
الاسم: الرقم: المدة: ٣ ساعات الدرجة: ٢٠٠

أولاً: أجب عن الأسئلة الآتية:

السؤال الأول: اختر الإجابة الصحيحة في كلّ مما يأتي: (٢٠ درجة)

١- يمثّل الخط البياني المجاور تغيّرات التسارع بدلالة الزمن لحركة الجسم المعلّق بالنابض في النواس المرن، فإنّ التابع الزمني للتسارع لحركة هذا الجسم هو:

 T_{0} نواس فتل دوره الخاص T_{0} ، لزيادة هذا الدور يجب:

انقاص السعة الزاوية	d	زيادة السعة الزاوية	c	انقاص طول سلك الفتل	b	زيادة طول سلك الفتل	A
		.;	1.12.	انّ كناتر المسير أننواء الممر كترا	à .	م فقد النظر بالقالنسيية الشاء	*

٣- وفق النظرية النسبية الخاصة فإنْ كتلة الجسم اثناء الحركة الدائمة:

مساوية لها عند السكون d لانهائية	b أصغر منها عند السكون ع	a أكبر منها عند السكون
----------------------------------	--------------------------	------------------------

$L = 10^{-7} \text{ H}$	d	$L = 10^{-5} \text{ H}$	c	$L = 10^{-4} \text{ H}$	b	$L = 10^{-3} \text{ H}$	a

- 1 = 10 فقيمة ذاتيتها تساوي: 1 = 10 فقيمة ذاتيتها تساوي:
- هـ نمر رتيار كهربائي متواصل في وشيعة طولها 1 ، نصف قطرها $r=4\,\mathrm{cm}$ ، وعدد لفاتها N لفة متماثلة، يتولد عند مركزها حقل مغناطيسي منتظم شدّته $2\times10^{-3}\,\mathrm{T}$ ، نجعل نصف قطر الوشيعة $r=2\,\mathrm{cm}$ ، فتصبح شدّة الحقل المغناطيسي عند مركزها مساوية:

$4 \times 10^{-3} \mathrm{T}$	d	$3 \times 10^{-3} \mathrm{T}$	c	$2 \times 10^{-3} \mathrm{T}$	b	$10^{-3} \mathrm{T}$	a

جـ يعمل أنبوب أشعة سينية بتوتر كهربائي $V = 8 \times 10^4 \, V$ حيث يصدر عن المهبط إلكترون بسرعة معدومة عملياً، فإذا علمت أنّ $h = 6.6 \times 10^{-34} \, \mathrm{J.s}$, $c = 3 \times 10^8 \, \mathrm{m.s^{-1}}$, $e = 1.6 \times 10^{-19} \, \mathrm{C}$ علمت أنّ $h = 6.6 \times 10^{-34} \, \mathrm{J.s}$, $c = 3 \times 10^8 \, \mathrm{m.s^{-1}}$, $e = 1.6 \times 10^{-19} \, \mathrm{C}$ السينية الصادرة مساوياً:

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	b	$0.1547 \times 10^{-9} \mathrm{m}$)	$0.1547 \times 10^{-8} \text{ m}$	a
--	---	------------------------------------	---	-----------------------------------	---

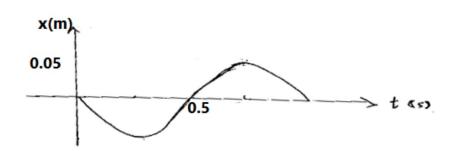
السؤال الثاني: (۲۰ درجة)

الثقب الأسود هو حيّز ذو كثافة هائلة لا يمكن لشيء الهروب من جاذبيته عند أفق الحدث الخاص به، ويعطى نصف قطره بالعلاقة : $r = \frac{2GM}{c^2}$. المطلوب: ١) اكتب دلالات الرموز في العلاقة السابقة.

٢) ما الطريقة الأفضل لرصد الثقوب السوداء؟ علل إجابتك.

السؤال الثالث: (٣٠ درجة)

قمت بدر اسة تجريبية لتأثير الحقل المغناطيسي على شحنات كهربائية متحركة كالأشعة المهبطية مثلاً، المطلوب:


- ١ ما العوامل المؤثرة في شدّة القوة المغناطيسية؟
 - ٢- اكتب العبارة الشعاعية للقوة المغناطيسية.
- ٣- اكتب عناصر شعاع القوة المغناطيسية، موضّحاً بالرسم.

