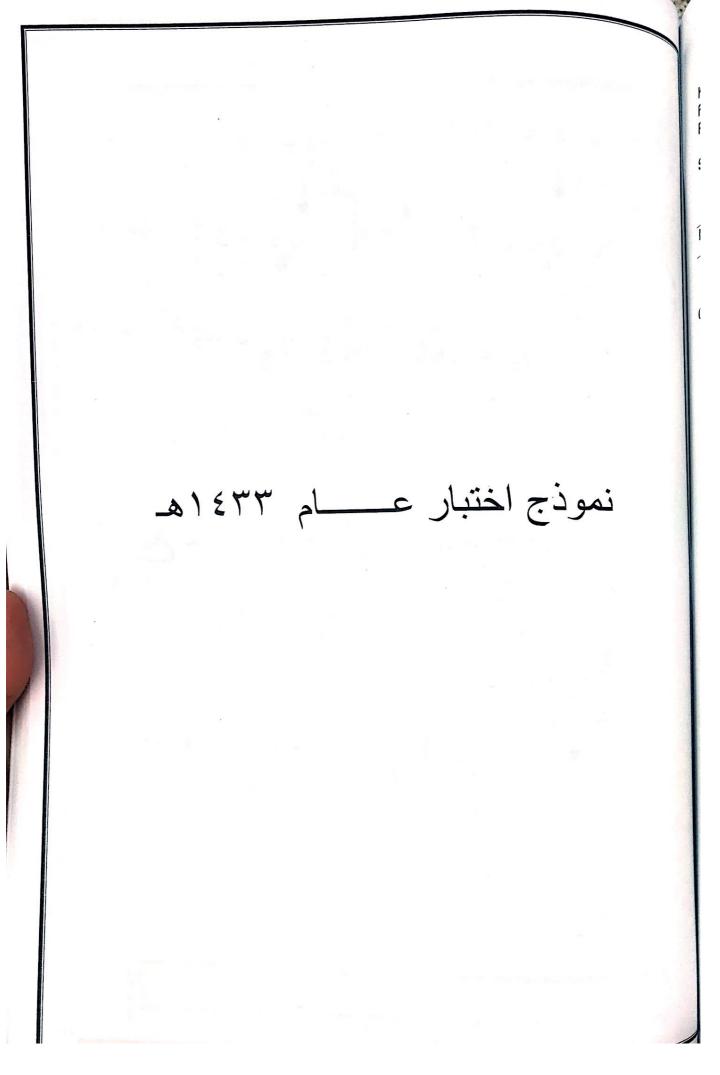
$$\frac{1}{2}$$

$$F_{3} = 3i - 4j | F_{3}(+, -)$$


$$F_{4} = 5i + 6j | F_{4} = (+, +)$$

$$F_{4} = (+, +)$$

$$J9i2.1$$


$$\theta_1 = 3^{\circ}$$

$$\theta_1 = 3^{\circ}$$
 $\theta_2 = 45^{\circ}$

t, sin 30 + t2 sin 45 = mg visa = 31+ [b] :. t, sin30 + t, sin45-m9=0

Test bank phys 110 (33) $\chi = 5t^2 - 14$ $y = -t^3 - 4$ (33)V= lot m15 $V_x = 10t$ and $V_y = -3t^2$ m/s مع خالف وعائي لكم بالتوفيق 1 - et / veric ! rest

Abdulaziz University Killy of Sciences raus. Department physics Second Exam - Phys 110

First Term 1432-1433 H

Date: 10/ 1/ 1433H

ID No: Section:

CHOOSE THE CORRECT ANSWER

- 1. A girl of mass 50 kg standing in a stationary elevator, her **weight** is:
 - a) 490 N b) 550 N c) 245 N d) 392 N
- 2. Three forces act on a 2 kg object give it an acceleration $\vec{a} = -8\hat{i} + 6\hat{j}$. if $\vec{F_1} = 30\hat{i} + 16\hat{j}$ and $\vec{F_2} = -12\hat{i} + 8\hat{j}$ the **third force** is

a)
$$\vec{F}_3 = 34\hat{i} + 12\hat{j}$$

c)
$$\vec{F}_3 = -30\hat{i} - 6\hat{j}$$

a)
$$\vec{F_3} = -34\hat{i} - 12\hat{j}$$

b) $\vec{F_3} = -34\hat{i} - 12\hat{j}$

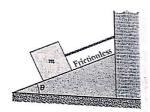
d)
$$\vec{F}_3 = 8\hat{i} - 16\hat{j}$$

- 3. A particle in uniform circular motion of radius r=2m moved one period. The distance that the particle travelled in meters is:
 - **a)** 4π **b)** 2π **c)** π **d)** 3π
- 4. A particle is said to be in uniform circular motion if
 - a) its velocity has a constant magnitude
 - b) its velocity has a constant direction
 - c) its velocity is directed towards the center
 - d) its velocity equals zero
- 5. 10.3 N is equal to

a)
$$10.3 \frac{kg \cdot m}{s^2}$$
 b) $10.3 \frac{kg \cdot m^2}{s^2}$ c) $10.3 \frac{kg^2 \cdot m^2}{s^2}$ d) $10.3 \frac{kg \cdot m}{s}$

6. At the maximum height of a projectile, what of the following is correct?

a) Its velocity is zero


c) Its x-component velocity is zero

b) Its y-component velocity is zero

d) Its acceleration is zero

Use the following to answer questions 7-9:

In the figure, a cord holds stationary a block of mass m = 8.5 kg on a frictionless plane that is inclined at an angle $\theta = 30^{\circ}$.

7. The tension in the cord T equals:

a) 72.14 N b) 83.3 N c) 53.14 N d) 41.65 N

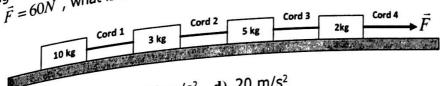
8. The normal Force F_N acting on the block is

a) 53.14 N b) 41.65 N c) 83.3 N d) 72.14 N

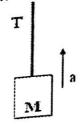
9. If the cord is cut, the magnitude of the acceleration of the block is

a) zero b) 4.9 m/s^2 c) 6 m/s^2 d) 4 m/s^2

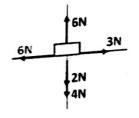
10. A bag rests on a table, exerting a downward force on the table. The reaction to this force is:


a) The force of Earth on the bag

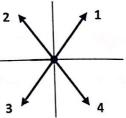
b) The force of the table on the bag


c) The force of the Earth on the table

d) The force of the bag on Earth

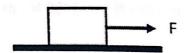

The figure shows a train of four blocks being pulled across a frictionless floor by a train of four blocks being pulled across a frictionless floor by the figure shows a train of four blocks being pulled across a frictionless floor by the figure $\vec{F} = 60N$, what is the **magnitude** of the system's **acceleration** The figure shows what is the **magnitude** of the system's **acceleration?** force $\vec{F} = 60N$, what is the

- a) 3 m/s^2 b) 6 m/s^2 c) 12 m/s^2 d) 20 m/s^2
- 12. The cable in the figure is raising a box of mass M = 250 kg with an upward to $\frac{12}{\text{cceleration of 4 m/s}^2}$. The tension T in the cable is The cable in 10^{-11} of 4 m/s². The tension T in the cable is acceleration of 4 m/s².



