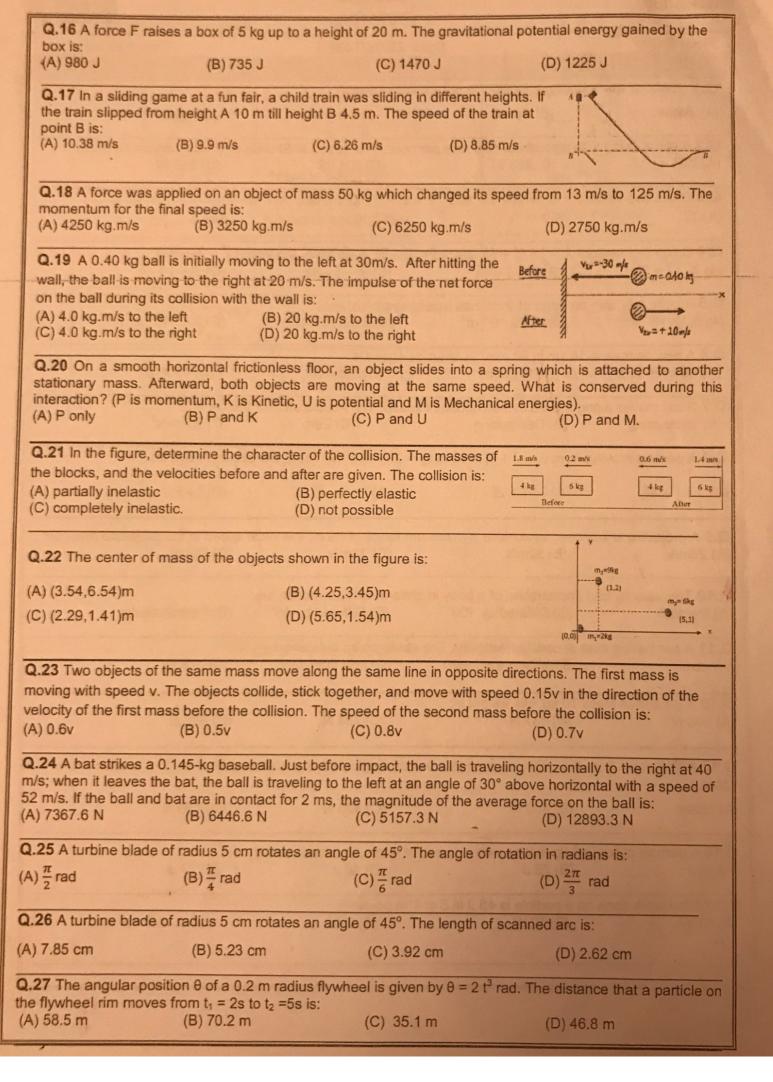
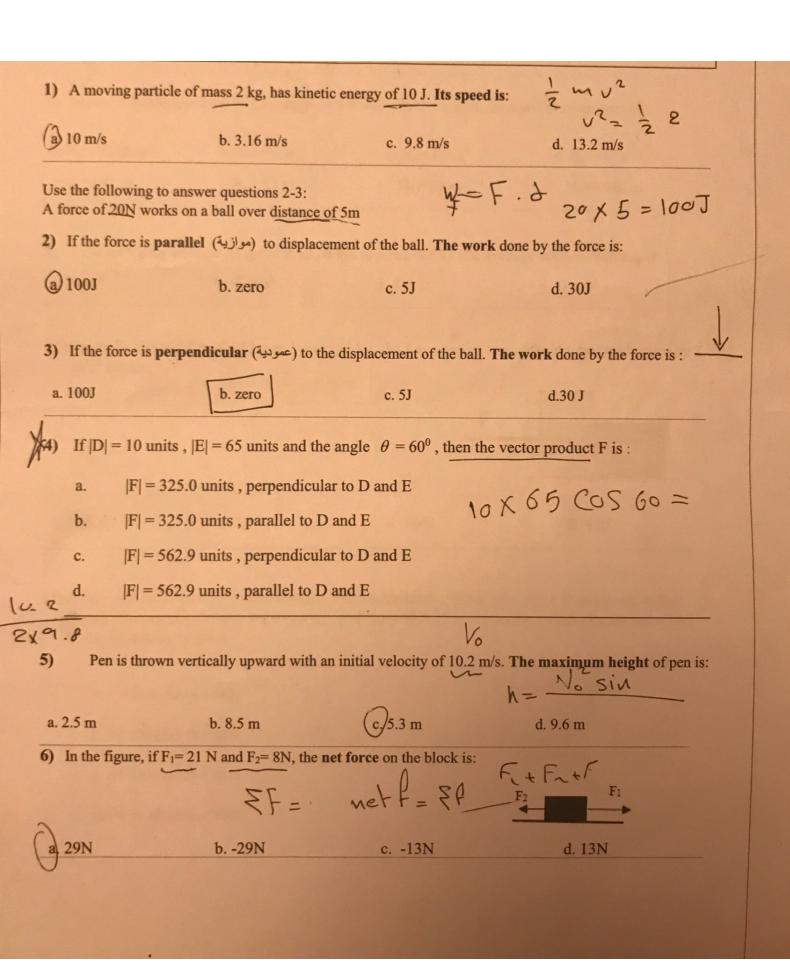
المملك العربية السعودية المملك المراكز التي المراكز المراكز