السؤال الرابع: (٥٥ درجة)

نسخن سلك معدني إلى درجة حرارة مناسبة المطلوب:

- ١- ماذا يحدث للإلكترونات الحرة في السلك عند بدء التسخين؟
- ٢- ماذا يحدث لإلكتروناته الحرة عند استمرار التسخين؟ اكتب اسم هذه الظاهرة؟
 - ٣- كيف تفسر تشكل سحابة إلكترونية حول السلك؟
 - ٤- ماذا تتوقع أن يحصل عندما نطبق حقل كهربائي على السحابة الإلكترونية؟
 - ٥- كيف يمكن زيادة عدد الإلكترونات المنتزعة؟

السؤال الخامس: حل المسائل الآتية:

المسألة الأولى: (٥٦ درجة)

يمثّل الشكل المجاور تغيّرات المطال بدلالة الزمن لحركة توافقية بسيطة (نواس مرن).

المطلو ب.

- ١- استنتج التابع الزمني لمطال حركته انطلاقاً من شكله العام.
- ٢- احسب سرعة الجسم عند مروره الأول بوضع التوازن.
- ٣- احسب تسارع الجسم عند المرور بنقطة مطالها 2.5cm
- ٤- إذا علمت أنّ ثابت صلابة النابض 10 N.m احسب كتلة الجسم.
- ٥- احسب الطاقة الكامنة المرونية، والطاقة الحركية للجسم في نقطة مطالها 2.5 cm

المسألة الثانية: (٤٠ درجة)

يبلغ عدد لفات وشيعة 1000 لفة، وقطرها 4cm، يتصل طرفاها بمقياس غلفاني، نضعها في منطقة يسودها حقل مغناطيسي منتظم شدّته $\frac{\pi}{3}$ تصنع خطوطه مع محور الوشيعة زاوية مقدارها $\frac{\pi}{3}$ المطلوب:

- ١- احسب قيمة القوة المحركة الكهربائية المتحرضة عندما نضاعف شدّة الحقل المغناطيسي بانتظام خلال 0.5s.
 - ٢- اقترح طريقة لجعل القوة المحركة الكهربائية المتحرضة بأكبر قيمة لها، واحسب قيمتها عندئذ
 - ٣- حدّد بالرسم جهة التيار الكهربائي المتحرض ونوع قطبي كل من وجهى الوشيعة.

رق الكمون اللحظي بين نقطتين a و a بالعلاقة: (V) بين النقطتين ، $u=120\sqrt{2}\cos(100\,\pi\,t)$ نصل بين النقطتين . $c=\frac{1}{4000\,\pi}$ ومكثفة سعتها $C=\frac{1}{4000\,\pi}$ المطلوب حساب:

١- قيمة التوتر المنتج وتواتر التيار

٢- الشدّة المنتجة المارة في كل من فرعي المقاومة، والمكثفة، والشدّة المنتجة الكلية للدارة باستخدام انشاء فرينل

B- نربط على التسلسل بين النقطتين السابقتين دارة جديدة مؤلفة من المقاومة السابقة، والمكثفة السابقة، وشيعة مهملة المقاومة، فتصبح الشدّة على توافق بالطور مع التوتر المطبق المطلوب حساب:

١ - ذاتية الوشيعة.

٢- الاستطاعة المتوسطة المستهلكة في الدارة.

المسألة الرابعة:

مزمار متشابه الطرفين طوله $L=3.32~{
m m}$ يصدر صوتاً تواثره $f=1024{
m Hz}$ ، وهو يحوي هواء بدرجة حرارة $L=3.32~{
m m}$ ينتشر فيه الصوت بسرعة $v=340~{
m m.s}^{-1}$. المطلوب:

١- احسب عدد أطوال الموجة التي يحويها هذا المزمار

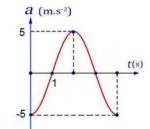
٢- نريد أن يحوي المزمار على نصف عد أطوال الموجة السابقة، وهو يصدر الصوت السابق نفسه بتغيير درجة حرارة هوائه فقط لتصبح t'. احسب قيمة t'.

t = 15 °C و النفخ الذا تكوّن في طرفي المزمار بطنان للاهتزاز و عقدة واحدة في منتصفه بدرجة الحرارة t = 15 °C و النفخ عند منبعه الصوتى، فاحسب تواتر الصوت الصادر عنه حينئذ

المسألة الخامسة: (٣٥ درجة)

المطلوب: $E_s = 3 \times 10^{-19} \, \mathrm{J}$ المطلوب: اللون يضيء مهبط حجيرة كهرضوئية، يحتاج معدنه لطاقة انتزاع

١- احسب طول موجة عتبة الإصدار.