- a) 863 N b) 1725 N c) 3450 N d) 6900
- $_{13.}$ In the figure the **net force** on the block is:

- a) 1 N -right b) 6 N -up c) 3 N -left d) 4 N -down
- 14. Ignoring air resistance, the **acceleration** of any projectile along the xdirection a_x in (SI units) is
 - (\mathbf{a}) 9.8 m/s² (\mathbf{b}) zero (\mathbf{c}) not constant (\mathbf{d}) less than zero
- 15. Three forces $\vec{F_1}=3\hat{i}-4\hat{j}$, $\vec{F_2}=-3\hat{i}+4\hat{j}$ and $\vec{F_3}=-6\hat{j}$ acting on a body, **the** value of Fnet,x and Fnet,y are:
 - a) $F_{net,x}$ = 6 N and $F_{net,y}$ = -8 N
 - b) $F_{net,x} = -6 \text{ N}$ and $F_{net,y} = 8 \text{ N}$
 - c) $F_{net,x} = 0$ and $F_{net,y} = -6$ N
 - d) $F_{net,x}$ = 9 N and $F_{net,y}$ = 16 N


16. Two forces $\vec{F_1} = 3\hat{i} - 4\hat{j}$ and $\vec{F_2} = -3\hat{i} + 4\hat{j}$ acting on a body, from the free body diagram the vectors that represent $\vec{F_1}$ and $\vec{F_2}$ are

- a) $\vec{F_1}$ is vector **1** , $\vec{F_2}$ is vector **3**
- c) \vec{F}_1 is vector **3** , \vec{F}_2 is vector **1**
- b) \vec{F}_1 is vector **2** , \vec{F}_2 is vector **4**
- d) $\vec{F_1}$ is vector **4** , $\vec{F_2}$ is vector **2**

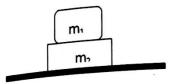
Use the following to answer questions 17-20:

A block lies on a floor as shown in the figure

- 17. The magnitude of the frictional force on it from the floor when F = 0
 - a) 0 b) 5 N c) 20 N d) 8 N
- 18. When F pulls the block to the right with an acceleration a_{x} , The coefficient of Kinetic friction μ_{K} is:

a)
$$\mu_k = \frac{F - ma_x}{F_N}$$
 b) $\mu_k = \frac{F_N}{F - ma_x}$ c) $\mu_k = \frac{ma_x}{F_N}$ d) $\mu_k = \frac{ma_x - F}{F_N}$

- 19. The magnitude of the frictional force on it from the floor when F = 8 N, but the block does not move
 - a) 0 b) 5 N c) 20 N d) 8 N
- 20. If the maximum static frictional force $f_{s,max}$ = 20 N ,the block will move to the right when F is equal to
 - a) 21 N b) 15 N c) 19 N d) 12 N


21. A car moves in a circular road of radius r = 7.6 m with a speed 96.6 km/h, the car's acceleration is: the car's acceleration is:

a)
$$18.4 \times 10^3 \text{ km/h}^2$$

13.3 × 10^5 km/h^2

c)
$$20.7 \times 10^3 \text{ km/h}^2$$

a)
$$18.4 \times 10^{5} \text{ km/h}^{2}$$

b) $12.3 \times 10^{5} \text{ km/h}^{2}$

- d) $15.8 \times 10^2 \text{ km/h}^2$
- 22. Two boxes m_1 =10 kg and m_2 =15 kg, the gravitational force (Fg) on m_2

- a) 25 N b) 245 N c) 2450 N d) 5 N
- 23. The position vector of a moving car in meters is: $\vec{r} = (3t^3)\hat{i} + (4t^2 + 3)\hat{j}$, its acceleration at t = 1 s is:

a)
$$\vec{a} = 18\hat{i} + 8\hat{j}$$
 b) $\vec{a} = 8\hat{i} + 18\hat{j}$ **c)** $\vec{a} = 9\hat{i} + 18\hat{j}$ **d)** $\vec{a} = 9\hat{i} + 8\hat{j}$

b)
$$\vec{a} = 8\hat{i} + 18\hat{j}$$

c)
$$\vec{a} = 9\hat{i} + 18\hat{j}$$

- 24. The position of a moving particle is $\vec{r} = \hat{i} + 4t^2 \hat{j} + t \hat{k}$, its **velocity** as a function of time is;

$$\mathbf{a}) \ \vec{\mathbf{v}} = 8\hat{j}$$

$$\mathbf{b)} \ \vec{v} = 8t \ \hat{j} + \hat{k}$$

a)
$$\vec{v} = 8\hat{j}$$
 b) $\vec{v} = 8t \ \hat{j} + \hat{k}$ **c)** $\vec{v} = \hat{i} + 8t \ \hat{j} + \hat{k}$ **d)** $\vec{v} = 8t \ \hat{j}$

d)
$$\vec{v} = 8t \hat{j}$$

- 25. According to Newton's second law, the force and acceleration are:
 - a) in the opposite direction.
- c) perpendicular to each other.
- b) in the same direction.
- d) scalar quantities.
- 26. The position of a particle was initially at $\vec{r} = 5\hat{i} 6\hat{j} + 2\hat{k}$ and later at $\vec{r} = -2\hat{i} + 6\hat{j} + 2\hat{k}$. The particle's **displacement vector** is:

$$\mathbf{a)} \quad \Delta \vec{r} = -7\hat{i} + 12\hat{j}$$

c)
$$\Delta \vec{r} = 7\hat{i} - 12\hat{j}$$

$$\mathbf{b)} \quad \Delta \vec{r} = 3\hat{i} + 4\hat{j}$$

$$\mathbf{d}) \quad \Delta \vec{r} = 3\hat{i} + 12\hat{j} + 4\hat{k}$$

27. A rabbit runs across a field. The coordinates of the rabbits position as a function of time are given by: $x = -2t^2 + 10t + 30$, and $y = t^2 - 5t + 10$ at t = 10 s the **position vector** \vec{r} is:

$$\mathbf{a)} \quad \vec{r} = 70\hat{i} - 60\hat{j}$$

c)
$$\vec{r} = -60\hat{i} + 70\hat{j}$$

b)
$$\vec{r} = 60\hat{i} - 70\hat{j}$$

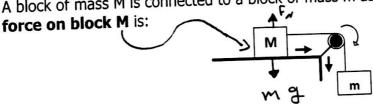
$$\mathbf{d}) \quad \vec{r} = -70\hat{i} + 60\hat{j}$$

Use the following to answer questions 28-30:

A ball rolls horizontally off the top of a building with a speed of 30 m/s. If the ball landed on the ground in a time t = 3.03 s

28. The height of the building from the ground is

a) 45 m b) 14.8 m c) 90 m d) 22 m


29. At what horizontal distance from the rolling point does the projectile strikes the ground

a) 9.9 m b) 90.9 m c) 0.9 m d) 99 m

30. What is the magnitude of **the vertical component of its velocity** as it strikes the ground

a) 2.9 m/s b) 0.31 m/s c) 3.2 m/s d) 29.7 m/s

31. A block of mass M is connected to a block of mass m as shown. The **normal**

a) $F_N = M g$ b) $F_N = M g - T$ c) $F_N = m g - T$ d) $F_N = m g$

32. A particle moves from
$$\vec{r_1} = (-10m)\hat{k}$$
 to $\vec{r_2} = (24m)\hat{i}$ in 2 s. Its average

velocity is:
a)
$$\vec{v}_{avg} = \left(24\frac{m}{s}\right)\hat{i} + \left(10\frac{m}{s}\right)\hat{k}$$

c) $\vec{v}_{avg} = \left(-10\frac{m}{s}\right)\hat{i} + \left(24\frac{m}{s}\right)\hat{k}$
d) $\vec{v}_{avg} = \left(-5\frac{m}{s}\right)\hat{i} + \left(12\frac{m}{s}\right)\hat{k}$

a)
$$\vec{v}_{avg} = \begin{pmatrix} 24\frac{s}{s} \end{pmatrix} \hat{i} + \left(5\frac{m}{s}\right)\hat{k}$$

b) $\vec{v}_{avg} = \left(12\frac{m}{s}\right)\hat{i} + \left(5\frac{m}{s}\right)\hat{k}$

$$\mathbf{c}) \quad \vec{v}_{avg} = \left(-10\frac{m}{s}\right)\hat{i} + \left(24\frac{m}{s}\right)\hat{k}$$

$$\mathbf{d}) \quad \vec{v}_{avg} = \left(-5\frac{m}{s}\right)\hat{i} + \left(12\frac{m}{s}\right)\hat{k}$$