لكل المهتمين و المهتمات بدروس و مراجع الجامعية



مدونة المناهج السعودية eduschool40.blog

orgoon name.		ID:	
Q.1 Which of the follo	owing quantities is not a ba		
(A) Mass	(B) Speed	(C) Length	(D) Time
Q.2 A plane flying with (A) 233	n a speed of 500 mile per (B) 223.61	hour. The speed in SI units (C) 201.25	s is: (Hint: 1 mile = 1610 m) (D) 245.97
(A) 12	(B)4	= $2\hat{i} - \hat{j} + 2\hat{k}$. Then, $\vec{A} \cdot \vec{B}$ is: (C) 10	(2)0
Q.4 Given two vectors (A) $3\hat{i} - \hat{j} + 7\hat{k}$	$\overrightarrow{A} = \hat{i} + 2\hat{j} + 5\hat{k}$ and $\overrightarrow{B} = (B) 3\hat{i} - \hat{j} + 6\hat{k}$	= $2\hat{i} - 3\hat{j} + 4\hat{k}$. Then, the vector (C) $3\hat{i} - \hat{j} + 9\hat{k}$	or $\vec{C} = \vec{A} + \vec{B}$ is: (D) $3\hat{i} - \hat{j} + 5\hat{k}$
Q.5 A cube box with a (A) 5.12 10 ⁻⁴ m ³	n edge of 9 cm has a volu (B) 7.29 10 ⁻⁴ m ³	ume of: (C) 2.16 10 ⁻⁴ m ³	(D) 3.43 10 ⁻⁴ m ³
(A) 16 km/h	8 km in 90 min. Its averag (B)14 km/h	(C) 12 KHWH	(D) 10 km/h
(A) Increasing	(B) Decreasing	speed. The acceleration of th (C) Zero	
Q.8 A particle moving to	from $\vec{r}_1 = \hat{i} + 3\hat{j} + 4\hat{k}$ to \vec{r}_2	$=2\hat{i}+4\hat{j}+8\hat{k}$. Then, the dis	splacement is:
	(B) $\hat{i} + \hat{j} + 2\hat{k}$	(C) $\hat{i} + \hat{j} + 6\hat{k}$	(D) î + ĵ
Q.9 A projectile is laund (A) 26m/s	ched to achieve a maximu (B) 32m/s	um range of 69 m, the initial s (C) 34m/s	speed of the projectile must be: (D) 28m/s
Q.10 The velocity and a	acceleration of a body in u (B) Differed by 100°	uniform circular motion are: (C) Differed by 45°	(D) Perpendicular
Q.11 A car travels east (A) zero	at constant velocity. The (B) greater than zero	net force on the car is: (C) less than zero	(D) 9.8 N
Q.12 A person of mass (A) 686 N	70 kg. His weight is: (B) 637 N	(C) 784 N	(D) 882 N
Q.13 A light cable from table is:	the ceiling suspends a ba	Il of weight 380 N in static e	quilibrium. The tension in the
(A) 380N	(B) 400 N	(C) 420 N	(D) 450 N
Q.14 A particle of mass (A) 12 J	6 kg moves with a speed (B) 75 J	of 4 m/s, its kinetic energy is (C) 48 J	s: (D) 27 J
Q.15 If the work done or (A) 11 W	n a particle is 45 J in 5 s. 7 (B) 12 W	The power is: (C) 9 W	(D) 10 W