رد عنه الحجيرة بضوء وحيد اللون طول موجته μ m • .٦ μ m عند اللون طول موجته μ m • .٦ μ m وسرعته عندئذ. $c=3\times10^8$ m.s-1 , $h=6.6\times10^{-34}$ J.s , $e=1.6\times10^{-19}$ C)

انتهت الأسئلة

نموذج إجابة امتحان شهادة الدراسة الثانوية العامة دورة عام (الفرع العلمي) <mark>نموذج – ن</mark> ١

الاسم: الرقم: المدة: ٣ ساعات الدرجة: ٢٠٠

السؤال الأول: اختر الإجابة الصحيحة في كلّ مما يأتي: (٢٠ درجة)

١- يمثّل الخط البياني المجاور تغيّرات التسارع بدلالة الزمن لحركة الجُسم المعلّق بالنابض
 في النواس المرن، فإنّ التابع الزمني للتسارع لحركة هذا الجسم هو:

						1	
$a = -5\cos(\frac{\pi}{2}t + \pi)$	d	$a = -5\cos\frac{\pi}{2}t$	c	$a = -5\cos(2\pi t + \pi)$	b	$a = -5\cos 2\pi t$	A

 T_{-} نواس فتل دوره الخاص T_{0} ، لزيادة هذا الدور يجب:

وزارة التربية

الفيزياء

d انقاص السعة الزاوية	زيادة السعة الزاوية	c	انقاص طول سلك الفتل	b	زيادة طول سلك الفتل	A
-----------------------	---------------------	---	---------------------	---	---------------------	---

٣- وفق النظرية النسبية الخاصة فإنّ كتلة الجسم أثناء الحركة الدائمة:

c مساوية لها عند السكون d لانهائية	a أكبر منها عند السكون b أصغر منها عند السكون
------------------------------------	---

ا الماميعة طولها 1=10م، وطول سلكها 1'=10 فقيمة ذاتيتها تساوي: 1'=10

	$L = 10^{-7} \text{ H}$	d	$L = 10^{-5} \text{ H}$	c	$L = 10^{-4} \text{ H}$	b	$L = 10^{-3} \mathrm{H}$	a
1								ĺ

ه- نمر رتيار كهربائي متواصل في وشيعة طولها 1، نصف قطرها $r=4\,\mathrm{cm}$ ، وعدد لفاتها N لفة متماثلة، يتولد عند مركزها حقل مغناطيسي منتظم شدّته $2\times10^{-3}\,\mathrm{T}$ نجعل نصف قطر الوشيعة $r=2\,\mathrm{cm}$ فتصبح شدّة الحقل المغناطيسي عند مركزها مساوية:

$4 \times 10^{-3} \mathrm{T}$ d $3 \times 10^{-3} \mathrm{T}$ c	$2\times10^{-3}\mathrm{T}$ b	$10^{-3}\mathrm{T}$	a
---	-------------------------------------	---------------------	---

بسرعة معدومة عملياً، $8\times10^4~\rm V$ حيث يصدر عن المهبط إلكترون بسرعة معدومة عملياً، $h=6.6\times10^{-34}~\rm J.s$, $c=3\times10^8~\rm m.s^{-1}$, $e=1.6\times10^{-19}~\rm C$ فإذا علمت أنّ للأشعة السينية الصادرة مساوياً:

$0.1547 \times 10^{-11} \mathrm{m}$	d	0.1547×10 ⁻	m	b	0.1547×10	⁸ m	a	
		1			_	π	f	_

١.	$a = -5\cos\frac{\pi}{2}t$ b C	-1
١.	أو إنقاص طول سلك الفتل. b	-۲
١.	أو أكبر منها عند السكون a	٣-
١.	b أو 10 ⁻⁴ H	٤ ـ
١.	$_{4 imes10^{-3}\mathrm{T}}$ او d	0
١.	$0.1547 \times 10^{-10}~\mathrm{m}$ او C	٦
٦,	مجموع درجات أولاً	

السؤال الثاني: (۲۰ درجة)

الثقب الأسود هو حيّز ذو كثافة هائلة لا يمكن لشيء الهروب من جاذبيته عند أفق الحدث الخاص به، ويعطى نصف قطره بالعلاقة : $r = \frac{2GM}{c^2}$: المطلوب: ١) اكتب دلالات الرموز في العلاقة السابقة.