- 33. A force F is applied to an object of mass $m_1 = 45$ kg produces an acceleration of 2 m/s². The same force is applied to a second object of mass m_2 produces an A force F is applied to a second object of mass m₂ produces an acceleration m/s². The same force is applied to a second object of mass m₂ produces an m/s². The value of m₂ is m/s². The value of m₂ is acceleration of 1.5 m/s². The value of m₂ is
 - a) 45 kg b) 60 kg c) 30 kg d) 67 kg

Answer Key

- 1. a
- 2. b
- 3. a
- **4.** a
- 5. a
- 6. b
- 7. d
- 8. d
- 9. b
- **10.** b
- 11. a
- **12.** c
- **13.** c 14. b
- 15. c
- 16. d
- 17. a
- **18.** a
- 19. d
- **20.** a
- **21.** b
- 22. b
- **23.** a
- **24.** b
- 25. b
- **26.** a
- **27.** d
- **28.** a
- **29.** b **30.** d
- **31.** a
- **32.** b
- **33.** b

$$W = Mg$$

$$W = 50 \times 918 \implies 490 N \text{ [a]}$$

$$F_3 = -16L + 12J - 18L - 210$$

$$F_3 = -34i - 12j$$

$$t = \frac{2\pi r}{v}$$

$$1 = \frac{2 \times \pi \times 2}{v}$$

$$-\infty = V \cdot t$$

$$-\infty = 4TT \times 1 = 4TT \times 1$$

0568148379

[4]

its velocity has constant magnitude

magnitude

its velocity has constant

magnitude

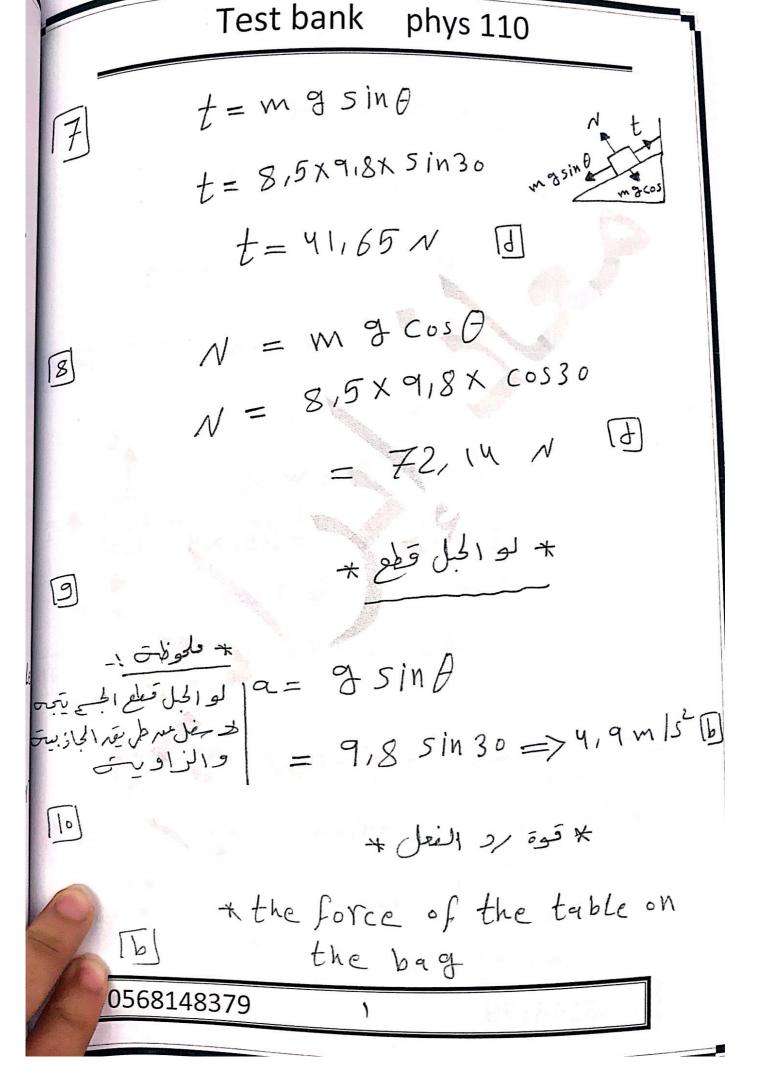
and of the second of the sec

[5]

1 N = 1kg·m/5

- 10,3 N = 10,3 Kg·m/s² =1

10/3 Kg·m


6

at maximum height of Projectile من اقص ارتفاع للقدوف تكون

=> lts y-commponent velocity is zer

1

[4]

$$\alpha = \frac{6^{\circ}}{2^{\circ}} = 3m/s^{2}$$

(12)

$$t - mg = ma$$

 $t - 250 \times 918 = 250 \times 4$
 $t - 2450 = 1000$ mg
 $-t = 3450 N$

$$F_{1} = 3i - 4j \qquad F_{2} = -3i + 4j$$

$$F_{3} = -6j$$

$$F_2 = -6J$$

$$F_{2} = (-3i + 4j)$$

$$F_{2} = (-3i + 4j)$$

$$F_{3} = (-3i + 4j)$$

$$F_{4} = (-3i + 4j)$$

$$F_{5} = (-3i + 4j)$$

$$F_{7} = (-3i + 4j)$$

(4)

ملوظت !.

الدحكاك

F>Fs, max

حتى نجرك الجسے الجب المجاب الم تكوير الم تكوير المر من قوة المر من قوة

الدنب هوالوحيد (لالبرس، و

21

$$= \frac{\sqrt{2}}{r} \Rightarrow \frac{(96,6)^2}{0,0076}$$

$$= 1227836,84$$

$$= 1227836,84$$

$$\approx 12,3 \times 10 \text{ km/h}^{2}$$

$$[22] m_1 = 10 kg$$

$$m_2 = 15 kg$$

$$g = 918$$

$$F = \leq m \cdot a$$
 $F = (10 + 15) = 9.8$
 $F = (3 + 15) = 4.8$
 $F = (45) = 4.8$