Q.28 The angular position θ of a 0.18 m radius flywheel is given by $\theta = 2 t^3$ rad. The average angular velocity over the interval from $t_1 = 2s$ to $t_2 = 6s$ is: (A) 104 rad/s (B) 38 rad/s (C) 134 rad/s (D) 56 rad/s Q.29 A plumber stands on the end of the cheater applying a force F of 850 N at a point 0.80 m from the center of the fitting as shown below. The wrench handle and cheater make an angle of 19° with the horizontal. The magnitude of the torque he applies about the center of the fitting is: (A) 605 N.m (B) 575 N.m (C) 711 N.m (D) 643 N.m Q.30 A particle has a mass of 0.25 kg and rotate about a point at distance 5 m with velocity given by: v= 6(m/s³) t². The angular momentum of the particle at t=3s is: (A) 94.5 Kg.m²/s (B) 54 Kg.m²/s (C) 67.5 Kg.m²/s (D) 81 Kg.m²/s

7) A particle moves 10 m in the positive x direction while being acted upon by a constant force

 $\vec{F} = (4\hat{\imath} + 4\hat{k})$ N. The work done on the particle by this force is:

a. 16J

b. 44J

c. 80J

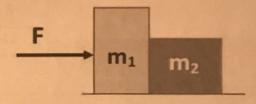
- d. 40J
- 8) Vector \vec{N} has length 0.1m making angle of 30° with positive x axis, the x and y component are:

a.
$$N_x = 0.086 \text{ m}$$

b.
$$N_x = 58 \text{ m}$$

c.
$$N_x = 50 \text{ m}$$

d.
$$N_x = 0.5 \text{ m}$$


$$N_y = 0.05 \text{ m}$$

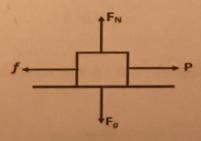
$$N_y = 86 \text{ m}$$

$$N_y = 86 \text{ m}$$

$$N_y = 0.086 \text{ m}$$

- 9) A car uniformly changes its speed from 20 m/s to 5 m/s in 5 s. The average acceleration aavg is:
 - a. 9 m/s²
- b. -3 m/s²
- c. 4 m/s²
- d. -6 m/s²
- 10) From the figure, if m_1 = 10 kg and m_2 = 40 kg, the force acting to accelerate the two bodies by 2 m/s² equals:

- a. 100 N
- b. 80 N


c. 66N

- d. 410
- 11) A boy pulls (بسحب) a 58 N box along a friction horizontal floor by a force P as shown in the figure. The frictional force between box and floor is f=29 N. If the box does not move, which of the following is true?

b.
$$P < 29 N$$
 and $F_N = 58 N$

c.
$$P = 29 \text{ N} \text{ and } F_N < 58 \text{ N}$$

d.
$$P = 29 \text{ N}$$
 and $F_N = 58 \text{ N}$

12) An object that has kine	tic energy must be:
-----------------------------	---------------------

a. falling

b. moving

c. at rest

d. none of these

13) Which of the following is not used as a unit of time:

a. day

b. hour

c. meter

d. second

14) A block is attached to the end of an ideal spring (k=2 N/m) and moved from coordinate x_i to x_f . the work done by spring W_s is positive if:

	Xi	Xf
Α	2	-2
В	-4	-2
С	3	5
D	10	12

a. A

b. B

c. C

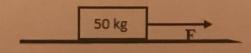
d. D

15) In Newton's third law, Action and Reaction have:

- a. The same direction and different magnitude.
- c. The same magnitude and direction.

- b. Perpendicular to each other.
- d. The same magnitude and opposite direction

16) A 4 kg cart starts up an incline with a speed of 3 m/s and comes to rest up the incline. The total work done on the cart is:


a. -18J

b. -3J

c. -9J

d. -6J

17) A 50 Kg box slides on the friction horizontal surface with acceleration $a = 0.5 \text{ m/s}^2$ by applied force F as show in figure. If $\mu_k = 0.4$, the **applied force F** is:

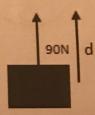
a. 221 N

b. 25 N

c. 196 N

d. 20 N

- a. in direction of motion
- b. has unit of N
- c. has no unit
- d. none of these


19) 0.000 000 000 198 =

- a. 1.98 x 10 -11
- b. 1.98 x 10⁻⁹
- c. 1.98 x 10⁻¹⁰
- d. 1.98 x 10 -12
- 20) A man of mass 80 kg stand on a scale in elevator, if the elevator is going downward Ψ with acceleration of 2 m/s², the normal force (F_N) is:
- a. 944 N
- b. 624 N
- c. 9.8 N
- d. 44 N
- 21) A body of 55 kg running in a circular path of r=3m at a velocity of 6 m/s. the centripetal force is:
- a. 660 N

b. 110N

c. 330N

- d. 165 N
- 22) A 5 kg box is raised a distance of 2.5 m from rest by a vertical applied force of 90N. the work done on box by the applied force is:

a. 36J

- b. -225J
- c. zero

- d. 225J
- 23) According to question 22, the work done on the box by gravity is:
- a. 12.5J

b. 122.5J

- c. -122.5J
- d. -12.5J

Given two vectors A = -3i - j and B = -9i - 10j:

24) A+B =

a. -6i -10j

b. 12 i - 11j

c. -12 i -11j

d. i -11i

25) The magnitude of \vec{B} :

a. 100.5

b. 81.7

c. 13.45

d. 4.35

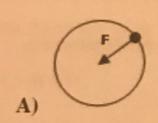
26) \vec{A} . \vec{B} equals =

a. 28

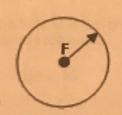
b. -18

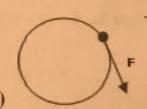
c. 10

d. 37


27) The force that opposes (عكس) the motion is called:

a. Tension (T)


b. Normal force (F_N)


c. Gravitational force (Fg) d. Friction (f)


28) The direction of the centripetal force acting on a body moving in uniform circular motion is:

B)

29) A body of mass 10 kg at point where g=9.8 m/s².its weight at a point where g=0 is:

a. zero

b. 9.8N

c. 98 N

d. 10 N

30) Person pushes a box and exerts work 100J during 2s. the power required is:

a. 50 W

b. 0.02 W

c. 200 W

d. 100 W

31) The coefficient of static fraction between a 5kg block and horizontal surface is 0.4. the maximum horizontal force that can be applied to the block before it slips is:

a. 19.6 N

b. 45.8 N

c. 10.3 N

d. 25.4 N

32) A block of mass 10 kg moves on a horizontal surface with constant speed by force of 40 N. the value of the coefficient of fraction µk is:

a. 0.53

b.0.17

c. 0.64

d.0.40

33) A 800 kg car moves from rest to speed of 8 m/s. the net work done is:

a. 1210J

b. 2210J

c. 25600J

d. 1000J

34) Watt is equal

a. J.s

b. s/J

c. J/s

d. none of these

35) You are throwing a ball straight up in the air. At the highest point, the ball's velocity is:

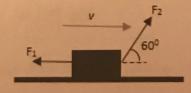
 $a. v > v_0$

b. $v < v_0$

c. v = 0

d. none of these

36) The position vector for a particle is initially $\vec{r} = 14\hat{i} - 5\hat{j} + \hat{k}$ and then later is $\vec{r} = 5\hat{i} - 5\hat{j} + 6\hat{k}$, all in meter. The particle displacement is:


 $a. -9\hat{i} + 5\hat{k}$

 $b.9\hat{\imath} - 10\hat{\jmath} - 5\hat{k} \qquad c. -9\hat{\imath} - 5\hat{k}$

d. $-9\hat{i} - 10\hat{j} - 5\hat{k}$

37) In the figure $F_1=2$ N and $F_2=4$ N and angled upward by 60° acting on box sliding to the right across frictionless floor with velocity v=3 m/s.

The net power due to F₁ and F₂ acting on a box is:

a. zero

b. 6 w

c. -6 w

d. 3 w

38) 1 joule =

a. N.m²

b. N.m

c. N/m

d. none of these

a. decreases b. constant c. zero d. increases 40) A ball is thrown at an angle of 30° above the horizontal with an initial speed 50 m/s. The ran is: a. 318 m b. 257 m c. 373.4 m d. 220.9 m 41) To move a car along a level road you needed to apply a force of about 200N directed at angle of above the horizontal, and you push it 20m, the work done on the car is: a. 4500J b. 2210J c. 3000J d. 2176J 42) Ahmad pushes a box along a smooth floor using a force of 210N and a power output of of 350 time it takes to push the box 20m is: a. 5 s b. 12 s c. 20 s d. 4 s 43) A truck start from rest, travels with constant acceleration a distance 470 m the final velon 50 m/s. it is acceleration is: a. 0.11 m/s² b. 2.66 m/s² c. 5.32 m/s² d. 1.77 m/s² 4) A stone is tied to a 0.50-m string and whirled at a constant speed of 4m/s in a circle. Its accelerate top of the circle is:				Velocity
a. 318 m b. 257 m c. 373.4 m d. 220.9 m 41) To move a car along a level road you needed to apply a force of about 200N directed at angle of above the horizontal, and you push it 20m, the work done on the car is: a. 4500J b. 2210J c. 3000J d. 2176J 42) Ahmad pushes a box along a smooth floor using a force of 210N and a power output of of 350 time it takes to push the box 20m is: a. 5 s b. 12 s c. 20 s d. 4 s 3) A truck start from rest, travels with constant acceleration a distance 470 m the final velocity of the circle is: a. 0.11 m/s ² b. 2.66 m/s ² c. 5.32 m/s ² d. 1.77 m/s ² 4) A stone is tied to a 0.50-m string and whirled at a constant speed of 4m/s in a circle. Its accelerate the top of the circle is:	a. decreases	b. constant	c. zero	d. increases
41) To move a car along a level road you needed to apply a force of about 200N directed at angle to above the horizontal, and you push it 20m, the work done on the car is: a. 4500J b. 2210J c. 3000J d. 2176J 42) Ahmad pushes a box along a smooth floor using a force of 210N and a power output of of 350 time it takes to push the box 20m is: a. 5 s b. 12 s c. 20 s d. 4 s 3) A truck start from rest, travels with constant acceleration a distance 470 m the final velons. it is acceleration is: a. 0.11 m/s² b. 2.66 m/s² c. 5.32 m/s² d. 1.77 m/s² d) A stone is tied to a 0.50-m string and whirled at a constant speed of 4m/s in a circle. Its accelerate the top of the circle is:		at an angle of 30° above	the horizontal with an initia	al speed 50 m/s. The range of ball
a. 4500J b. 2210J c. 3000J d. 2176J 42) Ahmad pushes a box along a smooth floor using a force of 210N and a power output of of 350 time it takes to push the box 20m is: a. 5 s b. 12 s c. 20 s d. 4 s 3) A truck start from rest, travels with constant acceleration a distance 470 m the final velocity of m/s. it is acceleration is: a. 0.11 m/s² b. 2.66 m/s² c. 5.32 m/s² d. 1.77 m/s² 4) A stone is tied to a 0.50-m string and whirled at a constant speed of 4m/s in a circle. Its acceleration of the circle is:	a. 318 m	b. 257 m	c. 373.4 m	d. 220.9 m
42) Ahmad pushes a box along a smooth floor using a force of 210N and a power output of of 350 time it takes to push the box 20m is: a. 5 s b. 12 s c. 20 s d. 4 s 3) A truck start from rest, travels with constant acceleration a distance 470 m the final version m/s. it is acceleration is: a. 0.11 m/s ² b. 2.66 m/s ² c. 5.32 m/s ² d. 1.77 m/s ² 1) A stone is tied to a 0.50-m string and whirled at a constant speed of 4m/s in a circle. Its acceleration of the circle is:	1) To move a car alo above the horizon	ong a level road you neede tal, and you push it 20m,	ed to apply a force of about the work done on the car is	200N directed at angle θ=75° s:
a. 5 s b. 12 s c. 20 s d. 4 s 3) A truck start from rest, travels with constant acceleration a distance 470 m the final version m/s. it is acceleration is: a. 0.11 m/s ² b. 2.66 m/s ² c. 5.32 m/s ² d. 1.77 m/s ² A stone is tied to a 0.50-m string and whirled at a constant speed of 4m/s in a circle. Its acceleration of the circle is:	a. 4500J	ь. 2210J	c. 3000J	d. 2176J
50 m/s. it is acceleration is: a. 0.11 m/s ² b. 2.66 m/s ² c. 5.32 m/s ² d. 1.77 m/s ² B) A stone is tied to a 0.50-m string and whirled at a constant speed of 4m/s in a circle. Its acceleration is:	time it takes to pus	sh the box 20m is: b. 12 s	c. 20 s	d. 4 s
A) A stone is tied to a 0.50-m string and whirled at a constant speed of 4m/s in a circle. Its accelerate to post the circle is:	3) A truck start from 50 m/s. it is accel	a rest, travels with conseration is:	stant acceleration a distal	ice 470 m the imai velocity is
the top of the circle is:		b. 2.66 m/s ²	c. 5.32 m/s ²	d. 1.77 m/s ²
	0.11 m/s ²			
$1.9.8 \text{ m/s}^2$ b 9.8 m/s^2 c. 32 m/s^2 d 32 m/s^2	A stone is tied to a		d at a constant speed of 4n	n/s in a circle. Its acceleration a
	A stone is tied to a the top of the circle	e is:		n/s in a circle. Its acceleration a d32 m/s ²