٢) ما الطريقة الأفضل لرصد الثقوب السوداء؟ علل إجابتك.

٤ درجات لكلّ رمز		۱- ۲: نصف قطر شفار تزشیلد.
	٣×٤	G: ثابت الجاذبيّة.
	١٢	سرعة الضوء. $oldsymbol{c}$
		 ٢- سلوك الأجسام المجاورة للثقوب السوداء، وذلك لأنه لا
	٨	يمكن رصدها بطريقة مباشرة ويتمّ ذلك من خلال دراسة
		الحركات غير المتوقعة للنجوم أو الغبار أو الغازات المحيطة
		بالأماكن غير المرئيّة.
	۲.	مجموع درجات السؤال الثاني

السؤال الثالث: (٣٠ درجة)

قمت بدر اسة تجريبية لتأثير الحقل المغناطيسي على شحنات كهربائية متحركة كالأشعة المهبطية مثلاً، المطلوب:

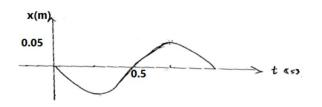
١ - ما العوامل المؤثرة في شدّة القوة المغناطيسية؟

٢- اكتب العبارة الشعاعية للقوة المغناطيسية.

٣- اكتب عناصر شعاع القوة المغناطيسية، موضّحاً بالرسم

		١- اكتب عناصر سعاع القوة المعناطيسية، موصحا بالرسم
درجتان لکل جزء		١. تتناسب شدّة القوة المغناطيسيّة طرداً مع:
	۲×٤	ullet مقدار الشحنة المتحركة $ q$
	٨	ullet شدّة الحقل المغناطيسي المؤثر B
		$_{ullet}$ سرعة الشحنة المتحركة $_{ u}$.
		د خیث $ heta$ هي الزاوية بين شعاع سرعة الشحنة، $\sin heta$
		$ heta=(\stackrel{\wedge}{v},{\overrightarrow{B}})$ وشعاع الحقل المغناطيسي
	٤	$\overrightarrow{F}=q\overrightarrow{v}\wedge\overrightarrow{B}$: العبارة الشعاعيّة للقوة المغناطيسيّة:
		٣- عناصر شعاع القوة المغناطيسية:
	۲	١. نقطة التأثير: الشحنة المتحركة.
	۲	٢. الحامل: عمودي على المستوي المحدّد بشعاع السرعة
		وشعاع الحقل المغناطيسي.
	٥	٣. الجهة: تحدّد بقاعدة اليد اليمني وفق الآتي:
		 نجعل الساعد يوازي شعاع سرعة الشحنة المتحركة.
		 الأصابع بعكس جهة شعاع السرعة للشحنات السالبة،
		وبجهة شعاع السرعة للشحنات الموجبة.
		 يخرج شعاع الحقل المغناطيسي من راحة الكف.
		 يشير الإبهام إلى جهة القوة المغناطيسية.
	۲	$F=qvB\sin heta$ الشدّة:

٧	B b V
۳.	مجموع درجات السؤال الثالث


السؤال الرابع: (٣٥ درجة)

نسخن سلك معدني إلى درجة حرارة مناسبة المطلوب:

- ١- ماذا يحدث للإلكترونات الحرة في السلك عند بدء التسخين؟
- ٢- ماذا يحدث لإلكتروناته الحرة عند استمرار التسخين؟ اكتب اسم هذه الظاهرة؟
 - ٣- كيف تفسّر تشكل سحابة إلكترونية حول السلك؟
 - ٤- ماذا تتوقع أن يحصل عندما نطبق حقل كهربائي على السحابة الإلكترونية؟
 - ٥- كيف يمكن زيادة عدد الإلكترونات المنتزعة؟