[23]
$$\vec{r} = (3t^3)l + (4t^2 + 3)j$$

(Eight) $\vec{r} = (3t^3)l + (4t^2 + 3)j$

(Eight) $\vec{r} = 4t^2l + 8tj$
 $\vec{r} = 18tl + 8j$
 $\vec{r} = 18l + 8j$
 $\vec{r} = 18l + 8j$
 $\vec{r} = 18l + 8j$

in the same direction

$$\alpha = -2t^2 + 10t + 30$$

$$y = t^{2} - 5t + 10$$

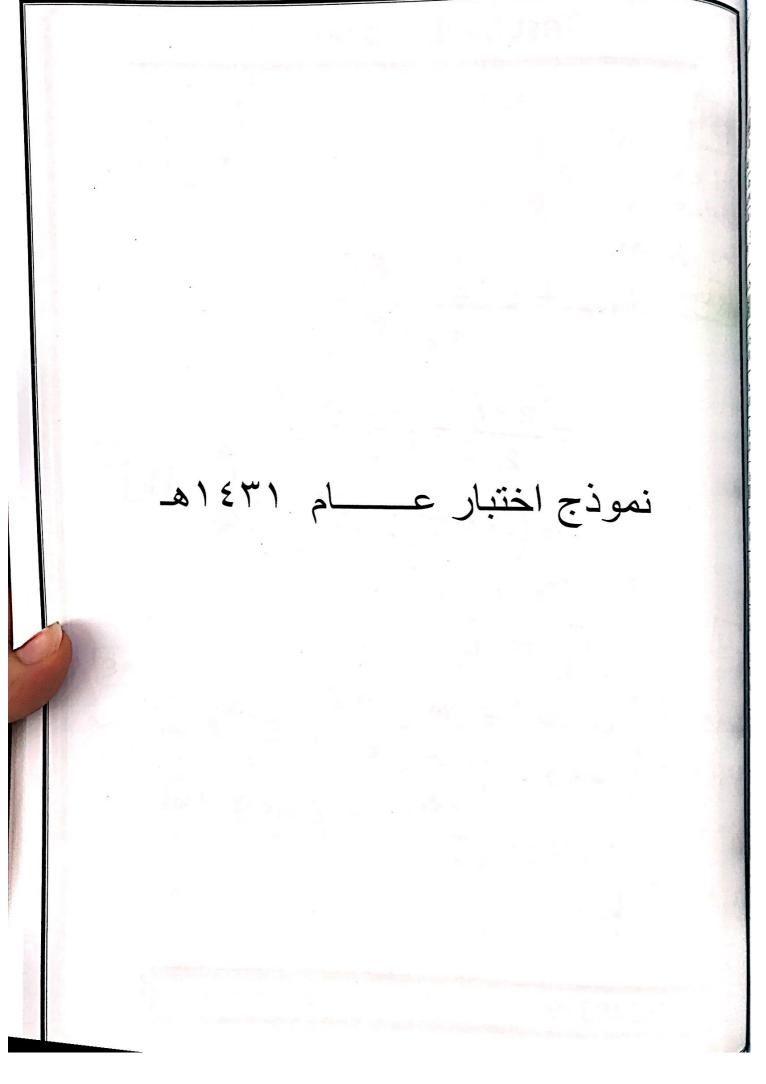
$$n = ??$$

est bank

$$y = v_0 y t + \frac{1}{2} g t^2$$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t + \frac{1}{2} g t + \frac{1}{2} g t^2$
 $y = v_0 y t + \frac{1}{2} g t + \frac{1$

$$32) Vave = \frac{r_2 - r_1}{t_2 - t_1}$$

$$= \frac{24i}{2} - \frac{-10K}{2}$$


$$= \frac{24i}{2} - \frac{-10K}{2}$$

$$= (12i \frac{m}{5}) + (5kj \frac{m}{5})$$

$$= (12i \frac{m}{5}) + (5kj \frac{m}{5})$$

$$\boxed{33} \qquad \boxed{F_1 = F_2}$$

$$m_1 = 45 \text{ Kg}$$
 $m_1 = 45 \text{ Kg}$
 $m_1 = 45 \text{ Kg}$
 $m_1 = 46 \text{ Kg}$
 $m_2 = 2 \text{ m/s}^2$
 $m_3 = 2 \text{ m/s}^2$
 $m_4 = 2 \text{ m/s}^2$
 $m_5 = 2 \text{ m/s}^2$
 $m_2 = 77$
 $m_2 = 70$
 $m_2 = 1,5 \text{ m/s}^2$
 $m_2 = 1,5 \text{ m/s}^2$

و نصف 1431/1/14 م	/ زمن الاختبار ساعة	الدوري الثاني	1944 1944	ة العلوم/ قسم الفيزياء	جامعة الملك عبد العزيز/ كليا
			Jain 1		
1- In the projectile motion	on, the y-component (b) constant	of the velocity at	the maximum	height is:	
(a)Zero 2- In the projectile motion	on, the x-component	of the velocity is:	aaxiiiuiii varut	e (d) Neg	zative
(a) $v_0 \sin \theta$	(b) $-v_0 \sin \theta$	(c) $v_0 c$	os o	(d) – <i>v</i>	$_{o}$ $tan heta$
3. In the projectile moti	(0) 13	(C) 100	S:	(d) 45°	
I the projectile motion	on, the maximum ran	ge is:		2	
(a) $\frac{v_0^2}{g}(\cos 2\theta)$	(b) $\frac{v_0^2}{g}$	(c) $\frac{v_0}{g}$	(d) $\frac{v_0}{g}$		
the dramove with a v	elocity $\vec{v} = 2\hat{i} - 3\hat{j}$	m/s and accele	eration $\vec{a} = 2\hat{i}$	$\hat{j} + \hat{j} = m/s^2$. The ve	elocity after 2s (in SI unit) is: $6\hat{i} + \hat{i}$
$(\mathbf{a})\vec{v} = 6\hat{i} - \hat{j}$	(b) $\vec{v} = 6i + j$	(c) $v = -$	-61 – J	(a) <i>v</i> = 4	-6î + ĵ
6-A ball is thrown with a	velocity of 15 m/s at (b) 7.5 m/s	t an angle of 30°. T (c)15 m/s	The y-componer	nt of the velocity is: (d) 13m/s	
(a)30 m/s 7- In question (6), the x-	ISSN-C-IN-TANCE TO CO.	ocity is: (c)15 m/s		(d) 13m/s	
(a)30 m/s 8- In question (6), the ma		(c)2.87 m		(d) 28.7 m	
(a)2870m 9- In question (6), the ran (a) 19.88 m		(c) 1988 m		(d) 1.988 m	
	me of flight is:	(c) 15 s	((d) 1.5 s	prigontal circle with speed of
(a)0.015 s	(b)0.15 s	and the other e	end a stone, he r	otate the stone in a no	on the state of th
11- A boy hold a rope of 3 m/s. The acceleration of	30 cm long, from one of the stone is: (b) 30 m/s ²	$(c)3.0 \text{ m/s}^2$	ht is:		orizontal circle with speed of
(a) 0.03 m/s ²	round level, if his mas	s is 80 kg, his weight (c) 78.4 N	III 13. (C	d)7840 N	$\Theta = 30^{\circ}$ $T_2 = 19 \text{ N}$
(a) 7.84 N	(b)784 N	aquilibrium, as sho	wn in the figure	2.	T ₁ =16.45 N
12- A man stand on the g (a) 7.84 N 13- A body of mass m, is The value of mass is:	hung by the ropes, at	(c) 9.5 kg	(d	l) 95 kg	m = ?
The value of mass is: (a) 950 kg 14- The force needed to k	(b) 0.97 kg	g) at rest, as shown	in the figure, th	he force is: 1)0.98 N	
14- The force needed to k	eep the mass (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	(c)9.8 IN			$\theta = 30^{\circ}$
(a) 90 11	Gree on the bod	ly is:		(d) 169.7 N	
15- In question (14), the r (a) 1.69 N 16- From the figure m ₁ =2 1. From the figure m ₂ = 1 1. From the figure m ₃ = 2	(b) 10.0 N	e force acting to acc	celerate the two)	
16- From the figure $m_1=2$ bodies by 2 m/s ² , the force N	0kg and m ₂ 270 ce is:	(c)600 N	(d)0.06 N		m ₁ m ₂
16- From the figure bodies by 2 m/s ² , the forc (a) 60 N	500 kg moves is deceler	rated by 4.5 m/s ² usi	ing the brakes, (d) 2.25 N	the frictional force	is:
17- A racing car of mass ((b)0.225 N	(0)2700.2			
17- A law (a) 225 N					

	(b)1.28 kg	N. The value of m_2 is: (c)8.0 kg	(d)50 kg		
		,,,,,,,			I
In question (18), the	he normal force on the	m. is:	7. W. Tan Jan 1971		
0.49 N	(b) 490 N	(c) 4.9 N	(d)	49 N	all all
A blook of man 1	01-	20 N de black m	as asing with	No.	
Constant speed (as sl	0 kg, was pulled by a flown in the figure) on a	orce 30 N, the block was rough surface. The fri	ction force is:	e when it is	F
25.98 N	(b)259.8 N	(c) 2.598 N	(d)	0.2598N	m
- A space satellite	moves in a circular orb e earth radius 6.37×10 ⁶ 1	it around the earth, at a	altitude of 530 kr	n and with speed of	8.2 km/s. The available
the satellite is: (the	e earth radius $6.37 \times 10^{\circ}$	m)	(4)5	.5 m/s ²	acceleration
a) 0.974 m/s ²	(b)3 m/s ²	$(c)9.74 \text{ m/s}^2$	(0)3	.5 m/s	
2- In the figure show	vn two bodies are hung	by a rope over a friction	nless pulley.		102.00
	.5 kg. the acceleration of		1.2 0- 4 9 1		
a) 2.7 m/s^2	(b) 0.327 m/s^2	(c) 7.27 m/s^2	(d)3	.27 m/s ²	
	. 25	Carly Commence	1.00	respect to a least of the o	m ₁ — m ₂
3. In the figure two	boxes m ₁ =10 kg and m	15 kg, the gravitation	al force on mais		
a)25 N	(b)245 N	(c)2450 N	(d)5		
-,	(0)=1011	(0)2.001	(4)0	THE REPORT OF THE PARTY.	
				1941	m_1
				4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	m ₂
	ne gravitational force on		140		M2
(a)0.98 N	(b)9.8 N	(c)98 0 N	(d)98	3 N	
25. A man of mass S					
	(1) kg stand on elevator	if the elevator is going	unward with oo	alamatian of 2 m/s ²	the amount unight of the
man is:	30 kg stand on elevator,	if the elevator is going	upward with acc	eleration of 2 m/s ² ,	the apparent weight of the
man is:	30 kg stand on elevator, (b)80 N				the apparent weight of the
man is: (a)944 N	(b)80 N	(c)44 N	(d)	9.8 N	the apparent weight of the
man is: (a)944 N 26- In question (25),	(b)80 N if the elevator is going	(c)44 N with constant velocity 5	(d) 5 m/s, the weight of	9.8 N of the man is:	the apparent weight of the
man is: (a)944 N		(c)44 N	(d) 5 m/s, the weight of	9.8 N	the apparent weight of the
man is: (a)944 N 26- In question (25), (a) 80 N	(b)80 N if the elevator is going (b)7.84 N	(c)44 N with constant velocity 5 (c)784 N	(d) m/s, the weight (d)	9.8 N of the man is: 78.4 N	
man is: (a)944 N 26- In question (25), (a) 80 N	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3	(c)44 N with constant velocity 5 (c)784 N 80°, when just about to	(d) 5 m/s, the weight (d) move, the static co	9.8 N of the man is: 78.4 N oefficient of friction	
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8	(c)44 N with constant velocity 5 (c)784 N 80°, when just about to 1	(d) 5 m/s, the weight (d) move, the static co	9.8 N of the man is: 78.4 N oefficient of friction 1) 0.58	ı is:
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00 28- A box stands on	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8 rough incline plane of 0,	(c)44 N with constant velocity 5 (c)784 N 80°, when just about to 1 (c) Zero the box is moving with	(d) 5 m/s, the weight (d) move, the static co	9.8 N of the man is: 78.4 N oefficient of friction 1) 0.58 ty, the frictional for	ı is:
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00 28- A box stands on (a) mg sin θ	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8 rough incline plane of θ, (b) mg tan θ	(c)44 N with constant velocity 5 (c)784 N 30°, when just about to 1 (c) Zero the box is moving with (c) mg cos θ	(d) 5 m/s, the weight (d) move, the static co (c) a constant veloci	9.8 N of the man is: 78.4 N oefficient of friction 1) 0.58 ty, the frictional for 1) mg	ris:
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00 28- A box stands on (a) mg sin θ 29- A box of mass 5	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8 rough incline plane of θ, (b) mg tan θ kg is sliding down with	(c)44 N with constant velocity 5 (c)784 N 30°, when just about to 1 (c) Zero the box is moving with (c) mg cos θ	(d) 5 m/s, the weight (d) move, the static co (c) a constant veloci	9.8 N of the man is: 78.4 N oefficient of friction 1) 0.58 ty, the frictional for 1) mg	ris:
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00 28- A box stands on (a) mg sin θ 29- A box of mass 5 kinetic friction coeffi	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8 rough incline plane of θ, (b) mg tan θ kg is sliding down with icient is:	(c)44 N with constant velocity 5 (c)784 N 30°, when just about to 1 (c) Zero the box is moving with (c) mg cos θ	(d) 5 m/s, the weight (d) move, the static co (c) a constant veloci	9.8 N of the man is: 78.4 N oefficient of friction 1) 0.58 ty, the frictional for 1) mg	ris:
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00 28- A box stands on (a) mg sin θ 29- A box of mass 5	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8 rough incline plane of θ, (b) mg tan θ kg is sliding down with	(c)44 N with constant velocity 5 (c)784 N 30°, when just about to 1 (c) Zero the box is moving with (c) mg cos θ	(d) 5 m/s, the weight (d) move, the static co (d) a constant veloci (d) a rough incline su	9.8 N of the man is: 78.4 N oefficient of friction 1) 0.58 ty, the frictional for 1) mg	ris:
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00 28- A box stands on (a) mg sin θ 29- A box of mass 5 kinetic friction coeffication.	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8 rough incline plane of θ, (b) mg tan θ kg is sliding down with icient is: (b) 2.6	(c)44 N with constant velocity 5 (c)784 N 80°, when just about to (c) Zero the box is moving with (c) mg cos θ a constant velocity on (c)0.36	(d) 5 m/s, the weight (d) move, the static contact (d) a constant velocity (d)	9.8 N of the man is: 78.4 N oefficient of friction 1) 0.58 ty, the frictional for) mg orface at an angle 20	ris: ce is: 0 with the horizontal. The
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00 28- A box stands on (a) mg sin θ 29- A box of mass 5 kinetic friction coefficial 0.1	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8 rough incline plane of θ, (b) mg tan θ kg is sliding down with icient is:	(c)44 N with constant velocity 5 (c)784 N 80°, when just about to a (c) Zero the box is moving with (c) mg cos θ a constant velocity on (c)0.36 radius of 50m with cons	(d) 5 m/s, the weight (d) move, the static concern (d) a constant velocity (d) stant velocity of 2	9.8 N of the man is: 78.4 N oefficient of friction d) 0.58 ty, the frictional for) mg orface at an angle 20 1.00 5 m/s, the static fric	ris: ce is: 0 with the horizontal. The
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00 28- A box stands on (a) mg sin θ 29- A box of mass 5 kinetic friction coeffication.	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8 rough incline plane of θ, (b) mg tan θ kg is sliding down with icient is: (b) 2.6 in a circular road with a	(c)44 N with constant velocity 5 (c)784 N 80°, when just about to (c) Zero the box is moving with (c) mg cos θ a constant velocity on (c)0.36	(d) 5 m/s, the weight (d) move, the static concern (d) a constant velocity (d) stant velocity of 2	9.8 N of the man is: 78.4 N oefficient of friction 1) 0.58 ty, the frictional for) mg orface at an angle 20	ris: ce is: 0 with the horizontal. The