٣	١-تكتسب بعض الإلكترونات الحرّة للسطح المعدني قدراً من الطاقة تزيد من
	سرعتها وحركتها العشوائيّة.
۲	٢- باستمرار التسخين يزداد خروج الإلكترونات من ذرات سطح المعدن.
٣	الظاهرة: الفعل الكهرحراري
٣	٣- بزيادة خروج الإلكترونات من سطح المعدن تزداد شحنة المعدن.
٣	تزداد قوة جذب المعدن للإلكترونات المنطلقة.
٣	في لحظة ما يتساوى عدد الإلكترونات المنطلقة مع عدد الإلكترونات العائدة
	لسطح المعدن.
٣	تتشكل سحابة الكترونيّة كثافتها ثابتة حول سطح المعدن.
	٤- عند تطبيق حقل كهربائي:
٣	الإلكترونات الخارجة من سطح المعدن لا تعود إليه وإنما تتحرّك في
	الحقل نحو المصبعد
٣	مما يساعد على إصدار الكترونات جديدة
٣	وتستمر العمليّة بسرعة كبيرة جدّاً لتتسارع الإلكترونات مكونة حزمة
	الكترونيه.
	 درداد عدد الإلكترونات المنتزعة في الثانية الواحدة كلما:
٣	 قلّ الضغط المحيط بسطح المعدن.
٣	 ارتفعت درجة حرارة المعدن
30	مجموع درجات السؤال الرابع

السؤال الخامس: حل المسائل الآتية:

المسألة الأولى: (٥٠ درجة)

يمثّل الشكل المجاور تغيّرات المطال بدلالة الزمن لحركة تو افقية بسيطة (نواس مرن). المطلوب:

- ١- استنتج التابع الزمني لمطال حركته انطلاقاً من شكله العام.
 - ٢- احسب سرعة الجسم عند مروره الأول بوضع التوازن.
 - ٣- احسب نسارع الجسم عند المرور بنقطة مطالها 2.5cm
- ٤- إذا علمت أنّ ثابت صلابة النابض 10 N.m احسب كتلة الجسم.
- ٥- احسب الطاقة الكامنة المرونية، والطاقة الحركية للجسم في نقطة مطالها 2.5cm.

	,
	$\overline{x} = X_{\text{max}} \cos(\omega_0 t + \overline{\varphi}) \qquad -()$
,	$X_{\text{max}} = 5 \times 10^{-2} \text{m}$ نعین قیم الثوابت:
٣	$\omega_o = \frac{2\pi}{T_o} = \frac{2\pi}{1} = 2\pi \text{ rad.s}^{-1}$
	تحدید $\overline{\Phi}$ من شروط البدء:
٣	$ \begin{vmatrix} t = 0 \\ x = 0 \end{vmatrix} \implies 0 = X_{\text{max}} \cos \overline{\varphi} $
	$\cos \overline{\varphi} = 0$
	$\frac{\overline{\varphi}}{\varphi} = \frac{\pi}{2} \text{ rad}$ $\Rightarrow \circ$
	$\frac{\overline{\varphi}}{\varphi} = \frac{3\pi}{2} \text{ rad}$
	قيمة مقبولة لأنها تحقق سرعة سالبة وتوافق شروط البدء $\overline{\varphi} = \frac{\pi}{2}$ rad
	تعمد مرفوضة لأنها تحقق سرعة موجبة وتخالف شروط البدء. $\frac{-}{\varphi} = \frac{3\pi}{2}$ rad
	التابع الزمني للحركة:
	$\frac{1}{x} = 0.05 \cos(2\pi t + \frac{\pi}{2})$
	$v = (x)'_{t} = -2\pi \times 0.05 \sin(2\pi t + \frac{\pi}{2})$
	المرور بموضع التوازن: $($ من الرسم المعطى $)$ لحظة البدء $t=0$
	$t = \frac{1}{2}$ المرور الأول في اللحظة
	$v = -2\pi \times 0.05 \sin\left(2\pi \times \frac{1}{2} + \frac{\pi}{2}\right)$ نعوض في تابع السرعة فنجد أنّ
	$v = -2\pi \times 0.05 \sin\left(\frac{3\pi}{2}\right)$ $v = \frac{-\pi}{100}(-1)$
	$v = \pi \times 10^{-2} \text{ m.s}^{-1}$

-(٣
-(٤
-(°

يبلغ عدد لفات وشيعة 1000 لفة، وقطرها 4cm ، يتصل طرفاها بمقياس غلفاني، نضعها في منطقة يسودها حقل مغناطيسي منتظم شدّته $\frac{\pi}{3}$ rad مغناطيسي منتظم شدّته $\frac{\pi}{3}$ المطلوب:

- 1- احسب قيمة القوة المحركة الكهربائية المتحرضة عندما نضاعف شدّة الحقل المغناطيسي بانتظام خلال 0.5s.
 - ٢- اقترح طريقة لجعل القوة المحركة الكهربائية المتحرضة بأكبر قيمة لها، واحسب قيمتها عندئذ
 - ٣- حدّد بالرسم جهة التيار الكهربائي المتحرض ونوع قطبي كل من وجهي الوشيعة.

	٥	$\varepsilon = -\frac{\overline{\Delta \Phi}}{\Delta t}$ -()
	0	$\varepsilon = -\frac{N \Delta B s \cos \alpha}{\Delta t}$
	۳+۳	$\varepsilon = -\frac{10^{3} \times (2-1) \times 10^{-2} \times \pi \times (2 \times 10^{-2}) \cos \frac{\pi}{3}}{0.5}$
	1+1	$\varepsilon = -12.5 \times 10^{-3} \mathrm{V}$
	۲ ۳)- نجعل خطوط الحقل موازية لمحور الوشيعة $\alpha = 0$
	1	$\alpha = 0$ $\cos \alpha = 1$
		$\varepsilon = -\frac{N \Delta B s \cos \alpha}{\Delta t}$
	۳ ۱+۱	$\varepsilon = -\frac{10^{3} \times (2 - 1) \times 10^{-2} \times \pi \times (2 \times 10^{-2}) \cos 0}{0.5}$ $\varepsilon = -25 \times 10^{-3} \text{ V}$
		-(٣
للرسم المتكامل	١.	\overline{B} \longrightarrow \overline{B} \overline{B} \overline{B} \overline{B} \overline{B} \overline{B}
	٤٠	مجموع درجات المسألة الثانية

- المسألة الثالثة: (۷۰ درجه) المسألة الثالثة: ($u = 120\sqrt{2}\cos(100\pi t)$) نصل بين النقطتين على التفرع مقاومة صرفة قيمتها $R=30\Omega$ ، ومكثفة سعتها $C=\frac{1}{4000\pi}$. المطلوب حساب:
 - ١- قيمة التوتر المنتج وتواتر التيار
- ٢- الشَّدّة المنتَّجة المارة في كل من فرعي المقاومة، والمكثّفة، والشَّدّة المنتَّجة الكلية للدارة باستخدام انشاء
- B- نربط على التسلسل بين النقطتين السابقتين دارة جديدة مؤلفة من المقاومة السابقة، والمكثفة السابقة، وشيعة مهملة المقاومة، فتصبح الشدّة على توافق بالطور مع التوتر المطبق. المطلوب حساب:
 - ١- ذاتية الوشيعة
 - ٢- الاستطاعة المتوسطة المستهلكة في الدارة.

0 1+1 0 7	$U_{eff} = \frac{U_{\text{max}}}{\sqrt{2}}$ $U_{eff} = \frac{120\sqrt{2}}{\sqrt{2}} 120 \text{ V}$ $\omega = 2\pi f$ $\omega = 100\pi$ $f = 50 \text{ HZ}$
0 1+1 0 7 1+1	$I_{eff_1} = \frac{U}{R}$ $I_{eff_1} = \frac{120}{30}$ $I_{eff_1} 4 A$ $X_c = \frac{1}{\omega c}$ $X_c = \frac{1}{100\pi \times \frac{1}{4000\pi}}$ $X_c 40 \Omega$ $I_{eff_2} = \frac{U_{eff}}{X_c}$ $I_{eff_2} = \frac{120}{40}$ $I_{eff_2} = 3 A$
٥ للرسم المتكامل	$ \begin{array}{c} I_{eff_1} \\ I_{eff_1} \end{array} $

	-(\ -B
٣	$X_L = X_C$
	$\omega L = 40$
	$L = \frac{40}{100\pi}$
	100π
1+1	$L = \frac{2}{5\pi} H$
	5π
0	$P_{cva} = U_{eff} I'_{eff} .\cos \varphi'$ -(Y
	uvg ejj ejj .
٣	$I'_{eff} = \frac{U_{eff}}{R} = \frac{120}{30} = 4 \text{ A}$
	$\cos \varphi' = 1$
1+1	$P_{avg} = 120 \times 4 \times 1 = 480 \mathrm{W}$
٧.	مجموع درجات المسألة الثالثة