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00 28- A box stands on (a) mg sin θ 29- A box of mass 5 kinetic friction coeffi (a) 0.1 30- A car was going (a) 0.816	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8 rough incline plane of θ, (b) mg tan θ kg is sliding down with icient is: (b) 2.6 in a circular road with a (b) 1.27	(c)44 N with constant velocity 5 (c)784 N 80°, when just about to (c) Zero the box is moving with (c) mg cos θ a constant velocity on (c)0.36 radius of 50m with conc(c) 1.00	(d) 5 m/s, the weight (d) move, the static concern (d) a constant velocity (d) stant velocity of 2	9.8 N of the man is: 78.4 N oefficient of friction d) 0.58 ty, the frictional for) mg orface at an angle 20 1.00 5 m/s, the static fric	or is: Of with the horizontal. The etion coefficient is:
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00 28- A box stands on (a) mg sin θ 29- A box of mass 5 kinetic friction coeffication (a) 0.1 30- A car was going (a) 0.816	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8 rough incline plane of θ, (b) mg tan θ kg is sliding down with icient is: (b) 2.6 in a circular road with a (b) 1.27	(c)44 N with constant velocity 5 (c)784 N 80°, when just about to (c) Zero the box is moving with (c) mg cos θ a constant velocity on (c)0.36 radius of 50m with con (c) 1.00	(d) 5 m/s, the weight o (d) move, the static co (d) a constant veloci (d) a rough incline su (d) stant velocity of 2	9.8 N of the man is: 78.4 N oefficient of friction 1) 0.58 ty, the frictional for 1) mg orface at an angle 20 1.00 5 m/s, the static fric (d) 1.27	with the horizontal. The extion coefficient is:
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00 28- A box stands on (a) mg sin θ 29- A box of mass 5 kinetic friction coeffication (a) 0.1 30- A car was going (a) 0.816 Referring Thrown	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8 rough incline plane of θ, (b) mg tan θ kg is sliding down with icient is: (b) 2.6 in a circular road with a (b) 1.27	(c)44 N with constant velocity 5 (c)784 N 30°, when just about to (c) Zero the box is moving with (c) mg cos θ a constant velocity on (c)0.36 radius of 50m with con(c) 1.00	(d) 5 m/s, the weight o (d) move, the static co (d) a constant veloci (d) a rough incline su (d) stant velocity of 2	9.8 N of the man is: 78.4 N oefficient of friction 1) 0.58 ty, the frictional for) mg orface at an angle 20 1.00 5 m/s, the static fric (d) 1.27 Hitting	with the horizontal. The extion coefficient is:
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00 28- A box stands on (a) mg sin θ 29- A box of mass 5 kinetic friction coeffication (a) 0.1 30- A car was going (a) 0.816 Referring Thrown Vertical	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8 rough incline plane of θ, (b) mg tan θ kg is sliding down with icient is: (b) 2.6 in a circular road with a (b) 1.27	(c)44 N with constant velocity 5 (c)784 N 30°, when just about to (c) Zero the box is moving with (c) mg cos θ a constant velocity on (c)0.36 radius of 50m with con(c) 1.00	(d) 5 m/s, the weight of (d) move, the static contact (d) a constant velocity of 2	9.8 N of the man is: 78.4 N oefficient of friction 1) 0.58 ty, the frictional for 1) mg orface at an angle 20 1.00 5 m/s, the static fric (d) 1.27 Hitting Magnitude	with the horizontal. The etion coefficient is:
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00 28- A box stands on (a) mg sin θ 29- A box of mass 5 kinetic friction coeffication (a) 0.1 30- A car was going (a) 0.816 Referring Thrown Vertical Hangs	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8 rough incline plane of θ, (b) mg tan θ kg is sliding down with icient is: (b) 2.6 in a circular road with a (b) 1.27	(c)44 N with constant velocity 5 (c)784 N 30°, when just about to (c) Zero the box is moving with (c) mg cos θ a constant velocity on (c)0.36 radius of 50m with conc(c) 1.00	(d) i m/s, the weight (d) move, the static content velocity (d) a rough incline su (d) stant velocity of 2	9.8 N of the man is: 78.4 N oefficient of friction 1) 0.58 ty, the frictional for 1) mg orface at an angle 20 1.00 5 m/s, the static fric (d) 1.27 Hitting Magnitude Prevent	with the horizontal. The etion coefficient is:
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00 28- A box stands on (a) mg sin θ 29- A box of mass 5 kinetic friction coeffication coeffication (a) 0.1 30- A car was going (a) 0.816 Referring Thrown Vertical Hangs Horizon	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8 rough incline plane of θ, (b) mg tan θ kg is sliding down with icient is: (b) 2.6 in a circular road with a (b) 1.27	(c)44 N with constant velocity 5 (c)784 N 30°, when just about to (c) Zero the box is moving with (c) mg cos θ a constant velocity on (c)0.36 radius of 50m with con(c) 1.00 Initial altitude ω Elevator Circular Rough	(d) i m/s, the weight (d) move, the static co (c) a constant veloci (d) a rough incline su (d) stant velocity of 2	9.8 N of the man is: 78.4 N oefficient of friction 1) 0.58 ty, the frictional for 1) mg orface at an angle 20 1.00 5 m/s, the static fric (d) 1.27 Hitting Magnitude Prevent Apparent weig	with the horizontal. The etion coefficient is:
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00 28- A box stands on (a) mg sin θ 29- A box of mass 5 kinetic friction coeffication (a) 0.1 30- A car was going (a) 0.816 Referring Thrown Vertical Hangs Horizon Radius	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8 rough incline plane of θ, (b) mg tan θ kg is sliding down with icient is: (b) 2.6 in a circular road with a (b) 1.27	(c)44 N with constant velocity 5 (c)784 N 30°, when just about to (c) Zero the box is moving with (c) mg cos θ a constant velocity on (c)0.36 radius of 50m with con(c) 1.00 Initial altitude Elevator Circular Rough Coefficient Coefficient	(d) is m/s, the weight of (d) move, the static content velocity of 2 a rough incline su (d) stant velocity of 2 ابتدائي ابتدائي ابتدائي دائري	9.8 N of the man is: 78.4 N oefficient of friction 1) 0.58 ty, the frictional for 1) mg orface at an angle 20 1.00 5 m/s, the static fric (d) 1.27 Hitting Magnitude Prevent Apparent weig Gravitational	is: ce is: o with the horizontal. The ction coefficient is: القيمة العددية القيمة العددية الجانبية الارضية
man is: (a)944 N 26- In question (25), (a) 80 N 27- A box stands on (a) 1.00 28- A box stands on (a) mg sin θ 29- A box of mass 5 kinetic friction coeffication coeffication of the coefficient of the coefficient of the coefficient of the coeffication of the coefficient of the coef	(b)80 N if the elevator is going (b)7.84 N rough incline plane of 3 (b) 5.8 rough incline plane of θ, (b) mg tan θ kg is sliding down with icient is: (b) 2.6 in a circular road with a (b) 1.27 ag (b) 1.27 ag (c) 1.29 ag (c) 1.29 ag (c) 2.6 in a circular oad with a (b) 1.27 ag (c) 2.6 in a circular oad with a (b) 1.27	(c)44 N with constant velocity 5 (c)784 N 30°, when just about to (c) Zero the box is moving with (c) mg cos θ a constant velocity on (c)0.36 radius of 50m with con(c) 1.00 Initial altitude ω Elevator Circular Rough Coefficient Static	(d) i m/s, the weight (d) i move, the static co (c) i a constant veloci (d) a rough incline su (d) stant velocity of 2	9.8 N of the man is: 78.4 N oefficient of friction 1) 0.58 ty, the frictional for 1) mg orface at an angle 20 1.00 5 m/s, the static fric (d) 1.27 Hitting Magnitude Prevent Apparent weig	with the horizontal. The etion coefficient is:

the velovity at maximum night
is zero al

2 x-commponent of velocity is
$$V_{ox} = V_{o} \cos \theta \quad \text{[C]}$$

$$R_{\text{max}} = \frac{\sqrt{2}}{9}$$

า568148379

$$\theta = 3^{\circ}$$

$$V_{X} = 15 \quad cos30$$

$$h = \frac{(15)^2 (\sin 30)}{2 \times 9.8}$$

$$= 2,87 m$$

(c)

$$9 R = \frac{\sqrt{3} \sin 2\theta}{9}$$

$$=\frac{(15)^2 \sin(2x30)}{918}$$

$$t = \frac{2V \cdot \sin \theta}{g}$$

 $\sqrt{1 = 15m}$ 6 = 30 7 = ??

$$V = 30 \text{ cm}$$

 $V = 30 \text{ cm}$
 $V = 30 \text{ cm}$
 $V = 30 \text{ cm}$
 $V = 30 \text{ cm}$

[10]

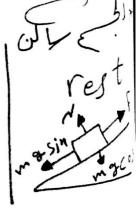
$$a = \frac{\sqrt{2}}{r}$$

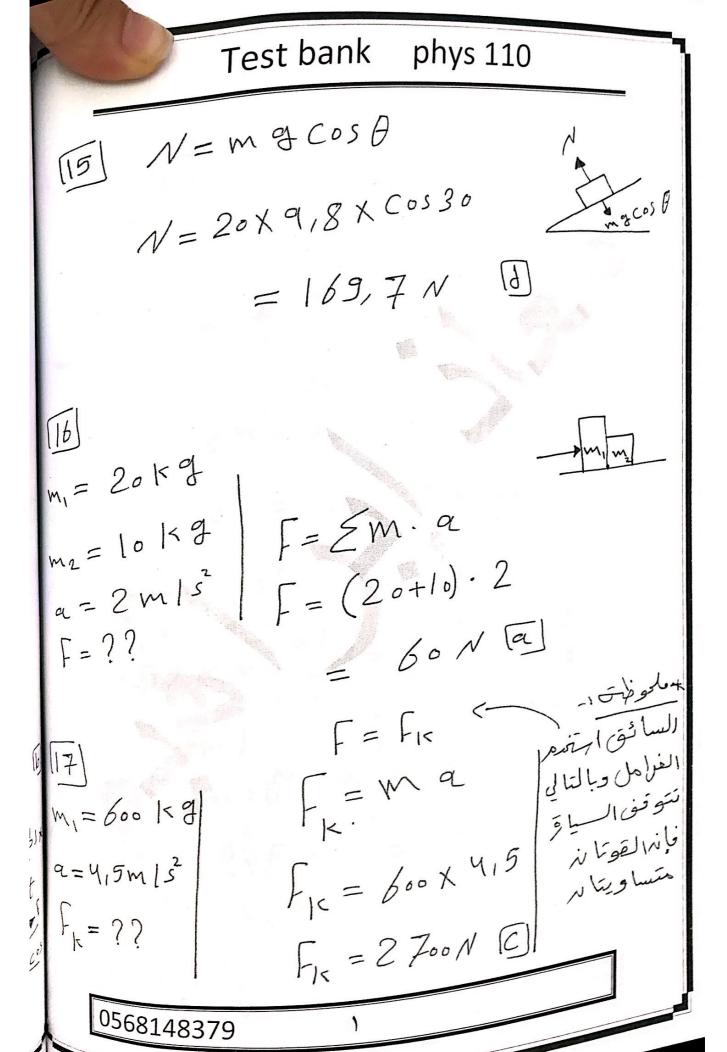
$$= \frac{3^2}{0.030} \Rightarrow 30 \text{ m/s}^2$$

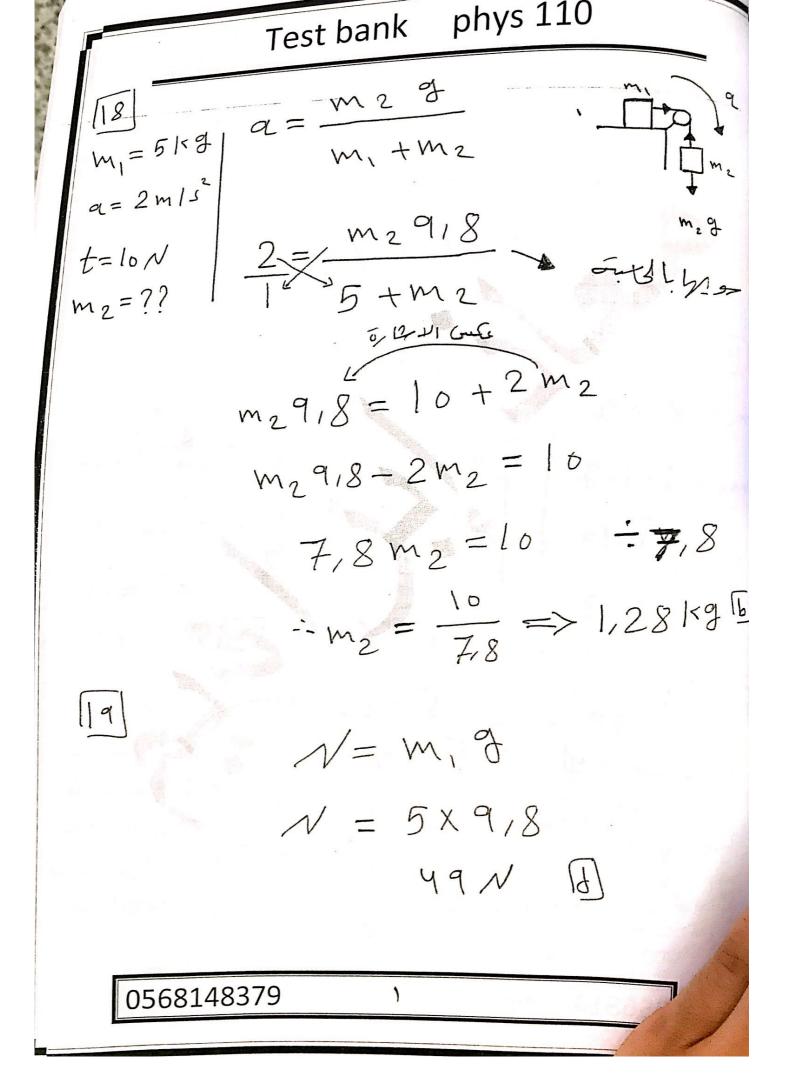
$$\boxed{b}$$

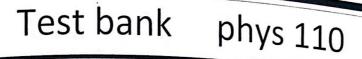
0568148379

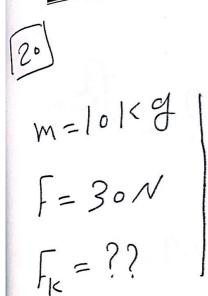
$$W = 80 \times 918$$

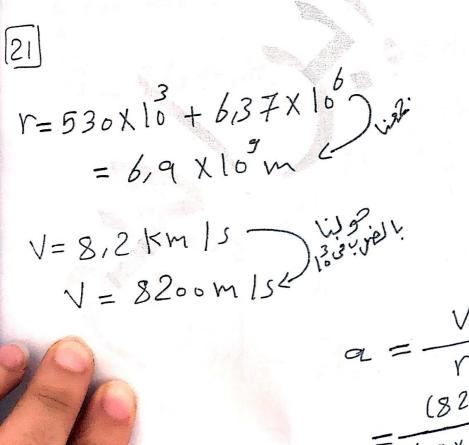

$$W = 80 \times 918$$

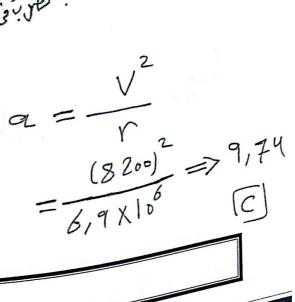

$$t_1 = 16,45$$
 N


$$m = ??$$


$$= \frac{195 \text{in} 30}{918}$$


$$\theta = 30$$





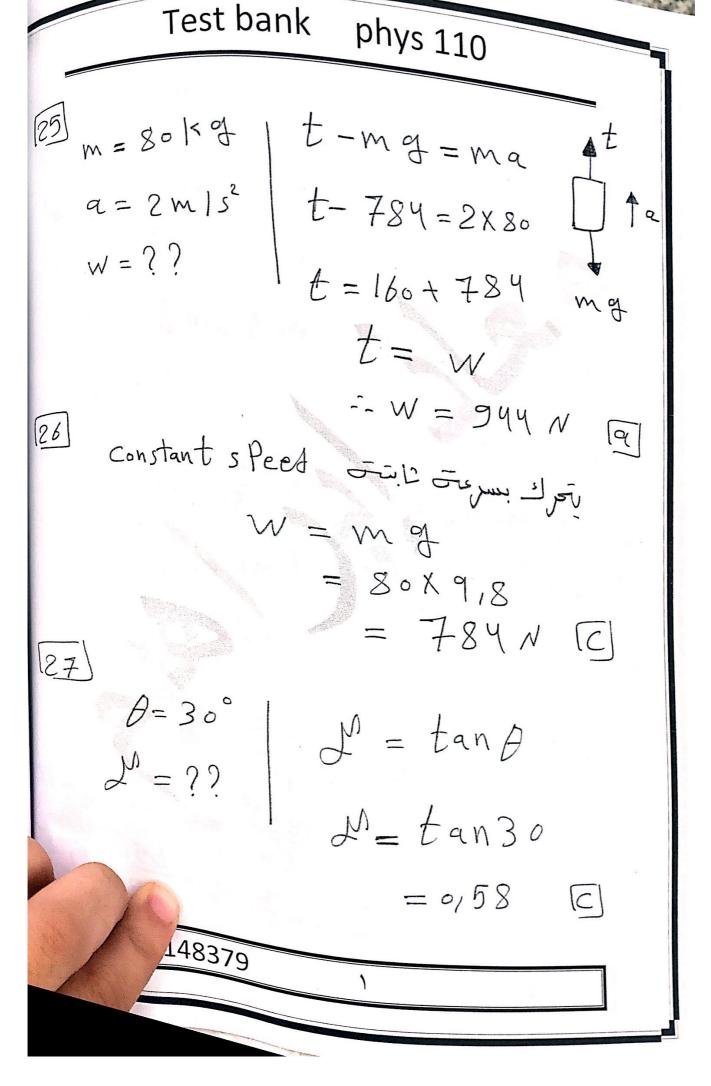
*
$$\overline{G}_{K}^{*} = F_{K}$$
 $F = F_{K}$
 $F = 25,98 N \text{ [a]}$

1

68148379

1530x18m

$$m_1 = 3 kg$$
 $Q = \frac{m_1 - m_2}{m_1 + m_2} \cdot g$
 $m_2 = 1.5 kg$
 $q = \frac{3 - 1.5}{3 + 1.5} \times 9.8$
 $g = 9.8$


$$a = \frac{3 - 1,5}{3 + 1,5} \times 9,8$$

$$m_1 = lob$$

$$m_2 = 15$$

$$m_1 = lok9$$
 $f_{g_2} = (m_1 + m_2)9$
 $m_2 = 15k9$
 $f_{g_2} = (10 + 15)x9.8$
 $f_{g_2} = (10 + 15)x9.8$

$$F_{3} = ??$$

$$\mathcal{L}_{R} = tan20$$

$$x_k = 35$$

$$a = \frac{V}{r}$$

$$= \frac{(25)^2}{50} = > 12,5 \text{ m/s}^3$$

$$\Delta_{k}^{n} = \frac{q}{q} \Rightarrow \frac{12.5}{9.8} = 1.27$$

ملخص قوانين الدوري الثاني

ملخص قوانين الشابتر الرابع

$$\vec{r}$$
 = Position vector

Displacement
$$\overrightarrow{Dr} = \overrightarrow{r_2} \cdot \overrightarrow{r_1}$$

$$\overrightarrow{r}$$
 (t) = x (t) i + y (t) j

$$(r) = \sqrt{\chi^2 + y^2}$$

$$\overrightarrow{v} = \frac{\overrightarrow{dr}}{dt} = \mathbf{V_x}(t) \mathbf{i} + \mathbf{V_y}(t)$$

a = acceleration vector متجه التسارع

$$\vec{a} = \frac{d\vec{v}}{dt} = \mathbf{a}_{x}(t)\mathbf{i} + \mathbf{a}_{y}(t)\mathbf{j}$$
 (M/S²)

$$R = \frac{V_0^2 \sin{(2 \theta)}}{g}$$

$$H = \frac{V_0^2 (\sin \theta)^2}{2 g}$$

$$t = \frac{2V_0 \sin \theta}{g}$$
 الكلى

$$\tan \theta = \frac{4H}{R}$$

$$R_{\text{max}} = \frac{V0^2}{g}$$
 maximum Rang

ملخص قوانين الشابتر الخامس

* Net force = $\sum F = 0$ at constant

speed

$$\star$$
 $W = mg$

* net force = ΣF = ma

* $N = mg - F \sin\theta$

*
$$F - (m_1 + m_2) g$$

$$a = g \sin \theta$$

$$a = -g \sin \theta$$

ملخص قوانين الشابتر السادس

Fs= µs N

 μ s = Coefficient of static friction

N = Normal force

قوة رد الفعل العمودى

$$\mu_s$$
 = tan θ

$$\theta$$
 = tan⁻¹ (μ_s)

$$a = - \mu_k g$$

$$a = g \sin \theta - \mu_k g \cos \theta$$

$$a_{\perp} = \frac{V^2}{R}$$

$$F_{\perp} = ma_{\perp} = m \frac{V^2}{R}$$

$$\theta = \tan^{-1} \left(\frac{v^2}{Rg} \right)$$