المسألة الرابعة: (٥٤ درجة)

مزمار متشابه الطرفين طوله $L=3.32~\mathrm{m}$ يصدر صوتاً تواثره $f=1024\mathrm{Hz}$ ، وهو يحوي هواء بدرجة حرارة المطلوب: $\nu = 340 \; \text{m.s}^{-1}$ المطلوب: $t = 15 \; ^{\circ}\text{C}$

١- احسب عدد أطوال الموجة التي يحويها هذا المزمار.
 ٢- نريد أن يحوي المزمار على نصف عدد أطوال الموجة السابقة، وهو يصدر الصوت السابق نفسه بتغيير درجة حرارة هوائه فقط لتصبح 't. احسب قيمة 't.

t = 15 °C بتغيير قوة المر مار بطنان للاهتزاز وعقدة واحدة في منتصفه بدرجة الحرارة t = 15 °C بتغيير قوة النفخ عند منبعه الصوتي، فاحسب تواتر الصوت الصادر عنه حينئذِ

0+0	عدد أطوال الموجة $=rac{L}{\lambda}=rac{Lf}{v}$	-(1
7+7	عدد أطوال الموجة $= \frac{3.32 \times 1024}{340} = 10$	
	عدد أطوال الموجة الجديد = $\frac{L}{\lambda'} = \frac{Lf}{v'}$	-(۲
۲+۳	عدد أطوال الموجة الجديد = $\frac{3.32 \times 1024}{v'} = 5$	
	$v' \approx 680 \text{ m.s}^{-1}$	
٥	$\frac{v}{v'} = \frac{\sqrt{T}}{\sqrt{T'}}$	
٣	$\frac{340}{680} = \frac{\sqrt{15 + 273}}{\sqrt{t' + 273}}$	
1+1	t' = 879 °c	

٥	$L = n \frac{\lambda}{2} \qquad -(\Upsilon$
	$n=1$ $\lambda = \frac{v}{f}$
٥	$L=\frac{v}{2f'}$
	$f' = \frac{v}{2L}$
٣	$f' = \frac{340}{2 \times 3.32}$
1+1	f' = 51.2 Hz
50	مجموع درجات المسألة الرابعة

المسألة الخامسة: (٣٥ درجة)

منبع ضوئي وحيد اللون يضيء مهبط حجيرة كهرضوئية، يحتاج معدنه لطاقة انتزاع $E_s=3\times10^{-19}\,\mathrm{J}$. المطلوب: ١- احسب طول موجة عتبة الإصدار.

٠- تضاء الحجيرة بضوء وحيد اللون طول موجته μ m بالطاقة الحركية للإلكترون لحظة انتزاعه، $c=3\times10^8~{\rm m.s^{-1}}$, $h=6.6\times10^{-34}~{\rm J.s}$, $e=1.6\times10^{-19}~{\rm C}$

	-(1
٥	$E_s = h f_s$
٥	$E_s = h \frac{c}{\lambda_s}$
	$E_{s} = h \frac{c}{\lambda_{s}}$ $\lambda_{s} = \frac{h c}{E_{s}}$
٣	$\lambda_s = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{3 \times 10^{-19}}$ $\lambda_s = 0.66 \times 10^{-6} \text{ m}$
1+1	$\lambda_s = 0.66 \times 10^{-6} \text{ m}$
	- (٢
	$E_k = E - E_S$
	$E = \frac{h c}{\lambda}$
٣	$E = \frac{6.6 \times 10^{34} \times 3 \times 10^8}{0.6 \times 10^{-6}}$
١	$E = 3.3 \times 10^{-19} \mathrm{J}$
٤	$E_k = 3.3 \times 10^{-19} - 3 \times 10^{-19}$
1+1	$E_k = 0.3 \times 10^{-19} \mathrm{J}$

	0	$E_k = \frac{1}{2} m_e v^2$
		$v = \sqrt{\frac{2E_k}{m_e}}$
	٣	$v = \sqrt{\frac{2 \times 0.3 \times 10^{-19}}{9 \times 10^{-31}}}$
) -		$v = 2.58 \times 10^5 \mathrm{m.s^{-1}}$
,	ن المسألة الخامسة ٥	مجموع درجات
7:	ن المسألة الخامسة ٥ ت السؤال الخامس •	مجموع درجاد

